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Page 820:

Page 822:

Page 826:

Page 829:

Page 834:

Page 838/839:

Page 848:

Page 849:

Eq. (3.3), n(n2+z) should read 1/[n(n2+z)] .

Eq. (3.5), - Ax(1x) should read+%ﬁ .

a+n* a+0)*

Eq. (3.18), (1/6)(1+B%)? should read (1/6)/(1+B%)2.

Eq. (3.19), -4:B2!Zn(1+B2)+(4;/3)(1+B2)—(1/6)(1+B2)2
should read

4B 2 (B2 + (4/3)/(1+B2) ~(1/6)/(1+B% .
Eq. (3.25), (1/6)(1+C"2) should read (1/6)/(1+C™2).

Table II1.5, o(~) for H should read 20.56 mb instead

of 20.73 mb.
b’ b
Eq. (3.76), 1+E) should read 1—-c- .
Eq. (4.12), L= should read = —
ST kK[ kT 1

Table V.1 (C) and (D), the entries in the first column
are momentum p in GeV not p6/m.

5. Sample atomic form factors should read

5. Simple atomic form factors

Eq. (B55), Q should read Q2 .

Programming error: In the computer program for evaluating the contribu-

tion from the inelastic excitation of the proton, the integration routine with respect

*Work supported by the Energy Research and Development Administration.
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to mf2 in Eq. (2.7) was inadvertently carried out in such a way that finer mesh
;Nas u;ed for larger m? instead of the other way. This results in underestimating
the cross sections in all the entries labeled "proton inelastic" in Tables V.1,
V.2, V.3, V.4, énd V.5. The corrected versiéns for these entries are given
below.

I would like to thank Allen Eisner of UCSB, Hobey DeStaebler of SLAC,
Jack Smith of Stony Brook, and C. M. Hoffman of Los Alamos Scientific Labor-

atory for kindly pointing out some of the above errors.



TABLE V.1. do/dQdp for photoproduction of muon (cm3/GeV/sr).

1

- Proton Proton . Proton Proton
po/m Inelastic Inelastic p(GeV) Inelastic p(GeV) Inelastic
(A) k=20, m=0. 1056 (B) k=200, m=0. 1056 (C) k=20, m=0. 1056 (D) k=200, m=0. 1056

P=4.0 P=40.0 ) 6=0.0 ' 6=0.0
0 1.138D-31 1.331D-30 2 2.842D-32 20 3.277D-31
0.5 8.348D-32 9.853D-31 4 1.138D-31 40 1.331D-30
1.0 4.559D-32 5.500D-31 6 2.488D-31 60 3.004D-30
2.0 1.456D-32 1.925D-31 8 4,278D-31 80 5.373D-30
4.0 2.473D~-33 4,311D-32 10 6.461D-31 100 8.502D-30
7.0 3.090D-34 8.377D-33 12 8.966D-31 120 1.249D-29
10.0 4.996D-35 2.271D-33 14 1.161D-30 140 1.741D-29
15.0 2,193D-36 4.020D-34 - 16 1.383D-30 160 2.314D-29
20.0 2.002D-38 1.010D-34 18 1.356D-30 180 2,828D-29
P=8.0 P=80.0 6=0.1 6=0.1
0 4.278D-31 5.,373D-30 2 4,118D-33 20 2,423D-35
0.5 3.028D-31 3.828D-30 4 2.928D-33 40 2.141D-36
1.0 1.593D-31 2.032D-30 6 1.733D-33 60 2,215D-37
2.0 5.196D-32 7.014D-31 8 1.020D-33 80 6.204D-39
4.0 9.707D-33 1.610D-31 10 6.120D-34 100 0.0
7.0 '1.412D-33 3.180D-32 12 3.576D-34 120 0.0
10.0 2.804D-34 8.859D-33 14 1.756D-34 140 0.0
15.0 2,372D-35 1.689D-33 16 4.363D-35 160 0.0
20.0 1.477D-36 4,636D-34 18 0.0
P=12.0 P=120.0 6=0.2 6=0.2
0 8.966D-31 1.249D-29 2 6.618D-34 20 1.078D-37
0.5 6.363D-31 8.911D-30 4 2.160D-34 40 0.0
1.0 3.378D-31 4.756D-30 6 6.896D-35 60 0.0
2.0 1.129D-31 1.655D-30 8 2.208D-35 80 0.0
4.0 2.193D-32 3.764D-31 10 5.569D-36 100 0.0
7.0 3.357D-33 7.400D-32 12 5.355D-37 120 0.0
10.0 6.952D-34 2.093D-32 14 0.0
15.0 6.158D-35 4,121D-33 16 0.0
20.0 3.935D-36 1.161D-33 18 0.0
P=16.0 P=160.00
0 1.383D-30 2.314D-29
0.5 1.024D-30 1.721D-29
1.0 5,759D-31 9.726D-30
2.0 1,977D-31 3.445D-30
4,0 3.769D-32 7.509D-31
7.0 5.396D~33 1.450D-31
10.0 9.682D-34 4.086D-32
15.0 4.810D-35 - 7.867D-33
20.0 4.932D-37 2.121D-33




"TABLE V.2. do/dQdp for photoproduction of heavy leptons (cmz/GeV/sr).

Proton Proton

po/m Inelastic - : o Inelastic
(A) k=200, m=4.0 (B) k=200, m=6.0
P=40 GeV
0 8.458D-37 7.255D-39
0.2 7.509D-37 4.991D-39
0.4  5.206D-37 1.400D-39
0.6 2.762D-37 8.436D-41
0.8 1.084D-37 0.0
1.0 2.906D-38 0.0
P=80 GeV
0 4.827D-36 1.771D-37
0.2  4.476D-36 1.507D-~37
0.4  3.509D-36 8.756D-38
0.6 2.275D-36 3.022D-38
0.8 1.215D-36 4.847D-39
1.0 5.353D-37 1.856D-40
P=120 GeV
0 1.029D-35 3.545D-37
0.2 9.529D-36 3.000D-37
0.4 7.452D-36 1.716D-37
0.6 4.813D-36 5.758D-38
0.8 2.558D-36 8.702D-39
1.0 1.118D-36 2.689D-40
P=160 GeV
0 1.011D-35 4.488D-38
0.2 8.925D-36 2.826D-38
0.4  6.081D-36 5.347D-39
0.6 3.128D-36 6.358D-42
0.8 1. 166D-36 0.0
1.0 2.859D-37 0.0




TABLE V.3. do/dp (cm2/GeV).

Proton - Proton . Proton , Proton
p(GeV) Inelastic p(GeV) Inelastic p(GeV) Inelastic p(GeV) Inelastic
m=0. 1056 GeV m=0. 1056 GeV m=4.0 GeV __ =6.0 GeV
k=20 GeV k=200 GeV k=200 GeV k=200 GeV
10—34 10—35 10—38 10-40
1.99 5.049 20.0 7.024 19.5 0.079 19.2 0.0
5.97 4,832 60.0 6.514 58.5 1.407 57.5 3.029
9.95 4,479 100.0 6.370 97.5 1.811 95.8 7.211

13.93 4.410 140.0 7.031 136.5 1.326 134.2 3.359
17.90 3.524 180.0 7.657 175.5 0.098 172.5 0.0




.TABLE V.4. Total heavy lepton production cross section (cmz).

X Proton Be
Inelastic total
m=0. 105 10732 10'30
20 0.849 1.795
40 1.060 2.276
100 1.271 2.817
200 1.349 3.026
m=0.5 10733 10~32
20 0.430 1.733
40 0.764 3.190
100 1.274 5.668
200 1.638 7.764
m=1.0 10‘34 10"32
20 0.322 0.087
40 0.959 0.247
100 2.327 0.646
200 3.598 1.080
m=2. 0 10”2 10~34
40 0.267 0.644
100 2.002 3.986
200 4.627 9.600
m=4. 0 10~36 10™3°
100 0.169 0.400
200 1.886 3.415
m=6.0 1038 10758
100 0 0
200 5.123 1.138




TABLE V.5. Total heavy lepton production cross section (cm2)
from proton.

Photon Energy Proton Elastic P’roton Inelastic Proton Total

GeV

=5

500 4,.043D-36 3.208D-~36 . 7.251D-36
1000 9.592D-36 7.577D-36 1.733D-35
1500 1.404D-35 1.078D-35 2.482D-35
2000 1.767D-35 1.324D-35 3.091D-35
m=10

500 2.111D-38 1.241D-38 3.352D-38
1000 2.702D~37 2.184D-37 4,886D-37
1500 6.325D-37 5.361D-37 1.169D-36
2000 1.014D-36 8.625D-37 1.877D-36
m=15
1000 4,563D-39 2.801D-39 7.364D-39
1500 3.528D-38 2.658D-38 6.186D-38
2000 8.860D-38 7.163D-38 1.602D-37
m=20
1000 4.860D~43 1.608D-43 6.468D-~43
1500 6.616D-40 3.855D-40 1.047D-39
2000 5.328D-39 3.705D-39 9.033D-39
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ABSTRACT

Photo pair productions of electrons, muons and heavy leptons and
bremsstrahlung of electrons and muons are reviewed. Atomic and
nuclear form factors necessary for these calculations are discussed.
Straggling of electrons in matter and other effects due to finite target
thickness are considered. Tables of radiation lengths of all materials
and the energy dependence of photon absorption coefficients of many
materials presented. Problems associated with production of particles

by photon and electron beams discussed.
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I. INTRODUCTION

The work on this paper started about ten years ago when Stanford Linear
Accelerator Center was still under construction. At that time like any other
new high energy physics. laboratory, people were concerned with problems such
as what would be the yields of muons, pions, K mesons, antiprotons etc. and
also whether any new particles such as W bosons and heavy leptons could be dis-
covered by the new machine. In the electron machine these particles are pro-
duced by the bremstrahlung beam which in turn is produced by the electron.
Hence one has to know accurately the properties of the bremsstrahlung beam in
a fairly thick target. The pair production is related to the bremsstrahlung
problem by a substitution rule, thus the electron pair production cross section
can be calculated trivially once we know how to calculate the bremsstrahlung
by electrons. Muon and heavy lepton pair productions were also estimated at
that time. For production near the forward angle, the electron pair production
involves only the atomic form factors, whereas in the muon and heavy lepton
productions, nuclear form factors must be taken into consideration. As the
laboratory began to operate and experiments became more precise, many of
these calculations also became more refined and efficient. For example in
order to do precise measurements in the photoproduction experiments, it is
desirable to know the photon spectrum to within 1 percent level. Also in order
to do inelastic electron scattering accurately, one likes to know the straggling
function of the electroh in the targét to within 1%. These will be discussed in
Section IV.

Heavy lepton has never been discovered. Recently the interest in the
possible existence of heavy lepton gained a new impetus, becuase in some

versions of the gauge theory, the heavy leptons are required to make unified
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theory of weak and electromagnetic interactions finite. (Georgi and Glashow1

1972 , Bjorken and Llewellyn Smith2 1972). These gauge theories do not affect
the calculation of heavy lepton production by pair productionl.v The decay modes
of heavy leptons have beep considered by many authors. The most complete pre-
gauge theory version was given by Tsai3 (1971) and fhe post gauge theory version
was given by Bjorken and Llewellyn Smich (1972). The two versions are essen-
tially identical except that in the latter, there is a possibility that heavy neutrinos
also exist in nature and if the mass of the heavy neutrino is lighter than that of
charged heavy leptons, additional decay modes into these heavy neutrinos must
be included. The readers should refer to these two papers and also a review
paper by M. Per14(1972) for details of the present status, both experimental and
theoretical, concerning heavy leptons.

The objectives of this paper are two: (1) to put together in one place all the
useful formulas pertaining to the bremsstrahlung and the pair p?oduction of
electrons and muons and the associated phenomena of electromagnetic shower
theory useful in high energy physics experiments. (2) To obtain the production
cross section of heavy leptons to assist in the discovery of these new particles.
The underlying physical principies involved in this paper are not controversial
and to a large extent well known. However this paper is strictly speaking not a
review paper, because rather than reviewing the existing literature, we have
concentrated in making the contents of this paper self-contained and whenever
possible we have tried to present new results which are either mofe accurate or
simpler to handle than what exist in the literature.

The table of contents shows the materials to be discussed in this paper.
They are arranged in order to give a logical development of the theory. How-

ever from practical point of view, the subject matter can be divided into three
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obvious parts: 1. Electron, 2. Muon and 3. Heavy lepton. Let us describe
briefly the major topics discussed in each part:

1. Electron The part dealing with bremsstrahlung and pair production of
electron is of the greatest practical importance because an’ t;,lectron loses its
energy so easily by breméstrahlung in passing throxigh a medium and also at
high energies a photon gets absorbed in a medium mainly by pair production of
electrons. This part is useful to those experimentalists who have to deal with
high energy electrons or photons in any part of their experiment. For this pur-
pose we give a). Table of radiation lengths of all materials (Table III. 4),

b). Energy dependence of total pair production cross sections for many commonly
used materials (Table III. 3), c). Energy-angle distribution, do/dQdp, energy
distribution do/dp for pair production from hydrogen and helium atoms (Section
I A2), from Li and Be atoms [Eqgs. (IIl. 44) through (II1.49)], and for all
atoms heavier than Be [ Eqs. (IIL.38) through (II1.41)], Egs. (Hi. 79), (1I.80)
and (I11.82). d). The bremsstrahlung spectrum from a target of finite thickness
is given by Egs. (IV.11) and (IV.12). These expressions are useful for photo-
production experiments when ordinary bremsstrahlung beam is used. e). For-
mulas for production of particles using an electron beam directly on the target
are considered in Sections IVE and IVF. f). The photons from the annihilation
of the positron by an atomic electron, e+e_ — 2v, 3v, are discussed in Section
III F. g). Bremsstrahlung in the colliding beam experiment e +e-—e+e+ 0%
is treated in Section III E. h). Straggling of an electron in medium due to
bremsstrahlung is given in Section IV A, which is very important in the external
photon correction to the electron scattering experiment or any other experiment
in which an electron is involved. i). Production of particles using a photon

beam is discussed in Section IV D.



2. Muon This part is useful for those people who want to estimate the
muon flux from an electron machine near the target. In the proton machine the
muon flux comes mainly from the decay of pions which are produced by the
proton impinging on a target. In the electron machine, usél;le muon source
comes mostly from photopair production. Even in fhe electron machine, there

ok® Section C),

are more pion; Jsers Handb

hence at a distance of one decay length from the target, there will be more
muons from pion decay than photo pair produced muons. Numerical examples of
angular distributions do/ddp, momentum distributions do/dp and the total
cross sections ¢ are given in Section V. To obtain the yield of muon flux per
incident electron on a target of T radiation lengths, one may use Eq. (IV.13)
and the appropriate expression for do/dQdp. For small angles, the process is
dominated by the coherent production, hence do/dQdp given by Eq. (III.5) with
X given by Eq. (III.76) may be used. For large angles incohefent production
from nucleons in the nucleus as well as the production accompanied by meson
production must be included. Energy loss due to muon bremsstrahlung is dis-

cussed in Section III G.

3. Heavy Lepton In Section V, we give numerical examples of the energy

angle distribution do/dQ dp, the energy distribution do/dp and, the total cross
section o for the production of heavy leptons. We hope these numerical examples
will help experimentalists in designing experiments to discover the existence of
heavy leptons.

Since we are dealing with one photon exchange processes, the cross section
is dominated by the kinematical region where the momentum transfer is small.
Expressions for the minimum momentum transfer for various processes are
derived in Appendix A. Appendix B deals with atomic form factors, nuclear
form factors and meson production form factors used in our calculation.
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History

Exen though we know now that the pair production and the bremsstrahlung
processes are theoretically closely related, the bremsstrah}ung process was
recognized and studied much earlier than the pair production process. This is
because the bremsstrahlung process can be qualitatively understood using only
the classical Maxwell equations (see for example, Panofsky and Phillipss, 1955),
whereas for the pair production process it is necessary to use the Dirac equation.
The bremsstrahlung process was studied as early as 1923 (Kramers7)‘, The
Dirac equation was invented in 1928 (Diracs). The positron was discovered in
1932 (Andersong). The first calculations on the pair production were by Nishina
and Tomonagan10 (1933), Oppenheimer and Plesset11 (1933), and Heitler and
Sauter12 (1933). Bethe and Heiﬂer13 (1934) treated both the bremsstrahlung
and the pair production relativistically using the Born approximation, in which
the screening of the nuclear coulomb field was properly taken i.nto account.
Wheeler and Lalmb14 (1939, 1956) treated the same phenomena in the field of
atomic electrons. Experimentally, the productions in the nuclear coulomb field
and the electron field always occur together, hence two effects must be combined
in order to make comparison with experiments. When the atomic number Z is
large, the correction to the one photon exchange mechanism must be included
and this was done by Bethe and Maximon15 (1954), Davies, Bethe and Maximonl6
(1954), and Olsenl7 (1955). It should be noted that in Bethe and Maximon, 15
it was erroneously stated that the Coulomb correction affects only‘ the pair pro-
duction but not the bremsstrahlung. This error was corrected by Olsenr7 (1955).
The radiative corrections to bremsstrahlung and pair production were treated
by Mork and Olsen18 (1965) and an experiment was carried out by Schulz and

Lu’cz19 (1968) to confirm their calculations. The polarizations of electrons and
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photons in the pair production and bremsstrahlung of electrons were calculated
by Olsgg and Maximom20 (1959). There are many review papers on the subject
of pair production and bremsstrahlung of electrons. The most useful ones are
Rossi’’ (1952), Bethe and Ashkin®2 (1952), Motz, Olsen and Koch23 (1959, 1969).

Despite the abunda.ncé of literatﬁres available on the pair production and the
bremsstrahlung of electrons, we have included these subjec:ts in this paper for
the following reasons: 1. The original papers of Bethe—Heitler13 (1934) and
Wheeler and Lamb14 (1939) were written when there was no electronic computer,
hence the atomic form factors and integrations with respect to them were treated
crudely and the results were presented only in graphic forms which are difficult
to read accurately. Also in Bethe-Heitler only the Thomas-Fermi atom was
treated which is not applicable to low Z elements. 2. In practice, pair production
and bremsstrahlung take place in a medium/of finite thickness (except in the
colliding beam experiments), the effect of which must be taken into account in
actual applications of the theory.

The muon was discovered not as the result of a single observation, but rather
the conclusion of a long series of experimental and theoretical investigations in
the cosmic rays. A high energy muon is characterised by its deep penetrating
power. Unlike electrons and photons, it does not produce electromagnetic shower
because of its havey mass. Also unlike all hadrons it does not have strong inter-
actions, hence its energy loss is practically all due to ionizations only. As early
as 1932 (Rossi24 1932), this deep penetrating component was seen in the cosmic
ray experiment. The definitive identification of muon came in 1937 from the
observations of Neddermeyer and Anderson25 (1937) and those of Street and
Stevenson26 (1937). Thepu-~e decay was discovered by Williams and Roberts27
8

(1940) and the 7 — p decay was discovered by Lattes, Occhialini and Powell2

(1947). The photoproduction of muon pair was observed much later. In 1956,
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Masek and Pa.nofsky29 succeeded in separating one member of the pair from a
large background of pions and electrons in the photoproduction. In 1962 Aberigi-
Quaranta et 3130 observed muon pair in coincidence and confirmed the Bethe
Heitler formula within 5% accuracy.,

The most accurate test of quantum electrodynamics using the electron pair
production was carried out by Ashbury et 3131 (1967) and the muon pair production
by Hayes et al (1970)." . The results of these experiments show that the Bethe-
Heitler formula is correct even when the lepton propagators are far off the mass
shell in the space like region. The test of QED using the wide angle bremsstrah-
lung of an electron was carried out by Sieman et _a133 (1969) and that of a muon
by Liberman et al34 (1969). Neither of these two experiments saw any deviation
from the Bethe-Heitler formula. The results of these experiments can be re-
garded as indicating the absence of the kind of heavy leptons which decays into
an electron and a photon or a muon and a photon. If such heavy. leptons exist,
they must show up in the lepton propagator, thus altering the prediction of Bethe
Heitler theory (Low35 1965). For this reason we shall assume that heavy leptons,
if they exist, will not decay into y + e or y + u, but decay weakly into e + v + v,
p+v+v, T+v, k+ v, p+v etc. (Tsai3 1972),

The existence of an electron is essential for all the chemical bindings and
chemical interactions. The existence of pions is essential for nuclear bindings
(Yul«:al,wa36 1935). The existence of muon was not predicted before its discovery
and nobody knew why it should exist, in particular nobody has an' explanation
why its mass is m“ ~ 207 m,, which is slightly less than the lightest hadron,
pion. Since nobody understands why muon should exist, there have been speculations
that there might be other similar particles in nature yet to be discovered

(Zel‘dovich37 1962). Everytime a new high energy accelerator is built, the
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discovery of heavy lepton is usually one of its hoped for objectives. As mentioned
previously, recently the search for the existence of heavy lepton received a new
impetus becuase their existence may be required to unify the_ weak and electro-
magnetic interactions and also make the higher order weak interaction finite.
Heavy leptons, if they exist, can be produced iﬁ many ways besides the pair
production. Which way is the most advantageous depends upon the quantum
number and the mass of the heavy lepton as well as the energy and the intensity
of various beams available from acceleratofs. These problems are reviewed by
Perl4 (1972) hence we shall not go into detail here. Since pe coincidence will
probably be the most direct proof of heavy lepton_ pair (orW‘i pair) production,
there is some practical reason why we havé treated pair productions of electron,

muon and heavy lepton in a single paper.

II. PAIR PRODUCTION CROSS SECTION BY BORN APPROXIMATION

In this section, we give the cross section for y + Z — ,'Z+!Z— + anything via
the Bethe-Heitler mechanism shown in Fig.Il.1.The cross sections for the
bremsstrahlung emission can be obtained from those for the pair production
and this is done in Section IIT D. We use the symbol k to represent the four
momentum of the incident photon and also the energy of the photon in the labora-
tory system. Whenever it appears in the dot product it represents a four mo-
mentum, otherwise it is the energy in the laboratory system. The symbol p
represents the four momentum of £ and also the absolute value of its three
dimensional momentulr; in the laboratory system. E is the energy of £ in the

laboratory system. P, is the four momentum of £+ and E + is its energy in the

-+

laboratory system. m is the mass of i org . Py and m, are the four momentum
and the mass respectively of the initial target system and P and m, are corres-

ponding quantities for the final state of the target. The four momentum transfer
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fo the target system is denoted by q =k -p =P, = P;-p;- Bethe and Heitler13 (1934)
treated.a special case in which the target particle is an infinitely heavy point-

like and spinless nucleus whose coulomb field is screened by atomic electrons.

They did not include the atomic excitation of the target which was later considered
by Wheeler and Lamb (1939). 14 While these treatments by Bethe and Heitler13 com-
bined with the work of Wheeler and La.mb14 adequately describe the pair produc-
tion of electrons at high energies and small angles, they are not adequate to
describe the pair production of particles with mass of muons or heavier, because
the effects of nuclear form factors and the recoil of the target system must be
included when heavy particles are produced. Even in the electron pair produc-

tion the nuclear form factors and the recoil must be taken into account if the
production angle is large. In fact when the transverse momentum of the particle
produced is much larger than the mass, the cross section is nearly independent

of the mass of the particle produced. Drell and Walecka (1964)38 generalized the
result of Bethe and Heitler to deal with a target of arbitrary mass, spin and form
factors and arbitrary final states. This generalization was made possible by an
earlier observation due to Bjorken (1960) and others39 that in any space-like one photon
exchange process, as long as the target particle is unpolarized and tﬁe -final state

of the target system is left unmeasured, the only things one has to know about the
target system are the structure functions Wl(qz, v) and Wz(qz, v) of the electron

scattering defined by

I - _ - o) /g2
W= M0y, - a0 9/90) (b, -9, (p;° D/9IW,
2
- gy, - 9,9,/4IW,

. . 3 4 -2
= zf: <pil]“(0)|f> <f|]v(0)lpi> 2m° 6 (q+pi-pf)e )



where the spin average over the initial state P; is assumed. The state Ipi>

1/2 (2m -3/2 has been taken out from

is normalized such that the factor (m/E)
the matrix elements. With this normalization, the matrix element, the phase
space and the incident flux are all separately covariant. The cross section for

+ - ‘ ‘
v+ Z — £ § + anything from the mechanism shown in Fig.II.1 can then be written

as
6 ™ fg d3p+ 1 1 pv
do = e m;) B E, (2105 q—4 (L WMV) (I1. 1)
where
py _ S Tr , ' ' 1 K, M 1
i phot%r: g Chrm <é —1!5++K—m7 Y ﬁ-K—mé>
polarization
X (P + m) (ém vory? 75_+11<——mé) _ (1. 2)
+

After taking the trace and contracting the tensors, we obtain

- L”VWHV = Wz(qz mfz) [(p:.{k)z " (p_,.B° k)+ €+ Dlp, - k)]
+ W.(¢Z, m?) [_®_, B oy Dip. k)] . (IL3)
1 f [(p+-k)2 (p,° k) +
where
H= -m> [% q2(21 - 2E/m,) + 2EZ + ZEA] ,
B=- E—?—p {(m2 - d%/2) [ZE(E -~k + % o((k - 2E)/m, + 1) + (2E - K) A]

- % qzkzl + (q2/mi) (mi+ E-k- %qz/mi) -2A(A -k+ E —qz/mi) +k-p,
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c = - m22 lZ(k “E-A+q%/2m) (k- E) + q2/2]

- (k- p) J
+ kl., D tqz(l - E/mi) + ZEA] ,

D = 1/tk-p),

m = miem?+ %),

B' = - [(q4 —4m?%)/k-p+2q° + 2k p+ 4m2] ,

¢ = miem® + ¢B/(k-p? - 2em” + )/ (k- D)

D' = -2/tk-p),

A= @ -m)/em) and o’ =(k-p-p)°
k and E are the laboratory energies of the incident photon and £ respectively.

In order to obtain do/dpdQ we have to integrate with respect to dsp x It is
convenient to do this in the coordinate system where U =p LD is at rest and
?—Fis the z axis and both—l;and_f)hare in the xz plane as shown in Fig. II.2, In
this frame only (p+ *+ k) in Eq. (II.3) is a function of ¢, and the magnitude of p,

is independent of 6 +° It is convenient to define a pure time like vector
U = p++pf= k+pi—p°

We have

U2=m2+m12+2mi(k—E)—2k'p. (11. 4)

Hereafter we use the symbol U as U = (Uz)l/ 2 when it does not appear in the dot

product. All the quantities in the special frame, denoted by a subscript s, can
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be written in terms of U. The energy of the photon in the special frame is

£, = lim, - (- )] /1.

The energy and momentum of p .. are respectively

22
E,, = (U +m

- mfz)/(ZU) (I1. 5)

and

_ 2.1/2
P = (E  -m) %

The momentum of the target particle is

P, = mi(kz + p2 - 2pk cost )1/2/U

The energy of p is
E_ = [(p-k) —m2+Em 1/u
s i *
The angle Gk in Fig. 2 is
cos0y = (k - E)/p; +(k-p)/(kp, ).
2 .
g~ can be written as
2 -om®? _2(k-p) -2E, (k_-E)+2 6 II. 6
q (k- p) B~ Eg) +2p, P, cos 0. (1L 6)

The integration with respect to ¢ can be carried out readily, we obtain

~27
1 -2
21 jo do (p, - k)

Il

3, 2
W/(Y ks),

2T
w ], drenT =y,
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and

27
do(p, - k) = Wk,

S
~
o

where

W = E_ cos9+cosek,

s - p+S
and
Y = [mz sin29

cos9+ -E.s cosek)

271/2
k * (p+s ] ¢

The cross section for detecting only the lepton p can be written as (in sz/ sr/GeV)

' 2
3 1 (U-m)
de =« 2 -26 f 2
dodp ~ "~ o7 (0.19732)" X 10 dcos 6+ 9 dmf
-1 mi
po Pis W, md (HEY + B 4 c+pk W
UkE 4 old,me) {7375 * gy 5
q Y kS s
2 2 H'W B! ,
+ Wl(q ,mf) ( 35 + Yk + C! +DkSW>] . (1.7
Y kS s

Using Eq. (II. 6), the integration with respect to cosﬁ+ can be replaced by the
integration with respect to t = —q2:
1 ot
max dt
f d cosf = j —, (IL. 8)

-1 t . 2D;sPus
mim

wheret . andt can be obtained from Eq. (IL. 6) by setting cosf . =1 and
min max +

cos 6+ = -1 respectively:

_ 2
bax = 72 F 20k - p) + 2E, (k- B * 2P, oP

min -

o (IL. 9)
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The target form factors W q2, m?) and Wz(qz,mfz) needed in our calcula-

1¢
tions-as well as an approximate expression for tmin are given in Appendix B.
Equation (II. 1) can be used to calculate any cross section in which £+ and
¢ are detected in-coincidence, whereas Eq. (II.7) gives tﬁé cross section
where only £ or £+ is detected. The numerical resﬁlts of (IL. 7) for the produc-

+3 A~
L

n ~F
AUl UL

1NN an
11IUuUll all

derive various approximate expressions based on Eq. (II. 7). The Coulomb

correction will also be included in the next section.

II. APPROXIMATE EXPRESSIONS

Equations (II. 1) and (II. 7) are exact expressions to order oz3 for pair
production. However, they are too complicated for many of the practical ap-
plications. Since electrons and muons are very common particles in the labora-
tory it is desirable to have simple and yet reliable expressions to represent
their energy-angle distributions. Bremsstrahlung by electron and muon will
also be discussed because they are related to the pair production of these parti-
cles by the substitution rule. Relatively simple expressions for the energy-
angle distribution for pair production do/ddp and bremsstrahlung dcrb/ dSdek
can be obtained when the angle is small and leptons are all extremely relativistic.
More explicitly, we shall assume the kinematical conditions specified by (B.4)
in the derivation of approximate expressions.
A, Electron Pair Production

For the e1ectro£1 pair production near the forward angle, we need to take
into account the atomic screening. Of course at large angles, the nuclear form

factor must also be considered even for the electron production. When

2

o is comparable to unity, we have to include the effect due to nuclear
min " nucleus

form factors. In this subsection we limit our discussion to small angle production

-14 -



so that the nuclear form factors can be ignored. The atomic form factors,
elastig and inelastic, for various atoms are discussed in Appendix B. Since
tmin is very small compared with the electron mass squared, the recoil of the
target system can be ignored even when the target is an afoﬁic electron. Thus
we expect that our equation (II. 7) should yield the séme approximate formula
as the Bethe-Heitler formu1a13 which is much simpler to handle than ours.
This can be shown explicitly using the simple atomic form factors given by

(B. 38) and (B. 39) into (II.7) and carrying out the integration with respect to t.
The results can then be expanded in powers of mz/Ez, k- p/Ez, mz/(k—E)2
and (k - p)/(k—E)z, etc. After extremely tedjus algebra, one finds that a fan-
tastic number of cancellations occurs among the leading terms, leaving a
relatively simple formula in the end, which is identical to the formula obtained
by Schiff40 (1952) who started from the Bethe-Heitler formula. This exercise
shows that Eq. (II.7) is indeed identical to the Bethe-Heitler f(;rmula when
recoil is ignored and also that the effect of the target recoil is negligible when

kinematical conditions specified by (B.4) are satisfied.

1. Arbitrary Atomic Form Factors

inel

9 (t) defined

Both elastic and inelastic atomic form factors, Ggl(t) and G
by (B.5) and (B.9) respectively, are characterized by the facts that they are
zero when t = 0 and become constants, 22 and Z respectively, when t > mi.

The t dependence of the atomic form factors is thus opposite to that of nuclear

form factors. It can be shown that for form factors with this general behavior,

we have
do _ do .
30dn P dQdo ap (no screening)
3 /.2 [.2 * £t
_20° [(E7)|2x” - 2x+1 | 4x(1-x)0 f min
K ( 4> 5t il [Gyle)-Gyt] —
m (1+9) (1+L) tmin t

(I. 1)
- 15 -
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where

2 2
- _ w2p2, 2 v | m (3D _ el inel
)i E/k, 2= E"6%/m", min [ka(l—x)] » Gy(t) =Gy (1) + G, (t),

and

| 3 ;.2
do . 2 (E 2, ; 2x(1-x) . 120x(1-
aﬁd_p_) (no screening) = ;—?{— <——4> (Z"+2) [ _§§___P2<) - 4x
m (1+0) (9

2
+ 2x" -2x+1 + 4x(1—x)!l} [ZZ

2 2
o —i——)—mt, ) 2f((az)2)]

(1+8) 2 (1+9) 4 min
[ m2§1+12)2
+ Z Lﬂn T -1 _ (III. 2)
min /

The function f((o z)z) in (III. 2) is the Coulomb correction to the one photon ex-

change approximation worked out by Bethe and Maximon15 (1954) and is given by

[> o]

f(z) = z Z —L = 1.202z - 1.0369z2+ 1.008z3_/(1+z), (1L 3)
n=1 n(n +z)

where

z = (Z/137)2.

Except for the Coulomb correction term, Egs. (III.1) and (III. 2) can be
derived from our Eq. (II.7). They summarize the work of many people. The
expression for do/dQdp (no screening), except for the Coulomb correction and
the terms proportional to Z, was first derived by Sommerfeld (1939).4:1 The
terms proportional to Z2 in (IIL. 1) and (IIL.2) are equivalent to the formulae
given by Davis --Bethe‘—Ma,ximom16 (1953) and Olsen-Maximon (19‘59).4‘1 The

terms proportional to Z come from G12ne1

(t) and they are usually ignored (they
should not be!).
1t will be convenient for our later discussions to write Eq. (IIl.1) in a

slightly different form. We notice first that the logarithmic terms in (III. 2)
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can be written as

m2(1+12)2 (t-t' . )

- 2 2
+

!ant—,ﬁ-l—ﬂl——lzf —on g, (IIL 4)
min t' . t

min

Using the simple form factors given by (B. 38) and (B.39) we can convince our-
selves that the upper limit of the integration in (III. 1) can be replaced by m2(1+12)2.

Thus (III. 1) and (III. 2) can be combined to give

3 2
do _ 20¢° (E 2x(1-x) 120x(1-%) | -
2 () ([ o3

dep 7k 1’114 ( 1+Q)2 ( 1+ﬁ)4 J
2 .
N [Zx - 2x2+ 1 4!ZX(1—IZ)] [X _ 2Z2f((a 2)2]] , (IIL. 5)
(1+0) (1+8)

where

Gy) = Gy + 6D () = 27 4 2,

and

(t-t . )
X=X"+X = J [G (t)+Gmel(t)], ———I;‘m— dt . (IIL. 6)
t

Integrating (IIL.5) with respect to the solid angle, we see that the coefficients

of G2(°°) cancel each other, hence

dp k *

4o 2o f M[ZX -2x+1 | Ax(1-X)
(1+£) (1+0)

] (X-22% . (UL.7)

Let us make several comments about (IIL.5), (II.6) and (II.7):
(i) K. J. Kim (unpublished) derived a simple expression for do/dQdp

using (II.7) with a simple nuclear form factor of the form given by (B.49). He
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found that the terms with G2(°°) are missing in this case if m2(1+!Z)2 is much
larger. than the inverse square of the nuclear radius, i.e., m2(1+ﬁ)2/ d>>11in
the notation of (B.49). Therefore this term can appear only when the form
factor does not become pegligible for t greater than m2(1+62. From this deri-
vation it is not obvious whether the terms with G2(°°) should be kept for muon

/3

pair production because the expression mﬁ/d =(0.01/0. 16{1)A2 is not much
larger than unity when A is small. However comparisons with the exact calcu-
lation using (II. 7) for a Be nucleus (A=9) shows that it is a better approximation
to drop this term than keeping it when calculating the muon pair production.

(ii) The coefficient of X in (III. 5) is proportional to the differential cross
section of two real photon annihilation, do(y + y— !l+ +4£)/d(p-k) (see Eq. (C.1)
of Kim and Tsai43(197 3)). In the Weizsacker-Williams approximation, one
obtains exactly the term proportional to X. Therefore the terms proportional
to G2(°°) can be regarded as the correction to the W. W, appro%imation due to
the fact that in the pair production, one of the photon in the reaction y+vy — !Z++2_
is off the mass shell. This also explains why terms with G2(°°) in (II. 7) will not
show up if large t events are suppressed by the target form factors. As a con-
sequence of this, the W.W. approximation actually works better for muon pair
production than for electron pair production in the calculation of do/dQdp. For
the calculation of do/dp, the W.W. approximation yields a result identical to
(1. 7) regardless of the behavior of form factors except for the Coulomb correc-
tion term f. This observation is of great practical importance, bécause it takes
less than one hour of work to obtain (III.7) from the W.W, methodélt3 whereas it
takes about one month of hard work to obtain the same result from Eq. (II. 7).

(iii) The fact that Eq. (II.1) is equivalent to Eq. (III.5), when conditions

specified by (B.4) are satisfied, is probably the best justification for the upper
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cut-off tup = m2(1+£)2 of the integration in the definition of X used in the W. W,
method proposed by Kim and Tsai (1973).43 In the classical W.W. method, the uncer-
tainty principle must be invoked to obtain a cut-off of this magnitude but one does

not know exactly what expression should be used. The qua;.r;tity X is proportional

to the pseudo photon flux in the W.W. method. Our Xel is related to the quantity

T of Olsen—Maximon42 by

xel = 72 [zr L3+ Zf((Za)z)] o (IIL. 8)

Equation (III. 7) can also be written in terms of the functions Py and o introduced
by Bethe—Hei’cler13 for the elastic scattering part and functions z/)1 and zpz intro-

duced by Wheeler—Lamb14 for the inelastic scaftering part:

2
ar
g—g = — [(%XZ - 4§x+ 1) [zz(cpl —%ﬁnZ—4f) ¥ 20 - g-ﬁnZ)]
- 2y [zzupl - 9,) + 2 - wz)ﬂ , (111 9)
where
720, - Lmz) = 2 f < & (III. 10)
L3 0 (1+0)>
2 4 © x®
Z%(¢, - % mZ) = 12 de (L. 11)
2 3 / 0 (1t
8 0 Xinel
Z@, - & mz) = 2 & (IIL. 12)
173 / 0 (1l
8 © gxivel
7. - & mz) = 12 de (IIL. 13)
2" 3 ly o
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In order to obtain cpl, Dg zpl and zpz, we have to perform integrations with
respect to t and £. Both of these integrations can be done analytically for
Hydrogen and Helium form factors, Eqs. (B.12, 13, 14, 16, 17 and 18), and
the simple form factors, Egs. (B. 36 and 37), given in Apl‘)ern,dix B. The form
factors for other elements, Li, Be, B, etc. and Thomas—Fermi atoms can be
integrated only numerically. Bethe44 (1934) has derived approximate formulas
in which the variable £ in (III. 10) through (III. 13) is already integrated out, his

results are (Q2 = t)

P, - 4§!ZnZ = 4[1+ 7~ (Q-@)2 GelQ dQ] (TIL. 14)
Py - %mz = 4[/6+z 2[ (Q 665 Qﬂn(Q/6)+36 Q - 453)G31Q dQ] |
(II. 15)

8 -1 ™ 1, -3 .

Y, - 3 InZ = 4[1+z | @-9 Gme Q°dq| , (IIL. 16)
5

8 -1 ™ 3 2 2 3. el

Yy - 5 IZ = 4 [5/6+Z j (Q°- 656°QI(Q/S) +357Q-45 )GeQ dQ}
6

(OI. 17)
where 6 = mzk/ (2EE') and E' =k - E. Bethe's formula are only approximately
true. Since the integration with respect to £ in (III.9) through (III. 13) can be
carried out analytically for the form factors of hydrogen without using the Bethe's
approximation we shall be able to check the accuracy of the latter in Section III.3
after we derive the analytical expressions for Ppr Poo z,bl and z,bz for hydrogen and
helium atoms in the next subsection.

2. Hydrogen and Helium Atoms

The atomic form factors for hydrogen are known exactly and they are
given by (B. 13) and(B. 14). It happens that the analytical expressions for
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Xel’ Xinel’ Pys Poo d)l and zpz can be obtained from (IIL. 6, 9, 10, 11, 12 and 13)
when the atomic form factors have these particular forms. As discussed in
Appendix B, the elastic and inelastic helium atomic form factors can also be

written in the above form if the correlation between the twlol atomic electrons is
ignored. The uncorrelated wave function of the gréund state of He atom was
investigated by Hylleraaszyz5 (1929) using the variational method. The correlated
wave function was investigated by Schull and Lawdin46 (1956). Knasel47 (1968) calcu-
lated the cross section for the pair production using both the correlated and un-
correlated wave functions. He found that two versions differ at most by .2%,

hence we shall use the uncorrelated wave function for simplicity. The expression

of X for H and He atoms can be written as

= +
X Xel Xinel ?

Xel/z2 = 2Mm(m/5) - fn (1+B2) +1/6 - (4/3)/(1+B2) + (1/6)/(1+B2)2

(IIL 18)
X, /7 = An(m/) ~ in(1+B%) + 11/6 - 4B % m(1+8%
+ (4/3)/(1+B) - (1/6)/(1+BH)7 (L. 19)
where
6 = (t}nm)l/ 2/a+) = mP/ [2kx(1-%)] , (IIL. 20)
B = 2 men/(t;nm)l/ 2 | » (III. 21)

Z =1, n = 1 for hydrogen and Z =2, n = 1.6875 for He. We note that X is

not very sensitive to the change in production angle and atomic radius. Thus

the angular distributions in pair production and bremsstrahlung are mostly
determined by the coefficient of X in (III.5) and (III.80). When the energy is high
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and the production angle is small we have B >> 1 except when x is very close
to 1or 0. When B >> 1, the screening is complete, in which case we have

Complete Screening Case (B>> 1),

Xel/ZZ = 2m(m/Ba) +1/6, o | (1. 22)

inel/z = 2 fn(m/Bs) + 11/6. : (TII. 23)

On the other hand when the screening is nonexistent, we have

No Screening Case (B << 1),

Xel/z2 = X,/ = 2mmp) -1 . (III. 24)

The integrations with respect to £ can be carried out analytically, we

obtain from (III. 10) through (II. 13), using the expression of X given by (III. 18)

and (I11. 19):
Py - %mz = 4m [1/(2na)] + 13/3
- 24n(1+C?) - (13/2) C arctan (1/C) + (1/6)/(1+C”3), (IIL 25)
P, - % InZ = 4n [1/(2na)] + 11/3
- 2m(1+C%) + 25C%(1-C arctan C7Y) - 14C2%n(1+c7?),
(II1. 26)
¥y - -g—!znz = 4n [(1/(2n a)] + 23/3

- 2 (1+C% - 17.5 C arctan ¢ L + 8cZm(1+c7?) - (1/6)/(1+C 73,
(IIL. 27)
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Yo - %ﬂnz = 4fn [1/(2na)] +21/3
2 2 -1 2 -2
- - 2 (1+C7) - 105 C7(1-C arctanC *) + 50 C” t(1+C )

- 24¢2 {—ﬁnczﬂn(nc‘z) + 1+C% -®(n}, (UL28)

where C = 5/(2amen ) and ®(x) is the Spence function (or Euler's dilogarithm)

defined by

B(x) = - f —Il—Y— dy (III. 29)

whose numerical values can be obtained by a computer using the following

formulas:

If |x]< 1, &x = x+ 4lx2+ %x3+.... +(xn/n2)+”°
®(1) = 12/6 and B(-1) = -7°/12.

¥x>1, &x) = - % m? |x] + 7r2/3 - H1/x).

If x<-1, &x) = - %ﬂ_nz le—ﬂ2/6—<1>(1/x).

Following Wheeler-Lamb, 14 we give ?q and Py a8 functions of a variable

v defined by

100mk 1/3

EE'zl/3 = 200 6/(m,Z

) (I1I. 30)

and zl)l and Y, as functions of € defined by

100 m k 2/3

= m = 200 6/(meZ

) » (TI. 31)

where
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The quantity C in (III. 25) through (III. 28) can be written in terms of vy or € as
c = vzY3/a00an) = €223 /400 an). (III. 32)

The reason for using the variables y and € is that for Thoﬁlas—Fermi model
(Pl('}’), Po(7); 11)1(6) and zpz(e) are universal functioﬁs independent of Z. Since
we are going to use Thomas Fermi model for all elements with Z > 5, it is
convenient to use these variables also for light elements for the purpose of
making comparisons later.

When the screening is complete, we have y = € = C = 0, hence

21.2417 for H

90 = ‘mn[zl/g/ (2’70‘)} *13/3 = [20.0729 for He ’ (TI. 33)
P5(0) = @,(0) -2/3, (IIL. 34)
r 2/3 24.5750 for H
¥,(0) = 4n|Z /(Zna)J +23/3 = 194.3304 for He ° (1I1. 35)
3500 = 9,(0) - 2/3. (III. 36)
When the screening is nonexistent, we have C >> 1, hence
zpl(e) = z/)2(€) = 4/n(200/€) - 2. (I, 37)

The numerical values of CPl('y), cpz(’y), zpl(e) and zpz(e) for a hydrogen atom
are shown in Table I]:_LI and those for a helium atom are shown in Table III.2, The
values of cpl(O) and ;bl(O) given by (II1.33) and (II1.35) are related to the radiation log-
arithms Lra q and Li‘a q respectively and they come in the definition of radiation

lengths of materials as will be shown in SectionII.B. In the no screening limit, the
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éxpressions for Xel/ Z2 and Xinel/ Z given by (III. 24) and the expressions for
C_Pl, Do, wl and zpz given by (1. 37) are universal functions independent of
materials. The numerical values of (III.37) are tabulated in the last column of
Table III.4. We note thgt when vy > 2, cpl('y) and_cpz(y) are g;iven approximately
by the no screening expression, whereas ¢1(€) and zpz(e) approach the no

screening limit much earlier, roughly at € ~ 1.

3. Checking the Accuracy of Bethe Approximation

In the previous subsection we have derived the analytical expressions for
Dy Pgs ;bl and z/)2 without using the Bethe approximation44 (11,14 to 17), In
Table III. 3 the values of Pys Pos z,bl and zp2 for a hydrogen atom using the Bethe
approximation are tabulated, which are to be compared with the results given in
Table III. 1. We note that the Bethe approximation is in general very good,
especially when the screening is effective. We shall assume that the Bethe
approximation yield results with the same degree of accuracy when applies
to other atoms for which the analytical expressions for 01 Poo zpl and z,b2

are not obtainable.

4. Thomas-Fermi Atoms

When Z is large, Thomas-Fermi model of atoms can be used. We shall
use the Moliere representation of Thomas-Fermi atom discussed in Appendix B.
Using these form factors and the Bethe's approximation, (III.14) through (III. 17),
we obtain the numeric‘al values for Cpl(y), cpz('y), zpl(e) and zpz(e); the results are
shown in the columuns labeled "TFM'" in Table Il.4. Since numerical tables are
hard to use in the practical application, we have constructed approximate analyti-

cal expressions which reproduce the numerical values obtained above to within %—%u
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These expressions are:

-

®,(v) = 20.863 - 2/ [1 + (0.558467)"]
- 4[1-0.6exp(-0.9Y) - 0.4 exp(-1.57)] , * (1. 38)
1
2
1+6.57+ 6y

0y = &) - 2 . (IIL. 39)

9,(€) = 28.340 - 2n [1+ (3.621¢€)%)

- 4 [1-0.7Texp(-8¢€) - 0.3 exp (-29.2€)] , (1. 40)

1
1+40¢ +4;OO€2

py(€) = d(€) - 2 - (IIL. 41)
In Table III.4, the columns labeled ""Analytical Simulation' refer to the results
using the above equations. These equations are not entirely obtained by curve
fitting. They possess the following general properties which all these functions
must have:

1. cpl(y), cpz('y), zpl(e) and ¢2(€) are all monotonically decreasing functions,
and in the no screening limit all of them must reduce to the common analytical
expression given by (III. 37).

2. The relations (III. 34) and (III. 36) must be satisfied in the complete

screening limit, i.e.,

P1(0) = D5(0) = ¥,(0) - ¥5(0) = 2/3 . (. 42)
Also in general, we have

where the equality signs hold only when vy and € are large.
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3. cpl(O) and zpl(O) determine the radiation length of materials [see

{11, 65)] , therefore these two numbers must be fitted first, namely
9,(0) = 20,863 and ¥,(0) = 28.352 . (I11. 43)

The particular analytical forms chosen in the above will become obvious after
the next discussion.

In order to calculate energy-angle distribution, do/dQdp and do/dSdek, we
However, the angular distribution of bremsstrahlung

have to know X , and X,
e ine

1 1°
and pair production are mostly determined by the multiple scatterings in the
target, rather than the production mecha‘mism° _Therefore Xel and Xinel obtained
from using the simple form factors discussed in Appendix B, see Eq. (B.38) and
Eq. (B.39), should be adequate. The numerical values are only slightly greater,
at most 4%, than those of Thomas-Fermi model in the intermediate screening
region. In both the complete screening and no screening limit:s, the results must
agree with that of Thomas-Fermi because of the way in which the simple form
factors are constructed. In the following we give the expressions for Xel’ Xinel’
CPI, Pgs gbl and zpz corresponding to the simple atomic form factors given by
(B.38) and (B.39):

X, = Z2 —ﬁn gE_ng_zi_ljiZ)E - lt‘ , (1. 44)

azt' . +1
min

2
1 t +
a' t i 1

- 2 2 2 | |
X o o=gzimamQarh -1] , (III. 45)

9. = 2(1+m a2223m2) - 2m(1+ b2) - 4b arctan (b} , (TIT. 46)

1 e
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2(2/3 + fn a2 22/3 mze) - 2fn (1+b2)

Py =
- 2 -1 -2
+ 8b” {1 -barctan (b™) - 0.75 (1 +b )} , (IIL. 47)
9, = 2(1 + a2z mi) _2m (1+b'%) - 4b’ arctan (b7 (I11. 48)
v, = 2(2/3+ ma'zz4/3mze) ~ 2 (1+b'%)
12 -1 =2
+8b'"{1 - b arctan (b' ) - 0.754n(1+b' )} , (TI1. 49)

where a and a' are the atomic parameters which appear in the simple form
factors (B.38) and (B.39) respectively. They are tabulated in Table B.4. b
and b' are b = ad and b' = a'§, where
mzk
= t = —_—
) N t i /(1D SE(E-T)" (1I1. 50)

For Thomas-Fermi-Moliere atoms, we have

9,(0) = 2(1+ma’ 22/3;112) = 20.863, (IIL. 51)
9,000 = 2(1+!Zna’2Z4/3mi) = 28.340, (I1.52)
b= 0.558467 , (IL53)
b' = 3.6201¢€ . (I 54)

Substituting these relatiqns into (II.46 through 49) and comparé the results with
(I11. 38 through 41), 1;he reader will see how we have obtained the latter. We have
obtained them by slightly changing the former to fit the numerical results given by
"TFM'" in Table IlI.4. The column labeled "Monopole Simulation' refers to the
numerical results of using (III. 46 through 49) with parameters given by (III. 51

through 54). The name monopole comes from the fact that the atomic form
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factor F defined in (B.7) has a monopole structure for the simple form factor
. defined in (B. 38).

Another way to simulate the Thomas—Fermi—Moliere. model is to use the
hydrogen like form facf:ors, regarding n in (II.25) and (ﬁi, 27) as two different
parameters determined by the values of Py and zpl .in the complete screening
limit given by (III.43). The desired P4 and P, can be obtained from Eqs. (IIL. 25)

and (II. 26) by setting

_ 23 exp (13/1)
n 20 184.15  °

(III. 55)

and the desired zpl and zpz can be obtained from Eqs (III. 27) and (III. 28) by setting

2/3
_ 27 exp(23/3)
n 20 1194 . (HIL. 56)

The results of this simulation are given in the column Iabeleti "Dipole Simulation"
in Table III.4. The name "dipole" comes from the fact that the atomic form
factor F for a hydrogen atom has a dipole structure.

Let us discuss the numerical results shown in Table III. 4:

1. As mentioned previously, in the limit of large v and €, all the functions
cPl(’}’), sz('y), Z/)l(€) and 4)2(6) reduce to the common expression given by Eq. (III.37),
whose numerical values are also tabulated in the column labeled "Unscreened
Target'" in Table III.4. We notice that the inelastic screening functions 4)1(6)
and z,bz(e) approach the asymptotic form much sooner than the elé.stic screening
functions cpl(y) and cp2('y) do. Also the approach to the asymptotic form is the
earliest for the "Dipole Simulation'" and the next is the ""Monopole Simulation"
and the last is the "TFM'". Since "Dipole Simulation" uses the hydrogen form

factor and "TFM" is supposed to be good when Z is large, we expect that for
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small Z elements the true values of the screening functions must lie somewhere
-between "Dipole Simulation' and "TFM". "Monopole Simulation' has such a
property.

2. In Section 1C of Appendix B, we show that the Thomas-Fermi-Moliere
model of atom is applicable for elements with Z > 5 as far as the calculation of
CP1(O) is concerned. Our investigation here shows that functions CPl('y), cpz('y),

Y 1(e) and zpz(e) are relatively insensitive to the detail of the atomic form factors

as long as they are normalized correctly at v = 0 and € = 0. "Monopole Simulation"
differs from "TFM" by 2% at most and '"Dipole Simulation' differs from "TFM"

by 4% at most.

3. At high energies where the screening is almost complete in large part
of the spectrum, the places these differences show up occupy but a small fraction

of the total spectrum. The difference is appreciable only when

0.2 <y <3.0 (1. 57)
and

0.02 <€ <0.6 . (IIL. 58)

Using the definition of v and € given in (III. 30) and (IMl. 31), we see that there are
two small regions in the pair production spectrum, at high energy and low energy
tips, which are relatively sensitive to the detail of the form factors. Since the
elastic contribution is more important than the inelastic unless Z is very small,

let us consider the elastic case for example. From (III.57) and (IH.30) we

obtain
100 me 100 me
<(I-xorx) < —mm3 (1. 59)
3.0k7/3 | 0.2 k73

where x= E/k. Fork = 10 GeV, the right hand side is 1/(40Z%%).
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On the other hand for the bremsstrahlung spectrum only the high energy

_tip is.sensitive to the detail of the form factors, the corresponding inequality is

_ 100me : 100me
‘ <1l-y < ' ' (III. 60)
3.0 gzY/3 0.2 £2Y/3

where y = k/E.

Let us summarize the result of this subsection by the following prescription:

1. For hydrogen and He atoms, do/d2dp can be obtained from Eq. (III.5)
with X given by (III. 18) and (IfI. 19). do/dp can be obtained from Eq. (II.9) with
CDI, Py qbl and 11)2 given by Egs. (III.25, 26, 27 and 28).

2. For Z > 3, do/dQdp can be obtained fi‘om Eq. (OI.5) with X given by
(I11. 44) and (III.45) and the parameters a and a' given in Table B.4.

3. For do/dp, we use Eq. (III.9) with Py Pos gbl and ¢, given by Egs.
(IT1. 46 through 49) for Z =3 and Z = 4, dnd Egs. (III. 38 through 41) for Z > 5.

The angular distribution of an electron for the pair production at small
angles is mostly determined by the multiple scattering in the target rather than
by the angular distribution of the production. Hence in general one needs to know
only very qualitative features of do/d2dp. This is the reason why we did not try
to give a better prescription than 2. above', which is accurate only to within 4%
as discussed before.

dcrb/ kodk and dcrb/ dk of the bremsstrahlung can be obtained from Eq.
(III.80) and (III.82) with X, cpl, P .d)l and z/)2 given for various atoms prescribed
above.

5. Total Pair Production Cross Sections

Equation (III. 9) can be integrated with respect to p to obtain the total cross

section. The total pair production cross section is an important quantity because it
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determines the attenuation constants for the photon in materials. In general,

‘the integration can be carried out only numerically. However, when the energy

is high (k > 10 GeV), the functions cpl('y), cpz(-y), z,bl(e) énd zpz(e) can be approxi-

mated by their values aty = 0 and € =0, and the result can be integrated easily

to yield
() = -g arﬁ [zz {o,00) - g—ﬁnz ~af}+ z{zp1(05 - -g— mz}
} 22—1 fz* + Z}] , (I1L. 62)
where we have used the relations

This is the cross section at an infinite energy. The numerical values of o(«)

for various elements together with the quantity

¢ = ﬂ%ﬁgﬂ_‘l (III. 64)

as a function of photon energy are given in Table III.5. The values of o(~ ) are

obtained from the values of radiation logarithms given in Table B. 2 and Eq. (II.62).

In the calculation of the energy dependence of the cross section, &, we have
included the correction due to the recoil of the target electron which was ignored
in Eq. (IOI.9). The exact calculation of the lowest order cross section for pair
production off an elect;'on target was first performed by Votruba (1948). This
calculation involves eight Feynman diagrams. Earlier, Borsellino (1947) and
Ghizzetti (1947) considered an approximation in which only two diagrams shown

in Fig. 1 are retained. Mork (1967) made detailed numerical comparisons
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between Votruba's and Borsellino's formulas. He found that when the incident
photon is above 8 MeV, the difference between the two is less than 0.1%. The
cross section considered by Borsellino is a special case of the formula given in
Section II. Letting m = m, =m,=mg and using the form‘ factors corresponding
to a pure Dirac particle, we obtained numerical résults which are in complete
agreement with the Borsellino cross section which was evaluated by Mork (1967).

When k > 50 MeV, the Borsellino cross section can be written analytically as

_ ..2128 4 .3 2
O’B—aro{-é-G-B.O'?lL—[gG - 3G +6.84G—21.51]me/k} ,

where G = In (Zk/me). The first two terms can also be obtained by integrating
Eq. (IIL. 9) using Eq. (II.37), therefore the square bracket term represents the
correction due to the recoil. The fractional decrease in cross section due to

recoil is thus given by

m
G =2 (26° - 36% +6.840 - 21.51)/(Ba - 8.074) .

This correction factor is derived without taking the screening into account.
However the screening is important only when the momentum transfer is much
less than m, whereas the recoil is important only when the inomentum transfer
is not negligible compared with m. Therefore we are allowed to consider two
effects separately. Let us denote the total cross section without the recoil
correction by o(k) and the inelastic part of this cross section by Tin (k), then the

expression for ¢ with recoil correction can be written as

g= ) -0 n®

() T(=)

The numerical values of A are given at the bottom of Table III.5. Because of

G3 term, A is not negligible even at k=1 GeV. oin(k) /0(») is proportional fo
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1/(Z+1), hence the recoil correction is more important for light elements. In

. the calculation for ¢, we have used Eqgs. (III.25) through (III. 28) for H and He,
whereas for all other atoms we used the Thomas-Fermi-Moliere model,

Eqgs. (OI. 38) through (III. 41) and Eq. (III.9). We note thallt‘f is not negligible

ran at nhoton en
€n at photon €

/SB

of the recoil correction to the incoherentb part of the cross section was first
emphasized by Knasel (1970) who did a very detailed study of o(k) from H and
He. It is comforting to know that our numerical results agree with his

even though the intermediate steps involved in the two calculations are somewhat
different. The effect of radiative corrections is not included in Table III.5.

This effect can be accounted for by multiplying o(<) given in column 3 by a

factor 1.0093 according to Mork and Olsen (1965).

B. Radiation Lengths of Materials

When one is dealing with electrons and photons at high energies, it is

convenient to measure the thickness of the material in units of radiation length.
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Let us define the unit radiation length, denoted by XO’ of a material by

~-1_ 2 _.-1[,2 4
X,” = ar,NA [z {cpl(O) - 3 7 -4f}
8 _
4+ 7 {zpl(O) - 3 mz}] . (II1. 65)
or equivalently,
- 2 _ : ]
X, = 716.405 A/ [z (Lpaq-H +Z L 41 - (II1. 66)

In Table III. 6, we give the numerical values of X0 from Z =1to Z =92, In this

Table, we have used the values of Lra and L'ra from Table B. 2 for elements

d d

Z < 4,and for Z > 5 we have used the Thomas-Fermi-Moliere expressions

derived in Appendix B.

1/3, ‘ . (II1. 67)

Il

L.q = in(184.15 2

and
2/3

1

g = (1194 Z

il

) - (I1. 68)

There are many Tables of radiation lengths available in the literature
which involve different degrees of sophistification in the calculation. Let us
comment on some of the well known ones. The Table I in Bethe and Ashkin22
(1952) can be obtained from Eq. (III. 66) without the Coulomb correction f and

with the radiation logarithms given by

L m (183 z"V/3) (II1. 69)

rad

and

2/ 3 (III. 70)

Il

Lo = (1440 Z
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for all elements including Hydrogen. As a consequence they obtained for ex-

“ampl®, X, for H 58 gm/ cmz instead of our value of 63.05 gm/ cm2 and for

Pb (Z=82) 5.8 gm/cm2 instead of our value of 6.37 gm/cmz. It is clear that
(1I1. 69) and (III.70) cannot be used for hydrogen and the Coulomb correction f is
not negligible for lead. Therefore, the table given by Bethe and Askin cannot
be trusted to within 10%.

Table 5.24.1 of Rossi21 (1952) can be obtained by assuming that both Lra
1/

d

and L;a g are given by (183 Z 3) and the Coulomb correction is taken care of

by multiplying (III. 66) by a factor
[1+0.12 (2/82)7%] , | (ITL. 71)

and setting f in (III. 66) equal to zero. Since the inelastic contribution is rela-
tively unimportant for high Z materials, Rossi's method gives fairly correct
values for high Z materials but for light Z elements it is as bad as Bethe and
Ashkins. 22

Table I of Dovzhenko and Pomansl«:i48 (1963), which is also reproduced in
1972 version of the Rosenfeld Tablesj]:9 is closest to our Table III.6. The slight
difference in numerical values is due to the following reasons:

1. For H and He, we have used the analytical expressions for Lra a and
L;'a q given by (III. 33) and (III. 35), whereas Dovzhenko and Pomanski48 obtained
Lra 4 and L'ra q from numerical integrations, which is probably not accurate
enough. Their radiation lengths for H and He are 62.6 and 93.1 gm /c:m2 re-
spectively.

2. For light elements, we used the same procedure to obtain L but a

rad’
different procedure was used for L;'a q Dovzhenko and Pomanski interpolated

L! . between H and N assuming that for N the ratio L' . /L_ . is
rad rad’ “rad
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given by

- -

-2/3 -1/3

/L = fn (1400 Z )/fn (191 Z ) . (III. 72)

rad

Our interpolation is between He and B, assuming that for B the ratio of radiation

logarithm is given by

L 4/L_ 4 = (1194 2723 /i (184.15 27V/3.

We do not know why they used the expression Lra qa- fn (191 an/ 3) because

their Fig. 1 clearly show that this is an overestimate and our expression

fn (184.15 Z_1/3) will fit the dots in their Fig. 1 much better. Their use of the
-2/3

expression Li‘a a- In (1440 Z ) comes from the mislabeling of the graph in
the original paper of Wheeler and Lamb14. (1939) which was later corrected in
Errata in Wheeler and Lamb14 (1959). According to our calculation in Appendix B

this number should be fn (1194 Z_Z/ 3

) .
Let us discuss some facts concerning the use of Table III. 6.
(a). If we ignore the term (2/21) (Zz + Z) in Eq. (III.62), the total pair pro-

duction cross section at infinite energy can be written as

7 A
0'(00) = 5' _}ZE)-I\I_ (III.73)
At a finite photon energy, we have
ok) = o(=)(1-£¢). (1. 74)

The values of parameter ¢ for various elements are tabulated in Table IV.5.

Thus the attenuation of a photon beam in a target can be written as

exp [- % t(1 - g)J, (II1. 75)
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if the thickness of the target t is measured in units of XO' At high energy, ¢
-is much less than one, but even at several GeV £ can be a few percents as can

be seen from Table II.5.

(b). The term ignored, (2/21)(Zz-+ Z), comes from ¢1(O) = ¢2(0) = z,bl(O) - 1/)2(0) =2/3.
The relative importance of this term increases with Z as can be seen from (I11. 62),
but even for Pb(Z = 82) the error involved is less than 0.7%. If one is unwilling
" to tolerate this kind of error, one should use the total cross sections in calculating
the attenuation factor instead of Eq. (II. 75). The reason why this term is ignored
in the definition of the radiation length is that one would like to use the radiation
length in dealing with both the bremsstrahlung and the pair production, and the
terms qbl(O) - qbz(O) and gbl(O) - zp2(0) appear with different sign and relative
magnitude in two problems [compare (I11. 62) with (III. 83)] .
(c). Our definition of radiation length refers strictly to a free atom. We have
ignored the effects due to molecular bindings, crystal structures, polarization
of medium, etc. We have also ignored the radiative corrections. Using Heitler-
London model of H, molecule, Bernstein and Pa.nofsky50 (1956) showed that in
the complete screening limit the effect of the molecular binding is to increase
the pair production cross section by 2.8 %, hence the radiation length for H2 is
61.283 gm/cm2 instead of 63.047 gm/cm2 shown in Table ITI.6 for H. There
seems to be no follow up calculations on this subject despite Bernstein and
Panofsky's calculation indicates that the effect could be significant also for other
molecules. The effeéts due to the crystal structure are investigated theoretically
by ﬁbera1151 (1956,1957). The bremsstrahlung produced by a thin crystal has
many spikes and it is linearly polarized. Hence it is a source of linearly polarized
semimonochromatic photon beam at high energy photon laboratories. This sub-

ject was extensively reviewed by Dia).mbrini52 (1968). The attenuation constant
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of a photon beam in a thick crystal is dependent on the polarization of the photon.
- Cabibbo, et al53 (1962) proposed that this fact can be used to obtain a polarized
photon beam and also that it can be used as an analyser for the photon polariza-
tion. The most up to date discussion on this subje_ct can be found in a paper by
Eisele et 3.154(1973). The effects of polarization of medium become important
only when the energy is above 1000 GeV. The references on this subject can be
traced back from the paper of Vartoloeev and Svetlolobov55 (1959).
(d). Assuming that the molecular binding can be ignored, we can calculate from
Table III. 6 the radiation lengths of isotopes such as DZ’ chemical compounds
such as HZO and CH2, and mixtures of molecules such as air. Let us calculate

the radiation lengths of DZ’ H,O, CH2 and air as examples:

2

Deuterium X (D,) = X (D) = X (H,) M(D)/M(H)

=63.047 X 2 = 126.1 gm/cm?

_1129_ Using the atomic weights and the radiation lengths of H(Z = 1) and 0(Z = 8)

given in Table III. 6, we may calculate the radiation length of water denoted by

XO(H20) from the equation

2A(H) +A(Q) _ 24A(H) , _AQ)

X (H,0) X(H) © X0 °

which yields
X, (H,0) = 36.0823 gm/cm>.

CH, Similarly, from the A and XO of Carbon (Z = 6) and H(Z = 1) in Table TI. 6,
we obtain

X,(CH,) = 44,775 gm/cm”.
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e

Air_ Assuming that air consists of 76.9% Nitrogen (Z = 7), 21.8% Oxygen (Z = 8)

and 1,3% Argon (Z = 18) by weight, we have

1 _ 769 218 013
X,(AIr) ~ X (M) T X0 T X (4

which yields

XO(Air) = 36.664 gm/cmz.,

C. Muon Paif Proéﬁction

The existence of étomic electrons can be ignored in the muon pair pro-
duction because tmin involved is much larger than the inverse square of the
atomic radius and also because the threshold energy required is too high for
production in the electron field. Instead of atomic form factors, we need to
consider the nuclear form factors. Most of the cross section occurs within a
few units of the characteristic angle, Gc z m“/ E, and in this small angular
range,only the elastic form factor is important. Equation (IIL.5) can be used for
calculating the energy-angle distribution, except now Gz(t) is a nuclear form
factor. Since G2(°°) = 0 for nuclear form factor, the result of (III.5) is identical
to that obtained by using the Weizsacker Williams approxima,tion43 except for the
Coulomb correction f. Detailed derivation of Weizsaker-Williams approximation
and numerical comparison with the result obtained from the Born approximation,
Eq. (II.7), can be found in Kim and Tsai43 (1973). For simple form factors
given by (B.49), the integration with respect to t in (IIl. 6) can be carried out

analytically. We obtain

2 2 ,
I S R A
*= t! 1+'c/d2 t7
min ( )
_1 7 *l
- 22 |1romym LR 14 B) L2c (IIL. 76)
1+c-1 ¢/ 1rec ],
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where d = 0. 164 A_z/3 GeVz, b= t;nm/d and ¢ = mz(l + ﬂ)z/d, At high energies
_and gmall angles, b is much less than unity, whereas c is of order unity for light
nuclei. Hence X is relatively insensitive to small variations in angle, energy as
well as nuclear radius. The energy-angle distribution are determined mostly

by the coefficient of X in (II1.5). We have also uséd the experimental nuclear
form factors of Be nucleus shown in (B.50) and (B.51). We found that for small
angles, the numerical values of X is quite insensitive to the detailed behavior

of the form factor at large t.

1/

When the production angle gets large, (t;nin) 2 becomes comparable to or
greater than the internucleon distance, in whiqh case the inelastic nuclear form
factors [see Egs. (B. 527)'>almd (B.53)] as well as the meson production form
factors [see Eqgs. (B.56) and (B.57):] must be taken into account. The contri-
butions due to these form factors can be handled by inserting the appropriate
form factors in Eq. (II.7). However if one wants to obtain a .less accurate but a

simple expression, we may use (IIl. 5) with X calculated according to the

Weizsacker Williams method given by Kim and Tsaiq:3

t 2

1 [ up dt (U-m)
X = 2m J _E /
i t_ . t 2
min mi

2 1
dm; [(t -t ) Wy 2t Wl] ,

where tup = mz(l + !Z)z. X's for various form factors are considered in Kim

and Tsaiéjt3 (1973). The reader should refer to that paper for details.

D. Energy Angle bistribution of Bremsstrahlung

The matrix elements of the bremsstrahlung is related to those of pair pro-

duction by the substitutions k «<— - k and p < - p, where p is the four momentum
of either the incident particle in the bremsstralung emission or the four momen-

tum of the one of the pair of particles in the pair production. In the energy-angle

-39 -



distribution of the bremsstrahlung, all the final particles except the photon is
- integwated out. In our calculation of the energy-angle distribution of the lepton,
all the final particles except one lepton is integrated out. We show first that

these two partially integrated cross sections are also related by the substitution

rules. To the lowest order in «, the energy-angle distribution of the bremsstrah-
lung for an electron is the same as that for a positron. Similarly to the lowest
order in «, the electron and the positron have the same energy-angle distribu-~
tion in the pair production. For convenience let us call the incident particle in
the bremsstrahlung a positron and the detected particle in the pair production

an electron. With this convention, the final state integrations in both cases are
with respect to a positron and the hadronic final states. Let k, s Ppr Py be the
four momenta of the photon, the initial hadron, the final hadron and the final
positron respectively and p the momentum of either the initial positron in the
bremsstrahlung or the final detected electron in the pair production process.

In the laboratory system the energy-angle distribution of the bremsstrahlung can

be written as -

3 3
3 d’p d'p
_ 1 dk + 1 f 4
doy = T / 58 | 2E. O (k+p +D-P-p)
milpl + f

Alk, P> Pps Py By s (101, 77)

where A is the matrix element squared averaged over the initial ‘polarizations
and summed over the final polarizations of all the particles. The substitution
rule says that for the pair production the matrix element squared averaged over
the initial polarizations and summed over the final polarizations of all the parti-

cles is given by -A(-k, P,s Pp ~Ps pi), where the minus sign in front of A comes
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from the fact that in the pair production there is only one antiparticle and vv = -1.

. Hengg the pair production cross section can be written as

3 3
3 d d’p .
_ 1 dp Py %P 4 S
4% air ‘mk 2E J2E_ S IE o(p+p, * o~k -py

(-1) A(-k, p» Ppy ~P> D) - | (TIT. 78)

Comparing Egs. (III. 77) and (III. 78), it is obvious that the two energy-
angle distributions are related by

dab (do air) sz
k k

do dk -~ \dldp 3 - (IIL. 79)

p“ - —p“

It was shown by Olsen17 (1955) that Eq. (II.79) is still correct even when the
Coulomb correction is included. In the earlier paper of Bethe and Ma,ximon15
(1954), it was erroneously stated that the Coulomb correction does not affect
the bremsstrahlung cross section whereas it does affect the pair production
cross section. Using the substitution rule (III. 79), we obtain the energy angle

distribution of electron or positron bremsstrahlung from (III. 5):

9 ea® E? || 2y-2 L 2009 o
as dk -~ 1k 4 2 4 2()

k m (1+2) (1+2)
2
N [2 LA 42(1‘32] [x - 2sz((ozZ)2)” : (1. 80)
(1+9) (1+£)

mol (@) = 2% + 2, y =k/E and ¢ = 02E%/m?. The

Coulomb correction f is given by (IIL. 3) and the function X is given by (III. 6).

where G,(=) = G(=) + G
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The minimum momentum transfer qnin used for calculating X is

tv

! in (1. 81)

_ kmz 1+ 271 2
2E(E-k) J ’

which is identical analytically to that for the pair :productiono However numeri-
cally t;nin can be quite different in two problems because in the pair production
we have E/k <1, whereas in the bremsstrahlung we have k/E <1. This has a
consequence that the complete screening formula has a wider range of applica-
bility in the bremsstrahlung problem than the pair production.

After integrating with respect to the photon angle Hk, the term proportional

to G2(°°) in (II1. 80) vanishes and we obtain

do 3 B
b  « 1 4 4 2 2 4 8
® T 3k _(§ - “3'Y+Y) [Z ¢y -3 WZ-4D)+ 20 - :o:fnZ’]
3 R
+ £ (1) _zz<cpl—cp2>+z<¢1—¢2>J] : (IIL. 82)

The function UPp cpz, zl)l and zpz are identical to those for the pair production
problem. When the energy is high and if one is not particularly concerned with
the detailed shape at the high energy tip of the bremsstrahlung spectrum, the
functions ¢>1, ¢2, zpl and zpz can be approximated by their values aty = 0 and
€ = 0. Under this approximation, usually refered to as the complete screening

case, wWe may write (fII. 82) as

21 (4 a_, . 2\[.2
dic 0k [(3 - §Y+Y> |z (Lrad‘ﬂ“LZL}ad]

v Ly P Z)] , (IIL, 83)
(Complete Screening Formula)
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where Lra d and L]'[.a q are tabulated in Table B.2. If we ignore the term

) (1—y)122+Z)/9, then Eq. (II.83) becomes propoi'tional to l/XO defined in (II1. 66).
In the infrared limit (y — 0) the term is roughly 2.5% of the terms retained.
Hence for any accurate work these terms should be retained. However if we

are willing to ignore 2.5 % error, then (IIl. 83) without (1—y)(Z2+Z) can be

written as

p(k) dkdT = %—{k— (-‘3-1- , g— g+ yz) ar, v =k/E) (III. 84)

where p(k)dk is the number of photons in the energy range dk after an electron
passed through a target of thickness dT radiation length. The advantage of
(II.84) is that it is independent of target material. In Section IV we shall con-

sider the effect of finite target thickness.

E. Bremsstrahlung in Colliding Beam Experiment

Let us consider the emission of a single photon in the electron-electron or
electron-positron colliding beam experiment. In each case there are eight
Feynman diagrams. The exact calculation was first done by Votruba56 (1948),
whose results are extremely complicated. Fortunately with the recent advance
in computer, the derivation of Votruba's formula can easily be done using various
algebraic routines, e.g., "Reduce' by A.C. Hearn57 or ""Shoonship'" by
T.Veltman (1965). 58 The important thing is t’haf the result ofth; ‘;(;Iﬁxrlrbuter derivation
is usually already in a form usable for the conputer to do further numerical cal-
culations. Hence Whe;n one is dealing with a formula as complicated as that of
Votruba, it is easier to start from scratch than starting from the expression
given by Votruba. S. Swenson59 (1967) investigated the process e++e_-» e++e—+y

using his own version of algebraic computer routine. He concluded that near

the forward direction only two Feynman diagrams similar to those shown in
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Fig. II. 1 need be considered. Hence, the result is given by (III.80) with f = 0,

G, =1 and X given by the right hand side of (III. 24):

doy, 598 g2 [ 2y-2 . 120(1-y)
di dk ot | @ et
2-2y+y° 4(1-y)
- i - - 2in(m/8) - 1| .. (II1. 85)
(1+4) (1+4)

where y =k/E, £ = 91%:E2/m2 and 5§ = %— mzy/E(l-y).

This expression is identical to the one obtained by Som.merfeld41 (1939). This
formula can be written in such a way that it becomes usable both in the center
of mass system and also in the laboratory system. The easiest way to do this
is to realize that at high energies and small angles, both y = k/E and £ = 912{1432/ mz

are relativistically invariant and Eq. (III.85) can be written covariantly as

do

b _ 4o
dedy m , (III. 86)

where { } is the expression in the curly bracket of (HI.85). In the colliding
beam experiment, the bremsstrahlung angular distribution is symmetric with
respect to 90°. The backward peak disappeares into the infrared after the
Lorentz transformation from the center of mass system to the laboratory system.

Equation (II.85) can be integrated with respect to angle easily, we obtain

do 3 -
b _ 4o ,g _ g_ y+y2] [2ﬂn<m/6> ) 1] ) (IIL. 87)

-+ -
F. e +e —2vy, 3y

When a positron is incident on an atomic target, it can annihilate with an

+ -
atomic electron and produce photons. The cross section for e e - 2y is of
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order ozz compared to the cross section for e+ +e — e+ +e + v which is of
- order a3. However at high energies the former is negligible compared with the

1/2 which corresponds to 90° in

latter except when the angle Ok is near (2m/E)
the center of mass system of initial et ande . Since e +e — 2y has a two

body final state, the energy of the photon is fixed at a fixed angle:

m2 + Em
m + (E-pcos Gk)

E/(1+ % yeﬁ) , (I11. 88)
Yy>>1

0k<<1

which is equal to the value of kma,x in the reaction e’ +e — e+ e +v. For

1/ 2, the photon spectrum do/ dSdek from e+ + H2 has a sharp spike.

0 c hear (2/7)
The spike, instead of being a 6 function, has a finite width because of radiative
corrections (Tsai, 196560). This spike is a very useful source of semimonochromatic
photon beam. The detailed theoretical discussions of the proi)erties of this spike

and the background were given by Dufner, Swanson and Tsai (1966). 61 The cross sec-
tion for e + e  — 2y can be written as |

dga ozz [ 2y . AL 4JZ§1+zf1

+
€y o <<l 2m’(1tz)° L1 2y (1) 2

(I11. 89)
v>>1

where v = E/m of the incident positron, z =7y 6?{/2 and £ = '}/2912{‘. If one is inter-
ested in obtaining the semimonochromatic photon beam, then the angle 9k must
be chosen so that z is of order unity, in which case the spike is very pronounced
compared with the ordinary bremsstrahlung background given by (III.80). On

the other hand if one is not interested in obtaining a semimonochromatic beam

but wants to know how the angle-integrated photon spectrum is affected by the
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annihilation photons, it is more convenient to write (IIL. 89) in terms of dcra/ dk

- using the relation (III. 88). We obtain

do 2 i : :
a _ o 4 (y/2v) + (1-y)
& = 2 [(y/27)+(1—y) ¥ y ] ’ (- 50)

where y =k/E. We have ignored the last term in (II1.89). This equation must
be multiplied by Z before we can make the comparison with (III.82). The effect
is largest for hydrogen, therefore let us consider this as an example. When k

is small we have

[ 7r
k — 0 ay5h0

(doa/dk)/(dob/dk) ~ T/v (1. 91)
which shows that effect in the soft photon region is not noticegble unless the
incident positron energy is below 300 MeV. Near the high energy end of the

spectrum (y — 1), we have

10 1

(do,/dk)/(do, /dk) ;:—ﬁ Y e+ ) (TI1. 92)

which is clearly peaked at y = 1 with a small width (Ay ~ (1/2y). If the effect of
the radiative correction is included, the width of this spike gets widened. Hence

when E > 1 GeV it is probably unnoticeable.

G. Muon Bremsstrahlung

As noted previously, even though t;nin for the bremsstrahlung has an identi-
cal analytical expression to that for the pair production, numerically the former
can be much smaller than the latter. In the muon pair production, the atomic

screening as well as the production in the electron field can be ignored, but for
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the muon bremsstrahlung neither of these effects can be ignored when the photon

- emitked is very soft. The atomic radius is roughly given by a ~ Z_l/ 3 137/ m,,
hence the atomic screening becomes important when
s mok(1+)  ,-1/3 137
1 < t17%a = B . (II. 93)
~ min 2E(E-k) me A /
In the forward angle, this gives
1/3
A L B
iy £ 1370 GevV °* (IIL. 94)

which shows that when E is above one hundred GeV, the atomic screening is not

negligible. On the other hand, when E is much below one hundred GeV, the

atomic screening becomes non-negligible only when very soft photons are emitted.
The energy loss of a muon due to bremsstrahlung is negligible compared

with that due to ionization when the energy is so low that its range is consider-

ably less than (mﬂ/ me)zxo, where XO is the unit radiation length defined pre-

viously. However when the muon energy is one hundred GeV or higher, its range

becomes comparable to or greater than 40,000 X . After a muon passes through

0°
a material of thickness comparable to 40, 000 XO’ its energy is greatly affected
by the bremsstrahlung. When the muon energy is higher than one hundred GeV,
the nuclear form factor is negligible except at the bremsstrahlung tip, whereas
the atomic form factor affects the low energy photon enﬁission.- This means
that Eq. (II1.82) can ailso be used for the muon bremsstrahlung except near the
high energy tip of the bremsstrahlung. The parameters y and € defined in
(11I. 30) and (OI.31) should now read respectively

100 mi k

Yy = (II1. 95)
E(E-Kk) z1/3 m_
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and

100 m2 k
Jo!

€ = (I11. 96)

E(E-k) 72/3 m,

As noted previously, the function Py and ®, become approximately equal to
the value given by the unscreened target at around y = 2. Substituting ¥ = 2 in
(III. 95), we obtain a relation similar to (II. 94).

It should be emphasized that the problem we are discussing here is usually
called the '"outer bremsstrahlung" or "external bremsstrahlung”, in contrast to
the ""inner bremsstrahlung" or "internal bremsstrahlung" which one deals with
when discussing the bremsstrahlung emission during the large angle (angle much
larger than one characteristic angle) scattering. There are two major distinc-
tions between the two kinds of phenomena (Mo and TsaiGz, 1969). For inner-
bremsstrahlung the scattered electron or muon is detected at an angle much
greater than one characteristic angle. In this case the bremsstrahlung emission
is roughly proportional to fn( —qz/mz) - 1, hence the radiative corrections to
muon scattering is about 0.25 to 0.5 of the radiative corrections to the electron
scattering in the q2 range of 1 to 10 GeVz. This is to be contrasted with the

corresponding ratio (me/ mu)2 =~ 40, 0001

for the outer-bremsstrahlung. For
the inner-bremsstrahlung, the angular distribution of photons are concentrated
in the two directions, namely, along the incident electron (or muon) and the
outgoing electron (or muon). The root mean square angle between the photon

and the electron (or muon) is <9§> 1/2 1/2

~ (m/E)™ °, where E is the energy of
the incident or outgoing lepton. For the outer-bremsstrahlung the characteristic
angle is m/E with respect to the incident lepton.

In the electron scattering experiment, both the external and the internal brems-

strahlung have to be considered (see Mo-Tsali, 196962 and Tsai,197 165), whereas in
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the muon scattering experiments we need to consider only the corrections due
_ to the internal bremsstrahlung. The external bremsstrahlung of muons is
important when one is dealing with shielding of muons which have energies of

more than one hundred GeV.

IV. EFFECTS DUE TO FINITE TARGET THICKNESS

When one is dealing with photons or electrons in any experiment at high
energies, it is important to take into account the attenuation of the photon beam
and the straggling of the electron in the medium. At high energies the attenua-
tion in the intensity of a photon beam is mainly due to the electron pair produc-
tion given by (IIl. 75). The effects such as ionization, compton scattering,
nuclear excitation, meson production etc. are negligible even though these
effects have one or two less powers of a in their expressions for the cross sec-
tion than the pair production. The straggling of the electron at high energies
is mainly due to bremsstrahlung. The Landau straggling (Landau63 1944), i.e.,
the energy straggling of the electron due to the e-e scattering, can be ignored
compared with that due to the bremsstrahlung emission if the energy loss AE

satisfies the inequality 6 2

20 '
T (ZL, g% L..d AE/m >> 1, (IV. 1)

where Lra q and L;:a g are radiation logarithms tabulated in Table B.2. For
hydrogen, this condition is equivalent to AE >> 10 MeV. The combined effects
of Landau and bremsstrahlung stragglings can be found in the works of
Bergstrom64 (1967) and Tsai65 (1971). This consideration is important when
one is interested in obtaining the shape of a resonance using electrons with

energy less than several hundred MeV.
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In this section we shall follow the notation of Tsai and Whitis (1966). 66 Let
. the number of photons produced by an incident electron with energy EO from a

target of infinitesimal thickness dt radiation length in the energy interval dk be

do*b

‘ N ,
p(EO, k) dtdk = & A XO dtdk , (Iv.2)

where N is the Avogardro's number, A is atomic weight, XO is the unit radiation
length given in Table III. 6, do*b/dk is calculated according to (II1.82). The atten-
uation factor for a photon after passing through a medium of t radiation length is

e Ht

» Where u = - % (1 - &), with £ given in Table IIl.5. The energy distribu-
tion of the first generation electron is denoted by Iél) (EO’ E, t). An electron
initially with energy EO, after passing through a target of thickness t will have

a probability Iél) (EO, E, t) dE of being in the energy interval between E and

E + dE. The number of photons in the energy between k and k + dk after an
electron, initially with an energy EO’ passed through a target of thickness t is
denoted by I,(Yl) (EO, k, t)dk. It was shown in Tsai and Whitis 66 that the second
generation electrons as well as the second generation photons are negligible
compared with the first generation ones as long as the target thickness is less
than two radiation lengths. Hence we shall omit the superscript "(1)" from

I(el) (EO’ E, t) and Ig/l) (E,» E, t). Another important quantity denoted by b is

0’

defined as

‘ 2
. 4
b = lim kpBk = 3 <1+ %2 ——— ) , (IV.3)

—_ 1
k—0 Z Lrad+ZLrad

where the radiation logarithms Lra q and L'ra g are tabulated in Table B. 2.

- 50 -



A. Straggling of an Electron due to Bremsstrahlung

~ The straggling function of an electron Ie(EO’ E, t) was first considered by
Bethe and Heitler13 (1934), which was later rederived and extended by Eyges67
(1949). Eyges showed that if the bremsstrahlung distribution function p(E, k)

were given by

p(E, k) = = b(1-9* [ma-y]", 1v.4)

where y = k/E, a and b are arbitrary positive numbers, then the straggling

function for an electron would be given by

bt E Vbt |
_ (1+a) 0
Ie(Eo’E’ t) = T(1 + bD I:ln(-—E)] P(Eg> kyt, (IV.5)

where k = E 0" E and I' is the Gamma function which for small bt is given by

T'(1 + bt) 1-0.5772bt .

bt<<1
The original treatment of Bethe-Heitler is a special case where a = 0. Now the
trouble is that the actual bremsstrahlung spectrum (IV.2) has a very different
shape from (IV.4). At high energies, the complete screening formula given by
Eq. (IO.84) is adequate except near the bremsstrahlung tip. I we normalize the
parameter b in (IV.4) at the infrared limit, namely (IV.3), we see that (IV.4) is
way too low at the high energy side of the bremsstrahlung speétrﬁm. The factor
(l—y)a1 tends to suppress the high energy end of the spectrum, hence a = 0 is the
most reasonable choice for this parameter. It is so small that an electron

suffers only a single collision, then by definition we must have

t11_1510 I1(Ey E, )= p(Ey, Ej-B) t . (IV. 6)
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This shows that the factor [m(EO/ E)] bt/ T(1 + bt) in (IV.5) represents the cor-

. rection due to multiple collisions. If we assume that this correction factor is
independent of the expression of p(k), from which it was dgrived, then we can
simply use a correct expression for p(k) in (IV.5) instead of using (IV.4). This
procedure was first proposed by Mo and Tsai 62 (1.969)° Subsequently R. A.
Early67 (1972) made a detailed study of numerical solution of the electron dif-
fusion equation using the complete screening formula for p(k) as given by Eq.
(I1.84). He found that the maximum disagreement between his numerical result
for Ie(EO, E, t) and that given by Eq. (IV.5) with p(k) given by (III. 84) instead

of (IV.4) is less than one percent if t is less than 0.01 r.1l. However, when t = 0.1
r.l. Eq. (IV.5) in general overestimates Ie(EO, E, t) at low energy end of the
electron spectrum; for example, the overestimate is about 9% at E/ EO =90.1.
Based on Early's numerical work, a better straggling functiop (Tsai65 1971) was

proposed:

(EO—E)bt
I(Ep B, 1) = \—E—O— p(Ey E,-E) t/T(1 + bt) . (Iv.m

This function is within 1% of Early's numerical work when t <0.05 r.1. and

E/ E, > 0.2. The best fit to Early's numerical work was obtained by G. Miller69

(1971) whose result is

. E, \bt
LBy B O = 115y (m ‘E‘) pk) t
x [1+bty {.53875+y (-2,1938 + .9634y)}] (IV. 8)
where

y = (E, - E)/E,.
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This formula agrees with Early's numerical results to within 0. 6% for E/ EO >0.1
~and £<0.1r.l. The precise form of Ie(EO’ E, t) is very important in the radia-

tive corrections to the electron scattering experiment.62’_65’ 69

B. Thin Target Bremsstrahlung -

The photon spectrum from a target with thickness t can be calculated from

the following formula (Tsai and Whitis °°)

t

B :
— -p(t-t"y .., 0 '
I‘}/(EO’ k, t) fo e dt fk Ie(EO" E, t) p(E, k) dE, (IV.9)

where u = % (1 - £) and ¢ is tabulated in Table ITI.5. The integration with
respect to t' can be carried out analytically if the target is so thin (t <0.1) that
the inverse of the gamma function in (IV.7) can be approximated by

I‘—l(l +bt') ~1+0.5772bt'. We notice that when t« 1r.1., Ie(EO’ E, t) is
very large near E = EO’ hence we need to know very accurately its value only

near E = EO’ in which case (IV.9) can be approximated by

-t E. (E -E\bt'-1
1(Eg k, ) ] atr e P (4 0.5772bt')f 0 ( % ) o(E, k) %‘5
Y t<<l”0 k 0 0
(IV. 10)
_ (B0 pt [1eBT 1 2y BT BT (T2 2T
= e ITE ot (35 (tme ) rve (T - T3
k B B B
o(E, k) dE/EO , , (IV.11)
where

T =bt, B=-7/(%)+(1-E/E),

v = 0.5772, p(E, k) and b are given by Eqs. (IV.2) and (IV. 3) respectively. It
should be emphasized that even for t as small as 0.01 r.1. the result of (IV. 11)
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differs by several percents from that of using (IV.2) near the bremsstrahlung
tip (0.98 <k/ EO <1), therefore for any accurate work using the bremsstrahlung

tip, one should use (IV.11) instead of (IV.2).

C. Approximate Expression for Thick Target Bremsstrahlung

It is sometimes desirable to have a simple formula for I'y(EO’ E, t) valid
also for target of thickness up to 2 radiation lengths, for example, in the estima-
tion of the secondary particle yields from an electron machine. Let us first
consider some qualitative features. From Eq. (IV.5) or (IV.7), we see that the
electron spectrum Ie(EO, E, t) changes its shape abruptly at t = b—1 =~ .75 r.l.
For t <0.75 we have Ie(EO, EO’ t} = o, whereas for t > 0,75 we have
- Ie(EO, EO’ t) = 0. This tells us that practically all high energy y's are pro-
duced from t = 0 to t = 0.75, and after t = 0.75, the intensity of y's is just

attenuated by the absorption factor o~/ 9-0.75)

At t =.75, the electron spec-
trum is essentially flat. It was shown by Tsai and Whitis (1966) that because of
the nuclear absorption of the photoproduced hadrons, the optimum thickness for
the production of high energy hadrons is roughly 2 r.l. for Be and slightly larger
for heavier elements. For production of muons (or heavy leptons) the nuclear ab-
sorption is neglibible, but enen in this case one reaches more than 90% of the pos-
sible maximum yield when t =4 r.1. In order to obtain a simple formula for
Iy(EO,k,t) which is approximately true when E0>k> %—E AL note that the inte-

grand in (IV.9) is dominated by the region E, — E and t' <<1. Hence we need to know

0
very accurately about the integrand only in this region. The gamma function has
values I'(1) =I'@2) =1 and I'(x) < 1 for x between 1 and 2, the minimum occurs at
I'(1.46 =.8856. Hence we shall approximate I'(1+bt') by one, which will result in
underestimating I ¥ by less than 10%. We shall also ignore the energy dependence of

and approximate it by u =7/9. Since we are interested in the high energy component of the
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the photons, we may approximate p(E, k) by 1/k, which gives at most 10% over-
_ estipate at high energy half of the spectrum. The result is
. - k/EO)bt _ T/t

[1(E,, E, t) = SN (IV.12)
v 0 ]approx k k[7/9 + %ﬂn(l—k/EO)]

The numerical values of this expression from t = 0.01 to t = 2.0 and
0.1<k/ E0 <0.999 are tabulated in Tsai and Whitis paper66 (1966) together with
the results of using (IV.9). The difference between the two values is about 0 to

15%.

D. Production of Particles Using a Photon Beain

The photon source may be a bremsstrahlung beam obtained by placing a
radiator up stream in the case of electron accelerator or it may be the photon
beam produced by T decay as usually the case for the proton accelerator. In
the former case the photon flux is given by I'y(EO’ k, t)dk per incident electron
or positron. In the latter case n° flux is usually estimated by assuming that it
is the average of 7 and 7 fluxes. In either case the photon spectrum can be
determined by a pair spectrometer. Letus assume that the photon flux impinges
upon a target of thickness T r.1. and the photoproduction cross section is given
by do/dQdp. The number of events induced by a single photon in this target is
then

AT do NXO

NX
- - d

1 A dpd®?

(IV.13)

where p is the absorption coefficient for photon p = (7/9)(1- £) as given pre-
viously. This simple formula tells us two things: 1) There is no use making

the target thickness more than two radiation lengths. When T = 2, we have
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exp(-7T/9) = 0.22, hence only 22% of the photon beam is wasted. As the target
_ gets_thicker, the effects due to the straggling, multiple scatterings and the
absorption of the produced particles become complicatedv.,l 2) The factor NXO/ A
is roughly proportiona} to (Z2 + Z)_l. For production of particles other than
electrons or muons the cross sections are usually proportional to A or Az/ 3.
Hence as far as maximizing the yield is concerned, small Z material is pre-
ferable. This is the reason why we have chosen H and Be in our calculation of
the production of heavy leptons. If the produced particle is a muon it will come
out of the target essentially unaffected except some loss of energy due to ioniza-
tion. If the produced particle (or the decay product of the produced particle) is
an electron, its energy will straggle due to the emission of bremsstrahlung. This
bremsstrahlung has two parts: inner and outer bremsstrahlung. The effect due
to outer bremsstrahlung can be calculated by using Ie(EO’ E, T-t). The effect
due to the inner bremsstrahlung is part of the usual radiative corrections, which
is independent of target thickness. If the produced particles are hadrons, then

the effect due to nuclear absorption must be taken into account.

E. Production of Particles Using an Electron Beam

For particle production in an electron machine the maximum yield is obtained
if the electron beam is used directly on the target. We shall show in the next sub-
section, that the production by the virtual photon is negligible compared with the
production by the real photon if the target thickness is much more than 1/25 of a
radiation length. Coﬁsider ""a" monochromatic electron with an energy E0 inci-
dent on a target of T radiation lengths. Let o(k) represent some photoproduction
cross section. o(k) can be either do/dQdp, do/dp or o, etc. The total number

of events per incident electron induced by the real photon in the target material
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is given by

NX T E
0 0
-~y = L [ i dt fk Itk o) d . (IV. 14)
min '

Using the approximate expression of Iy given in '(IV, 12), Eq. (IV.14) can be

integrated with respect to dt. We obtain

E \
_ 0 0 L IT e 9 __~H7/9T 7 Ydk
Y= — fk o (k) [(1 e TyE- 2 (1-e ] <9 f)k
min
(IV.15)
where
- _ 4
f=-3 ﬂn(l—k/EO).
In the limits T— 6 and T — < we have respectively
NX 2 E
0 T 0 dk .
Y i 5 /k a(k) K (IV.16)
T—0 min
and
NX E 2
o [0 9 dk
Y - = [k o) T T - (IV.17)
T — min

From Eqgs. (IV.15 through IV.17), we see that the yield of secondary particles
by an electron is proportional to T2 when T is small and becomes independent of
T as T becomes infinity. How fast this maximum is reached depends upon whether the
process requires soft oi‘ hard component of the bremsstrahlung. High energy
component of the photon diminishes more rapidly than the low energy component
as the target thickness is increased. When k/EO = 0,442 (which corresponds to

f = 7/9), the ratio of the integrand of Eq. (IV.15) to that of Eq. (IV.17) is equal
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to [1-(1-17T/9) exp(-7T/9)] , hence when T = 3 one already gets 68% of the
maximum value. If the target thickness is increased beyond T = 3, we gain
somewhat in the yield but the increased absorption and §traggling of the out-
going particles in the target may render this small gain in yield not worth-
while. For hadron production, T 2 is the oﬁ)tiﬁlal thickness if one takes into

account the nuclear absorption of the hadrons (Tsai and Whitis, 1966).

F. Production by Virtual Photons. (Equivalent Radiator for Electroproduction)

When an electron is used for production of particles, the contribution due to
the direct electroproduction is approximately equal to the contribution from a
real bremsstrahlung beam produced by letting the electron pass through a radi-
ator of thickness ~1/50 radiation lengths (called the equivalent radiator whose
thickness is denoted by teq ). This implies that the production due to the virtual
photon is negligible compared with that due to the real photons if the target is
much thicker than 2 teq' This fact is well known among experts but sounds
strange to many people because the electroproduction cross section has two
powers of « less than the combined o dependence of the bremsstrahlung emis-
sion cross section and the production cross section by a real photon. In the
following we derive the expression for teq using the Weizsacker-Williams method.
Let E and E' be the energies of the incident and outgoing electrons respectively
and 0 be the scattering angle of the electrons. The cross section can be written as

de _ 27ra2 1

t 2
dvdt — tz Ez—mz [{ZE E-v) - 5 } W2 + (t - Zme)Wl] (Iv. 18)
e

where v =E - E'and t = -(p—p')z. We have retained the mass of the electron

because tm' is proportional to mi as given by Eq. (A.11). From the definition

n

- 58 -



of the tensor Wuv given in Section II, we obtain

1:2

, e
W, = 55— |W__+(@ /t)W ] ) (Iv.19)
2 y‘z(t+ VZ) [ 2z xx| _

where the direction of the momentum transfer in the laboratory system is chosen

as the z axis. The transverse tensor WXX is related to the photoproduction cross

section

47rzoz
W (t=0,v). (Iv.20)

Uy(y) - v XX

Since WZZ and WXX are not singular at t =0, we can ignore WZZ in (IV.19) when

v~ >>t. Ignoring the t dependence of WXx and assuming VZ >>t, we have

alv) tmax Zmzy2
dog o ¥ 2y 1 e
& 2 v / [(2‘23’”’) t T T2 ] dt
tmin

o (v)
~ 45— 7 [(1 -y H %‘Yz)ﬂn Cmax tmin) = —y)] ; (IV.21)

where y =v/E and t i

2.2 . .
in = MY /(@ -y). The true t jax 1S 4 E(E ~ v) which can

be very large. Rather than using this value of tmax’ it is better to regard it as
a cut-off parameter which approximately takes care of the t dependence of WXX.
Now this t dependence is different for different processes and different targets.
Fortunately (IV.21) is not very sensitive to tmax' A convenient choice is

tmax ~ mi ~0.5 GreV2 which is roughly the cut off required for production of

hadrons.
Now the bremsstrahlung spectrum of an electron after passing through a

target of t radiation lengths (t <<1) is roughly tdk/k. Hence Eq. (IV.21) says
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that the desired expression for teq is given by

2
m (1 -y)
- 1.2
tog = 7 [(1-y+§y)2n L ~(1—y)] (Iv.22)
m’y o
e
~ % m (mp /m,) = 0,017 (IV.23)

The last expression is given there for the purpose of indicating the order of
magnitude of te q

The equivalent radiator introduced here represents the pseudophoton flux
of the incident electron. The equivalent radiator representing the pseudophoton
flux of the target nucleus has been considered 1n great detail by Kim and Tsai
(1973). The concept of a pseudophoton flux of a charged particle has a meaning
only in the frame where the particle is moving with extreme relativistic speed.
(See e.g., Appendix C of Kim and Tsai, 1973). Since the incident electron is
already relativistic in the laboratory system, the concept of pseudophoton flux
is directly usable in the laboratory system without making a Lorentz transforma-
tion which is required when one is dealing with the pseudophoton flux of a target
particle. The interesting characteristics of teq given by (IV.22) is that itis a
function of scaling variable y only.

Let us consider the number of events induced by a single incident electron
in a target of T radiation lengths. We denote the part due to the virtual photon

by Yvir tual and the part due to the real photon by Yreal' When the target
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is thin we may ignore the straggling of the electron in the target, hence the

yield due to the virtual photon is
NX ~-E
k .
——O—Tjo A L . (IV. 25)

Comparing Eq. (IV.25) with Eq. (IV.16) we see that when T =2 teq’ the
virtual photon contribution is approximately equal to the real photon contribu-

tion. When the target is thick, Y will not increase linearly with T be-

virtual

cause of straggling. We expect it to level out at around three or four radiation
lengths. The yield by virtual photons of an electron in a target of thickness T

can be written as

NX T E E
- NX 0 o(k)
Yoo = o /o dtJfk I(Eg E, t) dE fk by
min min

(IV. 26)
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where Ie is the straggling function of the electron given by Eq. (IV.5). Since we
are interested in the high energy component of the photon, we may approximate
the fadtor (2-2k/E+k2/E2) by 1 and the p(E,k) in Eq. (IV.5) by b/k. T(1+bt) can
also be approximated by unity because most of the contribl.lt‘ion comes from the

region bt <1, Wifh these approximations and the identity

E E E E
0 0 0
dE dk = dk dE
f k . fk . { k. / k
min min min

the integration with respect to dt and dE can be carried out when T = . We
obtain
NX E
. 9 0 r 5] &
Yoimal 7" AD a(k) toq /I Ey/(E, k)] - (IV.27)

T— k_.
min

From Eqgs. (IV.17) and (IV.27), we obtain

.1
(Y /Y 5t

. (1V. 28)
T - ° ©d

virtual real)

V. PRODUCTION OF MUONS AND HEAVY LEPTONS
(NUMERICAL EXAMPLES)

In this section we present numerical examples of calculations using (II.7),
which is an exact result in the lowest order Born approximation. The target
particles are assumed to be either hydrogen or berylium. The elastic and in-
elastic nuclear form factors necessary for the calculations are discussed in
Appendix B. The numerical examples given in this section are intended to help
experimentalists in designing experiments to discover heavy leptons. The cal-

culations for muons are also included because they can be used in estimating the
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yield of muons from an electron machine and also in estimating the background
for the heavy lepton experiment. The various numerical tables given can also
be used for checking the accuracy of various approximation schemes such as the
Weizsacher Williams method. Since different experimenté ‘involve different
kinematical condiiions, the experirmenters have to fecompute many quantities.
Our numerical tables can serve as convenient reference for such calculations.
Let us begin by discussing some kinematics which defines the physical region

of the problem.

A. Kinematics

The minimum energy of the photon required to produce a pair of leptons,
each of mass m, and one of the leptons having a momentum p and an angle 0
can be obtained by setting the expression for U2 = (pf+p+)2 given by Eq. (II.4)
equal to (mf + m)zz

2 2
kmin = (mf -m, + 2mmf+ ZmiE)/(Zmi— 2E+2pcos 0) . (V.1

For the coherent scattering from a nucleus we set me =m, = Amp, for the
elastic scattering from a proton we set me =m, = mp, and for the meson pro-
duction from a proton we set m, = mp and m, = mp + m . The computer has to

be instructed to skip the calculation unless the conditions

k>k_. and k . >0 (V.2)
min min

are satisfied.
For the calculation of

do do

—~= = 27 f -
dp cos 0 dQdp
max

dcos @, (V.3)
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we need to know cos ema.x and the allowed range of p. In order to obtain

cos emax’ we notice from Eq. (II.4) that for given k and p, U2 increases with
cos 6. Hence cos emax can be obtained by setting U2 to its“minimum value,
(mf + m)zo Of course cos gmax can not be smaller than —1, therefore we first

define

cosor = [omf -mD/2 4 mmg-m(m)+KE] /D), (Ve

which is obtained by setting U2 = (mf+m)2. Then the desgired expression for

cos Bmax is
cos 0 = cosf! > if cos 0! > -1; (V.5)
max max max
and
cos 0 = -1, if cos ¢' < -1. (V.6)
max max —

The allowed range of momentum p in Eq. (V.3) can be obtained by setting

U2 = (mf + m)2 and cos 6 =1, We obtain: -
- 2 2 1/2]
Prax = [kX:I: (k+m,) (X" -m"S) /S , (V.7)
min
where
_ 2 2

X = mik - mem - (mg - mi)/z

and

S= m.2+2km. .
i i

If Prin calculated according to the above formula is less than zero, then Pin = 0.

The total cross section ¢ is calculated from

p

_ max do

¢ = f & dr. (V.8)
pmin
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where P ax and P in 2T€ calculated according to the prescription given above.

In the calculation of both do/dp and o, the computer has to be instructed to skip

-

the calculation unless the threshold condition,

k > [(2m +my)?

¢ -m?]/Zmi . - (V.9)

is satisfied.

B. Energy-Angle Distributions

do/dQdp for photoproduction of muons are given in Table V.1. Because of
the limitation of space, only two incident energies k = 20 GeV and k = 200 GeV
are shown. The cross sections at large angles are also given because they are
important background for the heavy lepton experiment. Tables V.1A, B, C
and D are sufficient to illustrate most of the interesting features of the energy-

angle distributions of muons. We make the following comments on Table V.1:

i) From Eq. (Ol 5) with X given by (III. 76) we see that the width at half
height is roughly at 6 = m/p, when the form factor is equal to unity. As tmin
increases, the nuclear form factors make this width smaller and the cross
section falls off much faster than 0 -4 at large angles. From the approximate
expression of tmin given in Egs. (B.2) and (B.3), we see that the forward peak
as a function of £ gets narrower as mz/ [kx(l—x)] is increased.

ii) The total do/dQdp from a Be target can be obtained approximately from
"Be Coherent" + ""Be Quasielastic" + 9 x "Proton Inelastic". The ""Proton

Inelastic" is the contribution from the meson production parts of W. and W2

1

given by Eqs. (B.58) and (B.59). There are four protons and five neutrons in Be.
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The meson production parts of neutron form factors are slightly smaller (Kendall,
1972 )81 than those of proton, therefore 9 x '"Proton Inelastic' would give a slight over-
éstima];e of the cross section. For ""Be Coherent" we have gsed the simple form
factor given by Eq. (B.49) instead of the more accurate oﬁes given by Eqs. (B.45),
(B.46), (B.50) and (B.51). For small angles the t\&o kinds of form factors give
almost identical results but at large angles the cross section given by the latter
is much smaller because of the exponential factors in the form factors. However,
at large angles the coherent cross section is negligible compared with quasi-
elastic and the meson production parts of the form factors.
iii) At large angles "Proton Elastic" is comparable to "Proton Inelastic",

even though at smaller angles the latter is negligible compared with the former.

iv) The effect of the Pauli exclusion principle can be obtained by

: "Be Quasielastic"
4 X "Proton Elastic' + 5 X "Neutron Elastic"

Pauli Suppression =

This ratio is almost zero at small angles and unity at large angles.

v) At large angles the magnetic form factor of the proton dominates the
cross section because the ratio of the cross sections from "Proton Elastic" to
"Neutron Elastic' is roughly given by the ratio (V‘p/“n)z = (2.79/1. 91)2 =2,13.

vi) Tables VI.C and VI.D give the momentum distributions of muons at
angles 6 =0, 0.1 and 0.2 radians. We see that at 6 = 0, there are more high
energy particles than low energy ones whereas at 6 = 0.1 and 0.2, the opposite
is true. The entries "0.0" in the cross sections mean that they are not kine-
matically allowed. Since we have ignored the Fermi motion in evaluating '""Be
Quasielastic', the nonphysical regions of "Be Quasielastic' is identical to those
of proton elastic. If Fermi motion is properly taken into account these zeroes

will be replaced by some finite numbers.
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In Table V.2, the energy angle distribution of heavy leptons are given. We
note that the width at half height is roughly at pf/m =< 0.4 for m =4 and 6
éompa}ed with pf/m =0.8 ~ 0.9 for the muon production at k = 200. For pro-
duction of very heavy particles, the coherent production ié gmall compared with

the incoherent production and the Pauli suppreséion is negligible.

C. Energy Distribution

In Table V.3, the numerical values of do/dp are given. The values of p

chosen are

+ N{(p y 0.1

P = Phin max ~ Pmin

where N=0.1, 0.3, 0.5, 0.7 and 0.9, and Pax 2T€ obtained from Eq. (V.7)
min

using m,; = m, = Amp., The important thing to notice is that for muons, these

distributions are almost flat with a slight dip in the middle and both ends. For

heavy leptons, the distributions are still quite monotonous except a slight bulge

near the middle.

D. Total Cross Sections

The total cross sections are given in Table V.4 and Table V.5. '"Be Total"

in Table V.4 is calculated by the approximate formula:

"Be Total" = "Be Coherent" + ""Be Quasielastic' + 9 X "Proton Inelastic',

It was a surprise to us to find out the the "Proton Inelastic" is so unimportant
compared with ""Proton Elastic' even for production of very heavy leptons

(m = 20 GeV) at very high energy (k = 2000 GeV). The ratio of the two contribu-
tions is roughly 1/8 according to Table V.5. Table V.4 covers the energy range
of "Positron-Electron-Proton" colliding beam machine (PEP) being proposed by
SLAC and LBL.,
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APPENDIX A

Minimum Momenftum Transfer

-

Let us consider a general interaction shown in Fig. A.1 and define 2 momen-

tum transfer squared t as:
_ 2 _ 2
t= - (pl - p3) - _(p4 - pz) . (A- 1)

Let us further define

~ 2 2 2
p, = My, Py =(hy + hy+...)" =M

2 _ 2 _ .2 _ 2 _ 2
Py =(g t8y*.-0) =M, and s=(p;+Dy) =(Pg+Dy -

t is minimum when f)-;,’ is parallel to [31, hence in the laboratory system we have

~ 2 2 2 .2

t nin = 2E1Bg - 2pPg - My - Mz =2M,E, - M, - M
= OM_(E, - E,) - (M2 - M2 ' (A.2
2By - Eg) - (M, - My) - +2)

Solving Eq. (A.2) for E3 and substituting its value back into Eq. (A.2), we

obtain

_ -1 2 ° 2 2 2
tmin = 8 [S(p1 Py = Mg) +(py Py * My) (My - My)

o, Py’ - Mng}l/z (s + M2 - My - 4s Mg}l/z] . (A.3)

This expression is exact, but it expresses a small number by a difference of
two big numbers. Let us obtain various approximate expressions for tmin in the
following:

2

2 2 2
Case 1: s>> Ml’ Mz, M3, M4 o (A.4)
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Expanding by Taylor series the square root terms in Eq. (A.3) up to (Miz/s)s,

we obtain

-

t . =gt [(MZ—ME)(M?-M?) +s” (M +M M Mﬁ)(M MlM )] .

mim
(A.5)
This equation shows that:
P ) 2 _ .2
2. toon= 0 if Mj=Mg and M, =M, .
-2 2 2 22 .. 2 2 2, .2
bo t . =8 MMy -M)" if M, =M, and M3;éM1. (A. 6)
- -1,2 2 2 2 2 2 2 2
Co toin =8 T (My-M)(Mg-My) if M27é M, and M37é M . (A.7)

Comparing (A. 6) with (A.7) we can understand why the deep inelastic nucleon
form factors contribute so little to the total production cross section of the heavy
lepton pair. In other words, from the kinematical consideration alone we can
understand why nature does not like to have the target fragmentation and the pro-

jectile fragmentation simultaneously.

Case 2: Photopair production from a heavy nuclei.

2 2 2
Ml—O, M3 im" ,
E1=k>>M3, k>>M4—M2, and M2>>M4—M2,

When the target is a proton and the laboratory incident energy is more than a
few GeV, Eq. (A.4) can easily be satisfied. However when the target is a heavy
nuclei, s is often comparable to Mg and Mi in magnitude and the result of case 1

may not be used. However under the condition specified above, we can show that

Mt MEM, - )
¢ - 3 " 3''4 2 A
R T (A.8)
min 4k
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This relation can be derived in the following way: In the center-of-mass system,

we have

-

2 2 =~
tom = ~(k-pgl Mg+ 2k(Eq ~Bg) » .. (A.9)

Expanding p, by Taylor series we have
3

o M§ Mg
p. = E 1 - —= + —=
3 3 ~2 ~4
2E3 8E3/
Hence
.= M2(k - B,)/B, + MAE/(AED) (A. 10)
min 3 3/ 73 3 3 )

Substituting k = k « (p, + k)A's = MokAl's and E3 =pge (b, + PN s =

~ L 02 ap2
MkAs + 5 (M - M,

+ MAAs into (A.10), we obtain Eq. (A.8).
Case 3: Electroproduction. In this case Py and Py denote the initial and final
electrons respectively, hence M1 = M3 =m, and

- -~ 2 2 —_
ton = (D)1 - 105107 - (&, - Egf = 2(8,E4 - IB}1 1551 - m2) .

Assuming E1 >>m, and E3 >>m,, we have

2 2
t i Mg (E - Eg) /(B Eg) . (A.11)

We have obtained tmin in the above assuming M3 is fixed and 53 comes out in
the forward direction. In the pair production experiment where only one of the
pair of particles is detected at a finite angle, tmin is given by Eq. (I.9). The
approximate expression for this tmin is derived in Appendix A of Kim and Tsai (1973)

and the result is given in Eqs. (B.2) and (B.3) of Appendix B.
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APPENDIX B

Atomic and Nuclear Form Factors

LA and W, are normalized such that the cross section for the electron

scattering from the target is given by (mass of electron ignored):

azcos29/2 2

4Ezsin9/2

da(e + Z — e' + anything)
dQ'dE!

20 o |

[Wz + 2 tan 5 Wl_l . (B.1)
Since the integration with respect to t in Egs. (II. 7) and (IL 8) is dominated

by t very close tot_ . , the value of t_. tells us what form factors need to be

min min

considered. Roughly speaking, if tr—nlin is comparable to the atomic radius

squared, then we have to consider the atomic form factor; if tx—nlin is comparable

to the nuclear radius squared then we have to consider the elastic nuclear form

factors; if tr_nlin is comparable to the internucleon distance within a nucleus, then

1/.2 is larger than twice
min

we have to deal with the quasielastic form factors; if t
the Fermi momentum of the nucleons within the nucleus, then we can ignore the
Pauli suppression; if tmin is so large that the elastic nucleon form factors are
much less than unity, then the meson production form factors should be considered.
There are tremendous cancellations among different terms in Eq. (IL. 9) for the

expression of tmin' An approximate expression for tmin is (see Appendix A of

Kim and Tsai43, 1973):

¢ =t oA Y2, (B.2)
min min min
where
. _kep? . mYaen?
bmin ~\k<E) T T322 5 (B.3)
4k"x7 (1 - x)
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withy = E/m, £= ')/262, x =E/k, and A = (mzf - miz)/(Zmi). This approximate

expression for tmin can be derived under the conditions:

-

(Eand k - E) >> [(kop)l/z, ke p/mi, m and A] . . (B.4)

From Eqs. (B.2) and (B.3), we observe the -following:

(i) Pair-production cross section accompanied by the target excitation is
greatly suppressed due to the second term in Eq. (B.2).

(ii) tmin is smallest when A =0, 6 =0 and x = 1/2. Hence the true mini-

mum value of t is

tin(A =0, 6 =0, x=1/2) = 4m4/k2 .

(iii) tmin is independent of m2 if the transverse momentum of the detected
lepton is much larger than its mass (i.e., £>> 1),

(iv) For electron pair production, the exact expression for tmin given by
Eq. (II.9) can not be used in the energy and angular range we are interested be-
cause of the round off errors of the computer. In all of our numerical calcula-
tions, except when dealing with electrons, we use exact expressions for tmin'
The approximate expression for tmin given by Eqs. (B.2) and (B.3) is very
accurate when we are dealing with electrons.

We give in the following expressions for Wl and W2 used in our calculation.

1. Atomic Form Factors

The existence of atomic electrons outside a nucleus has two effects: 1.) The
nuclear Coulomb field is screened by these electrons so that its effective strength
is reduced; 2.) Atomic electrons also serve as the targets from which the scat-
tering takes place. For pair production of muons or heavier particles, the exist-
ence of atomic electrons can be ignored completely because 1.) tr—nlm is much

smaller than the square of the atomic radius hence the screening effect is
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negligible and 2.) the threshold energy required to produce a pair of heavy
particles from an atomic electron is too high. For example from Eq. (V.9) we
see thzt the minimum photon energy required to produce a muon pair from an
atomic electron is 40 GeV. The existence of atomic elec"a"ons can also be
ignored in the electron pair production at large éngies where tmin is such that
the screening becomes negligible and kinematics, see Eq. (V.4), is such that
the production in electron field is impossible. Thus only for electron pair pro-
duction near forward angle need we consider the atomic form factors.

When momentum transfer is small compared with the electron mass, we

can ignore W_ compared with Wzo W2 for an atom consists of two parts: elastic

1
and inelastic. Let 4)0(1‘1. . orz) be the ground state wave function of the atom and
zpn(rl. . .rz) be the wave function for the nth excited state. Let us decompose W2

into elastic and inelastic parts:

2 2 2 el inel 2 )
Wz(t, mf) = Zmié(mf —mi)G2 (t) + W2 (t, mf) . (B.5)
The elastic part is
ety = (z - Fy”, (B.6)
where
Z,
2 = e 13 3
F(t) = /l po(rlu_rZ)l {’:1 exp (1q-ri)d I‘l,..d I‘Z o (B.7)

The inelastic part is

‘ z
2
el oy = | 24 [y 2 exp (T S
W2 (t, mf) 070 lp(n)(rl" o.rz) =1 exp(iq rj) z,bo(rlo . .rz) d rl..,.d r,
6 (En - EO - qo): (B.8)
where t= (Tz and m? = ml2 + 2q0 m..
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Equations (B.5 through B.8) can be obtained by comparing the expressions for

the cross section given by (B. 1) with the expression for the cross sections of

fast electron-atomic scattering given for example in Mott and Massay's book. 1

Two things should be mentioned about (B.8): 1.) If we include the ground state
P 0’ then zpn's form a complete set of states, hence from the closure theorem
we have

f Wiznel(t, mfz)quE Giznel(t)

z
3

=z -1F1%+ [1yyrp..rpi? > expige (T -T) dr,...d% .
01 Z i i j 1 Z
i#i
(B.9)
2.) Since we are treating the atomic system nonrelativistically, we can identify

q, with A defined previously. If electrons were free, then t and 9, would be

related by q, =t/(2m_). For bound electrons, we expect Winel(t, mz) to have
0 e 2 f

a quasielastic peak at qq = t/(2m ). Now we are interested in t' . <« mz, hence
e min e
the second term in Eq. (B.2) can be ignored compared with the first term even
inel 2

though we are dealing with the inelastic processes. If we approximate W2 (t, mf)

by a 6 function at the quasielastic peak, we may write

- mi) Giznel(t) , (B.10)

inel 2, _ 2
W2 (t, mf) = 2me (S(mf

where Giznel(t) is given by (B.9).

Ggl(t) can re regarded as the form factor associated with the scattering
from a screened Coulomb field of nucleus, whereas Giznel(t) can be regarded as
the form factor associated with the scattering from electron field screened by

the nucleus. From (B.6), (B.7) and (B.9), we see immediately the following
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properties:

F=) =0,  Goi=) =22, a3 =z,
: (B.11)
F(0) = Z, GSI(O) =0, G;nel(O) = 0.

Ggl(t) and Glznel(t) can be calculated from the ground state wave function z,bo of

an atom. For hydrogen atom z/)O is well known, hence these form factors can be
calculated readily. For heavy atoms zpo obtained from Thomas-Fermi method

is used. When Z is small, the atomic form factors are calculated by Hartree-
Fock method. A good reference to these calculations can be found in International

Tables for X-Ray Crystallography, Vol..IIL,72 In these Tables the values of F(q)

for various elements are given numerically up toq =1.3X%X 4 71'8-1 =1.3x24,797
KeV, whereas we need to know the values of F(q) up toq = m = 511 KeV in most
of our calculations. Fortunately, F(q) is small compared with Z above the maxi-
mum value of q given in the Tables and we are interested in |1Z - F(q) I2 in our
calculations. Hence our calculation is not very sensitive to the values of F(q)
not tabulated in the Tables. When q is large, we expect F(q) is determined by
the K shell electrons, which can be represented by hydrogen-like wave function
in the 1 s state. We have used hydrogen like F(q) in the region where it is not
tabulated. In the following we give details of various atomic form factors used

in our calculation.

A. Hydrogen Atom (Z = 1)

Since there is only one electron in the hydrogen atom, the last term in
Eq. (B.9) is absent. Using the ground state wave function of a hydrogen atom

-r/a
by = (map e 0,
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where a, = 137/me is the Bohr radius, we obtain from (B.7), (B.6) and (B.9),

0
. F@) = (a‘g t/4 + 1)"2, (B.12)
Ggl(t) = (1-Fm)?, (B.13)
and | |
Gizrlel(t) = 1- IF@WIZ. | (B. 14)

B. He Atom (Z = 2)

Knasel47 investigated the total pair production cross section from He atom
in detail. He used two kinds of He wave functions, the radially correlated and
the uncorrelated models of Shull and L'éwdinf]“6 The numerical difference in the
total cross sections between the two models is at most . 2%, thus we shall use
the simpler version, the uncorrelated model to calculate various quantities. The

wave function for the uncorrelated model is
¥y = N'exp [-7 (r1 + rz)/ao] R (B.15)

where N' is the normalization factor, n = 1.6875 and a, is the Bohr radius,

~ -1
ay = (o me) .

Substituting (B.15) into (B.7) and (B.9) we obtain the elastic and inelastic

atomic factors respectively:

Ggl = (2 - F(t)* (B.16)
and

G;nel =7 - (FN2/2Z (B.17)
where

F(ty = Z/[1+t aﬁ/(cmz)]z . (B.18)
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Letting Z = 1 and n = 1, we obtain the hydrogen form factors. Hence the
formulas obtained for pair production and bremsstrahlung for He can be used
to calculate the corresponding quantities for hydrogen by changing these para-
meters. N

C. Light Z Elements (Z=3to Z = T7)

The elastic atomic form factors for all elements are given in the inter-
79
national table '~ up to the value g = 1.3 x (24.8 KeV). In Table B.1 the values
of F(q) for elements Z = 3 to 7 are shown. The values of F(q) beyond

g = 1.3 X (24.8 KeV) can be obtained by using an analytic form:

F(q) = F(1.3) (1 + 1.320)2/(1 + tc)z , (B.19)
where

c= a§/(4 zz) = 11.05518/Z2 in units of (24.8 KeV)'?‘ .

This form factor corresponds to the atomic form factor of 1s state.

There is no convenient table for the inelastic form factors. Also it is
rather inconvenient to use numerical tables for the elastic form factors to com-
pute various quantities of interest. Therefore we determine first what is the
element with the smallest Z for which the Thomas-Fermi method still yields a
reasonably accurate result. To this end, we compute the radiation logarithm

defined by

rag = (040 - §m2] (B-20)

m
L+ jo ¢ [1-ma/z)%q ag, (B.20")

where the function q)l(O) is defined in (III. 14). The Thomas-Fermi-Moliere
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(TFM) model, which will be treated in the next section, gives

1/3

L,..4(TFM) = in(184.15 zZ . (B.21)

-

In Table B. 2, the numerical values of Lra d(TFM) and Lra q calculated using
Table B.1 and Eq. (B.19) are given for elements with Z = 3 to Z = 7. The entries

labeled L

¢ in Eq. (B.19) is replaced by 2¢c. This is done to check how sensitively Lra d is
dependent upon the values of ¥(q) for large values of q. By comparing the values

of Lrad(TFM)’ Lr and Lrad (¢ — 2c) in Table B. 2, we conclude that Lra is

ad d
quite insensitive to the values of F(q) for q > 1.3 X (24.8 KeV) and also that the
Thomas-Fermi-Moliere method can be safely used even for B(Z = 5). Since
Lra d is used for the definition of radiation length, Eq. (III.66), we also give
Lra d (Best estimate) which represents the best estimate of this quantity to be
used in all the rest of the calculations.

Next let us consider the inelastic atomic form factors. Siﬁce we have con-
cluded in the above that TFM model is applicable for elements with Z > 5 for
elastic form factors we shall assume that we can also use it to calculate the

inelastic form factors when Z > 5. The radiation logarithm for the inelastic form

factor is defined by

L' 4= 3 [zpl(O) 3mz] (B.22)
mz
1 -1 inel . -1
=1+ 35 foe 27 Gy o ()t at, (B.22")

where the function zl)l(O) is defined in (1. 16). The Thomas-Fermi-Moliere
(TFM) model, which will be treated in the next section, gives

' = -2/3
L, (TFM) = (1194 A™%%) . (B.23)
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L‘rad for H and He can be calculated using Eqs. (IIl. 35) and (B. 22). for

1
Lrad
Li (Z = 3) and Be (Z = 4) can be obtained from the interpolation between its
values for He (Z = 2) and B(Z = 5), the results are given in Table B.2.

The elastic and inelastic radiation logarithms, L and L' ., determine
rad rad
completely the behavior of radiation problems in the complete screening limit.
Since all atomic models give identical results for the no screening limit, we do
not have any problem in this limit. In the intermediate scréening limit, the
behavior of the functions Xel’ Xinel’ cpl(y), sz(y), zpl(e) and z/)2(€) for Li and
Be must lie somewhere between those for He and B. This problem is discussed

in Section III. 4.

D. Thomas Fermi Model

Let V(r) be the electrostatic potential at a point r from an atomic nucleus,
then
zZ
_ Z NG 1 - =2
V(r) = “04/ r = 19 (T eeer)17dV .,

n=1 |r-r | :
n

dv
Z

= - —— &) , | (B. 24)

where x = r/a with a = 121Z§1/3/me. ¢(x) is the screening function, which

\
plays a central role in Thomas-Fermi method. i ¢(x) is tabulated by Fermi71

(mott,1965). An approximate analytical expression representing ¢ (x) is given by

Moliere70 (1947):

3 -b.x
o) = 2 ae ', (B. 25)
i=1 -
where
oz1=0.1, a2=0.55, a3=0°35
b1=6°0, b2=1°20, b3=0.30 .
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Multiplying e' 9" T on both sides of (B. 24) and integrating it with respect to d3r,

and squaring the whole thing, we obtain

2
o0
Ggl(t) = 7% f #(x) sinqrdr (B. 26)
| 0
Using Moliere representation, (B.25), we have
3 2
Ggl(t) =722 ) ai(t+(bi/a)2)_1 , (B.27)
i=1
N

where -

a = 121 z"l/?’/me )

Heisenberg74 (1931) showed that the inelastic form factor can also be expressed

in terms of the screening function ¢(x) as follows:

. 1/2 2 1/2 -
il = 7 (1- f:O 2 [(ﬂ.)) ] ] [(M) i 7] dx) ,
(B. 28)

1/2

1,-2/3 and x, is the solution of (¢(x0)/xo) =p. Letus

where v =q455m ~ Z
give a simple derivation which makes the physical meaning of (B.28) transparent.
If the electrons were completely free and there is no Pauli exclusion principle,
then we expect G;n el(1:) = Z, We now show that the factor multiplying Z in (B.28)
represents the suppression due to Pauli exclusion principle. Let us use the
symbol P to represent the momentum of an electron in the atom. vFor a neutral

atom a bound electron must satisfy P2/2me+ V(r) <0, hence the maximum mo-

mentum denoted by PO is

.
P, = [- 2meV(r)J1/ 2, (B. 29)
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Let the electrons be uniformly distributed in the phase space. The number of

electrons between r and r + dr is then

-

2 a° -
41 r°dr —E x2, (B. 30)
p<p, (2m) -

where the factor 2 comes from the spin. Pauli exclusion principle says that not

all these electrons can be excited by a photon of momentum (T because some of

the final states are already occupied. The portion of the phase space excluded

can be calculated by drawing two spheres, each with a radius PO and the distance

between the two centers being gq. The intersection of these two spheres is the

excluded region of the phase space, whose volume can be computed easily to be
47

2 .
5 (P, - 921) (P, + %) if P, > g, (B. 31)

and 0 if PO < g- . The volume of the sphere is of course 47rPg/3. Now the

maximum momentum PO is a function of r as given by (B.29). Hence the ratio

of the available phase space to the total phase space is

Tr [>e]
S =1- / 0 2p - L2 +q/aydr/ f 2 p3ar (B. 32)
0 07 2 0 0 0
where ry is the solution of PO(rO) =q/2. Glzne1 is obtained by simply multiplying

(B.32) by Z. Writing PO in terms of ¢(r), and q in terms of v, we obtain

. ‘ 1/2 2 1/2
iy = o oo [0 (7 e ] o
[ (e
(B. 33)

where
D = / [6(0)%/? x/2 ax . (B. 34)
0
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Equation (B.33) is identical to Eq. (B.28) except the factor D—l. D is equal to
unity in the true Thomas-Fermi model, where the screening function ¢(x)

satisfies

2 : o
%ZQ = qb3/2 V2, (B. 35)
X

and the boundary conditions ¢(=) = d ¢(=)/dx = 0 and ¢(0) =0. Thus

D = f°° _(_1_2_§)_de= l:x%ﬁ-)—¢ :l°° = 1.

0 dx
Moliere representation of ¢(x), Eq. (B.25), does not satisfy the differential
equation (B.35), hence it does not yield D = 1, but gives D = 0,9360. In our
calculation, we shall use Moliere representation and Eq. (B.33) instead of
(B.28). The function S, defined in (B.32) and (B.33), represents the suppression
factor due to Pauli exclusion principle. In Table B.3 we give the numerical
values of S calculated from the true Thomas-Fermi model by Bewilogua75 (1931)
and Wheeler-Labm, 14 (1939) and our calculation using the Moliere representation.
In the calculation of S by a computer, the upper limit of the integration X, in
(B. 33) can be handled in the following way:

1/2

1. The integrand is set equal to zero whenever ($(x)/x) < V.

2. Xy is replaced by a function of v:

UP= (5v -4.5mv -2)/(1 - v +3v°), (B. 36)
which is slightly greafer than X
From Table B.3, we see that the suppression factor S (Moliere) is always
less than S (Thomas-Fermi). The difference is quite significant when v is
small. However the quantities we are interested in are quite insensitive to this

difference. For example the radiation logarithm for the production in the electron
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field,

m

L= f © 5qtdq+1, (B.37)
0

is equal to fn(1194 Z_2/3) if we use S (Moliere) whereas it is equal to fn (1274 Z_Z/B)

if we use S (Thomas-Fermi) according to Wheeler-Lamb (1956). In the original
paper of Wheeler-Lamb (1939) and all the subsequent papei's in which their re-
2/ / 3)

3) only by less than one percent when Z =1, The

sults were quoted, the value fn (1440 Z 3) was used. Now fn (1194 772

differs from fn (1274 z'z/
percentage difference increases with Z, but the contribution of the production in
the electron field becomes less important compared with the production in the

nuclear field as Z is increased, hence we shall use S (Moliere) for elements

with Z> 5 because it is easier to handle by a computer than S (Thomas-Fermi).

E. Simple Atomic Form Factors

Since the elastic and inelastic atomic form factors are often very complicated
and their values are often known only numerically, they are not convenient to use
in both theoretical and practical calculations. L. I. Schiff (1952) demonstrated
that the simple elastic form factor of the type

2 a4°t2

2,2

Ggl(t) =7
(L+a't)

(B. 38)

can yield numerical results for do/kodk which are very close to the values ob-
tained from the Thomas Fermi elastic form factor, provided the parameter "a"
is chosen so that in thé complete screening limit the expression for the energy
angle distribution of the bremsstrahlung do/ kodk agrees with that obtained from
a more respectable calculation. By its construction this form factor will yield

results which agree completely with the correct result in both the complete
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screening and no screening limits. In the intermediate screening region,
Schiff found that there is at most 4% difference in do/ kodk from the result
using Thomas-Fermi Form factor. We found that such a simple form can also
be used for the inelastic atomic factor, namely |

a'4t2

o o ]
(1+ 51'21:)2

alely =z

(B. 39)
where the parameter a' is again determined such that in the limit of complete
screening one obtains the desired expression for do/ dﬂkdk. Compared with

the results obtained from using ZS (Moliere) given by (B. 33), the resultant

do/d dek agrees completely in both the complefe screening and no screening
cases (by its construction) and differ at most by 4% in the intermediate screening
region. We also found that these simple form factors yield numerical results

for do/dkd€, for H and He with similar accuracy provided the parameters a

k
and a' are chosen according to the prescription given before.
An equivalent and yet more straightforward way of evaluating the parameters

a and a' in (B, 38) and (B.39) is to compare the expressions for the radiation

. ' > * . ' .
logarithms, Lrad and Lrad° Substituting (B. 38) into (B.20") and (B. 39) into
(B.22") we obtain

Lo = m[2.718Y% am ] (B. 40)
rad ’ e *
and
1 — 1/2 T
Ll g = [2‘0718 a'm_] . (B.41)

Using the expressions for Lr and L'rad for various atoms in Table B.2, we

ad

obtain the values for a and a'. For example for Thomas Fermi atom, using

-84 -



Moliere representation, we obtain

~ a = 184.15 (2.718) /2 z‘1/3/me (B.42)

al = 1194 (2.718) /2 z“z/3/me | (B. 43)

The values of a and a' for light Z elements are shown in Table V.4.

Because of their simple structure and also because they give almost correct
answers, these simple form factors have many practical uses. This is very
similar to the situation in the elementary quantum mechanics course where the
square well potential is sometimes used to illustrate the properties of some
complicated practical problems.

. 2., Elastic Form Factors of Nucleons

We use the dipole approximation for the elastic form factors of a proton

and a neutron:

—_ — ]
rWgﬂ (1+2.79%2 7)/(1 + 1)
P
el 2
Wip 2m_ 6 (m2 - m2) 2.19°7 (B.44)
_ P f i
4
wor (1+1t/.71) 1.91%7 /(1 + 1)
n
el 2
—Wln— 1.91%°7 /(1 + 1)

where T =t/ (4m§). The discussion of the accuracy of these form factors can be

found in the paper by R. Wilson (1972). 76
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3. Elastic Form Factors of Nuclei

The elastic form factors of a nucleus can be written as

-

2 2
G(t) + TG ()

1+71

5(n§‘ - miz) (B.45)

2, _
Wo(t, mg) = 2m,
and

2 2 2 2 \
W (t, mp) = 2m, T G (1) 8(my - my) (B.46)

where 7 =t/ 4;mi2 and the electric and the magnetic form factors, G o and Gm,

are normalized such that

Gi(O) = 72, | (B.47)

and77 (Pratt, 1965)
m, 2
2 - 1t1 i 2
G0 3j (mp) Hp o (B. 48)

where j is the spin or the target and Hy is the nuclear dipole magnetic moment
in units of eh(Zmp)—1 = nuclear magneton.

The nuclear magnetic dipole moment Hy for an arbitrary nucleus is roughly
given by the Schmidt value, namely between 2.79 and ~1.91. Now 7 is a very
small number near tmin especially for heavy nuclei. In our calculation we
ignore W1 and 7 when dealing with nuclear targets other than the proton. The

expression for W2 used in our numerical calculation is

W,(coherent) = 2mi6(mf2 -md) 22/(1+ /), (B.49)

where d = 6/(1. 2 fermi Al/?’)2 = 0.164 A—Z/3 GeVz. The advantage of this ex-

pression is that the integration with respect to t can be done analytically.
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For the particular case of Be nucleus (Z =4, A =9, j=3/2 and By = -1.18),

both the electric and magnetic form factors are known experimentally:78 (Rand, 1965)

-

2 16,2 -32t (B.50)

Gep, = 16(1- =3
and
Gm?ge = 1,182 x a5x (1 - 25.6t + 3141;2) e 32t J (B.51)

We have computed the lepton production cross sections from Be target using
the simple expression Eq. (B.49) and the more precise expression Eqs. (B.50)
and (B.51). Because of the exponential factor in the latter, the form factors
decrease much more rapidly at large t for the later than the former. However
when t is so large that two form factors are appreciably different, usually the
incoherent processes become more important than the coherent ones. Hence
the simple expression is adequate for estimating the total yield if we add together
all the contributions. The same comment can be applied to the form factors of

other nuclei.

4, Inelastic Nuclear Form Factors

A nucleus when excited by an electron has many excited levels and a broad
bump called quasielastic peak. In the calculation such as what we are doing, it
is impractical to consider the contribution from each excited level because there
are too many of them. The most logical thing to do is to draw a smooth curve
representing the local average of the low lying excited levels, the giant resonance
and the quasielastic peak. As far as we know, nobody ever tried »to construct
some smooth functions to represent the local average of actual Wl(qz, mfz) and
Wz(qz, mf) for nuclei. Fortunately in nuclear physics, the inelastic excitation
function is dominated by the quasielastic peak which can be reproduced very

well by the Fermi Gas Model as shown by Moniz , et al. 9 Actually in the
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e)fperiment of Moniz, et al., 9 (1971) they measured the inelastic electron scattering
from various nuclei (Li to Pb) for an electron incident enérgy of 500 MeV and “

a scat?ering angle of 60°. n this kinematical region, hardly any discrete level

or giant resonance is visible in the spectra. It would be iﬁéeresting to see whether
the Fermi gas mo.del roughly reproduces local aivefage of the inelastic spectra

at smaller scattering angles where discrete levels and the giant resonance

peak as well as the quasielastic peak show up. If we assume that this is what
happens in nature, we can use the expressions of Wl(qz, mfz) and W2(q2, mfz)

given by MonizSO (1969) with the parameters given by Moniz, etal., 70(1971) in the
calculation of the pair production. If one is interested only in a very crude estimate
of the cross section, one can make one further épproximation, namely, re-

placing the quasielastic peak obtained by the Fermi gas model by a 6 function.

This is done in order to avoid doing the numerical integration with respect to

mf2 in Eq. (II.7). Under this approximation we have m, = m, = mp and

f
quasi-elastic [ el el I
W, = C(t) |Z Wy, + (A - Z) W2nJ , (B.52)
and
unasi—elastic ) —Z wel + (A - Z) wel (B.53)
1 i 1p In| °’
where C(t) is the Pauli suppression factor given by C(t) = 1if Q > ZPF =0.5 GeV,
and
cy = 2 2 [1 _ L (.Q_)z_‘ (B.54)
4 PF 12 PF _l
if @ < ZPF, with Q defined by
Q = 1:?‘/(2mp)2 +t. (B.55)
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The approximation of the quasielastic bump by a 6 function is equivalent to

_ ignoring the Fermi motion of the nucleons within the nucleus. Since nucleons
can move parallel as well as antiparallel to the direction ?f the incident photon,
the Fermi motion does not affect the gross features of the cross section except

near the threshold of the production.

5. Meson Production Form Factors

In this case we assume the target to be completely incoherent, namely

m.=m,
1 p

. _ 2 2
Wz(meson production) = Z sz(t, mf)‘+ (A -2) Wzn(t, mf) (B.56)

and

. _ 2 2
Wl(meson production) = Z Wlp(t, mf) + (A- Z)Wln(t, mf) s (B.57)

where sz and W__are the meson production form factors from the proton

1p

target, and W2n and W_ are those from the neutron target. The shadowing

In
effect due to the vector dominance mechanism and Pauli suppression due to the
exclusion principle are ignored because from the datasl (Kendall, 1972) on e-nucleus
scatterings, these effects are not important in the meson production region. From

the deuteron data,s1 (Kendall,1972) the neutron cross section is slightly less than the
proton cross section. The contributions to our production cross section from these form
factors are in general not very significant due to the expression for tmin' There-

fore only a very rough estimate of this contribution will be given. The neutron

and the proton are assumed to have the same cross section. For Wlp and sz,
we use the parameterization given by suri and Yennie 82(1972):

m* (m? - m?  250.6 m(1 - x)4—|
W, =¢ £ o—F 975 + B 5 (B.58)
P (m? + 1) (1 - 1.26% + 0.96x")
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56.3(m2 - mz)tmz ( 2
f p

T A et TR e
(B.59)

where

c = 1074/ [(0.1972 a 72 sm ] ,

v = (m? —m§+t)/(2mp) ,

x = t/(2m_v +m2)

P b

and

mlz) = 0.585 .

K. J. Kim compared this parameterization against all the available data
from SLAC-MIT ep inelastic scattering83 with the help of IBM 2250 scope. The
fits are excellent in the smooth region, whereas in the resonance region, the
curves go through roughly the local average of the resonance peaks. Since in
our calculation these curves are integrated, we expect no gross error to occur

by using this fit.
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I.1

CIL2

FIGURE CAPTIONS
Feynman diagrams for the photoproduction of a lepton pair.
The coordinate system used in the integration of the unobserved particle
p,- The subscript s refers to the rest .frame of U=p , D;-

Notations used in Appendix A,
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TABLE III. 1

Functions ¢,(y), ¢,(), ¥,(€) and g (e)

for a hydrogen atom using the analytical expressions

given by Eqs. (III.25) through (III. 28)

Y or € b, b5(7) ¥q(€) Pol€)
0.00 21,2417 20.58 24.5750 23.91
0.02 21.17 20.57 24.39 23.87
0.1 20.90 20.49 23.71 23.50
0.2 20. 56 20. 32 22. 96 22.91
0.4 19.93 19.87 21.69 21.74
0.6 19. 34 19. 36 20.65 20.71
0.8 18.79 18.84 19.71 19.82
1.0 18. 27 18.34 19.01 19. 05

1.2 17.80 17.86 18. 36 18. 38
1.4 17. 36 17.41 17.78 17.80
1.8 16. 94 16. 99 17.27 17. 29
1.8 16.56 16.60 16. 82 16.83
2.0 16. 20 16. 24 16.41 16. 41
4.0 13.62 13.63 13.65 13.65
6.0 12.02 12. 02 12.03 12.03
8.0 10.87 10.87 10.88 10.88

10.0 9.98 9.98 9.98 9.98

_99_



TABLE II. 2

Function ¢,(v), ¢,(v), ¥,(€) and y,(e)

for a helium atom using the analytical expressions

given by Eqs. (III.25) through (III. 28)

yor e ¢, b, b, (€) Py(€)
0.00 20.0729 19.41 24. 3304 23.66
0.02 20.02 19.40 24.16 23.63
0.1 19.81 19.35 23.52 23.29
0.2 19.56 19.24 22.80 22.74
0.4 19.08 18.94 21.59 21.63
0.6 18.62 18.58 20.58 20.64
0.8 18.18 18.19 19.72 19.77
1.0 17.76 17.81 18.98 19.02
1.2 17.37 17,43 18. 34 18. 37
1.4 16.99 17.06 17.77 17.79
1.6 16.64 16.70 17. 26 17.28
1.8 16.31 16. 37 16.81 16.82
2.0 15.99 16. 05 16.40 16.41
4.0 13.58 13.59 13.65 13.65
6.0 12.01 12.01 12.03 12.03
8.0 10.87 10.87 10.88 10.88
10.0 9.98 9.98 9.98 9.98
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TABLE III. 3

Functions ¢ (v), $,(1), ¥;(c) and gy (c)

for a hydrogen atom using the Bethe approximation

given by Eqgs. (II. 14) through (III. 17)

v or e ¢16n b5(Y) P, (€) Pole€)
0.00 21.24 20.58 24,58 23.91
0.02 21.17 20.57 24.39 23.87
0.1 20.90 20.49 23.72 23.50
0.2 20.57 20.32 22,97 22.91
0.4 19.94 19.86 21.71 21.74
0.6 19.36 19.36 20.67 20.71
0.8 18.82 18.84 19.80 19.82
1.0 18.31 18.34 19.05 19.05
1.2 17.85 17.86 18.41 18.39
1.4 17.41 17.42 17.84 17.80
1.6 17.01 17.00 17. 34 17.29
1.8 16.63 16.61 16.89 16.83
2.0 16.28 16.25 16.49 16. 42
4.0 13.78 13.65 13.81 13.67
6.0 12.26 12.06 12.26 12.06
8.0 11.19 10.94 11.19 10.94

10.0 10.38 10.07 10.38 10.07
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TABLE III. 4

Screening Functions for Thomas-Fermi-Moliere Model,

- 1
Analytic Monopole . Dipole Unscreened

4% TFM Simulation - Simulation Simulation Target
0.0 20,863 20.863 20.863 20,863 o
0.02 20,771 20, 77 20,79 20.80 34.84
0.1 20.418 20.41 20,52 20.55 28.40
0.2 20.006 20,00 20,19 20,25 25.63
0.4 19.274 19.27 19.56 19.68 22,86
0.6 18.642 18.63 18.98 19. 14 21.24
0.8 18.088 18.08 18.44 18.64 20,09
1.0 17.596 17.59 17.95 18.16 19.19
1.2 17.153 17.13 17.49 17.72 18.46
1.4 16.752 16.71 17.07 17.31 17.85
1.6 16.386 16.34 16. 68 16.92 17.31
1.8 16.049 15.99 16. 32 16.56 ) 16.84
2.0 15,737 15. 66 15.98 16.23 16.42

Po(7)
Analytic Monopole Dipole

4% TFM Simulation Simulation Simulation
0.0 20,196 20,196 20,196 20.196
0.02 20,184 20.18 20.19 20,19
0.1 20,026 20.02 20,11 20.12
0.2 19.746 19,73 19.93 19.98
0.4 19.137 19.12 19.47 19.58
0.6 18.558  18.54 18.96 19.12
0.8 18.027 18.01 18.46 18.65
1.0 17.545 17.53 17.98 18.18
1.2 17.105 17,09 17.53 17.74
1.4 16.702 16.68 17.11 17.32
1.6 16.332 16.31 16.72 16.92
1.8 15.990 15.96 16.35 16.55
2.0 15,673 15. 64 16.01 16.20
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TABLE I1I. 4 (cont'd)

0.0
0.02
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.0
0.02
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

TFM

28.34
27.41
25.48
24.01
22,11
20.81
19.82
19.03
18.36
17.79
17.29
16.85
16.45

TFM

27,673
27.063
25,381
23.979
22.100
20.801
19,808
19.004
18.329
17.748
17.239
16.785
16.377

Analytic

Simulation
28.34
27,39
25.42
24,07
22.19
20.88
19.87
19.05
18. 36
17.77
17.25
16.80
16.38

Analytic

Simulation

27.673
27.05
25.34
24.04
\22a18
20.87
19.86
19.05
18.36
17.77
17.25
16.80
16.38

v (€)

Monopole
Simulation-
28.34
27.90
26.32
24,76
22.58
21.10
20,01
19.14
18.43
17.82
17.29
16.83
16.41

yo(€)

Monopole

Simulation

27,67
27.54
26.32
24.80
22,60
21.12
20.02
19.15
18.43
17.82
17.30
16.83
16.41
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~ Dipole
Simulation
28.34
27.88
26.35
24.85
22,71
21,22
20,10
19.23
18.51
17.90
17.38
16.91
16.50

Dipole
Simulation
27.67
27.51
26,34
24.91
22,72
21.21
20,08
19.19
18,47
17.85
17,32
16.85
16.43

Unscreened
Target

o0

34.84
28.40
25.63
22,86
21.24
20.09
19.19
18.46
17.85
17,31
16.84
16.42



TABLE III.5

Total Electron Pair Production Cross Section

[0(00) - cr(k)]/cr(oo) corrected for recoil already

k (GeV)

Name Z  o() mb* 100 10 6 2 1 0.6 0.4 0.2 0.1
H 1 20.73  .011  .028  .039  .079  .126  .174  .222  .323  .441
He 2 - 55.06 .012  .023  .030  .058  .091  .128  .166  .253  .367
Li 3 108.8 .004  .024  .03¢  .073  .113  .154  .195  .283  .391
Be 4 179.4 .003  .020  .029  .064  .101  .139  .178  .263  .370
c 6 361.5 .002  ,016  .023  .053  .087  .122  .158  .238  .343
N 7 473.8 002 .015  .022  .050  .082  .116  .151  .230  .334
Ne 10 896.1 .002  .012  .019  .044  .073  .105  .137  .213  .315
Al 13 1,443  .002  .011  .017  .040  .068  .098  .129  .202  .302
Fe 26 5,182  .001  .009  .014  .033  .057  .084  .112  .180  .275
Ca 29 6,3¢3 .00l  .009  .0l13  .032  .056  .082  .110  .177  .272
Sn 50 17,276 .001  .008  .012  .029  .051  .075  .102  .166  .259
W 74 34,869  .001  .007 .01l  .028  .049  .073  .099  .162  .256
Pb 82 41,720  .001  .007 .01l  .028  .049  .072  .098  .162  .257
U 92 50,870  .001  .007 .01l -.028  .048  .072  .098  .162  .258
Recoil correction off a free electron target

a ) .
a=-Borecoil recoil 4004 0027  .0040 .0098 .0169 .0251 .0343 .0576 .0954

o3 .
no recoil

X
The effect of radiative corrections is not included. This can be accounted for by multiplying these
numbers by a factor 1.0093 according to Mork and Olsen (1965).
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A
1.0080
4.0026
6.9390
9.0122

10.8110
12,0111
14.0067
15. 9994
18.9984
20,1830
22,9898
24.3120
26.9815
28,0860
30.9738
32.0640
35,4530
39,9480
39,1020
40, 0800
44,9560
47.9000
50,9420
51,9960
54,9380
55,8470
58.9332
58,7100
63.5400
65.3700
69.7200
72.5900
74.9216
78.9600
79.9090
83.8000
85.4700
87. 6200
88.9050
91.2200
92,9060

95.9400
99,0000

101.0700
102.9050
106.4000

TABLE 1II. 6

Unit Radiation Lengths of Atoms

Z = atomic number, A = atomic weight

f = Coulomb corrections Eq. (III.3), X0 =unit radiation length

f

6.4005
2.5599
5.7583
1.0234
1.5984
2,3005
3.1294
4,0845
5.1654
6.3715
7.7022
9.1566
1.0734
1.2434
1.4255
1.6196
1.8256
2.0435
2,213
2.5142
2.7668
3.0308
3.3059
3.5921
3.8892
4.1971
4,5156
4.8445
5,1837
5.6331
5.8924
6.2615
6. 6402
7.0284
7.4258
7.8323
8.2478
8.6719
9.1046
9.5456
9.9948
1.0452

1.0917 E-1
1.1389 E-1

E-5
E-4
E-4
E-3
E-3
E-3
E-3
E-3
E-3
E-3
E-3
E-3
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-1

1.1863 E-1

1.2356 E-1

Xo(gm/cmz)

63.0470
94,3221
82.7559
65.1899
52, 6968
42,6983
37,9879
34.2381
32,9303
28,9367
27,7362
25.0387
24,0111
21.8234
21,2053
19.4953
19.21783
19.5489
17,3167
16. 1442
16.5455
16,1745
15.8425
14.9444
14.6393
13.8389
13.6174
12,6820
12,8616
12,4269
12.4734
12,2459
11.9401
11.9082
11.4230
11.3722
11.0272
10,7623
10.4101
10.1949
9.9225
9.8029
9,6881
9,4825
9, 2654
9.2025

Z

47
48
49
50
51
52
53
54

55
56
57
58

59
60
61
62

63

64

65
GG

67

68

69

70
71

72
73
T4
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92

- 105 -

A

107, 8700

1124000

114.8200
118. 6900
121.7500
127. 6000
126. 9040
131.3000
132.9050
137.3400
138.9100
140, 1200
140.9070
144. 2400
145.0000
150.3500
151.9600
157.2500
158.9240
162.5000
164.9300
167.2600
168.9340
173. 0400
174.9700
178.4900
180.9480
183. 8500
186.2000
190. 2000
192.2000
195.0900
196. 9670
200.5900
204.3700
207,1900
208.9800
210, 0000
210.0000
222,0000
223.0000
226.0000
227.0000
232.0380
231.0000
238.0300

i

f

1.2850 E-1

1.3351
1.3859
1.4373
1;4893
1.5419
1.5951
1.64589
1.7032
1.7581
1.8134
1.8693
1.9256
1.9524
2,0396
2,0972
2.1553
2.2137
2.2725
2.3317
2.34911
2.4509
2.5110
2,5714
2.6321
2, 6920
2.7541
2,.8155
2.8771
2.9359
3.0008
3.0629
3.1252

3.5013
3.50643
3.6273
3.6904

3.7535 E-1

E-1
E-1

E-1

E-1

3.8166 E-1
3.8797 E-1
3.9429 E-1

Xo(gm/cmz)

58.9701
8.9945
8.8491
8.8170
8.7244
8.8267
8.4803
8.4819
8.3052
§.3073
8.1381

6. 63897
6.6763
6.5936
6.5433
6.4608
6.4368
6.4176
6.3688
6.2899
6.1907

© 6.0651

6.2833
6.18683
6.1477
6.0560
6.0726
5.9319
5.9990



(A)

TABLE V.1

dg/d dp for Photoproduction of Muon (cmZ/GeV/SI‘)

k=20, m=0.1056

+£6/m
0

0.5
1.0
2.0
4.0
7.0
10.0
15.0
20.0

0.5
1.0
2.0
4.0
7.0
10.0
15.0
20.0

0.5
1.0
2.0
4.0
7.0
10.0
15.0
20.0

0.5
1.0
2.0
4.0
7.0
"10.0
15.0
20,0

Be Proton
Coherent Elastic
P=4.,0
4.467D-29 3.136D-30

3. 062D-29 2.168D-30
1.173D-29  8.719D-31

1.373D-30 " 1.255D-31

5.234D-32 7.965D-33
1.520D-33  4.855D-34
7.927D-35 5,454D-35
1.368D-36 2.182D-36
6.326D-38 2.301D-38
P=8.0
1.584D-28 1.116D-29
1.189D-28  8.332D-30
4.809D-29 3.486D-30
5.619D-30 . 4.837D-31
2.266D-31 3. 060D-32
8.609D-33  2,004D-33
6.242D-34 2. 592D-34
1.484D-35 1.652D-35
7.145D-37 1.087D-36
P=12.0
3.564D-28 2.510D-29
2.675D-28  1.874D-29
1.082D-28 7.842D-30
1.264D-29 1.102D-30
5.104D-31 6.901D-32
1.949D-32 4.562D-33
1.434D-33 5.997D-34
3.561D-35 3.954D-35
1.805D-36  2.720D-36
P=16.0
7.145D-28 5.014D-29
4.897D-28 3.465D-29
1.876D-28 ' 1.394D-29
2.188D-29 2.009D-30
8.428D-31 1.287D-31
2.538D-32 8.195D-33

 1.438D-33  9,955D-34

2.977D-35 4,697D-35
1.610D-36 9.891D-37

Neutron

Elastic
1.565D~32
1.165D-32
6.589D-33
2.301D-33
4.506D-34
6.173D-35
1.170D-35
8.356D-37
1. 045D-38

5.865D-32
4,199D-32
2.259D-32
7. 751D-33
1.525D-33
2.073D-34
4.073D-35
4.746D-36
4.365D-37

1.317D-31
9.433D-32
5. 075D-32
1. 743D-32
3.441D-33
"4, 729D-34
9.403D-35
1.102D-35
1. 044D-36

2,486D-31
1.852D-31
1. 048D-31
3.668D-32
7.248D-33
1.029D-33
2.026D-34
1.570D-35
4.032D-37

- 106 -

Be Quasi-
Elastic

1.556D-30 ~

1.143D-30

. 5.926D-31

1.550D-31

1.946D-32

1.768D-33
2.507D-34
1.290D-35
1.443D-37

5.529D-30

4.043D-30

2.083D-30
5.413D-31
6.830D-32
6.495D-33
1.029D-33
8.708D-35

-6.532D-36

1.243D-29
9. 090D-30
4.682D-30

'1.218D-30

1.541D-31
1.482D-32
2. 383D-33
2. 067D-34
1.610D-35

2.480D-29
1.822D-29
9.447D-30
2.474D-30
3.141D-31
2.982D-32
4.523D-33
2.664D-34
5.972D-36

Proton

Inelastic

6.
4.
2.
8.
1.
2.
4.
1.
1.

2.
1.
1.
3.
7.
1.
2,
2.
1.

6.
4.
2.
8.
1.
2,
6.
5.
3.

1.

436D-32
722D-32
580D-32
537D-33
654D-33
401D-34
187D-35
927D-36
881D-38

758D-31
952D-31
024D-31
474D-32
405D-33
180D-33
384D-34
023D-35
303D-36

630D-31
707D-31
502D-31
731D-32
877D-32
960D-33
049D-34
360D-35
515D-36

210D-30

8.979D-31

5.
1.800D-31
3.541D-32
4.993D-33
8.
4
4

084D -31

870D-34

.466D-35
. 147D-37



TABLE V.1 (continued)

(B)

K =200, m = 0.1056

~P6/m
0

0.5
1.0
2.0
4.0
7.0
10.0
15.0
20.0

0.5
1.0
2.0
4.0
7.0
-10.0
15.0
20.0

0.5
1.0
2.0
4.0
7.0
10.0
15.0
20.0

0.5
1.0
2.0
4.0
7.0
10.0
15.0
20.0

Be Proton
Coherent Elastic
P =40.0
5.797D-28 4.1751D-29

4,249D-28  3.441D-29
1.843D-28  1.454D-29
2.718D-29 - 2.156D-30
1.606D-30  1.522D-31
1.177D-31  1.295D-32
1.934D-32  2.377D-33
1.973D-33  3.110D-34
3.006D-3¢  6.675D-35
P =80.0
1.889D-27  1.560D-28
1.515D-27  1.237D-28
6.902D-28  5.513D-29
1.003D-28  7.988D-30
5.802D-30 5. 369D-31
4,348D-31  4.529D-32
7.551D-32  8.460D-33
8.783D-33  1.168D-33
1.587D-33  2.682D-34
P =120.0
4.439D-27  3.599D-28
3.563D-27  2.845D-28
1.615D-27  1.255D-28
2.301D-28  1.798D-29
1.306D-29  1.208D-30
9.783D-31  1.019D-31
1.699D-31  1.905D-32
1.977D-32  2.630D-33
3.573D-33  6.043D-34
‘ P =160.0
1.069D-26 . 8. 033D-28
7.728D=27  5.728D-28
3.276D-27  2.355D-28
4.462D-28  3.451D-29
2.570D-29  2.436D-30
1.883D-30  2.076D-31
3.095D-31  3.814D-32
3.160D-32  4.999D-33
4.825D-33  1.075D-33

Neutron

Elastic
1.570D-31
1.169D-31
6.608D-32

2.308D-32

4,550D-33
6.499D-34
1.374D-34
2.179D-35
6.249D-36

5.889D-31
4.216D-31
2,267D-31
7.779D-32
1.538D-32
2,142D-33
4.406D-34
6.810D-35
1.941D-35

1.325D-30
9.485D-31
5.100D-31
1. 750D-31
3.462D-32

- 4.827D-33

9.942D-34
1.538D-34
4,383D-35

2.509D-30
1.868D-30
1.056D-30
3.691D-31
7.284D-32
1. 045D-32
2.221D-33
3.532D-34
1.011D-34

-.107 -

Be Quasi-
Elastic

1.590D-29

1.174D-29
6.139D-30
1,632D-30
2.181D-31

2,460D-32

5.068D-33
7.939D-34
2. 045D-34

5.604D-29
4.118D-29
2.135D-29
3.605D-30
7.342D-31
8, 025D-32
1.636D-32
2.622D-33
7.094D-34

1.261D-28
9.267D-29
4.804D-29
1.261D-29
1. 652D-30
1.808D-31
3.687D-32
5.911D-33
1.600D-33

2. 545D-28
1.879D-28
9.820D-29
2, 610D-29
3.492D-30
3.951D-31
8.160D-32
1.280D-32
3.299D-33

Proton
Inelastic
4,746D-31
3.487D-31
1.908D-31
6.363D-32
1.303D-32
2.415D-33
7.080D-34
1.637D-34
5.266D-35

2.031D-30
1.440D-30
7.558D-31
2.574D-31
5.891D-32
1.197D-32
3.616D-33
8. 321D-34
2.657D-34

4.983D-30
3.548D-30
1.885D-30
6.631D-31
1.609D-31
3.469D-32
1. 073D-32
2.407D-33
7.270D-34

1. 038D-29
7.732D-30
4.399D-30
1. 630D-30
4.043D-31
8. 922D-32
2.713D-32
5.462D-33
1.455D-33



TABLE V.1 (continued)

(C)
X =20, m =0.1056

© o » o'

10
12
14
16
18

o O N

10
12
14

- 16

18

00 o N

10
12
14
16

18

Be Proton

Coherent Elastic

©=0.0 ,
1. 086D-29 7.710D-31
4.467D-29  3.136D-30
9.452D-29°  6.640D-30
1.584D-28 1.116D-29
2.418D-28 1. 705D-29
3.564D-28  2,510D-29
5.146D-28 3.614D-29
7.145D-28 5.014D-29
8. 787D-28 6.225D-29

6=0.1
3.569D-31 3.461D-32
7.050D-32  1.017D-32

' 1.732D-32 3.392D-33
5.064D-33 1.308D-33
1.593D-33 5. 706D-34
4.892D-34 2.708D-34
- 1.311D-34  1.275D-34

2.706D-35  4,290D-35
4,013D-36 0.0

0 =0.2
1.223D-32 2.258D-33
8.391D-34  3.100D-34
9.414D-35  6.169D-35
1.348D-35 1.535D-35
2.318D-36 3.659D-36
4.651D-37  4.168D-37
1. 050D-37 0.0
2.606D~38 0.0
6.805D-39 0.0

Neutron

Elastic
4,126D-33
1.565D-32
3. 382D-32
5. 865D-32
9. 082D-32
1, 316D-31
1.835D-31
2.486D-31
3.301D-31

- 7.272D-34

5.277D-34

©2.870D-34

1.479D-34
8.150D-35
5. 032D-35

-3, 230D-35

1.446D-35
0.0

1.506D-34
4, 398D-35
1.290D-35
4.474D-36
1. 348D-36
1. 726D-37
0.0
0.0
0.0

- 108 -

Be Quasi-
Elastic
4,204D-31
1.556D-30
3.260D-30
5.529D-30
8.496D-30
1.243D-29
1.772D-29
2,.480D-29

3.373D-29°

4.770D-32
2, 367D-32

1. 605D-32

4.428D-33
2.164D-33
1.166D-33
6.390D-34
2.439D-34
0.0

6.156D-33
1.186D-33
2. 797D-34
8.148D-35
2, 138D-35
2.530D-36
0.0
0.0
0.0

Proton
Inelastic
1.496D-32
6.436D-32
1.503D-31
2, 758D-~31
4,452D-31
6.630D-31
9.286D-31
1.210D-30
1.303D-30

2.233D-33
1.932D-33
1.345D-33
8.589D-34
5.263D-34
3. 098D-34
1.560D-34
4, 054D-35
0.0

4,.031D-34
1.712D-34
5,849D-35
1.884D-35
4,879D-36
4,861D-37
0.0
0.0
0.0



TABLE V.1 (continued)

(D)
'k =200, m =0.1056

20
40
60
80
100
120
140
160
180

20
40
60
80

100
120
140
160

20
40
60
80
100
120

Be Proton

Coherent Elastic

©=0.0
1.679D-28 1, 326D-29
5.797D-28 4,751D-29
1.150D-27 9.502D-29
1.889D-27 1.560D-28
2.909D-27 2.389D-28
4.439D-27 3.599D-28
6.854D-27 5.421D-28
1. 069D-26 8.033D~28
1.605D-26 1.099D-27

©=0.1
4,868D-35 1.697D-35
1.127D-36 1.192D-36
6.332D-38 1.161D-37
5.688D-39 3.093D-39
6.688D-40 0.0
8.885D-41 0.0
1.152D-41 - 0. 0
1.325D42 0.0

© =0.2
4,528D-38 8.198D-38
3.510D-40 0.0
1.257D-41 0.0
8.243D-43 0.0
7.386D-44 0.0

0.0

8.687D-45

Neutron
Elastic

. 137D-32

. 570D-31

.395D-31

. 325D-30

4
1
3
5
9.125D-31
1
1.847D-30
2
3

. 306D-36

. 394D-37

. 753D-38

.417D-39
0

0

0
.0

3.412D-38
0.0
0.0
0.0
0.0
0.0

- 109 -

Be Quasi-
Elastic

4,383D-30
1.590D-29
3.312D-29
5.604D-29
8.609D-29
1.261D-30
1.804D-28
2, 545D-28
3.549D-28

6.262D-35 -

6.204D-36

7.021D-37

1.946D-38
0.0
0.0
0.0

0.0

4.985D-37
0.0

0.0

0.0

0.0

0.0

Proton
Inelastic
1.109D-31
4.746D-31
1.106D-30
2.031D-30
3.295D-30

4,983D-30

7.241D-30
1. 038D-29
1.526D-29

1.177D-35
1.397D-36
1. 521D-37
4,466D-39
0.0
0.0
0.0
0.0

7.213D-38
0.0

0.0

0.0

0.0

0.0



(A)

PS/m
0

0.2
0.4
0.6
0.8
1.0

0.2
0.4
0.6
0.8
1.0

0.2
0.4
0.6
0.8
1.0

0.2
0.4
0.6
0.8
1.0

TABLE V.2

Be Proton
Coherent Elastic
P=40
- 1.093D-36 1.153D-36
- 9,178D-37  1.028D-36
' 5.471D-37  7.200D-37
2.418D-37  3.897D-37
8.650D-38  1,598D-37
-~ 2,754D-38 4.635D-38
P =80
1.136D-35  6.485D-36
1.006D-35  6.070D-36
6.743D-35  4.786D-36
13.373D-36 . 3.-62D-36
~1.337D-36  1.615D-36
4.592D-37  17.219D-37
' P =120
2.553D-35  1.459D-35
2.259D-35  1.365D-35
-~1,514D-35  1.076D-35
7.576D-36  6,880D-36
- 3,006D-36  3.633D-36
1.035D-36 . 1,625D-36
: P =160
~1,720D-35  1.825D-35
-1.444D-35  1.626D-35
8.615D-36  .1.138D-35
3.825D-36  6.158D-36
1.380D-36  2,526D-36
4,452D-37

7.299D~37

Neutron
Elastic

3.286D-37
3.033D-37

2.326D-37
1.412D-37
6.430D-38
2,011D-38

1.251D-36
1.217D-36
1. 069D-36
7.972D-37
4,969D-37
2.577D-37

2.818D-36
2. 740D-36
2.405D-36
1.793D-36
1.118D-36

‘5, 798D-37

5.247D-36
4,837D-36
3.700D-36
2.239D-36
1.016D-36
3.155D-37

’

- 110 -

Be Quasi
Elastic

5.997D-36

5.437D-36
3. 976D-36
2.261D-36
9.608D-37
2.860D-37

2.809D-35
2,676D-35
2,217D-35

1.525D-35

8.721D-36

4,166D-36-

6.322D-35
6. 019D-35
4,985D-35
3.429D-35
1.961D-35
9. 3750-36

9. 525D-35
8.627D-35
6.298D-35
3.578D-35
1.518D-35

4,497D-36

. - do /ddp for Photoproduction of Heavy Leptons (cm2/ GeV/sr)
k =200, m =4,0

Proton
Inelastic
3.993D-37
3.564D-37
2, 528D-37
1,405D-37
5.915D-38
1.745D-38

2.509D-36
2.315D-36
1.814D-36
1.202D-36
6.693D-37
3.109D-37

6. 322D-36
5.834D-36
4,564D-36
3. 000D-36
1. 649D-36
7.544D-37

8.233D-36
7.297D-36

' 5,044D-36

2. 665D-36
1.034D-36
2,661D-37



- -

TABLE V.2 (continued)

- (B)

k =200, m =6.0

PO/m

.0
© 0.2
0.4
0.6

0.2

0.4
0.6
. 0.8
- 1.0

0.2

:= 0.6
0.8
1.0

0.2

T 0.4 .-

. 0.6

* Proton

Be
Coherent Elastic
P =40
'1.081D-38  1.432D-38
'8.824D-39  1.021D-38
'4.885D-39  3.207D-39
1.966D-39  2,370D-40
P =80
1.590D-37  2.805D-37
.1.354D-37  2.451D-37
'8.199D-38  1.526D-37
'3.595D-38  5.868D-38
-1.249D-38  1.121D-38
3.825D-39.  5.809D-40
P =120
3.560D-37  6.282D-37
3.029D-37  5.484D-37
'1.834D-37  3.405D-37
'8.052D-38  1.305D-37
'2.808D-38  2.469D-38
8.643D-39  1.219D-39
.- .P=160
1.650D-37  1.990D-37
.1.346D-37  1.387D-37
7.480D-38  3.937D-38
3.049D-38  1.476D-39

Neutron

Elastic
6.412D-39
4.608D-39
1.472D-39
1.103D-40

1. 081D-37
9.648D-38
6.315D-38
2.564D-38
5. 095D-39
2.698D-40

2,426D-37

2.162D-37

1.411D-37
5. 706D-38
1.122D-38
5.655D-40

8.970D-38
6.297D-38
1.814D-38
6.882D-40

- 111 -

Be Quasi
Elastic
8.932D-38
6.387D-38
2.019D-38
1.500D-39

1.662D-36
1.463D-36
9.260D-37
3. 629D-37

7.030D-38 -

3.673D-39

3. 726D-36
3.275D-36
2. 068D-36
8. 074D-37
1.549D-37

© 7.702D-39

1.244D-36
8,697D-37
2.482D-37
9. 345D-39

Proton
Inelastic
5. 069D-39
3.606D-39
1.131D-39
8.184D-41

1.141D-37
9.798D-38
5.920D-38
2.224D-38
4, 097D-39
1.823D-40

2.702D-37
2.309D-37
1. 369D-37
4,923D-38
8.167D-39
2.671D40

4.445D-38
2.806D-38
5. 333D-39
6. 353D-42



)

Be

TABLE V.3
dg/dp (cmz/GeV)

m = 0.1056 GeV Proton
k =20 Gev Coherent Elastic
P (Gev) - 10732 10733
1.99 7.178 6.35
5.97 8.92 6.85
9.95 8.77 6.66
13.93 8.92 6. 84
17.90 7.90 6.42
m =0,10566 GeV
k =200 Gev
P (GeV) 10752 10733
2.00 1.49 1.16
6. 00 1.34 1.09
10. 00 1.29 1. 04
14. 00 1.43 1.11
18. 00 1.61 1.17
m=4,0 GeV
k =200 GeV :
P (GeV) 1078 1078
19.5 0.10 0.14
58.5 1.85 1.91
97.5 3.03 2.50
136.5 2.09 2. 05
175.5 0.21 0.33
- m =6.0 GeV
=200 GeV
P (GeV) 10740 10759
19.2 0.14 0. 00
57.5 4.11 0.56
95.8 8.06 1.30
'134.2 5.30 0.78
172.5 0.47 0. 00

- 112 -

Neutron 'Be Quasi-

Elastic Elastic
10735 10733
8.90 6.16
720  5.32
6.63 4.94
7.17 5.29
8.179 6.12.
10736 10-34
8.92 6. 72
7.23 5.51
6.66 5.10
7.22 5.51
8.90 6.72
10739 10737
0. 60 0.08
' 5.63 1.00
6.48 1.23
5.87 1.06
1. 36 0.20
10720 10739
0. 00 0.00
2.43 3.45
5.31 7.84
3.34 4.80
0. 00 0.00

Proton
Inelastic
10-34

2,77

3. 06

3.24

3. 68

3.41

-35

.10

2.10
2.29

9.46

3.04
4.54

10

0.04
0.72
1.04
0.93
0.10

10
0. 00
2. 06
5.18
2.94
0. 00



- TABLE V.4

o 2
Total Heavy Lepton Production Cross Section (cm’)

GeV Be - Proton  Neutron Be-Quasi- Proton Be

k ‘Coherent Elastic Elastic Elastic Inelastic Total
m = 0.105 10730 10731 10733 10731 10733 10730
20 1.611 1.267 1.546 1.081 6.114 1.774
40 2.047 1.551 1.557 1.134 6.336 2.238
100 2.579 1.926 1.563 1,171 6.044 2,750
. 200 2.787 2.177 1.565 1.184 5.683 2.956
m=0.5 10732 10733 10734 10733 10734 10732
" 20 0.902 ~  1.607 1.342 4.443 3.559 1.666
40 1.913 2. 604 1.536 5.895 5.355 2.984
100 3.784 4.122 1.672 7.324 6.846 5.133
200 5.487 5.852 1.717 8.034  7.161 6.934
m=1.0 10738 1073° 10733 10734 10733
20 0.170 - 0.923 1.958 0.410 .  0.288 0.839

40 0.797 2.293 3.070 0.814 0.728 2.266 -
100 3.014 5.063 4.014 1.358 1.343 5.578
200 5.857 7.698 4.442 1.703 1. 664 9.057
m = 2.0 RTINS Tt 10736 10734 1073 10734
40 0.053  0.634 2.085 0.350 0.234 0.614
100 0.764 3.404 6.293 1.420 1.290 3.345
200 2.963 7.396 8.781 2.472 2.353 7.553
m=4.0 10736 10736 10737 10735 10736 10735
100 0.243 0.371 1.498 0.223 0.140 0.374
200 2.856 2.758 7.990 1.432 1.131 2.735
m=6.0 10738 10738 10738 10~37 0738 10736

100 0.376 0. 006 0.003 0.004 0 0

200 6.932 9.975 4.178 6.079 3.826 1.021
2130A5
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_ TABLE V.5
Total Heavy Lepton Production Cross Section (cmz)
from Proton at PEP Energies

Photon Energy Proton Energy Proton Inelastic Proton Total
GeV '
m =5
500 4,043 x 10756 1.488 x 1076 5.531 x 10”50
1,000 9.592 x 10756 2.896 x 10~8 1.249 x 10752
1,500 1.404 x 10739 3.693 x 10736 1.773 x 1073
2,000 - 1.767 x 10735 4,189 x 10736 2.186 x 10759
m =10
500 2,111 x 10738 7.821x107%% - 2,893 x 10-38
1,000 2.702 x 10737 1.018 x 1037 3,720 x 10757
1.500 6.325 x 10”37 2.289 x 10757 8.612x 1077
2,000 1.014x107°6 3.480x 10" 1.362 x 10758
m=15
1,000 4.563x 10”52 1.603x 10759 6.166 x 10”0
1,500 3.528 x 1070 1.267x 10728 4,795 1078
2,000 8.860 x 1052 3.227x 1078 1.209 x 10~37
m =20 -
1,000 4.860x 10742 1.619 x 1073 6.050 x 10723
1,500 6.616 x 1020 2.249 x 10720 8.865 x 1010
39 1.811x 10739 7,139 x 1052

2,000 5.328 x 10~
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0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.50
0.60
0.70
0.80
0.90
1.0

1.1

1.2

1.3

TABLE B.1

Elastic Form Factors of Atoms F(q)

Li
3.000
2.710
2.215
1.904
1,741
0.627
1.512
1.394
1.269
1.032
0.823
0.650
0.513
0.404
0.320
0.255
0.205

0.164

q in unit of 47 & = 24,797 KeV

Be
4,000
3.706
3.067
2.469
2,067
1.838
1.705
1.613
1.531
1.367
1.201
1.031
0.878
0,738
0.620
0.519
0.432

0.365

7=5 -

B
5.000
4.726
4,066
3.325
2,711
2,276
1.993
1,813
1.692
1.534
1.406
1.276
1.147
1.016
0.895
0.783
0.682

0.596

- 115 -

Z=6

6.000
5.760
5.126
4.358
3.581
2,976
2.502
2.165
1.950
1.685
1.536

1.426

1.322

1.218
1.114
1.012
0.916

0,821

7.000
6.781
6.203
5.420
4.600
3.856
3.241
2.760
2,397
1.944
1.698
1.550
1.444
1.350
1,263
1.175
1.083

1.005



TABLE B.2

Radiation Logarithm

2
m
- 1 -2 el .. dt = 1 4
Liad = 32 fo Z Gyl 3= +1=.7 [@1(0)_“ 3’2“2]
m2 ‘
= b [Tegrigiet _1 8
brada= 2 J (t) t 2 910 - 302
7 1 2 3 4 5 6 7
H He Li Be B c N
Ly.aq 5.310% 4.787* 4,738% 4.705% 4.663% 4.606% 4,544
L.g™* 5.216 4.985 4,850 4,754 4.679 4.618 4.567
(Thomas-Fermi-Moliere) .
L,..q(c = 20) 4.742% 24,7157 4.680° 4.631° 4.576°
L, q(Best estimate) 5,31 4.79 4,74  4.71  4.68 4,62  4.57
L'm(;fT 7.085 6.623 6,353 6,161 6.012 5.891 5.788
(Thomas-Fermi-Moliere)
L! 4 (Best estimate) 6.1447 s5.6217 5.805° 5.924° 6.012 5.891 5.788

*From Eq. (OL 33).
#*Using L__; = In(184. 15 7" 1/3),
T From Eq. (IIL. 35).

. 1] — ""2/3
t1Using L!_ 4 = #0(1194Z

).

a. Using Table B.1 and Eq. (B.19).
b. Using Table B.1 and Eq. (B.19) with ¢ replaced by 2c.
c. Interpolated between the values of He and B.
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0.00
0.01
0.02
0.03
0.04
0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0

TABLE B.3

Atomic Pauli Suppression Factor S

S(Thomas-Fermi)
13.8 v
0,097
0.169
0.227
0.277
0.319
0.486
0.674
0.776
0.839
0.880
0.909
0,929
0,944
0.954

0.963

- 117 -

S(Moliere)
0,000
0.066
0,127
0.182
0.232
0,277
0.452
0.652
0,761
0.828
0.872
0.903
0.924
0.940
0.952

0.961



TABLE B.4

122, 8</me

il

282. 4/me

= 90,8 z’l/g/me

265.8 z‘z/3

/m,

= 100.0 2V 3/me

= 418.6 z'2/3/me

= 106 z‘1/3/me

-2/3

571.4 Z /me

111.7 z‘l/?’/me

724.2 72/ 3/me

From (B. 12)

From (B.14)

From (B. 16)

From (B.17)

From Tables (B.1 and B. 2)

From linear interpolation

] |
between aH and an

From Tables (B.1 and B.2)

From linear interpolation

between ai{ and aig

Thomas-Fermi-Moliere
or (Table B.1 and B.2)

Thomas-Fermi-Moliere
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