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Abstract—As the complexity and resolution of particle detec-
tors increases, the need for detailed simulation of the experimen-
tal setup also increases. Designing experiments requires efficient
tools to simulate detector response and optimize the cost-benefit
ratio for design options. We have developed efficient and flexible
tools for detailed physics and detector response simulation which
builds on the power of the Geant4 toolkit but frees the end user
from any C++ coding. The primary goal has been to develop a
software toolkit and computing infrastructure to allow physicists
from universities and labs to quickly and easily contribute to
detector design without requiring either coding expertise or
experience with Geant4. Maximizing the physics performance
of detectors being designed for the International Linear Collider
(ILC), while remaining sensitive to cost constraints, requires a
powerful, efficient, and flexible simulation, reconstruction and
analysis environment to study the capabilities of a large number
of different detector designs. The preparation of Letters Of
Intent for the ILC involved the detailed study of dozens of
detector options, layouts and readout technologies; the final
physics benchmarking studies required the reconstruction and
analysis of hundreds of millions of events. We describe the Java-
based software toolkit (org.lcsim) which was used for full event
reconstruction and analysis. The components are fully modular
and are available for tasks from digitization of tracking detector
signals through to cluster finding, pattern recognition, track-
fitting, calorimeter clustering, individual particle reconstruction,
jet-finding, and analysis. The detector is defined by the same
input files used for the detector response simulation, ensuring
the simulation and reconstruction geometries are always com-
mensurate by construction. We discuss the architecture as well
as the performance.

I. INTRODUCTION

DETECTORS designed to exploit the physics discovery
potential of lepton collisions at the Terascale will need

to perform precision measurements of complex final states.
One needs to fully reconstruct hadronic final states, with
the ability to tag quark flavors with high efficiency and
purity. Exceptional momentum resolution is required, leading
to either large volume gaseous or low-mass silicon trackers.
The excellent vertexing capabilities demanded by the flavor-
tagging requirement point to a multi-layered giga-pixel vertex
detector with micron point resolution. Calorimetry capable
of very high di-jet mass resolution points towards highly
segmented imaging calorimetry or to dual-readout total ab-
sorption crystals. The mission of the Linear Collider Detector
(LCD) Simulation and Reconstruction group is to provide
full simulation capabilities for the Linear Collider physics
program, from physics event generation, to detector design
simulations, through to event reconstruction and analysis. Its
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goal is to facilitate contributions from physicists in different
locations with various amounts of available time. We do so
by using standard data formats, providing a general-purpose
framework for physics software development, and providing
a suite of reconstruction and analysis code which is easy to
install and use. Figure 1 presents a flowchart of the overall
detector design, characterization and optimization process in
which this software plays an essential role.

Maximizing the physics performance of detectors being
designed for the ILC, while remaining sensitive to cost con-
straints, requires a powerful, efficient, and flexible simulation,
reconstruction and analysis environment to study the capa-
bilities of a large number of different detector designs. The
preparation of Letters Of Intent and the currently ongoing
Detailed baseline design (DBD) exercise for the ILC involved
the detailed study of dozens of detector options, layouts and
readout technologies; the final physics benchmarking studies
required the reconstruction and analysis of hundreds of mil-
lions of events.

We describe the detector response program, slic, which we
have developed to simulate the physics capabilities of several
experimental concepts. It makes use of the full functionality
of the Geant4 [1] toolkit, but defines the complete detector
geometry at runtime, sparing the end user from having to
develop any C++ code.

We also present the Java-based software toolkit (org.lcsim)
which was used for full event reconstruction and analysis.
The components are fully modular and are available for
tasks from digitization of tracking detector signals through to
cluster finding, pattern recognition, track-fitting, calorimeter
clustering, individual particle reconstruction, jet-finding, and
analysis. The detector is defined by the same xml input files
used for the detector response simulation, ensuring the simula-
tion and reconstruction geometries are always commensurate
by construction. We discuss the architecture as well as the
performance.

II. MODELING THE DETECTOR RESPONSE

As part of the American Linear Collider Physics Group’s
(ALCPG) [2] simulation and reconstruction effort, we set
out to provide a full detector response simulation program
which would free our end users from having to write code
or to be expert in the details of the physics simulation to
design and study a detector. The system should be powerful,
yet simple to install and maintain and be flexible enough to
accommodate new detector geometries and technologies. All
of the detector properties, not just the geometry, should be
definable at runtime with an easy to use format. The output
simulated detector response should be made available in a
simple, well-documented format, allowing further processing
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Fig. 1. A flow chart of the overall detector design, characterization and optimization process.

or event reconstruction to be undertaken with a minimum of
effort.

A. Full Simulation using Geant4

The Geant4 [1] toolkit is the de facto high-energy physics
standard for simulating the interaction of particles with fields
and materials. However, the end user is normally required
to write their own C++ program to access the libraries, and
the learning curve for setting up the detector geometry and
defining sensitive elements and readout can be quite daunting.
We have developed the detector response package, slic [3],
which is based on the Geant4 toolkit but defines generic input
and output data formats, and uses an xml file format described
in the next section to define the complete detector. This
allows the end user to fully describe the detector geometry
and readout at runtime using a plain text file. We provide
executable programs for Windows, Mac OSX and several
flavors of Linux. For persistence of the detector response,
we developed LCIO [5], a simple event data model and
persistency framework. The output from the detector response
simulation consists of collections of generic tracker and
calorimeter hits along with the complete Monte Carlo particle

hierarchy, including secondaries produced in the simulation.
LCIO is performant, with on-the-fly data compression and
random access, well documented, with C++, Java, python and
FORTRAN bindings.

B. Detector Description using GDML and lcdd
The detector geometry, typically the most complex part of

a detector simulation, is described at runtime using an input
text file rather than procedural C++ code. We selected XML
as the textual file format for the geometry description for the
following reasons:

• Simplicity: Rigid set of rules
• Extensibility: easily add custom features, data types
• Interoperability: OS, languages, applications
• Self-describing data, validate against schema
• Hierarchical structure OOP, detector/subdetector
• Open W3 standard, lingua franca for B2B
• Many tools for validating, parsing, translating
• Automatic code-generation for data-binding
• Plain text: easily edited, cvs versioning
Instead of developing a geometry package from the ground

up, we extended the existing Geometry Description Markup
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Fig. 2. The lcdd xml format, illustrating its relationship to GDML.

Language (GDML) [4].GDML is an application-independent
geometry description format based on XML developed at
CERN for high energy physics applications. It can be used
as the primary geometry implementation language or it can
provide a geometry data exchange format for existing ap-
plications. It provides expressions, materials, solids, volume
definitions and a geometry hierarchy. We adopted this as the
basic geometric description and extended it to include detector
identifiers, definitions of sensitive detectors, regions, physics
limits and cuts, physics list definitions and electromagnetic
fields, either as simple parameterizations (e.g. solenoidal or
dipole fields) or as field maps. This expanded, complete
detector description language is known as lcdd [7] and its
relationship to GDMl can be seen in Figure 2. It is composed
of the following tags:
<lcdd>

LCDD Root Element
<header>

Information about the Detector
<iddict>

Identifier Specifications
<sensitive detectors>

Detector Readouts
<limits>

Physics Limits
<regions>

Regions (sets of volumes)
<display>

Visualization Attributes
<gdml>

GDML Root Element
<define>

Constants, Positions, Rotations

<materials>
Material Definitions

<solids>
Solid Definitions

<structure>
Volume Hierarchy

</gdml>
<fields>

Magnetic Field
</lcdd>
The full detector designs must be optimized for maximum

performance while being constrained by a reasonable cost.
At the level of the full detector, different combinations of
subdetector parameters need to be studied. It may there-
fore be true that although any particular subdetector may
not be optimal, the detector as a whole may have optimal
performance. Although the geometry interface targets basic
Geant4 shapes, and therefore any detector could be modeled,
the focus of this particular presentation is on high energy
physics collider detectors. Although modern collider detectors
have converged on a common cylindrical topology, the exact
composition of the trackers and calorimeters varies between
concepts. Since the number of possible full detector designs
that need to be modeled by the simulation software is quite
large, detector simulation software for the International Linear
Collider (ILC) [9] needs to provide capabilities that facilitate
an iterative development cycle allowing rapid prototyping of
these detector geometries, as shown in Figure 1. Changes to
the detector geometry must not only be easy to make but
also easily to propagate to all packages that depend on this
information, from the simulator through reconstruction and
analysis algorithms to the event display. The detector geometry
should be treated as conditions; client programs need random



access to full detector designs based on the current physics
event.

The runtime XML format allows variations in detector
geometries to be easily set up and studied.

• Absorber materials & readout technologies for sampling
calorimeters (W, Cu, Fe + RPC, GEM, scintillator, ...)

• Optical processes for dual-readout or crystal calorimeters
(Cherenkov, scintillation)

• Layering (radii, number, composition)
• Readout segmentation (cell size, projective vs. nonpro-

jective)
• Tracking detector technologies (e.g. TPC, Si µstrip, Si

pixel)
• Tracking detector topologies (e.g. nested vs Barrel +

endcap)
A recent development allows the importation of models de-
veloped with CAD systems. This allows elements of arbitrary
complexity to be easily incorporated into the detector design.
However, there is a price to be paid in terms of computing
time. Furthermore, these geometrical elements cannot be as-
signed as a sensitive element and are not available to the later
stages of analysis, e.g. the reconstruction and event display.
They are, therefore, best suited to support material. From
the users perspective, the LCDD format can be too verbose
and complex for hand editing. Typically, researchers want to
change a few parameters such as inner radius or layering
scheme and have these changes automatically propagated
to create the detailed full geometry. The Compact Detector
Description, henceforth referred to as the compact description,
is a high-level format designed to facilitate this type of usage.
The GeomConverter Java package converts compact descrip-
tions to LCDD. It also supports the geometry formats used by
the fast simulation programs and the event display. It can also
create Java runtime objects representing the detector geometry
for the org.lcsim reconstruction and analysis framework. The
following is a simple example of a compact description of a
sampling Si/W barrel calorimeter:

<detector
id="2"
name="EMBarrel"
type="CylindricalBarrelCalorimeter"
readout="EMHits">

<dimensions
inner_r="150.1*cm"
outer_z="208.0*cm" />

<layer repeat="20">
<slice material="Tungsten"

thickness="0.25*cm" />
<slice material="Silicon"

thickness="0.032*cm"
sensitive="yes" />

</layer>
</detector>

The task of expanding this into the twenty layers of absorber
and readout, positioning each layer correctly and assigning a
sensitive volume to each layer of silicon would be handled by

the GeomConverter package, freeing the end user to concen-
trate on the essential topological description of the detector.
Extremely complicated detector geometries can be simulated
quite easily with the compact description. And since the
geometry is completely defined at runtime, it is straightforward
to study a number of detectors with a minimum of effort.
Figures 3 through 8 show the same physics event being
simulated with three different ILC detector concepts using the
same executable program. The only difference was the input
detector geometry description file.

C. I/O

For persistence of the detector response, we developed
LCIO [5] , a simple event data model and persistency frame-
work used by the ILC community. Because there is no
efficient way of encapsulating all of the myriad sensitive
detector technologies in a single application, we chose to
write out the simulated deposition of energy in sensitive
detectors, and allow the end user to apply all digitization
(e.g. development of the signals and electronic response) at
the reconstruction or analysis stage. High energy physics
collider detectors, although incredibly complex, can be broken
down into two distinct types of measurement devices: non-
destructive, position-sensitive devices usually referred to as
trackers, and destructive, energy-sensitive detectors identified
as calorimeters, information from which is usually measured
only in aggregate, i.e. within some reasonably large readout
volume. The output from the detector response simulation
then consists simply of collections of generic tracker and
calorimeter hits along with the complete Monte Carlo particle
hierarchy, including secondaries produced in the simulation.
LCIO is performant, with on-the-fly data compression and
random access, well documented, with C++, Java, python
and FORTRAN bindings. The software architecture is shown
schematically in Figure 9.

III. EVENT RECONSTRUCTION

The Java based toolkit org.lcsim [6] is used for full event
reconstruction and analysis. Java provides both a very power-
ful object-oriented language for development and transparent
cross-platform portability. The code can be run standalone or
within the Java Analysis Studio (JAS3) an integrated develop-
ment environment. The reconstruction and analysis software is
based on a plug-and-play architecture which employs Drivers
to perform discrete actions. Drivers interact with the Event
by fetching objects or collections from the Event, process-
ing them, and optionally adding results back to the Event.
As currently implemented, the event reconstruction is done
serially by applying the run-time configurable list of event
processors one after the other. However, the Java language
provides excellent support for multi-threaded computing, and
nascent studies of a parallel reconstruction paradigm are very
promising.

The Driver class interface provides the following methods:
• startOfData()
• getConditionsManager()
• process(EventHeader event)



Fig. 3. A view of the SiD concept.

Fig. 4. A multijet event simulated in the SiD concept.

Fig. 5. A view of the ILD concept.

Fig. 6. A multijet event simulated in the ILD concept.

Fig. 7. A view of the GLD concept.
Fig. 8. A multijet event simulated in the GLD concept.

• detectorChanged(Detectordetector)
• endOfData()

although, in practice, most user classes only override the
process(EventHeader event) method. The code
runs either within the Java Analysis Studio (JAS) IDE for
interactive use or standalone for batch or Grid production.

The “write-once, run anywhere” feature of Java means that
the exact same libraries run on all platforms (Windows,
Mac, Linux(es) using the Java Virtual machine. A number
of packages provide such functionality as: overlaying beam
backgrounds at the detector hit level (including time offsets),
digitization of readout electronics (CCD pixels, silicon mi-
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Fig. 9. The simulation software architecture.

crostrips, TPC pad hits), ab initio track finding and fitting,
multiple calorimeter clustering algorithms, and individual par-
ticle reconstruction, also known as Particle Flow Analysis
(PFA). Data analysis tools include an event browser and the
Wired 3D interactive event display, whereas physics analysis
tools include jet finding, event shape, vertexing and particle
ID algorithms.

A. Monte Carlo Hit Digitization

Because we are interested in studying the effects of many
tracking detector parameters, we chose not to perform the
detector digitization during the Geant4 response simulation.
Instead, we write out the simulated deposition of energy in
sensitive detectors, and allow the end user to apply all digitiza-
tion (e.g. development of the signals and electronic response)
at the reconstruction or analysis stage. This allows us to rapidly
and efficiently study the effects of pixel size and strip pitch as
well as various readout technologies without having to rerun
events through the full Geant4 simulation. After the effects
of drift and diffusion of deposited charge is simulated, the
electronics simulation adds noise, propagates the signal to the
readout, applies a threshold and gain, and provides “raw” data
in the form of channel IDs and ADC counts. Various clustering
algorithms are provided which perform 1D clustering for strips
and 2D clustering for pixel detectors. The clustering provides
hit centroids and cluster-size dependent uncertainties which
then serve as input to track finding and fitting.

B. Track Finding and Fitting

A number of track finding strategies are available within
org.lcsim, supporting standalone pattern recognition for one-
dimensional (Si micro-strip), two-dimensional (Si pixel) and

fully three-dimensional (TPC) hits. The efficiency for finding
tracks is very high, even in the presence of backgrounds and at
low momenta. Conformal-mapping pattern recognition is also
available for 3D hits, applicable to a TPC. Pattern recognition
initiated by extending track-stubs found in the highly seg-
mented calorimeters into the trackers is also provided. Track
fitting incorporating multiple scattering and energy loss via a
weight matrix approach is currently used, with a full Kalman
Filter approach becoming available.

C. Calorimeter Reconstruction

A number of clustering algorithms have been implemented
which are used to support the Particle Flow Algorithm (PFA)
approach to event reconstruction. One attempts to unambigu-
ously associate all clusters in the calorimeter to their orginating
particle. For charged particles, one then uses the measured
track momentum to replace the much less precise energy mea-
surement. Clusters unassociated with tracks are either photons,
measured reasonably well in the electromagnetic calorimeters,
or neutral hadrons, which only represent a fraction of the
total event energy. Using this technique, individual jet energy
resolutions of three to four percent can be achieved.

IV. JOB CONTROL

Exploring large regions of detector design phase space
requires an easy way to configure not only the detector
geometry, but also the reconstruction processors and their
associated control parameters. Again, we have adopted an xml
format for our run control steering files. In it we can not only
define the input and output files, but also the number of events
to process, the Drivers to run, along with arguments to any of
the algorithms.



Fig. 10. A cross section of the SiD central tracking region as implemented
in CAD software. Fig. 11. A cross section of the SiD central tracking region as implemented

in Geant4.

Fig. 12. A cutaway view of the Silicon Detector as implemented in Geant4
using the compact.xml file description.

Fig. 13. A cutaway view of the Silicon Detector inner tracker as imple-
mented in Geant4, showing the level of complexity and detail obtainable
using the compact.xml file description.

V. MONTE CARLO DATA CHALLENGES

The set of applications described here has been successfully
used to design the Silicon Detector [8], one of the two concepts
currently being investigated to study the physics of high energy
electron-positron collisions at the International Linear Collider
(ILC) [9]. The optimization process for the tracker design
started out with a number of simplified geometries, with
the complexity of the simulations increasing as the designs
became more mature. The current model is quite sophisticated,
including most of the details of the engineering models for
the support and assembly of the detectors, as well as the
electronic readouts currently being considered. Figure 10
shows a cross section of a CAD model of the central tracker.
The corresponding Geant4 model is shown in Figure 11. A
cutaway view of the full Silicon Detector, as implemented in

Geant4 is shown in Figure 12, with a blowup of the central
tracking region shown in Figure 13.

The Letter of Intent process required a number of physics
analyses to be conducted with full-detector simulation, ab ini-
tio event reconstruction, and analysis. The physics benchmark
processes were deliberately chosen to highlight the intrinsic
detector performance, to facilitate comparisons between the
concept designs. Although still far from real, the physics
benchmarking requirements presented the community with a
large-scale, end-to-end exercise which stressed most aspects
of the software systems, including:

• Event Generation
• Detector Simulation
• Event Reconstruction
• Physics Analysis



On the order of a hundred million events were fully simu-
lated and reconstructed as part of the data challenge. Extensive
use was made of the LCG (primarily DESY, RAL Tier 1
and IN2P3) and OSG (primarily on the FermiGrid) grids.
In general, no problems were encountered with the concept
software. All the classes were bundled into a single jar file,
and the JVM was shipped to grid nodes if needed.

VI. INTEROPERABILITY AND USER BASE

Although the org.lcsim software suite is fairly fully fea-
tured, there exist tools written in C++ which offer additional
functionality, or which could be used to cross-check results.
The common event model and persistency format allow tools
developed in other regions, other languages or other analysis
frameworks to be used to process events. LCIO files can be
analyzed using root by importing a root LCIO dictionary. The
org.lcsim package was developed by and for the ILC physics
and detector community, but is being adopted by a wider
community. Recently it has been adopted by CERN as one of
two frameworks for detector simulations for the CLIC physics
CDR [10]. It has also been adopted for the Fermilab-based
Muon Collider physics and detector studies [11]. The Heavy
Photon Search (HPS) [12] experiment at the Thomas Jefferson
National Accelerator facility also used this package for their
detector response simulations and is using the software for
their data reconstruction and analysis. The Fermilab dual-
readout crystal calorimetry group has contributed a number
of improvements to the handling of optical processes as part
of their detector studies, and a group at SLAC National
Accelerator Laboratory has used org.lcsim for ATLAS pixel
upgrade simulations.

VII. SUMMARY

The ALCPG physics and detector software group supports
an ambitious physics and detector response simulation, re-
construction and analysis effort. The goal is flexibility and
interoperability which is neither technology nor concept lim-
ited. It provides a complete and flexible detector simulation
package capable of simulating arbitrarily complex detectors
with runtime detector description. The reconstruction and
analysis framework exists, core functionality is available, an
individual particle reconstruction has been developed, and
various analysis algorithms have been implemented. It has
been used extensively in support of studies demonstrating the
scientific merit and feasibility of detectors at the International
Linear Collider, specifically the successful validation of the
Silicon Detector (SiD) Concept. In addition, it is being adopted
by an increasingly larger group of users and being adapted to
a broader range of applications.
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