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Abstract
We carefully investigate the comprehensive impact of atom-cavity interaction and artificial
magnetic fields on quantum phase transitions of anti-Jaynes-Cummings triangle model in the
infinite frequency limit. We discover that ground states of the optical field can be a gapped normal
phase (NP) or three kinds of gapless superradiant phases with infinite degeneracy. When the
atom-cavity coupling is weak, the optical field is in a NP, which is a vacuum with no photons.
Otherwise, it will stay at one of the superradiant phases: a normal superradiant phase without
photon currents and another two chiral superradiant phases with opposite photon currents. The
former only breaks the continuous U(1) symmetry and its gapless excitations are normal
Goldstone modes. Nevertheless, the latter, mainly induced by an external synthetic gauge field,
break both the continuous U(1) symmetry and chiral symmetry, thereby corresponding gapless
excitations are chiral Goldstone modes. In addition, we also propose a detecting scheme to
distinguish these superradiant phases.

1. Introduction

With a view to the potential applications of novel quantum states in quantum technologies [1, 2], such as
quantum computation and quantum metrology [3, 4], the search for exotic quantum matters has always
been a rapidly growing topic in fields of condensed matter physics and quantum simulations in the past
decades [5–9]. Up until now, exotic quantum phases either predicted theoretically or realized in experiments
include superfluids and Mott insulators [10, 11], topological insulators [12, 13], topological superconductors
[14, 15], quantum Hall states [16, 17], spin textures [18–20], Majorana zero modes [21–23], and so on.

Appearances of these quantum states are usually accompanied by quantum phase transitions (QPTs) or
topological QPTs, during which an order parameter or a topological invariant will change [24–27]. In
Landau theory, spontaneous symmetry breaking and energy gap closing are the two typical characteristics in
a continuous QPT [28], which results from the comprehensive interplay of intrinsic symmetries, particle
interactions, external gauge field, etc. For example, for Dicke model implemented in cavity quantum
electrodynamics (QEDs) or circuit QED, it was predicted to experience a superradiant phase transition that
breaks the Z2 symmetry if its atom-cavity interaction can exceed a threshold value [29–32]; synthetic gauge
fields contribute to the emergence of Bose–Einstein condensates with non-zero momentum or angular
momentum in ultra-cold atoms [33, 34]. The common point of these QPTs is that they generally happen in a
many-body system under the thermodynamical limit [25]. However, it was theoretically suggested that a
QPT can also come out in few-body systems by taking the Rabi model as an example [35], which was
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observed in an experiment with a single trapped ion [36]. Here the original thermodynamical limit is
replaced by a frequency limit, that is, an infinite ratio of atomic transition frequency to cavity field frequency
is required. Motivated by the easy manipulations, few-body systems turn out to be interesting and can be
utilized to simulate many-body strongly-correlated systems [37, 38]. Recently, chiral photon currents are
detected with a three-qubit loop in a synthetic magnetic field [39], as well as are predicted to exist in a Rabi
triangle model by adjusting artificial gauge fields [40]. Furthermore, the Rabi triangle model can be mapped
into an effective magnetic model containing the XY exchange and Dzyaloshinskii Moriya interactions [41],
which is useful for the study of topological phenomena in spin systems.

In this article, we explore the quantum ground states of an anti-Jaynes-Cummings (aJC) triangle model
under the combined actions of atom-cavity interaction and artificial magnetic fields. Based on analytic
approaches and numerical variation methods, we find out its quantum phase diagram in the infinite
frequency limit. The cavity field is in a gapped normal phase (NP) possessing no photons when the
atom-cavity coupling is weak; otherwise, it would rather remain at one of three superradiant phases breaking
the continuous U(1) symmetry. We classify these novel states as normal superradiant phase (NSP) or chiral
superradiant phase (CSP) depending on whether or not a photon current exists. Induced by an external
synthetic gauge field, the CSPs have a non-zero photon current and also beak the chiral symmetry. All the
three SPs are gapless with infinite degeneracy. Besides, a method is elaborated to successfully detect the NSP
and CSPs in strong atom-cavity coupling.

This paper is organized as follows. In section 2, we introduce Hamiltonian of the aJC triangle model. We
next derive effective Hamiltonians of the optical field in cases of both weak and strong atom-cavity
interactions in section 3. Subsequently, we present the phase diagram and discuss NP and SPs as well as their
spontaneous symmetry breaking in section 4. We also design a detecting scheme to discriminate these
superradiant phases in section 5. At last, we conclude this article in section 6. Technical details can be found
in the appendices.

2. Anti-Jaynes-Cummings triangle model

We consider quantum ground states of the aJC triangle model that is composed of three identical optical
cavities as illustrated in figure 1. Each cavity can store a two-level atom with transition frequency Ω and a
single-mode optical field with frequency ω. Photons can interact with the atom in each cavity, and hop
between adjacent cavities forming a closed loop. We suppose this atom-cavity interaction to be the aJC-type,
which does not appear naturally in cavity QED. However, the aJC-type interaction can be brought about in
trapped-ion systems by tuning laser frequencies close to the blue sideband [42–44]. Hence the aJC triangle
model can be accomplished through leveraging trapped ions [45]. Hamiltonian of this setup can be
described as

H=
3∑

n=1

[
h̄Ω

2
σz
n + h̄ωa†nan +

h̄g

2
(a†nσ

†
n + anσ

−
n )+ (teiθa†nan+1 + h.c.)

]
, (1)

where σ+
n = (σ−

n )
† = |e⟩n⟨g| and Pauli matrix σz

n = |e⟩n⟨e| − |g⟩n⟨g| describe operations on an atom in the
nth cavity, an and a†n denote the photonic annihilation and creation operators, g represents strength of the
aJC-type interaction between itinerant photons and atoms, t stands for the hopping strength of photons and
h̄ is the reduced Planck constant. When photons tunnel between neighboring cavities, a phase
θ =
´ rn+1

rn
A(r)dr is picked up due to existence of a (synthetic) magnetic field with vector potential A(r) [46,

47]. The artificial gauge field can be implemented by a Floquet modulation method [39, 40]. In the
aJC-triangle model, total number of excitation

Ne =
3∑

n=1

(
a†nan −σ†

nσ
−
n

)
(2)

is invariant because [Ne,H] = 0. That is, Hamiltonian H is invariant under the global gauge transformation
U(ϕ) = exp(iϕNe), which will give rise to a continuous U(1) symmetry. According to the Goldstone
theorem, its spontaneous symmetry breaking would lead to the appearance of gapless Goldstone
modes [48, 49].

3. Effective Hamiltonian of the optical field

We investigate QPT in the frequency limit Ω/ω→∞ and mainly consider low energy physics in case of
h̄ω≫ t. Therefore, in this aJC triangle model, the atomic transition energy h̄Ω is dominated. The two-level
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Figure 1. Schematic diagram of the aJC triangle model. It consists of three uniform optical cavities with photon frequency ω. A
two-level atom resides in each cavity and can interact with the intracavity photons. Transition frequency of the two-level atom is
Ω. Photons can tunnel between adjacent cavities forming a closed loop. The complex tunneling strength is labeled as te±iθ .

atom in each cavity will stay at its ground state in weak atom-cavity coupling or fluctuate around it when the
coupling is strong. In contrast, the optical field would exhibit novel quantum states under different situations.

For weak on-site coupling g, we first need to make a Schrieffer–Wolff transformation

U1 = exp

[
− g

2(Ω+ω)

3∑
n=1

(
a†nσ

†
n − anσ

−
n

)]
. (3)

To second order of g, the transformed Hamiltonian H1 = U†
1HU1 has following form

H1 ≈
3∑

n=1

[
h̄

2
Ωσz

n + h̄ω(1+
g2

g20
σz
n)a

†
nan +

h̄ω

2

g2

g20
(σz

n − 1)+ t(eiθa†nan+1 + e−iθa†n+1an)

]
(4)

in the frequency limit Ω/ω→∞ (see also equation (A.7)). Here we have defined a new parameter
g0 = 2

√
Ωω. As transition frequency of the two-level atom is dominated (Ω≫ ω≫ t/h̄), atoms should stay

at their ground states |0⟩σ =
∏3

n=1 |g⟩n. Physical behaviors of the optical field are governed by Hamiltonian
Hnp = ⟨0|H1|0⟩σ , whose concrete form becomes

Hnp =−3

2
h̄

(
Ω+ 2ω

g2

g20

)
+

3∑
n=1

[
h̄ω

(
1− g2

g20

)
a†nan + t

(
eiθa†nan+1 + h.c.

)]
. (5)

Due to existence of the periodic boundary condition, we next make a Fourier transformation to the
momentum space

an =
1√
3

∑
p

e−inpap (6)

with p= 0,± 2
3π. Hamiltonian Hnp can now be rewritten as

Hnp =
∑
p

ξnp (p)a
†
pap −

3

2
h̄

(
Ω+ 2ω

g2

g20

)
(7)

with ξnp(p) = h̄ω(1− g2

g20
)+ 2tcos(θ− p), from which we can realize that it is valid only when the on-site

coupling is weak g< g0 and tunneling t is small enough such that we can always have ξnp(p)⩾ 0 for any p
and θ ∈ (−π,π). In our numerical calculation, we set t= 0.1h̄ω. In the original frame, its ground state can
be presented as

|ψ⟩np = U1|0⟩a|0⟩σ (8)

with ap|0⟩a = 0. From equation (3), it can be known that this ground state |ψ⟩np is dependent on the

atom-field interaction g. Its corresponding energy is Enp =− 3
2 h̄(Ω+ 2ω g2

g20
). This state indicates that there

exists no photon and all atoms are at their ground states. So we can name it as NP. As g increase across some
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value, instability occurs when we have ξnp(p)< 0. Thus QPT will take place when the on-site coupling g is
strong enough.

For strong on-site coupling g, the optical field can not remain in a vacuum state any longer. We need to
make a local translation to the cavity field

D= exp

[
3∑

n=1

(
αna

†
n −α∗

nan
)]

(9)

with complex parameter αn = |αn|eiγn , and can get a translated Hamiltonian H ′
2 = D†HD. Then this new

Hamiltonian H ′
2 reads (see equation (A.10))

H ′
2 =

3∑
n=1

[
h̄ω|αn|2 +(teiθα∗

nαn+1 + c.c)+
h̄

2
Ωσz

n + h̄ωa†nan

+
h̄g

2
(a†nσ

†
n +α∗

nσ
†
n + h.c.)+ t(eiθa†nan+1 + h.c.)

+[(h̄ωαn + teiθαn+1 + te−iθαn−1)a
†
n + h.c.]

]
. (10)

To clarify clearly effects of the local translation αn, it can be helpful to apply a unitary transformation

U= exp

[
i

3∑
n=1

γn
(
a†nan −σ†

nσ
−
n

)]
. (11)

We will get a new translated HamiltonianH ′
2 = U†H ′

2U and know that

H ′
2 =

3∑
n=1

[
h̄ω|αn|2 + 2tcosθn|αn||αn+1|+Hqn + h̄ωa†nan

+
h̄g

2
(a†nσ

†
n + anσ

−
n )+ t(eiθna†nan+1 + h.c.)

+[(h̄ω|αn|+ teiθn |αn+1|+ te−iθn−1 |αn−1|)a†n + h.c.]

]
(12)

with phase θn = θ+ γn+1 − γn and a local atomic Hamiltonian

Hqn =
h̄

2
Ωσz

n +
h̄g

2
|αn|σx

n. (13)

It is needed to note that the continuous U(1) symmetry is manifested in freedom of selecting phase γn:
HamiltonianH ′

2 is invariant under a phase shift γn → γn +ϕ. From equation (12), we can realize that if there
are photons in cavities, on one hand, they may induce an effective tunneling phase θn; on the other hand,
they can perturb an atom in the nth cavity away from its ground state |g⟩n. As to this two-level atom, its
Hamiltonian Hqn can be diagonalized as Hqn =

h̄
2Ωnτ

z
n with Ωn =

√
Ω2 + g2|αn|2 and

τ zn = |+⟩n⟨+| − |−⟩n⟨−|. In its eigenstates bases, HamiltonianH ′
2 can be changed into (see equation (A.17))

H ′
2 =

3∑
n=1

[([(
h̄g2

4Ωn
τ zn + h̄ω

)
|αn|+ teiθn |αn+1|+ te−iθn−1 |αn−1|

]
a†n + h.c.

)
− h̄g

4

[(
1+

Ω

Ωn

)
(a†nτ

†
n + anτ

−
n )−

(
1− Ω

Ωn

)
(a†nτ

−
n + anτ

†
n )

]
+

h̄

2
Ωnτ

z
n + h̄ωa†nan + t(eiθna†nan+1 + h.c.)

+ (h̄ω|αn|2 + 2tcosθn|αn||αn+1|)

]
. (14)

As atomic energy h̄Ωn is predominant in HamiltonianH ′
2, it is valid to assume that the atom in each cavity

would keep occupying its ground state |−⟩n. The first line in equation (14) can be eliminated by demanding
that (

h̄ω− h̄g2

4Ωn

)
|αn|+ teiθn |αn+1|+ te−iθn−1 |αn−1|= 0. (15)

4
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Under this situation, HamiltonianH ′
2 becomes

H ′
2 =

3∑
n=1

[
h̄g

4

[(
1− Ω

Ωn

)
(a†nτ

−
n + anτ

†
n )−

(
1+

Ω

Ωn

)
(a†nτ

†
n + anτ

−
n )

]
+

h̄

2
Ωnτ

z
n + h̄ωa†nan + t(eiθna†nan+1 + h.c.)

+ (h̄ω|αn|2 + 2tcosθn|αn||αn+1|)

]
, (16)

which can be diagonalized by another Schrieffer–Wolff transformation U2 = e−S2 with

S2 =
3∑

n=1

g

4

[
1− Ω

Ωn

Ωn −ω

(
anτ

†
n − a†nτ

−
n

)
−

1+ Ω
Ωn

Ωn +ω

(
a†nτ

†
n − anτ

−
n

)]
. (17)

We mark the diagonalized Hamiltonian as H2 and in the limit of Ω/ω→∞, it becomes

H2 ≈
3∑

n=1

[
h̄ω|αn|2 + 2tcosθn|αn||αn+1| −

h̄ω

2

g2Ω

g20Ωn
+

h̄

2
Ωnτ

z
n + h̄ωa†nan

+ t(eiθna†nan+1 + h.c.)+
h̄ω

4

g2Ω

g20Ωn

[(
1+

Ω2

Ω2
n

)
(2a†nan + 1)τ zn

−
(
1− Ω2

Ω2
n

)
(a†2n + a2n)τ

z
n

]]
(18)

to second order of on-site coupling g (see equation (A.24)). Hamiltonian of the cavity field can be defined as
Hsp = ⟨−|H2|−⟩σ with |−⟩σ =

∏3
n=1 |−⟩n, which can be in form of

Hsp =
3∑

n=1

h̄ω

[
1

2
(1−λ+n )(a

†
nan + ana

†
n)+

1

2
λ−n (a

†2
n + a2n)+ t ′(eiθna†nan+1 + h.c.)

]
+ E (19)

with dimensionless parameters λ±n = 1
2

g2Ω
g20Ωn

(1± Ω2

Ω2
n
), t ′ = t

h̄ω and undetermined energy

E=
3∑

n=1

[
h̄ω

(
|αn|2 −

1

2
− 1

2

g2Ω2

g20Ω
2
n

)
+ 2tcosθn|αn||αn+1| −

h̄

2
Ωn

]
. (20)

In the Nambu basisA† = (a†1,a
†
2,a

†
3,a1,a2,a3), we can rewrite this effective Hamiltonian as

Hsp =A†HspA+ E with

Hsp =
h̄ω

2



1−λ+1 t ′eiθ1 t ′e−iθ3 λ−1 0 0
t ′e−iθ1 1−λ+2 t ′eiθ2 0 λ−2 0
t ′eiθ3 t ′e−iθ2 1−λ+3 0 0 λ−3
λ−1 0 0 1−λ+1 t ′e−iθ1 t ′eiθ3

0 λ−2 0 t ′eiθ1 1−λ+2 t ′e−iθ2

0 0 λ−3 t ′e−iθ3 t ′eiθ2 1−λ+3

 . (21)

Excitation spectra ξ1,2,3 of HamiltonianHsp can be obtained by a Bogoliubov transformation ζ to a new basis

B† = (b†1,b
†
2,b

†
3,b1,b2,b3) such that B = ζA and

Hsp = E+
3∑

n=1

ξn
(
b†nbn + bnb

†
n

)
= Esp +

3∑
n=1

2ξnb
†
nbn (22)

with ground state energy Esp = E+
∑3

n=1 ξn. We can arrive at these excitation spectra by numerically
diagonalizing ΣHsp with diagonal matrix Σ= diag{1,1,1,−1,−1,−1} [50]. By exploiting numerical
variation method, the ground states can be solved if the energy Esp is minimized and equation (15) is satisfied
at the meantime.
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Figure 2. Phase diagram of the aJC triangle model in g− θ plane. Here ‘NP’, ‘NSP’ and ‘CSP’ are short for ‘normal phase’, ‘normal
superradiant phase’ and ‘chiral superradiant phase’. Black-solid lines represent first-order phase transition and white-dashed line
stands for a second-order phase transition. We set other parameters as ω= 1,Ω= 103ω, t/h̄= 0.1ω and h̄= 1.

Figure 3. Excitation spectra ξnp/sp(p) of the aJC triangle model varying with on-site coupling strength g. Tunneling phase

θ =−0.5π (a), 0.5π (b) and 0.9π (c) respectively. We set other parameters as ω= 1,Ω= 103ω, t/h̄= 0.1ω and h̄= 1.

4. Quantum phase transitions and phase diagram

It has been pointed out that QPTs would happen when the on-site interaction increases across some critical
value in section 3. In the following we proceed to study effects of symmetries and gauge fields on the ground
states. With analytic and numerical variational methods, we figure out a phase diagram for fixed and small
enough tunneling t as shown in figure 2. When the on-site coupling g is weak, optical field prefers to stay in a
NP, which actually is a vacuum; otherwise, its ground states evolve into superradiant phases with translation
symmetry, that is, |αn|= α and γn+1 − γn = γ are not dependent on n. Three types of superradiant phases
with infinite degeneracy are induced by the tunneling phase θ, which can make γ= 0 or γ =± 2

3π.
If the on-site interaction g is weak, effective Hamiltonian of optical field now is Hnp (see equation (5)

or (7)). In the limit Ω/ω→∞, its ground state is a NP with rescaled energy

Enp =
ω

Ω
Enp =−3

2
h̄ω

(
1+ 2

ω

Ω

g2

g20

)
=−3

2
h̄ω (23)

and rescaled order parameter

√
ω

Ω
|⟨an⟩|=

√
ω

Ω
|⟨ψ|an|ψ⟩np|= 0. (24)

Phase transitions from NP to SPs occur when the energy gap ξnp(p)|min closes. From the varying
characteristics of excitation spectra {ξnp(p)} shown in figure 3 , we can know that ξnp(p)|min = 0 can enable
us to judge this boundary

6
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gc = g0
√
1+ 2t ′ cos(θ− p) |min = g0

√
1+ 2t ′ cos(θ+ γ) = g0

√
f (25)

with f(θ,γ) = 1+ 2t ′ cos(θ+ γ). By the aid of this equation, we can determine the boundaries between NP
and SPs marked by a white-dashed line in the phase diagram (see figure 2).

If the on-site interaction g is strong enough, effective Hamiltonian of optical field now changes into Hsp

(see equation (19) or (22)). Its ground states can not be worked out at a glance. It is worth stressing that local
translations {αn} should not only minimize the ground energy Esp but also satisfy the preconditions in
equation (15). So we can find them out numerically by adapting variational methods, and learn that the
translations {αn} should meet that

γn+1 − γn = γ, |αn|= α=
g

2g0

√
Ω

ω

√
1

f 2
− g40

g4
. (26)

Thus, effective Hamiltonian Hsp of the optical field turns into

Hsp =
3∑

n=1

h̄ω

[
1

2
[λ− 2t ′ cos(θ+ γ)](a†nan + ana

†
n)+

1

2
λ(a†2n + a2n)+ t ′(eiθna†nan+1 + h.c.)

]
+ E (27)

with λ= 1
2 f(θ,γ)[1−

g40
g4 f

2(θ,γ)], which is translation invariant and also would be reasonable as to a strong
and isotopic on-site interaction g. Using firstly a Fourier transformation to the momentum space and then a
Bogoliubov transformation to a new basis bp with [bp1 ,b

†
p2 ] = δp1,p2 , Hamiltonian Hsp can be diagonalized as

(more details can be found in appendix B)

Hsp =
∑
p ̸=0

ξsp (p)b
†
pbp +λh̄ωx20 + Esp (28)

with energy Esp =− 3
4 h̄Ω(

g2

g20f
+

g20f
g2 )−

3
2 h̄ω

[
1+ g20f

2

g2 −
√
( f− 1)[f− 1− 2

3 f(1−
g40f

2

g4 )]
]
. Here we have defined

operator x0 = (a0 + a†0)/
√
2, whose eigenvalues are continuous and belong to (−∞,+∞). So the excitation

spectra of Hsp are

ξsp (p) =

0 forp= 0

h̄ω
2

[√
[ϵ(p)+ ϵ(−p)]2 − 4λ2 + ϵ(p)− ϵ(−p)

]
forp ̸= 0

. (29)

Definition of single-particle energy ϵ(p) can be found in equation (B.5). Varying of the excitations along with
on-site coupling g and tunneling phase θ are plotted in figure 3. Therefore, for the phase transitions from NP
to SPs, the energy gap closes and does not reopen anymore. The NP is gapped and the SPs are gapless
guaranteed by breaking of the continuous U(1) symmetry, which makes these SPs infinitely degenerate. In
the original frame, its corresponding ground state is

|ψ⟩sp = DUU2|0⟩bp|−⟩σ, |0⟩bp = |0⟩x|0⟩p (30)

with bp|0⟩p = 0 and x0|0⟩x = 0 [51]. From equations (9), (11), (17) and (26), we know that this ground state
|ψ⟩sp is determined by the atom-field interaction g, hopping strength t and phase θ. In the limit Ω/ω→∞,
its rescaled ground state energy is

Esp =
ω

Ω
Esp =−3

4
h̄ω

(
g2

g20f
+

g20f

g2

)
(31)

and its rescaled order parameter can be calculated as

√
ω

Ω
|⟨an⟩|=

√
ω

Ω
|⟨ψ|an|ψ⟩sp|=

√
ω

Ω
|αn|=

√
ω

Ω
α=

g

2g0

√
1

f 2
− g40

g4
. (32)

In figure 4, we illustrate that this order parameter will continuously increase from zero in NP to non-zero
in SPs. Hence, phase transitions from NP to SPs are of second order, which can also be confirmed from
discontinuous second-order derivative of the excitation energy with respect to on-site coupling
strength g, i.e.

7
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Figure 4. Rescaled order parameter
√

ω
Ω
|⟨an⟩| in transition from NP to SP varying with on-site coupling g. Blue lines are its

values in the limit ofΩ/ω →∞ and red lines stand for that obtained by numerical variation method. The three panels
correspond to results with tunneling phase θ =−0.5π (a), 0.5π (b) and 0.9π (c) respectively. We set other parameters as ω= 1,
Ω= 103ω, t/h̄= 0.1ω and h̄= 1.

∂gEnp = ∂gEsp|g=gc = 0, ∂2gEnp = 0, ∂2gEsp|g=gc =−6h̄ω

g2c
̸= 0. (33)

At the phase boundaries of NSP and CSP, their corresponding ground energies should be equal

Esp (θc,γ = 0) = Esp
(
θc,γ =±2

3
π

)
, (34)

form which we can acquire that θc =± 2
3π [see the black-solid lines in phase diagram]. Similarly, phase

boundary between the two CSPs can be ascertained by solving equation

Esp
(
θc,γ =−2

3
π

)
= Esp

(
θc,γ =

2

3
π

)
, (35)

which leads to θc = 0 (see the black-solid line in phase diagram). To discriminate these diverse SPs, it would
be useful to define following current operator [39, 40]

I= i
[(

a†1a2 + a†2a3 + a†3a1
)
− h.c.

]
. (36)

Its rescaled mean value is

ω

Ω
⟨I⟩= ω

Ω
⟨ψ|I|ψ⟩sp =−6

ω

Ω
α2 sin(γ) =−3

2

g2

g20

(
1

f 2
− g40

g4

)
sin(γ) , (37)

which reveals that there is no photon current in the NSP, because γ= 0. We thus name it as normal
supreradiant phase. It can be realized that this mean value ⟨I⟩ is also zero in the NP, because it is actually a

vacuum state of the cavity field. Since 1
f 2 −

g40
g4 > 0 in these SPs, direction of photon current ⟨I⟩ is dependent

on the sign of sin(γ). When γ = 2
3π, we know ⟨I⟩< 0 and ω

Ω ⟨I⟩=− 3
√
3

4
g2

g20
[ 1
(1−t ′)2 −

g40
g4 ] at the phase

boundaries θc = 0, 2
3π; When γ =− 2

3π, we have ⟨I⟩> 0 and ω
Ω ⟨I⟩=

3
√
3

4
g2

g20
[ 1
(1−t ′)2 −

g40
g4 ] at the phase

boundaries θc = 0,− 2
3π. Such direction-dependent (chiral) characteristic of the photon current is exhibited

in figure 5. Accordingly, transitions between the SPs are all of first order. The NSP only breaks the continuous
U(1) symmetry, so its corresponding gapless excitations are normal Goldstone modes. In CSPs, the photon
currents are unidirectional (flowing clockwise or anti-clockwise), thus they also break the chiral symmetry
and the gapless excitations are chiral Goldstone modes.

5. Detection of superradiant phases

As aJC-type interaction can be easily realized in trapped-ion systems, we consider detection of NSP and CSPs
of the aJC triangle model in a trap-ion platform, where a phase transition from NP to SP in the Rabi model
has been observed by detecting the spin population and average phonon number [36]. To discriminate NSP

8



New J. Phys. 25 (2023) 103048 J-M Cheng et al

Figure 5. Rescaled photon current ω
Ω
⟨I⟩ in SPs varying with tunneling phase θ in case of g= 1.5g0. We set other parameters as

ω= 1,Ω= 103ω, t/h̄= 0.1ω and h̄= 1.

Figure 6.Mean value ⟨σz
1⟩ of the ground states in g− θ plane. We set other parameters as ω= 1,Ω= 103ω, t/h̄= 0.1ω and

h̄= 1.

and CSPs in the phase diagram (see figure 2), the point is to measure phase γ of the complex translation αn,
which can be probed by measuring spin of the ‘n= 1’ trapped ion. In the frequency limit Ω/ω→∞, we
know that ⟨σz

1⟩=−1 in NP and ⟨σz
1⟩=−Ω/

√
Ω2 + g2α2 ̸=−1 in SPs as shown in figure 6. As a result, we

can acquire the value of α by probing σz
1 in an experiment. After observing a non-zero α, we can infer the

phase γ by utilizing equation (26), then determine the SPs.
We can also verify the SPs by probing the blue sideband transitions of the ‘n= 1’ trapped ion, which

consists of three steps (more details can be found in appendix C):

(i) applying a short optical pumping pulse to pump internal state of the ‘n= 1’ trapped ion into |g⟩1. This
pulse should be set short enough so that its effect on the motional state (phonon state) population of
the three trapped ions can be neglected. In the frequency limit Ω/ω→∞, we can prepare the system
into an initial state |ψ(0)⟩ (see equation (C.2));

(ii) a running wave light field is used to drive blue sideband transition of the ‘n= 1’ trapped ion for various
time intervals t̃. Under the resonance condition of first blue sideband [52], its evolution is described by
the interaction Hamiltonian Hi =

h̄Γ
2 (a†1σ

†
1 + a1σ

−
1 ) with coupling frequency Γ determined by the

external light field. At time t̃, wave function of the system evolves into |ψ(̃t)⟩= e−
i
h̄Hĩt|ψ(0)⟩.

(iii) measuring the probability to find the ‘n= 1’ trapped ion in its ground state |g⟩1, which can be defined
as Pg(̃t) = ⟨ψ(̃t)|(|g⟩1⟨g|)|ψ(̃t)⟩. Through meticulous analysis, we can derive that

Pg (̃t) =
1

2

(
1+ cos

(
Γ̃̃t
)
+
∑
n

H2
n (0)

2nn!
√
π
cos
(
Γ̃n t̃
)
+ · · ·

)
, (38)

9
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Figure 7. Probability Pg (̃t) and its Fourier transformation Pg(w̃) in cases of θ =−0.3π ((a) and (b)), θ =−0.5π ((c) and (d)),

θ = 0.8π ((e) and (f)). Red-dash lines in figures (b/d/f) are the line of w̃= Γ̃. We set other parameters as ω= 1,Ω= 103ω,
t/h̄= 0.1ω, g= 1.01gc, Γ = 20ω and h̄= 1.

where Γ̃ =
√
α2 + 2

3µ
2Γ, Γ̃n =

√
n+1
3 Γ, Hn(x) is the Hermitian polynomials and µ is defined in

equation (B.6). Although there are many undetermined oscillation frequencies in the probability Pg(̃t),
we can extract analytically two types of oscillation frequencies Γ̃n and Γ̃. Just as expected, the
frequencies Γ̃n are closely related to populations of Fock states |n⟩ in the ground state |0⟩x [52]. The
frequency Γ̃ originates from the complex translation (αn) and excitations (µ), which can give us
information about γ and α.

Following the procedures provided above, we numerically calculate the spin evolution probability Pg(̃t) of the
‘n= 1’ trapped ion and its Fourier transformation Pg(w̃) =

´
Pg(̃t)e−iw̃̃td̃t as shown in figure 7. It is clear that

oscillation of the spin probability Pg(̃t) turns out to be very intricate after evolution of long enough time in
both CSPs (figures 7(a) and (c)) and NSP (figure 7(e)), which implies that abundant oscillation frequencies
exist in the spin evolution probability Pg(̃t) (see figures 7(b), (d) and (f)). The subplots in figures 7(b), (d)
and (f) explicitly display that a summit of the probability amplitude |Pg(w̃)| arises at a frequency near the
predicted value w̃= Γ̃ =

√
α2 + 2

3µ
2Γ (the red-dash lines). Consequently, once this kind of summit is found

in realistic evolution experiments, we can assert that the aJC triangle model is in a superradiant phase, and
then identify the SP is NSP or CSP. It should be emphasized that the coupling frequency Γ should be set large
enough such that the evolution time needed can be much less than the system’s decoherence time.

6. Conclusion

In this paper, we have studied QPTs of the aJC triangle model in the infinite frequency limit by analytical and
numerical variation methods. The on-site atom-cavity coupling gives rise to a continuous phase transition
from a gapped NP to a gapless superradiant phase breaking the continuous U(1) symmetry. Meantime, the
external artificial gauge field can lead to first-order phase transitions between NSP and CSPs. These SPs are
of infinite degeneracy. There exist two types of directed photon currents in the CSPs, which therefore also
break the chiral symmetry. Combined interaction of the atom-cavity coupling and artificial gauge fields can
yield novel quantum states in the aJC triangle model. Distinguishing of NSP and CSPs can be fulfilled by

10
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utilizing the suggested detection scheme that is intended to seek out the phase γ and special oscillation
frequency Γ̃ of the spin evolution probability Pg(̃t). Our study may advance the search for exotic quantum
states in few-body systems and their applications in quantum simulation or quantum metrology.
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Appendix A. Deriving effective Hamiltonian of the optical field

In this section, we show a detailed derivation of the effective Hamiltonian in weak and strong on-site
atomic-cavity coupling. We rewrite the Hamiltonian in equation (1) as

H=
3∑

n=1

[Hn +Hnn ′ ] (A.1)

with

Hn =
h̄Ω

2
σz
n + h̄ωa†nan +

h̄g

2

(
a†nσ

†
n + anσ

−
n

)
, (A.2)

Hnn ′ =
(
teiθa†nan+1 + h.c.

)
. (A.3)

Here Hn is the intra-cavity part and depicts interaction between a photon and an atom in the nth cavity,
while Hnn ′ is the tunneling Hamiltonian of a photon between adjacent cavities. Apparently, we have these
commutation relationships in hand

[
an,a

†
n ′

]
= δn,n ′ ,

[
σ+
n ,σ

−
n ′

]
= σz

nδn,n ′ ,
[
σz
n,σ

±
n ′

]
=±2σ±

n δn,n ′ . (A.4)

First, for weak on-site coupling g, we should make a Schrieffer–Wolff transformation

U1 = e−S1 with S1 =
g

2(Ω+ω)

3∑
n=1

(
a†nσ

†
n − anσ

−
n

)
. (A.5)

Under this unitary transformation, we can obtain a new Hamiltonian

H1 = U†
1HU1 =

3∑
n=1

[
U†

1HnU1 +U†
1Hnn ′U1)

]
. (A.6)

Using relationships in equation (A.4), it is easy to acquire that

11
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U†
1HnU1 =

h̄

2
Ωσz

n + h̄ωa†nan +
h̄g2

8Ω

1

1+ω/Ω
[(2a†nan + 1)σz

n − 1] +O(g3)

=
h̄

2
Ωσz

n + h̄ωa†nan + h̄ω
g2

2g20
[(2a†nan + 1)σz

n − 1] +O(g3),

U†
1Hnn ′U1 = teiθ

[
a†nan+1 −

g

2Ω

1

1+ω/Ω
(a†nσ

†
n+1 + an+1σ

−
n )+

g2

4Ω2

1

(1+ω/Ω)2
σ−
n σ

†
n+1

− g2

8Ω2

1

(1+ω/Ω)2
(a†nan+1σ

z
n+1 + a†nan+1σ

z
n)
]
+ h.c.+O(g3)

= teiθ
[
a†nan+1 −

g

g0

√
ω

Ω
(a†nσ

†
n+1 + an+1σ

−
n )+

g2

g20

ω

Ω
σ−
n σ

†
n+1

− g2

2g20

ω

Ω
(a†nan+1σ

z
n+1 + a†nan+1σ

z
n)
]
+ h.c.+O(g3)

= t(eiθa†nan+1 + e−iθa†n+1an)+O(g3)

in the frequency limit Ω/ω→∞. Here we have defined a finite parameter g0 = 2
√
Ωω. Thus, to second

order of g, this Hamiltonian becomes

H1 ≈
3∑

n=1

[
h̄

2
Ωσz

n + h̄ωa†nan + h̄ω
g2

2g20
[(2a†nan + 1)σz

n − 1] + t(eiθa†nan+1 + h.c.)

]

=

3∑
n=1

[
h̄

2
Ωσz

n + h̄ω(1+
g2

g20
σz
n)a

†
nan +

h̄ω

2

g2

g20
(σz

n − 1)

+t(eiθa†nan+1 + e−iθa†n+1an)

]
. (A.7)

As transition frequency Ω of the two-level atom is dominated, atoms should stay at their ground states
|0⟩σ =

∏3
n=1 |g⟩n. Then, physical behaviors of the optical field are governed by Hamiltonian

Hnp = ⟨0|H1|0⟩σ , whose concrete form becomes

Hnp =−3

2
h̄

(
Ω+ 2ω

g2

g20

)
+

3∑
n=1

[
h̄ω

(
1− g2

g20

)
a†nan + t

(
eiθa†nan+1 + h.c.

)]
. (A.8)

At strong on-site coupling g, the optical field can no longer remain in a vacuum state. We need to make a
local translation to the cavity field

D= exp

[
3∑

n=1

(
αna

†
n −α∗

nan
)]

(A.9)

with αn = |αn|eiγn , and get a translated Hamiltonian H ′
2 = D†HD. Then this new Hamiltonian H ′

2 reads

H ′
2 =

3∑
n=1

[ h̄
2
Ωσz

n + h̄ωa†nan +
h̄g

2
(a†nσ

†
n + anσ

−
n )+ t(eiθa†nan+1 + h.c.)

+ h̄ω(αna
†
n +α∗

nan + |αn|2)+
h̄g

2
(α∗

nσ
†
n +αnσ

−
n )

+ t
[
eiθ(αn+1a

†
n +α∗

nan+1 +α∗
nαn+1)+ h.c.

]]
=

3∑
n=1

[ h̄
2
Ωσz

n + h̄ωa†nan +
h̄g

2
(a†nσ

†
n + anσ

−
n )+ t(eiθa†nan+1 + h.c.)

+
h̄g

2
(α∗

nσ
†
n +αnσ

−
n )+ [(h̄ωαn + teiθαn+1 + te−iθαn−1)a

†
n + h.c.]

+ (h̄ω|αn|2 + teiθα∗
nαn+1 + te−iθα∗

n+1αn)
]
. (A.10)

To clarify effects of the local translation αn, it can be helpful to apply a unitary transformation

U= exp

[
i

3∑
n=1

γn
(
a†nan −σ†

nσ
−
n

)]
. (A.11)
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Because it can be identified that

U†σz
nU= σz

n, U
†σ†

nU= eiγnσ†
n ,U

†a†nU= e−iγna†n,

we will get a new translated HamiltonianH ′
2 = U†H ′U and know that

H ′
2 =

3∑
n=1

[
Hqn + h̄ωa†nan +

h̄g

2
(a†nσ

†
n + anσ

−
n )+ t(eiθna†nan+1 + h.c.)

+[(h̄ω|αn|+ teiθn |αn+1|+ te−iθn−1 |αn−1|)a†n + h.c.]

+(h̄ω|αn|2 + 2tcosθn|αn||αn+1|)
]

(A.12)

with phase θn = θ+ γn+1 − γn and a local atom Hamiltonian

Hqn =
h̄

2
Ωσz

n +
h̄g

2
|αn|σx

n. (A.13)

From equation (A.12), we can realize that if there are photons in cavities, on one hand, they may induce an
effective tunneling phase θn; on the other hand, they can perturb an atom in the nth cavity away from its
ground state |g⟩n. As to this two-level atom, its Hamiltonian Hqn can be diagonalized as

Hqn =
h̄

2
Ωnτ

z
n, Ωn =

√
Ω2 + g2|αn|2 (A.14)

with eigenstates

|+⟩n = cos(βn) |e⟩n + sin(βn) |g⟩n, |−⟩n = sin(βn) |e⟩n − cos(βn) |g⟩n (A.15)

and sin(βn) =
√

1
2 (1−

Ω
Ωn

), cos(βn) =
√

1
2 (1+

Ω
Ωn

), τ zn = |+⟩n⟨+| − |−⟩n⟨−|. In this eigenstates bases, we

can have that

σ†
n =

(
σ−
n

)†
=

1

2
sin(2βn)τ

z
n − cos2 (βn)τ

†
n + sin2 (βn)τ

−
n

=
1

2

[
g|αn|
Ωn

τ zn −
(
1+

Ω

Ωn

)
τ †n +

(
1− Ω

Ωn

)
τ−n

]
(A.16)

with τ †n = (τ−n )† = |+⟩n⟨−|. And HamiltonianH ′
2 can be changed into

H ′
2 =

3∑
n=1

[([(
h̄g2

4Ωn
τ zn + h̄ω

)
|αn|+ teiθn |αn+1|+ te−iθn−1 |αn−1|

]
a†n + h.c.

)
− h̄g

4

[
(1+

Ω

Ωn
)(a†nτ

†
n + anτ

−
n )− (1− Ω

Ωn
)(a†nτ

−
n + anτ

†
n )
]

+
h̄

2
Ωnτ

z
n + h̄ωa†nan + t(eiθna†nan+1 + h.c.)

+(h̄ω|αn|2 + 2tcosθn|αn||αn+1|)
]
. (A.17)

As atomic energy h̄Ωn is predominant in HamiltonianH ′
2, it is valid to assume that the atom in each cavity

would keep in its ground state |−⟩n. The first line in equation (A.17) can be eliminated by demanding that(
h̄ω− h̄g2

4Ωn

)
|αn|+ teiθn |αn+1|+ te−iθn−1 |αn−1|= 0, (A.18)

which is equal to

|αn+1| sinθn − |αn−1| sinθn−1 = 0, (A.19)(
h̄ω− h̄g2

4Ωn

)
|αn|+ t(|αn+1|cosθn + |αn−1|cosθn) = 0 (A.20)
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with n= 1,2,3. Under this situation, HamiltonianH ′
2 becomes

H ′
2 =

3∑
n=1

[
h̄g

4

[(
1− Ω

Ωn

)
(a†nτ

−
n + anτ

†
n )−

(
1+

Ω

Ωn

)
(a†nτ

†
n + anτ

−
n )

]
+
h̄

2
Ωnτ

z
n + h̄ωa†nan + t(eiθna†nan+1 + h.c.)

+(h̄ω|αn|2 + 2tcosθn|αn||αn+1|)
]
, (A.21)

which can be diagonalized by another Schrieffer–Wolff transformation U2 = e−S2 with

S2 =
3∑

n=1

g

4

[
1− Ω

Ωn

Ωn −ω

(
anτ

†
n − a†nτ

−
n

)
−

1+ Ω
Ωn

Ωn +ω

(
a†nτ

†
n − anτ

−
n

)]
. (A.22)

We mark the transformed Hamiltonian using H2 and expand it in this way

H2 = U†
2H ′

2U2 =H ′
2 + [S2,H ′

2] +
1

2!
[S2, [S2,H ′

2]] + · · · . (A.23)

In the limit of Ω/ω→∞, we can find that

[S2,H ′
2] =

3∑
n=1

[
− h̄g

4

[(
1− Ω

Ωn

)
(a†nτ

−
n + anτ

†
n )−

(
1+

Ω

Ωn

)
(a†nτ

†
n + anτ

−
n )

+
h̄ω

2

g2Ω

g20Ωn

[(
1+

Ω2

Ω2
n

)
(2a†nan + 1)τ zn −

(
1− Ω2

Ω2
n

)
(a†2n + a2n)τ

z
n −

2Ω

Ωn

]]
and

[S2, [S2,H ′
2]] =

3∑
n=1

h̄ω

2

g2Ω

g20Ωn

[(
1− Ω2

Ω2
n

)(
a†2n + a2n

)
τ zn −

(
1+

Ω2

Ω2
n

)(
2a†nan + 1

)
τ zn +

2Ω

Ωn

]
+O

(
g3
)
.

With the aid of these two equations, Hamiltonian H2 becomes

H2 ≈
3∑

n=1

[
h̄ω|αn|2 + 2tcosθn|αn||αn+1| −

h̄ω

2

g2Ω

g20Ωn
+

h̄

2
Ωnτ

z
n + h̄ωa†nan

+ t(eiθna†nan+1 + h.c.)+
h̄ω

4

g2Ω

g20Ωn

[
(1+

Ω2

Ω2
n

)(2a†nan + 1)τ zn

− (1− Ω2

Ω2
n

)(a†2n + a2n)τ
z
n

]]
(A.24)

to second order of on-site coupling g. So Hamiltonian of the cavity field can be defined as Hsp = ⟨−|H2|−⟩σ
with |−⟩σ =

∏3
n=1 |−⟩n, which can be in form of

Hsp =
3∑

n=1

[
h̄ω|αn|2 + 2tcosθn|αn||αn+1| −

h̄ω

4

g2Ω

g20Ωn

(
1+

Ω

Ωn

)2

− h̄

2
Ωn

+ t(eiθna†nan+1 + h.c.)+ h̄ω
[
1− 1

2

g2Ω

g20Ωn

(
1+

Ω2

Ω2
n

)]
a†nan

+
h̄ω

4

g2Ω

g20Ωn
(1− Ω2

Ω2
n

)(a†2n + a2n)
]
. (A.25)
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Appendix B. Diagonalizing effective HamiltonianHsp

In superradiant phases, effective Hamiltonian of optical field is Hsp (see equation (19) or (22)). We find that
the translations {αn} should meet

γn+1 − γn = γ, |αn|= α=
g

2g0

√
Ω

ω

√
1

f 2
− g40

g4
(B.1)

with f(θ,γ) = 1+ 2t ′ cos(θ+ γ). Thus, effective Hamiltonian Hsp will turn into

Hsp =
3∑

n=1

h̄ω

[
1

2
[λ− 2t ′ cos(θ+ γ)](a†nan + ana

†
n)+

1

2
λ(a†2n + a2n)+ t ′(ei(θ+γ)a†nan+1 + h.c.)

]
+ E (B.2)

with λ= 1
2 f(θ,γ)[1−

g40
g4 f

2(θ,γ)]. Because it is translation invariant, we can make a Fourier transformation to
the momentum space and will discover that

Hsp =
∑
p>0

[2H (p)− ϵ(−p) h̄ω] +H (0)− h̄ω [3t ′ cos(θ+ γ)−λ] + E. (B.3)

Concrete form of HamiltonianH(p) is

H (p) =
h̄ω

2

[
ϵ(p)a†pap + ϵ(−p)a−pa

†
−p +λ

(
a†pa

†
−p + a−pap

)]
(B.4)

with single-particle energy

ϵ(p) = λ+ 2t ′ [cos(θ+ γ− p)− cos(θ+ γ)] . (B.5)

Using a Bogoliubov transformation

ap = µbp − νb†−p, a
†
−p =−νbp +µb†−p (B.6)

with µ= 1√
2
[
√

[ϵ(p)+ϵ(−p)]2

[ϵ(p)+ϵ(−p)]2−4λ2 + 1]1/2, ν = 1√
2
[
√

[ϵ(p)+ϵ(−p)]2

[ϵ(p)+ϵ(−p)]2−4λ2 − 1]1/2 and [bp1 ,b
†
p2 ] = δp1,p2 ,

HamiltonianH(p) can be diagonalized as

H (p) = ξ (p)b†pbp + ξ (−p)b†−pb−p + ξ (−p) (B.7)

with discrete excitation spectra

ξ (p) =
h̄ω

4

[√
[ϵ(p)+ ϵ(−p)]2 − 4λ2 + ϵ(p)− ϵ(−p)

]
. (B.8)

It should be noted that because ϵ(0) = λh̄ω, we can not use the same way to diagonalizeH(0) [53], whose
concrete form is

H (0) =
1

2
λh̄ω

(
a0 + a†0

)2
= λh̄ωx20 (B.9)

with x0 = (a0 + a†0)/
√
2. Its eigenvalues belong to (−∞,+∞), so the spectrum ofH(0) is continuous

running from 0 to+∞. The excitation energy is ξ(p= 0) = 0. In this way, we can reach the diagonalized
form of Hamiltonian Hsp

Hsp =
∑
p ̸=0

2ξ (p)b†pbp +λh̄ωx20 + Esp. (B.10)

The ground energy Esp can be calculated as

Esp = E+
∑
p>0

[2ξ (−p)− ϵ(−p) h̄ω]− h̄ω [3t ′ cos(θ+ γ)−λ]

=−3

2
h̄ω

[
1+

g20f
2

g2
−

√
( f− 1)

[
f− 1− 2

3
f

(
1− g40f

2

g4

)]]

− 3

4
h̄Ω

(
g2

g20f
+

g20f

g2

)
. (B.11)
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Appendix C. Deriving the evolution probability in a blue sideband transition

We try to provide detailed presentations of deriving the evolution probability in a blue sideband transition.
Firstly, a short optical pumping pulse is applied to pump the internal state of the ‘n= 1’ trapped ion into |g⟩1.
This pulse should be set short enough so that its effect on the motional state (phonon state) population of
the three trapped ions can be neglected. In a superradiant phase, its state function is |ψ⟩sp (see equation (30))
in the frequency limit Ω/ω→∞. The concrete form of these unitary operators in |ψ⟩sp becomes

D= eα
∑3

n=1(e
iγa†n−e−iγan) =

3∏
n=1

D̃n, D̃n = eα(e
iγa†n−e−iγan),

U= eiγ
∑3

n=1(a
†
n an−σ†

n σ
−
n ) =

3∏
n=1

Ũn, Ũn = eiγ(a
†
n an−σ†

n σ
−
n ),

U2 = e−A−
∑3

n=1(anτ
†
n −a†n τ

−
n )+A+

∑3
n=1(a

†
n τ

†
n −anτ

−
n )

with A± = 1
2

√
ω
Ω

gcf
g (1±

g2c f
g2 ). As A± → 0, we have that U2 ≈ 1 and state of the superradiant phases can be

approximated as

|ψ⟩sp ≈
3∏

n=1

D̃n

3∏
n=1

Ũn|0⟩x|0⟩p
3∏

n=1

|−⟩n. (C.1)

For the ‘n= 1’ trapped ion, its spin state is changed from e−iγσ†
1 σ

−
1 |−⟩1 to |g⟩1 by the optical pulse. Thus, we

have prepared the system into an initial state

|ψ (0)⟩= D̃1e
iγa†1 a1

3∏
n=2

D̃nŨn|0⟩x|0⟩p|g⟩1
3∏

n=2

|−⟩n. (C.2)

Secondly, applying a running wave light field to drive the ‘n= 1’ trapped ion for various time intervals t̃.
Under the resonance condition of first blue sideband [52], its evolution is described by following interaction
Hamiltonian

Hi =
h̄Γ

2

(
a†1σ

†
1 + a1σ

−
1

)
(C.3)

with coupling frequency Γ determined by the external light field. At time t̃, wave function of the system
evolves into

|ψ (̃t)⟩= e−
i
h̄Hĩt|ψ (0)⟩= e−

i
2 Γ̃t(a

†
1 σ

†
1 +a1σ

−
1 )|ψ (0)⟩. (C.4)

Thirdly, measuring the probability Pg(̃t) = ⟨ψ(̃t)|(|g⟩1⟨g|)|ψ(̃t)⟩ to find the ‘n= 1’ trapped ion in its ground
state |g⟩1. We can obtain that

Pg (̃t) = ⟨ψ (0) |e i
h̄Hĩt (|g⟩1⟨g|)e−

i
h̄Hĩt|ψ (0)⟩

= p⟨0|x⟨0|e−iγa†1 a1D̃†
1 1⟨g|e

i
h̄Hĩt|g⟩1⟨g|e−

i
h̄Hĩt|g⟩1D̃1e

iγa†1 a1 |0⟩x|0⟩p

= p⟨0|x⟨0|e−iγa†1 a1D̃†
1 cos2

(
Γ̃t

2

√
a1a

†
1

)
D̃1e

iγa†1 a1 |0⟩x|0⟩p

=
1

2

(
1+ p⟨0|x⟨0|D†

1 cos

(
Γ̃t
√

a1a
†
1

)
D1|0⟩x|0⟩p

)
=

1

2

(
1+ p⟨0|x⟨0|cos

(
Γ̃t

√
a1a

†
1 +α

(
a†1 + a1

)
+α2

)
|0⟩x|0⟩p

)
, (C.5)

where we have defined operatorD1 = e−iγa†1 a1D̃1eiγa
†
1 a1 = eα(a

†
1−a1) and used equations

1⟨g|e−
i
h̄Hĩt|g⟩1 =

∑
m

(−i)m

m!

(
Γ̃t

2

)m

1⟨g|
(
a†1σ

†
1 + a1σ

−
1

)m
|g⟩1 =

∑
m

(−1)m

(2m)!

(
Γ̃t

2

)2m(
a1a

†
1

)m
= cos

(
Γ̃t

2

√
a1a

†
1

)
, (C.6)

16



New J. Phys. 25 (2023) 103048 J-M Cheng et al

D†
1 cos

(
Γ̃t
√

a1a
†
1

)
D1 = cos

(
Γ̃t

√
a1a

†
1 +α

(
a†1 + a1

)
+α2

)
. (C.7)

We next express a1 and a†1 in momentum space and can acquire that

a†1 + a1 =
1√
3

a†0 + a0 +(µ− ν)
∑
p ̸=0

e−ip
(
b†p + b−p

) (C.8)

a1a
†
1 =

2

3
µ2 +

1

3
a0a

†
0 +

1

3

∑
p̸=0

([(µ2 + ν2)b†pbp −µν(bpb−p + b†−pb
†
p)],

+ e−i2p[(µ2 + ν2)b†−pbp −µν(bpbp + b†−pb
†
−p)]

+ a†0e
−ip(µbp − νb†−p)+ a0e

ip(µb†p − νb−p)), (C.9)

with which the probability Pg(̃t) can be rewritten as

Pg(̃t) =
1

2

(
1+

∑
m

(−1)m

(2m)!
(Γ̃t)

2m
p⟨0|x⟨0|

[
α2 +

2

3
µ2

+
1

3
a0a

†
0 +

1√
3
(a†0 + a0)+ · · ·

]m
|0⟩x|0⟩p

)
=

1

2

(
1+ cos(Γ̃̃t)+

∑
m

(−1)m

(2m)!
(Γ̃t)2m x⟨0|

(1
3
a0a

†
0

)m
|0⟩x + · · ·

)
=

1

2

(
1+ cos(Γ̃̃t)+

∑
n

H2
n(0)

2nn!
√
π
cos(Γ̃n t̃)+ · · ·

)
, (C.10)

where Γ̃ =
√
α2 + 2

3µ
2Γ, Γ̃n =

√
n+1
3 Γ, Hn(x) is the Hermitian polynomials. In equation (C.10), many

cross-terms are hidden in the ellipsis, which can contain plenty of undetermined oscillation frequencies; just
as expected, the summation terms are closely related with populations of Fock states |n⟩ in the ground state
|0⟩x [52], they result in the frequencies Γ̃n that are decided only by n and Γ; an oscillating term originating
from the displacement operator D̃1 and excitations is also successfully figured out, whose oscillation
frequency Γ̃ can give us information about α and γ. Thus, in experiments we can verify the three
superradiant phases through finding out oscillation frequency Γ̃ of the spin evolution probability Pg(̃t).
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