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[Rev.J!Iod. Phys. 46, 815 (1974)] 

Yung-Su Tsai 

Stanford Linear Accelerator Center’ 
Stanford University, Stanford, California 94305 

Page 820: Eq. (3.3), n(n2+z) should read l/[ n(n2+z)] . 

Eq. (3.5), -- 
( l+Q)4 

should read f w . 
( l+Q)4 

Page 822: Eq. (3.18), (1/6)(1+B2)2 should read (1/6)/(1+B2)2. 

Eq. (3.19), -4B2Qn(l+B2)+ (4/3)(1+B2)-(1/6)(1+B2)2 

should read 

-4Bw2Qn(l+B2)+ (4/3)/(1+B2)-(1/6)/(1+B2)2. 

Eq. (3.25), (1/6)(1+CD2) should read (l/6)/(l+Ce2). 

Page 826: 

Page 829: 

Table III. 5, (T(W) for H should read 20.56 mb instead 

of 20.73 mb. 

Page 834: 1 1 -- -- Eq. (4.12), kk;” ] shouldread k ]‘“]. 

Page 8381839: Table V. 1 (C) and (D), the entries in the first column 

are momentum p in GeV not p6/m. 

Page 848: 5. Sample atomic form factors should read 

5. Simple atomic form factors 

Page 849: Eq. (B55), Q should read Q2. 

Programming error: In the computer program for evaluating the contribu- 

tion from the inelastic excitation of the proton, the integration routine with respect 
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I 

-2- 

to rnt in Eq. (2.7) was inadvertently carried out in such a way that finer mesh 

was uied for larger mf” instead of the other way. This results in underestimating 

the cross sections in all the entries labeled “proton inelastic” in Tables V. 1, 

V. 2, V. 3, V. 4, and V. 5. The corrected versions for these entries are given 

below. 

I would like to thank Allen Eisner of UCSB, Hobey DeStaebler of SLAC, 

Jack Smith of Stony Brook, and C. M. Hoffman of Los Alamos Scientific Labor- 

atory for kindly pointing out some of the above errors. 
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TABLE V. 1. du/dQdp for photoproduction of muon (cm3/GeV/sr). 

N/m 
c, Proton 

Inelastic 
Proton , 

Inelastic PtGeV) 
Proton 

Inelastic 
Proton 

p(GeV) Inelastic 

(A) k=20, m=O. 1056 (B) k=200, m=O. 1056 (C) k=20, m=O. 1056 (D) k=200, m=O. 1056 

0 
0.5 
1.0 
2.0 
4.0 
7.0 

10.0 
15.0 
20.0 

0 4.278D-31 5.373D-30 2 4.118D-33 
0.5 3.028D-31 3.828D-30 4 2.928D-33 
1.0 1.593D-31 2.032D-30 6 1.733D-33 
2.0 5.196D-32 7.014D-31 8 l.O20D-33 
4.0 9.707D-33 1.610D-31 10 6.12OD-34 
7.0 1.412D-33 3.180D-32 12 3.5 76D-34 

10.0 2.804D-34 8.859D-33 14 1.756D-34 
15.0 2.372D-35 1.689D-33 16 4.363D-35 
20.0 1.477D-36 4.636D-34 18 0.0 

0 8.966D-31 1.249D-29 2 6.618D-34 
0.5 6.363D-31 8.911D-30 4 2.160D-34 
1.0 3.378D-31 4.756D-30 6 6.896D-35 
2.0 l.l29D-31 1.655D-30 8 2.208D-35 
4.0 2.193D-32 3.764D-31 10 5.569D-36 
7.0 3.357D-33 7.400D-32 12 5.355D-37 

10.0 6.952D-34 2.093D-32 14 0.0 
15.0 6.158D-35 4.121D-33 16 0.0 
20.0 3.935D-36 l.l61D-33 18 0.0 

0 
0.5 
1.0 
2.0 
4.0 
7.0 

10.0 
15.0 
20.0 

P=4.0 P=40.0 e=o.o e=o.o 

l.l38D-31 1.331D-30 2 2.842D-32 20 3.277D-31 
8.348D-32 9.853D-31 4 l.l38D-31 40 1.331D-30 
4.559D-32 5.500D-31 6 2.488D-31 60 3,004D-30 
1.456D-32 1.925D-31 8 4.278D-31 80 5.373D-30 
2.473D-33 4.311D-32 10 6.461D-31 100 8.502D-30 
3.090D-34 8.377D-33 12 8.966D-31 120 1.249D-29 
4.996D-35 2.271D-33 14 l.l61D-30 140 1.74 lD-29 
2.193D-36 4.020D-34 16 1.383D-30 160 2.314D-29 
2.002D-38 l.OlOD-34 18 1.356D-30 180 2.828D-29 

P=8.0 P=80.0 e=o. 1 8-o. 1 

20 2.423D-35 
40 2.141D-36 
60 2.215D-37 
80 6.204D-39 

100 0.0 
120 0.0 
140 0.0 
160 0.0 

P=12.0 P=120.0 e=o. 2 e=o. 2 

20 l.O78D-37 
40 0.0 
60 0.0 
80 0.0 

100 0.0 
120 0.0 

P=16.0 P= 160.00 

1.383D-30 
l.O24D-30 
5.759D-31 
1.977D-31 
3.769D-32 
5.396D-33 
9.682D-34 
4.8 lOD-35 
4.932D-37 

2.314D-29 
1.721D-29 
9.726D-30 
3.445D-30 
7.509D-31 
1.450D-31 
4.086D-32 
7.867D-33 
2.121D-33 
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- TABLE V. 2. d@/dQdp for photoproduction of heavy leptons (cm’/GeV/sr). 

P/m 
Proton Proton 

Inelastic Inelastic 

(A) k=200, m=4.0 (B) k=200, m=6.0 

0 8.458D-37 
0.2 7.509D-37 
0.4 5.206D-37 
0.6 2.762D-37 
0.8 l.O84D-37 
1.0 2.906D-38 

0 4.827D-36 
0.2 4.476D-36 
0.4 3.509D-36 
0.6 2.275D-36 
0.8 1.215D-36 
1.0 5.353D-37 

0 l.O29D-35 
0.2 9.5 29D-36 
0.4 7.452D-36 
0.6 4.8 13D-36 
0.8 2.558D-36 
1.0 l.l18D-36 

0 1.0 llD-35 
0.2 8.925D-36 
0.4 6.08 lD-36 
0.6 3.128D-36 
0.8 l.l66D-36 
1.0 2.859D-37 

P=40 Gev 

7.255D-39 
4.99 lD-39 
1.409D-39 
8.436D-41 
0.0 
0.0 

P=80 GeV 

P=120 Gev 

P=160 GeV 

1.771D-37 
1.507D-37 
8.756D-38 
3.022D-38 
4.847%39 
1.856D-40 

3.545D-37 
3.000D-37 
1.716D-37 
5.758D-38 
8.702D-39 
2.689D-40 

4.488D-38 
2.826D-38 
5.347D-39 
6.358 D-42 
0.0 
0.0 
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TABLE V.3. do/dp (cm&/GeV). 

p GeV) 
Proton 

PWV) 
Proton p(GeV) Prot0n PWV) 

Proton 
Inelastic Inelastic Inelastic Inelastic 

m=O.1056 GeV 
k=20 GeV 

m=O.1056 GeV 
k=200 GeV 

m=6.0 GeV 
k=200 GeV 

1o-34 1o-35 

m=4.0 GeV 
k=200 GeV 

1o-38 1o-4o 

1.99 5.049 20.0 7.024 19.5 0.079 19.2 0.0 
5.97 4.832 60.0 6.514 58.5 1.407 57.5 3.029 
9.95 4.479 100.0 6.370 97.5 1.811 95.8 7.211 

13.93 4.410 140.0 7.031 136.5 1.326 134.2 3.359 
17.90 3.524 180.0 7.657 175.5 0.098 172.5 0.0 
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-TABLE V.4. Totalheavyleptonproduction cross section (cm2). 

k Proton , i Be 
Inelastic total 

m=O.105 

20 
40 

100 
200 

m=0.5 

20 
40 

100 
200 

m=l.O 

20 
40 

100 
200 

m=2.0 

40 
100 
200 

m=4.0 

100 
200 

m=6.0 

100 
200 

1o-32 

0.849 1.795 
1.060 2.276 
1.271 2.817 
1.349 3.026 

1o-33 

0.430 1.733 
0.764 3.190 
1.274 5.668 
1.638 7.764 

1o-34 

0.322 
0.959 
2.327 
3.598 

1o-35 

0.267 
2.002 
4.627 

1o-32 

0.087 
0.247 
0.646 
1.080 

1o-34 

0.644 
3.986 
9.600 

1o-35 

0.400 
3.415 

1o-36 

0.169 
1.886 

1o-38 

0 
5.123 

10 -30 

1o-32 

1o-36 

0 
1.138 
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*TABLE V. 5. Total heavy lepton production cross section (cm2) 
from proton. 

. 

Photon Energy 
GeV Proton Elastic Proton Inelastic Proton Total 

m=5 

500 4.043D-36 
1000 9.592D-36 
1500 1.404D-35 
2000 1.767D-35 

m= 10 

500 
1000 
1500 
2000 

m= 15 

1000 
1500 
2000 

m=20 

1000 
1500 
2000 

2.lllD-38 1.24 lD-38 3.35 2D-38 
2.702D-37 2.184D-37 4.886D-37 
6.325D-37 5.36 lD-37 l.l69D-36 
1.0 14D-36 8.625D-37 1.877D-36 

4.563D-39 2.8011>-39 7.364D-39 
3.528D-38 2.658D-38 6 c 186D-38 
8.860D-38 7.163D-38 1.602D-37 

4.860D-43 1.608D-43 6.468D-43 
6.6 16D-40 3.855D-40 l.O47D-39 
5.328D-39 3.705D-39 9.033D-39 

3.208D-36 7.25 lD-36 
7.577D-36 1.733D-35 
l.O78D-35 2.4821)-35 
1.324D-35 3.09 lD-35 
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ABSTRACT 

Photo pair productions of electrons, muons and heavy leptons and 

bremsstrahlung of electrons and muons are reviewed. Atomic and 

nuclear form factors necessary for these calculations are discussed. 

Straggling of electrons in matter and other effects due to finite target 

thickness are considered. Tables of radiation lengths of all materials 

and the energy dependence of photon absorption coefficients of many 

materials presented, Problems associated with production of particles 

by photon and electron beams discussed. 

(Submitted to Rev. of Mod. Physics) 
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I. INTRODUCTION 

rrie work on this paper started about ten years ago when Stanford Linear 

Accelerator Center was still under construction. At that ,time like any other 

new high energy physics. laboratory, people were c,oncerned with problems such 

as what would be the yields of muons, pions, K mesons, antiprotons etc. and 

also whether any new particles such as W bosons and heavy leptons could be dis- 

covered by the new machine. In the electron machine these particles are pro- 

duced by the bremstrahlung beam which in turn is produced by the electron, 

Hence one has to know accurately the properties of the bremsstrahlung beam in 

a fairly thick target. The pair production is related to the bremsstrahlung 

problem by a substitution rule, thus the electron pair production cross section 

can be calculated trivially once we know how to calculate the bremsstrahlung 

by electrons. Muon and heavy lepton pair productions were also estimated at 

that time, For production near the forward angle, the electron pair production 

involves only the atomic form factors, whereas in the muon and heavy lepton 

productions, nuclear form factors must be taken into consideration. As the 

laboratory began to operate and experiments became more precise, many of 

these calculations also became more refined and efficient. For example in 

order to do precise measurements in the photoproduction experiments, it is 

desirable to know the photon spectrum to within 1 percent level. Also in order 

to do inelastic electron scattering accurately, one likes to know the straggling 

function of the electron in the target to within 1%. These will be discussed in 

Section IV. 

Heavy lepton has never been discovered. Recently the interest in the 

possible existence of heavy lepton gained a new impetus, becuase in some 

versions of the gauge theory, the heavy leptons are required to make unified 

-l- 
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theory of weak and electromagnetic interactions finite. (Georgi and Glashow’ 

1972 , Bjorken and Llewellyn Smith2 1972). These gauge theories do not affect 

the calculation of heavy lepton production by pair production. The decay modes 

of heavy leptons have been considered by many authors. The most complete pre- 

gauge theory version was given by Tsai’ (1971) and the post gauge theory version 

was given by Bjorken and Llewellyn Smith2 (1972). The two versions are essen- 

tially identical except that in the latter, there is a possibility that heavy neutrinos 

also exist in nature and if the mass of the heavy neutrino is lighter than that of 

charged heavy leptons, additional decay modes into these heavy neutrinos must 

be included. The readers should refer to these two papers and also a review 

paper by M. Per14(1972) for details of the present status, both experimental and 

theoretical, concerning heavy leptons. 

The objectives of this paper are two: (1) to put together in one place all the 

useful formulas pertaining to the bremsstrahlung and the pair production of 

electrons and muons and the associated phenomena of electromagnetic shower 

theory useful in high energy physics experiments. (2) To obtain the production 

cross section of heavy leptons to assist in the discovery of these new particles. 

The underlying physical principles involved in this paper are not controversial 

and to a large extent well known. However this paper is strictly speaking not a 

review paper, because rather than reviewing the existing literature, we have 

concentrated in making the contents of this paper self-contained and whenever 

possible we have tried to present new results which are either more accurate or 

simpler to handle than what exist in the literature. 

The table of contents shows the materials to be discussed in this paper. 

They are arranged in order to give a logical development of the theory. How- 

ever from practical point of view, the subject matter can be divided into three 

-2- 
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obvious parts: 1. Electron, 2. Muon and 3. Heavy lepton. Let us describe 

briefly&he major topics discussed in each part: 

1. Electron The part dealing with bremsstrahlung and pair production of 

electron is of the greatest practical importance because an electron loses its 

energy so easily by bremsstrahlung in passing through a medium and also at 

high energies a photon gets absorbed in a medium mainly by pair production of 

electrons. This part is useful to those experimentalists who have to deal with 

high energy electrons or photons in any part of their experiment. For this pur- 

pose we give a). Table of radiation lengths of all materials (Table III. 4)) 

b). Energy dependence of total pair production cross sections for many commonly 

used materials (Table III. 3)) c). Energy-angle distribution, drr/dQ dp, energy 

distribution da/dp for pair production from hydrogen and helium atoms (Section 

III A 2)) from Li and Be atoms [ Eqs. (III, 44) through (III. 49)] , and for all 

atoms heavier than Be [ Eqs. (III. 38) through (III. 41)1, Eqs. (III. 79)) (III. 80) 

and (III. 82). d). The bremsstrahlung spectrum from a target of finite thickness 

is given by Eqs. (IV. 11) and (IV. 12). These expressions are useful for photo- 

production experiments when ordinary bremsstrahlung beam is used. e). For- 

mulas for production of particles using an electron beam directly on the target 

are considered in Sections IVE and IV F. f) D The photons from the annihilation 

of the positron by an atomic electron, e+e- - 2y, 3y, are discussed in Section 

III F. g). Bremsstrahlung in the colliding beam experiment e + e - e + e + y 

is treated in Section III E. h) . Straggling of an electron in medium due to 

bremsstrahlung is given in Section IV A, which is very important in the external 

photon correction to the electron scattering experiment or any other experiment 

in which an electron is involved. i). Production of particles using a photon 

beam is discussed in Section IV D. 
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2. Muon This part is useful for those people who want to estimate the 

muon flux from an electron machine near the target. In the proton machine the 

muon flux comes mainly from the decay of pions which are produced by the 

proton impinging on a target. In the electron machine, usable muon source 

comes mostly from photopair production. Even in the electron machine, there 

are more pions produced than muons (see SLAC Users Handbook5 Section C), 

hence at a distance of one decay length from the target, there will be more 

muons from pion decay than photo pair produced muons. Numerical examples of 

angular distributions dc/dQdp, momentum distributions du/dp and the total 

cross sections g are given in Section V. To obtain the yield of muon flux per 

incident electron on a target of T radiation lengths, one may use Eq. (IV. 13) 

and the appropriate expression for dr/dfidp. For small angles, the process is 

dominated by the coherent production, hence da/dQdp given by Eq. (III. 5) with 

X given by Eq. (III. 76) may be used. For large angles incoherent production 

from nucleons in the nucleus as well as the production accompanied by meson 

production must be included. Energy loss due to muon bremsstrahlung is dis- 

cussed in Section III G. 

3. Heavy Lepton In Section V, we give numerical examples of the energy 

angle distribution dg/dQ dp, the energy distribution da/dp and, the total cross 

section g for the production of heavy leptons. We hope these numerical examples 

will help experimentalists in designing experiments to discover the existence of 

heavy leptons. i 

Since we are dealing with one photon exchange processes, the cross section 

is dominated by the kinematical region where the momentum transfer is small. 

Expressions for the minimum momentum transfer for various processes are 

deri ved in Appendix A. Appendix B deals with atomic form factors, nuclear 

form factors and meson production form factors used in our calculation. 

-4- 



History 

EEn though we know now that the pair production and the bremsstrahlung 

processes are theoretically closely related, the bremsstrahlung process was i 
recognized and studied much earlier than the pair production process. This is 

because the bremsstrahlung process can be qualitatively understood using only 

the classical Maxwell equations (see for example, Panofsky and Phillips’, 1955), 

whereas for the pair production process it is necessary to use the Dirac equation. 

The bremsstrahlung process was studied as early as 1923 (Kramers7). The 

Dirac equation was invented in 1928 (Dirac*). The positron was discovered in 

1932 (Anderson’). The first calculations on the pair production were by Nishma 

and Tomonaga lo (1933), Oppenheimer and Plesset” (1933)) and Heitler and 

Sauter12 (1933). Bethe and Heitler” (1934) treated both the bremsstrahlung 

and the pair production relativistically using the Born approximation, in which 

the screening of the nuclear coulomb field was properly taken into account. 

Wheeler and Lamb14 (1939, 1956) treated the same phenomena in the field of 

atomic electrons. Experimentally, the productions in the nuclear coulomb field 

and the electron field always occur together, hence two effects must be combined 

in order to make comparison with experiments. When the atomic number Z is 

large, the correction to the one photon exchange mechanism must be included 

and this was done by Bethe and Maximon l5 (1954), Davies, Bethe and Maximon” 

(1954), and Olsen17 (1955). It should be noted that in Bethe and Maximon, l5 

it was erroneously stated that the Coulomb correction affects only the pair pro- 

duction but not the bremsstrahlung. This error was corrected by Olsen l7 (1955). 

The radiative corrections to bremsstrahlung and pair production were treated 

by Mork and Olsen l8 (1965) and an experiment was carried out by Schulz and 

Lutz” (1968) to confirm their calculations. The polarizations of electrons and 

-5- 



photons in the pair production and bremsstrahlung of electrons were calculated 

by Olsen and Maximom 2o (1959). There are many review papers on the subject c, 

of pair production and bremsstrahlung of electrons. The most useful ones are 

Rossi 21 (1952)) Bethe and A~hkin~~ (1952)) Motz, Olsen and Koch23 (1959,1969). 

Despite the abundance of literatures available on the pair production and the 

bremsstrahlung of electrons, we have included these subjects in this paper for 

the following reasons: 1. The original papers of Bethe-Heitler l3 (1934) and 

Wheeler and Lamb14 (1939) were written when there was no electronic computer, 

hence the atomic form factors and integrations with respect to them were treated 

crudely and the results were presented only in graphic forms which are difficult 

to read accurately. Also in Bethe-Heitler only the Thomas-Fermi atom was 

treated which is not applicable to low Z elements. 2. In practice, pair production 

and bremsstrahlung take place in a medium of finite thickness (except in the 

colliding beam experiments), the effect of which must be taken’into account in 

actual applications of the theory. 

The muon was discovered not as the result of a single observation, but rather 

the conclusion of a long series of experimental and theoretical investigations in 

the cosmic rays. A high energy muon is characterised by its deep penetrating 

power. Unlike electrons and photons, it does not produce electromagnetic shower 

because of its havey mass. Also unlike all hadrons it does not have strong inter- 

actions, hence its energy loss is practically all due to ionizations only. As early 

as 1932 (Rossi 24 1932), this deep penetrating component was seen in the cosmic 

ray experiment. The definitive identification of muon came in 1937 from the 

observations of Neddermeyer and Anderson 25 (1937) and those of Street and 

Stevenson 26 (1937). Thep-e decay was discovered by Williams and Roberts27 

(1940) and the 7r -p decay was discovered by Lattes, Occhialini and Powell 28 

(1947). The photoproduction of muon pair was observed much later. In 1956, 
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Masek and Panofsky 29 succeeded m separating one member of the pair from a 

large background of pions and electrons in the photoproduction. In 1962 Aberigi- 

Quaranta et al 30 observed muon pair in coincidence and confirmed the Bethe 

Heitler formula wi-thin 5% accuracy. 

The most accurate test of quantum electrodynamics using the electron pair 

production was carried out by Ashbury et al 31 (1967) and the muon pair production 

by Hayes et al (1970). / The results of these experiments show that the Bethe- 

Heitler formula is correct even when the lepton propagators are far off the mass 

shell in the space like region. The test of QED using the wide angle bremsstrah- 

lung of an electron was carried out by Sieman et al 33 (1969) and that of a muon 

by Liberman et al 34 (1969). Neither of these two experiments saw any deviation 

from the Bethe-Heitler formula. The results of these experiments can be re- 

garded as indicating the absence of the kind,of heavy leptons which decays into 

an electron and a photon or a muon and a photon. If such heavy leptons exist, 

they must show up in the lepton propagator, thus altering the prediction of Bethe 

Heitler theory (Low 35 1965). For this reason we shall assume that heavy leptons, 

if they exist, will not decay into y + e or y + /.L, but decay weakly into e + Y + v, 

p + v + 7, n+ v, k + v, p + v etc. (Tsai3 1972). 

The existence of an electron is essential for all the chemical bindings and 

chemical interactions. The existence of pions is essential for nuclear bindings 

( Yukawa3’ 1935) 0 The existence of muon was not predicted before its discovery 

and nobody knew why it should exist, in particular nobody has an explanation 

why its mass is m - 207 me, 
P 

which is slightly less than the lightest hadron, 

pion. Since nobody understands why muon should exist, there have been speculations 

that there might be other similar particles in nature yet to be discovered 

( Zel’dovichS7 1962). Everytime a new high energy accelerator is built, the 
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discovery of heavy lepton is usually one of its hoped for objectives. As mentioned 

previously, recently the search for the existence of heavy lepton received a new 

impetus becuase their existence may be required to unify the weak and electro- 
i 

magnetic interactions and also make the higher order weak interaction finite. 

Heavy leptons, if they exist, can be produced in many ways besides the pair 

production. Which way is the most advantageous depends upon the quantum 

number and the mass of the heavy lepton as well as the energy and the intensity 

of various beams available from accelerators. These problems are reviewed by 

Perl’ (1972) hence we shall not go into detail here. Since pe coincidence will 

probably be the most direct proof of heavy lepton pair (orW * pair) production, 

there is some practical reason why we have treated pair productions of electron, 

muon and heavy lepton in a single paper. 

II. PAIR PRODUCTION CROSS SECTION BY BORN APPROXIMATION 

In this section, we give the cross section for y + Z - Q+Q- + anything via 

the Bethe-Heitler mechanism shown in Fig.11. l.The cross sections for the 

bremsstrahlung emission can be obtained from those for the pair production 

and this is done in Section III D. We use the symbol k to represent the four 

momentum of the incident photon and also the energy of the photon in the labora- 

tory system. Whenever it appears in the dot product it represents a four mo- 

mentum, otherwise it is the energy in the laboratory system. The symbol p 

represents the four momentum of P- and also the absolute value of its three 

dimensional momentum in the laboratory system. E is the energy of Q- in the 

laboratory system. p+ is the four momentum of Q’ and E, is its energy in the 

laboratory system. m is the mass of Qf or I-. pi and mi are the four momentum 

and the mass respectively of the initial target system and p f and m f are corres- 

ponding quantities for the final state of the target. The four momentum transfer 
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to the target system is denoted by q -k -p-p+ = pf -pi0 Bethe and Heitler13 (1934) .- 

treateda special case in which the target particle is an infinitely heavy point- 

like and spinless nucleus whose coulomb field is screened by atomic electrons. i 
They did not include the atomic excitation of the target which was later considered 

by Wheeler and Lamb (1939). l4 While these treatments by Bethe and Heitler 13 com- 

bined with the work of Wheeler and Lamb14 adequately describe the pair produc- 

tion of electrons at high energies and small angles, they are not adequate to 

describe the pair production of particles with mass of muons or heavier, because V 

the effects of nuclear form factors and the recoil of the target system must be 

included when heavy particles are produced. Even in the electron pair produc- 

tion the nuclear form factors and the recoil must be taken into account if the 

production angle is large. In fact when the transverse momentum of the particle 

produced is much larger than the mass, the cross section is nearly independent 

of the mass of the particle produced. Drell and Walecka (1964)38 generalized the 

result of Bethe and Heitler to deal with a target of arbitrary mass, spin and form 

factors and arbitrary final states. This generalization was made possible by an 

earlier observation due to Bjorken (1960) and others 39 that in any space-like one photon 

exchange process, as long as the target particle is unpolarized and the final state 

of the target system is left unmeasured, the only things one has to know about the 

target system are the structure functions Wl(q2, v) and W2(q2, v) of the electron 

scattering defined by 

W 
PV 

= ML2(pw - 4, (Pi ’ 4)/q2) (Piv - qV(Pi o q)/q2)w2 

- ‘qpv - s,s,/s2)wl 

E c <piljp(0)If> <fljv(0)lpi> (27Q3 “(q+Pi -pf)e -2 
9 

f 
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where the spin average over the initial state pi is assumed. The state ipi> 

is norr@ized such that the factor (m/E) i/2 t2lrJ -3/2 has been taken out from 

the matrix elements. With this normalization, the matrix element, the phase 
i 

space and the incident flux are all separately covariant. The cross section for 

Y+z - .f!‘e- + anything from the mechanism shown in Fig. II. 1 can then be written 

as 

6 mi & 
da=e 4(k*pi) E 

(II. 1) 

where 

Jy = - x 
photon 
polarization 

x (6 + ml 
( 
6&m Yv+Yv -g3+ +‘Jt - m ’ 

1 

After taking the trace and contracting the tensors, we obtain 

- LPVW 
PV = W2ts2 m,2) + (P+: k) 

-+ C + D(p+o k) 

(II* 2) 

I- 

+ w,(s2, m,2) I H’ 

(P+’ k)2 + (P,“: k) 
- + C?+ D’(p+ 0 k) 

I 
, (II. 3) 

where 

Hz -m2 
1 ( i q2(l - 2E/mi) + 2E2 + 2EA , 

2 B=- fi 
I 

2 (m - q2/2) II 2E(E - k) + + s2t(k - 2E)/ mi + 1) + (2E - k) A 1 
- + q2k2 

I 
+ (q2/mi) (mi + E - k - 3 q2/mi) - 2A( A - k + E - q2/mi) + k . p, 
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c=- mA 

-cI (k l P)~ I 
2(k - E - A + q2/2mi) (k - E) + q2/2 

q2(l-E/mi)+2EA 
1 

i , 

D = l/F 0 P) , 

H’ = m2(2m2 + q2) , 

B’ = _ (q4 - 4m2)/k. p + 2q2 + 2k 0 p + 4m2 1 , 
C’ = m2(2m2 + q2)/(k l P)~ - 2(2m2 + q2)/(k. p) , 

D’ = -2/(k* p) , 

A = (m,” - m$/( 2mi) and 

k and E are the laboratory energies of the incident photon and 8- respectively. 

In order to obtain da/dpdfi we have to integrate with respect to d’p+. It is 

convenient to do this in the coordinate system where U = p+ + pf is at rest and 

C-Fis the z axis and bothza.ndFare in the xz plane as shown in Fig. II. 2. In 

this frame only (p+ l k) in Eq. (II. 3) is a function of cp, and the magnitude of p+ 

is independent of Q+. It is convenient to define a pure time like vector 

U = p++pf= k+pi-pa 

We have 

U2=m2+mf+2mi(k-E)-2k.p. (II. 4) 

Hereafter we use the symbol U as U = (U 2 l/2 ) when it does not appear in the dot 

product. All the quantities in the special frame, denoted by a subscript s, can 
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be written in terms of U. The energy of the photon in the special frame is 

I?’ = [kmi - (k l p)] /U. 

The energy and momentum of p+ are respectively 

E +s = ( U2 f m2 - mfZ)/(2U) (II. 5) 

and 

P +s = (E+s - m2)1’2. 

The momentum of the target particle is 

P. 1s 
= mi(k2 + p2 - 2pk cos 8 )1’2/U 

The energy of p is 

ES 
= [(p 0 k) - m2 + Emi] /U. 

The angle 6 k in Fig. 2 is 

cos 8 k = (ks - Es)/Pis + (k l P)‘(ksPis) l 

q2 can be written as 

q2 = 2m2 - 2(k l p) - 2E+s(ks - Es) + 2P+sPis Cos ‘+* (DQ 6) 

The integration with respect to CJI can be carried out readily, we obtain 

1 -2n c 
-I 2n 0 

dq <p+- k)-2 = W/(Y3k;), 

1 
I 

27r 

E o d Cp (P, l k) -’ = l/(yks) , 
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and 

1 
/ 

27r 

;i;; o d9 (P+‘k) = Wk.$ 

where 

W=E -P +s +s cod, case k’ 

and 

2 sin2ek+ (p,, c0se+ - 2 l/2 E+s cosek) D 1 
The cross section for detecting only the lepton p can be written as (in cm2/sr/GeV) 

i y 

g (o.19732)2 x lo-26 / 
1 (U-m)2 

-z _ 
dQdp 

dcos e+ / m2 dmf2 
i 

[\1’,(42.mi%) (3 I’< + C + DksWj 

+ Wl(s2, m,Z) H’W - 
Y3k2 

+ $ -I- C’ f . 
S 

S 

Using Eq. (II. 6), the integration with respect to cosO+ can be replaced by the 

integration with respect to t = -q2: 

/ 

1 ftma.x dt 

-1 
dco&J+= 1 

t min 
2pisp+S 

where tmin and tmax can be obtained from Eq. (II, 6) by setting co& + = 1 and 

cam e+ = -1 respectively: 

W 8) , 

t max 
= -2m2 + 2(k l p) + 2E+s(ks - Es) * 2P+sPis l 

min 
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The target form factors Wl(q2, rni) and W2(q2,mf2) needed in our calcula- 

tions as well as an approximate expression for tmm are given in Appendix B. 

Equation (II. 1) can be used to calculate any cross section in which Q+ and 

Q- are detected m-coincidence, whereas Eq. (II..7) gives the cross section 

where only Q- or Q+ is detected. The numerical results of (II. 7) for the produc- 

tion of muon and heavy leptons are given in Section V. In the next section, we 

derive various approximate expressions based on Eq. (Is. 7). The Coulomb 

correction will also be included in the next section. 

HI. APPROXIMATE EXPRESSIONS 

Equations (II. 1) and (II. 7) are exact expressions to order cz3 for pair 

production. However, they are too complicated for many of the practical ap- 

plications. Since electrons and muons are very common particles in the labora- 

tory it is desirable to have simple and yet reliable expressions to represent 

their energy-angle distributions. Bremsstrahlung by electron and muon will 

also be discussed because they are related to the pair production of these parti- 

cles by the substitution rule. Relatively simple expressions for the energy- 

angle distribution for pair production da/dadp and bremsstrahlung dab/dfikdk 

can be obtained when the angle is small and leptons are all extremely relativistic. 

More explicitly, we shall assume the kinematical conditions specified by (B.4) 

in the derivation of approximate expressions. 

A. Electron Pair Production 

For the electron pair production near the forward angle, we need to take 

into account the atomic screening. Of course at large angles, the nuclear form 

factor must also be considered even for the electron production. When 

t min ‘2,ucleus is comparable to unity, we have to include the effect due to nuclear 

form factors, In this subsection we limit our discussion to small angle production 
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so that the nuclear form factors can be ignored. The atomic form factors, 

elastic,and inelastic, for various atoms are discussed in Appendix B. Since 

t min is very small compared with the electron mass squared, the recoil of the 
i 

target system can be ignored even when the target is an atomic electron. Thus 

we expect that our equation (II. 7) should yield the same approximate formula 

as the Bethe-Heitler formula 13 which is much simpler to handle than ours. 

This can be shown explicitly using the simple atomic form factors given by 

(B. 38) and (B. 39) into (II. 7) and carrying out the integration with respect to t. 

The results can then be expanded in powers of m2/E2, k. p/E2, m2/(k-E)2 

and (km p)/(k-E)2, etc. After extremely tedius algebra, one finds that a fan- 

tastic number of cancellations occurs among the leading terms, leaving a 

relatively simple formula in the end, which is identical to the formula obtained 

by Schiff4’ (1952) who started from the Bethe-Heitler formula. This exercise 

shows that Eq. (II.7) is indeed identical to the Bethe-Heitler formula when 

recoil is ignored and also that the effect of the target recoil is negligible when 

kinematical conditions specified by (B.4) are satisfied. 

1. Arbitrary Atomic Form Factors 

Both elastic and inelastic atomic form factors, G;‘(t) and G2 inel( t) defined 

by (B. 5) and (B. 9) respectively, are characterized by the facts that they are 

zero when t = 0 and become constants, 2 and Z respectively, when t 2 m2 
e’ 

The t dependence of the atomic form factors is thus opposite to that of nuclear 

form factors. It can be shown that for form factors with this general behavior, 

we have 

do -= 
dQdp ap (no screening) 

co 

2cX3 E2 2x2 

-( )[ 
Irk 2 

- 2x+ 1 + 4x(1-x)1 

(l+Q)2 1 I [G2c” ) -G2W1 
t-vmin 

(l+Q)4 tmin t2 dts 

w* 1) 
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I 

where 

x = E/k, Q = E2 8 2/m2, 
m2(l+Q) 2 

tmin = 2kx(l-xj c 1 , G2(t) = G;‘(t) + G2 inel(t), 

and 

dff 2cY3. - (no screening) = x dfldp 

Iln mzjl+Q)2 -l- 
min 

_ 12Qx(l-x) 

( l+Q)4 

The function f((o!z)2) in (III. 2) is the Coulomb correction to the one photon ex- 

change approximation worked out by Bethe and Maximon l5 (1954) and is given by 

co 

f(z) = z c 1 = 1.2022 - 1. 0369z2 + 1.008 z3./(l+z), (III. 3) 
n=l n( n2+z) 

where 

Z = (z/l37)2. 

Except for the Coulomb correction term, Eqs. (III. 1) and (III. 2) can be 

derived from our Eq. (III. 7) 0 They summarize the work of many people. The 

expression for da/dadp (no screening), except for the Coulomb correction and 

the terms proportional to Z, was first derived by Sommerfeld (1939).41 The 

terms proportional to Z2 in (III. 1) and (III. 2) are equivalent to the formulae 

given by Davis -BetheLMaximom l6 (1953) and Olsen-Maximon (1959).41 The 

terms proportional to Z come from G2 inel(t) and they are usually ignored (they 

should not be!). 

It will be convenient for our later discussions to write Eq. (III. 1) in a 

slightly different form. We notice first that the logarithmic terms in (III.2) 
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can be written as 

-h mtt(l+Q)2 _ 1 = lm2'1+Q'2 (%.d & . 

min t' min t2 i 

Using the simple form factors given by (B. 38) and (B, 39) we can convince our- 

selves that the upper limit of the integration in (III. 1) can be replaced by m2(l+Q)2. 

Thus (III. 1) and (III. 2) can be combined to give 

2x(1-x) _ 

( l+Q)2 
12ex(l-x)’ G2tw) 

( l+Q)4 J 

x - 2Z2f((aZ)) 
II 

, (III. 5) 

where 

G2(w) = G;‘(=Q) + GFel (“) = z2+ z, 

and 

x = Xel + KineI = /,2(1+Q’2 [Ge2l(t) + G?‘(t)], (tSliin’ dt . (III. 6) 
t’ min 

Integrating (111.5) with respect to the solid angle, we see that the coefficients 

of G2(m) cancel each other, hence 

2x2-2x+1 

( l+Q)2 

+ 4Qx(l-xl 

( l+Q)4 1 (X-2Z2f) 0 (III, 7) 

Let us make several comments about (III. 5)) (III. 6) and (III. 7): 

(i) K. J. Kim (unpublished) derived a simple expression for da/dQdp 

using (II. 7) with a simple nuclear form factor of the form given by (B,49). He 
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found that the terms with G2(w) are missing in this case if m2(1+Q)2 is much 

largelr. than the inverse square of the nuclear radius, i. e. , m2(l+Q)2/d > > 1 in 

the notation of (B. 49). Therefore this term can appear only when the form 
, i 

factor does not become negligible for t greater than m2(l+Q)2. From this deri- 

vation it is not obvious whether the terms with G2(m) should be kept for muon 

pair production because the expression mE/d = (0.01/O. 164)A 2/3 is not much 

larger than unity when A is small. However comparisons with the exact calcu- 

lation using (II. 7) for a Be nucleus (A=9) shows that it is a better approximation 

to drop this term than keeping it when calculating the muon pair production. 

(ii) The coefficient of X in (III. 5) is proportional to the differential cross 

section of two real photon annihilation, da(y + y-Q+ + Q-)/d(p*k) (see Eq. (C. 1) 

of Kim and Tsai43(1973)). In the Weizsacker-Williams approximation, one 

obtains exactly the term proportional to X. Therefore the terms proportional 

to G2(m) can be regarded as the correction to the W. W. approximation due to 

the fact that in the pair production, one of the photon in the reaction y + y - Qf + Q- 

is off the mass shell. This also explains why terms with Go in (II. 7) will not 

show up if large t events are suppressed by the target form factors. As a con- 

sequence of this, the W. W. approximation’actually works better for muon pair 

production than for electron pair production in the calculation of du/dadp. For 

the calculation of do/dp, the W. W. approximation yields a result identical to 

(III. 7) regardless of the behavior of form factors except for the Coulomb correc- 

tion term f. This observation is of great practical importance, because it takes 

less than one hour of work to obtain (III. 7) from the W. W. method 43 whereas it 

takes about one month of hard work to obtain the same result from Eq. (II. 7). 

(iii) The fact that Eq. (III. 1) is equivalent to Eq. (III. 5), when conditions 

specified by (B.4) are satisfied, is probably the best justification for the upper 
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cut-off t 
up 

= m2( l+Q)2 of the integration in the definition of X used in the W. W. 

method proposed by Kim and Tsai (1973). 43 In the classical W. W. method, the uncer- 

tainty principle must be invoked to obtain a cut-off of this magnitude but one does 

not know exactly what expression should be used. The quantity X is proportional 

to the pseudo photon flux in the W. W. method. Our Xel is related to the quantity 

I’ of Olsen-Maximon42 by 

Xel = z2 [ 2r + 3 + 2f((zo!)2) 1 D (III. 8) 

Equation (III. 7) can also be written in terms of the functions cpl and cp2 introduced 

by Be the -Heitler 13 for the elastic scattering part and functions z,61 and zJ2 intro- 

duced by Wheeler -Lamb 14 for the inelastic scattering part: 

z 2 (cpl +z -4f) + Z($l - $nZ) 1 
- $x(1-x) Z20P 1 - T2) + wb, - $,) II , w. 9) 

where 

Z2((pl - $QnZ) = 2 /R Xel -d.l! 
(l+Q)’ 

z2(cp2 - $nZ) = 12 lrn nx”l dQ 
0 (l+Q)4 

wb, - ; anz) E 12 iw QXinel de 
0 (l+Q)4 

(III. 10) 

(III. 11) 

(III. 12) 

(HI. 13) 

. I 
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In order to obtain cpl, ‘p2, $, and +,, we have to perform integrations with 

respec& to t and Q. Both of these integrations can be done analytically for 

Hydrogen and Helium form factors, Eqs. (B. 12, 13, 14, 16, 17 and 18)) and 

the simple form factors, Eqs. (B.36 and 37), given in Appendix B. The form 

factors for other elements, Li, Be, B, etc. and Thomas-Fermi atoms can be 

integrated only numerically. Bethe 44 (1934) has derived approximate formulas 

in which the variable Q in (III. 10) through (III. 13) is already integrated out, his 

results are (Q2 G t) 

q1 - $ t.Ilz = 4 [1 + z-2 /; (Q-@2 Gf Q-3dQ] , (Ill. 14) 

cp2 - 3 4 QJIIZ = 4[5/6+Z-2 1; (Q3- 6tj3 QQn(Q/S) + 3 ti2 Q - 4 ,3)G;1Q-4 dQ 1 
(In 15) 

zjl- pf!nz = 4 
rm 

l+z-lJ 6 (Q - Q2 Gpl Q-3dQ I’ , (III. 16) 

Z/J, - i QnZ = 4 5/6 + Z-l / 
m 
6 (Q”- 662 QQn(Q/S) + 362Q-4d3)G;1Q-4dQ 1 

J 

(III. 17) 

where 6 = m2k/(2EE’) and E’ = k - E. Bethe’s formula are only approximately 

true. Since the integration with respect to Q in (III. 9) through (III, 13) can be 

carried out analytically for the form factors of hydrogen without using the Bethe’s 

approximation we shall be able to check the accuracy of the latter in Section III. 3 

after we derive the analytical expressions for (pl, cp,, #I and ZJJ~ for hydrogen and 

helium atoms in the next subsection. 

2. Hydrogen and Helium Atoms 

The atomic form factors for hydrogen are known exactly and they are 

given by (B. 13) and(B. 14). It happens that the analytical expressions for 
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x x el’ inel’ (pl’ ‘p2’ ‘1 and $, can be obtained from (III. 6, 9, 10, 11, 12 and 13) 

when j&e atomic form factors have these particular forms. As discussed in 

Appendix B, the elastic and inelastic helium atomic form factors can also be 
i 

written in the above form if the correlation betw.een the two atomic electrons is 

ignored. The uncorrelated wave function of the ground state of He atom was 

investigated by Hylleraas 45 (1929) using the variational method. The correlated 

wave function was investigated by Schull and LGwdin 46 (1956). Knase147 (1968) calcu- 

lated the cross section for the pair production using both the correlated and un- 

correlated wave functions. He found that two versions differ at most by .2%, 

hence we shall use the uncorrelated wave function for simplicity. The expression 

of X for H and He atoms can be written as 

x = xel +x. me1 ’ 

Xe1/Z2 = 2htn-h) - Qn (l+B2) + l/6 - (4/3)/(1+~~) + (1/6)/(1+~~)~ 

(III. 18) 

Xinel/Z = 2Qn(mi@ - Qn(l+B2) + 11/6 - 4Bm2Qn( l+B2) 

+ (4/3)/( l+B2) - (l/6)/( l+B2)2 , (III. 19) 

where 

6 = (t’ min) ‘12/( l+Q) = m2/ i2h(1-x)] , (III. 20) 

B = 2o! m,q/(tmm) l/2 ’ 
, (III. 21) 

Z = 1, n = 1 for hydrogen and Z = 2, q = 1.6875 for He. We note that X is 

not very sensitive to the change in production angle and atomic radius. Thus 

the angular distributions in pair production and bremsstrahlung are mostly 

determined by the coefficient of X in (III. 5) and (III. 80). When the energy is high 
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and the production angle is small we have B > > 1 except when x is very close 

-to 1 m 0. When B > > 1, the screening is complete, in which case we have 

Complete Screening Case (B > > 1)) 

xe1/z2 = 2 Qn(m/BS) + l/6, (III. 22) 

Xhel/Z = 2 Qn(m/BS) + 11/6. (III. 23) 

On the other hand when the screening is nonexistent, we have 

No Screening Case (B << 1), 

xe1/z2 = Xinel/Z = 2 Qn(m/s) - 1 . (III. 24) 

. - 

The integrations with respect to Q can be carried out analytically, we 

obtain from (III. 10) through (III. 13), using the expression of X given by (III. 18) 

and (III. 19) : 

cpl - $Qnz = 4Qn [1/(2rlo!)-J + 13/3 

- 2Qn(l+C2) - (13/2) C arctan (l/C) + (l/6)/(l+Cm2), (III.25) 
. 

(P2 - f Qnz = 4Qn [l/(27701)] + 11/3 

- 2Qn(l+C2) + 25 C2( 1-C arctan C-l) - 14 C2Qn(l+CV2), 

(III. 26) 

z+b, - $ Qnz = 4Qn [1/(2r, CQJ + 23/3 

- iQn (l+C2) - 17.5 C arctan C -‘+ 8C2Qn(l+C-2) - (l/6)/(l+C-2), 

(III. 27) 
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$2- 3 8 Qnz = 4&t [l/(&-/a)] + 21/3 

- 2jJn (l+C2) - 105 C2(l-C arctanc-l) f 50 C2 J!tl(l+Cm2) 

- 24C2 { - QnC2J!n(l+C-2) + +(l+ C-2), ; + (l)i , (III. 28) 

where C = 6/(2crmeq ) and G(x) is the Spence function (or Euler’s dilogarithm) 

defined by 

@e(x) = - /; + dy , (III. 29) 

whose numerical values can be obtained by a computer using the following 

formulas: 

If IXI I_ 1, @e(x) = x + 4 1 x2 + I x3 + 
9 . . . . + (xn/n2) + 0 0 0 

+(l) = 7r2/6 and G(- 1) = -7r2/12. 

If x> 1, G(x) = - + f!n2 1x1 + ?r2/3 - ql/x). 

Ifx<-1, cp(x) = - ; Qn2 1 x 1 - 7r2/6 - G( l/x). 

Following Wheeler-Lamb, 
14 we give cpl and ‘p2 as functions of a variable 

y defined by 

100mk 
Y = = 200 S/(m,Z l/3 

EE’Z1’3 
) (III. 30) 

and $1 and q2 as functions of E defined by 

E 
= 100 m k 

EE’ Z2’3 
= 200 6/(meZ 2/3 ) , (III. 31) 

where 

E’ = k - E. 
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The quantity C in (III. 25) through (IX. 28) can be written in terms of y or E as 

/(4OOo!TJ) = E z 2’3/(400 cq). (III. 32) 

i 

The reason for using the variab1es.y and E is that for Thomas-Fermi model 

ql(y), cp2(y), $,(E) and $,(E) are universal functions independent of Z. Since 

we are going to use Thomas Fermi model for all elements ,with Z 1.5, it is 

convenient to use these variables also for light elements for the purpose of 

making comparisons later. 

When the screening is complete, we have y = E = C = 0, hence 

(III. 33) 

CP~(O) = cp,(o) - 213 , (rn. 34) 

(III. 35) 

+2(O) = +p) - 213 . (HI. 36) 

When the screening is nonexistent, we have C > > 1, hence 

P1(Y) = (P2(Y) = 4M2OO/Y) - 2, 

qJ1(E) = q2(E) = 4J?.n(zoo/e) - 2. (III. 37) 

The numerical values of (PI(y), cp2(y), $J~(E) and zJ2(e) for a hydrogen atom 

are shown in Table III.1 and those for a helium atom are shown in Table 111.2. The 

values of (~~(0) and i,(O) given by (III.33) and (III.35) are related to the radiation log- 

arithms L rad and Lkad respectively and they come in the definition of radiation 

lengths of materials as will be shown in SectionII1.B. In the no screening limit, the 
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expressions for Xel/Z2 and X.&Z g’ lven by (III. 24) and the expressions for 

Ip,, (Pzz. $I and G2 given by (III. 37) are universal functions independent of 

materials. The numerical values of (III. 37) are tabulated in the last column of 

- 

Table III. 4. We note that when y > 2, (pi(y) and.rp2(y) are given approximately 

by the no screening expression, whereas $1(~) and G2(e) approach the no 

screening limit much earlier, roughly at E - 1. 

3. Checking the Accuracy of Bethe Approximation 

In the previous subsection we have derived the analytical expressions for 

(PI, ‘p2, $I and e2 without using the Bethe approximation 44 (III. 14 to 17). In 

Table III. 3 the values of (PI, ‘pa, zjl and G2 for a hydrogen atom using the Bethe 

approximation are tabulated, which are to be compared with the results given in 

Table III. 1. We note that the Bethe approximation is in general very good, 

especially when the screening is effective. We shall assume that the Bethe 

approximation yield results with the same degree of accuracy when applies 

to other atoms for which the analytical expressions for (PI, (p2, z,6I and +2 

are not obtainable. 

4. Thomas-Fermi Atoms 

When Z is large, Thomas-Fermi model of atoms can be used. We shall 

use the Moliere representation of Thomas-Fermi atom discussed in Appendix B. 

Using these form factors and the Bethe’s approximation, (III. 14) through (III. 17), 

we obtain the numerical values for (PI(y), ‘p2(y), Ql(e) and $2(~); the results are 

shown in the columns labeled “TFM” in Table III.4. Since numerical tables are 

hard to use in the practical application, we have constructed approximate analyti- 

cal expressions which reproduce the numerical values obtained above to within $& 
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These expressions are: 

qyy) = 20.863 - 2k-1 [1 + (0.55846~)~] 

- 4 [I - 0.6 exp (-0.9y) - 0.4 exp(-lo5y)J s’ i (III. 38) 

1 
1+ 6.5y+ 6y2 

, (III. 39) 

L 

z$+E) = 28.340 - 2Jn [l + (3.621~)~] 

- 4 [1 - 0.7 exp (-8~) - 0.3 exp (-29.2e)] , (III. 40) 

q2w = dqE) - i 1 
1+4oe +400e2 

. (III. 41) 

In Table 111.4, the columns labeled “Analytical Simulation” refer to the results 

using the above equations. These equations are not entirely obtained by curve 

fitting. They possess the following general properties which all these functions 

must have: 

1. (Pi(Y), T2(Y), $,( ) E and $2(~) are all monotonically decreasing functions, 

and in the no screening limit all of them must reduce to the common analytical 

expression given by (III. 37). 

2. The relations (III. 34) and (III. 36) must be satisfied in the complete 

screening limit, i.e., 

qo) - cp2(0) = qo) - q2(0) = 213 . (III. 42) 

Also in general, we have 

(P,(Y) 2 cp2(Y) 

where the equality signs hold only when y and E are large. 
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3. (~~(0) and $I( 0) determine the radiation length of materials [see 

-(III. 6&j], th erefore these two numbers must be fitted first, namely 

(~~(0) = 20,863 and $(O) = 28.352 . (III. 43) 

The particular analytical forms chosen in the above will become obvious after 

the next discussion. 

In order to calculate energy-angle distribution, da/dadp and da/dRkdk, we 

have to know Xel and Xinel. However, the angular distribution of bremsstrahlung 

and pair production are mostly determined by the multiple scatterings in the 

target, rather than the production mechanism. Therefore Xel and Xmel obtained 

from using the simple form factors discussed in Appendix B, see Eq. (B. 38) and 

Eq. (B. 39)) should be adequate. The numerical values are only slightly greater, 

at most 4%, than those of Thomas-Fermi model in the intermediate screening 

region. In both the complete screening and no screening limits, the results must 

agree with that of Thomas-Fermi because of the way in which the simple form 

factors are constructed. In the following we give the expressions for Xel, Xinel, 

cpl, (p2, $I and $2 corresponding to the simple atomic form factors given by 

(B. 38) and (B. 39): 

X a2m2( l+Q) 2 
el = z2 

a2t’ +1 
-1 , 

min 1 
(III. 44) 

X inel (III. 45) 

% = 2(l+Qna 2 2/3 Z 2 me) - 2Qn( 1 + b2) - 4b arctan (b-l) , (III. 46) 
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92 = 2(2/3+Qna Z 2/3 2 2 me) - 2Qn (l+b2) 
- 

+ 8 b2 { 1 - b arctan (b-l) - 0.75 Jn (1 + bm2) ) , (nI.47) 

% 
2 = 2(1+ f?n a’ Z 4’3m3 - 2kln (1 + bf2) - 4b’ arctan (b-l) , (III. 48) 

$2 = 2(2/3+Qna 2 413 Z 2 rnJ - 2b(l+bt2) 

+ 8bf2{l -b arctan(b’-l) - 0.75Jn(l+bf-2)i , (III. 49) 

where a and a’ are the atomic parameters which appear in the simple form 

factors (B. 38) and (B. 39) respectively. They are tabulated in Table B. 4. b 

and b’ are b = ad and b’ = a’6, where 

For Thomas-Fermi-Moliere atoms, we have 

2 2/3 2 cpl(0) = 2(1 + Qna Z ma) = 20.863 , 

z/,(O) = 2(1+ !2na12 Z4’3m$ = 28.340, 

b = 0.55846~ , 

b’ = 3.6201 E . 

(III. 50) 

(III. 51) 

(III.52) 

(III. 53) 

(aI.54) 

Substituting these relations into (III.46 through 49) and compare the results with 

(III. 38 through 41)) the reader will see how we have obtained the latter. We have 

obtained them by slightly changing the former to fit the numerical results given by 

“TFM” in Table III. 4. The column labeled “Monopole Simulation” refers to the 

numerical results of using (III. 46 through 49) with parameters given by (III. 51 

through 54). The name monopole comes from the fact that the atomic form 
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factor F defined in (B. 7) has a monopole structure for the simple form factor 

defined in (B. 38). 

Another way to simulate the Thomas-Fermi-Moliere model is to use the 
i 

hydrogen like form factors, regarding 77 in (III. 25) and (III. 27) as two different 

parameters determined by the values of rpl and $I in the complete screening 

limit given by (III. 43). The desired ‘pI and cp2 can be obtained from Eqs. (III. 25) 

and (III. 26) by setting 

z1/3 
rl = 

xp (13/12) 
2: 184.15 ’ (III. 55) 

and the desired z/l and G2 can be obtained from Eqs (III. 27) and (III. 28) by setting 

z2/3 
rl = 

xp (23/3) 
2: 1194 l 

(III. 56) 

The results of this simulation are given in the column labeled “Dipole Simulation” 

in Table III.4. The name “dipole” comes from the fact that the atomic form 

factor F for a hydrogen atom has a dipole structure. 

Let us discuss the numerical results shown in Table III.4: 

1. As mentioned previously, in the limit of large y and E , all the functions 

ql(y), q2(y), Gl(e) and #J,(E) reduce to the common expression given by Eq. (III. 37), 

whose numerical values are also tabulated in the column labeled “Unscreened 

Target” in Table III.4. We notice that the inelastic screening functions G1(e) 

and #Jo approach the asymptotic form much sooner than the elastic screening 

functions cp,(y) and cp2(y) do. Also the approach to the asymptotic form is the 

earliest for the “Dipole Simulation” and the next is the “Monopole Simulation” 

and the last is the “TFMrrO Since “Dipole Simulation” uses the hydrogen form 

factor and “TFM” is supposed to be good when Z is large, we expect that for 
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small Z elements the true values of the screening functions must lie somewhere 

-between “Dipole Simulation” and “TFM”. “Monopole Simulation” has such a 

property. i 

2. In Section 1 C ,of Appendix B, we show that the Thomas-Fermi-Moliere 

model of atom is applicable for elements with Z 2 5 as far as the calculation of 

(p,(O) is concerned. Our investigation here shows that functions (pl(y), (p2(y), 

zl, 1 (E) and # 2 (E) are relatively insensitive to the detail of the atomic form factors 

as long as they are normalized correctly at y = 0 and E = 0. “Monopole Simulation” 

differs from “TFM” by 2% at most and “Dipole Simulation” differs from “TFM” 

by 4% at most. 

3. At high energies where the screening is almost complete in large part 

of the spectrum, the places these differences show up occupy but a small fraction 

of the total spectrum. The difference is appreciable only when 

0.2 <y <3.0 (III. 57) 

and 

0.02 <E <0.6 o (III. 58) 

Using the definition of y and E given in (III. 30) and (III. 31)) we see that there are 

two small regions in the pair production spectrum, at high energy and low energy 

tips, which are relatively sensitive to the detail of the form factors. Since the 

elastic contribution is more important than the inelastic unless Z is very small, 

let us consider the elastic case for example. From (III. 57) and (III. 30) we 

obtain 

100 me 100 m 

3.0kZ1’3 
<(l-x or x) < 

0.2 kZle/3 
(III. 59) 

where x = E/k. For k = 10 GeV, the right hand side is l/(40 Z 113 )0 
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On the other hand for the bremsstrahlung spectrum only the high energy 

tip is.+sensitive to the detail of the form factors, the corresponding inequality is 

i’ 

100 me 100 me 

3.0 ,Zl/3 < 1--y < o*2 EZ1/3 (III. 60) 

where y = k/E. 

Let us summarize the result of this subsection by the following prescription: 

1. For hydrogen and He atoms, dg/dQdp can be obtained from Eq. (III.5) 

with X given by (III. 18) and (III. 19). dc/dp can be obtained from Eq. (BI.9) with 

cpl, ‘p2, z,bl and $2 given by Eqs. (III. 25, 26, 27 and 28). 

2. For Z ~3, da/dQdp can be obtained from Eq. (lIL5) with X given by 

(III.44) and (III.45) and the parameters a and a’ given in Table B.4. 

3. For dg/dp, we use Eq. (III. 9) with (pl, (p2, $, and G2 given by Eqs. 

(III.46 through 49) for Z = 3 and Z = 4, &d Eqs. (III.38 through 41) for Z 2 5. 

The angular distribution of an electron for the pair production at small 

angles is mostly determined by the multiple scattering in the target rather than 

by the angular distribution of the production. Hence in general one needs to know 

only very qualitative features of dcr/dQdp. This is the reason why we did not try 

to give a better prescription than 2. above, which is accurate only to within 4% 

as discussed before. 

dgb/dQkdk and dab/dk of the bremsstrahlung can be obtained from Eq. 

(III. 80) and (III. 82) with X, (pl, (p2, ,$l and q2 given for various atoms prescribed 

above. 

5. Total Pair Production Cross Sections 

Equation (III. 9) can be integrated with respect to p to obtain the total cross 

section. The total pair production cross section is an important quantity because it 
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determines the attenuation constants for the photon in materials. In general, 

-the i.nJegration can be carried out only numerically. However, when the energy 

- 

is high (k > 10 GeV), the functions (pi(y), (p2(y), $I( E) and $J~( E) can be approxi- 
i’ 

mated by their values at y = 0 and E = 0, and the result can be integrated easily 

to yield 

alw) = i 01 ri Z2 (rpI(0) - [ 

2 -- 
21 {z2+z\ , 1 

$nz-4f/+Z{$+o) - p enz) 

(III. 62) 

where we have used the relations 

(~~(0) - cp2(0) = 3,(o) - q2(0) = 213 . (III. 63) 

This is the cross section at an infinite energy. The numerical values of U.(W) 

for various elements together with the quantity 

‘$ = u(wuJ-&u~k) (IL 64) 

as a function of photon energy are given in Table III. 5. The values of cr(oo ) are 

obtained from the values of radiation logarithms given in Table B. 2 and Eq. (II. 62). 

In the calculation of the energy dependence of the cross section, 5, we have 

included the correction due to the recoil of the target electron which was ignored 

in Eq. (III. 9). The exact calculation of the lowest order cross section for pair 

production off an electron target was first performed by Votruba (1948). This 

calculation involves eight Feynman diagrams. Earlier, Borsellino (1947) and 

Ghizzetti (1947) considered an approximation in which only two diagrams shown 

in Fig. 1 are retained. Mork (1967) made detailed numerical comparisons 

- 32 - 



between Votruba’s and Borsellino’s formulas. He found that when the incident 

photo% is above 8 MeV, the difference between the two is less than 0.1%. The 

cross section considered by Borsellino is a special case of the formula given in 

Section II. Letting m = mi = mf e = m and using. the form factors corresponding 

to a pure Dirac particle, we obtained numerical results which are in complete 

agreement with the Borsellino cross section which was evaluated by Mork (1967). 

When k > 50 MeV, the Borsellino cross section can be written analytically as 

where G = an (2k/mJ. The first two terms can also be obtained by integrating 

Eq. (III. 9) using Eq. (III. 37), therefore the square bracket term represents the 

correction due to the recoil. The fractional decrease in cross section due to 

recoil is thus given by 

- 3G2 + 6.84G - 21.5I)/(FG - 8.074) . 

This correction factor is derived without taking the screening into account. 

However the screening is important only when the momentum transfer is much 

less than me, whereas the recoil is important only when the momentum transfer 

is not negligible compared with me. Therefore we are allowed to consider two 

effects separately. Let us denote the total cross section without the recoil 

correction by o(k) and the inelastic part of this cross section by ain (k), then the 

expression for t with recoil correction can be written as 

The numerical values of A are given at the bottom of Table III. 5. Because of 

G3 term, A is not negligible even at k = 1 GeV. a,lQ/c(m) is proportional to 
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l/(%+-l), hence the recoil correction is more important for light elements. In 

the calculation for 6, we have used Eqs. (III. 25) through (III. 28) for H and He, 

whereas for all other atoms we used the Thomas-Fermi-Moliere model, 

Eqs. (III. 38) through (III. 41) and Eq. (III. 9). We note that [ is not negligible 

even at photon energy of a few GeV especially for light elements. The importance \ 

of the recoil correction to the incoherent part of the cross section was first 

emphasized by Knasel (1970) who did a very detailed study of g(k) from H and 

He. It is comforting to know that our numerical results agree with his 

even though the intermediate steps involved in the two calculations are somewhat 

different. The effect of radiative corrections is not included in Table III. 5. 

This effect can be accounted for by multiplying o(m) given in column 3 by a 

factor 1.0093 according to Mork and Olsen (1965). 

B. Radiation Lengths of Materials 

I 

When one is dealing with electrons and photons at high energies, it is 

convenient to measure the thickness of the material in units of radiation length. 



1 ~----..- 

Let us define the unit radiation length, denoted by X0, of a material by 

-x0’ = ar:NA -l Z2 {cpl(0) - $ InZ -4f 1 

or equivalently, 

xO = 716.405 A/ Z2(Lrad - f) 
c 

+ z L’ 3 rad * 

(III. 65) 

(III. 66) 

In Table III. 6, we give the numerical values of X0 from Z = 1 to Z = 92. In this 

Table, we have used the values of Lrad and Lbad from Table B. 2 for elements 

Z 5 4,and for Z 2 5 we have used the Thomas-Fermi-Moliere expressions 

derived in Appendix B.: 

L = b (184.15 Z -l/3 
rad ) (III. 67) 

and 

Lkad = J3.l (1194 z -2/3 ) . (III. 68) 

There are many Tables of radiation lengths available in the literature 

which involve different degrees of sophistification in the calculation. Let us 

comment on some of the well known ones. The Table I in Bethe and Ashkin 22 

(1952) can be obtained from Eq. (III. 66) without the Coulomb correction f and 

with the radiation logarithms given by 

L = h (183 Z -l/3 
rad ) (HI, 69) 

and 

Lkad = !h (1440 z -213 ) (III. 70) 
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for all elements including Hydrogen. As a consequence they obtained for ex- 

ampE, X0 for H 58 gm/cm2 instead of our value of 63.05 gm/cm2 and for 

Pb (Z=82) 5.8 gm/cm2 instead of our value of 6.37 gm/cm2. It is clear that 

(III. 69) and (III. 70) cannot be used for hydrogen and the Coulomb correction f is 

not negligible for lead. Therefore’, the table given by Bethe and Askin cannot 

be trusted to within 10%. 

Table 5.24.1 of Rossi” (1952) can be obtained by assuming that both Lrad 

and Lkad are given by b(183 Z -l/3 ) and the Coulomb correction is taken care of 

by multiplying (III. 66) by a factor 

[l + 0.12 (Z/82)2] , (III. 71) 

and setting f in (III. 66) equal to zero. Since the inelastic contribution is rela- 

tively unimportant for high Z materials, Rossi’s method gives fairly correct 

values for high Z materials but for light Z elements it is as bad as Bethe and 

Ashkins. 22 

Table I of Dovzhenko and Pomanski4’ (1963)) which is also reproduced in 
49 1972 version of the Rosenfeld Tables, is closest to our Table III. 6. The slight 

difference in numerical values is due to the following reasons: 

1. For H and He, we have used the analytical expressions for Lrad and 

L’ .48 rad given by (III. 33) and (III, 35)) whereas Dovzhenko and Pomanski obtained 

L rad and L’ rad from numerical integrations, which is probably not accurate 

enough. Their radiation lengths for H and He are 62.6 and 93.1 gm /cm2 re- 

spectively. 

2. For light elements, we used the same procedure to obtain Lrad, but a 

different procedure was used for Lkad. Dovzhenko and Pomanski interpolated 

Lkad between H and N assuming that for N the ratio Lkad/Lrad is 
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given by 

-c, 

Lkad ’ Lrad = Qn(l400 z -2/3 )/b-l (191 z-1’3) . (HI. 72) 

Our interpolation is between He and B, assuming that for B the ratio of radiation 

logarithm is given by 

Lkad ‘Lrad = ti(1194 z -2/3 )/J?n (184.15 Z-1’3). 

We do not know why they used the expression Lrad = I?n (191 Z -1’3) because 
P 

their Fig. 1 clearly show that this is an overestimate and our expression 

Qn (184.15 Z -I/3 ) will fit the dots in their Fig. 1 much better. Their use of the 

expression Lkad = Qn (1440 Z -2/3 ) comes from the mislabeling of the graph in 

the original paper of Wheeler and Lamb’4 (1939) which was later corrected in 

Errata in Wheeler and Lamb14 (1959). According to our calculation in Appendix B 

this number should be b (1194 Z -2/3 ) . 

Let us discuss some facts concerning the use of Table III. 6. 

(a). If we ignore the term (2/21) (Z2 + Z) in Eq. (I&62), the total pair pro- 

duction cross section at infinite energy can be written as 

7 A (III. 73) 

At a finite photon energy, we have 

o(k) = c(m)(I-[). (III. 74) 

The values of parameter { for various elements are tabulated in Table IV.5. 

Thus the attenuation of a photon beam in a target can be written as 

exp 



if the thickness of the target t is measured in units of X0. At high energy, t 

is much less than one, but even at several GeV t can be a few percents as can 

be seen from Table III.5. i 

(b). The term ignored,. (2/21)(Z2-+ Z), comes-from @I(O) - G2(0) = e,(O) - $,(O) = 2/3. 

The relative importance of this term increases with Z as can be seen from (III. 62), 

but even for Pb(Z = 82) the error involved is less than 0.7%. If one is unwilling 

to tolerate this kind of error, one should use the total cross sections in calculating 

the attenuation factor instead of Eq. (III. 75). The reason why this term is ignored 

in the definition of the radiation length is that one would like to use the radiation 

length in dealing with both the bremsstrahlung and the pair production, and the 

terms 9,(O) - G2(0) and $I(O) - $,( 0) appear with different sign and relative 

magnitude in two problems [compare (III. 62) with (III. 83)] . 

(c). Our definition of radiation length refers strictly to a free atom. We have 

ignored the effects due to molecular bindings, crystal structures, polarization 

of medium, etc. We have also ignored the radiative corrections. Using Heitler- 

London model of H2 molecule, Bernstein and Panofsky5’ (1956) showed that in 

the complete screening limit the effect of the molecular binding is to increase 

the pair production cross section by 2.8 %, hence the radiation length for H2 is 

61.283 gm/cm2 instead of 63.047 gm/cm2 shown in Table III.6 for H. There 

seems to be no follow up calculations on this subject despite Bernstein and 

Panofsky’s calculation indicates that the effect could be significant also for other 

molecules D The effects due to the crystal structure are investigated theoretically 

by &eral151 (1956,1957). The bremsstrahlung produced by a thin crystal has 

many spikes and it is linearly polarized. Hence it is a source of linearly polarized 

semimonochromatic photon beam at high energy photon laboratories. This sub- 

ject was extensively reviewed by Diambrini 52 (1968). The attenuation constant 
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- I 

of a photon beam in a thick crystal is dependent on the polarization of the photon. 

I Cabibbo, et a153 (1962) proposed that this fact can be used to obtain a polarized 

photon beam and also that it can be used as an analyser for the photon polariza- 

tion. The most up to date discussion on this subject can be. found in a paper by 

- 

Eisele et a154( 1973). The effects of polarization of medium become important 

only when the energy is above 1000 GeV. The references’on this subject can be 

traced back from the paper of Vartoloeev and Svetlolobov 55 (1959). 

(d). Assuming that the molecular binding can be ignored, we can calculate from 

Table III. 6 the radiation lengths of isotopes such as D2, chemical compounds 

such as H20 and CH2, and mixtures of molecules such as air. Let us calculate 

the radiation lengths of D2, H20, CH2 and air as examples: 

Deuterium XotD2) = X0(D) = XoW2) WD)/MtW 

= 63.047 X 2 = 126.1 g&cm2 

IJ,O Using the atomic weights and the radiation lengths of H( Z = 1) and O(Z = 8) 

given in Table III. 6, we may calculate the radiation length of water denoted by 

XO(H20) from the equation 

WH) + Ator = gg + * , 
XO(H20) 0 0 

which yields 

XO(H20) = 36.0823 gm/cm2. 

m2 Similarly, from the A and X0 of Carbon (Z = 6) and H( Z = 1) in Table III. 6, 

we obtain 

XO(CH2) = 44.775 grn/cm2. 
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&-Assuming that air consists of 76.9% Nitrogen (Z = 7), 21.8% Oxygen (Z = 8) 

and 1.3% Argon (Z = 18) by weight, we have 

l- .769+ .L + 218 . o-13 
Ko(Air) = x0(N) X()(O) X()(A) .’ 

which yields 

Xo(Air) = 36.664 gm/cm2. 

C. Muon Pair Production 

The existence of atomic electrons can be ignored in the muon pair pro- 

duction because tmin involved is much larger than the inverse square of the 

atomic radius and also because the threshold energy required is too high for 

production in the electron field. Instead of atomic form factors, we need to 

consider the nuclear form factors. Most of the cross section occurs within a 

few units of the characteristic angle, 8 : 
C 

ml/E, and in this small angular 

range,only the elastic form factor is important. Equation (III. 5) can be used for 

calculating the energy-angle distribution, except now G2(t) is a nuclear form 

factor 0 Since G2(m) = 0 for nuclear form factor, the result of (III.5) is identical 

to that obtained by using the Weizsacker Williams approximation 43 except for the 

Coulomb correction f. Detailed derivation of Weizsaker-Williams approximation 

and numerical comparison with the result obtained from the Born approximation, 

Eq. (II. 7), can be found in Kim and Tsai 43 (1973). For simple form factors 

given by (B, 49)) the integration with respect to t in (III. 6) can be carried out 

analytically. We obtain 

x = z2 / 
m2( l+JQ2 tt-t&h) & 

t’ min (l+ t/d)2 t”- 

l+b 
-1 

1+ c-1 , 
(III. 76) 
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where d = 0.164 A -2/3 GeV2, b = tmm/d and c = m2(1 + Q)2/d. At high energies - 

and small angles, b is much less than unity, whereas c is of order unity for light 

nuclei. Hence X is relatively insensitive to small variations in angle, energy as i 
well as nuclear radius. The energy-angle distribution are determined mostly 

by the coefficient of X in (IIL5). We have also used the experimental nuclear 

form factors of Be nucleus shown in (B, 50) and (B. 51). We found that for small 

angles, the numerical values of X is quite insensitive to the detailed behavior 

of the form factor at large t. 

When the production angle gets large, (tmm) l/2 becomes comparable to or 

greater than the internucleon distance, in which case the inelastic nuclear form 

factors [see Eqs. (B. 52) .and (B. 53)] as well as the meson production form 

factors [see Eqs. (B. 56) and (B. 57)] must be taken into account. The contri- 

butions due to these form factors can be handled by inserting the appropriate 

form factors in Eq. (II. 7). However if one wants to obtain a less accurate but a 

simple expression, we may use (III. 5) with X calculated according to the 
.43 Weizsacker Williams method given by Kim and Tsar 

t 
1 I X=2mi ~~ 

up dt (U- m)2 

7 I 
drn: [(t - trnm W2 + 2t~inW1] 9 

min m2 i 

where t = m2(1 + Q2. X’s for various form factors are considered in Kim 

and .de (1973). The reader should refer to that paper for details. 

D. Energy Angle Distribution of Bremsstrahlung 

The matrix elements of the bremsstrahlung is related to those of pair pro- 

duction by the substitutions k - - k and p - - p, where p is the four momentum 

of either the incident particle in the bremsstralung emission or the four momen- 

tum of the one of the pair of particles in the pair production. In the energy-angle 
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distribution of the bremsstrahlung, all the final particles except the photon is 

inteated out. In our calculation of the energy-angle distribution of the lepton, 

all the final particles except one lepton is integrated out. We show first that , i’ 

these two partially integrated cross sections are also related by the substitution 

rules . To the lowest order in LX, the energy-angle distribution of the bremsstrah- 

lung for an electron is the same as that for a positron. Similarly to the lowest 

order in CY, the electron and the positron have the same energy-angle distribu- 

tion in the pair production. For convenience let us call the incident particle in 

the bremsstrahlung a positron and the detected particle in the pair production 

an electron. With this convention, the final state integrations in both cases are 

with respect to a positron and the hadronic final states. Let k, pi, pf, P+ be the 

four momenta of the photon, the initial hadron, the final hadron and the final 

positron respectively and p the momentum of either the initial positron in the 

bremsstrahlung or the final detected electron in the pair production process. 

In the laboratory system the energy-angle distribution of the bremsstrahlung can 

be written as * 

3 
dab=& G 1 d3P+ I d3pf - - 

milpl + 2E+ ) 2Ef S4tk + P+ + pf - P - pi) 

Atk, P+’ Pf’ P, Pi) , (III. 77) 

where A is the matrix element squared averaged over the initial polarizations 

and summed over the final polarizations of all the particles. The substitution 

rule says that for the pair production the matrix element squared averaged over 

the initial polarizations and summed over the final polarizations of all the parti- 

cles is given by -A( -k, p+, pf, -p, pi), where the minus sign in front of A comes 
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from the fact that in the pair production there is only one antiparticle and vv = -I. 

_ Hen= the pair production cross section can be written as 

do 1 z.E! 
pair = $k 2E / 

d3p+ d3pf 
2E, j 2~f S4tp + P+ 4 pf - k - P$ 

angle 

t-1) At-k, P+s Pf, -P, Pi) 0 (III. 78) 

Comparing Eqs. (III. 77) and (III. 78), it is obvious that the two energy- 

distributions are related by 

d”b 
EQz= - 

k2E 

k -L- k 
IJ P 

p3 ’ 
(III. 79) 

It was shown by Olsen l7 (1955) that Eq. (III. 79) is still correct even when the 

Coulomb correction is included. In the earlier paper of Bethe and Maximon 15 

(1954), it was erroneously stated that the Coulomb correction does not affect 

the bremsstrahlung cross section whereas it does affect the pair production 

cross section. Using the substitution rule (III. 79)) we obtain the energy angle 

distribution of electron or positron bremsstrahlung from (III. 5): 

dab 2a3 E2 
qaE= - m4 

2y-2 
7rk ( l+Q)2 

+ 126(1-y) 
( 1+Q)4 I 

G2(m) 

+ x - 2z2f((o!z)2) , (Et. 80) 

where G2(m) = G;‘(m) + Gfel (03) = z2 + z, y = k/E and Q = 0EE2/m2 0 The 

Coulomb correction f is given by (III. 3) and the function X is given by (III. 6). 
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which is identical analytically to that for the pair production. However numeri- 

cally tmm can be quite different in two problems because in the pair production 

we have E/k < 1, whereas in the bremsstrahhmg we have k/E < 1. This has a 

consequence that the complete screening formula has a wider range of applica- 

bility in the bremsstrahlung problem than the pair production. 

After integrating with respect to the photon angle ok, the term proportional 

to G2(a) in (III. 80) vanishes and we obtain 

dob (r3 
-=--m2k dk 1. [( 

4 
3-3 4y+y2 z2t(P -$QnZ -4f)+ Z(+, - 1 $QnZ) 1 

(III. 82) 

The function ‘pI, ‘p2, $I and z/2 are identical to those for the pair production 

problem. When the energy is high and if one is not particularly concerned with 

the detailed shape at the high energy tip of the bremsstrahlung spectrum, the 

functions $,, G,, ii), and JI, can be approximated by their values at y = 0 and 

E = 0. Under this approximation, usually refered to as the complete screening 

case, we may write (III. 82) as 

dab = 40,r2 1 4 
dk OE 3-3 I( 

4 y+y2 z2(Lrad - f) + ’ L;ad] 

+ f (l-y) (Z2 + Z) 1 , 
(Complete Screening Formula) 
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where Lrad and Lkad are tabulated in Table B, 2. If we ignore the term 

( I-yuZ2+Z)/9, then Eq, (III. 83) becomes proportional to 1/x0 defined in (RI. 66). 

In the infrared limit (y - 0) the term is roughly 2.5% of the terms retained. 
i 

Hence for any accurate work these terms should be retained. However if we 

are willing to ignore 2.5 % error, then (III. 83) without ( l-y)(Z2+Z) can be 

written as 

p(k) dkdT = % 5 - $ b =k/W (III. 84) 

where p(k)dk is the number of photons in the energy range dk after an electron 

passed through a target of thickness dT radiation length. The advantage of 

(It. 84) is that it is independent of target material. In Section IV we shall con- 

sider the effect of finite target thickness. 

E. Bremsstrahlung in Colliding Beam Experiment 

Let us consider the emission of a single photon in the electron-electron or 

electron-positron colliding beam experiment. In each case there are eight 

Feynman diagrams. The exact calculation was first done by Votruba 56 (1948), 

whose results are extremely complicated. Fortunately with the recent advance 

in computer, the derivation of Votruba’s formula can easily be done using various 

algebraic routines, e.g, , “Reduce” by A. C. Hearn 57 or “Shoonship” by 

T. Veltman (1965). 58 The important thing is that the result of the computer derivation 

is usually already in a form usable for the conputer to do further-numerical cal- 

culations. Hence when one is dealing with a formula as complicated as that of 

Votruba, it is easier to start from scratch than starting from the expression 

given by Votruba. S. Swenson” (1967) investigated the process e%e-- e%e-+y 

using his own version of algebraic computer routine. He concluded that near 

the forward direction only two Feynman diagrams similar to those shown in 
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Fig. II. 1 need be considered. Hence, the result is given by (III. 80) with f = 0, 

G2 = 1 and X given by the right hand side of (III. 24): 

d”b 
dnkdk = 

2y-2 + lZQ(l-y) 

( l+q2 ( l+Q)4 

+ 2-2y+y2 

(l+Q)2 
(III. 85) 

where y = k/E, Q = eEE2/mZ and 6 = f m2y/E(1-y). 

This expression is identical to the one obtained by Sommerfeld41 (1939). This 

formula can be written in such a way that it becomes usable both in the center 

of mass system and also in the laboratory system. The easiest way to do this 

is to realize that at high energies and small angles, both y = k/E and Q = eEE2/m2 

are relativistically invariant and Eq. (III. 85) can be written covariantly as 

dab 4(x3 -=- 
(JQdY Ym2 I I , (III. 86) 

where { 1 is the expression in the curly bracket of (III. 85). In the colliding 

beam experiment, the bremsstrahlung angular distribution is symmetric with 

respect to 90’. The backward peak disappeares into the infrared after the 

Lorentz transformation from the center of mass system to the laboratory system. 

Equation (IlI. 85) can be integrated with respect to angle easily, we obtain 

d”b 4a3 -= - 4 
dY ym2 

3-3 IT y + y2 kQn(m/S) - 1 
I- 1 . 

F. e+ + e- - 2y, 3y 

(III. 87) 

When a positron is incident on an atomic target, it can annihilate with an 
+- atomic electron and produce photons. The cross section for e e - 2y is of 
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2 order a! compared to the cross section for e+ + e- - e+ + e- + y which is of 
3 I order Q! . However at high energies the former is negligible compared with the 

latter except when the angle 8 k is near (2m/E) l/2 which corresponds to 90’ in : 

the center of mass system of initial ef and e-: Since e+ + e- - 2y has a two 

body final state, the energy of the photon is fixed at a fixed angle: 

k= m2+Em 
m + (E-PCOS~ ) k yz 

E/(1+ + ye:) , 

ok<<1 

(ICI. 88) 

which is equal to the value of km= in the reaction e+ + e- - ef + e- + y. For 

ek near t2/y) l/2 $ the photon spectrum ds/dakdk from e+ + H2 has a sharp spike. 

The spike, instead of being a 6 function, has a finite width because of radiative 

corrections (Tsai, 1965 60 ). This spike is a very useful source of semimonochromatic 

photon beam. The detailed theoretical discussions of the properties of this spike 

and the background were given by Dufner, Swanson and Tsai (1966). 61 The cross sec- 

tion for e+ + e- - 2y can be written as 

daa 
d’k 

a2 
2m2( 1+z)2 

2y + l+Q + 4Q(l+~)~’ 
l+Q - 2Y (l+Q)2 ’ J 

(III. 89) 

y>>l 

2 2 where y = E/m of the incident positron, z = y 02d2 and Q = y 0 k. If one is inter- 

ested in obtaining the semimonochromatic photon beam, then the. angle Bk must 

be chosen so that z is of order unity, in which case the spike is very pronounced 

compared with the ordinary bremsstrahlung background given by (III. 80) 0 On 

the other hand if one is not interested in obtaining a semimonochromatic beam 

but wants to know how the angle-integrated photon spectrum is affected by the 
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annihilation photons, it is more convenient to write (III. 89) in terms of daa/dk 

using the relation (III. 88). We obtain 

+ (1-Y) + 
(y/2-&+ (l-y) 

Y 1 , (HI. 90) 

where y = k/E. We have ignored the last term in (III. 89). This equation must 

be multiplied by Z before we can make the comparison with (III. 82). The effect 

is largest for hydrogen, therefore let us consider this as an example. When k 

is small we have 

(daa/dk)/(dcb/dk) - 7r - = 7/y 
k-0 ay50 (III, 91) 

which shows that effect in the soft photon region is not noticeable unless the 

incident positron energy is below 300 MeV, Near the high energy end of the 

spectrum (y - 1) , we have 

10 (daa/dk)/(dab/dk) - - 1 
k-E mY) + (1-Y) 9 (III. 92) 

which is clearly peaked at y = 1 with a small width (Ay - (l/27). If the effect of 

the radiative correction is included, the width of this spike gets widened. Hence 

when E > 1 GeV it is probably unnoticeable. 

G. Muon Bremsstrahlung 

As noted previously, even though tmm for the bremsstrahlung has an identi- 

cal analytical expression to that for the pair production, numerically the former 

can be much smaller than the latter. In the muon pair production, the atomic 

screening as well as the production in the electron field can be ignored, but for 
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the muon bremsstrahlung neither of these effects can be ignored when the photon 

emit+ed is very soft. The atomic radius is roughly given by a - Z --l/3 
137/me, 

hence the atomic screening becomes important when i 

t’1/2’ m2 k( 1+1) 
15 mina= z-1/3 137 

2E( E-k) . m e 

In the forward angle, this gives 

Z1’3 E 
1370 GeV ’ 

(HI. 93) 

(III. 94) 

which shows that when E is above one hundred GeV, the atomic screening is not 

negligible. On the other hand, when E is much below one hundred GeV, the 

atomic screening becomes non-negligible only when very soft photons are emitted. 

The energy loss of a muon due to bremsstrahlung is negligible compared 

with that due to ionization when the energy is so low that its range is consider- 

ably less than (mP/me)2Xo, where X0 is the unit radiation length defined pre- 

viously. However when the muon energy is one hundred GeV or higher, its range 

becomes comparable to or greater than 40,000 X0’ After a muon passes through 

a material of thickness comparable to 40,000 X0, its energy is greatly affected 

by the bremsstrahlung. When the muon energy is higher than one hundred GeV, 

the nuclear form factor is negligible except at the bremsstrahlung tip, whereas 

the atomic form factor affects the low energy photon emission.- This means 

that Eq. (III. 82) can also be used for the muon bremsstrahlung except near the 

high energy tip of the bremsstrahlung. The parameters y and E defined in 

(III.30) and (lII.31) should now read respectively 

100m2k 

Y=EoZ1/3 m e 
(III. 95) 
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and 

100 m2 k 
4 

E=EoZZ/Sm l 

e 

(III. 96) 

As noted previously, the function ~~ and ‘pi become approximately equal to 

the value given by the unscreened target at around y = 2. Substituting y = 2 in 

(III. 95)) we obtain a relation similar to (III. 94). 2 

It should be emphasized that the problem we are discussing here is usually 

called the “outer bremsstrahlung” or “external bremsstrahlung”, in contrast to 

the “inner bremsstrahlung” or “internal bremsstrahlung” which one deals with 

when discussing the bremsstrahlung emission during the large angle (angle much 

larger than one characteristic angle) scattering. There are two major distinc- 

tions between the two kinds of phenomena (MO and Tsai 62, 1969) 0 For inner- 

bremsstrahlung the scattered electron or muon is detected at an angle much 

greater than one characteristic angle. In this case the bremsstrahlung emission 

is roughly proportional to Qn( q 
2 /m2) - 1, hence the radiative corrections to 

muon scattering is about 0.25 to 0.5 of the radiative corrections to the electron 

scattering in the q2 range of 1 to 10 GeV2. This is to be contrasted with the 

corresponding ratio (me/mP)2 = 40,000-1 for the outer-bremsstrahlung. For 

the inner-bremsstrahlung, the angular distribution of photons are concentrated 

in the two directions, namely, along the incident electron (or muon) and the 

outgoing electron (or muon). The root mean square angle between the photon 

and the electron (or muon) is ~8 2 l/2 
k > : (m/E) 1’2, where E is the energy of 

the incident or outgoing lepton. For the outer-bremsstrahlung the characteristic 

angle is m/E with respect to the incident lepton. 

In the electron scattering experiment, both the external and the internal brems- 

strahlung have to be considered (see Mo-Tsai, 1969 62 and Tsai, 197165), whereas in 
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the muon scattering experiments we ‘need to consider only the corrections due 

to ths internal bremsstrahlung. The external bremsstrahlung of muons is 

important when one is dealing with shielding of muons which have energies of 
i 

more than one hundred GeV. 

IV. EFFECTS DUE TO FINITE TARGET THICKNESS 

When one is dealing with photons or electrons in any experiment at high 

energies, it is important to take into account the attenuation of the photon beam 

and the straggling of the electron in the medium. At high energies the attenua- 

tion in the intensity of a photon beam is mainly due to the electron pair produc- 

tion given by (III. 75) 0 The effects such as ionization, compton scattering, 

nuclear excitation, meson production etc. are negligible even though these 

effects have one or two less powers of Q! in their expressions for the cross sec- 

tion than the pair production. The straggling of the electron at high energies 

is mainly due to bremsstrahlung. The Landau straggling (Landau 63 1944), i.e., 

the energy straggling of the electron due to the e-e scattering, can be ignored 

compared with that due to the bremsstrahlung emission if the energy loss AE 

satisfies the inequality 65 

% (z Lrad + Lkad) AE/m > > 1 , (IV. 1) 

where L rad and L’ rad are radiation logarithms tabulated in Table B. 2. For 

hydrogen, this condition is equivalent to AE > > 10 MeV. The combined effects 

of Landau and bremsstrahlung stragglings can be found in the works of 

Bergstrom64 (1967) and Tsai65 (1971) 0 This consideration is important when 

one is interested in obtaining the shape of a resonance using electrons with 

energy less than several hundred MeV. 
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In this section we shall follow the notation of Tsai and Whitis (1966). ” Let ~- 

_ the number of photons produced by an incident electron with energy E. from a 

target of infinitesimal thickness dt radiation length in the <energy interval dk be 

P tEo, k) dtdk d*b N 
-zA X0 dtdk , (IV. 2) 

where N is the Avogardro’s number, A is atomic weight, X 0 is the unit radiation 

length given in Table III. 6, dcrb/dk is calculated according to (III. 82), The atten- 

uation factor for a photon after passing through a medium of t radiation length is 

e-Pt , where p = - $ (1 - 5 ), with 5 given in Table III, 5, The energy distribu- 

tion of the first generation electron is denoted by I(el)(Eo, E, t)a An electron 

initially with energy Eo, after passing through a target of thickness t will have 

a probability I(el) (Eo, E, t) dE of being in the energy interval between E and 

E + dE. The number of photons in the energy between k and k+ dk after an 

electron, initially with an energy E. , passed through a target of thickness t is 

denoted by I(l) (E 
Y 

o, k, t) dk. It was shown in Tsai and Whitis @ that the second 

generation electrons as well as the second generation photons are negligible 

compared with the first generation ones as long as the target thickness is less 

than two radiation lengths. Hence we shall omit the superscript “(1)” from 

I(l) (E e o, E, t) and Iy)(Eo, E, t). Another important quantity denoted by b is 

defined as 

b E lim kp(E,k) = $ 
k-0 

1 + & z2+ z 

z2 Lrad > 
, (IV. 3) 

-I- ’ Lkad 

where the radiation logarithms Lrad and Lkad are tabulated in Table B. 2. 
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A. Straggling of an Electron due to Bremsstrahlung 

The straggling function of an electron Ie(EO, E, t) was first considered by 

Bethe and Heitler13 (1934), which was later rederived and extended by EygesG7 i 

(1949). Eyges showed that if the bremsstrahlung distribution function p(E, k) 

were given by 

p(E, k) = $ b(1 - Y)~ [Qn(l - Y)]-~ , (IV. 4) 

where y = k/E, a and b are arbitrary positive numbers, then the straggling 

function for an electron would be given by 

bt E bt 
Ie(EO,E, t) = = Qn $ I’(1 t- bt) [( I 

ptEO, k)t > (IV. 5) 

where k = E. - E and I’ is the Gamma function which for small bt is given by 

I?(1 + bt) - 1 - 0.5772bt . 
bt<< 1 

The original treatment of Bethe-Heitler is a special case where a = 0. Now the 

trouble is that the actual bremsstrahlung spectrum (IV. 2) has a very different 

shape from (IV. 4). At high energies, the complete screening formula given by 

Eq. (III. 84) is adequate except near the bremsstrahlung tip. If we normalize the 

parameter b in (IV. 4) at the infrared limit, namely (IV. 3), we see that (IV, 4) is 

way too low at the high energy side of the bremsstrahlung spectrum, The factor 

(l-~)~ tends to suppress the high energy end of the spectrum, hence a = 0 is the 

most reasonable choice for this parameter. If t is so small that an electron 

suffers only a single collision, then by definition we must have 

lim Ie(Eo, E, t) = p(EO, E. - E) t . (IV. 6) 
t-o 
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This shows that the factor [h(E,/E)] bt/I’(l + bt) in (IV. 5) represents the cor- 

rectbn due to multiple collisions. If we assume that this correction factor is 

independent of the expression of p(k), from which it was derived, then we can i 
simply use a correct expression for p(k) in (IV. 5) instead of using (IV. 4). This 

procedure was first proposed by MO and Tsai 62 (1969), Subsequently R. A. 

Early67 (1972) made a detailed study of numerical solution of the electron dif- 

fusion equation using the complete screening formula for p(k) as given by Eq. 

(III. 84). He found that the maximum disagreement between his numerical result 

for IeWO, E, t) and that given by Eq. (IV. 5) with p(k) given by (III. 84) instead 

of (IV.4) is less than one percent if t is less than 0.01 r.1. However, when t = 0. 

r. 1. Eq. (IV. 5) in general overestimates Ie(Eo, E, t) at low energy end of the 

electron spectrum; for example, the overestimate is about 9% at E/E0 = 0.1. 

Based on Early’s numerical work, a better straggling function (Tsai 65 1971) was 

proposed: 

Pq)’ EO-E) t/I’(l + bt) . (IV. 7) 

This function is within 1% of Early’s numerical work when t < 0.05 r. 1. and 

E/E0 > 0.2. The best fit to Early’s numerical work was obtained by G. Miller 69 

(1971) whose result is 

Ie(Eo, E,t)= ’ I’(1 +bt) p(k) t 

X [l+ bty { .53875 + y (-201938 + .9634y)t] , (IV. 8) 

1 

where 

Y = tEo - W/E, l 
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1. I 

This formula agrees with Early’s numerical results to within 0.6% for E/E0 > 0.1 

and L~0.1 r.1. The precise form of Ie(Eo, E, t) is very important in the radia- 

tive corrections to the electron scattering experiment. 62,65,69 
i 

B. Thin Target Bremsstrahlung 

The photon spectrum from a target with thickness t can be calculated from 

the following formula (Tsai and Whitis 66 ) 

Iy(EO, k, t) = It e-P(t-t’) dt’ jEo IeGO’ E, t’) P(E, k) dE, (IV. 9) 
0 k 

where p = $ (1 - 5 ) and < is tabulated in Table III. 5. The integration with 

respect to t’ can be carried out analytically if the target is so thin (t 50.1) that 

the inverse of the gamma function in (IV. 7) can be approximated by 

I+(1 + bt’) - 1 + 0.5772bt’. We notice that when t << 1 r. 1. , .Ie( E. , E, t) is 

very large near E = Eo, hence we need to know very accurately its value only 

near E = Eo, in which case (IV. 9) can be approximated by 

-t 
Iy(EOs k, t) - J &’ e-/-#-t’) 

t<<1 0 
(I+ 0.5772bt’) jEo 

1 

k 
(yFt -’ p(E,k) g 

0 
(IV. 10) 

= I E” 
k 

eept [e + (-j - 5) (1 _eBT) + yeBT (g _ F)] 

P(E, k) dE/EO , (IV. 11) 

where 

T = bt, B = -7/(9b) + Pn (1 - E/EO) , 

y = 0.5772, p (E, k) and b are given by Eqs. (IV. 2) and (IV.3) respectively. It 

should be emphasized that even for t as small as 0.01 r. 1. the result of (IV. 11) 
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differs by several percents from that of using (IV.2) near the bremsstrahlung 

tip (0.98 < k/E0 < 1), therefore for any accurate work using the bremsstrahlnng 

tip, one should use (IV. 11) instead of (IV. 2). : 

C. Approximate Expression for Thick Tarret-Bremsstrahlnng 

It is sometimes desirable to have a simple formula for I (E 
Y 0’ 

E, t) valid 

also for target of thickness up to 2 radiation lengths, for example, in the estima- 

tion of the secondary particle yields from an electron machine. Let us first 

consider some qualitative features. From Eq. (IV, 5) or (IV. 7)) we see that the 

electron spectrum Ie(Eo, E, t) changes its shape abruptly at t = b-l 2 .75 r.1. 

For t < 0.75 we have Ie(EO, Eo, t) = 03, whereas for t > O-75 we have 

Ie(Eos Eos t) = 0, This tells us that practically all high energy y’s are pro- 

duced from t = 0 to t = 0.75, and after t = 0.75, the intensity of y’s is just 

attenuated by the absorption factor e -7/9(t-0.75) . At t = .75, the electron spec- 

trum is essentially flat. It was shown by Tsai and Whitis (1966) that because of 

the nuclear absorption of the photoproduced hadrons, the optimum thickness for 

the production of high energy hadrons is roughly 2 r. 1. for Be and slightly larger 

for heavier elements. For production of muons (or heavy leptons) the nuclear ab- 

sorption is neglibible, but enen in this case one reaches more than 90% of the pos- 

sible maximum yield when t = 4 r. 1. In order to obtain a simple formula for 

Iy(Eo,k, t) which is approximately true when E. > k> $ Eo, we note that the inte- 

grand in (IV. 9) is dominated by the region E. - E and t’ ‘CC 1. Hence we need to know 

very accurately about’the integrand only in this region. The gamma function has 

values I’(1) = I?(2 ) = 1 and I’(x) < 1 for x between 1 and 2, the minimum occurs at - 

l?(l. 46 = .8856. Hence we shall approximate I’(l+btf ) by one, which will result in 

underestimating Iy by less than 10%. We shall also ignore the energy dependence of p 

and approximate it byp =7/9. Since we are interested in the high energy component of the 

- 54 - 



..I 

the photons, we may approximate p(E, k) by l/k, which gives at most 10% over- 

- ~’ estmate at high energy half of the spectrum. The result is 

E, 
(1 _ k/Edbt _ ,-t7/‘) t ’ 

k[7/9 + $ QN l-k/Eo)] 
. (IV. 12) 

The numerical values of this expression from t = 0.01 to t = 2.0 and 

0.1 < k/E0 < 0.999 are tabulated in Tsai and Whitis paper 66 (1966) together with 

the results of using (IV. 9). The difference between the two values is about 0 to 

15%. 

D. Production of Particles Using a Photon Beam 

The photon source may be a bremsstrahlung beam obtained by placing a 

radiator up stream in the case of electron accelerator or it may be the photon 

beam produced by x0 decay as usually the case for the proton accelerator. In 

the former case the photon flux is given by I (E 
Y 0’ 

k, t)dk per incident electron 

or positron. In the latter case lr” flux is usually estimated by assuming that it 

is the average of 7rf and 7r- fluxes, In either case the photon spectrum can be 

determined by a pair spectrometer. Let us assume that the photon flux impinges 

upon a target of thickness T r.1. and the photoproduction cross section is given 

by dg/dQdp. The number of events induced by a single photon in this target is 

then 

,T 
J 

dg ’ =o -- exp (-pt) dadp A 
& = 1 - exp(-PT) l=O dcr -- 

A dpdS2 ’ (IV. 13) 
0 P 

where p is the absorption coefficient for photon p = (7/9)(1- <) as given pre- 

viously. This simple formula tells us two things: 1) There is no use making 

the target thickness more than two radiation lengths. When T = 2, we have 

- 55 - 



I 

. 

exp(-7T/9) = 0.22, hence only 22% of the photon beam is wasted. As the target - 

gets-thicker, the effects due to the straggling, multiple scatterings and the 

absorption of the produced particles become complicated. i 2) The factor NXo/A 

is roughly proportional to (Z’: + Z)-1. For production of particles other than 

electrons or muons the cross sections are usually proportional to A or A 2/3 . 

Hence as far as maximizing the yield is concerned, small Z material is pre- 

ferable. This is the reason why we have chosen H and Be in our calculation of 

the production of heavy leptons. If the produced particle is a muon it will come 

out of the target essentially unaffected except some loss of energy due to ioniza- 

tion. If the produced particle (or the decay product of the produced particle) is 

an electron, its energy will straggle due to the emission of bremsstrahlung. This 

bremsstrahlung has two parts: inner and outer bremsstrahlung. The effect due 

to outer bremsstrahlung can be calculated by using Ie(EO, E, T-t). The effect 

due to the inner bremsstrahlung is part of the usual radiative corrections, which 

is independent of target thickness. If the produced particles are hadrons, then 

the effect due to nuclear absorption must be taken into account. 

E. Production of Particles Using an Electron Beam 

For particle production in an electron machine the maximum yield is obtained 

if the electron beam is used directly on the target. We shall show in the next sub- 

section, that the production by the virtual photon is negligible compared with the 

production by the real photon if the target thickness is much more than l/25 of a 

radiation length. ’ Consider “a” monochromatic electron with an energy E. inci- 

dent on a target of T radiation lengths. Let o(k) represent some photoproduction 

cross section. a(k) can be either do/dQdp, da/dp or g, etc. The total number 

of events per incident electron induced by the real photon in the target material 
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is given by 

- y= ? 1,’ dt /,“D Iy(t,k) a(k) dk o 
i 

min 

(IV. 14) 

Using the approximate expression of Iy given in.(IV. 12), Eq. (IV. 14) can be 

integrated with respect to dt. We obtain 

m. E. y= - 
J A k 

a(k) (1 - e 
i 

-fT)/f _ +. (1 _ e-t7/‘jT 

min 

where 

f=- $ h(l - k/Eo). 

In the limits T- 0 and T - 00 we have respectively 

NxO T2 Y- Ayj-- J 
EO a(k) 9 

T-O k min 

(IV. 16) 

and 

=o E. 
Y-+-A J 9 dk 

k 
W) ;i~ -iy- l 

T-03 min 

(IV. 17) 

From Eqs. (IV0 15 through IV. 17), we see that the yield of secondary particles 

by an electron is proportional to T2 when T is small and becomes independent of 

T as T becomes infinity. How fast this maximum is reached depends upon whether the 

process requires soft or hard component of the bremsstrahlung. High energy 

component of the photon diminishes more rapidly than the low energy component 

as the target thickness is increased. When k/E0 = 0.442 (which corresponds to 

f = 7/9), the ratio of the integrand of Eq. (IV. 15) to that of Eq. (IV. 17) is equal 
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to [l - (1 - 7T/9) exp (-7T/9)] , hence*when T = 3 one already gets 68% of the 

maximum value o If the target thickness is increased beyond T = 3, we gain 

some$hat in the yield but the increased absorption and straggling of the out- 

going particles in the target may render this small gain in yield not worth- 

while. For hadron production, T 2 is the optimal thickness if one takes into 

account the nuclear absorption of the hadrons (Tsai and Whitis, 1966). 

F. Production by Virtual Photons. (Equivalent Radiator for Electroproduc tionl 

When an electron is used for production of particles, the contribution due to 

the direct electroproduction is approximately equal to the contribution from a 

real bremsstrahlung beam produced by letting the electron pass through a radi- 

ator of thickness -l/50 radiation lengths (called the equivalent radiator whose 

thickness is denoted by t eq )0 This implies that the production due to the virtual 

photon is negligible compared with that due to the real photons if the target is 

. - much thicker than 2 t 
w ’ 

This fact is well known among experts but sounds 

strange to many people because the electroproduction cross section has two 

powers of a! less than the combined a dependence of the bremsstrahlung emis- 

sion cross section and the production cross section by a real photon. In the 

following we derive the expression for teq using the Weizsacker-Williams method. 

Let E and E’ be the energies of the incident and outgoing electrons respectively 

and 0 be the scattering angle of the electrons. The cross section can be written as 

do 27ra2 1 
dvdt = t2 E2 m2 R 

2E(E+)-; W2+(t-2mz)Wl 1 (rv. 18) 

7 e 

where v = E - El and t = -@-po2. We have retained the mass of the electron 

because tmin is proportional to me as given by Eq. (A. 11). From the definition 
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of the tensor W 
PV 

given in Section II, we obtain 

-h wl=wxx 

w2 = t2 

Y2(t + y2) 
zz + (v2/t) wm 

I 

where the direction of the momentum transfer in 

i 

,  
(Iv. 19) 

the laboratory system is chosen 

as the z axis. The transverse tensor Wxx is related to the photoproduction cross 

set tion 

4n20! 
fly(v) = 7 w&t=o, v) . (Iv. 20) 

Since Wzz and Wxx are not singular at t = 0, we can ignore Wzz in (IV. 19) when 

V2 > > t. Ignoring the t dependence of Wxx and assuming v2 >> t, we have 

do “r’” ) 
;i;;-2 v (Z-2y+y2) $ - 

2rnz y2 
- t2 . 

3 
dt 

ojw a 
M-m 

V 7r [ 
t1 - Y + g Y2) Qn ttmadtmin) - t1 - Y)] 9 (IV. 21) 

where y = v/E and tmin = rnz y2/(l - y). The true tmax is 4 E (E - v ) which can 

be very large. Rather than using this value of tmax, it is better to regard it as 

a cutoff parameter which approximately takes 

Now this t dependence is different for different 

care of the t dependence of Wxx. 

processes and different targets. 

Fortunately (IV. 21) is;not very sensitive to tmax. A convenient choice is 

t 
2 -m max P 

M 0.5 GeV2 which is roughly the cut off required for production of 

hadrons . 

Now the bremsstrahlung spectrum of an electron after passing through a 

target of t radiation lengths (t << 1) is roughly tdk/k. Hence Eq. (IV. 21) says 
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that the desired expression for t 
eq 

is given by 

-t eq = 4 
[ 

(l-y+ ky2)Qn (Iv. 22) 

N f Qn (mp /me) = 0.017 (IV. 23) 

The last expression is given there for the purpose of indicating the order of 

magnitude of t 
w ’ 

The equivalent radiator introduced here represents the pseudophoton flux 

of the incident electron. The equivalent radiator representing the pseudophoton 

flux of the target nucleus has been considered in great detail by Kim and Tsai 

(1973). The concept of a pseudophoton flux of a charged particle has a meaning 

only in the frame where the particle is moving with extreme relativistic speed. 

(See e.g. , Appendix C of Kim and Tsai, 1973). Since the incident electron is 

already relativistic in the laboratory system, the concept of pseudophoton flux 

is directly usable in the laboratory system without making a Lorentz transforma- 

tion which is required when one is dealing with the pseudophoton flux of a target 

particle. The interesting characteristics of t 
eq 

given by (IV. 22) is that it is a 

function of scaling variable y only. 

Let us consider the number of events induced by a single incident electron 

in a target of T radiation lengths. We denote the part due to the virtual photon 

by ‘virtual and the part due to the real photon by Yreal. When the target 
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is thin we may ignore the straggling of the electron in the target, hence the 

yield due to the virtual photon is 
- 

=0 -E 
Y virtual - A. T I,” teq 9 dk . 

T-O min 

(IV. 25) 

Comparing Eq, (IV, 25) with Eq. (IV, 16) we see that when T = 2 t w ’ 
the 

virtual photon contribution is approximately equal to the real photon contribu- 

tion. When the target is thick, Yvirtual will not increase linearly with T be- 

cause of straggling. We expect it to level out at around three or four radiation 

lengths. The yield by virtual photons of an electron in a target of thickness T 

can be written as 

Y virtual = A 5 jT dt/r’ Ie(EO, E, t) dE /,” 
0 

dk teq 9 

min min 

(IV. 26) 
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where Ie is the straggling function of the electron given by Eq. (IV. 5). Since we 

are interested in the high energy component of the photon, we may approximate 

the fa;tor (2-2k/E+k2/E2) by 1 and the p(E,k) in Eq. (IV,5) by b/k. I’(l+bt) can 

also be approximated by unity because most of the contribution comes from the 

region bt < 1, With these approximations and the identity 

/ 
E” dk = E” dk E” dE 
k 

dE /” 

min k J- k / 
min min k 

the integration with respect to dt and dE can be carried out when T = ~0 0 We 

obtain 

y l=o E. ' --/c - 
virtual T - o3 Ab 

I k 
@) t,,/Jn iEO/(EO-Wl F 0 

min 

From Eqs. (IV. 1’7) and (IV. 27)) we obtain 

(Yvirtual’yreal) -- eq’ 

(IV. 27) 

(IV. 28) 

V. PRODUCTION OF MUONS AND HEAVY LEPTONS 

(NUMERICAL EXAMPLES) 

In this section we present numerical examples of calculations using (II. 7)) 

which is an exact result in the lowest order Born approximation. The target 

particles are assumed to be either hydrogen or berylium. The elastic and in- 

elastic nuclear form factors necessary for the calculations are discussed in 

Appendix B. The numerical examples given in this section are intended to help 

experimentalists in designing experiments to discover heavy leptons, The cal- 

culations for muons are also included because they can be used in estimating the 
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yield of muons from an electron machine and also in estimating the background 

for the heavy lepton experiment. The various numerical tables given can also 

be use; for checking the accuracy of various approximation schemes such as the 

Weizsacher Williams method. Since different experiments involve different 

kinematical conditions, the experimenters have to recompute many quantities. 

Our numerical tables can serve as convenient reference for such calculations. 

Let us begin by discussing some kinematics which defines the physical region 

of the problem. 

A, Kinematics 

The minimum energy of the photon required to produce a pair of leptons, 

each of mass m, and one of the leptons having a momentum p and an angle 8 

can be obtained by setting the expression for U2 = (pf +ps2 given by Eq. (11.4) 

equal to (mf + m) 2: 

k min = (mf2-mf + 2m mf + 2miE)/(2mi- 2E f 2p cos 0) 0 (V- 1) 

For the coherent scattering from a nucleus we set mf = mi = Am 
P’ 

for the 

elastic scattering from a proton we set mf = mi = m 
P 

, and for the meson pro- 

duction from a proton we set mi = mp and mf = mp + mx. The computer has to 

be instructed to skip the calculation unless the conditions 

and 

are satisfied. 

For the calculation of 

dg 
I 

1 

dp 
= 2n 

cos 8 
gp dcos8, 

max 
tvo 3) 
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we need to know cos Omax and the allowed range of p0 In order to obtain 

cos 8 max, we notice from Eq. (II. 4) that for given k and p, U2 increases with 

c&e. -Hence cos 8 max can be obtained by setting U2 to its minimum value, 
, i’ 

(mf + m)2Q Of course cos emax can not be smaller than -1, therefore we first 

define 

cOse* = max [ 
(rnf - m$/2 + mmf -mi(k-E) + kE 1 /(kp) , (V.4) 

which is obtained by setting U2 = (mf +m)2. Then the desired expression for 

cam e is max 

cam 8 = c0sef max’ if COSe* >-I; max max (V. 5) 

and 

cOse = -I, max if cam e* max F -1 0 (Vo 6) 

. - The allowed range of momentum p in Eq. (V. 3) can be obtained by setting 

u2 = (mf + m)2 and cos 8 = 1. We obtain: - 

P = max 
min 

(X2-m 2 l/2 S) 1 ,s , (V. 7) 

where 

X = mik - mfm - (m,” - m+ 

and 

S= mf+2kmi. 

If ‘min calculated according to the above formula is less than zero, then p,m = 0. 

The total cross section r is calculated from 

/ 

P max g ZZ 
P 

$f dp, 
min 

(V* 8) 
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where p max and ‘min are calculated according to the prescription given above. 

In the calculation of both do/dp and g, the computer has to be instructed to skip 

the calculation unless the threshold condition, 

k > [(2m + mf)’ - n$ ] /2m i ’ 

is satisfied. 

tv. 9) 

B. Energy-Angle Distributions 

dir/dQdp for photoproduction of muons are given in Table V. 1. Because of 

the limitation of space, only two incident energies k = 20 GeV and k = 200 GeV 

are shown. The cross sections at large angles are also given because they are 

important background for the heavy lepton experiment. Tables V. 1 A, B, C 

and D are sufficient to illustrate most of the interesting features of the energy- 

angle distributions of muons. We make the following comments on Table V. 1: 

i) From Eq. (III. 5) with X given by (III. 76) we see that the width at half 

height is roughly at 0 = m/p, when the form factor is equal to unity. As tmin 

increases, the nuclear form factors make this width smaller and the cross 

section falls off much faster than 8 -4 at large angles. From the approximate 

expression of tmm given in Eqs. (B. 2) and (B. 3)) we see that the forward peak 

as a function of L gets narrower as m2/ [kx( l-x)] is increased. 

ii) The total dg/dadp from a Be target can be obtained approximately from 

“Be Coherent” + “Be Quasielastic” + 9 X “Proton Inelastic”. The “Proton 

Inelastic” is the contribution from the meson production parts of WI and W2 

given by Eqs, (B. 58) and (B. 59) 0 There are four protons and five neutrons in Be. 
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The meson production parts of neutron form factors are slightly smaller (Kendall, 

1972) 
81 than those of proton, therefore 9 X “Proton Inelastic” would give a slight over- _ 

estimze of the cross section. For “Be Coherent” we have used the simple form 

factor given by Eq. (B.49) instead of the more accurate ones given by Eqs. (B.45), 

(B.46), (B.50) and (B.51). For small angles the two kinds of form factors give 

almost identical results but at large angles the cross section given by the latter 

is much smaller because of the exponential factors in the form factors. However, 

at large angles the coherent cross section is negligible compared with quasi- 

elastic and the meson production parts of the form factors. 

iii) At large angles “Proton Elastic” is comparable to “Proton Inelastic”, 

even though at smaller angles the latter is negligible compared with the former. 

iv) The effect of the Pauli exclusion principle can be obtained by 

Pauli Suppression = “Be Quasielastic” 
4 X “Proton Elastic” + 5 X “Neutron Elastic” 

This ratio is almost zero at small angles and unity at large angles. 

v) At large angles the magnetic form factor of the proton dominates the 

cross section because the ratio of the cross sections from “Proton Elastic” to 

“Neutron Elastic” is roughly given by the ratio ( pp/pn)2 = (2.79/l. 91)2 = 2.13. 

vi) Tables VI, C and VLD give the momentum distributions of muons at 

angles 8 = 0, 0.1 and 0.2 radians. We see that at 8 = 0, there are more high 

energy particles than low energy ones whereas at 8 = 0.1 and 0.2, the opposite 

is true. The entries “0.0” in the cross sections mean that they are not kine- 

matically allowed. Since we have ignored the Fermi motion in evaluating “Be 

Quasielastic”, the nonphysical regions of “Be Quasielastic” is identical to those 

of proton elastic. If Fermi motion is properly taken into account these zeroes 

will be replaced by some finite numbers. 
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In Table V. 2, the energy angle distribution of heavy leptons are given. We 

note that the width at half height is roughly at p0 /m = 0.4 for m = 4 and 6 

compa^ed with p0 /m = 0.8 - 0.9 for the muon production at k = 200. For pro- 

duction of very heavy particles, the coherent production is small compared with 

the incoherent production and the Pauli suppression is negligible. 

C. Energy Distribution 

In Table V. 3, the numerical values of dg/dp are given. The values of p 

chosen are 

P’P min + N(Pmax - Pmin) On1 

where N = 0.1, 0.3, 0.5, 0,7 and 0.9, and pmax are obtained from Eq. (V.7) 
min 

using mi =m =Am f p0 The important thing to notice is that for muons, these 

distributions are almost flat with a slight dip in the middle and both ends. For 

heavy leptons, the distributions are still quite monotonous except a slight bulge 

near the middle. 

D. Total Cross Sections 

The total cross sections are given in Table V.4 and Table V.5. “Be Total” 

in Table V.4 is calculated by the approximate formula: 

“Be Total” = “Be Coherent” + “Be Quasielastic” + 9 X “Proton Inelastic”. 

It was a surprise to us to find out the the “Proton Inelastic” is so unimportant 

compared with “Proton Elastic” even for production of very heavy leptons 

(m = 20 GeV) at very high energy (k = 2000 GeV), The ratio of the two contribu- 

tions is roughly l/3 according to Table V. 5, Table V. 4 covers the energy range 

of “Positron-Electron-Proton” colliding beam machine (PEP) being proposed by 

SLAC and LBL. 
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APPENDIX A 

Minimum Momentum Transfer 

Lz us consider a general interaction shown in Fig. A. 1 and define a momen- i 

turn transfer squared t as: 

t = - (P, - P3)2 = -(P, - P2)2* (A. 1) 

Let us further define 

P; = M;, P; = M;, p; = (hl + h2 + o.,.)2 = M; 

p’=(g +g +...)2=M2 and 4 1 2 4 s = (P, + P2)2 = (P, + P4)2 0 

t is minimum when c3 is parallel to cl, hence in the laboratory system we have 

2 2 2 2 
t = - - - = -. - min 2E1E3 2p1p3 Ml M3 2M2E4 M2 M4 

= 2M2(El - E3) - (M; - M;) . 04.2) 

Solving Eq. (A. 2) for E3 and substituting its value back into Eq. (A. 2), we 

obtain 

t 
-1 

min =S s(pl 0 P2 - MiJ + (P, o p2 + M;) (h’$ - M;) 

- (I?, ’ p2)2 - M;M;}1’2 {(s + M; - M$2 - 4s M; l/2 . (A-3) 11 
This expression is exact, but it expresses a small number by a difference of 

two big numbers. Let us obtain various approximate expressions for tmin in the 

followiIlg: 

Case 1: s>> M2 1, M;, M;, M; 0 (A.4) 
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Expanding by Taylor series the square root terms in Eq. (A.3) up to (M~/s)~, 

we obtain 

t min =S -’ [(Mi-Mi)(Mi-MT) + s-l (Mt+Mi-M+I$MiMi-M:Mi)] 0 

(A. 5) 

This equation shows that: 

a. t min = 0 if Mf = Mi and Mi = Mz 0 

b. tmm = s-~ M;(M; i 
-M!$2 if Mi=M4 and Mi#MT. (A. 6) 

C. t min =S -‘(M;-M;)(M;-M;) if M; # Mt and M; # MT o (Aa 7) 

Comparing (A. 6) with (A. 7) we can understand why the deep inelastic nucleon 

form factors contribute so little to the total production cross section of the heavy 

lepton pair. In other words, from the kinematical consideration alone we can 

understand why nature does not like to have the target fragmentation and the pro- 

jectile fragmentation simultaneously, 

Case 2: Photopair production from a heavy nuclei. 

M;=O, Mi 2 4m2 , 

E1 = k>>M3, k>>M4-M2, and M2 > > M4 - M2 0 

When the target is a proton and the laboratory incident energy is more than a 

few GeV, Eq. (A,4) can easily be satisfied. However when the target is a heavy 

nuclei, s is often comparable to Mi and Mz in magnitude and the result of case 1 

may not be used. However under the condition specified above, we can show that 

M4 2 

t 3 
min 

z- + 
M3(M4 - M2) 

4k2 k l 
(A. 8) 
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This relation can be derived in the following way; In the center-of-mass system, 

we have 
-h 

t min = -(k-p3)2.m = -M;+2k(E3 -E3) o i (A- 9) 

Expanding p3 by Taylor series we have 

Hence 

t min 
= M; (k - E3)/E3 + M;i;/(4E;) . (A. 10) 

Substituting k = k l (p, + k)/& = M2k/& and E3 = p3 0 (p, + p,)/Js = 

M2&&s + i (Mi - Mi + M$/Js into (A. lo), we obtain Eq. (A. 8). 

Case 3 : Elec troproduction. In this case pI and p3 denote the initial and final 

electrons respectively, hence MI = M3 = me and 

t m.in = (I<1 - lGl)2 - (El -E3)2 = 2(EIE3 - I<l lf$l -mE) . 

Assuming El > > me and E3 > > me, we have 

t min z mz(EI - E3J2/(E,E,) l 
(A. 11) 

We have obtained tmm in the above assuming M3 is fixed and PI3 comes out in 

the forward direction. In the pair production experiment where only one of the 

pair of particles is detected at a finite angle, tmin is given by Eq. (II. 9) o The 

approximate expression for this tmin is derived in Appendix A of Kim and Tsai (1973) 

and the result is given in Eqs. (B. 2) and (B. 3) of Appendix B. 
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APPENDIX B 

- 
Atomic and Nuclear Form Factors 

;I and W2 are normalized such that the cross section for the electron 

scattering from the target is given by (mass of electron ignored): 

da(e + Z - e’ + anything) = 0f2 c~~2 e /2 
dfi*dE’ 4E2sine/2 

i WI]. (Be 1) 

Since the integration with respect to t in Eqs. (II. 7) and (II. 8) is dominated 

by t very close to tm,, the value of t m.m tells us what form factors need to be 

considered. Roughly speaking, if tzin is comparable to the atomic radius 
. 

squared, then we have to consider the atomic form factor; if tmti is comparable 

to the nuclear radius squared then we have to consider the elastic nuclear form 

factors; if tzm is comparable to the internucleon distance within a nucleus, then 

we have to deal with the quasielastic form factors; if t l/2 
min is larger than twice 

the Fermi momentum of the nucleons within the nucleus, then we can ignore the 

Pauli suppression; if tmm is so large that the elastic nucleon form factors are 

much less than unity, then the meson production form factors should be considered. 

There are tremendous cancellations among different terms in Eq. (II., 9) for the 
. 

expression of t min. An approximate expression for tmin is (see Appendix A of 

Kim and Tsai 43 , 1973): 

t zz t* min + 2A(t&J l/2 
min 9 

where 

= h2 L m4( 1+1) 2 
t’ mm \ I k-E 4k2x2( 1 - x)~ 

, 

(J3.2) 

P.3) 

- 71 - 



I 

withy=E/m, Q=y 2 2, x = E/k, and A = (rni - 0 m$/t2mi) 0 This approximate 

expression for tmm can be derived under the conditions: 

(E and k - E) >> [(k 0 ~)l’~, k 0 p/mi, m and A] . ’ (B. 4) 

From Eqs. (B. 2) and (B. 3)) we observe the following: 

(i) Pair-production cross section accompanied by the target excitation is 

greatly suppressed due to the second term in Eq. (B. 2) 0 

(ii) tmin is smallest when A = 0, 8 = 0 and x = l/2. Hence the true mini- 

mum value of t is 

t min( A = 0, 8 = 0, x = l/2) = 4m4/k2 . 

(iii) t min is independent of m2 if the transverse momentum of the detected 

lepton is much larger than its mass (i.e. , I >> 1) 0 

(iv) For electron pair production, the exact expression for tmm given by 

Eq. (II. 9) can not be used in the energy and angular range we are interested be- 

cause of the round off errors of the computer. In all of our numerical calcula- 

tions, except when dealing with electrons, we use exact expressions for tmm. 

The approximate expression for tmm given by Eqs. (B. 2) and (B. 3) is very 

accurate when we are dealing with electrons. 

We give in the following expressions for WI and W2 used in our calculation. 

1. Atomic Form Factors 

The existence of atomic electrons outside a nucleus has two effects: 1.) The 

nuclear Coulomb field is screened by these electrons so that its effective strength 

is reduced; 2.) Atomic electrons also serve as the targets from which the scat- 

tering takes place. For pair production of muons or heavier particles, the exist- 

ence of atomic electrons can be ignored completely because 1.) tn& is much 

smaller than the square of the atomic radius hence the screening effect is 
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negligible and 2.) the threshold energy required to produce a pair of heavy 

particles from an atomic electron is too high. For example from Eq, (V. 9) we 

see thzt the minimum photon energy required to produce a muon pair from an 

atomic electron is 40 GeV. The existence of atomic electrons can also be 

ignored in the electron pair production at large angles where t min is such that 

the screening becomes negligible and kinematics, see Eq. (V. 4)) is such that 

the production in electron field is impossible. Thus only for electron pair pro- 

duction near forward angle need we consider the atomic form factors. 

When momentum transfer is small compared with the electron mass, we 

can ignore WI compared with W2. W2 for an atom consists of two parts: elastic 

and inelastic. Let eo(rl.. 0 rz) be the ground state wave function of the atom and 

$$.pl. l l 
rz) be the wave function for the nth excited state. Let us decompose W2 

into elastic and inelastic parts: 

W,(t, rn:) = 2mi6(mf2-rn;) G;‘(t) + W2 i”el(t, m,2) o 

The elastic part is 

G;‘(t) = (Z - F(t))2 , P3.6) 

where 

F (t) = 1 $otrla o. rz) 1 
i=l 

exp (.iy= yi) d3rI. . . d3rz 0 

The inelastic part is 

(B. 5) 

Wy’(t, rni) = 

Z 

c 
2 

j=l exp (ic rj) $,(rIO 0 . rz) d3rl. 0 D d3rz I 

6 (En - E. - qo), (Be 8) 

where 4 t=q and 2 2 mf =mi +2q0mi. 
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Equations (B. 5 through B. 8) can be obtained by comparing the expressions for 

the cross section given by (B. 1) with the expression for the cross sections of 

fast e&tron-atomic scattering given for example in Mott and Massay’s book. 71 

Two things should be mentioned about (B. 8) : 1.) If we include the ground state 

$,, then +nf~ form a complete set of states, hence from the closure theorem 

we have 

/ w$e4t, mf2)dq0= G2 inel(tj 

Z 

= Z - lF12+ /IJlo(r10.0rZ)12 2 . . exp iT* (< -Fj) d3r10 0 0 d3rZ. 

(B-9) 

. - 

2.) Since we are treating the atomic system nonrelativistically, we can identify 

q. with A defined previously. If electrons were free, then t and q. would be 

related by q. = t /(2me)0 For bound electrons, we expect W2 ine1tts f” m ) to have 

hence a quasielastic peak at q. = t/(2m,). Now we are interested in t&m << rnt, 

the second term in Eq. (B. 2) can be ignored compared with the first term even 

though we are dealing with the inelastic processes. If we approximate W2 inel( t , m,2, 

by a 6 function at the quasielastic peak, we may write 

wFel (t, rn:) = 2me 6(mf2 - me) G2 
2 inel(tI , (B. 10) 

where GFel(t) is given by (B. 9) o 

G;‘(t) can re regarded as the form factor associated with the scattering 

from a screened Coulomb field of nucleus, whereas G2 inel( t) can be regarded as 

the form factor associated with the scattering from electron field screened by 

the nucleus. From (B. 6)) (B. 7) and (B. 9)) we see immediately the following 
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properties: 

F(a) = 0, 

F(0) = Z, 

G;'(m) = Z2 , 

Gil(O) = 0, Gp’(O) = 0. ’ 
(B. 11) 

Gil(t) and Gpel (t) can be calculated from the ground state wave function +. of 

an atom. For hydrogen atom Q. is well known, hence these form factors can be 

calculated readily. For heavy atoms $, obtained from Thomas-Fermi method 

is used. When Z is small, the atomic form factors are calculated by Hartree- 

Fock method. A good reference to these calculations can be found in International 

Tables for X-Ray Crystallography, Vol.111. 72 In these Tables the values of F(q) 

for various elements are given numerically up to q = 1.3 X 4 ~~8-l = 1,s X 24.797 

KeV, whereas we need to know the values of F(q) up to q = me = 511 KeV in most 

of our calculations. Fortunately, F(q) is small compared with Z above the maxi- 

mum value of q given in the Tables and we are interested in I2 - F(q) I 2 in our 

calculations. Hence our calculation is not very sensitive to the values of F(q) 

not tabulated in the Tables. When q is large, we expect F(q) is determined by 

the K shell electrons, which can be represented by hydrogen-like wave function 

in the 1 s state. We have used hydrogen like F(q) in the region where it is not 

tabulated. In the following we give details of various atomic form factors used 

in our calculation. 

A. Hydrogen Atom (Z = 1) 

Since there is only one electron in the hydrogen atom, the last term in 

Eq. (B.9) is absent. Using the ground state wave function of a hydrogen atom 

Go = (n ao) 
3 -1 e -r/a0 

, 
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where a0 = 137/me is the Bohr radius, we obtain from (B. 7)) (B. 6) and (B. 9)) 

-h F(t) = (a: t/4 + 1)-2 , (B. 12) 

and 

G;l(t) = (1 - F(t))2 , (B. 13) 

GFel(t) = 1 - I F(t) I2 . (B. 14) 

B. He Atom (Z = 2) 

Knase147 . mvestigated the total pair production cross section from He atom 

in detail. He used two kinds of He wave functions, the radially correlated and 

the uncorrelated models of Shull and L’Ewdin. 46 The numerical difference in the 

total cross sections between the two models is at most .2%, thus we shall use 

the simpler version, the uncorrelated model to calculate various quantities. The 

wave function for the uncorrelated model is 

Go = N’ exp [- rl (rl + r2)/ao] , (B. 15) 

where N’ is the normalization factor, 77 = 1.6875 and a0 is the Bohr radius, 

-1 
aO = (a! me) . 

Substituting (B. 15) into (B. 7) and (B. 9) we obtain the elastic and inelastic 

atomic factors respectively: 

and 

where 

Gil = (Z - F(t))2 

Gyl = Z - (F(t))2/Z , 

F(t) = Z/[l + t ai/(4q2)12 . 

(B. 16) 

(B. 17) 

(B. 18) 
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Letting Z = 1 and n = 1, we obtain the hydrogen form factors. Hence the 

formulas obtained for pair production and bremsstrahlung for He can be used 

to cal??ulate the corresponding quantities for hydrogen by changing these para- 

meters, 

C. Light Z Elements (Z = 3 to Z = 7) 

The elastic atomic form factors for all elements are given in the inter- 

national table72 up to the value q = 1.3 X (24.8 KeV). In Table B. 1 the values 

of F(q) for elements Z = 3 to 7 are shown. The values of F(q) beyond 

q = 1.3 X (24,8 KeV) can be obtained by using an analytic form: 

F(q) = F(1.3) (1 + 1.32c)2/(1 + tc)2 , 

where 

c = a:/(4 Z2) = 11. 05518/Z2 in units of (24.8 KeV) -2 0 

(B. 19) 

This form factor corresponds to the atomic form factor of Is state. 

There is no convenient table for the inelastic form factors. Also it is 

rather inconvenient to use numerical tables for the elastic form factors to com- 

pute various quantities of interest. Therefore we determine first what is the 

element with the smallest Z for which the Thomas-Fermi method still yields a 

reasonably accurate result. To this end, we compute the radiation logarithm 

defined by 

L rad f [ql(0) - $ Qnz] (B. 20) 

=,+‘/Re [ 1 - F(q)/Z]2 q-‘dq , (B. 20’) 

where the function ‘p 1 (0) is defined in (III. 14). The Thomas-Fermi-Moliere 
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(TFM) model, which will be treated in the next section, gives 

Lrad(TFM) = an (184.15 Z-1’3) . 
- 

(B. 21) -h 

In Table B. 2, the numerical values of Lrad(TFM) and, Lrad calculated using 

Table B. 1 and Eq. (B. 19) are given for elements with Z = 3 to Z = 7. The entries 

labeled Lrad (c - 2c) are calculated similarly to Lrad except that the parameter 

c in Eq. (B. 19) is replaced by 2c. This is done to check how sensitively Lrad is 

dependent upon the values of F(q) for large values of q. By comparing the values 

Of $,d(TFM), Lrad md Lrad tc - 2c) in Table B. 2, we conclude that Lrad is 

quite insensitive to the values of F(q) for q > 1,3 X (24.8 KeV) and also that the 

Thomas-Fermi-Moliere method can be safely used even for B(Z = 5). Since 

L rad is used for the definition of radiation length, Eq. (III. 66), we also give 

L rad (Best estimate) which represents the best estimate of this quantity to be 

used in all the rest of the calculations. 

Next let us consider the inelastic atomic form factors. Since we have con- 

cluded in the above that TFM model is applicable for elements with Z > 5 for - 

elastic form factors we shall assume that we can also use it to calculate the 

inelastic form factors when Z 2 5. The radiation logarithm for the inelastic 

factor is defined by 

= l-i- + 
m2 e 
0 

Z-l GFel (t) t-l dt , 

form 

(B. 22) 

(B. 22’) 

where the function @I(O) is defined in (III. 16). The Thomas-Fermi-Moliere 

(TFM) model, which will be treated in the next section, gives 

Lkad(TFM) = Pn(1194 A-2’3) 0 (B. 23) 
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Lkad for H and He can be calculated using Eqs. (III. 35) and (B. 22) 0 Lkad for 

Li (Z = 3) and Be (Z = 4) can be obtained from the interpolation between its 

valuesJor He (Z = 2) and B(Z = 5)) the results are given in Table B. 2. 

The elastic and inelastic radiation logarithms, Lrad and Lkad, determine 

completely the behavior of radiation problems in the complete screening limit. 

Since all atomic models give identical results for the no screening limit, we do 

not have any problem in this limit. In the intermediate screening limit, the 

behavior of the functions Xe,, Xmel, cpl(‘Y), cp,(r), ++E) and ZC12(e) for Li ad 

Be must lie somewhere between those for He and B, This problem is discussed 

in Section III.4. 

D. Thomas Fermi Model 

Let V(r) be the electrostatic potential at a point Tfrom an atomic nucleus, 

then 

V(r) = - oz 1 
2 
n=l IT-Y--l 

I ~/~(??.o o o$ I2 dV1. .e dVZ 

=-- - “,” cp@) a (B. 24) 
I 

where x = r/a with a = 1212 --l/3,, e. $(x) is the screening function, which 

plays a central role in Tholl?las-Fermi method. 71 $(x) is tabulated by Fermi” 

(mott, 1965). An approximate analytical expression representing $(x) is given by 

Moliere7’ (1947): 

4(x) = + aiewbix , 
i/l 

where 

a1 = 0.1, o!2 = 0.55, 

(B. 25) 

a3 = 0.35 

bl = 6.0, b2 = 1.20, b3 = 0.30 . 
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.-- 
Multiplying e1 ’ ’ r on both sides of (B. 24) and integrating it with respect to d3r, 

and squaring the whole thing, we obtain 

co 2 i’ 
G;‘(t) = Z2t J $(x) sinqrdr . 

0 

Using Moliere representation, (B. 25)) we have 

3 

Gil(t) = Z2t2 )’ 
2 -1 - cri(t + (bi/ a) ) 

i=l 
\ 

2 

, 

(B. 26) 

(B. 27) 

a = 121 Z -l/3, m . e 

Heisenberg74 (1931) showed that the inelastic form factor can also be expressed 

in terms of the screening function e(x) as follows: 

Gp’(t) = Z (1 - j-i” x2 [ (-)‘/2 - 3” [e)“’ + +] dx) , 

(B. 28) 

where v = q455 m -’ Z-2’3 and x0 is the solution of (~(x,)/x,) l/2 = v . Let us 

give a simple derivation which makes the physical meaning of (B. 28) transparent. 

If the electrons were completely free and there is no Pauli exclusion principle, 

then we expect G2 inel(t) = Z, We now show that the factor multiplying Z in (B,28) 

represents the suppression due to Pauli exclusion principle. Let us use the 

symbol P to represent the momentum of an electron in the atom. For a neutral 

atom a bound electron’must satisfy P2/2me+ V(r) < 0, hence the maximum mo- 

mentum denoted by PO is 

PO = 
[ 

’ l/2 - 2me V(r) 
J 

g (B. 29) 
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Let the electrons be uniformly distributed in the phase space. The number of 

electrons between r and r f dr is then 

(B. 30) 

where the factor 2 comes from the spin. Pauli exclusion principle says that not 

all these electrons can be excited by a photon of momentum <because some of 

the final states are already occupied. The portion of the phase space excluded 

can be calculated by drawing two spheres, each with a radius PO and the distance 

between the two centers being q0 The intersection of these two spheres is the 

excluded region of the phase space, whose volume can be computed easily to be 

+f (PO - ;)2(Po+ ;, if PO > ;, (B. 31) 

and 0 if PO < + . The volume of the sphere is of course 47rPi;3. Now the 

maximum momentum PO is a function of r as given by (B. 29) D Hence the ratio 

of the available phase space to the total phase space is 

S = 1 - jr0 r2(P0 - 
0 

$ q)2 (PO + q/4) dr/ J O” 
0 

r2 P: dr (B. 32) 

where r. is the solution of Po(ro) = q/2. Gpl is obtained by simply multiplying 

(B. 32) by Z. Writing PO in terms of $(r), and q in terms of v , we obtain 

G$el(t) = Z 1 i D-l /xo x2 
0 K 

yf” - vr[@$” + ;] dx] , 

(B. 33) 

where 

D= Jrn 
0 

(B. 34) 

I 
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Equation (B. 33) is identical to Eq. (B. 28) except the factor D -1 0 D is equal to 

unity 5 the true Thomas-Fermi model, where the screening function Cp(x) 

satisfies i 

& = +3/2 &/2 , 
dx2 

and the boundary conditions #(m ) = d $(a)/dx = 0 and Q(O) = 0. Thus 

(B. 35) 

D= [* 3 xdx = 
0 

[xg-+ 1,” =I. 

Moliere representation of 4(x), Eq. (B. 25)) does not satisfy the differential 

equation (B.35), hence it does not yield D = 1, but gives D = 0.9360. In our 

calculation, we shaI1 use Moliere representation and Eq. (B. 33) instead of 

(B. 28) 0 The function S, defined in (B. 32) and (B. 33)) represents the suppression 

factor due to Pauli exclusion principle. In Table B. 3 we give the numerical 

values of S calculated from the true Thomas-Fermi model by Bewilogua 75 (1931) 

and Wheeler-Labm, l4 (1939) and our calculation using the Moliere representation. 

In the calculation of S by a computer, the upper limit of the integration x0 in 

(B. 33) can be handled in the following way: 

1. The integrand is set equal to zero whenever (+(x)/x) l/2 5 v . 

2. x0 is replaced by a function of v : 

UP= (5V -4.5QnV -2)/(1 - V +3vq, (B, 36) 

which is slightly greater than xoO 

From Table B, 3, we see that the suppression factor S (Moliere) is always 

less than S (Thomas-Fermi). The difference is quite significant when v is 

small. However the quantities we are interested in are quite insensitive to this 

difference. For example the radiation logarithm for the production in the electron 
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field, 

J 

m 

- Lkad = e Sq-ldq+ 1, (B. 37) 
0 

is equal to !Jn(1194 Z -2/3) if we use S (Moliere) whereas it is equal to Qn(1274 Z -2/3 ) 

if we use S (Thomas-Fermi) according to Wheeler-Lamb (1956). In the original 

paper of Wheeler-Lamb (1939) and all the subsequent papers in which their re- 

sults were quoted, the value b (1440 Z -213 ) was used. Now h( 1194 Z -2/3 ) 

differs from ti (1274 Z -2/3 ) only by less than one percent when Z = 1. The 

percentage difference increases with Z, but the contribution of the production in 

the electron field becomes less important compared with the production in the 

nuclear field as Z is increased, hence we shall use S (Moliere) for elements 

with Z? 5 because it is easier to handle by a computer than S (Thomas-Fermi). 

E. Simple Atomic Form Factors 

Since the elastic and inelastic atomic form factors are often very complicated 

and their values are often known only numerically, they are not convenient to use 

in both theoretical and practical calculations. L. I. Schiff (1952) demonstrated 

that the simple elastic form factor of the type 

G;l(t) = Z2 a4t2 

(1 + a2t)2 
(B. 38) 

can yield numerical results for da/dQkdk which are very close to the values ob- 

tained from the Thomas Fermi elastic form factor, provided the parameter “a” 

is chosen so that in the complete screening limit the expression for the energy 

angle distribution of the bremsstrahlung dg/dfikdk agrees with that obtained from 

a more respectable calculation. By its construction this form factor will yield 

results which agree completely with the correct result in both the complete 
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screening and no screening limits. In the intermediate screening region, 

Schiff found that there is at most 4% difference in da/dQkdk from the result 

using Thomas -Fermi Form factor 0 We found that such a simple form can also 

be used for the inelastic atomic factor, namely 

Gpel(t) = Z af4t2 

(l+ a12t)2 ’ 
(B-39) 

where the parameter a’ is again determined such that in the limit of complete 

screening one obtains the desired expression for da/dQkdk. Compared with 

the results obtained from using ZS (Moliere) given by (B. 33), the resultant 

da/d kdQk agrees completely in both the complete screening and no screening 

cases (by its construction) and differ at most by 4% in the intermediate screening 

region. We also found that these simple form factors yield numerical results 

for da/dkdQk for H and He with similar accuracy provided the parameters a 

and a’ are chosen according to the prescription given before. 

An equivalent and yet more straightforward way of evaluating the parameters 

a and a’ in (B.38) and (B.39) is to compare the expressions for the radiation 

logarithms, Lrad and L’rade Substituting (B. 38) into (B. 20’) and (B. 39) into 

(B.22’) we obtain 

L = rad Qn [2. 7181’2 am e ] (B. 40) 

and 

Lkad = !h [2. 7181’2 a’ m ] ., e (B. 41) 

Using the expressions for Lrad and Llrad for various atoms in Table B.2, we 

obtain the values for a and a’. For example for Thomas Fermi atom, using 
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Moliere representation, we obtain 

- a = 184.15 (2,718) -l/2 z-1/3, m e (B. 42) 

a’ = 1194 (2.718) -l/2 z-2/3,m 
e _: 

(B. 43) 

The values of a and a’ for light Z elements are shown in Table V. 4. 

Because of their simple structure and also because they give almost correct 

answers, these simple form factors have many practical uses. This is very 

similar to the situation in the elementary quantum mechanics course where the 

square well potential is sometimes used to illustrate the properties of some 

complicated practical problems. 

^ 2. Elastic Form Factors of Nucleons 

We use the dipole approximation for the elastic form factors of a proton 

and a neutron: 

-weQ 
2P 

WeQ 
1P 

eQ 
W2n 

2m 6(mi - mf) 
IX 

(lf t/.71)4 

(1+ 2. 7g2 T)/(l + 7) 

2. 7g27 

1. 9127/(1 f 7) 

1. 9127/(1 + 7) 

(B. 44) 

where T = t/(4mE). The discussion of the accuracy of these form factors can be 

found in the paper by R. Wilson (1972). 76 
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3. Elastic Form Factors of Nuclei 

The elastic form factors of a nucleus can be written as 

Gf( t) + T G;(t) 
i 

W,(t, m,Z) = 2mi 
l+T 

6(m2 - mf) 
.f 

and 

W,(t, rnf) = 2mi T G:(t) 8(mf2 - mfz) , 

(B.45) 

(B. 46) 

where T = t/4mf and the electric and the magnetic form factors, Ge and Gm, 

are normalized such that 

G:(O) = Z2 , 

and77 (Pratt, 1965) 

2 j+l 
GmtO) = 3j 

(B. 47) 

(B. 48) 

where j is the spin or the target and pn is the nuclear dipole magnetic moment 

in units of eh(2m)-l = nuclear magneton, 

The nuclear magnetic dipole moment pn for an arbitrary nucleus is roughly 

given by the Schmidt value, namely between 2,79 and -1.91. Now T is a very 

small number near tmm especially for heavy nuclei. In our calculation we 

ignore WI and T when dealing with nuclear targets other than the proton, The 

expression for W2 used in our numerical calculation is 

W2(coherentj = 2mi6(mf2 - rnp) Z2/(1 + t/d)2 , (B. 49) 

where d = 6/( 1.2 fermi A 1’3)2 = 0.164 A-2/3 GeV2. The advantage of this ex- 

pression is that the integration with respect to t can be done analytically. 
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For the particular case of Be nucleus (Z = 4, A = 9, j = 3/2 and p, = -1.18), 

both the electric and magnetic form factors are known experimentally: 78 (Hand, 1965) ~- 

Geie = 16(1 - y 2 -32t I 
t) e 

and 
2 

GmBe 
= 1l.18~. 45x (1 - 25,6t+ 314t )e 2 -32t 0 

(B, 50) 

(B.51) 

We have computed the lepton production cross sections from Be target using 

the simple expression Eq, (B.49) and the more precise expression Eqs, (B,50) 

and (B.51). Because of the exponential factor in the latter, the form factors 

decrease much more rapidly at large t for the later than the former. However 

when t is so large that two form factors are appreciably different, usually the 

incoherent 

the simple 

processes become more important than the coherent ones. Hence 

expression is adequate for estimating the total yield if we add together 

all the contributions. The same comment can be applied to the form factors of 

other nuclei. 

4. Inelastic Nuclear Form Factors 

A nucleus when excited by an electron has many excited levels and a broad 

bump called quasielastic peak. In the calculation such as what we are doing, it 

is impractical to consider the contribution from each excited level because there 

are too many of them. The most logical thing to do is to draw a smooth curve 

representing the local average of the low lying excited levels, the giant resonance 

and the quasielastic peak. As far as we know, nobody ever tried to construct 

some smooth functions to represent the local average of actual W,(q2, rn:) and 

W2(s2s m,2) for nuclei. Fortunately in nuclear physics, the inelastic excitation 

function is dominated by the quasielastic peak which can be reproduced very 

well by the Fermi Gas Model as shown by Moniz , et al. 79 Actually in the 
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experiment of Moniz, et al. , 7g (1971) they measured the inelastic electron scattering 
.~ 

from various nuclei (Li to Pb) for an electron incident energy of 500 MeV and 
- ~, 

a sca&ring angle of 60’. In this kinematical region, hardly any discrete level 

or giant resonance is visible in the spectra, It would be interesting to see whether 

the Fermi gas model roughly reproduces local average of the inelastic spectra 

at smaller scattering angles where discrete levels and the giant resonance 

peak as well as the quasielastic peak show up. If we assume that this is what 

happens in nature, we can use the expressions of W,(q2, mi) and W2ts2, mi) 

given by Moniz 8o (1969) with the parameters given by Moniz, et al. , 70(1971) in the 

calculation of the pair production. If one is interested only in a very crude estimate 

of the cross section, one can make one further approximation, namely, re- 

placing the quasielastic peak obtained by the Fermi gas model by a 6 function. 

This is done in order to avoid doing the numerical integration with respect to 

rnt in Eq. (II. 7). Under this approximation we have mf = mi 7 mp and 

Wquasi-elastic 1 

2 = c(t) + (A - Z) W;; 

and 
Wquasi-elastic 

1 = c(t) el. + (A - Z) Win 1 , 
(B. 52) 

(B. 53) 

where C(t) is the Pauli suppression factor given by C(t) = 1 if Q > 2PF = 0.5 GeV, 

and 

‘@) = ’ PF 
3 -Q- [l- & (gjg] (B. 54) 

ifQ<2PF, with Q defined by 

Q = t2/(2mp)2 + t . (B, 55) 
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The approximation of the quasielastic bump by a 6 function is equivalent to 

@nor&g the Fermi motion of the nucleons within the nucleus. Since nucleons 

can move parallel as well as antiparallel to the direction of the incident photon, i 
the Fermi motion does not affect the gross features of the cross section except 

near the threshold of the production. 

5. Meson Production Form Factors 

In this case we assume the target to be completely incoherent, namely 

m. =m 
1 P’ 

W2(meson production) = Z W2p(t, rnf) + (A - Z) W,(t, rnf) (B.56) 

and 

Wl(meson production) = Z Wlp(t, rni) + (A- Z)W,(t, rnf) , (B. 57) 

where W 
2P 

andW 
1P 

are the meson production form factors from the proton 

target, and W2n and Win are those from the neutron target. The shadowing 

effect due to the vector dominance mechanism and Pauli suppression due to the 

exclusion principle are ignored because from the data 81 (Kendall, 1972) on e-nucleus 

scatterings, these effects are not important in the meson production region. From 

the deuteron data, 81 (Kendall,1972) the neutron cross section is slightly less than the 

proton cross section. The contributions to our production cross section from these form 

factors are in general not very significant due to the expression for tmm. There- 

fore only a very rough estimate of this contribution will be given. The neutron 

and the proton are assumed to have the same cross section. For W 
1P 

a.ndW 
2P’ 

we use the parameterization given by suri and Yennie 82 (1972): 

250.6 m2(l, -x) 41 

W 
IP 

=C 
(1 - 1.26x+ 0.96x2) 1 

(B. 58) 
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w2p 1 wlp+c 56.3(1$ 

-m2)tm2 c 2 

= v2/t (rn: + t)2 I 1 - 1+ t/(2mpv) 11 

8 (B. 59) 

where 

C = 10-4/[(u.197)2 a! i2 8mp] , 

2 
V = (m - f m: + W2mp) , 

x = t/(2mpv + rni) 

and 

2 
mP 

= 0.585. 

K. J. Kim compared this parameterization against all the available data 

from SLAC-MIT ep inelastic scattering 83 with the help of IBM 2250 scope. The 

fits are excellent in the smooth region, whereas in the resonance region, the 

curves go through roughly the local average of the resonance peaks. Since in 

our calculation these curves are integrated, we expect no gross error to occur 

by using this fit, 
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FIGURE CAPTIONS 

II. 1 Feynman diagrams for the photoproduction of a lepton pair. 

II. 2- The coordinate system used in the integration of the unobserved particle 

P+~ The subscript s refers to the rest frame of U = p+ + pf. 

A. 1 Notations used in Appendix A. 
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I 

TABLEIII.l 

-h Functions Q,(r), @Z('Y), $+E) ad $2(e) 

for a hydrogen atom using the analytical expressions 

given by Eqs. (III.25) through (III.28) 

y or E @l(Y) G,(Y) ICIl(E) ICI.+) 

0.00 21.2417 20.58 24.5750 23.91 

0.02 21.17 20.57 24.39 23.87 

0.1 20.90 20.49 23.71 23.50 

0.2 20.56 20.32 22.96 22.91 

0.4 19.93 19.87 21.69 21.74 

0.6 19.34 19.36 20.65 20.71 

0.8 18.79 18.84 19.71 19.82 

1.0 18.27 18.34 19.01 . 19.05 

1.2 17.80 17.86 18.36 18.38 

1.4 17.36 17.41 17.78 17.80 

1.8 16.94 16.99 17.27 17.29 

1.8 16.56 16.60 16.82 16.83 

2.0 16.20 16.24 16.41 16.41 

4.0 13.62 13.63 13.65 13.65 

6.0 12.02 12.02 12.03 12.03 

8.0 10.87 10.87 10.88 10.88 

10.0 9.98 9.98 9.98 9.98 

- 99 - 



TABLE III.2 

Function +1(~L e2(7/), $$) and $2(e) 

for a helium atom using the analytical expre?sions 

givenby Eqs. (III.25)through QII.28) 

y or E @l(Y) G,(Y) q4 @2(E) 

0.00 20.0729 19.41 24.3304 23.66 

0.02 20.02 19.40 24.16 23.63 

0.1 19.81 19.35 23.52 23.29 

0.2 19.56 19.24 22.80 22.74 

0.4 19.08 18.94 21.59 21.63 

0.6 18.62 18.58 20.58 20.64 

0.8 18.18 18.19 19.72 19.77 

1.0 17.76 17.81 18.98 19.02 

1.2 17.37 17.43 18.34 18.37 

1.4 16.99 17.06 17.77 17.79 

1.6 16.64 16.70 17.26 17.28 

1.8 16.31 16.37 16.81 16.82 

2.0 15.99 16.05 16.40 16.41 

4.0 13.58 13.59 13.65 13.65 

6.0 12.01 12.01 12.03 12.03 

8.0 10.87 10.87 10.88 10.88 

10.0 9.98 9.98 9.98 9.98 
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TABLEIU.3 

Functions $+YL e2(y), +1(~) and e2(~) 

for ahydrogen atom using the Bethe appro+mation 

givenby Eqs. (III.14)through (III.17) 

yor E +qY) @2(Y) #l(E) $2(E) 

0.00 21.24 20.58 24.58 23.91 

0.02 21.17 20.57 24.39 23.87 

0.1 20.90 20.49 23.72 23.50 

0.2 20.57 20.32 22.97 22.91 

0.4 19.94 19.86 21.71 21.74 

0.6 19.36 19.36 20.67 20.71 

0.8 18.82 18.84 19.80 19.82 

1.0 18.31 18.34 19.05 19.05 

1.2 17.85 17.86 18.41 18.39 

1.4 17.41 17.42 17.84 17.80 

1.6 17.01 17.00 17.34 17.29 

1.8 16.63 16.61 16.89 16.83 

2.0 16.28 16.25 16.49 16.42 

4.0 13.78 13.65 13.81 13.67 

6.0 12.26 12.06 12.26 12.06 

8.0 11.19 10.94 11.19 10.94 

10.0 10.38 10.07 10.38 10.07 
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Y TFM 
Analytic 
Simulation 

Monopole 
Simulation 

Dipole 
Simulation 

Unscreened 
Target 

0,o 20.863 20.863 20.863 20.863 co 

0.02 20.771 20.77 20.79 20.80 34.84 
0.1 20,418 20.41 20.52 20.55 28.40 
0.2 20.006 20.00 20.19 20.25 25.63 
0.4 19.274 19.27 19.56 19.68 22.86 
0.6 18.642 18.63 18.98 19.14 21.24 
0.8 18.088 18.08 18.44 18.64 20.09 
1.0 17.596 17.59 17.95 18.16 19.19 
1.2 17.153 17.13 17.49 17.72 18.46 
1.4 16.752 16.71 17.07 17.31 17.85 
1.6 16.386 16.34 16.68 16.92 17.31 
1.8 16.049 15.99 16.32 16.56 16.84 
2.0 15.737 15.66 15.98 16.23 16-42 

Y TFM 
Analytic 

Simulation 
Monopole 

Simulation 
Dipole 

Simulation 

0.0 20,196 20.196 20.196 20.196 
0,02 20.184 20.18 20.19 20.19 
0.1 20.026 20.02 20.11 20.12 
0.2 19.746 19,73 19.93 19.98 
0.4 19.137 19.12 19.47 19.58 
0.6 18.558 i8054 18.96 19.12 
0.8 18.027 18.01 18.46 18.65 

1.0 17.545 17.53 17.98 18.18 
1.2 17.105 17.09 17.53 17.74 
1.4 16,702 16.68 17.11 17032 

1.6 16.332 16.31 16.72 16092 

1.8 15.990 15.96 16.35 16.55 

2.0 15.673 15.64 16.01 16.20 

TABLE III.4 

Screening Functions for Thomas-Fermi-Moliere Model. 

y(Y) 

‘p$ Y) 
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TABLE III.4 (cont'd) 

E TFM 
Analytic 
Simulation 

Monopole 
Simulation- 

Dipole 
Simulation 

Unscreened 
Target 

0.0 28.34 28.34 28.34 28.34 Co 

0.02 27.41 27.39 27.90 27.88 34.84 
0.1 25.48 25.42 26.32 26.35 28.40 
0.2 24.01 24.07 24.76 24.85 25.63 
0.4 22.11 22.19 22.58 22.71 22.86 
0.6 20.81 20.88 21.10 21.22 21.24 
0.8 19.82 19.87 20.01 20.10 20.09 
1,o 19.03 19.05 19.14 19.23 19.19 
1.2 18.36 18.36 18.43 18.51 18.46 
1.4 17,79 17.77 17.82 17.90 17.85 
1.6 17.29 17.25 17.29 17.38 17.31 
1.8 16.85 16.80 16.83 16.91 16.84 
2.0 16.45 16.38 16.41 16.50 16.42 

E TFM 
Analytic 
Simulation 

Monopole 
Simulation 

Dipole 
Simulation 

0.0 27.673 27.673 27.67 27.67 
0.02 27.063 27.05 27.54 27.51 
0.1 25.381 25.34 26.32 26.34 
0.2 23.979 24.04 24.80 24.91 
0.4 22.100 22.18 22.60 22,72 
0.6 20.801 20.87 21.12 21.21 
0.8 19.808 19.86 20.02 20.08 
1.0 19.004 19.05 19.15 19.19 
1.2 18.329 18.36 18.43 18.47 
1.4 17.748 17.77 17.82 17.85 

1.6 17.239 17.25 17.30 17.32 
1.8 16.785 16.80 16.83 16.85 
2.0 16,377 16.38 16.41 16.43 
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TABLEIH.5 

Total ElectronPair Production Cross Section 

cw - W]bW corrected for recoil already 
9 

k t&V) 
Name Z (T(W) mb* 100 10 6 2 1 0.6 0.4 0.2 0.1 

H 1 20.73 
He 2 55.06 

Li 3 108.8 
Be 4 179.4 

C 6 361.5 

N 7 473.8 

Ne 10 896.1 
Al 13 1,443 

Fe 26 5,182 

Ca 29 6,343 

Sn 50 17,276 
W 74 34,869 

Pb 82 41,720 

U 92 50,870 

.Oll .028 a039 .079 

. 012 .023 .030 .058 

.004 .024 .034 .073 

.003 .020 ,029 .064 

.002 .016 .023 .053 

.002 .015 .022 ,050 

.002 .012 .019 .044 

,002 .Oll .017 .040 

.OOl .009 .014 .033 

.OOl .009 .013 .032 

.OOl .008 .012 .029 

.OOl .007 .Oll .028 

.OOl .007 .Oll .028 

.OOl .007 .Oll *.028 

,126 
.091 

. 113 

. 101 

. 087 

.082 

. 073 

.068 

.057 

. 056 

.051 

.049 

. 049 

.048 

. 174 

. 128 

. 154 

. 139 

. 122 

,116 
,105 

.098 

,084 

.082 
,075 
,073 

,072 

.072 

. 222 .323 .441 

. 166 .253 .367 

.195 .283 .391 

. 178 .263 ,370 

.158 .238 .343 

.151 .230 .334 

. 137 .213 .315 

. 129 .202 .302 

. 112 .180 ,275 

. 110 .177 .272 

. 102 .166 .259 

. 099 ,162 .256 

. 098 -.162 .257 

. 098 .162 .258 

Recoil correction off a free electrontarget 

CT no recoil -iT 
A= ~ recoil .0004 .0027 .0040 .0098 .0169 .0251 .0343 .0576 .0954 

no recoil 

The effect of radiative corrections is not included. This canbe accounted for by multiplying these 
numbersby a factor 1.0093 according to MorkandOlsen (1965). 



2 

1 1.0080 6.4005 E-5 

2 4.0026 2.5599 E-4 

3 6.9390 5.7583 E-4 

4 9.0122 1.0234 E-3 

5 10.8110 1.5984 E-3 

6 12.0111 2.3005 E-3 

7 14.0061 3.1294 E-3 

8 15.9994 4.0845 E-3 

9 18.9984 5.1654 E-3 

10 20.1830 6.3715 E-3 

11 22.9895 7.1022 E-3 

12 24.3120 9.1566 E-3 

13 26.9815 1.0134 E-2 

14 28.0560 1.2434 E-2 

15 30.9138 1.4255 E-2 

16 32.0640 1.6196 E-2 

11 35.4530 1.8256 E-2 

18 39.9480 2.0435 E-2 

19 39.1020 2.2731 E-2 

20 40.0800 2.5142 E-2 

21 44.9560 2.7668 E-2 

22 41.9000 3.0308 E-2 

23 50.9420 3.3059 E-2 

24 51.99GO 3.5921 E-2 

25 54.9380 3.8892 E-2 

26 55.8410 4.1971 E-2 

27 58.9332 4.5156 E-2 

28 58.1100 4.8445 E-2 

29 63.5400 5.1837 E-2 

30 65.3100 5.5331 E-2 

31 69.7200 5.8924 E-2 

32 72.5900 6.2615 E-2 

33 74.9216 6.6402 E-2 

34 78.9600 7.0284 E-2 

35 79.9090 1.4258 E-2 

36 83.8000 7.8323 E-2 

37 85.4700 8.2478 E-2 

38 87.6200 8.6719 E-2 

39 88.9050 9.1046 E-2 

40 91.2200 9.5456 E-2 

41 92.9060 9.9948 E-2 

42 95.9400 1.0452 E-l 
43 99.0000 1.0917 E-l 

44 101.0700 1.1389 E-l 

45 102.9050 1.1869 E-l 

46 106.4000 1.2356 E-l 

A 

TABLE iII.6 

Unit Radiation Lengths of Atoms 

'2 = atomic number, A = atomic weight 

f = Coulomb corrections Eq. (II1.3), X,, =unit radiation length 

f Xo(gnh,2) 
63.0470 

94:3221 

82.7559 

65.1899 

52.6868 

42.6983 

37,9879 

34.2331 

32.9303 

28.93G7 

27.7362 

25.0387 

24.0111 

21.8234 

21.2053 

19.4953 

19.2753 

19.5489 

17.3161 

16.1442 

16.5155 

16.1745 

15.8425 

14.944‘1 

14.6393 

13.8389 

13.6174 

12.6820 

12.8G16 

12.42GS 

12.4734 

12.2459 

11.9401 

11.9082 

11.4230 

11.3722 

11.0272 

10.1623 

10.4101 

10.194s 

9.9225 
9.8029 
9.6881 

9.4825 

9.2654 

9.2025 

z A 

41 107,870O 

48 112.4000 

49 114.8200 

50 118.6900 

51 121.7500 

52 127.6000 

53 126.9040 

54 131.3000 

55 132.0050 

5G 137.3400 
57 138.9100 

58 140.1200 

59 140.9070 

GO 144.2‘100 

61 145.0000 

62 150.3500 

I33 151.SGOO 

G-1 157.2500 

65 158.9240 

CG 162.5000 

67 lG4.9300 

68 lG7.2GOO 

69 lGS.SMO 

70 173.0400 

11 174.9700 

72 175.4SOO 

13 180.9480 

14 183.8500 

75 186.2000 

76 190.2000 

77 142.2000 

78 195.0900 

79 lS6.9G70 

80 200.5900 

81 204.3700 

82 207.1900 

83 208.9800 

84 210.0000 

85 210.0000 

86 222.0000 

87 223.0000 

88 226.0000 

89 227.0000 

90 232.0380 

91 231.0000 

92 23S.0300 
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i’ 

f 

1.2850 E-l 

1.3351E-1 

1.3859 E-l 

1.4373 E-l 

1.4893 E-l 

1.5419 E-l 

1.5951 E-l 

l.G-lb9 E-l 

1.7032 E-l 

1.7581 E-l 

1.8134 E-l 

l.SGS3 E-l 

1.S25G E-l 

l.SS24 E-l 

2.039G E-l 

2.0'372 El 

2.1553 E-l 

2.2137 E-l 

2.2725 E-l 

2.3317.F1 

2.3911 E-l 

2.4500 E-l 

2.5110 E-l 

2.5714 E-l 

2.6321 E-l 

2.FWO E-l 

2.75.il E-l 

2.8155 E-l 

2.8771E-1 

2.9359 E-l 

3.0005 E-l 

3.OG29 E-l 

3.1252 E-l 

3.187G E-l 
3.2502 E-l 

3.3128 E-l- 

3.375G E-l 

3.4384 E-l 

3.5013 E-l 

3.5043 E-l 

3.6273 E-l 
3.6904 E-l 

3.7535 E-l 

3.8166 E-l 

3.8797 E-l 

3.9429 E-l 

Xo(gdcm2) 
8.9701 

8.99-15 

6.8491 

8.8170 

8'. 7244 

S:S267 

S.4803 

8.4319 

5.3052 

6.3073 

8.1387 

7.9557 

7. 7570 

7.7051 

7.5193 

7.5727 

7.4377 

7.4530 

7.3563 

7.3199 

7.2332 

7.1448 

7.0318 

7.0214 

G. 9237 

6.6907 

6.8177 

G.7630 

G. 6897 

G.67G3 

6.5936 

6.5433 

6.4GO8 

6.4365 

G.4176 

G.3G88 

6.2399 

6.1907 

6.OG51 

G 2433 . i 

6.1868 

6.1477 

6.0560 

6.0726 

5.931s 

5.9990 



(A) TABLE V. 1 

k = 20, m = 0.1056 
da/dSldp for Photoproduction of Muon (cm2/GeV/sr) 

*B/m 

Neutron 
Elastic 

0 

0.5 

1.0 

2.0 

4.0 

Be Proton 
Coherent Elastic 

P=4.0 
4.467D-29 3.136D-30 

3.062D-29 2.168D-30 

l.l73D-29 8.719D-31 

1.373D-30 1.255D-31 

5.234D-32 7.96 5D-33 

1.5202>-33 4.855D-34 

7.9270-35 5.454D-35 

1.368D-36 2.182D-36 

6.326D-38 2.301D-38 

P=8.0 

1.5841)-28 l.l16D-29 

i. 189D-28 8.332D-30 

4.809D-29 3.4861)-30 

5.619D-30 4.897D-31 

2.266D-31 3.060D-32 

8.609D-33 2.004D-33 

6.242D-34 2.592D-34 

1.484D-35 1.652D-35 

7.145D-37 l.O87D-36 

P= 12.0 

3.564D-28 2.510D-29 

2.675D-28 1.874D-29 

l.O82D-28 7.842D-30 

1.264D-29 l.l02D-30 

5.104D-31 6.901D-32 

1.949D-32 4.562D-33 

1.434D-33 5.997D-34 

3.561D-35 3.954D-35 

1.805D-36 2.720D-36 

P= 16.0 

7.145D-28 5.014D-29 

4.897D-28 3.465D-29 

1.8761)-28 ’ 1.394D-29 

2.198D-29 2.009D-36 

8.428D-31 1.287D-31 

2.53833-32 8.195D-33 

1.438D-33 9.955D-34 

2.977D-35 4.697D-35 

1.610D-36 9.891D-37 

1.565D-32 

l.l65D-32 

6.589D-33 

2.301D-33 

4.506D-34 

6.173D-35 

l.l70D-35 

8.3561)-37 

l.O45D-38 

Be Quasi- Proton 
Elastic Inelastic 

1.556D-30, i 6.436D-32 

7.0 

10.0 

15.0 

20.0 

0 

0.5 

1.0 

2.0 

4.0 

7.0 

10.0 

15.0 

20.0 

0 

0.5 

1.0 

2.0 
* 4.0 

7.0 

10.0 

15.0 

20.0 

0 

0.5 

1.0 

2.0 

4.0 

7.0 

10.0 

15.0 

20.0 

5.865D-32 

4.199D-32 

2.259D-32 

7.751D-33 

1.525D-33 

2.073D-34 

4.073D-35 

4.746D-36 

4.365D-37 

1.317D-31 

9.433D-32 

5.075D-32 

1.743D-32 

3.441D-33 

‘4.729D-34 

9.403D-35 

l.l02D-35 

l.O44D-36 

2.486D-31 

1.852D-31 

l.O45D-31 

3.668D-32 

7.248D-33 

l.O29D-33 

2.026D-34 

1.570D-35 

4.032D-37 
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l.l43D-30 

5.926D-31 

1.5500-31 

1.946D-32 

1.768D-33 

2.507D-34 

1.290D-35 

1.443D-37 

5.529D-30 

4.043D-30 

2.083D-30 

5.413D-31 

6.830D-32 

6.495D-33 

l.O29D-33 

8.708D-35 

.6.532D-36 

1.243D-29 

9.090D-30 

4.682D-30 

.l. 218D-30 

1.541D-31 

1.482D-32 

2.383D-33 

2.067D-34 

1.610D-35 

2.48OD-29 

1.8221)-29 

9.447D-30 

2.474D-30 

3.141D-31 

2.982D-32 

4.523D-33 

2.664D-34 

5.972D-36 

4.722D-32 

2.580D-32 

8.53’7D-33 

1.654D-33 

2.4OlD-34 

4.187D-35 

1.927D-36 

1.881D-38 

2.758D-31 

1.952D-31 

l.O24D-31 

3.474D-32 

7.405D-33 

l.l8OD-33 

2.384D-34 

2.023D-35 

1.303D-36 

6.630D-31 

4.707D-31 

2.502D-31 

8.731D-32 

1.877D-32 

2.960D-33 

6.049D-34 

5.36OD-3 j 

3.515D-36 

1.210D-30 

8.979D-31 

5.084D -31 

1.8000-31 

3.541D-32 

4.993D-33 

8.870D-34 

4.466D-35 

4.747D-37 



TABLE V. 1 (continued) 
W 
K = 200. m = 0.1056 

- 
-Pe/m 

0 
, 

0.5 

1.0 

1 2.0 

4.0 

7.0 

10.0 

15.0 

20.0 

0 

0.5 

1.0 

2.0 

4.0 

7.0 

10.0 

15.0 

20.0 

0 

0.5 

1.0 

2.0 

4.0 

7.0 

10.0 

15.0 

20.0 

0 

0.5 

1.0 

2.0 

4.0 

7.0 

10.0 

15.0 

20.0 

Be Proton 
Coherent Elastic 

P =40.0 
5.797D-28 4.751D-29 

4.249D-28 3.441D-29 

1.843D-28 1.454D-29 

2.718D-29 2.156D-30 

1.606D-30 1.522D-31 

l.l77D-31 1.295D-32 

1.934D-32 2.377D-33 

1.973D-33 3.llOD-34 

3.006D-34 6.675D-35 

P =80.0 

1.889D-27 1.560D-28 

1.515D-27 1.237D-28 

6.902D-28 5.513D-29 

l.O03D-28 7.988D-30 

5.802D-30 5.369D-31 

4.348D-31 4.529D-32 

7.551D-32 8.460D-33 

8.783D-33 l.l68D-33 

1.587D-33 2.682D-34 

P =120.0 

4.439D-27 3.599D-28 

3.563D-27 2.845D-28 

1.615D-27 1.255D-28 

2.301D-28 1.798D-29 

1.306D-29 1.208D-30 

9.783D-31 l.O19D-31 

1.699D-31 1.905D-32 

1.977D-32 2.630D-33 

3.573D-33 6.043D-34 

P = 160.0 

l.O69D-26 8.033D-28 

7.728D’-27 5.728D-28 

3.27.6D-27 2.355D-28 

4.462D-28 3.451D-29 

2.570D-29 2.436D-30 

1.883D-30 2.076D-31 

3.095D-31 3.8 14D-32 

3.16OD-32 4.999D-33 

4.825D-33 l.O75D-33 

Neutron 
Elastic 

1.570D-31 

l.l69D-31 

6.608D-32 

2.308D-32 

4.550D-33 

6.499D-34 

1.374D-34 

2.179D-35 

6.249D-36 

5.889D-31 

4.216D-31 

2.267D-31 

7.779D-32 

1.538D-32 

2.142D-33 

4.406D-34 

6.8101)-35 

1.94 lD-35 

1.325D-30 

9.485D-31 

5.190D-31 

1.750D-31 

3.462D-32 

4.827D-33 

9.942D-34 

1.538D-34 

4.383D-35 

2.509D-30 

1.868D-30 

l.O56D-30 

3.691D-31 

7.284D-32 

l.O45D-32 

2.221D-33 

3.532D-34 

l. OllD-34 
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Be Quasi- 
Elastic 

1.590D-29 

l.l74D-2; ’ 

S.l39D-30 

1.632D-30 

2.181D-31 

2.460D-32 

5.068D-33 

7.939D-34 

2.045D-34 

5.604D-29 

4.118D-29 

2.135D-29 

3.605D-30 

7.342D-31 

8.025D-32 

1.636D-32 

2.622D-33 

7.094D-34 

1.261D-28 

9.267D-29 

4.804D-29 

1.261D-29 

1.652D-30 

1.808D-31 

3.687D-32 

5.911D-33 

i. 600D-33 

2.545D-28 

1.879D-28 

9.8201)-29 

2.610D-29 

3.492D-30 

3.951D-31 

8.160D-32 

1.280D-32 

3.299D-33 

Proton 
Inelastic 

4.746D-31 

3.487D-31 

1.908D-31 

6.363D-32 

1.303D-32 

2.415D-33 

7.08 OD-34 

1.637D-34 

5.266D-35 

2.031D-30 

1.440D-30 

7.558D-31 

2.574D-31 

5.891D-32 

l.l97D-32 

3.616D-33 

8.321D-34 

2.657D-34 

4.983D-30 

3.548D-30 

1.885D-30 

6.63iD-31 

1.609D-31 

3.469D-32 

l.O73D-32 

2.407D-33 

7.27OD-34 

l.O38D-29 

7.732D-30 

4.399D-30 

1.63OD-30 

4.043D-31 

8.922D-32 

2.713D-32 

5.462D-33 

1.455D-33 



TABLE V. 1 (continued) 

(C) 
* = 20, m = 0.1056 

P 
2 
4 

6 
8 

10 
12 

14 
16 

18 

2 

4 
6 

8 

10 
12 

14 

16 

18 

2 
4 

6 

8 

10 
12 
14 

16 

. ‘18 

Be Proton 
Coherent Elastic 

8 =o.o 
l.O86D-29 7.710D-31 
4.467D-29 3.136D-30 
9.452D-29’ 6.640D-30 
1.584D-28 l.l16D-29 
2.418D-28 1. ‘705D-29 
3.564D-28 2.510D-29 

5.146D-28 3.614D-29 
7.145D-28 5.014D-29 
8.787D-28 6.225D-29 

0 =O.l 

3.569D-31 3,46lD-32 
7.050D-32 l.O17D-32 
1.732D-32 3.392D-33 
5.064D-33 1.308D-33 
1.593D-33 5.706D-34 
4.892D-34 2.708D-34 

1.311D-34 1.2751)~34 
2.706D-35 4.290D-35 

4.013D-36 0.0 

8 =0.2 

1.223D-32 2.258D-33 
8.391D-34 3.100D-34 
9.414D-35 6.169D-35 
1.348D-35 1.53,5D-35 

2.318D-36 3.659D-36 
4.651D-37 4.168D-37 
l.O50D-37 0.0 
2.606D-38 0.0 

6.805D-39 0.0 

Neutron 
Elastic 

4.126D-33 

1.565D-32 

3.382D-32 

5. 865D-32 

9.082D-32 
1.316D-31 

1.835D-31 
2.486D-31 

3.301D-31 

7.272D-34 

5.277D-34 

2.870D-34 

1.479D-34 

8.150D-35 
5.032D-35 

3.230D-35 

1.446D-35 

0.0 

1.506D-34 

4.398D-35 

1.290D-35 
4.474D-36 

1.348D-36 

1.726D-37 

0. 0 

0.0 

0.0 
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- . . . . . ,.. “.. .., . _ :. ,_ _ _-. 

,Be Quasi- 
Elastic 

Proton 
Inelastic 

4.2042)-31 1.496D-32 

1.556D-30 6.436D-32. 

3.260D-30 1.503D-31 
5.529D-30 2. 758D-31 

8.496D-30 4.452D-31 

1.243D-29 6.630D-31 

1.772D-29 9.286D-31 
2.480D-29 1.210D-30 . ’ 

3.373D-29 1.303D-30 

4.770D-32 2.233D-33 
2.367D-32 1.932D-33 

l.O05D-32 1.345D-33 

4.428D-33 8.589D-34 

2.164D-33 5.263D-34 
l.l66D-33 3.098D-34 

6.390D-34 1.560D-34 

2.439D-34 4.054D-35 

0.0 \ 0.0 

6.156D-33 4.031D-34 

l.l86D-33 1.712D-34 
2.797D-34 5.849D-35 
8.148D-35 1.884D-35 

2.138D-35 4.879D-36 

2.530D-36 4.861D-37 

0.0 0.0 

0.0 0.0 

0.0 0.0 



?~ABLTV. 1 (continued) 

(W 
k =200, m =0.1056 

P 
20 

40 

60 

80 
100 

120 

140 

160 

180 

20 - 
40 

60 

80 

100 

120 

140 

160 

20 
40 

60 
80 

100 
120 

Be Proton 
Coherent Elastic 

6 =o.o 
1.679D-28 1.326D-29 

5.797D-28 4.751D-29 

l.l5OD-27 9.502D-29 

1.889D-27 1.560D-28 

2.90913-27 2.389D-28 

4.439D-27 3.599D-28 

6.854D-27 5.421D-28 

l.O69D-26 8.033D-28 

1.605D-26 l.O99D-27 

8 =O.l 

4.868D-35 1.697D-35 

l.l27D-36 l.l92D-36 
6.332D-38 l.l61D-37 

5.688D-39 3.093D-39 

6.688D-40 0.0 

8.885D-41 0.0 
1.152D-41 0.0 

1.325D-12 0.0 

0 =0.2 

4.528D-38 8.198D-38 
3.510D-40 0.0 

1.257D-41 0.0 
8.243D-43 0.0 
7.386D-44 0.0 

8.687D-45 0.0 

Neutron 
Elastic 

Be Quasi- 
Elastic 

4.137D-32 

1.570D-31 

3.395D-31 

5.889D-31 

9.125D-31 

1.325D-30 

1.847D-30 

2.509D-30 
3.344D-30 

4.383D-30 

1.590D-29 

3.312D-29 

5.604D-29 

8.609D-29 

1,26lD-30 

1.80423-28 

2.545D-28 

3.549D-28, 

2.306D-36 

3.394D-37 

4.753D-38 

1.417D-39 

0.0 . 

0.0 

b. 0 

0.0 

6.262D-35 

6.204D-36 

7.02 lD-37 

1.946D-38 

0.0 

0.0 

0.0 

0.0 

3.412D-38 4.985D-37 

0.0 0.0 

0.0 0.0 

0. 0 0. 0 

0.0 0.0 

0.0 0.0 
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i’ 

Proton 
Inelastic 

l,109D-31 
4.746D-31 

l.l06D-30 

2.031D-30 

3.295D-30 
1 

4.983D-30 

7.241D-30 

l.O38D-29 

1.526D-29 

l.l77D-35 
1.397D-36 

1.521D-37 

4.466D-39 

0.0 

0.0 

0.0 

0. 0 

7.213D-38 

0.0 
I 

0.0 
0.0 
0.0 

0.0 



TABLE V.2 
(4 

4\ dc/dS&lp for Photoproduction of Heavy Leptons (cm2/GeV/sr) 
k =200, m =4.0 

Be Proton 
Coherent Elastic 

PG/m P =40 
0 l.O93D-36 1:153D-36 

0.2 9.178D-37 l.O28D-36 
0.4 5,47lD-37 7.200D-37 

0.6 2.418D-37 3.897D-37 

0.8 8.65033-38 1.598D-37 
1.0 2.754D-38 4.635D-38 

: P =80 
0 l.l36D-35 6.485D-36 

0.2 l.O06D-35 6.070D-36 
0.4 6.743D-35 4.786D-36 

0.6 3.373D-36 3. -62D-36 

0.8 1.337D-36 1.615D-36 
1.0 4.592D-37 7.219D-37 

P = 120 

0 : 2,553D-35 1.459D-35 
0.2 - 2.259D-35 1.365D-35 

0.4 :’ 1.514D-35 l.O76D-35 
0.6 7.576D-36 6. BBOD-36 
0.8 : 3.006D-36 3.633D-36 

1.0 l.O35D-36 1.625D-36 
P = 160 

0 -- 1.720D-35 1.825D-35 
0.2 1.444D-35 1.626D-35 

0.4 8.615D-36 ,l. 138D-35 
0.6 1 3.825D-36 6.158D-36 

0.8 1.380D-36 2.526D-36 

1.0 4.452D-37 7.299D-37 

Neutron 
Elastic 

3.286D-37 

3.033D-37 
2.326D-37 

1.412D-37 

6.430D-38 

2.OllD-38 

1.251D-36 

1.217D-36 

l.O69D-36 

7.972D-37 

4.969D-37 

2.577D-37 

2. BlBD-36 

2.740D-36 
2.405D-36 

1.793D-36 

l. llBD-36 

‘5.798D-37 

5.247D-36 
4.837D-36 

3.700D-36 
2.239D-36 

1.0160-36 

3.155D-37 
, 
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Be Qudsi 
Elastic 

5.997D-36 

5.437D-36 
3.976D-36 

2.261D-36 

9.608D-37 

2,86OD-37 

2.809D-35 

2.676D-35 

2.217D-35 

1.525D-35 

8.721D-36 
4.166D-36 

6.322D-35 

6.019D-35 

4.985D-35 
3.429D-35 

1.961D-35 

9.3750-36 

9.525D-35 

8.62 7D-35 
6.298D-35 

3.578D-35 

1.518D-35 

4.497D-36 

Proton 
Inelastic 

3.993D-37 

3.564D-37 
2.528D-37 

1.405D-37 

5.915D-38 

1.745D-38 

’ , 

2.509D-36 

2.315D-36 

1.814D-36 

1.202D-36 

6.693D-37 

3.10933-37 

6.322D-36 
5.834D-36 

4.564D-36 

3.000D-36 
1; 649D-36 

7.544D-37 

8.233D-36 

7.297D-36 
5.044D-36 

2.665D-36 

l.O34D-36 

2,66lD-37 



TABLE V. 2 (continued) 

@I 
k ~200, m =6.0 ’ 

Be “Proton 
Coherent Elastic 

P@/m‘ P =40 
. . 0 l. OBlD-38 1.432D-38 

0.2 8.824D-39 l.O21D-38 
. 0.4 4.885D-39 3.207D-39 

0.6 1.966D-39 2.370D-40 
P=80 

0 1.590D-37 2.805D-37 

_,. 0.2 _ 1.354D-37 2.451D-37 

: 0.4 .8.199D-38 1.526D-37 

0.6 3.595D-38 5.868D-38 

: 0.8 1.249D-38 l.l21D-38 

-: 1.0 3.825D-39 5.8093340 
- P=12d 

* 0 3.560D-37 6.282D-37 

: 0.2. 3.029D-37 5.484D-37 

-. _.. 0.4 1.834D-37 3.405D-37 

:-. 0.6 8. OX!D-38 1.305D-37 

I* 6.8 2. BOBD-38 2.469D-38 

1.0 8.643D-39 1.219D-39 
-., - -_. P =160 _ 

..o . -1.650D-37 1.990D-37 
0.2 .1.346D-37 l+. 387D-37 

I 0.4 . 7.480D-38 3.937D-38 
0.6 3.049D-38 1.476D-39 

Neutron Be Quasi 
Elastic Elastic 

6.412D-39 8.932D-38 
4.608D-39 6.387D-38 
1.472D-39 2.019D-38 
1.103D-40 1.500D-39 

l. OBlD-37 1.662D-36 
9.648D-38 1.463D-36 

6.315D-38 9.26OD-37 
2.564D-38 3.629D-37 
5.095D-39 7.030D-38 
2.698D-40 3.673D-39 

2.426D-37 3.726D-36 
2.162D*-37 3.2 75D-36 

1.411D-37 2,06BD-36 

5.706D-38 8.074D-37 
l.l22D-38 1.549D-37 
5.655D-40 ’ 7.702D-39 

8.970D-38 1.244D-36 
6.297D-38 8.697D-37 
1.814D-38 2.482D-37 
6.882D-40 9.345D-39 

Proton 
IneIas tic 

5.069D-39 

3.606D-39 

l.l31D-39 
8.184D-41 

l.l41D-37 

9.798D-38 

5,92OD-38 

2.224D-38 

4.097D-39 

1.823D-40 

2.702D-37 

2.309D-37 

1.369D-37 

4.923D-38 

8.167D-39 

2.671D-40 

4.445D-38 

2.806D-38 
5.333D-39 

6.353D-42 
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m = 0.1056 GeV 
k =2O GeV 

p WV) 
1.99 
5.97 

9.95 

13.93 

17.90 

m =0.10566 GeV 
k ~200 GeV 

p WV) 
2.00 

6.00 

10.00 

14.00 

- . 18.00 

m =4.0 GeV 
k =200 GeV 

p WV 
19.5 

58.5 

97.5 

136.5 

175.5 

m =6.0 GeV 
k =200 GeV 

P (GeV) 

19.2 
57.5 

95.8 

'134.2 

172.5 

TABLE V.3 

du/dp (cm2/GeV) 

Be Proton 
Coherent Elastic 

1o-32 1o-33 

7.78 6.35 

8.92 6.85 

8.77 6.66 

8.92 6.84 

7.90 6.42 

Neutron 
Elastic 

-&35 

8.90 

7.20 

6.63 

7.17 

8.79 

i’ 

Be Quasi- Proton 
El&tic 

10 -33 

6.16 

5.32 

4.94 

5.29 

6.12 

1o-32 1o-33 1o-36 1o-34 
1.49 1.16 8.92 6.72 

1.34 1.09 7.23 5.51 

l-29 1. 04 6.66 5.10 

1.43 1.11 7.22 5.51 

1.61 1.17 8.90 6.72 

1o-38 10 -38 

0.10 0.14 

1.85 1.91 
3.03 2.50 

2.09 2.05 

0.21 0.33 

10 
-39 

10 -37 

0.60 0.08 

5.63 1.00 
6.48 1.23 

5.87 1.06 

'1.36 0.20 

1040 

0.14 
4.11 

8.06 

5.30 

0.47 

10 -39 10 -40 

0.00 0.00 
0.56 2.43 

1.30 5.31 

0. 78 3.34 

0.00 0.00 

1o-3g 

0.00 
3.45 

7.84 

4.80 

0.00 

- 112 - 

Inelastic 

1o-34 

2.77 

3.06 

3.24 

3.68 

3.41 

1o-35 

2.10 

2.29 

2.46 

3.04 

4.54 

10 -38 

0.04 

0.72 

1.04 

0.93 

0.10 

1o-4o 

0. 00 
2.06 

5.18 

2.94 

0. 00 



h TABLE V.4 

I 

Total Heavy Lepton Production Cross Section (cm2) 

GeV 

k 

-._ 
Be Proton Neutron Be-Quasi- Proton Be 

Coherent Elastic Elastic Elastic Inelastic Total 

m = 0.105 1o-3o 1o-31 1o-33 1o-31 1o-33 1o-3o 

20 1.611 1.267 1.546 1.081 6.114 1.774 

40 2.047 1.551 1.557 1.134 6.336 2.238 

100 2.579 1.926 1.563 1.171 6.044 2.750 

200 2.787 2.177 1.565 1.184 5.683 2.956 

1o-32 1o-33 
’ 1 

m =0.5 1o-34 1o-33 1o-34 1o-32 

20 0.902 1.607 1.342 4.443 3.559 1.666 

40 1.913 2.604 1.536 5.895 5.355 2.984 

100 3.784 4.122 1.672 7.324 6.846 5.133 

200 5.487 5.352 1.717 8.034 7.161 6.934 

m= 1.0 1o-33 1o-34 1o-35 1o-33 1o-34 1o-33 

20 0.170 0.923 1.958 0.410 0.288 0.839 

40 0.797 2.293 3.070 0.814 0.728 2.266 

100 3.014 5.063 4.014 1.358 1.343 5.578 

200 5.857 7.698 4.442 1.703 1.664 9.057 

m = 2.0 1o-34 1o-35 1o-36 1o-34 1o-35 1o-34 

40 0.053 0.634 2.085 0.350 0.234 0.614 

‘100 0.764 3.404 6.293 1.420 1.290 3.345 

200 2.963 7.396 8.781 2.472 2.353 7.553 

m=4.0 10-36 1o-36 10-37 .lO -35 1o-36 1o-35 

100 0.243 0.371 1.498 0.223 0.140 0.374 

200 2.856 2.758 7.990 1.432 1.131 2.735 

m = 6.0 1o-38 i 1o-38 1o-38 1o-37 io-38 1o-36 

100 0.376 0.006 0.003 0.004 0 0 

200 6.932 9.975 4.178 6.079 3.826 1.021 

213OA5 
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TABLE V.5 
Total Heavy Lepten Production Cross Section(cm2) 

from Proton at PEP Energies 

. 

Photon Energy Proton Energy 
GeV 

m=5 
500 

1,000 

1,500 

2,000 - 

m=lO 
500 

1,000 

~ - 1.500 

2,000 
m =15 

1,000 

1,500 

2,000 

m=20 

1,000 

1,500 
2.;000 

4.043x 1o-36 1.488x 10 -36 5.531x 10 -36 

9.592 x 1o-36 2.896x 1O-36 
1.404x 1o-35 

1.249x 1o-35 I 
3.693x 1O-36 

1.767x 1O-35 
1.773x 1o-35 

4.189x 1O-36 2.186x 1o-35 

2.111x 10 -38 

2.702 x -37 10. 
6.325x 1O-37 

1.014 x 1o-36 

4.563x 10 -39 

3.528 x 1O-38 

8.860x 10 -38 

+603x lo -39 

1:267x 10 -38 

3.227x 10 -38 

4.860x 1o-43 

6.616x 104' 

5.328 x 10 -39 

1.619x 1O-43 

2.249x 10 40 

1,811x 1O-3g 
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Proton Inelastic 

7.821x 1O-3g 

1.018 x 1O-37 

2.289x 1o-37 

3.480x lo L37 

Proton Total 

2.893x 1O-38 
3.720 x 10 -37 
-8.612 x 10 -37 

1.362x 1O-36 

6.166x 10 -39 

4.795 x 10 -38 

1.209 x 10 -37 

6.050x 1o-43 

8.865x 104' 

7.139 x 10 -39 



I 

q 

0.00 

0.05 

0.10 

0.15 

0,20 

0.25 

0.30 

0.35 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.0 

1.1 

1.2 

1.3 

TABLE B.l 

Elastic Form Factors of Atoms F(q) 

qinunitof 4~2 = 24.797 KeV 

z=3 z=4 z=5 Z=6 
Li Be B. C 

3.000 4.000 5.000 6.000 

2.710 3.706 4.726 5.760 

2.215 3.067 4.066 5.126 

1.904 2.469 3.325 4.358 

1.741 2.067 2.711 3.581 

0.627 1.838 2.276 2.976 

1.512 1.705 1.993 2.502 

1.394 1,613 1.813 2.165 

1.269 1.531 1.692 1.950 

1.032 1.367 1.534 1.685 

0.823 1.201 1,406 1,536 

0.650 1.031 1.276 1.426 

0,513 0,878 1.147 1.322 

0,404 0,738 1.016 1.218 

0,320 0,620 0.895 1,114 

0,255 0,519 0.783 1.012 

0.205 0,432 0.682 0.916 

0.164 0.365 0.596 0.821 

i’ 

z=7 
N 

7.000 

6.781 

6.203 

5.420 

4.600 

3.856 

3.241 

2.760 

2.397 

1.944 

1.698 

1.550 

1.444 

1.350 

1.263 

1.175 

1,083 

1.005 
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TABLE B. 2 

Radiation Logarithm 

L rad 
Ef 

/ 

m2 

0 
e Z-2 G;ft) F - $QnZ 1 

LEad s + J 
m2 

0 
e ,-l+@(t) Q +1=; pQnz 1 

Z 1 2 3 4 5 6 7 

H He Li Be B C N 

L rad 5.310* 4,787” 4.738” 4.705a 4.663” 4.606” 4.544’ 

L ** rad 5.216 4.985 4,850 4.754 4.679 4.618 4.567 

(Thomas-Fermi-Moliere) 

L 
rad 

(c - 2c) 4. 742b 4. 715b 4, 680b 4. 631b 4. 57Sb 

L rad (Best estimate) 5,31 4.79 4.74 4.71 4.68 4.62 4.57 

L’ -f-l- 
rad 

(Thomas-Fermi-Moliere) 

7.085 6,623 6,353 6.161 6.012 5.891 5.788 

Lbad (Best estimate) 6.144t 5. 621t 5.805’ 5.924’ 6.012 5.891 5,788 

* From Eq. (III. 33) D 

**Using Lrad = b(184.15 Z -l/3 )0 

j’ From Eq. (III. 35). 

tt Using LEad = k(1194 Z -2/3 )0 

a. Using Table B. 1 and EqQ (B. 19), 

b. Using Table B. 1 and Eq. (B. 19) with c replaced by 2c. 

c. Interpolated between the values of He and B. 
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V 

0.00 

0.01 

0.02 

0.03 

0.04 

0,05 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0,7 

0.8 

0.9 

1.0 

TABLE B. 3 i 

Atomic Pauli Suppression Factor S 

S( Thomas-Fermi) S( Moliere) 

13.8 v 0.000 

0.097 0.066 

0,169 0.127 

0.227 0.182 

0.277 0.232 

0.319 0.277 

0.486 0.452 

0.674 0.652 - 

0.776 0.761 

0.839 0.828 

0.880 0.872 

0.909 0.903 

0.929 0.924 

0.944 0.940 

0.954 0.952 

0.963 0,961 
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TABLE B.4 

“H =. 122. 8/me 

“;I = 282. 4/me 

%e = 90.8 Z -l/3, m e 

“;I, = 265.8 Z -2/3,, 
e 

“Li = 100.0 z -l/3, m e 

&!Li = 418.6 Z -2/3, m e 

“Be = 106Z -l/3, m e 

ai3e = 571.4 z -2/3, m e 

“B = 111.7 z -l/3,, 
e 

ai = 724.2 Z -2/3,m 
e 

From (B. 12) 

From (B. 14) 

From (B. 16) 

From (B. 17) 

From Tables (B. 1 and B. 2) 

From linear interpolation 
between a& and a;B 

From Tables (B. 1 and B. 2) 

From linear interpolation 
between a+ and a;3 

Thomas -Fermi-Moliere 
or (Table B. 1 and B.2) 
Thomas -Fermi-Moliere 
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