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Variational ansatz-based quantum simulation of imaginary

time evolution

Sam McArdle', Tyson Jones', Suguru Endo’, Ying Li% Simon C. Benjamin

' and Xiao Yuan®'

Imaginary time evolution is a powerful tool for studying quantum systems. While it is possible to simulate with a classical computer,
the time and memory requirements generally scale exponentially with the system size. Conversely, quantum computers can
efficiently simulate quantum systems, but not non-unitary imaginary time evolution. We propose a variational algorithm for
simulating imaginary time evolution on a hybrid quantum computer. We use this algorithm to find the ground-state energy of
many-particle systems; specifically molecular hydrogen and lithium hydride, finding the ground state with high probability. Our
method can also be applied to general optimisation problems and quantum machine learning. As our algorithm is hybrid, suitable
for error mitigation and can exploit shallow quantum circuits, it can be implemented with current quantum computers.
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INTRODUCTION

Imaginary time is an unphysical, yet powerful, mathematical
concept. It has been utilised in numerous physical domains,
including quantum mechanics, statistical mechanics and cosmol-
ogy. Often referred to as performing a ‘Wick rotation’,' replacing
real time with imaginary time connects Euclidean and Minkowski
space,® quantum and statistical mechanics® and static problems to
problems of dynamics.* In quantum mechanics, propagating a
wavefunction in imaginary time enables: the study of finite
temperature properties,”” finding the ground-state wavefunction
and energy (such as in density matrix renormalisation group),®™""
and simulating real-time dynamics (such as time-dependent
Hartree).">'* For a system with Hamiltonian, H, evolving in real
time, t, the propagator is given by e ™. The corresponding
propagator in imaginary time, T = it, is given by e "'%; a non-unitary
operator.

Using a classical computer, we can simulate imaginary time
evolution by evaluating the propagator and applying it to the
system wavefunction. There also exist various related classical
methods, such as quantum Monte Carlo'*'> and density matrix
renormalisation group'®'” for solving different problems. How-
ever, because the dimension of the wavefunction grows
exponentially with the number of particles, classical simulation
of many-body quantum systems is generally hard.'® While
efficient variational trial states have been developed for a number
of applications,’® powerful trial wavefunctions typically require
classical computational resources which scale exponentially with
the system size."’

Quantum computing can naturally and efficiently store many-
body quantum states, and hence is suitable for simulating
quantum systems.”> We can map the system Hamiltonian to a
qubit Hamiltonian, and simulate real-time evolution (as described
by the Schrédinger equation) by realising the corresponding
unitary evolution with a quantum circuit.?' Using Trotterization,*
the real-time propagator can be decomposed into a sequence of

single- and two-qubit gates.”® The ability to represent the real-
time propagator with a sequence of gates stems from its unitarity.
In contrast, because the imaginary time operator is non-unitary, it
is not straightforward to decompose it into a sequence of unitary
gates using Trotterization, and thus directly realise it with a
quantum circuit. As a result, alternative methods are required to
implement imaginary time evolution using a quantum computer.

Classically, we can simulate real (imaginary) time evolution of
parametrised trial states by repeatedly solving the (Wick rotated)
Schrédinger equation over a small timestep, and updating the
parameters for the next timestep.2®'"?*%” This method has
recently been extended to quantum computing, where it was
used to simulate real-time dynamics.?® Closely related are the
variational quantum eigensolver (VQE)***> and the quantum
approximate optimisation algorithm (QAOA),*® which update the
parameters using a classical optimisation routine, to find the
minimum energy eigenvalue of a given Hamiltonian. As ‘hybrid
quantum-classical methods’, these algorithms use a small
quantum computer to carry out a classically intractable sub-
routine, and a classical computer to solve the higher-level
problem. The quantum subroutine may only require a small
number of qubits and a low-depth circuit, presenting a potential
use for noisy intermediate-scale quantum hardware.’

In this paper, we propose a method to simulate imaginary time
evolution on a quantum computer, using a hybrid quantum-
classical variational algorithm. The proposed method thus
combines the power of quantum computers to efficiently
represent many-body quantum states, with classical computers’
ability to simulate arbitrary (including unphysical) processes. We
discuss using this method to find the ground-state energy of
many-body quantum systems, and to solve optimisation pro-
blems. We then numerically test the performance of our algorithm
at finding the ground-state energy of both the hydrogen molecule
(H,) and lithium hydride (LiH). We compare our results for LiH to
those obtained using the VQE with gradient descent. As our
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algorithm only requires a low-depth circuit, it can be realised with
current and near-term quantum processors.

RESULTS
Variational imaginary time evolution

We focus on many-body systems that are described by
Hamiltonians H = ), Aih;, with real coefficients, A; and observa-
bles, h;, that are tensor products of Pauli matrices. We assume that
the number of terms in this Hamiltonian scales polynomially with
the system size, which is true for many physical systems, such as
molecules or the Fermi-Hubbard model. Given an initial state |¢),
the normalised imaginary time evolution is defined by

w(1)) = A(r)e™"|p(0)), M
where A(t) = 1/4/(p(0)]e~2"|ip(0)) is a normalisation factor. In

the instance that the initial state is a maximally mixed state, the
state at time T is a thermal or Gibbs state pr_, =e "/Trle 1,
with temperature T=1/t. When the initial state has a non-zero
overlap with the ground state, the state at T — « is the ground
state of H. Equivalently, the Wick rotated Schrédinger equation is,
WD 1~ ) lur). @
T

where the term E;= (Y(7)|H|p(1)) results from enforcing normal-
isation. Even if |p(1)) can be represented by a quantum computer,
the non-unitary imaginary time evolution cannot be naively
mapped to a quantum circuit.

In our variational method, instead of directly encoding the
quantum state |@(1)) at time T, we approximate it using a

parametrised trial state |¢(é(r))), with

—

0(t) = (64(1),02(1), ... ,On(T)). This stems from the intuition that
the physically relevant states are contained in a small subspace of
the full Hilbert space.®® The trial state is referred to as the ansatz.
In condensed matter physics and computational chemistry, a wide
variety of ansdtze have been proposed for both classical and
quantum variational methods.'"2%%4° .
Using a quantum circuit, we prepare the trial state, |¢$(0)), by

=

applying a sequence of parametrised unitary gates, V(6) =
Un(BN)... Uk(6k)... Uy (64) to our initial state, 6>. We express this

as |(6)) = V(6)[0) and remark that V(6) is also referred to as the
ansatz. We refer to all possible states that could be created by the
circuit V as the ‘ansatz space’. Here, Uy(6)) is the k™ unitary gate,
controlled by parameter 6, and the gate can be regarded as a
single- or two-qubit gate.

To simulate the imaginary time evolution of the trial state, we
use McLachlan’s variational principle,*'*?

8|[(8/0t + H — Er)|y(1))|| =0, 3)

where || p ||=Tr[\/pp'] denotes_the trace norm of a state. By
replacing |@(1)) with |¢(T)) = [¢(O(T))), we effectively project the
desired imaginary time evolution onto the manifold of the ansatz
space. The evolution of the parameters is obtained from the
resulting differential equation

j
where
_ (3] 3lg(r)
Ay = R (2ggrI240)

(5)
6= #(- S hil(0) ).

and h, and A, are the Pauli terms and coefficients of the
Hamiltonian, as described above. The derivation of Eq. (4) can be
found in the Supplementary Materials. As both A; and C; are real,
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the derivative 6; is also real, as required for parametrising a
quantum circuit. Interestingly, although the average energy term
E. appears in Eq. (2), it does not appear in Eq. (4). This is because
the ansatz applied maintains normalisation, as it is composed of
unitary operators.

Imaginary time evolution with quantum circuits

By following a similar method to that introduced in ref, 2® we can
efficiently measure A; and G using a quantum computer. We
assume that the derivative of a unitary gate U{(6) can be expressed
as 0U;j(6;)/06; = > fyiUi(6;)ox, with unitary operator oy The
derivative of the trial state is given by 3|¢(1))/36; = 3" ifi;Vi.i|0),
with VkJ' = UN(GN) e U,ur] (9[+1) U,'(G,‘)O'k?j e U1 (91 ) There are
typically only one or two terms resulting from each derivative. As
an example, when U(6) is a single-qubit rotation R,(6;) = e~0%/2,
the derivative 0U;(6;)/06; = —i/2x 0,6 %/2. The coefficients A;
and G; are given by

Aj =R <%ﬁ flzﬁ,iﬁ\/<6|‘~/li‘i‘~/’vf|6>> ;

G=%R <Z fkﬁ,)\a<o}\7;[havyo>> .
k,a

All of these terms are of the form a®(e®(0|U|0)) and can be
evaluated using the circuits shown in the Supplementary
Materials. .

With A(1) and C(7) at time 7, the imaginary time evolution over a
small interval 6t can be simulated by evaluating

6(t) = A-'(1) - C(1), and using a suitable update rule, such as
the Euler method,

— —

B(t + 67) ~ B(1) + B(1)6T = B(1) + A (1) - C(1)6T. @

By repeating this process N;= Tya/OT times, we can simulate
imaginary time evolution over a duration Ty Often, the
satisfying parameter evolution is not unique and Eq. (4) is
underdetermined. In that case, we can employ truncated singular
value decomposition to approximately invert A, or Tikhonov
regularisation to additionally constrain the parameters to vary
smoothly. We elaborate upon these strategies in the Supplemen-
tary Materials.

A limitation of our variational method is that the ansatz may not
be able to faithfully describe all states on the desired trajectory,
much like its real-time counterpart.® Even though such states lie in
a small subspace of the full Hilbert space,*® it is difficult to prove that
they can be generated by a given ansatz, despite promising
numerical results.”® However, our numerical results are similarly
promising for imaginary time, and demonstrate it to be a robust
routine for energy minimisation. Moreover, we believe that when
tasked with finding the ground state using imaginary time evolution,
a small deviation from the true evolution is less problematic than
when trying to simulate real-time evolution. This is because
imaginary time evolution always drives a state towards the ground
state (or one of the lowest eigenstates), whereas the real-time
evolution of two closely separated states may be very different.
Consequently, as long as errors due to an imperfect ansatz do not
cause the simulation to become trapped in local minima, we do not
mind if the evolution deviates from the path of true imaginary time
evolution, as ultimately, it will still be driven towards the ground
state. Nevertheless, designing ansdtze that are well suited to
imaginary time evolution is an interesting open problem.

Ground-state energy via imaginary time evolution

We apply our method to the problem of finding the ground-state
energy of a many-body Hamiltonian, H. As with the VQE, our goal
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is to find the values of the parameters, 6, which minimise the
expectation value of the Hamiltonian

Enin = min (p(6)|HIH(6)), (8)

where |(6)) = V(6)[0) is our variational trial state. The VQE solves
this problem by using a quantum computer to construct a good
ansatz and measure the expectation value of the Hamiltonian, and
a classical optimisation routine to obtain new values of the
parameters. In order to preserve the exponential speedup of the
VQE over classical methods, the trial state is constructed using a
number of parameters that scales polynomially with the system
size. However, because we may need to consider many possible
values for each parameter, the total size of the parameter space
still scales exponentially with the system size. Moreover, many
optimisation algorithms, such as gradient descent, are liable to
becoming trapped in local minima. This combination can make
the classical optimisation step of the VQE very difficult.*®

As described above, if the initial state has a non-zero overlap
with the ground state, true propagation in imaginary time will
evolve the system into the ground state, in the limit that T— co.
Classically, this has been leveraged as a powerful tool to find the
ground-state energy of quantum systems.®?'! Using our method,
we can efficiently simulate ansatz-based imaginary time evolution
to find the ground state, using a quantum computer. In the
numerical simulations described below, we use the Euler method
to solve differential equations, which corresponds to the update
rule for the parameters shown in Eqg. (7). We prove in the
Supplementary Materials that when 6t is sufficiently small, the
average energy of the trial state, E(1) = (¢(7)|H|¢ (7)), always
decreases when following the Euler update rule: E(t + 1) < E(1).

In this work, we consider gradient descent, a canonical classical
optimisation method

6(t + 61) = 6(1) + G(1)d1 = 6(1) + C(1)éT, 9

where G(1) = —VE(T) is the gradient of E(r) and C(t) = —VE(1) is
the same vector in Eq. (4). Classical optimisation methods only
consider information about the average energy, and not about the
ansatz itself, which is encoded in the matrix A, used only in
variational imaginary time evolution.

Toy example

Here, we present two simple toy examples which highlight the
difference between variational imaginary time evolution and
gradient descent for finding the ground-state energy of Hamilto-
nians. Consider the following Hamiltonians

1 0 0 1 0 0 O
0 2 0 O 01 0 O
Ha = , Hg= (10)
0 0 3 0 0 0 2 0
0 0 0O 0 0 0 O
with ansatze
04(61,6,,65)) = €®CRY' (62)RS(61)[00), an
|Ws(61,62,65)) = € CRY' (62)R5(61)RY(61)01), (12)

prepared by  circuits  ((A) and  (B), respectively).

10) - B3,

0) 4 B3, A
1) ~{R¥ H R},

(4) (B)

0) ——— Ry,

3

Published in partnership with The University of New South Wales

S. McArdle et al.

np)j

Here, CR)' is a controlled Y rotation with control qubit 0 and
target qubit 1, R} (6;) is a rotation of qubit g around the x-axis, and
the rotation about the j-axis is R, (6) = e~%/2 with Pauli matrices
o0;. Note that 05 is a fictitious parameter which corresponds to the
global phase. This is present only so that the evolution of the
other parameters are not constrained to produce an oscillating
global phase in time, as recently studied in ref. %4,

We study the ability of variational imaginary time and gradient
descent to navigate the energy landscapes of the toy systems A
and B, and present the results in Fig. 1. Figure 1a shows imaginary
time robustly discovering the global minima of the energy
landscape of system A, while gradient descent becomes trapped
in local minima. Figure 1b shows imaginary time performing
comparably with gradient descent for system B, despite it being
only slightly more complicated than system A. This shows that it is
still possible for imaginary time evolution to become trapped in
local minima, when the ansatz is not sufficiently powerful for
certain Hamiltonians.

Simulation of H, and LiH

We use our method to find the ground-state energy of the H, and
LiH molecules in their minimal spin—orbital basis sets. We map the
molecular fermionic Hamiltonians to qubit Hamiltonians using the
procedure described in the Supplementary Materials. The H,
Hamiltonian acts on two qubits, and considers the space of two
electrons in four spin-orbitals. The LiH Hamiltonian acts on eight
qubits, and considers an active space of two electrons in eight
spin—orbitals. There are numerous possible choices for the ansatz
circuit; we use a universal ansatz for H,%° and an ansatz inspired
by the low-depth circuit ansatz*® for LiH, as shown in the
Supplementary Materials. The simulation results for H, are shown
in Fig. 2. We have used a universal ansatz, which is capable of
representing all states along the imaginary time trajectory to
confirm that our method can recover true imaginary time
evolution, when the ansatz is sufficiently powerful. We attribute
deviation from the true evolution to the use of an Euler update
rule, and finite step size. Our simulations were able to converge to
the ground state in all trials.

We compare the LiH results to those obtained using the VQE,
with gradient descent as the classical optimisation routine. We use
the low-depth circuit ansatz shown in the Supplementary
Materials for our simulation, with 137 parameters. This is
approximately a quarter of the number needed in a universal
ansatz. We consider starting from a good initial state (the
Hartree-Fock state for LiH), and also random initial states. We
believe that the latter simulations provide a more thorough test of
both methods.

We use the maximum stable step size 61 for each method such
that energy monotonically decreases in the first 200 iterations. The
stable timestep for imaginary time was 0.225, and for gradient
descent it was 0.886. Figure 3 shows the imaginary time method
outperforming gradient descent. It is able to locate the ground
state more quickly, and accurately. This advantage is most
noticeable for the case of random start states, where the obtained
convergence rate is significantly higher than gradient descent.
This may be most relevant for solving optimisation problems
using the QAOA algorithm, where it is often harder to motivate a
good initial starting state.

It is natural to question whether the resource requirements of
variational imaginary time evolution are comparable with those of
gradient descent. We assess this by performing a simple resource
estimation, and by examining its sensitivity to shot noise and to
gate errors within the quantum computer. At each iteration,
populating the gradient vector requires O(NcNyNp) measure-
ments, where N¢ is the number of measurements required to
ascertain a Hamiltonian term to the required precision, Ny is the
number of terms in the Hamiltonian, and N, is the number of
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Fig. 1 Comparison of variational imaginary time (top plot in each
panel) and gradient descent (bottom plot in each panel) discovering
the ground state in toy systems A (top panel) and B (bottom panel).
The background colour indicates the energy
(Y(64, 65, 63)|H|Y(B:, 65, 63)) with red and blue corresponding to
the global maximum and ground-state energies, respectively. The
arrows indicate the trajectories of the methods, and are coloured
green if they converge to the true ground state, and red otherwise

parameters used in the ansatz. For imaginary time, the total cost is
O(NcNyN, +N§NA), where N, is the number of measurements
required to ascertain an element of the A matrix to the required
precision. Sensible ansdtze typically have fewer parameters N,
than there are Hamiltonian terms Ny (in our LiH simulations, N, =
137 and Ny=181). If the number of Hamiltonian terms is
considerably larger than the number of parameters used, then
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Fig. 2 Simulations of H, with random initial parameters and
timestep 61 =0.01. The red line is the exact ground-state energy.
The dashed black line is the exact imaginary time evolution. The
blue line is the variational imaginary time evolution. The inset plot
shows the fidelity of variational imaginary time to true imaginary
time evolution. Here we consider an internuclear distance of R=
0.75 A. The inset plot and main plot share the same x-axis label
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Fig. 3 Noise-free simulations of LiH at an internuclear distance of R
=1.45A. Simulations in the top plot begin in a small random
perturbation (of at most, AG;=71/50) from the Hartree-Fock state.
Simulations in the bottom plot begin with uniformly random
parameters. The solid lines (against the left axis) indicate the fraction
of 1280 simulations which, by the given iteration, have converged to
within 1 mHartree of the true ground state. The dashed lines
(against the right axis) indicate the average proximity to the true
ground state of only the so-far converged simulations. Imaginary
time and gradient descent use their maximum stable timesteps

the additional cost O(NﬁNA) of imaginary time can be dominated
by the cost of calculating the gradient vector. While this is not true
for our LiH simulations, we find that it is possible to further reduce
the cost of imaginary time by using fewer measurements for each
term in the A matrix than for each element of the gradient vector
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Fig. 4 Simulations of LiH in the presence of a 10 * error rate per
gate and varying amounts of shot noise. Each point indicates the
fraction of 100 trials which, after 2000 iterations from uniformly
random initial parameter states, finished within 1 mHartree of the
true ground state of LiH. For imaginary time (the blue lines), the
horizontal axis indicates the number of shots N, used in sampling
each element of the coefficient matrix A, every iteration. The
number of shots N¢ used in measuring each Hamiltonian term in
each element of the gradient vector, as employed by imaginary time
evolution, is varied between the blue lines. For gradient descent, the
horizontal axis is N¢

(Na<< N¢), while still maintaining imaginary time’s superior
performance. We demonstrate this in Fig. 4, where we vary the
number of measurements used to populate A, and simulate the
methods under the effect of decoherence. The results show that
imaginary time can perform significantly better than gradient
descent under the presence of noise, even when significantly
fewer measurements are made. However, if the gradient is not
known to sufficient accuracy (Nc<2x10%, the reliability of
imaginary time evolution cannot be improved by increasing Ny,
and can even perform less effectively than gradient descent.
Combined with imaginary time’s faster convergence and the
tendency of gradient-based methods to become trapped in local
minima, we expect finding the ground state to require substan-
tially fewer measurements using imaginary time than gradient
descent.

DISCUSSION

In this work, we have proposed a method to efficiently simulate
imaginary time evolution using hybrid quantum-classical comput-
ing. We have applied our method to finding the ground-state
energy of quantum systems, and have tested its performance on
H, and LiH. As imaginary time evolution outperformed gradient
descent at this task, we believe our method provides a
competitive alternative to conventional classical optimisation
routines. We will examine this further in future work. We expect
that our method would also be suitable for solving general
optimisation problems, in conjunction with the QAOA, especially
given its performance with randomly chosen initial states.

Our method can also be used to prepare a thermal (Gibbs) state,
pr=-e "T/Trle "' of Hamiltonian H at temperature T. Sampling
from a Gibbs distribution is an important aspect of many machine-
learning algorithms, and so we believe that our method is
applicable to problems in quantum machine learning. Moreover,
while previous methods to prepare the Gibbs state®*” require
long gate sequences (and hence, fault tolerance), our method can
be implemented using a shallow circuit. Our algorithm can also be
combined with recently proposed error mitigation techni-
ques,*®*873% and so is suitable for current quantum hardware.

Although exact imaginary time evolution deterministically
propagates a good initial state to the ground state in the limit
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that T — oo, our variational method may still converge to higher-
energy states, if the chosen ansatz is not sufficiently powerful. In
future work, we will investigate how our method may be optimally
applied to a variety of tasks in chemistry, optimisation and
machine learning. This will include developing suitable ansatze for
a range of problems.
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