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Abstract: We determine the evolving probability representation of entangled cat states
in the potential of either the harmonic oscillator or the inverted oscillator, assuming that
the states are initially prepared in the potential of the harmonic oscillator. Such states
have several applications in quantum information processing. The inverted quantum
harmonic oscillator, where the potential energy corresponds to imaginary frequencies of
the oscillator, can be applied in relation to cosmological problems. We also determine the
evolving probability representation of cat states of an oscillating spin-1/2 particle of the
inverted oscillator, in which the time evolution of the spin state is described by an arbitrary
unitary operator. The properties of the determined entangled probability distributions
are discussed.

Keywords: evolving probability representation; cat states; inverted oscillator

1. Introduction

In quantum mechanics, various representations of quantum states can be used for
discussing the properties and dynamics of quantum systems and for performing any
calculations. One of them, the probability representation, was proposed in the 1990s, and it
has extensively been analyzed in the literature [1–7]. The importance of this representation
is that regular non-negative probability distributions defined in the phase space can be
used to describe the system states. Knowing the density operator of the quantum state,
one can derive the corresponding probability distribution, which contains all information
regarding the quantum system. All quantum effects can be explained effectively through
the probability representation by the use of the conventional probability theory. We note
here that quasiprobability representations such as the Husimi Q-function [8,9], the Glauber–
Sudarshan P-function [10,11], or the Wigner function [12] are related to the proposed
probability representation through integral transforms [13]. The derivation of probability
representations is based on the general formalism of quantizer and dequantizer operators.
These operators associate operators defined in a Hilbert space with functions of certain
variables, and the general formalism describes all invertible maps between the two sets of
quantities [14].

The symplectic tomogram is a type of probability representation of continuous quan-
tum systems widely studied in the literature. An important property of this tomogram is
that, for certain sets of the variables, it corresponds to the optical homodyne tomogram [5]
that can be determined in quantum optical experiments [15]. Optical tomograms can be
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used for restoring the density matrix or the Wigner function [16–20]. Symplectic tomo-
grams have already been derived for various states of the harmonic oscillator such as
Fock states [7], thermal states [21], coherent states, and even and odd coherent states, also
known as Schrödinger cat states [22]. The time evolution of tomograms of these states
initially prepared in the potential of the usual harmonic oscillator has also been derived
for inverted oscillators [23,24] and for free particle motion [5,7,21,22]. The relevance of
the inverted quantum harmonic oscillator model is that it can be used in several physical
problems [25–27], e.g., in studying some cosmological problems [28–30], the motion of
optically levitated nanoparticles [31–33], or fast frictionless cooling of ultracold atomic
mixtures [34–36].

Quantum systems with discrete variables can also be described by probability repre-
sentations; examples of these were shown for qubit and qudit systems [2,37,38]. Recently,
special probability distributions have been presented for one- and two-qubit states where
the components of these distributions are actually the probabilities of the spin projections
onto opposite directions of the perpendicular x, y, and z axes for the particular qubits [39,40].
Consequently, assuming that a large enough set of identically prepared states are at hand,
repeated spin projection measurements can be applied to experimentally measure the
components of these probability distributions. As the elements of the density matrix can be
expressed by these components [39], any quantum effect and even the time evolution can
be addressed by using these probabilities.

Quantum superposition is a basic principle of quantum mechanics resulting in phe-
nomena that cannot be interpreted classically. In harmonic oscillator systems, Schrödinger
cat states, also known as even and odd coherent states, are typical examples of such su-
perpositions. These states are superpositions of two macroscopic quasi-classical coherent
states [41–43]. Such states can be generated in various quantum optical experiments [44–52],
and they can be efficiently applied in quantum information processing schemes, especially
in quantum communication [53,54] and optical quantum computation [55–58].

Quantum entanglement is yet another counterintuitive phenomenon that has no
classical analog. Widely discussed entangled states are entangled cat states, also known
as entangled coherent states, which are the superpositions of macroscopic coherent states
for two or more modes [53,54,59–63]. Entangled cat states can be generated in various
experiments [59,60,64–72]. Due to entanglement, such states have several applications
in quantum information processing, such as quantum teleportation [73,74], quantum key
distribution [53], quantum sensing [75], and quantum computation [76]. Recently, cat states
of oscillating spin-1/2 particles have also been considered [77,78]. For describing entangled
states, entangled probability distributions have been introduced in the literature [39,78].
These distributions differ from classical distributions and, using them, the properties of
entanglement can be revealed.

Motivated by these preliminaries, the present paper aims at determining the evolving
probability representation of two-mode entangled cat states in the potential of either the
harmonic oscillator or the inverted oscillator, assuming that the states are initially prepared
in the potential of the harmonic oscillator. We will also determine the evolving probability
representation of cat states of an oscillating spin-1/2 particle of both types of oscillators
in which the time evolution of the spin state is described by an arbitrary unitary operator.
Marginal probability distributions will be derived and the properties of all determined
entangled probability distributions will be discussed.



Quantum Rep. 2025, 7, 23 3 of 15

2. Probability Representations and the Formalism of Dequantizers
and Quantizers

In this section, we summarize the formalism of dequantizers and quantizers and the
theory of probability representations for both continuous and discrete variables.

2.1. Continuous Dimensional Quantum Systems

In Ref. [14], it was shown how the formalism of dequantizer and quantizer operators
can be applied for deriving the probability representation of quantum states. The particular
operators are labeled by the parameter x̄ that can contain either discrete or continuous
components x1, x2, . . . , xn. Using the dequantizer operators Û(x̄) and quantizer operators
D̂(x̄), one can create an invertible map between operators Â acting on the Hilbert space H
and functions fA(x̄) as [14]

fA(x̄) = Tr
(

ÂÛ(x̄)
)

, (1)

Â =
∫

fA(x̄)D̂(x̄)dx̄ . (2)

Since the function fA(x̄) is associated with the operator Â and it has properties that reflect
the properties of the operator, fA(x̄) is termed as the symbol of the operator Â. For discrete
variables xi, the formula above should be modified so that the integral is replaced by a
corresponding sum, that is,

f
(i)
A = Tr

(

ÂÛ(i)
)

, i = 1, . . . , l, (3)

Â =
n

∑
i=1

f
(i)
A D̂

(i)
A . (4)

The above four formulas are also valid for any density operator. Using the dequantizer
operator Û(X, µ, ν) = δ

(

X1̂ − µq̂ − ν p̂
)

, it becomes possible to map the density operator ρ̂

characterizing a continuous-variable quantum system onto the function w(X | µ, ν), known
as a symplectic tomogram, by the formula [1]

w(X | µ, ν) = Tr
[

ρ̂ δ
(

X1̂ − µq̂ − ν p̂
)]

. (5)

In this expression, q̂ and p̂ are the position and momentum operators, respectively, and
the resulting function w(X | µ, ν) depending on the random position X is a non-negative
conditional probability distribution function, which satisfies the normalization condition

∫

w(X | µ, ν)dX = 1. (6)

The conditions are labeled by the parameters µ and ν in the frame of reference where the
position X is measured, that is, the position X can be expressed as X = µq + νp in the
phase space. Then, the inverse transformation can be derived in the form

ρ̂ =
1

2π

∫

w(X | µ, ν)D̂(X, µ, ν)dX dµ dν , (7)

where D̂(X, µ, ν) = exp
[

i
(

X1̂ − µq̂ − ν p̂
)]

is the quantizer operator.
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In Ref. [7], it was shown that, assuming pure states, that is, ρ̂ = |ψ⟩⟨ψ|, Formula (5)
can be rewritten as

w(X | µ, ν) =
1

2π|ν|

∣

∣

∣

∣

∫

ψ(y) exp
(

iµ

2ν
y2 − iX

ν
y

)

dy

∣

∣

∣

∣

2

(8)

with ψ(y) = ⟨y|ψ⟩ being the wave function of the state.
The tomographic symbol of the operators |ψ⟩⟨φ| determined by the state vectors |φ⟩

and |ψ⟩ of a single-mode oscillator is

Tr
(

|ψ⟩⟨φ|δ(X1̂ − µq̂ − ν p̂)
)

=
1

2π|ν|
∫

dx φ∗(x) exp
(

− iµ

2ν
x2 +

i

ν
Xx

)

×
∫

dx′ ψ(x′) exp
(

iµ

2ν
x′2 − i

ν
Xx′

)

.
(9)

The Wigner quasiprobability distribution function W(q, p) of a quantum state can be
expressed through the density operator as [7]

W(q, p) =
1

2π

∫ ∞

−∞
⟨q − u/2|ρ̂|q + u/2⟩eipu du . (10)

In this and the following expressions, we assumed that h̄ = 1. It can be shown that the
symplectic tomogram can be obtained from the Wigner function W(q, p) by the expression

w(X | µ, ν) =
1

2π

∫

W(q, p)δ(X − µq − νp)dq dp , (11)

while the Wigner function can be derived from the symplectic tomogram as [7]

W(q, p) =
1

2π

∫

w(X | µ, ν)ei(X−µq−νp) dX dµ dν . (12)

Note that both the Wigner function W(q, p) and the symplectic tomogram w(X | µ, ν)

can be used to completely characterize the quantum state, as both functions contain all
information on the density operator. However, while symplectic tomograms are always
non-negative functions and, therefore, are regular probability distributions, in contrast,
values of the Wigner functions can be negative. A possible indicator of the nonclassicality
of quantum states can be based on the negativity of the Wigner function [79]. In the case of
pure states, only Gaussian states have positive Wigner functions [80,81].

The tomogram of a two-mode oscillator can be calculated similarly to Equation (5),
that is,

w(X1, X2 | µ1, ν1, µ2, ν2) = Tr
[

ρ̂δ(X11̂ − µ1q̂1 − ν1 p̂1)δ(X21̂ − µ2q̂2 − ν2 p̂2)
]

. (13)

We note that an alternative definition for the tomogram of two- and multimode oscillators,
known as the center-of-mass tomogram, has also been developed [82,83].

In the case of pure states, Equation (13) can be rewritten as

w(X, Y | µ1, ν1, µ2, ν2) =
1

4π2|ν1ν2|

∣

∣

∣

∣

∫

Φ(x, y) exp
(

iµ1

2ν1
x2 − iX

ν1
x +

iµ2

2ν2
y2 − iY

ν2
y

)

dx dy

∣

∣

∣

∣

2

, (14)

where Φ(x, y) is the wave function of the pure two-mode state [39].
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Next, we discuss the time evolution of symplectic tomograms. The evolution of the
density operator ρ̂(t) of the system can be written as

ρ̂(t) = û(t)ρ̂(0)û†(t), (15)

where the unitary operator
û(t) = exp

(

−itĤ
)

(16)

describes the time evolution governed by the Hamiltonian Ĥ. Then, the tomogram
w(X|µ, ν, t) corresponding to the density operator ρ̂(t) takes the form

w(X|µ, ν, t) = Tr
(

ρ̂(t)δ(X1̂ − µq̂ − ν p̂)
)

. (17)

Substituting (15) into (17) and taking into account the properties of the trace of product of
operators, we obtain

w(X|µ, ν, t) = Tr
(

ρ̂(0)δ(X1̂ − µq̂H(t)− ν p̂H(t))
)

= w0(X|µH(t), νH(t)), (18)

where q̂H(t) and p̂H(t) are the position and momentum operators, respectively, in the
Heisenberg representation, that is,

q̂H(t) = û†(t)q̂û(t), p̂H(t) = û†(t) p̂û(t). (19)

The Hamiltonians of the harmonic (Ĥ+) and the inverted (Ĥ−) oscillator take the form

Ĥ± =
p̂2

2
± q̂2

2
. (20)

Here, the assumptions m = 1, ω = 1, and h̄ = 1 are taken into account. Applying the
unitary operators û±(t) = exp

(

−iĤ±t
)

in Equation (19), the time-dependent position and
momentum operators in the Heisenberg picture for the ordinary oscillator take the forms

q̂H(t) = q̂ cos t + p̂ sin t, p̂H(t) = −q̂ sin t + p̂ cos t, (21)

while for the inverted oscillator, they read

q̂H(t) = q̂ cosh t + p̂ sinh t, p̂H(t) = q̂ sinh t + p̂ cosh t. (22)

Using Equations (18), (21) and (22), the coefficients µH(t) and νH(t) appearing in
Equation (18) can be determined [23]. In the case of the harmonic oscillator, the time
evolution of these coefficients are

µH(t) = µ cos t − ν sin t, (23)

νH(t) = µ sin t + ν cos t. (24)

For the inverted oscillator, the time evolution of these coefficients can be obtained as

µH(t) = µ cosh t + ν sinh t, (25)

νH(t) = µ sinh t + ν cosh t. (26)

For two-mode oscillator systems, all these expressions should be applied consequently.
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2.2. Finite-Dimensional Quantum Systems

In order to obtain the probability representation of qubit states, one can use the
dequantizers [40]

Û(+1/2 | 1) =
1
2

(

1 1
1 1

)

, Û(−1/2 | 1) =
1
2

(

1 −1
−1 1

)

,

Û(+1/2 | 2) =
1
2

(

1 −i

i 1

)

, Û(−1/2 | 2) =
1
2

(

1 i

−i 1

)

,

Û(+1/2 | 3) =

(

1 0
0 0

)

, Û(−1/2 | 3) =

(

0 0
0 1

)

.

(27)

These dequantizers are actually density operators corresponding to projectors obtained
from the six normalized eigenvectors of the Pauli matrices σ̂x, σ̂y, and σ̂z.

Note that the minimal set of dequantizer operators of a finite d-dimensional quantum
system comprises d2 elements. Accordingly, the above set of dequantizers is not a minimal
set. However, it can be shown that four of the above six dequantizers, Û(+1/2 | 1),
Û(+1/2 | 2), Û(+1/2 | 3), and Û(−1/2 | 3), form a minimal set.

Based on the dequantizers defined in Equation (27), it is possible to introduce a
conditional probability distribution w(X | j) characterizing a qubit state described by the
density operator ρ̂ in the form

w(X | j) = Tr
[

ρ̂Û(X | j)
]

, X = ±1
2

, j = 1, 2, 3. (28)

In this formula, the value of the parameter X is chosen from the set {+1/2,−1/2}, while the
value of the parameter j belongs to the set {1, 2, 3}. The particular components correspond
to the probabilities of the spin projection X onto the three perpendicular directions x (j = 1),
y (j = 2), and z (j = 3). Let us introduce the probabilities p1, p2 and p3 as

w(+1/2 | 1) = p1, w(+1/2 | 2) = p2, w(+1/2 | 3) = p3,

w(−1/2 | 1) = 1 − p1, w(−1/2 | 2) = 1 − p2, w(−1/2 | 3) = 1 − p3,
(29)

which shows that the conditional probability distribution w(X | j) satisfies the condition

∑
X

w(X | j) = 1, j = 1, 2, 3. (30)

These probabilities are obviously measurable quantities, and it can be shown that the
matrix representation of the density operator of the qubit state can be derived by using
these probabilities as

ρ̂ =

(

p3 (p1 − 1/2)− i(p2 − 1/2)
(p1 − 1/2) + i(p2 − 1/2) 1 − p3

)

, (31)

and the non-negativity of the density operator ρ̂ poses the constraint

(

p1 −
1
2

)2

+

(

p2 −
1
2

)2

+

(

p3 −
1
2

)2

≤ 1
4

(32)

on the probabilities p1, p2, and p3.
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3. Results

In this section, we present our results on evolving probability representations of
two-mode entangled cat states and that of even and odd cat states of an oscillating spin-
1/2 particle.

First, we determine the evolving probability representation of entangled cat states in
the potential of either the harmonic oscillator or the inverted oscillator, assuming that the
states are initially prepared in the potential of the harmonic oscillator.

The entangled cat state can be written as

|Φ⟩ = N (|α⟩|α⟩ ± |−α⟩|−α⟩). (33)

Then, the corresponding density operator takes the form of

|Φ⟩⟨Φ| = N 2(|α⟩⟨α| ⊗ |α⟩⟨α| ± |−α⟩⟨α| ⊗ |−α⟩⟨α|
±|α⟩⟨−α| ⊗ |α⟩⟨−α|+ |−α⟩⟨−α| ⊗ |−α⟩⟨−α|). (34)

Applying Equations (8), (9), (14) and (18), the evolving tomogram of this state can be
calculated as the sum of four terms containing Gaussian integrals:

w(X1, X2 | µ1,H(t), ν1,H(t), µ2,H(t), ν2,H(t)) =
N 2

4π2|ν1,H(t)ν2,H(t)|

×
{

∣

∣

∣

∣

∫

φα(x) exp
[

iµ1,H(t)x2

2ν1,H(t)
− iX1x

ν1,H(t)

]

dx

∣

∣

∣

∣

2∣
∣

∣

∣

∫

φα(y) exp
[

iµ2,H(t)y
2

2ν2,H(t)
− iX2y

ν2,H(t)

]

dy

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∫

φ−α(x) exp
[

iµ1,H(t)x2

2ν1,H(t)
− iX1x

ν1,H(t)

]

dx

∣

∣

∣

∣

2∣
∣

∣

∣

∫

φ−α(y) exp
[

iµ2,H(t)y
2

2ν2,H(t)
− iX2y

ν2,H(t)

]

dy

∣

∣

∣

∣

2

±
∫

φα(x′) exp
[

iµ1,H(t)x′2

2ν1,H(t)
− iX1x′

ν1,H(t)

]

dx′
∫

φ∗
−α(x) exp

[−iµ1,H(t)x2

2ν1,H(t)
+

iX1x

ν1,H(t)

]

dx

×
∫

φα(y
′) exp

[

iµ2,H(t)y
′2

2ν2,H(t)
− iX2y′

ν2,H(t)

]

dy′
∫

φ∗
−α(y) exp

[−iµ2,H(t)y
2

2ν2,H(t)
+

iX2y

ν2,H(t)

]

dy

±
∫

φ−α(x′) exp
[

iµ1,H(t)x′2

2ν1,H(t)
− iX1x′

ν1,H(t)

]

dx′
∫

φ∗
α(x) exp

[−iµ1,H(t)x2

2ν1,H(t)
+

iX1x

ν1,H(t)

]

dx

×
∫

φ−α(y
′) exp

[

iµ2,H(t)y
′2

2ν2,H(t)
− iX2y′

ν2,H(t)

]

dy′
∫

φ∗
α(y) exp

[−iµ2,H(t)y
2

2ν2,H(t)
+

iX2y

ν2,H(t)

]

dy

}

. (35)

Using these formulas and inserting the wave function of coherent states

φα(x) =
1

π1/4 exp

[

− x2

2
+
√

2αx − |α|2
2

− α2

2

]

(36)

one can obtain
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w(X1, X2 | µ1,H(t), ν1,H(t), µ2,H(t), ν2,H(t)) =

=
N 2

π
√

µ1,H(t)2 + ν1,H(t)2
√

µ2,H(t)2 + ν2,H(t)2

× exp

[

−2(Re(α)µ1,H(t) + Im(α)ν1,H(t))
2 + X2

1
µ1,H(t)2 + ν1,H(t)2 − 2(Re(α)µ2,H(t) + Im(α)ν2,H(t))

2 + X2
2

µ2,H(t)2 + ν2,H(t)2

]

×
{

exp

[

23/2X1(Re(α)µ1,H(t) + Im(α)ν1,H(t))

µ1,H(t)2 + ν1,H(t)2 +
23/2X2(Re(α)µ2,H(t) + Im(α)ν2,H(t))

µ2,H(t)2 + ν2,H(t)2

]

+ exp

[

−23/2X1(Re(α)µ1,H(t) + Im(α)ν1,H(t))

µ1,H(t)2 + ν1,H(t)2 − 23/2X2(Re(α)µ2,H(t) + Im(α)ν2,H(t))

µ2,H(t)2 + ν2,H(t)2

]

± exp

[

23/2iX1(Im(α)µ1,H(t)− Re(α)ν1,H(t))

µ1,H(t)2 + ν1,H(t)2 +
23/2iX2(Im(α)µ2,H(t)− Re(α)ν2,H(t))

µ2,H(t)2 + ν2,H(t)2

]

± exp

[

−23/2iX1(Im(α)µ1,H(t)− Re(α)ν1,H(t))

µ1,H(t)2 + ν1,H(t)2 − 23/2iX2(Im(α)µ2,H(t)− Re(α)ν2,H(t))

µ2,H(t)2 + ν2,H(t)2

]}

=
2N 2

π
√

µ1,H(t)2 + ν1,H(t)2
√

µ2,H(t)2 + ν2,H(t)2

× exp

[

−2(Re(α)µ1,H(t) + Im(α)ν1,H(t))
2 + X2

1
µ1,H(t)2 + ν1,H(t)2 − 2(Re(α)µ2,H(t) + Im(α)ν2,H(t))

2 + X2
2

µ2,H(t)2 + ν2,H(t)2

]

×
{

cosh

[

23/2X1(Re(α)µ1,H(t) + Im(α)ν1,H(t))

µ1,H(t)2 + ν1,H(t)2 +
23/2X2(Re(α)µ2,H(t) + Im(α)ν2,H(t))

µ2,H(t)2 + ν2,H(t)2

]

± cos

[

23/2X1(Im(α)µ1,H(t)− Re(α)ν1,H(t))

µ1,H(t)2 + ν1,H(t)2 +
23/2X2(Im(α)µ2,H(t)− Re(α)ν2,H(t))

µ2,H(t)2 + ν2,H(t)2

]}

. (37)

In this expression, the time-dependent coefficients µ1,H(t), ν1,H(t), µ2,H(t), and ν2,H(t) can
take the forms of Equations (23) and (24) when the states of the two modes evolve in the
potential of the harmonic oscillator, and the forms of Equations (25) and (26) when the states
of the two modes evolve in the potential of the inverted oscillator. For the case where the
states of the two modes evolve in different potentials, the coefficients of the one evolving in
the potential of the harmonic oscillator take the form of Equations (23) and (24) and the
coefficients of the state of the other mode take the form of Equations (25) and (26). We
note that the probability distribution in Equation (37) is an entangled distribution and, in
general, it remains entangled throughout the evolution. It means that it cannot be rewritten
as the product of two separate distributions concerning the particular modes. This fact can
be especially seen from the final form of the expression.

Next, we find the evolving probability representation of even and odd cat states of
an oscillating spin-1/2 particle. These states can be defined in the tensor product Hilbert
space H = Hosc ⊗H1/2 as

∣

∣

∣
Ψ±

cat,1/2

〉

=
1√
2
(|α⟩ ⊗ |0⟩ ± |−α⟩ ⊗ |1⟩). (38)

This state is an entangled state of an oscillating particle and its spin.
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The probability representations of even and odd cat states of an oscillating spin-1/2
particle have been derived in Ref. [78]. The density operators of these states read

ρ̂±cat,1/2 =
∣

∣

∣
Ψ±

cat,1/2

〉〈

Ψ±
cat,1/2

∣

∣

∣

=
1
2
(|α⟩⟨α| ⊗ |0⟩⟨0| ± |α⟩⟨−α| ⊗ |0⟩⟨1|

±|−α⟩⟨α| ⊗ |1⟩⟨0|+ |−α⟩⟨−α| ⊗ |1⟩⟨1|). (39)

Let us consider the time evolution of this state:

ρ̂±cat,1/2(t) = ûcat(t)û1/2(t)ρ̂
±
cat,1/2(0)û

†
1/2(t)û

†
cat(t), (40)

where ûcat(t) and û1/2(t) describe the time evolution of the oscillator and the spin state,
respectively. The operator ûcat(t) is defined as

ûcat(t) = exp
(

−itĤ±
)

. (41)

The Hamiltonians Ĥ± of the harmonic (Ĥ+) and the inverted (Ĥ−) oscillator are defined in
Equation (20). The operator û1/2(t) can be represented by a 2-by-2 matrix as

û1/2(t) =

(

u1,1 u1,2

u2,1 u2,2

)

. (42)

The time dependencies of the matrix elements are not indicated in this expression.
We will use this simplified notation in the subsequent formulas and tables. Applying
Equations (18) and (28), the evolving conditional probability distribution w±

cat,1/2(X, Y |
µH(t), νH(t), j, t) of these states can be formulated as

w±
cat,1/2(X, Y | µH(t), νH(t), j, t) =

1
2

[

w|α⟩⟨α|(X | µH(t), νH(t))w|0⟩⟨0|(Y | j, t)

± w|α⟩⟨−α|(X | µH(t), νH(t))w|0⟩⟨1|(Y | j, t)

± w|−α⟩⟨α|(X | µH(t), νH(t))w|1⟩⟨0|(Y | j, t)

+w|−α⟩⟨−α|(X | µH(t), νH(t))w|1⟩⟨1|(Y | j, t)
]

. (43)

This probability distribution is an entangled one, having both a continuous and a discrete
variable concerning the oscillator and the spin-1/2 states, respectively. It cannot be rewritten
as the product of two separate probability distributions concerning the oscillator and the
spin. In this expression, the time-dependent coefficients µH(t) and νH(t) can take the forms
of Equations (23) and (24) when the state evolves in the potential of the harmonic oscillator,
and the forms of Equations (25) and (26) when the state evolves in the potential of the
inverted oscillator. Next, we derive all the factors appearing in Equation (43). Applying
Equations (8), (9), (14) and (18) and the corresponding results appearing in Equation (37),
the factors w|±α⟩⟨±α|(X | µH(t), νH(t)) in this expression can be obtained as

w|α⟩⟨α|(X | µH(t), νH(t)) = N exp

[

23/2X(µH(t)Re(α) + νH(t) Im(α))− X2

µH(t)2 + νH(t)2

]

, (44)

w|α⟩⟨−α|(X | µH(t), νH(t)) = N exp

[

i23/2X(µH(t) Im(α)− νH(t)Re(α))− X2

µH(t)2 + νH(t)2

]

, (45)
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w|−α⟩⟨α|(X | µH(t), νH(t)) = N exp

[

−i23/2X(µH(t) Im(α)− νH(t)Re(α))− X2

µH(t)2 + νH(t)2

]

, (46)

w|−α⟩⟨−α|(X | µH(t), νH(t)) = N exp

[

−23/2X(µH(t)Re(α) + νH(t) Im(α))− X2

µH(t)2 + νH(t)2

]

, (47)

where

N =
1

√

µH(t)2 + νH(t)2

1√
π exp(2 Re(α)2))

× exp
[−4µH(t)νH(t) Im(α)Re(α) + 2νH(t)

2(Re(α)2 − Im(α)2)

µH(t)2 + νH(t)2

]

. (48)

The other set of factors concerning the spin variable in Equation (43) can be calculated as

w|k1⟩⟨k2|(Y | j, t) = Tr
(

û1/2(t)|k1⟩⟨k2|û1/2(t)
†Û(Y | j)

)

, k1, k2 = 0, 1, (49)

and the dequantizer operators Û(Y | j) are the ones defined in Equation (27). The corre-
sponding expressions are shown in Table 1.

Table 1. The evolving factors w|0⟩⟨0|(Y | j, t), w|0⟩⟨1|(Y | j, t), w|1⟩⟨0|(Y | j, t), w|1⟩⟨1|(Y | j, t) appearing
in the conditional probability distribution w±

cat,1/2(X, Y | µH(t), νH(t), j, t) of even and odd cat states
of an oscillating spin-1/2 particle displayed in Equation (43) for the pairs of the parameters Y and j.

Y | j w|0⟩⟨0|(Y | j, t) w|0⟩⟨1|(Y | j, t) = w|1⟩⟨0|(Y | j, t)∗ w|1⟩⟨1|(Y | j, t)

+1/2 | 1 |u1,1 + u2,1|2
2

(u1,1 + u2,1)(u1,2 + u2,2)
∗

2
|u1,2 + u2,2|2

2
+1/2 | 2 |u1,1 − iu2,1|2

2
(u1,1 − iu2,1)(u1,2 − iu2,2)

∗

2
|u1,2 − iu2,2|2

2
+1/2 | 3 |u1,1|2 u1,1u∗

1,2 |u1,2|2

−1/2 | 1 |u1,1 − u2,1|2
2

(u1,1 − u2,1)(u1,2 − u2,2)
∗

2
|u1,2 − u2,2|2

2
−1/2 | 2 |u1,1 + iu2,1|2

2
(u1,1 + iu2,1)(u1,2 + iu2,2)

∗

2
|u1,2 + iu2,2|2

2
−1/2 | 3 |u2,1|2 u2,1u∗

2,2 |u2,2|2

Recall that Equation (43) presents the total time-evolving probability representation of
even and odd cat states of an oscillating spin-1/2 particle in which the factors of the part
describing the oscillator state are given by Equations (44)–(48) and the factors of the part
corresponding to the spin-1/2 state are shown in Table 1.

Next, we determine the evolving marginal conditional probability distributions
ŵ1/2(Y | j, t) and the evolving tomogram ŵcat(X | µH(t), νH(t)) for the evolving states of
the spin and the oscillator, respectively. These distributions can be derived as

ŵ±
1/2(Y | j, t) =

∫

w±
cat,1/2(X, Y | µH(t), νH(t), j, t)dX, (50)

ŵ±
cat(X | µH(t), νH(t)) = ∑

Y

w±
cat,1/2(X, Y | µH(t), νH(t), j, t). (51)

Applying the integral in Equation (50) to the factors w|±α⟩⟨±α|(X | µH(t), νH(t)) appearing
in Equations (44)–(48), we obtain
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∫

w|α⟩⟨α|(X | µH(t), νH(t))dX =
∫

w|−α⟩⟨−α|(X | µH(t), νH(t))dX = 1, (52)
∫

w|−α⟩⟨α|(X | µH(t), νH(t))dX =
∫

w|α⟩⟨−α|(X | µH(t), νH(t))dX = exp
(

−2|α|2
)

. (53)

Then, by using the factors presented in Table 1, we eventually obtain the components of
the evolving marginal conditional probability distribution ŵ±

1/2(Y | j, t) shown in Table 2.

Table 2. The components of the evolving marginal conditional probability distribution ŵ±
1/2(Y | j, t)

of even and odd cat states of an oscillating spin-1/2 particle shown in Equation (43).

Y | j, t ŵ±
1/2(Y | j, t)

+1/2 | 1 1
4

{

|u1,1 + u2,1|2 + |u1,2 + u2,2|2 ± 2 exp
(

−2|α|2
)

Re[(u1,1 + u2,1)(u1,2 + u2,2)
∗]
}

+1/2 | 2 1
4

{

|u1,1 − iu2,1|2 + |u1,2 − iu2,2|2 ± 2 exp
(

−2|α|2
)

Re[(u1,1 − iu2,1)(u1,2 − iu2,2)
∗]
}

+1/2 | 3 1
2

[

|u1,1|2 + |u1,2|2 ± 2 exp
(

−2|α|2
)

Re(u1,1u∗
1,2)
]

−1/2 | 1 1
4

{

|u1,1 − u2,1|2 + |u1,2 − u2,2|2 ± 2 exp
(

−2|α|2
)

Re[(u1,1 − u2,1)(u1,2 − u2,2)
∗]
}

−1/2 | 2 1
4

{

|u1,1 + iu2,1|2 + |u1,2 + iu2,2|2 ± 2 exp
(

−2|α|2
)

Re[(u1,1 + iu2,1)(u1,2 + iu2,2)
∗]
}

−1/2 | 3 1
2

[

|u2,1|2 + |u2,2|2 ± 2 exp
(

−2|α|2
)

Re(u2,1u∗
2,2)
]

As it can be seen from Table 2, the components of the evolving marginal conditional
probability distribution ŵ±

1/2(Y | j, t) contain terms in which the parameter α appears.
However, in the limit α → 0 where the coherent states |α⟩ and |−α⟩ are practically orthog-
onal to each other, this dependence vanishes. One can easily check that, in this limit, the
evolving marginal conditional probability distribution ŵ±

1/2(Y | j, t) corresponds to the
conditional probability distribution of the evolving mixed state:

ρ̂±1/2(t) = û†
1/2(t)ρ̂

±
1/2û1/2(t), (54)

where
ρ̂±1/2 = Trcat

[

ρ̂±cat,1/2

]

=
1
2
[|0⟩⟨0|+ |1⟩⟨1|]. (55)

Finally, we derive the evolving marginal tomogram ŵ±
cat(X | µH(t), νH(t)) by applying

the expression presented in Equation (51). Using Equation (43) and the factors presented in
Table 1, we obtain

ŵ±
cat(X | µH(t), νH(t)) =

1
2

[

w|α⟩⟨α|(X | µH(t), νH(t))(|u1,1|2 + |u2,1|2)

± w|α⟩⟨−α|(X | µH(t), νH(t))(u1,1u∗
1,2 + u2,1u∗

2,2)

± w|−α⟩⟨α|(X | µH(t), νH(t))(u
∗
1,1u1,2 + u∗

2,1u2,2)

+w|−α⟩⟨−α|(X | µH(t), νH(t))(|u1,2|2 + |u2,2|2)
]

=
1
2

[

w|α⟩⟨α|(X | µH(t), νH(t)) + w|−α⟩⟨−α|(X | µH(t), νH(t))
]

. (56)

The result in Equation (56) shows that the evolving marginal tomogram ŵ±
cat(X |

µH(t), νH(t)) corresponds to the tomogram of the evolving mixed state:

ρ̂±cat(t) = û†
cat(t)ρ̂

±
catûcat(t), (57)
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where
ρ̂±cat = Tr1/2

[

ρ̂±cat,1/2

]

=
1
2
[|α⟩⟨α|+ |−α⟩⟨−α|]. (58)

From this result, one can conclude that the entangled probability distribution w±
cat,1/2(X, Y |

µH(t), νH(t), j, t) of Equation (43) properly describes the entangled even and odd cat states
of an oscillating spin-1/2 particle.

4. Conclusions

We have determined the evolving probability representation of entangled cat states
in the potential of either the harmonic oscillator or the inverted oscillator, assuming that
the states have been initially prepared in the potential of the harmonic oscillator. In
the considered separable time evolution, the evolution of the momentum and position
operators of both modes is linear in the Heisenberg picture and the time dependence can
be transferred to the parameters of the probability distribution. Determining the evolving
probability representation of the discussed entangled states for a general nonseparable
time evolution deserves consideration in the future. In this case, the used procedure
of the derivation of the evolving probability representations seems to be extendable for
systems where the evolution of the position and momentum operators of the two modes
in the Heisenberg picture is linear. For describing the nonseparable time evolution of the
probability representation, the application of an alternative definition of the representation
(13) may also be required.

We have also determined the evolving probability representation of cat states of an
oscillating spin-1/2 particle of the inverted oscillator, in which the time evolution of the spin
state is described by an arbitrary unitary operator. Finally, we have derived the evolving
marginal conditional probability distributions and the evolving tomogram for the evolving
states of the spin and the oscillator in the case of the entangled even and odd cat states of
an oscillating spin-1/2 particle. The marginal distributions describe the mixed states that
can be obtained after tracing out the corresponding system. The determined entangled
probability distributions contain all information about the considered entangled states.
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