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Abstract

One of the most interesting problems in nuclear physics is understanding the QCD phase
diagram in the temperature-density plane. There have been discussed the various phases.
Recently, from the studies of the effective models, it was suggested that there exists the
inhomogeneous chiral phase, where the order parameter described by the quark condensates
might depend on the position. In this thesis, we focus on one of the inhomogeneous configu-
rations of the quark condensates, called dual chiral density wave (DCDW). In the presence of
an external magnetic field, it is known that DCDW is drastically enhanced. Then the energy
spectrum of the lowest Landau level becomes asymmetric about zero and gives rise to the
anomalous quark number. This phenomenon is closely related to axial anomaly. The main
goal of this thesis is to see the various peculiar properties brought by axial anomaly and the
fluctuation effects by using the Nambu-Jona-Lasinio model. First, we study the response
of quark matter in the DCDW phase to the weak external magnetic field. We see that the
spectral asymmetry also gives rise to the spontaneous magnetization. This mechanism may
be one of candidates for the origin of the strong magnetic field in pulsars and/or magnetars.
Secondly, we consider the effect of the change of the current quark mass on the DCDW phase
in the QCD phase diagram, and discuss the properties of the phase transition using the gen-
eralized Ginzburg-Landau expansion. The strong external magnetic field extends this phase
over the low chemical potential region even if the current quark mass is finite. This implies
that the existence of this phase can be explored by the lattice QCD simulation. Thirdly, in
141 dimensions, we shall discuss axial anomaly and nesting from two different points of view:
one is the inhomogeneous chiral phase transition and the other is the Fulde-Ferrel-Larkin-
Ovchinnikov (FFLO) state in superconductivity, which are closely related to each other by
way of duality. It is shown that axial anomaly leads to a particular kind of the FFLO state
within the two dimensional Nambu-Jona Lasinio model, where axial anomaly is manifested
in a different mode. Nesting is a driving mechanism for both phenomena, but its realization
has different features. We reconsider the effect of nesting in the context of duality. Fourthly,
we consider the effect of fluctuations on the inhomogeneous chiral phase since above studies
is based on the mean-field approximation. In the absence of the magnetic field, the effect
of fluctuations is discussed around the phase boundary between the inhomogeneous chiral
phase and the chiral-restored phase. It is argued that a singular behavior in the thermo-
dynamic quantities should have phenomenological implications for the inhomogeneous chiral
transition. In the presence of the magnetic field, the inhomogeneous chiral phase becomes
stable against the fluctuations of the Nambu-Goldstone modes compared to the case of the
absence of the magnetic field.
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Chapter 1

Introduction

Among the four interactions existing in nature, the fundamental theory for describing the
strong interaction is called quantum chromodynamics (QCD) [1, 2, 3]. QCD is the SU(3)
gauge theory, and the Lagrangian renders,

L= —m)p— ingFg”. (1.0.1)
Although the Lagrangian is very simple, it is known that rich phenomena appear in QCD,
for example, color confinement, spontaneous breaking of chiral symmetry, color superconduc-
tivity and quark-gluon plasma (QGP). Nowadays it is one of the most important problems
in nuclear physics to understand the QCD phase diagram in the temperature (7')-density
plane [4]. The QCD phase diagram is also very important from a phenomenological point
of view. The QGP phase appearing in the high T region is considered to be realized in
heavy ion collision experiments [5]. On the other hand, neutron stars can be considered as
an realistic object of quark matter in the low 7" and the high chemical potential (1) regions
[6, 7]. Even though the radius is about 10 km by observation, ones with the mass up to twice
the solar mass have been observed [8, 9]. The equations of state for neutron stars have been
extensively studied from the QCD phase diagram [10, 11].

As an analytical study of QCD, a perturbative method can be considered. However, from
the non-Abelian nature of the SU(3) gauge theory, the gluonic coupling constant increases
and the perturbative calculation fails in the low energy region while QCD has asymptotic
freedom in the high energy limit [2, 3]. As a method to analyze QCD non-perturbatively, the
lattice QCD has been developed [12, 13]. In the high density region, however, there arises
a difficulty in numerical calculation called the sign problem [14, 15], and the calculation
does not work well there. For this reason, analysis of high density regions has been carried
out using various effective models rather than directly calculating QCD Lagrangian. As
one of the effective models, the Nambu-Jona-Lasinio (NJL) model [16] is well known when
considering effective theory of low energy, focusing on chiral symmetry. Chiral symmetry is
spontaneously broken in the vacuum, and it is thought that chiral symmetry is restored at
high T or high density region. The NJL model is an effective model to describe the chiral
phase transition in the finite 7" or finite density region [17, 18].



Figure 1.1: Schematic picture of the noncentral heavy-ion collision in the center-of-mass
system. The charged currents make the vertical magnetic field to the transverse plane of the
collision.

Research on QCD in the magnetic field is also one of the subjects which has become
very interesting in recent years in experiments, observation and theory. In the noncentral
heavy-ion collision, it is expected that the two charged currents make the magnetic field
B ~ 10YG [19]. Fig. 1.1 schematically shows that the heavy-ions are regarded as the charged
currents, which make the magnetic field in the noncentral collision. Therefore the analysis of
the behavior of quark matter in the magnetic field is essential to understand the experimental
data. Furthermore, neutron stars called magnetars have a magnetic field of about 10'°G at
the surface [20, 21]. Therefore the influence on the internal structure due to the magnetic field
can not be ignored. Also from the theoretical viewpoint, some phenomena have been actively
discussed; magnetic catalysis gives rise to the enhancement of chiral symmetry breaking when
B is applied [22, 23, 24]. Magnetic inhibition [25, 26] makes chiral symmetry breaking weaker
at high 7. The chiral magnetic effect (CME) induces the electric current flows in quark matter
in a strong magnetic field [27].

Recently, analysis of the effective models have suggested the possible existence of a new
phase called the inhomogeneous chiral phase (iCP) around the conventional chiral phase
transition line [28, 29, 30, 31]. From the analysis based on the Schwinger-Dyson equation
within QCD, it has been also shown that there is a region of iCP [32]. In iCP, the chiral
condensates, which are the order parameters characterizing the chiral phase transition have
spatially modulating structures. As the form of the inhomogeneous condensates, we often
use the two kinds of the one-dimensional modulation,

Qmﬁsn ( 2mz )
)

A(2)e"®) = (i) + i (i) ~ {”W (1.0.2)

me'dZ,

The upper form, called real kink crystal (RKC), is real and only A oscillates. For the lower
one, called dual chiral density wave (DCDW), the phase € spatially changes but the amplitude
A is constant.
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Figure 1.2: QCD phase diagram in the T-u plane. (The figure is taken from Ref. [4].)

The systems with the nonuniform order paramters have been studied for a long time in
the condensed matter physics; spin density wave [33, 34] and charge density wave [35] in low
dimensional matter, and the FFLO state of type-II superconductivity [36, 37, 38] are some
examples. Also in QCD, the nonuniform structure in the color superconducting phase [39]
or in the quarkionic phase [40] have been proposed. iCP, which is the subject of this paper,
shows many similar features with these nonuniform systems.

So far, various analyses about iCP has been done, for example, with the current mass
[41], in the 3-flavor system [42], in the system that breaks isospin symmetry [43], with the
vector type interaction [44] and in the presence of the magnetic field [45, 46]. In particular,
the properties of iCP drastically change due to chiral anomaly when external magnetic field
is applied. The effect of the magnetic field has been first discussed by Frolov et al. for the
DCDW phase [45]. They have found that the spatial direction of the wavevector q is favored
to be parallel to the magnetic field, and the domain of the DCDW phase is much extended
in the QCD phase diagram. In Ref. [46], these features arises from some topological effect
through spectral asymmetry of the quark energy; quarks exhibit an interesting feature in
the presence of the magnetic field and the energy spectrum becomes asymmetric about zero.
Such spectral asymmetry gives rise to the anomalous particle number [47, 48], which is closely
related axial anomaly [46, 49].

In the following, we explain the motivation of our works. First, we would like to eluci-
date the magnetic properties inherent in iCP, especially DCDW, and their phenomenological
implications. Since iCP appears in the middle to high density region of the QCD phase dia-
gram, it is expected that quark matter exists in iCP inside of neutron stars. Then magnetic
field becomes important. Although it is known from the observation that magnetars have the
huge magnetic field ~ O(10¥)G at the surface [20, 21], there is no clear theory explaining the
origin of this magnetic field. As a candidate of the origin, amplification of the magnetic field



by the dynamo mechanism, magnetorotational instability or the hypothesis of the fossil mag-
netic field has been proposed so far from the macroscopic point of view. Although numerical
simulations have been actively performed, no definite conclusions have been obtained. On
the other hand, spontaneous magnetization due to the spin alignment of quarks is considered
by analogy of electron gas from the microscopic theory [46]. However, the region where the
spontaneous magnetization appears is limited to the low density compared to the inner of
neutron star. As another mechanism, it has been proposed that axial anomaly acting on the
parallel layer of the pion domain wall produces magnetization in nuclear matter [49, 50]. We
study magnetic properties of the DCDW phase to reveal spontaneous magnetization in the
DCDW phase to suggest a new microscopic origin of the strong magnetic field in neutron
stars [51].

Next, we inquire into the observability of iCP by way of the lattice QCD simulations.
Theoretically the lattice QCD simulations have been done for the deconfinement transition
or the chiral phase transition under the magnetic field with various strength. The QCD
phase diagram in the finite p region has been explored by the lattice QCD simulation, but
its availability is severely restricted due to the sign problem. Some methods to overcome
the sign problem have been proposed: for example the Taylor expansion method [52, 53], the
reweighting method [54, 55, 56, 57], the canonical approach [58,; 59, 60, 61], the analysis of
Lee-Yang zero in QCD [62, 63, 64] and the analytic continuation method from imaginary
chemical potentials [65, 66, 67, 68, 69]. However, these methods are limited in the high
T region, p/T < 1 region. As recent approaches to evade the sign problem, the complex
Langevin method [70, 71, 72| and Lefschetz-thimble path-integral method [73, 74, 75] have
been studied. These methods are not limited about the applicable region in principle, while
they have not been applied on QCD yet. In the external magnetic field, the DCDW phase
is remarkably developed in the low p region except for y = 0. Therefore it seems that we
can get a direct observation of DCDW by a lattice QCD simulations. However, the effect of
the current mass should be also considered to discuss a realistic case. It is known that the
current mass disfavor the appearance of iCP without the magnetic field [28, 41]. Once the
current mass is turned on, a competition arises between the positive effect on the DCDW
phase by the magnetic field and the negative effect by the current mass. If the DCDW phase
with the current mass develops in the low p region, we may have a chance to observe this
phase by the lattice QCD simulation [76].

Secondly, we would like to clarify the mechanism leading to iCP in terms of many-body
dynamics. At the same time, we point out the common basic concepts with condensed
matter physics. It is known that nesting plays an important role for the appearance of iCP
[29]. Moreover, axial anomaly also plays an important role in some situations, e.g. in the
presence of the magnetic field. We shall figure out the characteristic roles of axial anomaly
and nesting and their interplay in the context of iCP. We consider iCP in 141 dimensions
by using the effective models to clearly see their interplay. Manifestation of nesting or axial
anomaly should be a common feature of iCP in any dimension, since these concepts are
based on geometry of the Fermi surface and chiral symmetry itself. We utilize the duality
transformation for this purpose, which is available in 141 dimensions. Thies has pointed
out that there is a duality relation between chiral transition and a kind of superconductivity



[77, 78]. Then p can be regarded as an effective magnetic field. It is well known in condensed
matter physics that the Bardeen-Cooper-Schrieffer (BCS) state changes to the another state,
called the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, beyond the lower critical field,
where the the Cooper pair condensate is spatially modulating [36, 37, 38, 79, 80, 81, 82].
Thus inhomogeneous chiral transition at finite density is mapped into the problem of the
FFLO state in a kind of superconductivity [83].

Finally, we would like to elucidate the effects of the fluctuations on the mean-field around
the transition point as well as inside iCP. Although so far most discussions have been re-
stricted to the mean-field level, we need the analysis beyond the mean-field level to know
iCP in the more realistic situation. Recent studies focus on the stability of iCP against such
fluctuations [84, 85]. According to the studies, the NG modes have the spatially anisotropic
dispersion relation. However, if we consider the similar NG mode in the presence of the mag-
netic field, the isotropy of the system is already violated by the magnetic field. Therefore it
is expected that stability of the iCP changes. Furthermore we focus on another interesting
aspect of the fluctuations near the phase boundary. A general theory for the inhomoge-
neous phase transition has been first presented by Brazovskii [86] at finite 7. A similar
issue has been discussed by Dyugaev [87] at T = 0 in the context of pion condensation.
They have taken into account the interactions among the fluctuations beyond the Gaussian
approximation. One of the remarkable findings is the change of the order of the phase tran-
sition stemming from the fluctuation effects; the second-order phase transition within the
MFA is changed to the first-order one (sometimes termed the fluctuation-induced first-order
phase transition). For the inhomogeneous chiral transition, a heuristic argument about the
fluctuation-induced first-order phase transition is presented [88]. Therefore we study the
nature of the inhomogeneous phase transition around the R-boundary by looking into both
quantum and thermal fluctuations of quark-antiquark pairs or quark particle-hole pairs in
the chiral-restored phase.

In the following, the outline of this thesis is shown. In Chapter 2, we briefly survey the
studies about the inhomogeneous chiral phase up to now. In Chapter 3, we discuss the mag-
netic properties of quark matter in the DCDW phase and show the possibility of spontaneous
magnetization within the two-flavor NJL model. In Chapter 4, we describe the region of the
DCDW phase by the generalized Ginzburg-Landau expansion [89] when the both effect of
the magnetic field and the current quark mass are considered. In Chapter 5, we discuss the
interplay of nesting or anomaly between iCP and the FFLO state in superconductivity by
utilizing the duality relation in 141 dimensions. In Chapter 6, we first show the stability
of the DCDW phase in the presence of the magnetic field. Next, the change of the order of
the phase transition due to the thermal or temperature fluctuation effect is discussed in the
absence of the magnetic field. Finally in Chapter 7, we summarize some conclusions of this
thesis.



Chapter 2

Brief survey about the inhomogeneous
chiral phase

2.1 Case of the absence of the magnetic field

In this section, we review the method to obtain a general structure of the chiral condensate
that allows spatial modulation by using the 1 + 1 dimensional Nambu-Jona-Lasinio model
(NJLy model) within the mean-field approximation (MFA) [90, 30]. From the Marmin-
Wagner-Coleman (MWC) theorem (for detail see Appendix A), the structure in 1+ 1 di-
mensions is unstable due to the fluctuations. However, the contribution of the quark loop
representing the effect of the fluctuation takes a factor of 1/N. compared with the contribu-
tion of the tree level. Therefore, when considering in the limit of large N, it becomes possible
to avoid the MWC theorem. Next, we review Ref. [29]: whether or not the dual chiral density
wave (DCDW) phase survives within the 1 + 3 dimensional NJL model.

2.1.1 1+1 dimensions

When there is a spatially modulating order parameter, the simplest way to find its form is to
construct an effective potential while leaving the unknown order parameter A(z) and solve
a gap equation,

oV (A(z))

N (2.1.1)

The concrete form of A(x) can be determined from the gap equation. This method seems
simple, but the gap equation cannot be always solved. In this section, first, some assumption
about the structure of A(x) is put and we find the eigenfunction by solving the Schréodinger
equation using that structure. Next, we check whether the obtained eigenfunction is con-
sistent with the assumed structure of the order parameter. Thus we can finally get the
self-consistent solution by repeating the cycle of checking.



The Lagrangian of the NJL; model for 1-flavor case renders,

Lo = Vi + G [ (00)” + (Yir)"] (2.12)

where the v matrices are represented by the Pauli matrices, v° = o!,4! = —io?,7* = o3,

Using MFA, the Lagrangian can be,

o? + ?
4G 7

where o and 7 represent the mean fields, 0 = —2G (), 7 = —2G (1iv*y). Furthermore o

and 7 are order parameters about chiral symmetry and can have spatial modulation. In the
following, we redefine the order parameters as,

ACMFZTE [Z@ —(U+i757T)]’QD—

(2.1.3)

A(x) = o(x) —in(z). (2.1.4)

Using the new order parameter A(x), the effective potential within MFA can be rewritten
as,

1

2 2
o | Eeld@P+

V(@) = 9~ 5(1=7)A@) - 501 +4)A°()]

(2.1.5)

where ) denotes the space-time volume. From the Lagrangian, the Schrédinger equation can
be obtained as,

Hy = Ev, (2.1.6)
where the Hamiltonian takes the form,
H o= il (20 9)A0) - 2(1++9)8% (@)
- dx 2 2
—iL A(x)
— dx
(58 40). o1

The differential equation with this structure is known as the Bogoliubov-de Gennes equation
which has been discussed in the context of superconductivity [91, 92]. On the other hand,
the gap equation is obtained from the variation of Eq. (2.1.5) about A*(x),

A(z) = —2iGN,———InDet [z@ — 1(1 — ) A(x) — %(1 + ) A*(7)] . (2.1.8)

4]
“OA*(x)
To make the gap equation possible to solve with some assumption, we use the diagonal

resolvant and transform the gap equation into the form of nonlinear Schrodinger equation
(NLSE) obtained in Ref. [90]. NLSE takes the form,

A" —2IAPA +i(b(E) —2E)A —2(a(E) — Eb(E))A =0, (2.1.9)

9



where the prime stands for the spatial differential. We can then get the general modulating
structure of A(x) by solving NLSE.
The general solution of NLSE has been obtained in Ref. [90] and takes the form,

o(mAzx+ iK' —i6/2)
o(mAz+iK")o(i6/2)

A(z) = —me™ A exp tmAx (—i((i0/2) + ins(i6/2)) +i6ns/2],

(2.1.10)
where,
A = A(f,v) = —2isc(if/4)nd (i0/4) . (2.1.11)

ns = 1/sn,sc = sn/cn,nd = 1/dn are the Jacobi’s elliptic functions with modulus v and
0,( are the Weierstrass’s sigma and zeta function. K(v), K'(v) = K(1 — v) denotes the

complete elliptic integral, K(v) = ﬂ/ ? dt/\/1 — vsin’*t. Furthermore there are four free
parameters, m,q,v € [0,1],60 € [0, 4K’( )]. A(x) has the both modulations of the amplitude
and phase and the period of the amplitude reads, L = %E:). The two limits of the general
solution (2.1.10) have been discussed in the most studies so far. One is the limit, § = 0 or
0 = 4K (v), called chiral spiral. The chiral spiral condensate takes the form, A(x) = me'®: the
similar condensate is called DCDW in the 143 dimensions [29]. The other is the limit,
g =0 and 0 = 2K’(v), called real kink crystal (RKC). The RKC condensate takes the form,

Ax) = ?T\‘?sn (12;”\%)

By solving the BdG equation (2.1.6) with Eq. (2.1.10), the eigenfunctions has been ob-
tained in Ref. [90]. We can see inversely that A(z) = o(z) —im(z) reproduces Eq. (2.1.10) by
using the eigenfunctions. Therefore we can conclude that the general solution (2.1.10) is the
self-consistent solution.

Next, we would like to see the thermodynamic properties of the obtained self-consistent
solution [90]. The thermodynamic potential is explicitly calculated for a given solution and
the T-p phase diagram is obtained by determining the free parameters, which make the
thermodynamic potential minimum. We show the analysis of the case of only chiral spiral;
in the case of the general solution (2.1.10), the details of the calculation has been given in
Ref. [30]. Actually, within the present model, it is known that the solution of the chiral spiral
type is the most energetically favored [30]. In the following, all dimensionful quantities are
regarded as the dimensionless quantities scaled by the magnitude of the gap function A at
T =y = 0. According to Ref. [30], the spectral function for the chiral spiral renders,

1 £ —q/?]
T V(E—q/27 —m?’

where the energy spectrum opens the gap of 2m centered on F = ¢/2. Using the spectral
function, the thermodynamic potential is obtained as,

p(E) =

(2.1.12)

m2i? ol
- — 2.1.13
o o’ ( )

2
U[A(z) = m e, T, u) = m*¥ + ZL— Inm +
m

10



where U takes the form,
i B ~B(B-5) B(B+7)
UV=-——— dE—lln[(l—i—e Y1+ e N, (2.1.14)

and 1 = “Tq/Q, B = % = mf. Next we consider the stationary condition for ¢q. Because the
dependence of ¢ is included only through /i, the stationary condition is obtained as,

ov
0 _8_(]
m oV f

At the zero temperature, the solution, ¢ = 2, can be obtained form Eq. (2.1.15), for U =
—ﬁ. It means that the center of the gap always takes the value of u. At the finite T,
analytical calculations can not be performed, but it is confirmed that the same relation holds
from the result of numerical calculation. Furthermore the quark number density can be

evaluated in the same way,

:% (: %) , (2.1.16)

which does not depend on the magnitude of the energy gap, m
Next we consider the stationary condition for m. Substituting ¢ = 2u, the thermodynamic
potential (2.1.13) takes the form,

. 2 omT 2
WIA) = me ™ T = 1 (mm = 1) = == - (1 +e ) — I,
(2.1.17)

which does not depend on u. Therefore m should be determined independent of p. The
stationary condition takes the form,
ov
0=—0
om
m 2T 2m [ E? 1
=—lnm—— T aE—LE (14 e +— | dE —. (2.1.18
& VE i ) 1 VE?2—11+4ePF ( )
At T = 0, the solution, m = 1, can be obtained. Next we would like to know the critical
temperature (7.), where m vamshes. Since it is sufficient to consider the lowest order of m
near T, Eq. (2.1.18) can be recast into,

14¢'(—2)m?

(2.1.19)

11
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Figure 2.1: The phase diagram in the T-u plane within the NJL; model. (The figure is taken
from Ref. [90].)

where ¢ denotes the zeta function. Therefore the critical temperature can be given as T, =
€Y /m because m vanishes at T = T.. The phase transition occurs at T' = T, and the
chiral symmetry is restored at a higher 7" than 7.. On the other hand, by expanding with
0T =T, — T, the T dependence of m just below T, can be obtained as,

m(T) = | % ~ 3.06\/To(T, = T). (2.1.20)

Furthermore it is also confirmed that m decreases monotonically as increasing 71" from the
numerical calculation. Fig.2.1 summarizes the above results in the phase diagram in the
T — p plane. From the figure, the phase region does not depend on p, and it is shown that
chiral symmetry is restored at T' = e¢”/m ~ 0.5669.

2.1.2 1+3 dimensions

In this section, we would like to consider the 1+3 dimensional NJL model. Solving the gap
equations in the spatial three dimensions as described in the previous section brings further
difficulties, so we use the solution obtained from the NJLs; model as the ansatz in the 1+3

12



dimensions. In particular, we focus on the thermodynamic properties in the case of only the
DCDW type structure [29].
The Lagrangian of the NJL model for the two-flavor case within MFA renders,

Lap =1 [i@d —m(cos(q-7)+ivsmgsin(qg-r))] v — Tel (2.1.21)
and the effective potential does,
2 4N.N
V(o,m) = T—G 42 ]C} L InDet [i) — m(cos(q - r)+iysmssin(q-7))], (2.1.22)

where we assume the DCDW type condensate, 0 = mcos(q-r), 73 = msin(q-r), and impose
that the system is the eigenstate of the electric charge, m o = 0. Since the three-dimensional
space is isotropic, ¢ vector is considered along any direction. Taking the direction of ¢
vector along the z direction, we can put as q - » — qz. Before the energy spectrum and
thermodynamic potential are calculated, for convenience of calculation we introduce the
specific chiral transformation called the Weinberg transformation,

Y(r) = U'(1) = e 2 (). (2.1.23)

After the transformation, the Lagrangian can be rewritten as,

2

. 1 /

The energy spectrum is given by solving the eigenvalue equation of the Hamiltonian obtained
from the Lagrangian and takes the form,

Ehjp)::\/Eh@ﬁ2+wﬁ/4j:\/thy<+rn22, (2.1.25)

where Ey(p) = (m? + |p|*)'/? and £E.(p) denotes the positive(negative) energy spectrum.

Fig. 2.2 shows the energy spectrum for p; = |/p7 + pi = 0.
Once the energy spectrum is obtained, we can calculate the thermodynamic potential.

First, at the zero temperature, the thermodynamic potential renders,

2

m
O = Qe + Qe + 2 2.1.2
for + Quac + = (2.1.26)
where,
_ d’p
e = ~NeNe [ 55 >0 Bulo). (2.1.27)
s==+
_ d’p
Qfer = Ny N, 2n) (Es(p) — p) 0 (1 — Es(p)) - (2.1.28)
s==+
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E(p) E(p)

-q/2

Figure 2.2: The energy spectrum fixed as p; = 0. The dotted line represents the case of
m = 0, and R(L) represents the energy spectrum of the right-(left-)handed particle. (The
figure is taken from Ref.[29])

Quac Tepresents the contribution of the Dirac sea and (g, does the contribution of the Fermi
sea. Since {1y, has the ultraviolet divergence, the proper time regularization (PTR) is applied
(for detail see the Appendix B). The regularized ,. takes the form,

q,. — NiNe [ dp. /°° dr {_T TR N VRO (2.1.29)

EGE 1/A2 75/2 ’

where the cutoff A is introduced and the constant term, which does not depend on m, ¢ is
dropped. To analyze the phase transition between the usual spontaneous symmetry breaking
(SSB) phase and the DCDW phase, we consider the expansion with respect of ¢. Since
the thermodynamic potential (2.1.26) is obviously even function of ¢, the thermodynamic
potential includes only the even-order term for ¢ and renders,

Q=0+ (ﬁfer + Buac)® + O(qY), (2.1.30)
where,
O Qer m?
Bfer = a—;’q—m = _Nch_H(M/m>, (2131)
0 Qyac A?
ﬁvac = a 2 |q%0 NfN _J< 2/AQ), (2132)

and J(z) =z [ drexp(—7)/7, H(z) = In(z + V2> — 1). From Eq. (2.1.31), (2.1.32), it can
be seen that Bier < 0 and SByac > 0. In order to minimize the thermodynamic potential at

14



(@) p=0.4A (b) 1=0.48A (6) 11=1161=0.48931A

————————— — ——
= - \ N L W
03k 4 oaf \ 1 o3t 7
- A\ -
\ I
S 02f 4§02 \ 18 02f .
S s N\ s
B =S T I \\; ]
01} ﬁ\\\ 4 o1} (\ 41 o1t \
L i L _ I N\
00 1 1 1 1 r m. 00 1 1 1 1 Wu 00 1 1 Im
00 01 02 03 04 05 00 01 02 03 04 00 01 02 03 04 05
m/A m/A m/A
(d) u=0.49A (€) u=0.5A () 1=1ez=0.53254A
T T T T T T T T T T T T T
041 1 os4f \ .| : ]
S, 8 [ S §
02 1% 02} —— 1%
01 - 4 01f . 1
0.0 — : 0.0 Lttt L L
0.0 0.1 0.2 0.3 000 005 010 015 020 0.25
m/A m/A m/A

Figure 2.3: The contour map indicating m, ¢ dependence of the thermodynamic potential
for each p. (The figures are taken from Ref. [29].)

q # 0, it is necessary for the second order coefficient of ¢ to be negative. Therefore the
contribution from Fermi sea promotes the phase transition to the DCDW phase. Since H (z)
is a monotonically increasing function, it is expected that the contribution from Fermi sea
increases as u increases and the phase transition to the DCDW phase occurs. In the present
calculation, By can be negative when p/A > 0.38.

Next, the contour map of the thermodynamic potential, for fixed u is presented as the
function of the order parameters m, ¢ in Fig. 2.3. From that figure, when p < .1, there is the
minimum point at m # 0, ¢ = 0, where the usual SSB phase is realized. When p.1 < p < 2,
there is the minimum point at m # 0,q # 0 and the DCDW phase is realized. When
[ > [iea, the minimum point is located on m = 0 and chiral symmetry restored phase is
realized. There are two different minima in g = p.;, which indicate that the phase transition
from the homogeneously broken phase to the DCDW phase is the first order. On the other
hand, the minimum point at m = 0 and the minimum point at m # 0 are very close in
[t = pte2, which implies the phase transition from the DCDW phase to the restored phase is
the second order or the weakly first order.

Fig. 2.4 shows the p dependence of the order parameters which make the thermodynamic
potential minimum. Certainly the order parameters have discontinuities at p = ., and it is
confirmed that the first order phase transition occurs.

Finally, we consider the phase diagram extended to finite 7. The thermodynamic poten-
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Figure 2.4: The p dependence of the order parameters m,q. On p.;, the first order phase
transition from the usual SSB phase to the DCDW phase occurs. On .o, the second order
phase transition from the DCDW phase to the restored phase takes place. (The figure is
taken from Ref. [29].)

tial is calculated as

T
Qﬁ(ﬂvT;%m) = _V hlZ(:uaT;%m)

d’p —B(Es(p)—w) —B(Es(p)+1) m?
:_NfNC/@W)s;{Tln e +1] [e +1]+Es(p)}+E
(2.1.33)

At each T and p, we can determine the realized phase from the value of the order parameters
m, ¢ which minimizes this thermodynamic potential. Fig.2.5 shows the phase diagram in the
T-p plane. From the figure, it is found that when T increases, the region of the DCDW phase
becomes narrower and moves to the lower density. Finally, the DCDW phase disappears at
the critical point, called the Lifshitz point (LP), Typ/A ~ 0.14, pupp/A ~ 0.4.
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Figure 2.5: The phase diagram in T-y plane within 1+3 dimensional NJL model. (The figure
is taken from Ref. [29])

2.1.3 Nesting effect

In this section, the analogy of the nesting effect is considered as the physical reason for
appearance of the DCDW phase. The nesting effect has been proposed for a long time in the
context of the condensed matter physics, and it explains the existence of periodic structures
such as the charge density wave (CDW) [35, 93] and the spin density wave (SDW) [33, 34]
by the overlap of the Fermi surfaces.

First of all, in the 1+1 dimensional electron system, we consider the periodic potential
as,

Vo (z) = A(e'™ + 7%, (2.1.34)

With the potential, the energy spectrum of electrons takes the form,

1
E;t(k;) =3 [ek +ep—q = \/(ek — €p—q)? +4A?], (2.1.35)
where ¢, denotes the free one-particle energy spectrum, €, = % The energy spectrum is

shown in Fig. 2.6. It is found that whenever particles occupy the states in the lower spectrum,
E; (k), the total energy decreases compared with the one in the case of ¢ = 0. The total
energy reduction takes place due to opening a gap at the Fermi energy regardless of the
magnitude of the interaction and the details of the model. In the case of T = 0, the total

energy takes the minimum value when the chemical potential is located at the center of the
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Figure 2.6: The energy spectrums with or without the interaction. EZF(k) is described by
the blue line. €, and €,_, are represented by the red line. In this figure, we set ¢ = 1.

gap and the all states of £ (k) are occupied. This situation is realized when ¢ = 2k, where
kr denotes the Fermi momentum of the free electrons. In CDW and SDW, the periodic
structure appears as the mean field. The existence of the mean field with the wave number
q indicates that the particle-hole pair with the relative momentum of ¢ are coupled.

The nesting effect is strongly related to the geometry of the Fermi surface. If the particle-
hole pair with the relative momentum ¢ is always located on the Fermi surface, the pair can
generate the condensate with the wave number ¢ without any excitation energy. On the other
hand, some excitation energy is taken to generate the condensate by the particle-hole pair
which is not on the Fermi surface. In 1+1 dimensions, the particle-hole pair with the relative
momentum ¢ = 2kp can be always on the Fermi surface as shown in the left schematic figure
in Fig. 2.7. In other words, when the Fermi surface is translated by momentum ¢, the Fermi
surface exactly overlaps with itself. The exact overlap is called the perfect nesting. However,
in the 143 dimensions, the particle-hole pairs with the same relative momentum q are not
always located on the Fermi surface as shown in the right schematic figure in Fig. 2.7. In other
words, the overlap of the Fermi surface is not perfect and the situation is called imperfect
nesting.

Therefore, in the 143 dimensions, it depends on the detail of the model whether the
inhomogeneous phase is energetically favored. It has been known that SDW may develop in
the free electron gas system if the interaction is sufficiently strong [33]. When we compare
the kinetic and interaction energy between the state where the Fermi spheres are in contact
with each other at one point and that where the Fermi spheres slightly overlap each other,
it can be seen that the Fermi sphere overlapping decreases the total energy. That is, the
case of ¢ < 2kp is more stable than ¢ = 2kr. In addition, CDW is actually observed in the
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Figure 2.7: The schematic pictures of the Fermi surface and the particle-hole pair with the
relative momentum q. The left picture shows the Fermi surface in the 1+1 dimensions.
When the relative momentum is taken ¢ = 2k, the particle-hole pair is located on the Fermi
surface. The right picture shows the Fermi surface in the 143 dimensions. Even if the relative
momentum is taken any value, all the particle-hole pairs are not always placed on the Fermi
surface.

pseudo-two dimensional compounds with the layered crystal structure [12].

Next we consider the case of the DCDW phase. In the 141 dimensions, the nesting
relations, ¢ = 2u, seems to always hold as shown in the previous section. However, the
relation is given rise to by axial anomaly (the details are discussed in Chapter 4). On the
other hand, the nesting relation can not be derived in the 143 dimensions. However, at
the critical chemical potential, p.;, in Fig.2.4, it can be seen that the relation, ¢ < 2kp, is
realized.

2.2 Case of the presence of the magnetic field

In this section, we review how the appearance of iCP changes by analyzing the thermody-
namic potential when a magnetic field is applied as an external field [45]. We also intro-
duce the method of calculating anomaly due to the energy spectrum asymmetry about zero

[47, 48, 94].

2.2.1 DCDW phase within the NJL model in the external mag-
netic field

First, we consider only the case of the structure of the inhomogeneous condensate limited to
the DCDW type [45]. In this section, the two-flavor NJL model is used in the presence of
the external magnetic field. Within MFA, the Lagrangian takes the form,

m2

Ly = [ ) — m(cos(qz) + ivs73sin(qz)) ] ¢ — Tel (2.2.1)
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where D denotes the covariant derivative, D, = 0, + iQA, and @ represents the electric
charge matrix, () = diag (%e, —%e) ,e > 0, in the flavor space. We assume that the magnetic
field is constant in the z direction and take the Landau gauge, A* = (0,0, Bx,0). Applying
the Weinberg transformation, the Lagrangian can be rewritten as,

- 1 m?
Lye =" i) — = - 2.2.2
vr =" | i D m+273’y5q (0 G ( )
The thermodynamic potential can be calculated from that Lagrangian.
First of all, we consider the one-flavor case, but as we can see, the two-flavor case can be
analyzed using the 1-flavor result. The Hamiltonian takes the form,

H=o -P++"m— %qu (2.2.3)
where P = —iD,%; = %[fyl, 72]. The eigenfunction of that Hamiltonian can be obtained as,
Crtp-1(§)
U po, (T, Y, 2) = \/12_7r e"pzz\/lz_7T e'Pvy Zgiz:f)@) (eB)Y4, (2.2.4)
icaun (&)

where £ = veBx + f:TB' u, (&) is defined as,

unlE) = (;)/ AL (22,5

2nnlrl/2

u_1(§) =0 (2.2.6)

where H,(§) denotes the Hermite polynomial. p, specifies the center, zo = —%, in the x
direction of the wave function. Therefore if considering the finite system V = L, X L, L, L.,
the range of p, is limited to —eBL, < p, < 0 for 0 < zy < L,. The eigenspinor takes the

form,

1 —(B( )
2 1 AP+ Q)
ol Taal ar-<o) | (2:2.7)
Cy —CB(P‘{'GCQ)

where A = \/1+ %, B = /1-%,P = /1-2,0Q = /1+5 1l = (y/m?+p? and we

put ¢ =€ at n = 0. Furthermore, the energy spectrum can be obtained as,

2
EE,IZL,;,pZ :E\/(C /m2 +p§+q/2) +2|6B|n7 n=12 ..., (2.2.8)
B = ey/m? +p2 +q/2, n=0, (2.2.9)
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where n denotes the Landau levels and ( = 41 represents the spin degree of freedom. It is
important that the lowest Landau level(LLL), n = 0, is asymmetric about zero although all
higher Landau levels(hLLs), n > 1, are symmetric. In above calculation, we have assumed
that the direction of the magnetic field and g are the same. If we consider the slightly shift
of the direction of g as ¢ = (0,0,q) — g = (¢1,0, q), the change of the energy is estimated
within the perturbation theory and the change is always positive [45]. Therefore we use the
assumption of g parallel to the magnetic field in the following.

Next we would like to analyze the thermodynamic properties. For the two-flavor case,
the effective potential renders,

’ 1
V(m,q) =T—G + VTTD rcLn [UD —m+ 57573(1] (2.2.10)
Multiplying the d-quark sector by 1 = [det(v273)]?, it can be rewritten as,
2
m
Vi(m,q) =t V(m, @)lesze + V(m,q)ls e, (2.2.11)
where V (m, q) denotes the effective potential for the one-flavor case,
v .Nc . . 1
V(m,q) = ZTTI"DLH {W“(au +ieA,) —m+ 5%(]] : (2.2.12)

Therefore, it can be seen that the result of the one-flavor case can be easily extended to
the two-flavor case. In the following, we show the calculation of the 1-flavor case. Since
the eigenstates and the energy spectrum have been obtained, the effective potential can be
calculated as,

L {Zm (B + Y[ Eg%epf]}.

ne
(2.2.13)

By extending that effective potential to the case of the finite T" and density, the thermody-
namic potential can be obtained as,
2

m
0=0Q. 10 10O - 2.2.14
v+ y—’_ T+4G7 ( )
where
N, eB LLL hLL
Qv:—mm?/dpz 2 1E |+;‘E"C”’ | e
N, eB |
Qu:—7(27r)2/dpz Z(‘ESII;ZL_M EeLzI;zL +Z EEIZ“Lspz —ul - ’EELCLepzD] ’
L € nQe
(2.2.16)
N. eB [ LLL hLL
q, - Ne dp. | >t (14 e PEEE) L3 (14 B | (2207
’ 6(2@2/73;“ Fa (i (2210
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Since €0, has the UV divergence, PTR is applied in the same way in Eq.(2.1.29). The
regularized €2, then takes the form,

Ne —s(EELLg —s(EptE .
4\/_ 27T / //A2 g3/2 < € ! —1—26 aor > ’ <2'2'18)

ne

where the cutoff parameter A is introduced. It is confirmed that if the magnetic field is set
to be zero, it is reduced to Eq.(2.1.29). Though €, is finite, the part of LLL in Q, (Q}"")
is ill-defined. In this section, to definitely calculate QMt we introduce the regulator [ as the
upper limit of the energy, which preserves the gauge invariance. Q/I;LL with [ is written as,

QU = i ¢ eB / -3 (BL: —ul = B 0 - (). 2219
Note that, if we consider [ as the upper limit of the momentum, which violates the gauge
invariance, Q" is shifted by a finite value, 2uq, compared to Eq.(2.2.19) [45]. However,
in this case, the thermodynamic potential still depends on ¢ when m = 0. In other words,
it is physically incorrect that it depends on the phase of the condensate despite of the zero
amplitude. Therefore we use [ as the upper limit of the energy in the following analysis.

On the other hand, taking into account EMY,_ = —EME_ | the part of hLLs in Q,
(€p11) can be calculated as,
QhLL___C eB /d Z EhLL ‘_’EhLL )
1% - pZ n Cv 7pz n7C7€7pZ
n C’
el hLL hLL
- NCW dpz Z (:u - En,g“,e:—l—l,pz) Q(M - En,(,e:—&—l,p,)' (2220)

Since thermodynamic potential in obtained, the phase diagram of T' = 0 can be calculated.
In this calculation, the value of the coupling constant is assumed to be GA? = 6. All the values
in the following figures are regarded as dimensionless by the cutoff parameter A. Furthermore,
VveH in the figure is the same as veB. First, when the magnetic field vanishes, there are four
phases A, B, C and D, which are the restored phase, the usual SSB phase with the vanishing
density, the usual SSB phase with the finite density and the DCDW phase, respectively.
Fig. 2.8 shows the phase diagram in the p — v/eB plane. As we can see, the B and C phases
become the DCDW phase even if a tiny magnetic field is switched on in the finite u region.

Fig. 2.9 shows the change of the order parameters m, ¢ when p is fixed and the magnetic
field is changed. When p = 0, even if the magnetic field is applied, ¢ = 0 remains vanishing. It
indicates the the usual SSB phase remains. Furthermore, we can see that magnetic catalysis
that m increases as the magnetic field increases. When p = 0.3, ¢ rises from zero as soon
as the magnetic field is switched on; that is, if the magnetic field is applied even a little,
the B phase changes to the DCDW phase. When p = 0.5, the transition from the DCDW
phase to the C phase should be seen from the zero magnetic field, but the order parameter
is oscillating due to the de Haas-van Alphen effect [95]. Therefore it makes difficult to
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Figure 2.8: The phase diagram on the y — veB plane at T = 0. When the magnetic
field vanishes, A, B, C, and D represents the restored phase, the usual SSB phase with
the vanishing density, the usual SSB phase with the finite density and the DCDW phase,
respectively. It is described how the region of the phases changes when the magnetic field
is applied. In the B and C phases, the condensate has the wave number ¢ when p # 0 and
B # 0. (The figure is taken from Ref. [45].)

distinguish the phase transition point. By the same reason, the boundary of the C and D
phases is partially dotted in Fig.2.8. Furthermore when p = 0.5, the transition from the
restored phase (A) to the D phase can be seen.

Finally, Fig.2.10 shows the change in the order parameters when the magnetic field is
fixed and g is changed. When veB = 0, the phase transition is similar to the previous one
(Fig.2.4). When veB = 0.15, we can see that the B and C phases become the DCDW phase.
As the magnetic field increases as vVeB = 0.3,0.5, ¢ in the B phase sharply increases and
approaches to u = ¢q/2.

In conclusion, the phase which is the usual SSB phase in the absence of the magnetic
field becomes the DCDW phase except for ¢ = 0 when the magnetic field is switched on.
Furthermore the region of the DCDW phase also spreads. These results indicate that the
magnetic field works to grow the DCDW phase. Although we have analyzed only the DCDW
type condensate, it is known that the DCDW phase also appears in the case of considering
hybrid chiral condensate, which has the both features of DCDW and RKC if the magnetic
field becomes stronger [96].
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2.2.2 Anomaly due to the asymmetric energy spectrum

As seen in the previous section, LLL becomes positive / negative asymmetric in the DCDW
phase with the magnetic field. In the case of such an asymmetric spectrum, it is known that
an anomalous term appears in the particle number [47, 48]. In this section, we review the
calculation method of particle number and discuss the relationship with chiral anomaly.
Generally, the fermion field expanded by the eigenfunction of the energy renders,

= )+ dhey ) (r), (2.2.21)
k k!

where ng,(j), b, denotes the eigenfunction of the positive energy and the annihilation operator

of the particles and gb;,_), dL, does the eigenfunction of the negative energy and the creation
operator of the anti-particles. The all eigenfunctions is regarded to be normalized already.
The eigenvalue of the energy is represented as Ay (Hop = Apor). At zero temperature, if the
particle number is defined antisymmetric so as to avoid the divergence, it can be written as,

N Z% / dr ([t (r), & (r)])

=320k} = () - / dr (Z¢ "o~ Zeﬁ;ﬁ/_”fﬁi/_))
.

Noom — Zagn (k) (2.2.22)

where N, represents the ordinary particle number in the quantum field theory, which means
the number of particles minus the number of anti-particles. The second term represents the
anomalous particle number given by the difference in the number of the eigenstates of the
positive and negative energies when the energy spectrum is asymmetric [47, 48]. Recall that
such anomalous particle number is an important concept in the context of the chiral bag
model, which is one of the models describing nucleon [97, 98].

Next, we discuss the anomalous particle number in the DCDW phase with the magnetic
field [94]. From Eq. (2.2.14), the thermodynamic potential at zero temperature renders,

m2

Q=0+ 0+ 5. (2.2.23)

From Eq. (2.2.16), the contribution of the density, €2, can be calculated as,

eB LLL LLL LLL hLL hLL hLL
QH :(27'(')2 /dp Z(Ee,p - M>0<Ee,p )9 - E + Z En $lep (En C,e,p)e(:u - En,(,e,p
€ n(e
1 B
¢ /dp MZSlgn ELLL . (2.2.24)
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Therefore the quark number density at 7' = 0 can be obtained as,

09
=~ o
eB LLL LLL hLL hLL
= / dp [Ze (B — EMBY ) 0B )0(n— BN )
ne
1 B
¢ / dpzs1gn (BML), (2.2.25)

where the first term denotes the number of states between from E = 0 to £ = u, which
means the number of particles in the usual sense (Vo). On the other hand, the second term
represents the anomalous particle number given by the difference in the number of eigenstates
of the positive and negative energies!. In the present model, only LLL is asymmetric about
zero. Since the second term is ill-defined, we should evaluate it after introducing some proper
regulator. In this section, we introduce the quantity,

_eB [dp . LLL
ng = g/%ZSlgn(Ee’p ), (2.2.26)

and,
Ny = sl_l):m nu(s) s—>+o o / Z&gn (B EER (2.2.27)

where 7y denotes the topological quantity called n-invariant by Atiyah-Patodi-Singer [48].
It is important to introduce the regularization about the energy, which does not violate the
gauge invariance?. When m > ¢/2, that quantity can be calculated as,

dp LLL w? _wIELLL
/ ngn E / dwr(s)
/ / dww® temeVm Vmi sinh (qw)

2
23 2<qum s S s 53 ¢
BT Y e (3 (142,520
72T (s) T2) Q) T e
Bq

LB (g 2229
272

where oF} denotes the Gauss’s hypergeometric function. When m < ¢/2, a part of the
eigenvalues counted as the negative energy at m > ¢/2 changes the eigenvalue of the positive

Tn the two-flavor case, the anomalous particle number should be the summation of the contribution of u
and d-quarks in the same way of the thermodynamic potential (2.2.11).

2If we introduce the regularization about the momentum, anomalous particle number loses the gauge
invariance.
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energy. The number of the eigenvalues that change to positive from negative can be easily
counted as,

An eB Ood_p9<_ /m2+p2+g)

o ), o 2

eB [q¢?

Therefore the n-invariant at m < ¢/2 can be obtained asd,

e ST B SRR
=52 + S\ g™ (2.2.30)
However, as we see above, the first term represents the topological part that appears by
correctly evaluating the subtraction of the divergence with including the regulator s, and the
second term is not topological quantity which can be calculated without the regulator.
In the previous we consider the calculation assuming DCDW, but the similar calculation
can be done with the more general condensate [94]. Here, we consider the more general
condensate,

A(r) = o(r) + ir(r) = m(r)e? ™). (2.2.31)
In that case, the Lagrangian of the NJL model within MFA takes the form,
YR 1 5 1 5 * ’A‘Q

Lur = [ iD= S +79)A0) - 51— PN () [0 - L, (2232)

where the 1-flavor case is considered for simplicity. Therefore the eigenvalue equation about
the energy can be obtained as,

H(A)pr = Ep(A) gy, (2.2.33)
where the Hamiltonian renders,
1 1
H=a-(—iV +eA) ++" S+ YA(r) + 51— ) A*(r) (2.2.34)

where ae = 7py and the Landau gauge is taken, A* = (0,0, Bx,0). After the CT transforma-
tion, 1) — iy°y%)*, the energy spectrum transforms as, Fy(A) — —E,(A*). It means that as
long as A(r) is real, the positive and negative symmetry of the spectrum is preserved. Since
we are interested in the case where the spectrum is asymmetric, pay attention only to the
phase of A(r), and the amplitude is fixed at constant, m(r) — m, in the following. After the
Weinberg transformation, 1 (r) — /() = e~75%(")/23)(r), the Hamiltonian can be rewritten
as,

H= a- (=iV + A)++"m —v5v - Vo(r)/2. (2.2.35)
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Since the energy spectrum can not be analytically obtained from that Hamiltonian, we rep-
resent n-invariant as the general form,

Ng = Sl_l}I_Ii_lO ; sign(Ey)|Ex| . (2.2.36)
Using the Mellin transformation, n-invariant can be calculated as,
N _sl—lg_l }COS Z/ dww™ 2—w2

1 o 1
= lim — cos (sz> / dww_s/d37° tr [<T|
s—+0 77 2 0 H —

From the Hamiltonian (2.2.35), we can perform the derivative expansion of the integrand,

... 2.2.
u}|'r) +c.c (2.2.37)

(rl 7} = (r 1 ")
r ry=—(r r
H —iw o Syt iw, r) 4+ 5y - VO(r) /2
d*p dp s 1 ~
= / o )3705A(zw,p) + / W%SA(zw,p)§757 -VO(r)Saliw,p) + -+,
(2.2.38)
where S4 denotes the propagator, Sy (iw, r) = o +—y-(—i1V A According to Ref. [99], the
propagator by the momentum representation can be obtained as,
_ k2 e (_l)n
Salk) =i D,, 2.2.39
alk) =iexp L B|] Zk? k2 —m? — 2|eBn (2:2.39)
where
2k2 2k2
D,, =(yoko — 3ks +m) (1 — 2717251gn(eB))L |eB| (1 + wwgsgn(eB))L |eB|
2k?
Ay, -k L} | —=). 2.2.40
skt () (2240

From these equations, ng can be calculated as,

.1 T [~ s [ 5 —€B m?
ng = lim — cos (35)/0 dww /d r 3/28Z9(r)

s—+0 T 2 (m2 _|_w2)

eB 3
=5 | dro:0(r). (2.2.41)
It can be seen that if 0(r) = ¢z is substituted, the case of DCDW (2.2.28) is reproduced.
Note that the expansion parameter of the derivative expansion is V#(r)/m, and it can not
be applied in the case of m < ¢/2.
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In the above calculation the magnetic field is taken in the z direction, but if it is taken
in an arbitrary direction, the n-invariant can be calculated as,

1 3

Since that quantity means the anomalous particle number, the thermodynamic potential
should have the anomalous term,

Qunom = — 47:;&/ / &r eB - Vo(r), (2.2.43)
which shows that the DCDW phase is most favorable when q//B.

Next, we review the calculation of chiral anomaly using the chiral perturbation theory [49]
and see that its result is equivalent to the anomalous contribution derived from the asymmetry
of the energy spectrum. In the QCD Lagrangian, when chiral limit is taken, the axial-vector
current is classically preserved, 0“(@/—17“75@/)) = 0. However, including the quantum effects
such as the quark loops the axial-vector current is not conserved. Specifically, the quark
loops allow the decay process, 7° — 27, through the triangle diagram. Chiral anomaly is
brought about by such diagram.

On the other hand, the chiral perturbation theory is one of the low energy effective
theories of QCD described by the degree of freedom of Nambu-Goldstone bosons, where the
quark degree of freedom is integrated out [100]. If we construct the Lagrangian of the chiral
perturbation theory from the original QCD Lagrangian, symmetry must be preserved: the
quantum effect of the quark loop can not be considered and 7° — 2y decay can not be
described. Therefore, we should add a term that explicitly breaks the chiral symmetry called
the Wess-Zumino-Witten (WZW) term [101, 102], to incorporate the effect of the chiral
anomaly. The Lagrangian in the chiral perturbation theory renders,

2
L= tr [D,xTDrs] (2.2.44)
where the covariant derivative is represented as,

D,% =0,% +ieA,[Q, S, (2.2.45)

and A,, denotes the electromagnetic field applied as the external field and ) = diag(2/3, —1/3).
In the two-flavor case, ¥ is represented by the ¢ and 7 mesons as,
1
e
where f? = 02 + n7® The symmetries of the Lagrangian are global SUL(2) x SUg(2)

and local Ugy(1). Next, we define L, = $9,51, R, = 9,53 to introduce the WZW term.
Assuming that p is finite, we consider the fictious gauge field, AE = (1,0,0,0), coupling with

X (o +irtm?), (2.2.46)
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the baryon current. Using these quantities, the WZW term can be obtained as [103],

N, praf
Swaw [, A, Af] = Swzw|0] + 4272 / dix <eA”tr [QL,LoLs+ QR,R,Rs)
e 2 2 1 i _ Lot 1
—ie“F Aot |Q°Lg + Q°Rp + 5@2@852 — QQE Q0% d ]IANJB.
(2.2.47)
The first term represents the WZW term without the gauge field,

Swzwl0) = ~2e [ @ MG L L L L L 2.2.48
wzw (0] = 24072 Te r[L; j Lk mls (2.2.48)

which vanishes in the two-flavor case. The second term denotes the term added when there
is the electromagnetic field, and the third term represents the term added when there is p.
Note that, ¥ does not transform under the Ug(1) transformation since mesons do not have
the baryon number. However, Af couple to Y through the quark loops, which are known as
the Goldstone-Wilczek baryon current jl5. Therefore, the WZW term can be obtained as,

NP 4 2 gabed a b ¢ 3 0 0 3
— [ d'wed,| 57" 0 0,0  Dap Opp? Lz =0 [Aa (#°0¢" — ©"05¢°) ]
487 3f3 f

/ d*z Al jl, (2.2.49)

SWZW [Ea A;La AE] =

where ©* =0, =7

Next we calculate the Goldstone-Wilczek baryon current in the WZW term. It is used
by the result obtained from the linear sigma model [102, 104]. The Lagrangian of the linear
sigma model takes the form,

L =1 GD+ o0 +iyT- 7)Y, (2.2.50)

and we put 02 +72 = ¢%? = f2. When the expected value of the baryon current is calculated
from that Lagrangian, the contribution of the diagram including the quark loop shown in
Fig.2.11 remains and it can be obtained as,

B =(U")
_ N ,ul/ozﬁ abed aa ba %) N ,uVoa,Ba A 38 0 Oa 3 29251
=~ g5 9 0up 00" = e 0, [Aa (£05¢° — $05¢7)] - (2251)

Therefore the WZW term (2.2.49) can be obtained as

€ .
Swaw (S, Ay, AP] = — / d'z (Af + 514#) i (2.2.52)
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Figure 2.11: The schematic diagram of Eq. (2.2.51). (The figure is taken from Ref. [104].)
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Figure 2.12: The triangle diagram contributing to the anomalous particle number density.
The solid line represents the quark propagator.

Now that we consider the general form of the condensate limited to o, 7® such as Eq. (2.2.31),

¢ = (frcos6(r),0,0, frsinf(r)). Without the electric field, the WZW term can be reduced
as,

eN, e Vo
Swaw[Z, A Al = = 5 [ d'a (Af + §A#) B Y, (Ands0)
N,
=— 2 [ d*z peB - V0. (2.2.53)
472

It is confirmed that that term coincides with the anomalous contribution from the spectral
asymmetry (2.2.43). Therefore in the case of |[V0(r)| < m, the anomalous particle number
density is also interpreted as the contribution of the triangle diagram as shown in Fig. 2.12.
Furthermore in the case of DCDW (6 = ¢z), we can see that the WZW term corresponds to
the topological part of n-invariant (2.2.30).
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Chapter 3

Magnetic properties of quark matter
in the inhomogeneous chiral phase

In this chapter we analyze the response of quark matter to the weak external magnetic field
[51]. In particular, we show the dual chiral density wave (DCDW) phase has spontaneous
magnetization by expanding the thermodynamic potential with respect to the magnetic field
and discuss the nature of the phase transition.

3.1 Expansion of the thermodynamic potential by the
magnetic field

We use the two-flavor Nambu-Jona-Lasinio (NJL) model within the mean-field approximation
(MFA). It is sufficient to consider each flavor case because Lagrangian is diagonalized about
the flavors. For the DCDW case, the thermodynamic potential in the presence of the magnetic
field is already obtained in Eq.(2.2.14), where the external magnetic field is taken to be
along the z axis. The energy spectrum is also given in the previous section in Eq. (2.2.9). To
investigate the response of quark matter to the weak magnetic field B, the thermodynamic
potential is expanded around B = 0,

Qu, T, B;m,q) = QO(u, T ym, q) + eBQUY (1, T;m, q) + (eB)* QP (u, T 3m,q) - -
(3.1.1)

where e denotes the elementary charge.

First of all, we take the sum over the Landau levels to evaluate the thermodynamic po-
tential because it can not be expanded by the magnetic field before taking the sum. However,
the form (2.2.14) is not appropriate to take the summation. So we return to the form before
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taking Matsubara sum,

m? eBN hLL 2
0= T [ IS5 et 4 (B )
k n>1,.e
eBN
- T Z Z Infw? 4+ (EXE — )2, (3.1.2)

where wy, denotes the Matsubara frequency, wy = 77(2k+1). For the calculation of the ther-
modynamic potential, we must carefully treat the effect of chiral anomaly due to spectral
asymmetry of the lowest Landau level (LLL), which gives rise to anomalous particle number
proportional to eB as shown in the previous chapter. To correctly evaluate spectral asym-
metry, we introduce the regularization about the energy and the thermodynamic potential
with the regulator renders,

m? eBN
Q, = - = Z Z |ELLL} [ (ELLL N)Z}
GBN EhLL | | (EhLL 2 + (EbLL
- A ZZ nle= +1 n{[u) ( n,C,e=+1 M)}[ ( 6= +1+M>]}
n>1,¢
m2
— E + QLLL Q};LLa (3.1.3)

where the second term represents the contribution of LLL and the third term does that of
the higher Landau levels (hLLs). Taking the limit of s — 0, the original thermodynamic

potential is recovered, Q = lim,_, ¢ Q,. QML can be calculated as,
eBN
Q?LL = — 47T Z Z EEI&L +1 hl{ [Wk +Z(E2L§Le +1 M)} [Wk - Z(EELCLe +1 M)}
k n>1.¢

[wk—i-z(EhCE +1—i—u)] [wk—z(EhCE +1+u)]}

eBN,

d s '
o i Z Z (w? + QeBn) /2 In [(wk + w)2 + wg + QeBn} 7 (3.1.4)

k n>1.¢

=T

where wy = ++/m? + p?+ q/2(= EXL). To remove the divergence, we separate the thermo-
dynamic potential as,

Q=Q(g=0,m=0)+ (2—-Q(¢=0,m=0))
=Q(g=0,m=0)+ AQ. (3.1.5)

Qg = 0,m = 0) contains divergence, but it is a constant to just shift the energy not
dependent on the order parameters. Therefore, AQ is analyzed in the following. AQML and
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AQPL render,

BN, —s —s
Aot = e | deZ{rwe In [w} + (we = )] =~ In [wf + (ep — "]}
(3.1.6)
agre — _peBNe [T S +2eBn) " In [(wy + ip)? + w? + 2eBn]
s 2 ), D WC eBn n | (wr, +ip)” +wi +2eBn
k n>1,C

— (p* + 2eBn)~*?In [(wg + ip)? + p* + 2eBn] }
(3.1.7)

The sum over the Landau levels in AQME can be separately taken for each sign of w,. When
wg > 0, the sum can be taken as,

_ BN dpz > { w? +2¢Bn) " In [(wy + in)? + w? + 2eBn]

27T2
k=0 n>1,¢

— (p* + 2eBn)~*?In [(wg + ip)? + p* + 2¢Bn) }
_ eB];[ / Z OO d_T dx xs/Qfle—T[Quwk—i(wz—uz)]—i—ZeB(iT—x)n
2m
k=

|: 6(ZT x)wC _'_6(17— x)p 2]

/ dT/ dxxs/Q 1 —T[Quwk z(wk w )]

BN, >
e27T2 / kz_: —

2(it—x)eB
(iT—2)w? (it—z)p? €
|: € ‘te :| 1 — e2(it—z)eB
_ Nc oodp / dT/ dr 1,5/2 1 —T[Zuwk z(wk I )] [ (it— z)w . e(’i’f‘—$)p2:|
ar? |,

k: (==

X LT_w+eB+;(w—x)( B>+ 0 ((e )3)} (3.1.8)
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On the other hand, when w; < 0, that can be taken in the similar way as,

eBN, [

=T
22 Jy

dp Z Z { (w + 2eBn) P [(we + i) + wi + 2eBn]

k=—1n>1,

— (p* + 2eBn)"**In [(wy + ip)* + p* + 2eBn] }

N, o0 > 1 *® dr &0 22 ; 2 i 2
— T__< d wr d s/2—1 77[2uwk+z(wk7u )] |: —(ir+a)w; _ —(iT+z)p i|
w/o p§§r<s/z>/o / e ‘ ‘

X [2'7' e eB + %(m’ +z)(eB)*+ O ((63)3):| (3.1.9)

Now the expansion about eB can be allowed. Therefore when we expand A€ as A€, =
Z% + AQP + AQVeB + AQE;Q)((BB)2 + O ((eB)?), the coefficients can be obtained as,

NI [ > 1 ©dr [
AQ(O) _ _ ' / d / _/ d $/2—1 =27 pwy,
5 472 J, pZZF(S/2) o T Jo e €

k=0 (==

x 1 eiT( i—/ﬂ) [e(irfx)wg . e(i‘rf:]c)pQ] N 1 e—i’r(wz—uz) |:ef(i7+x)wg . e*(iT‘i’w)pQ]
IT— T T+
(3.1.10)

NT [* & 1 ©dr [
AQ(l) _ / d / _/ d $/2—1 =27 pwy,
: A2 J, p;;r(s/z) .o ), e

> {eiT(w,%—;ﬂ) |:e(i7'—x)wg o e(irfa:)pz] + e—iT(wz—uz) |:€—(i7'+:c)w§ . ef(i‘rJr:):)pz]}

NT [® & B .
I / dp Z Z {|w6| In [wz + (we — ,u)Q} —p°In [w,% + (ep — M)Q}}
0 k=—o0 €
= AQS})lLL + AQFG?[);LL (3.1.11)
NT [ & 1 ®dr [
AQ@) — _L/ d / _/ d $/2—1 =27 pwy
0 k=0 (=+ 0 0
X {(@7’ x)e”(w’% 12) | lir=e _ olir—a)p } — (it +x)e" (wi—n?) [e*(””) ¢ 6_(””)172}}

(3.1.12)

We can see that LLL contributes only to AQY because the energy spectrum does not depend
on B and the B dependence only emerges through the Landau degeneracy. On the other
hand, hLLs contribute to the all order terms of eB [51].
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From Eq. (3.1.10), AQY can be calculated as,

AQ(O) M/Ood / dT/ dr 1'8/2 1 —27 pwpg

o—2rua, L (0 + 8/2)
- 47r2 0 deZZ/ T(iT) ”*1 (5/2)

k=0 (=% n=0

X {|wc|_2n—sei‘r(w1%,u2w§) . p—2n—seiq—(wi,u27p2)
_ (—1)” [|w<|—2n—se—ir<wi—u2—w§) . p—Qn—se—iT@i_uz_pz)} } (3.1.13)

We can see that only term at n = 0 survives in the limit s — 0 and AQ©® = limg_, 4 AQgO)
renders,

200 = AL a3 S [ e i () s )

k=0 (==

(3.1.14)

After some calculation, it is confirmed that AQ© coincides with the thermodynamic potential
in the absence of the magnetic field (2.1.33) except for the irrelevant constant term. Therefore
introducing the proper time regularization (PTR) as in the previous chapter, AQ(® takes the
form,

AQ® = AQY + AQY 1 AQY, (3.1.15)
where
o 2 2
AQW = Ne dpz/ Ar e*T(Vp§+m2+4/2> +@J(Vpg+m2fq/2) + const., (3.1.16)
8m3/2 | 21 [y pe TP/
d3p
0) —
AQM) = Nc/ ok 2 (Es — )0 (u— Es) + const., (3.1.17)
d3
AQ@ = _NCT;/ (27:)93 (ln [1 + e’mEs’”‘] +1In [1 + e’ﬁ(ESJr“)]) + const., (3.1.18)

and E. represents the energy spectrum in the absence of the magnetic field, E2 = m? +p? +

?/4 + q\/p? + m2,
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From Eq. (3.1.12), AQP? can be calculated as,

AQY = 12%2/ pZZ/ r _2wwk{ (ZT|W<\_ (1(+/2§2)(w§)‘1‘3/2> i (wh—n?—w?)

k=0 (=%
_ <Z'7_p—s o F(l + 5/2)p—2—s) eir(wif/Lz*PQ)

(s/2)
F 1 2 ; 2 2 2
o <iT|WC|_S+ (1—‘(+/82/) )(wg>—1—s/2) efzf(wkf,u fwg)
s
F 1 2 ; 2 2 2
MG oo i Eaatd)
(3.1.19)
Therefore AQ® = lim,_, o AQY renders,
A =24 / pzz/ dr =2 {in [ (w? — i — w2)] — sin [r (w2 — 2 — 1))}
k=0 (==
= B 1
127r (Wi +ip)? +w? (g +ip)? + p?

1 1 1 1 1 1
- 127‘(‘2 \/0' dp|:2w+ (65(M+w+) +1 B eBu—wy) + ]_> + 20 (eﬁ(/ﬁ‘w—) +1 N eBp—w-) + 1)

! ! ! 3.1.20
_]_3 eButp) 11 eBu—n) 1) | (3.1.20)

It is confirmed that AQ®) does not have the divergence.

3.1.1 Anomaly appearing in AQ"

For the evaluation of Ale), we must carefully treat the limit, s — 0, because AQY includes
the contribution of LLL, which is asymmetric about zero. From Eq. (3.1.11), AQS})lLL can be
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calculated as,

1
AQg,ﬁLL =

w

CZi [T et et o)

e [ )] e |

k=0

T [y 3T S Gt i ] G+ 7))

k——oog T
871'2 / Z Z |we|™ {hl wi + (we + 1) } —l—ln[ + (we — H)QH
k:—fooC T
N 1173 /Ooo dp Z p~ I [wy + (p+ p)*] +1n [wi + (p — 0)?] - (3.1.21)

We can see that the second term is independent of m,q in AQS})ILL cancel out the second
term in AQSLLL (3.1.6). Therefore we drop the constant part in the following. If we sum up
the Matsubara frequency, AQY «nr1 can be separated into the vacuum part, density-dependent

part and temperature-dependent part, AQ! })LL = AQ' hLVEC + AQ(lﬁL"L + AlehLL,Wthh can
be given as,

vac NC o —S
el =1 [ DI (3.1.22)
™ Jo
mihiﬁz—gz dpzw (o + pil + e = pa] = 2 e )
N
dp2|w<| [(we + 1) O(—we)O(we + p) + (1 — we) Olwe)0(p — we)l
==
(3.1.23)
aqr NI [ =5 fn (1 4 e~ Bt} 4 1 (1 4 e~Bloc— 194
st =7 | pZ|w<| {n( +e )+ n( +e )} (3.1.24)

(=%

We ﬁnd that they are the even functions of q.
AQS 1o can be also separated into three parts after the summation about the Matsubara

38



frequency,

1),vac c
AQUN = — ] delwd jwel (3.1.25)

1), c
A = s 0 dpzw (g = pal = lecl)

NC OO —s ,MNC
=5 / dp Yy lwel ™ (1= we) 0(w)O(n — we) + = —nu(s),  (3.1.26)
0 = T
1),T NCT > —s —Blwes—
AL = - 53 /0 dp " fwe| ™ In (14 e Pty (3.1.27)
(==

where 7y (s) is defined as,

s) = / ;Z—i Z |we| *sign(we). (3.1.28)
¢

We can see that the density dependent term QLI)’LLL includes the anomalous contribution,

’ﬁc nu(s), caused by spectral asymmetry. The n-invariant, g, can be calculated as in the
previous chapter,

= Jim (o)

Y (m > q/2)
_{ L4 2 /@ m? (m<q/2) (3.1.29)

When m > ¢/2, this quantity agrees with the contribution of the chiral anomaly represented
by the gauged Wess-Zumino-Witten (WZW) term [49]. The gauged WZW term does not
depend on m as shown in Eq. (2.2.53) but ny vanishes in the limit, m — 0.

It can be seen that from Eq. (3.1.22) and (3.1.25) the vacuum parts cancel each other,
AQilﬁLVIaJC = —AQSI)JI:IEC Thus AQY does not diverge without any regularization. In this
step, we can safely take the limit, s — 0, except for the anomalous contribution because
there is no contribution of the ultraviolet region in the residual terms. Therefore AQ® can
be obtained as,

pNe dpz
AQ(U = Ar N — —— Z Z - Twe (Twe)e(/jl - Twe)
e T==%1
dp.
p 7In (14 e Pl (3.1.30)
e T==%1

The first term can be interpreted as the contribution of anomaly and the second and third
terms as the contribution of positive-energy valence quarks [51]. Note that the even functions
of ¢ in Eq.(3.1.25), (3.1.26), (3.1.27) are completely canceled by the corresponding one in
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Eq. (3.1.22), (3.1.23), (3.1.24) to make AQM the odd function of ¢. It vanishes in the limit,
m — 0, which behavior may be physically reasonable because there should be no condensate

and ¢ should be redundant in this limit. Consequently we can see that AQ() emerges only
when m # 0,q # 0.

3.2 Calculation of the physical quantities

In the previous section, we obtained the expansion of the thermodynamic potential by the
magnetic field. Since the order parameters, m and g, still remain as free parameters, they are
determined so that the thermodynamic potential is minimized in this section. After that, we
calculate spontaneous magnetization and magnetic susceptibility to discuss the magnetism
of quark matter in the DCDW phase.

From Eq.(2.2.11), the thermodynamic potential can be expanded for the two-flavor case
as,

2
5

AQ = % +2A00 + AQWeB + §AQ(2)(eB)2 + 0O ((eB)?*). (3.2.1)

In the following, we consider the sufficiently tiny magnetic field and calculate up to the

second order of eB. By solving the stationary conditions, %Q(u, T, B;m,q) = 0, the order

parameters, m = m(u, T, B), ¢ = q(p, T, B), are determined for each set of u, T, B. The
stationary conditions renders,

9 (m? 5
- [ = (0) @ YA02) 2
am (4c; 2R+ AT el + GANT(eD) ) ‘ m = mo(u, T) + eBmy (1, T) + (B)*ma(u, T) -
q = qo(, T) + eBaqi(p, T) + (eB)*qa(ps, T)
(3.2.2)
o [m? 5
A I (0) (1) e (2) 2
0=% (4G 2807+ AT el + GALT(eD) ) ’ m = mo(1, T) + eBmy (1, T) + (eB)*ma(1, T)

q=qo(it,T) + eBq(p, T) + (eB)*qa(ps, T)
(3.2.3)

where the order parameters are also expanded up to the second order about the magnetic
field. When those conditions are fully expanded about the magnetic field, we can obtain
the six identities to determine mg 12, qo12. For simplicity, we use the shorthand notation,
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2400 = 0,,AQ©®. The six equations are obtained from Eq. (3.2.2) and (3.2.2) as,

om  Im=mo,q=qo

0= 72%’ 420,000 (3.2.4)
0= ;”—Gl + 2my 2 AQO + 2g, 9,,0,A00 + 9, AQD (3.2.5)
0= ;”—é + 205 Om 0, A0 + 2my 02 A0 4+ m? 98 AQO) + ¢ 9,02 A0

+ 2myq1 020,009 +m, 02,A0Y + ¢, 9,,0,A0W + g O AQ? (3.2.6)
0=209,A00 (3.2.7)
0 = 2¢; 9240 + 2m; 9,0,A0° + 9,AQW (3.2.8)

0 = 2g2 92AQC) + 2m, 0,0,A00 + ¢; B3AQO + mi 92,0,A0)

+ 2myqy O 0iAQY + g 92AQW + my 0,,0,A0M + g 9, A0 (3.2.9)

To determine mg(p, T), go(p, T'), Eq. (3.2.4) and (3.2.7) should be solved numerically. Using
the determined my, qo, m1(p, T) and ¢ (p, T') can be analytically solved as,

1 8,0,A00 .9 A0M — 52AQ0 . 5 AQW
my(p, T) = d d d 5 (3.2.10)

S 2 ((4(}’)*1 + a%AQ(0)> agAQ(O) — (amanQ(O))

Lm0, A00) - 5, AQW) — ((4G)—1 + aznmw)) 9,AQ0
@ (p,T) = 3

- - — (3.2.11)
((4G)—1 + 8,2nAQ(0)) PR2AQO — (amaqmw))

In the same way, mo(p, 1), q2(p, T) can be obtained. By the above calculations, the order
parameters, m = m(u, T, B),q = q(u,T, B), are determined up to the second order about
eB and the minimized thermodynamic potential can be expanded as,

Qmin(,uu T7 B) EQ(M; T7 B7 TTL, q) |m:m(u,T,B), q:q(u,T,B)
2

m, ~
=Q(m=0,q = —0 1 2AQO
(m=0,¢=0)+ e +

+eBAQW + (eB)Q{gAQ(Q) + %mlamAQ(l) + %qlanQ@)}, (3.2.12)

which depends on only thermodynamic quantities and (m = 0,¢ = 0) is the even function
of eB.
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3.2.1 Spontaneous magnetization

The magnetization can be deduced from the thermodynamic potential as,

anin (/1'7 T7 B)
M= — 3.2.13
83 Y ( )
Taking the limit, B — 0, we find the spontaneous magnetization in the form,
My = —eAQW (1, T;m = myg, q = qo), (3.2.14)

where mg and ¢y are determined by the stationary conditions (3.2.4), (3.2.7) and represent
the optimal values for AQ©® . In the following, we will figure out the peculiar role of LLL
and show that it leads to the spontaneous magnetization.

Note that the spontaneous magnetization takes a special form for some peculiar values of
the parameters, m, q, as well as u, T. At p < m —q/2 and T = 0, where is no valence quark,
the magnetization only comes from the gauged WZW term, My = £ g;q, argued in Ref. [49].
Unfortunately, such a situation is not realized in the present calculation and there always
exist valence quarks in the DCDW phase because the Fermi sphere made by valence quarks
is necessary that the DCDW phase becomes favorable due to the nesting effect [29, 34, 93].
On the other hand, when m becomes small compared to p or T" but ¢ still is not small, M,
is evaluated to be

2 2T
+0 (m?), (3.2.15)

N, 1 q/2—
My = —e Z o Rey (—+zu> m?

where 1) is the digamma function. Then, the leading order about m is m? by the symmetry,
m — —m.

The magnetization is numerically evaluated at 7' = 0 and T" ~ 30MeV, for example.
In this calculation, we choose A = 660MeV as the cutoff in PTR and GA? = 6.35, which
reproduce the pion decay constant f, = 93MeV and the constituent quark mass ~ 330MeV
in the vacuum [23]. Fig. 3.1 shows the u dependence of the order parameters in the absence
of the magnetic field and the spontaneous magnetization M,. There are three phases, the
DCDW phase (m # 0, ¢ # 0), the usual spontaneous symmetry breaking (SSB) phase (m # 0,
g = 0) and the chiral-restored phase (m = 0). We can see that M, becomes nonzero only in
the DCDW phase and has a discontinuity at the transition point from the usual SSB phase.
At this point, the order parameters are also discontinuous, which implies the phase transition
is of the first order. On the other hand, near another transition point to the chiral-restored
phase, the spontaneous magnetization is proportional to m3. Furthermore, as T increases,
the spontaneous magnetization decreases and the region of magnetized phase gets narrower
[51].

It can be seen that spontaneous magnetization occurs in the DCDW phase by the analysis
so far. Next, we estimate the value of the self-consistent magnetization. Assuming a spherical

42



. . o (0
800 | 0 |80 800 q©@ 180
q —
_ Mg — Y F—
= 600 | 60 — S 600 | 60
] 03] —
= 3 = L
S = s 2
& 400 0= S 400 40 %
S — s = <
E 200 | 20 E =
200 | 20
0 - - ‘ 0
320 340 360 380 400 0 , 0
u [MeV] 320 340 360 380 400
1 MeV]
(a) T=0 (b) T ~ 30MeV

Figure 3.1: The pu dependence of the order parameters and spontaneous magnetization.

quark matter with the constant density, and the magnetic field produced from magnetiza-
tion, B = %”M , the self-consistent magnetization can be obtained from the self-consistent
equation,

N anin
0B

M = (3.2.16)

_8
B=M

Strictly speaking, it is necessary to solve the equation of all orders for eB of €2,,,;,. However we
first estimate it by using Q,;, up to the second order of e B. From Eq. (3.2.12), self-consistent
equation (3.2.16) renders,

M = —eAQW — 8§e2M{%AQ(2) + m10, AQW + qlanQ(l)}. (3.2.17)

Therefore the self-consistent magnetization is estimated as,

—eAQM
M= ‘ (3.2.18)

1+ 822 [%OAQ@) + M0, AQW + qlanQ(l)}

Fig, 3.2 shows the pu dependence of M and AM = M — M, at zero temperature. From the
figure, we can see that AM/M ~ 1073, so that the correction is very small. Furthermore if
the higher order of the magnetic field is considered in the self-consistent equation (3.2.16),
the terms estimated as O((%eM)?) are added in Eq. (3.2.17). The expansion parameter is
obtained as 8?”eM divided by p? to make it dimensionless and it is estimated as 8?”1—]‘24 ~ 1074
It is obvious that such corrections due to the second and subsequent terms become even
smaller. Therefore, we conclude that the correction to the magnetization by self-consistently

estimation can be negligible small.

43



01 100

4
0.08 . 80 | .
4 A
0.06 A -
o H — 60 | #%
3 g
2004 | {‘ g "o
= - = 401 "
0.02 | s, e
ﬂr*_ wm
0 g J— 20 ¢ T,
MWW
-0.02 . . . . , 0 ‘ ‘ e
320 340 360 380 400 320 340 360 380 400
1 Mev] n [Mev]

Figure 3.2: The correction to the self-consistent magnetization at 7" = 0. The left panel
shows the p dependence of My and AM = M — M. The right panel shows the p dependence
of M.

Next, we estimate the magnetic field generated by the spontaneous magnetization. Con-
sidering a sphere of the uniform magnetization M, again, the magnetic field, B = 8%]\40 is
produced on the surface. For quark matter with a constant density in the DCDW phase,
the magnetic field is estimated B ~ 10'°G on the surface at 7' = 0, which may be compara-
ble with the observation of magnetars. However, this estimate might be too rough because
density is not constant inside neutron stars. Finite shell made of the DCDW phase may be
another possible realization. Considering that the DCDW shell gets thin at high 7', magnetic
field may become much lower than this estimate in hot neutron stars. Actually the sponta-
neous magnetization vanishes with the disappearance of the DCDW phase at T' ~ 100MeV.
At T ~ 30MeV, which may be a relevant 7" in newly born neutron stars, the magnetic field
remains to be a similar order of magnitude.

In Ref. [29], the expectation value of the magnetic moment, (1 (r)o'2y(r)), is evaluated,
which behaves like spin density wave and vanishes after the spatial average. This seems to
contradict with the present results. However, we can see that a careful application of the
Gordon identity leads to the present results. The external magnetic field minimally couples
with the quark field through the covariant derivative, [ d*z{Qy"9A,, in the Lagrangian,
where @) is the electric charge matrix in the flavor space. According to Ref. [105], this term
can be decomposed into the form,

- B
/ d'w pQY" YA, = 5— / d'z {XQU”X + XQ2izDyx
m
+ YQo®iv’13q xx] : (3.2.19)

where the Landau gauge is taken, A = (0, Bz,0), and x represents the quark field after
the Weinberg transformation, y = e7°™%/2). Here we have used the modified Gordon
decomposition by using the Dirac equation in the presence of DCDW, instead of the free
Dirac equation. Consequently, we have the expectation value of the magnetic moment,
(x(r)o'?x(r)), instead of the above one in terms of v, which never vanishes after the spatial
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average. There appear two contributions in (3.2.19) besides the magnetic moment: the second
term can be interpreted as the angular momentum and the third term proportional to ¢
comes from the operator inherent in the DCDW phase. Thus, the magnetization discussed
here should be regarded as the statistical average of these operators [51].

Finally, we discuss the spontaneous magnetization at the critical point of the second order
phase transition. The expansion of order parameters in Eq. (3.2.2), (3.2.3) is not justified
there. From Fig.3.1, mg = 0, ¢o # 0 at the critical chemical potential (y.2) where the second
order phase transition occurs in the absence of the magnetic field!. If the stationary condition
for ¢, (%Q(/J, T, B;m,q) = 0, is solved, ¢ can be formally written as,

¢ =q(p, T, Bym)
—=¢(u, T;m*) + eBq™M (1, Ty m?) + (eB)*q® (u; T, m?), (3-2.20)

which should depend on m? due to the Z, symmetry about m in the thermodynamic potential.
Note that ¢(® never vanishes even at .. We substitute ¢(u, T, B;m) into the thermodynamic
potential. Because m becomes small near ., the thermodynamic potential can be expanded

about m as,
1
. T, Big = (. T, Bim),m) =3 [0 +eBol! + (eB)*af? | m?

1
+4 [aff) +eBalV (eB)%ﬂ mt e, (3.2.21)

where the coefficients are the functions of only p, T'. At .9, where s vanishes, the stationary
condition on m, %Q(u, T, B;m) = 0, takes the form,

0 = [eBah + (eB)*ay| m + [ay + eBa, + (eB)*af| m®. (3.2.22)

In order for that equation to hold at the lowest order about the magnetic field, it is necessary
to be m ~ (eB)Y2. Now we know the dependence of m on the magnetic field at .
Substituting m for the thermodynamic potential (3.2.21), we can obtain the eB dependence
of the thermodynamic potential at pieo, Quin(pte2, T, B) ~ (eB)?. Therefore, we can see that
My vanishes at p.o from the definition of spontaneous magnetization (3.2.14). It indicates
that My becomes zero at p.o as shown in Fig. 3.1 and is continuously connected.

3.2.2 Magnetic susceptibility

In this section, we calculate the magnetic susceptibility. The definition of the magnetic
susceptibility x renders [106],

Q

M

0B

a2S—2min
B0 0B?

X (3.2.23)

B=0

'If eB # 0, m does not vanish and the phase transition does not still occur.

45



0.0006

Y —
| 80
Mg ——

0.0004 | | 60 —
(V]
>
[0)]

= 40 2.
o
0.0002 | =

| 20

0 0

320 340 360 380 400
H [MeV]

Figure 3.3: The p dependence of spontaneous magnetization and the magnetic susceptibility
at T = 0.

From Eq. (3.2.12), x can be obtained as,
_ 2|19\ a0 O(1) H(1)
X = —¢ 5 AQY +my 0, AQY 4+ ¢10,AQ (3.2.24)

In the same way with the calculation of magnetization, we can calculate y by using the values
of the order parameters in Fig. 3.1.

Fig. 3.3 shows the p dependence of spontaneous magnetization and the magnetic suscepti-
bility at T" = 0. In the usual SSB phase, the singular point, where the magnetic susceptibility
makes a cusp is located at the critical chemical potential where the phase transition from
the zero density phase to the finite density phase occurs. At finite T', the phase transition
becomes crossover and the singular behavior disappears. Furthermore, it can be seen that
the magnetic susceptibility is discontinuous at the critical chemical potential of the first or-
der phase transition from the usual SSB phase to the DCDW phase. However, the magnetic
susceptibility does not indicate any singularity at the critical chemical potential of the second
order phase transition from the DCDW phase to the chiral-restored phase. This behavior is
different from the properties in the system, where spontaneous magnetization is generated
by aligning the spins as in the Ising model. In the Ising model, it is known within MFA that
the magnetic susceptibility diverges at the critical temperature of the ferromagnetic phase
transition. The difference between the magnetic susceptibility in DCDW and the Ising model
can be understood by expressing the thermodynamic potential as a function of magnetization
by the Legendre transformation. First, we can get the equation, B = B(u, T, M), by solving
Eq. (3.2.13) for B. Using this relation the Legendre transformation is performed as,

G, T, M) = [Quin (1, T, B) + M B] (3.2.25)

| b= Bura)
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The partial differential of G(u, T, M) by M is calculated as,

9G OB 00, 9B
on —oni o T BWTM) 4+ Mo
— B(u,T, M). (3.2.26)

Therefore the definition of the magnetic susceptibility can be rewritten as,

_ oM
9B |y

2G\ !
- (aw)
G _

where M’ denotes the value of M satisfying the equation, 537 = 0. Thus, we can see that x is
represented as the inverse of the curvature of G at the point where the extremum about M is
taken. Since the magnetization is small near the point of the second order phase transition,
we consider G expanded by magnetization up to an appropriate order. In the case of the
Ising model, G takes the form,

X

(3.2.27)

M=M'

G=ay+ %OQM2 + ia4M4. (3.2.28)
When as > 0, the paramagnetic phase (M = 0) is realized. At as = 0, the phase transition
from the paramagnetic phase to the ferromagnetic phase (M # 0) occurs. At this point, the
curvature of GG vanishes and the magnetic susceptibility diverges. On the other hand, in the
case of the present model, the thermodynamic potential can be formally expanded up to the
second order of B as,

1
Quin (14, T, B) = ao(p1, T) + a1 (1, T) B + §az(u, T)B?. (3.2.29)
From Eq. (3.2.29), B is obtained as the function of M, B(u, T, M) = —Q%(M—l—al). Therefore
G renders,
1
G, T,M) = og — 2—(]\/[ +ap)? (3.2.30)
(&)

Because spontaneous magnetization is obtained as M satisfying g—ﬁ[ = 0, the paramagnetic
phase is realized for a; = 0 and the phase transition to the ferromagnetic phase occurs at
the point where a; becomes finite.

3.3 Massless mode corresponding to magnon

In the ferromagnetic phase where the spins are aligned such as in the Ising model, there
appears the Nambu-Goldstone (NG) mode called magnon since the rotational symmetry of
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the spin is spontaneously broken [107]. In this section, we discuss whether the similar mode
exists in the present model as well. In the absence of the magnetic field, the order parameter
q is a vector quantity which can take any direction. On the other hand, in the presence of the
magnetic field, g and B can produce the scalar, B - q, in the thermodynamic potential. The
first order term of the magnetic field gives rise to spontaneous magnetization. The existence
of this term can be interpreted as q playing a role of the spin in the DCDW phase, where
spontaneous magnetization is generated. In other words, when g has a finite value, one
direction is specified and it seems that rotational symmetry is spontaneously broken similar
to the case of the spin.

Next we consider whether there is the NG mode caused by the spontaneous breaking
of the rotational symmetry, following the argument in Ref.[108]. In the DCDW phase, g
appears as the wave number of the inhomogeneous condensate, A(r) = med™. The NG
mode is the excitation mode which is generated by the local transformation corresponding
to the broken symmetry. For example, magnon is the excitation mode which is generated by
the local rotation in the spin space. In the DCDW phase, such a transformation is considered
to correspond to the rotational transformation of q as,

iar _y Gi(R(ra)r (3.3.1)

where R(7) denotes the local rotation matrix. However, Since that transformation can be
rewritten as,

Ry _ ia R o) (332)
the degree of freedom to rotate q is the same as the degree of freedom of spatial rotation.

Moreover, the elements of the Poincaré group describing the local spatial rotation are repre-
sented as,

et (Li (3.3.3)

where L; denotes the generator of the spatial rotation and 6;(r) represents an arbitrary
function which describes the locality of the transformation. Using the generator of the
translation P L can be also represented as L = €ijk r]Pk Note that we regard the spa-
tial coordinates appearing in the above equation as parameters not operators. Thus they
are commutative to P. By regarding so, (") )Li describes the rotational transformation,
e?iMLi f(r) = f(R(A)r). On the other hand, the elements of the Poincaré group describing
the local translation are represented as,

e3P, (3.3.4)

where s;(r) denotes an arbitrary function which describes the locality of the transformation
and r represents just parameter. Therefore we can see that the rotation (3.3.3) can always be
represented by the local translation (3.3.4) with the appropriate choice of s;(7) [108, 109, 110].
In other words, the degree of freedom of spatial rotation is the same as the degree of freedom
of local spatial translation.

48



Furthermore, when we consider the local chiral transformation, 1) — €5, the DCDW
condensate is also transformed as,

meiar s mei(q-r72a(1‘)). (335)

On the other hand, by the local translation, » — r + s(r), the DCDW condensate changes
as,

iq-r

me'dT — melartas), (3.3.6)
Thus, we can see that the local translation can always be represented by a local chiral
transformation with proper choice of a(r) [84]. In other words, in the case of DCDW, the
degree of freedom of the local translation is the same as the degree of freedom of the local
chiral transformation. From the above argument, there is only the chiral transformation as
the independent degree of freedom of the local transformation and only pions appear as the
NG mode. Therefore, it is concluded that there is no excitation mode like magnon in the
DCDW phase.
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Chapter 4

Axial anomaly vs. symmetry breaking
effect

In this chapter, we study the region of the inhomogeneous chiral phase (iCP) around the
Lifshitz point (LP) by using the generalized Ginzburg-Landau (GL) expansion [89] with the
finite current quark mass [76]. The current mass is small but should be important below
the low energy scale of O(10%)MeV, since it is well-known that pion mass of O(10?)MeV
is generated from the tiny current quark mass of several MeV. Thus it is conceivable that
the finite quark mass becomes very important in the vicinity of LP, where the both the
wave number and the amplitude of the chiral condensate become very small. For real kink
crystal (RKC) the exact solution can be obtained in the massive Gross-Neveu model [111]
and the critical point has been demonstrated to be largely shifted [28] to reduce the phase
region. For dual chiral density wave (DCDW), although no exact solution is known, the
effect of the current mass has been perturbatively discussed in Ref. [112]. They have found
that the DCDW phase does not appear for the small coupling constant and the large current
mass within the Nambu-Jona-Lasinio (NJL) model, while the DCDW phase appears for the
same coupling constant in the chiral limit. However, the discussion may not be sufficient
because any deformation of the DCDW form has not been considered. To take into account
the deformation, a variational method may work well [41]. Consequently, the effect of the
current quark mass is almost similar to the case of RKC: the function form of DCDW is
largely deformed near the transition point and accordingly the DCDW region of the phase
diagram is reduced.

On the other hand, we know that in the presence of the magnetic field, DCDW phase is
remarkably extended in the low u region except for 4 = 0 at 7' = 0 in the chiral limit [45].
The energy spectrum of quarks exhibits the asymmetry, which gives rise to such distinctive
enhancement of DCDW [46]. Note that the complex order parameter, A(r), is necessary for
the energy spectrum to be asymmetric about zero. A peculiar role of the spectral asymmetry
can be also seen around the transition point: it induces a new term in the thermodynamic
potential, and consequently a new LP should appear on the # = 0 line in the chiral limit
[46].

Therefore once the current mass is turned on, a competition arises between the positive
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effect on the DCDW phase by the magnetic field and the negative effect by the current mass.

4.1 Thermodynamic potential with the finite current
quark mass

The thermodynamic potential with the current mass is given by the generalized GL expansion
near LP, based on the NJL model. The Lagrangian takes the form,

Ly =P —m) ¥+ G | ()’ + (birrv)*) (4.1.1)

with the covariant derivative, D, = 0, +tQA,,, where Q is the electric charge matrix in the
flavor space, Q@ = diag(e,,eq), and the SU(2) symmetric quark mass, m. = m, = my ~
5MeV. In the presence of the magnetic field, the phase degree of freedom in the order
parameter, A(r) = —2G({(¥)) + (Yiy°731p)), is important to give rise to anomaly as shown
in the previous chapters. Therefore we assume the complex order parameter,

A(r) = me?®), (4.1.2)

where the amplitude m is fixed to be constant and plays a role of the dynamical quark mass.
The direction of modulation is taken to be parallel to z axis. The deformation of the phase
function 6(z) from DCDW (6(z) = qz) reflects the effect of the current mass. Then, the
Lagrangian within the mean-field approximation (MFA) takes the form,

2

Lyp = [i) —me —m (cosb(z) + iy’ 7’ sinb(z2)) ] o — ZL—G (4.1.3)

Taking the external magnetic field B along the z axis, the thermodynamic potential can
be written up to the fourth order about the order parameters and its derivative and the first
order in m, as

Q(u, T, B) =Q0 + dg—w{ 0+ (ot )+ a (sin )’
U A =)y % Qr1M CoS 5 (e e m Qom (SN

+ % [4m® cos 6 — m (cos 0)"] + azm®0’ + =

4
+ agpm (sin 6)" }, (4.1.4)

(m* — m*66") + 3du,m® (sin )’

with a shorthand notation, ¢ = 06/0z, for given u, T and B [76]. The GL coefficients now
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read,

L= (“1)2N, ZTz’efB‘Z

n>0
d 2 —5,
X /—p , 0 ) (4.1.5)
2T [(wg +ip)? + p? + 2|es Bln)’
Qg1 = Mgy, (416)
|€fB| A 1%
=N, ) LTy 4.1.7
; e ™\ 3 Tigr (4.1.7)
dy = M, as, (4.1.8)
|€fB‘ 3 (1 I
N, 3) e 4.1.
— e Z 536 T\ 3 T a7 (4.1.9)

where wy, = (2k+ 1)7T is the Matsubara frequency and € is the constant term independent
of the order parameters. The derivation of these equations is somewhat cumbersome and is
given in Appendix C. Here a4, cannot be represented as a simple form (see Appendix C for
details). Note that the effect of the current quark mass is included in ag;_1, &2, G, and duy,
which are proportional to m,.. The coefficients «; (i = 1 —4) include a ultraviolet divergence
and should be properly regularized by applying some regularization scheme. In the present
calculation, the Pauli-Villars regularization (PVR) is used!. For convenience, we introduce
the function I; and rewrite Eq. (4.1.5),

B
;= JNZ‘ef , (4.1.10)

where

) — b0
L;(A?) —2TZZ/ T +E2(A2)] (4.1.11)

k n>0

Ea(A%) = \[p? + A2 + 2l Bln. (4.1.12)

Then, I,(0) and /5(0) have the ultraviolet divergence and should be regularized. Taking the

LTf the vacuum contributions of o; are regularized by the proper time regularization in the similar way as
in the previous chapters, the artificial infrared divergence emerges in all coefficients (i > 4) as the consequence
of the GL expansion. The original thermodynamic potential does not include any infrared divergence and
the infrared divergence may be vanished by summing up all order therms in the GL expansion. In the PVR
scheme, we automatically evade the difficulty.
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sum over the Matsubara frequency,

I = Z/dp

n>0

11— fr(Bnt 1) — fr(Ey — )], (4.1.13)

’VL

=130 b.0) / ;lp{E (1 Fr(Bat )~ Fr(By— )

n>0

g (B 1)+ S (B =] |, (4114

where fr is the Fermion distribution function. Therefore the diverging vacuum part can be

extracted as,
dp
Il ,vac Z /

n>0

dp 2 — 5n
Doae = = Z/ d 0. (4.1.16)

Then, 1,(0) and I5(0) are regularized as follows,

(4.1.15)

’I’L

[ vac(0) = 11 vac(0) = 200 vac(A?) + I vac (2A2), (4.1.17)
I5vac(0) = I5vac(0) — I yac(A?). (4.1.18)

Thus, all the divergences in the coefficients can be removed [76].

The total derivative terms in Eq. (4.1.4) are irrelevant for the stationary condition:
0§2/60(z) = 0. Note here that the @; term never affects the stationary condition; it plays
instead an important role through the thermodynamic potential. From the extremum con-
dition, we find the equation in the sine-Gordon form,

0" + sign(a; +m?az)m?sinf = 0, (4.1.19)
with
2
2 = plon 0], (4.1.20)
™Moy

which is proportional to m,.. The relevant solution to Eq. (4.1.19) can be obtained as,

*

Tr]:”z, k) + 70 (—oq — mPas) (4.1.21)

0(z) = 2am (

where “am” is the amplitude function with modulus k£ € [0,1]. Then, the period (I) and the
wave number (@) of condensates are defined by the relations,

2% K (k) o wm?
_ T T 4.1.22
mE @ l kK (k) ( )

™

l:

23



15

10}
5L
— k=08
0 k=1
sl — k=0
_IG 1 1 1 1
—10 -5 0 5 10

Figure 4.1: Plot of m 4+ 2am(z, k). The red, green and blue line describes the function at
k= 0.8, 1, 0 respectively. (The figure is taken from Ref. [76].)

where K (k) is the complete elliptic integral of the first kind. There are two order parameters,
m and k (or Q):m characterizes the magnitude of spontaneous symmetry breaking (SSB),

and k measures a degree of the inhomogeneity. We plot the function: = + 2am(z,k) in
Fig. 4.1. When k =1, Eq. (4.1.21) takes the form,

0(2) |1 = 4tan™" (e") — 76 (o +mPas) (4.1.23)

and behaves like a single kink. Accordingly, [ diverges and ) vanishes because K(k —
1) — oo. Then, we can see that the thermodynamic potential is reduced to the one in the
homogeneous phase. On the other hand, when £ and m,. simultaneously go to zero and
2m* [k — q, Eq. (4.1.21) takes the form,

0(z) — gz + 70 (—oq — m’as) , (4.1.24)

and the original DCDW phase is recovered. In the following, we call the phase where 0 <
k < 1,m # 0 the massive DCDW phase [76].
Then the thermodynamic potential takes the form,

2|041 + m2ag|

1 1
Q= Q) — [aam + azm?®| Ci(k) + 5 (O‘? - ﬁ) m? + és m?2Cy(k) + Ztm’,

4 (4.1.25)

with
Cy(k) = % —1- ;i((k]z) (4.1.26)
Cs(k) = M?(k), (4.1.27)



where E(k) is the complete elliptic integral of the second kind. Note that ag, G, Gy terms

vanish by the spatial integral. We can easily observe that Eq. (4.1.25) recovers the ther-

modynamic potential in the homogeneous phase at k& — 1 because Ci(k — 1) = 1 and
One may also find another possible solution of Eq. (4.1.19),

Oos(2) = 2cos™" [k sn (mbiz, k)] + 70 (—oq — mPa3), (4.1.28)

with modulus k' € [0,1]. The previous solution (4.1.21) is the monotonically increasing
function, while this solution is the oscillating function. Then the thermodynamic potential
takes the form,

1 1 o}
Q= — |aym + azm®| CP(K') + 3 (az + ﬁ) m? + fm‘ﬂ (4.1.29)

with

CH*(K)=3—2k* — (4.1.30)
When k&' = 1, the solution (4.1.28) corresponds to 6(z)|x=1 and the thermodynamic potential
becomes the one in the homogeneous phase. However, we can see that the oscillating solution
is never favored compared to the homogeneous solution because CP*(k') < CP(K = 1).
Therefore, the phase with the oscillating solution does not appear in the present situation?.

4.2 Spectral asymmetry with m,

It may be worth mentioning that the &g term is originated from the spectral asymmetry of
the quark energy and proportional to the magnetic field. Note that the as term remarkably
extends the DCDW phase in the presence of the magnetic field [46], while it cannot appear
in the RKC phase because of the absence of the phase degree of freedom. The presence
of such term has been shown in the chiral limit and a close relation to chiral anomaly has
been demonstrated [46]. This argument can be easily generalized even if the current mass is
taken into account. We show that the as term is derived from the spectral asymmetry and
relevant to chiral anomaly when the inhomogeneous chiral condensate has the phase degree
of freedom. Generally quark number density at the finite 7" is given as [46],

n= —lnH +/dEp(E) { b(E) b=E) (4.2.1)

9 1+ eBE-1) 14 e—BE+w |’

where p(F) is the density of state. The first term, which is called the Atiyah-Patodi-Singer
n-invariant represents the anomalous particle number [47, 48],

Ny = lirﬂo/dEp(E)sign(E)|E|_s, (4.2.2)

2The oscillating solution may be relevant near the critical point in the absence of the magnetic field, where
the similar equation is derived for 6 [41].
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and measures the extent of spectral asymmetry about zero. The second term (n,om) corre-
sponds to the normal particle number and we rewrite it as the form including the summation
of the Matsubara frequency,

1 1
nom — & - dEp(E)T —_. 4.2.
o = g = [ AENET S (123)

Here the first term in (4.2.3) apparently cancels out the anomalous particle number. However,
the information of the n invariant is not washed away since the infinite series reproduces the
anomalous particle number at =17 = 0.

The local density of state takes the form,

1
plx, E) = —Im trp fc[R(a: E +ie)]

=_-° Z —Imtrp (x|In(H — E — ie)| x), (4.2.4)

with the resolvent: R(wx, E) = (x |7-5|®). In the present model, Hamiltonian takes the
form,

H=a-P+7° [mc + me’ o) | (4.2.5)

where a; = 7py; and P is the covariant derivative. After the Weinberg transformation: ¢ —
Y = "™0()/2y, Hamiltonian changes to H,

H = Hy+6H, (4.26)
- . 1
§H =+° {mce_”%’g(r) - 57573’7 : VQ(T)} - (4.2.8)

Therefore, p(x, E) can be expanded to the form,

1 N, 1 .
Zlmtr< ‘w> - == iImtr <:13 — :1:> dH ()
Hy— FE T OFE Hy— E —ie
+0 (8(6}1), (6H) ) , (4.2.9)
where the first term does not depend on 6. Here, <az ‘ HO_E_Z,E‘ az> can be rewritten into the
propagator decomposed over the Landau levels [46].
Then the leading term proportional to 06 takes the form,
N, 0 |E|

FE) = ———0(|E| — . 4.2.1

pon(a, B) = s 005 | st (151 - m) (1:210)

f
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From Eq. (4.2.3), the part of quark number generated by psy takes the form,

_ ¢ 3 E >

Noyg = A2 d m@zﬁ(m){l +T k /0 dy

X ! (4.2.11)
(Vy2+m? —p—iwg)?  (Vy? +m2+u+zwk 7 o

where the first term is derived from the surface term in the partial integral about £ and we
take y = v/ E2 — m?2. Then the second term can be expanded with respect to m?. It can be
seen that m® part of the second term cancels out the first term and the the remnant of Ny
takes the form,

N, 0 1
o7 D lerBl /d?’w@z@(w)@lmw(” (5 + z%) m?+0(mY).  (4.2.12)
!

Nog = —

From the thermodynamic relation, N/V = —0€Q/0u, we can see that the @3 term is generated
[76].

On the other hand, the result from chiral anomaly [49] is recovered in the limit: m — oo.
Then the second term in Eq. (4.2.11) vanishes and the first term is the very contribution of
chiral anomaly. This limit is consistent with the case where there is no valence quarks argued
in Ref. [51]. Furthermore, substituting the configuration of 6 (4.1.21), the quark number takes
the form,

7rm*
s 4.2.1

For investigating the derivation from the case of the chiral limit [46], we take 2mX /k = ¢,
where ¢ is the wave vector of the DCDW condensate. Then it can be expanded with respect

o (m:/q)?,
{ (”;4)] . (4.2.14)

The second term represents the correction by the finite m,. because of m*? oc m,. The result
also implies that spectral asymmetry should have the correction O(m.) although the exact
energy spectrum cannot be obtained at the finite m..

Nog = 4 B

4.3 Results and discussions

4.3.1 Phase diagram around the transition point

For obtaining the phase diagram, the order parameters are determined to minimize Eq. (4.1.25).
In the following, @) is used as the order parameter characterizing the inhomogenity instead
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Figure 4.2: Phase diagram for m. = 5MeV,veB = 1GeV (left panel). The red line describes
the phase boundary between the massive DCDW phase (shaded area) and the homogeneous
phase. The solid blue line describes the crossover line. The conventional crossover line
without the massive DCDW phase corresponds to the dashed blue line. The right upper
(lower) panel shows the value of m (Q) at the same range of ;1 — T" as the left panel. (The
figures are taken from Ref. [76].)

of k. In the present calculation, we use the parameter set in Ref.[18]: A = 851MeV and
GA? = 2.87, which reproduce pion decay constant f, = 93MeV, pion mass m, = 135MeV
and scalar condensate (¢1)) = (—250MeV)? in the vacuum with m, = 5.2MeV.

In Fig. 4.2, we show the phase diagram for m, = 5MeV,vVeB = 1GeV. There are the
phase boundary between the massive DCDW phase and the homogeneous phase and the
crossover line constituted by the pseudocritical temperature (7)) defined as the peak of the
chiral susceptibility: —0m/0T [76].

In Fig. 4.3, the change of the phase diagram is described when m,. or B changes. We can
find that the massive DCDW phase is extended to the low u region with the decrease of m..
Then the result in Ref. [46] is recovered in the chiral limit: m,. = 0 and it is expected that
the crossing point of the phase boundary and the crossover line agrees with LP in the chiral
limit. On the other hand, the magnetic field increases the critical temperature in the phase
transition, which is consistent with the magnetic catalysis [24]. In other words, the smaller
m. or the larger B becomes, the more widely the massive DCDW phase develops over the
region: p/T < 1 [76].

The T dependence of the order parameters is shown in Fig. 4.4. A discontinuity in
both order parameters can be found at the critical temperature (7). Therefore, it can be
concluded that there is a first order phase transition between the massive DCDW phase (m
is large and @ # 0) and the phase where chiral symmetry is approximately restored (m is
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Figure 4.3: Change of the phase boundary. In the left panel, the red, green, blue lines
describe the result at m, = 0, 5, 20MeV and fixed veB = 1GeV. In the right panel, the
red, green, blue lines describe the result at veB = 1, 0.7, 0.5GeV and fixed m, = 5MeV.
The solid lines describe each phase boundary between the massive DCDW phase and the
homogeneous phase. The dashed lines describe each crossover line. (The figures are taken

from Ref. [76].)
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Figure 4.4: Dependence of the order parameters on 7" for the same parameter set in Fig. 4.2.
The red or green line describes the amplitude m or the wave number () respectively. The
dashed blue line shows the conventional dynamical quark mass without the inhomogeneous
chiral condensate. The left panel shows the result at © = 70MeV and there are the phase
transition point between the homogeneous phase and the massive DCDW phase on T, =
181MeV and the pseudocritical point on 7). = 222MeV. The right panel shows the result
at u = 120MeV and there is the phase transition point on 7, = 219MeV. (The figures are
taken from Ref. [76].)
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Figure 4.5: Phase boundary obtained including the inverse magnetic catalysis. The red line
corresponds to the phase boundary in Fig.4.2. On the other hand, the green and blue lines
describe one at m, = 5, IMeV with the inverse magnetic catalysis. (The figure is taken from
Ref. [76].)

small but finite and @) = 0) though there is the second order phase transition between the
DCDW phase and the chiral-restored phase in the chiral limit [46]. The difference is caused
by the finite m.. In the chiral limit, ) can take any value in the chiral-restored phase since
there is no condensate. On the other hand, the value of () is uniquely determined in the
case of the finite m, because the condensate never vanishes there. In the right panel, we can
see that the first order phase transition is strong while it becomes weaker for lower p. The
crossover between the usual SSB phase and the nearly-restored phase is also observed at the
pseudocritical temperature 17" = T},. in the left panel. The RKC or DCDW phase appears
in the region: p > 300MeV and 7' < 50MeV with m. and B = 0 [41, 28]. However we can
see that B extends the massive DCDW phase over the low p and high T region even if m,
is finite [76]. Furthermore the dynamical quark mass in the massive DCDW phase is larger
than that in the case of the homogeneous condensate. In other words, the chiral symmetry
breaking is enhanced in the massive DCDW phase. The fact may be consistent with the
result in the chiral limit [46]; the chiral symmetry breaking is enhanced in the DCDW phase
and the critical temperature is greater than the conventional one.

4.3.2 Effect of the inverse magnetic catalysis

From the lattice QCD calculation, it is known that the magnetic field makes chiral symmetry
breaking weak at high T', called the inverse magnetic catalysis [25]. In this subsection,
the effect of the inverse magnetic catalysis is discussed in the present model. There are
still controversies about this phenomenon. Here, it is assumed that the effect is described
by giving a dependence of the magnetic field to the coupling constant of the NJL model
(G). According to Ref.[113], G is fitted to reproduce the result of the lattice simulation
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[25, 114]. For the parameter set: A = 851MeV, GA? = 2.87, m. = 5MeV, the pseudocritical
temperature can be obtained as T,.(eB = 0) = 173MeV at p = B = 0. In the following,
we consider the case at vVeB = 1GeV. The coupling constant is putted as GA? = 1.85,
which gives the ratio: T),./T,.(eB = 0) = 0.86 at y = 0. In Fig. 4.5, the change of the phase
boundary by the inverse magnetic catalysis is shown. The region of the massive DCDW
phase shrinks and the critical temperature decreases due to the effect [76]. However, the
massive DCDW phase remains in the /T < 1 region if m, is sufficiently small.

4.4 Possibility of the observation of the inhomogeneous
chiral phase

In Ref. [115], the possibility of the observation of the DCDW phase has been discussed in
the case with the critical line, u = 0. Though the existence of the line is pointed out by the
generalized GL expansion with the magnetic field in the chiral limit [46], the phase boundary
is moved to p # 0 region due to the current quark mass. The discussion becomes somewhat
simple in the present case. In the Taylor expansion method, some quantity is expanded
around p/T = 0 for considering the effect of the finite pu. Therefore, this method cannot
describe the singularity at u # 0 and the massive DCDW phase cannot be observed. For the
same reason, the analytic continuation method from the imaginary chemical potential to the
real one does not work either.

The reweighting method can overcome the difficulty of the singularity in principle. In
this method, the importance sampling is carried out for some parameter choice, for example
Rep = 0, where there is no sign problem. However, the massive DCDW phase does not
develop in that region. Therefore we need to find a special region with the massive DCDW
phase and no sign problem there.

In the canonical approach, we also do not have a trouble of the singularity though the
grand canonical potential with the real p can be constructed from the one with the imag-
inary p. If there is the massive DCDW phase in p # 0 region, it may be found that the
quark number density has the discontinuity derived from some first order phase transition.
However, the phase transition cannot be identified as one from the homogeneous phase to
the massive DCDW phase. Therefore we need to find some specific order parameters on the
phase transition. There is a similar difficulty in the Lee-Yang zero analysis in QCD. The
behavior of zeros of the partition function indicates the existence of some phase transition.
However, we cannot distinguish the phase transition including the massive DCDW phase by
their distribution.

We also comment on the two color lattice QCD (QC3D). In the QCyD, there is no sign
problem because the quark determinant is always real even if p is real and finite [116].
Therefore, the existence of iCP may be investigated by the usual Monte Carlo simulation. It
is also thought that this analysis works without sufficiently small m..
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Chapter 5

Relation with the inhomogeneous
chiral phase and the
Fulde-Ferrel-Larkin-Ovchinnikov
superconducting state through nesting
and axial anomaly

In this chapter, we discuss the role of nesting and axial anomaly for the appearance of the
inhomogeneous chiral phase (iCP) [83]. We consider iCP in 141 dimensions to clearly see
their interplay. Manifestation of nesting or axial anomaly should be a common feature of
iCP in any dimension, since these concepts are based on geometry of the Fermi surface and
chiral symmetry itself. The duality between iCP and the Fulde-Ferrel-Larkin-Ovchinnikov
(FFLO) superconducting state helps to accomplish our purpose. First, we discuss how axial
anomaly is mapped by the duality transformation. Next we figure out the important role
of nesting, which is one of the key mechanism for spatially inhomogeneous phases such as
charge density wave (CDW), spin density wave (SDW) in quasi-one dimensional systems in
condensed matter physics [33, 34, 35, 93], and pion condensation in nuclear matter [117]. It
has been sometimes discussed that nesting is responsible for the appearance of dual chiral
density wave (DCDW) or its one dimensional analog, chiral spiral, since the wave number
q always takes 2u. On the other hand, the wave number of real kink crystal (RKC) begins
with ¢ = 0. Since iCP may be regarded as a generation of a kind of density wave, we would
like to look into nesting in the context of iCP in detail.
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5.1 Axial anomaly in chiral spiral

Here we briefly review how axial anomaly plays a role in iCP by using the 141 dimensional
Nambu-Jona-Lasinio (NJLy) models. The Lagrangian of the NJL, model takes the form,

Lnn, = Bidy + 2 [(90)° + (ins)?]. CRBY

which is invariant under U(1);, x U(1)g. This Lagrangian is one-flavor case, but easily
extended to the N-flavor case endowed with SU(N)p x SU(N)gr symmetry. For two-flavor
case, it renders

Lomun, = 9+ 5 [(5)° + (Binsm)7] (512

which we call the 2[NJLs model.

Both models exhibit the spontaneous breaking of chiral symmetry. There have been many
studies about iCP by using the NJL, model such as shown in Sec.2.1 [90, 118], and little
has used Lo, to study flavor asymmetric matter [43, 119, 120]. Chiral spiral is the most
favorable phase on the T'— u plane within the NJLy model. The wave vector ¢ then satisfies
the relation, ¢ = 2u, which looks to be the same for the nesting vector in SDW or CDW
in quasi-one dimensional systems in condensed matter physics [33, 35, 93]. Accordingly it
has been sometimes discussed that chiral spiral is caused by the nesting effect of the Fermi
surface. When we consider DCDW in 1+3 dimensions, it appears with the wave vector to
be O(p) as shown in Fig.2.3 [29]. This phenomenon may be understood as a reminiscence
of the nesting effect.

It is to be noted that the effect of axial anomaly should plays an important role in 141
dimensions, without any gauge field. Introducing a fictious gauge field B,, B, = (1, 0), we
can consider QCD in the background of B,. It has been shown that axial-vector current
j& = 1y*y51) is not conserved by anomaly,

L1
au]g = %6# B,uzu (513)

for one-flavor case, where B, = 0,B, — 0,5, is the field tensor. This anomaly is an analog
of axial anomaly in the presence of the electromagnetic field [49], and it is easily extended
for the 1+3 dimensional case, e.g. in the presence of the magnetic field.

Adding a proper term for chemical potential y, we have an effective Lagrangian,

Loir = Yidy — mapexp(—ivsqz) Y + pyoe), (5.1.4)

within the mean-field approximation, where chiral spiral is asummed. Using the Weinberg
transformation such that ¢y = exp(—iysqx/2)1, we have

Lr = Dwidbw — bw [m + 10q/2] Yw + pdwyotw (5.1.5)

Usually quark number becomes a finite value once p is greater than the dynamical mass
m at T = 0. However, it is known that the chiral spiral phase develops from p = 0 due
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to axial anomaly: the single-particle energy is given by &, = £(k?* +m?)Y/2 4 ¢/2 and the
energy spectrum is shifted by ¢/2 from the free one. Anomalous quark number density, which
coincides with Eq. (2.1.16) is then generated by the spectral asymmetry and is closely related
to axial anomaly [47].

The quark number density is defined by using the Atiyah-Patodi-Singer n invariant, ng,

n = 5 [ Fhe)

= _%UH + Z [0(ck) fr(ex — 1) — O0(—er) fr(—er + 1)) (5.1.6)
with
g = lim > sign(er)lex (5.1.7)

where fr(g) = (1 + €°)~! is the Fermi-Dirac distribution function, ng is proportional to g,
and the particle number is not necessarily zero for any chemical potential [46]. That is why
chiral spiral develops from p = 0.

It should be interesting to see that there is no anomaly for Lognjr,. The anomaly relation
(5.2.6) can be easily extended to the two flavor case: for the axial-vector current jf =

U(73/2)7" 750, '
gt = Etr(Tg)e“”BW =0, (5.1.8)

where the fictious gauge field B* should read B* = (,0) with p, = pg = p in flavor
symmetric matter. The chiral spiral is defined as me'® = —G () — i(iy°731))) in this
case and the effective Lagrangian renders

Lopar = Vi — mapexp(—iysmsqr)h + phyor) (5.1.9)

under the mean-field approximation. Accordingly the Weinberg transformation is modified
to Yw = exp(—iv573q/2)¥ and we find

Lonir = bw [if —m — 107m3¢/2) bw + pdbwyotw (5.1.10)

The single-particle energy is now flavor dependent: e, = #(p? + m?)Y/2 + ¢/2 and ¢4 =
+(p? +m?)Y2 — ¢/2. Thus the energy spectrum of u quarks is shifted upward by ¢/2, while
the one of d quarks is shifted downward by ¢/2 from the free case. Consequently, the spectral
asymmetry of u and d quarks cancel each other and leave no anomalous quark number [83].
Since the wave number may be regarded as an “isospin chemical potential”, us = —¢/2, in
this case, we study the phase diagram for given p by changing pus.

Thus chiral spiral appears above p./mo ~ 0.68 in the 2fNJL, model [43], where my
denotes the dynamical mass at 7' = p = 0, in contrast with the NJL; model. It is interesting
to see some similar feature to RKC, which also appears above the critical chemical potential
fe/mo = 2/m in the NJLy model [90]. Since there is no axial anomaly for both RKC and
chiral spiral within the 2fNJL, model, the phase boundaries between iCP and the chiral-
restored phase are identical. Actually, it should be determined by the correlation function in
the chiral-restored phase regardless of the detail of the inhomogeneous condensate [121].
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5.2 Mapping of anomaly through the duality transfor-
mation

5.2.1 NJL, case

We now consider another manifestation of axial anomaly in the context of iCP. Thies have
shown that there is a duality between chiral transition and a kind of superconducting models
[77], using the NJLs model. Duality transformation is defined as, ¥ — x = %(1 — )Y +
%(1 +~°)9*, where “4) = (g, 1r). This is a canonical transformation and the Eq. (5.1.1) can
be written as

Lyy = Xidx + g (x%) (xx)" (5.2.1)

by introducing new fields, x; = ¥, xg = ¢, in terms of left-handed (L-) and right-handed
(R-) Weyl fields, *x = (x&, xz)- x¢ denotes the charge conjugation field, y¢ = 7°x*. The La-
grangian is called the Cooper pair model, which is a toy model of the color superconductivity
[122]. For the chemical potential term, it is changed to,

0L = p(X1XL — XRXR) » (5.2.2)

which resembles the interaction term between “magnetic field” p and “spin-up” (R-) and
“spin-down” (L-) quarks, or p may be regarded as “chiral chemical potential ps”. In the
following we use the notation h instead of —u. Considering the pairing between L- and
R-quarks, the Hamiltonian within MFA renders,

1 ~ c ~ c *.=C —~,C A ?
Hy = 5 /drc [x*(v"’p = R)X A+ XT (P + 7 h)XE + ATXX + Axx© + %
e AP
= dx |V (pos + h + 01ReA + oolmA) ¥ + Sa | (5.2.3)
with the choice of the Dirac matrices as v = o1, 7! = —ios and 75 = 03, where U = (xg, ).
The gap equation takes the form,
G,

A= —§<X X)- (5.2.4)

Under the duality transformation the chiral condensate made of quark-anti-quark is trans-
formed to the Cooper pair condensate in the context of superconductivity. Thus chiral
transition on the T-u plane is mapped into superconducting transition under the magnetic
field h in the vacuum. If the Cooper pair condensate is spatially modulating, such phase can
be described as the FFLO phase.

We can see how axial anomaly inherent in the Lagrangian (5.1.1) is mapped into the La-
grangian (5.2.1), following ref. [49]. Since the phase of the gap function defined in Eq. (5.2.4)
represents the phonon degree of freedom ¢, it transforms as ¢ — ¢+2« under the U(1) trans-
formation, y — exp(icr)y. In the presence of a fictious axial-vector gauge field, C,, = (h,0),
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we have an anomaly relation for the vector current j* = yy*x by way of the vacuum polar-
ization,
4 1 y
8;1]“ = %EM,,C“ ) (525)
with the field strength, C,, = 0,C, — 0,C,,. This is an analog of Eq. (5.2.6). Accordingly

the effective action changes,
0SS = —/dxauaj“. (5.2.6)
Thus the effective Lagrangian must include the relevant term, L,,, = %fl—ih, by way of
anomaly matching, so that the coefficient of h may be regarded as magnetization [83].
As the case with anomaly in the superconducting states, we consider the FF state under
the magnetic field in the vacuum by using the Eq. (5.2.3), where A = me™? is assumed.
The Hamiltonian can be rewritten by the Nambu-Gorkov formalism,

1 —i7°0, —7°h  AOme " m
_1 fxeh (T e .
Hip = / da [(X X ( Pmerr  —in5d, +v5h> (X) TG }

1 —i7°0, —7°(h — q/2) O / m2
_ = et VO — q v X

(5.2.7)

where y' = e~%*/2y. The fermion fields are expanded as a series of the eigenstates,

V(@) = / D a1 (am " ﬂ;*m) o)
2m V26, \Bov/& =P — a5\ /e, Tp)

Xc(;p) — / @ei(P—Q/Q)OC 1 (ﬁp\/ €+ p+ Oégr\ [€p — p)

2m V26 \opV/& — b = B1\/6G 1)

where €, = \/p? +m?, and, oy, 3, a3, B, are the annihilation operators of the quasiparticles
after the Bogoliubov transformation. However, the four annihilation operators are not in-
dependent; there is the relation, o, (8,) = a¢,(8°,), because they must satisfy the relation,
X¢ = ¥°x*. Accordingly there appear four branches in the energy spectrum,

(5.2.9)

E, = € —h+q/2,

Es = ¢ +h—q/2,

Ef = —e,+h—q/2,

Ef = —e¢,—h+q/2 (5.2.10)

The ground state |o) is then defined by filling the negative energy states:

aplo) = 0 (Ea >0),
Bplo)y = 0 (Es>0),
Oé;|0’> = 0 (EOA < 0)7
Bilo) = 0 (B <0). (5.2.11)



Since the energies of the quasiparticles (5.2.10) exhibits spectral asymmetry, one may
expect anomalous particle number as in Eq. (5.1.7). However, we can see that it never induces
anomalous particle number, different from the Lagrangian (5.1.4). Note that the number of
particles is not identical with that of quasiparticles due to the Bogoliubov transformation
[123]. The particle number density can be evaluated in the same manner as in Eq. (5.1.6)
and we find,

n = 1/“wmfmw

2
a2 g

_ T €p P 1 1 €p — P

N Algrolo g|/A a/2 o [ ap—oz,pa_p) 2¢, + <Bpﬁp_5*pﬁ_p> 2¢, } o)

— (5.2.12)

In the above calculation, we have used the relation,

(olafaylo) = (olala_lo) = fr(E.), (5.2.13)
(olBiBplo) = (0]6L,8-pl0) = fr(Es). (5.2.14)

Furthermore, in the limit: m — 0, any physical quantity calculated from the fermion fields
(5.2.8) and (5.2.9) should coincide with the one in the no interacting case even if ¢ is still
finite. This is because a physical quantity does not depend on ¢ in the limit, m — 0, where
the wave number ¢ becomes a redundant variable due to the amplitude m vanishing. To
satisfy the requirement, we need to employ the asymmetric cutoff in the momentum integral,
[—A —q/2,A — q/2], for the x field (see Appendix D for details).

Asis inferred from Eq. (5.2.6), we shall see the appearance of the anomalous magnetization
instead. By using the quasiparticle operators, the magnetization can be evaluated as,

M= 5 [Tl A lo)

—1/2 €+ D €& —D
S U‘/ Q/227T|: Oép—i_& G 2¢ Byl + BopBp 2¢ )

A—oo

p P
—a/2 g —q/2 _ A—q/2
. p €+ P dp € — P dp p
= lim / — [r(Eq) P —/ 7(Es) P —/ P R
A—oo —A—q/2 27 €p a/2 27T €p —A—q/2 27 \/ D + m?2

- A—q/2 dp V (A=q/2)?4+m? de,
= Ah_f){.lo{/ i o [fr(Ea) — fF(EB)]‘i‘/\/m o Lfr(Es) — fr(Es)]

_ﬁ tan—1(A/m—q/2m) detane}

27 tan_l( A/m—q/2m) cost

A—q/2
= lim o [fr(Ea) — fF(Eﬁ)]vLi

9.2.15
A—oo —A—q/2 27'(' 2T ( )

The first term represents the paramagnetic magnetization, which counts the difference of
the number of the up- and down-spin particles and the second term means the anomalous
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magnetization [83]. The anomalous magnetization corresponds to the coefficient of h in
Lano by putting ¢ = gz in Eq. (5.2.6). On the other hand, the LO state does not have the
anomalous magnetization because there is no phase degree of freedom!.

5.2.2 2fNJL, case

It is not evident whether the same features hold for other models such as the 2{NJL, model
(5.1.2), which is an anomaly-free model. We shall see the different features for the 2fNJL,
model and how anomaly is responsible to these differences. For this model, the duality
transformation may be modified as ¥ — x = £(1 —7°73)¥ + 5(1 4+ +°73)¢* to include the
flavor dependence?, so that the Lagrangian (5. 1 2) can be wrltten as,

. G _. e . .
L= xidx + 3 [(X 73x) (X°mx)" + (XW571X)2 + (XW57'2X)2] . (5.2.16)

For the chemical potential term, it is changed to,

6L = —h (XEXY — X8Xh — XTXE + XEXE) - (5.2.17)

Accordingly we have the Hamiltonian within the mean-field approximation by assuming
(X7 T1.2X) = 0 and

A= -Siwmg o), (5.2.18)

for the charge-neutral system,

Al2
Hyy /dx {\Iﬁ (pos + h + o1ReA + 0oImA) U 4 & (pos + h + 01ReA — ,ImA) & + |2_G'

(5.2.19)

where, UT = (x%, x1*), ' = (X&', x1)-

If there is only the u-quark sector, the Hamiltonian is reduced to the one-flavor case
(5.2.3). In the LO state or in the case of no phase factor in the gap function, two Hamiltonians
of the ® and U sectors become identical and the total Hamiltonian is reduced to the one-
flavor case except the overall factor. Therefore the phase diagram of the LO state is not
changed for any number of flavor.

However, for the FF state, the phase diagram is different between one- and two-flavor
cases due to the existence of anomaly. Actually the Fig.5.1 shows the difference of the
appearing region of the FF phase between the one- and two-flavor cases. In the two-flavor
case, the u-quark sector has the energy spectrum (5.2.10) while the d-quark sector has the

Tt does not necessarily imply the absence of magnetization in the LO phase, where only paramagnetic
effect gives rise to magnetization [124].

20One may consider the flavor independent transformation,)y — x = (1 — )¢ + 1(1 +~°)¢*, but the
resultant Lagrangian explicitly violates particle number conservation. Therefore we treat only the flavor
dependent transformation in the following.
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Figure 5.1: The difference of the regions of the FF phase between the one-flavor (left panel)
and two-flavor (right panel) cases. Ay denotes the magnitude of the gap function A at
T = h = 0. hp represents the Pauli paramagnetic limit, hp/Ag = 1/ V2, and hEE denotes
the lower critical field at T' = 0, where the first order phase transition occurs, hfF /Ay ~ 0.68
in the 2fNJLy model, while h%F = 0 in the NJL; model. The higher critical field hZ diverges
at T = 0 in both cases due to the perfect nesting (see the text). (The figures are taken from
Ref. [83].)

similar energy spectrum with the opposite sign of ¢. Since the magnetization is given by
summing up both contributions of the u- and d-sectors, they completely cancel each other.
This may be also infered from the anomaly relation in the flavor-symmetric matter,

1
oujt = 4—tr(73)eu,,C'””, (5.2.20)
m

for j* = yy*y in the 2fNJLy model [83]. Consequently the phase diagram for RKC is the same
as the one given by Machida and Nakanishi [124] for the LO state, once chemical potential
is replaced by the magnetic field; they studied the possibility of the FFLO state in the
quasi-one dimensional system by changing the strength of the magnetic field. They used the
linear dispersion approximation near the Fermi surface, so that there appear Dirac electrons
with definite motions, the light and right moving electrons for each spin state. Solving the
Bogoliubov-de Gennes equation self-consistently within the mean-field approximation, they
found the FFLO state above the critical magnetic field. They also found that the phase
boundaries between the FF and LO states and the normal phase are identical as they should
be. For the 2fNJLy; model, the Hamiltonian (5.2.19) looks identical with the one argued by
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Machida and Nakanishi with the following correspondence,

Xp € Y,
X, < o,
Xk & O,
X5 & ¢, (5.2.21)

where 1(¢) represents the left(right) moving electron field and the up(down) arrow denotes
the up(down) spin state.

5.3 Nesting for iCP

Nesting of the Fermi surface is one of the important concepts in condensed matter physics
[33, 35, 38, 93]. As is already mentioned, the nesting effect is most prominent at 7" = 0. So
we, in the following, concentrate on the low temperature case. Nesting may be also a driving
mechanism for iCP. It has been sometimes discussed that chiral spiral appears due to nesting
in 1+1 dimensions, because there is opened an energy gap m at the Fermi surface of massless
quarks and the wave number ¢ takes 2 at the same time. On the other hand it looks rather
difficult to interpret the onset of RKC by nesting, because the wave number takes zero at
the threshold. We’d like to give some remarks about the relation between iCP and nesting.

First of all we point out that it is too naive for the onset of chiral spiral to be attributed
to nesting. We have seen that axial anomaly plays an important role for the relation ¢ = 2.
Moreover, chiral spiral develops for arbitrary chemical potential below the critical temper-
ature. These are peculiar consequences within the NJLs; model. Actually we have seen in
the 2fNJLs model that there exists a critical chemical potential ., above which chiral spiral
develops. The phase transition is of the first order in this case, and the wave number takes a
finite value of O(2u) at p.. Interestingly, the wave number takes the same order of magnitude
as in the NJL, model. Note that the magical relation ¢ = 2kp for nesting in 141 dimensions
has been derived by the lowest-order perturbation; e.g., the Lindhard function, which is the
lowest order density-density correlation function or susceptibility, logarithmically diverges at
q = 2kp at T'= 0 in 141 dimensions to lead to formation of density wave [125]. In the present
model, kr means the Fermi momentum of the no-interacting quarks, that is, kr = u. In our
case the energy gap is generated by the non-perturbative effect and the magical relation may
not hold as it does. On the other hand, we can see that the number of the wave number
approaches 2kr at T = 0 around the critical chemical potential for the transition to the
chiral-restored phase, where the non-perturbative effect becomes tiny and the perturbative
result should hold. Thus we can see that nesting may play an important role for chiral spiral.

For RKC the phase transition is of the second order and the wave number takes ¢ = 0 at
the critical chemical potential u2XC/mg = 2/ [28, 111, 126]. However, the number of the
wave number rapidly increases in the RKC phase and immediately approaches ¢ = O(2u).
Thus one may say nesting works except a small region around p2¥¢,

It should be interesting to see how such nesting effect manifests after the duality trans-
formation. Since the Hamiltonian describes a kind of superconducting phase, a different kind
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Figure 5.2: The vacua and an excited state with or without the magnetic field in the absence
of the Cooper pairing. Filled(unfilled) circles denote the occupied(unoccupied) states. The
left panel shows the normal vacuum in the absence of the magnetic field with the energy
spectrum, Egr = £p. The midlle panel shows the h-vacuum to give the energy spectrum,
Er=p—h,E;, = —p+ h. The right panel shows an excited state where the number density
of L-particles is generated by g—ﬁ and that of right-handed holes is generated by g—i compared
to the h-vacuum. (The figures are taken from ref. [83]).

of nesting should be seen. There are two kinds of nesting: one (type-I) is familiar as a driv-
ing mechanism of charge density wave or spin density wave in quasi-one dimensional system
[33, 35, 93, 125]. The other one is responsible to the FFLO state (type-II). In the magnetic
field, two Fermi spheres with different Fermi momenta p%. are created by the paramagnetic
effect, if any interaction is absent. Nesting in the type-II case is a combination of the inver-
sion and translation of one Fermi sphere by dpr = |pk — p%| to match with another one. In
particular we shall see that RKC can be more easily understood by the type-II nesting.

Note that the FFLO state is not necessarily induced in the presence of the magnetic
field. Instead there is a competition between the paramagnetic effect and the Cooper pairing
effect; the paramagnetic effect favors a specific spin state and leads to the difference of the
Fermi momenta of the two spin states, while the Cooper pairing effect becomes maximum
for the equal Fermi momenta [79]. When the paramagnetic effect dominates over the Cooper
pairing effect, the FFLO state is realized due to the type-II nesting. The landmark of the
lower critical filed is then given by the Pauli paramagnetic (Chandrasekhar-Clogston) limit,
hp/Ao = 1/3/2 [79].

We can see by two steps how the type-II nesting works by considering the change of the
energy spectra given in Fig. 5.2. Normal vacuum is constructed by filling the negative energy
states as given by the left panel in Fig.5.2. In the first step we consider the paramagnetic
effect. When the magnetic field is applied to the normal vacuum, the energy spectra are
changed for L- and R-particles. The middle panel in Fig.5.2 shows the vacuum in the
presence of the magnetic field (h-vacuum), where all the negative energy states are occupied
to make the total energy to be minimum. In the h-vacuum, there is an imbalance between the
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Figure 5.3: Configuration of the Fermi surface at the transition point from the normal phase
to the superconducting phase. Filled(unfilled) circles denote the occupied(unoccupied) states.
The left panel shows configuration of the BCS state in the absence of the magnetic field. E7”
denotes the inversion spectrum of E7, in the normal vacuum and the bold dashed lines describe
the quasiparticle energy, +=1/m? + p2. The middle panel shows the inversion spectrum of £,
EP. from the right panel in Fig.5.2. The right panel shows the way of the pairing after the
momentum shift +(h — dp) to give the quasiparticle energy spectra (E, and Ef§) denoted by
the bold dashed lines. (The figures are taken from Ref. [83]).

number of R- and L-particles due to the paramagnetic effect. Therefore magnetization can be
evaluated to be M, = h/m because the number density of R-particles is increased by % and
that of L-particles is inversely reduced by % compared to the normal vacuum. We can also
consider the excited states where some particle-holes are generated from the h-vacuum. The
right panel in Fig. 5.2 shows an excited state where the number density of particle-hole pairs
is evaluated as g—i by using the energy-level spacing 27 /L. In the excited state, the number
density of R-particles is reduced by g—ﬁ and that of L-particles is increased by g—fr compared to
the h-vacuum as shown in the middle panel in Fig.5.2. Consequently, magnetization takes
the finite value, M = (h — 0p)/m. Note that we cannot choose the optimal one among them
in this step, because the basic variational principle should be applied to the total energy after
taking into account the Cooper pairing effect.

In the second step we consider the Cooper pairing effect. In Fig. 5.3 the construction
of the quasi-particle energy is graphically explained. In the absence of the magnetic field,
the BCS state is formed by the simple inversion of one energy spectrum from the normal
vacuum as shown in the left panel. For the FFLO state, we arrive at the quasiparticle energy
with the pairing gap at the Fermi surface by the inversion of one energy spectrum and the
relative momentum shift with ¢ = 2(h — dp) for the excited state. Such momentum shift
corresponds to the wave number of the spatial modulation of the gap function. When ¢ # 0
takes the energy minimum, the FF state appears in the ground state in place of the BCS
state. When dp = h, we can see the usual BCS gap at the Fermi surface pp = 0 by inversion
of one spectrum, so that the gap function is constant. On the other hand, when the same
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manipulation is applied for the h-vacuum, we can see the momentum must be shifted by
q = 2h after inversion.

The h-vacuum is realized at the phase boundary between the FFLO state and the normal
phase. The typical momentum ¢ = 2h can be also seen by considering the correlation
function between the Cooper pairs in the normal phase: it depends on the dimensionality
and logarithmically diverges at ¢ = 2h in 141 dimensions [127, 128, 129].

We consider how the type-I nesting is mapped to the type-II nesting by the duality
transformation [83]. As is discussed above axial anomaly sometimes conceals the nesting
effect, we first discuss it by using an anomaly-free model, such as the 2fNJL; model. After
applying the duality transformation, we consider the FFLO state under the magnetic field in
the vacuum, described by the Hamiltonian (5.2.19). Our model then becomes the same one
discussed by Machida and Nakanishi in the context of condensed matter physics. Accordingly
the phase diagram becomes the same. For the LO state, the phase transition is of the second
order from the BCS state at the lower critical field hLP, hLP /Ay = 2/7. The wave number
increases from the zero value, which reflect the type-II nesting. The excited state, op = h, is
realized at the phase boundary between the BCS state and the LO state. On the other hand,
for the FF state, the phase transition is of the first order with finite wave number of O(2h).
This feature looks somewhat different from the LO state, but one may see the type-II nesting
works except the small region of the lower critical field AL, hEF /Ay ~ 0.68. We can also
see that the phase boundaries from the LO and FF phases to normal phase coincide with
each other [83]. Thus we can say the type-II nesting works for the FFLO state. It should be
interesting to note that the upper critical field h. diverges for both phases as T" — 0 in 1+1
dimensions due to the perfect type-II nesting with ¢ = 2h.

For the NJLy model, the argument about the LO state is unchanged, since the order
parameter is real and the model Hamiltonian is reduced to (5.2.3), while that about the FF
state is greatly modified. We shall discuss some surprising aspects of the FF state in the NJLy
model. The FF state appears once a tiny magnetic field is applied due to anomaly inducing
the anomalous term L,,,; the thermodynamic potential seems to include the linear term of
q, To obtain the correct thermodynamic potential, the appropriate momentum cutoff,[—A —
q/2, A — q/2], should be used in the x sector. From the relation, y¢ = v°x*, the asymmetric
cutoff in the x¢ sector should be [—A + ¢/2, A + ¢/2]. From the Hamiltonian (5.2.7), the
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thermodynamic potential at 7" = 0 renders,
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(5.3.1)

(5.3.2)

The quadratic-divergence term is irrelevant and can be subtracted off. The logarithmic
divergence can be removed by the appropriate renormalization scheme independent of ¢ as in
the GN model [130]. We can see that €2 includes the linear term of ¢, so that the minimum
condition gives rise to the relation, ¢ = 2h, even if the magnetic field is tiny [83]. In the case,
|h — q/2| > m, the thermodynamic potential can be calculated in the same way. However its
energy minimum is larger than that at ¢ = 2h. Hence the lower critical field becomes zero

and the perfect type-II nesting always holds with ¢ = 2h.
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Chapter 6

Effect of fluctuations in the
inhomogeneous chiral phase

In this chapter, we analyze the effect of the fluctuations around the mean fields.

In the absence of the magnetic field, it has been shown that the Nambu-Goldstone (NG)
mode excitations destroys the inhomogeneous chiral phase (iCP) at finite 7' [84, 85]. In
these analysis, the dispersion of the NG mode is calculated by using the low-energy effec-
tive potential. As an important consequence, it has been shown that for one-dimensional
modulations of the condensate the correlation functions of the quark-antiquark bilinear fields
exhibit quasi-long-range order (QLRO) with algebraic decay at large distances at finite T
in accord with the Landau-Peierls theorem [93, 131], while true long-range order is realized
in the usual spontaneous symmetry breaking (SSB) phase. In addition, the thermal average
of the quark condensate becomes zero for T' # 0 due to thermal fluctuations. These results
come from the spatially anisotropic dispersion relation of the NG modes.

We'd like to further elucidate the consequences of the anisotropic dispersion relation in the
context of iCP. This chapter is composed of two parts. One is the analysis of the Brazovski-
Dugaev effect in the absence of the magnetic field [121]. The other is the discussion about
the stability of the dual chiral density wave (DCDW) phase in the presence of the magnetic
field.

6.1 Effect of fluctuations to the inhomogeneous chiral
phase transition in the absence of the magnetic

field

In this section, we elucidate interesting aspect of the fluctuations near the phase boundary in
the absence of the magnetic field [121]. Starting from the Lifshitz point (LP), iCP is enclosed
by the two phase boundaries on the pu-T' plane (see Fig.6.1): one is the L-boundary sepa-
rating the usual SSB phase and iCP at lower p, and the other is the R-boundary in contact
with the chiral-restored phase at larger u. It has then been shown that the L-boundary has
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Figure 6.1: Schematic phase diagram for chiral symmetry breaking in the (u, T") plane within
the mean-field NJL model in the chiral limit. The shaded domain enclosed by the left- (L-)
and right-hand-side (R-) boundaries represents iCP. The L-boundary is of first or second
order, depending on the type of iCP [29, 28, 44], whereas the R-boundary is always of second
order. The boundary between the SSB and chiral-restored phases is of second order in the
chiral limit (dotted line). (The figure is taken from Ref. [121].)

different orders and properties of the phase transition, depending on the type of the conden-
sates [29, 28, 44], while the R-boundary is determined independent of the condensate within
the Nambu-Jona-Lasinio (NJL) model in the mean-field approximation (MFA)!. When we
approach to the R-boundary from the chiral-restored phase, we may see a general feature:
since the system is chiral-symmetric and isotropic in the chiral-restored phase, we cannot say
what type of condensates is realized after the phase transition. Since the order parameter
consists of the scalar and pseudoscalar condensates, the effective potential can be written by
such condensates in a symmetric form in the chiral-restored phase. The R-boundary may
be then found by the analysis of this effective potential. In the SSB phase, on the other
hand, the effective potential may be written in terms of only the scalar condensate, so that
the L-boundary can have different predictions. Within the MFA, it has been shown that the
chiral-restored phase undergoes the second-order phase transition at the R-boundary. We
study the nature of the inhomogeneous phase transition around the R-boundary by looking
into both quantum and thermal fluctuations of quark-antiquark pairs or quark particle-hole
pairs (hereafter collectively called “chiral pairs”) in the chiral-restored phase.

A similar situation also arises in the context of pion condensation in nuclear matter, where
nucleon particle-hole pairs are excited [117, 136]. In condensed matter physics, it corresponds
to the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in superconductivity, where the elec-
tron Cooper pairs are excited [36, 37, 80, 81]. One important common feature prevailing in
these phenomena can be seen through the dispersion relation of the fluctuations; it has a

LA similar result has been obtained in a Dyson-Schwinger type approximation to QCD [32]. However, in
general, the character of the R-boundary depends on microscopic models and approximations. Actually, e.g.,
in the quark-meson model [28; 132, 133, 134] or nonlocal chiral quark models [135], it has been suggested
that there is a high sensitivity of the existence of iCP (R-boundary) on model parameters.
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minimum at a nonzero momentum |g| = ¢, on the two-dimensional sphere? in isotropic sys-
tems [86, 87, 129, 137, 138], which suggests that the order parameter is spatially modulated
after the phase transition. This is qualitatively different from the usual phase transitions,
such as homogeneous transitions in superconductivity or those for chiral symmetry break-
ing, where the dispersion of the fluctuations has a minimum at |g| = 0. In the context of
superconductivity, the effect of the fluctuations has been studied in the vicinity of the criti-
cal point by Noziere and Schmitt-Rink [128] within the linear (Gaussian) approximation to
clarify the BCS-BEC crossover problem. It has been further discussed in the context of a
BEC of atoms [139], and also studied to understand a precursor of (color-)superconductivity,
known as the pseudogap phenomenon [140, 141].

A general theory for the inhomogeneous phase transition has been first presented by
Brazovskii [86] at finite 7. A similar issue has been discussed by Dyugaev [87] at zero
temperature in the context of pion condensation. They have taken into account the interac-
tions among the fluctuations beyond the Gaussian approximation. Unlike the homogeneous
phase transition, such a nonlinear effect is now essential. One of the remarkable findings is
the change of the order of the phase transition stemming from the fluctuation effects; the
second-order phase transition within the MFA is changed to the first-order one (sometimes
termed the fluctuation-induced first-order phase transition). This subject has been further
studied within the renormalization group approach [142]. Also, the Brazovskii theory has
been applied to diblock coplymers [138, 137, 143], including its experimental verification
[144]. However, it seems that the importance of such studies is not fully conceded, e.g., in
the discussion of the FFLO state, while there are few works about the anomalous effect of the
fluctuation [129]. A heuristic argument about the fluctuation-induced first-order phase tran-
sition for the inhomogeneous chiral transition have been presented [88]. The phenomenon is
called the Brazovskii-Dyugaev effect. In this section, extending this work to the general case
with O(N) symmetry, we elucidate the particular roles of quantum and thermal fluctuations
[121]. We also point out a continuity of the effects of both fluctuations across R-boundary, by
analyzing the behavior of the correlation function attributed to the excitations of the (NG)
modes in iCP.

Another purpose of this section is to draw one’s attention again to the fluctuation-induced
first-order phase transition. Throughout this section we emphasize some common features
for inhomogeneous phase transitions, such as those into the FFLO state in superconductivity.
We also discuss some observational implications peculiar to the fluctuation-induced first-order
phase transition [121]. Recently, in a B20 compound MnSi which undergoes a fluctuation-
induced first-order transition of the Brazovskii type? [86], an unequivocal experimental con-
firmation has been obtained via neutron scattering and thermodynamic observables [148].
The first-order character of such a transition may also be expected to be experimentally
confirmed for the inhomogeneous chiral transition, e.g., in relativistic heavy-ion collisions.

2In this case, the fluctuations become soft on a finite manifold in momentum space, rather than at a single
point [86].

3This type is relevant for the case with an O(N) symmetric N-component order parameter, which differs
from the case with an order parameter coupled to a fluctuating gauge field (e.g., for superconductors and
smectic-A liquid crystals [145]) or with sufficiently large components N > 4 [146] (see also, e.g., Ref. [147]).
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6.1.1 Framework

We use the two-flavor NJL model in 143 dimensions and the Lagrangian density takes the
form,

L= gig+ G [(W)2 + (w%ﬂp)z} . (6.1.1)

The partition function reads Z = [ Dy [ Dipe™ with the Euclidean action in imaginary
time (t — —i7) being,

/dT/d3 l ( = tiv- v+m)¢+G[(W)2+(;§¢W¢)ZH, (6.1.2)

where 3 = 1/T is the inverse temperature. Introducing the auxiliary fields ¢, for (—2G), —2GiysT),
one can rewrite the Euclidean partition function as

7 = /Dwfpw/HD%

— / H Deae, (6.1.3)

where the effective action is
So = / dT/d3 [4@ ] Trlog [-G7'] (6.1.4)
with

_ g . .
Gpl = —VOE +iy - V4 — (g0 + 1757 - B)
= S5 - A, (6.1.5)
and A = (¢g + iv57 - ¢). The inverse of the thermal Green’s function, Sﬁ_l, can be written

as S ’1(ium, p) = p with pg = iy, + p in the frequency and momentum representation, where
= (2m + 1)7T is the Matsubara frequency for quarks. Thus we find

1 1
/ dT/d3 {4G¢2} Trlog[S5'] — §Tr[ASﬁ]2 — ZTr[ASg]4 +

dq .
=Sy + TZ/ 13F§28) (iwny » 1) Pa(in, , @1) Pa(—iwn,, —q1)

L T4HZ / T 5 (in ). (@])Oui0ms @1y @2) 61100y, @) 1)

SR (6.1.6)

78



where w,, = 2mnT" is the Matsubara frequency for auxiliary fields and Sy is the action for
free quarks. Since the component (w, = 0, |g| = ¢.) is the most relevant degree of freedom,
we here approximate the vertex function A by the local four-point function A({iw,,}, {q;}) =
A27m)38(q1 + g2 + g3 + q4)0(wn, + Wy, + Wiy + wp,) With a coupling constant A. As we shall
see later, we must keep the frequency dependence of the composite fields ¢, to extract the
correct behavior of the thermodynamic quantities at 7' = 0. The above effective action is
obviously SU(2) x SU(2) ~ O(4) symmetric in the chiral-restored phase. The ¢g polarization
function Hgs(iwn, q) and the inverse two-point function FI(DQS) (iwn, q) are defined, respectively,
by

b1 [i95 7395 (iwn + iV, @ + P)ivs T35 (ivm, P, (6.1.7)

I, (iwy, ) = —NyN, TZ/

and,

1 — 2G1I (iwy, q)

2) (s _
Fl()s) (an7 q) - 2G

(6.1.8)

Within the linear approximation for the composite fields, only the first two terms are sufficient
in Eq. (6.1.6), without other terms which give the nonlinear effects coming from the mutual
interactions of fluctuations, such as the fourth-order term. In the following discussions,

however, we must keep the terms up to fourth order in ¢,, as in a model a la Brazovskii [86,
137, 138].

6.1.2 Nonlinear effects of fluctuations

We first consider the thermodynamic potential 2 = —TlogZ within the linear approximation:

d3
Qua = Qp + 2TV Z/ (273’3 In [1 — 2GT1), (iwn, q)] , (6.1.9)

where ; is the thermodynamic potential for free quarks and V' is the volume of the system.
This thermodynamic potential corresponds to that obtained by Nozieres and Schmitt-Rink

[128] for superconductivity. Unlike the homogeneous phase transition, the polarization func-
o1d.(0,q)
dlq|
geneous transition in isotropic systems. Correspondingly, the criterion ¢ la Thouless [127],

1-— QGHgS(iwn =0,¢.) = 0, can be derived as the threshold condition within the MFA. This
condition is equivalent to vanishing of the coefficient of the second-order term in Eq. (6.1.6).

Next we shall see that the nonlinear effects become essential for the inhomogeneous phase
transition, which differs from the usual phase transition. Since the effective action is chiral
symmetric, we can choose the thermal average of the pseudoscalar field to be S®(q)d,0 =
(¢3), as an appropriate order parameter for the inhomogeneous chiral transition. Then the
thermodynamic potential can be expressed in powers of @, after putting ¢, = 5P (q)dn0da3+Ea

tion has a minimum at |g| = ¢. # 0, i.e.,

"q‘ —q. = 0, for the case of the inhomo-
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and integrating out the fluctuation fields &,,

gzzmﬁwﬂ/d%m{w)@ﬁ@)

mH/d%;{m>@m@m@wm

611_[/ dqzs‘ps {@:))®(q))P(q2)®(qs)P(qu)D(qs)P(gs) + - -, (6.1.10)

where each coefficient includes the effects of fluctuations described by up to fourth-order term
in Eq. (6.1.6). The first term represents the ring diagrams (bubbles), while the quantities of
ITY, are modified by the fluctuations, as we will see below.

Next, we calculate the propagator of a chiral pair fluctuation field. By using the polar-
ization function, we can construct the propagator within the random-phase approximation
(RPA). The polarization function defined in Eq. (6.1.7) can be written in an apparent form
[149, 150], with the Fermi-Dirac distribution function fr(e) = (1 + %¢)7*

)

. 1—p-(p+q)/lpllp+4|
I, (iwn,q) = NyN. {f pl+p) — fr(lp+q| +p :
ps( ) f ;(F(ll ) — fr(| |+ ) o+ p+al—Ip
l+p-(p+q)/lpllp+ 4|
iw, — |p+ q| — |p|
))1+p-(p+Q)/\pHp+q!
iwn, + [P+ q| + |P|
1—p-(p+4q)/lp|lp+4q|
w) — fr(lpl — p
) = Jrllpl =) iw, — |p + q| + |p|

+(fr(lp+ql —p) =1+ fr(|p| + 1))

+(1— fr(lp+q| + 1) — fr(lp| —

+ (fr(lp + 4l - , (6.1.11)

which consists of the vacuum contribution, II9 (iwy, q)|(.,r)—0, and the remaining medium
contribution. Here the ultraviolet divergence of the vacuum contribution should be regular-
ized by the proper time regularization (PTR), whose explicit form is described in Ref. [88].
Each term in Eq. (6.1.11) may be easily understood in terms of the particle-antiparticle
and particle-hole excitations. Note here that the following properties hold: Hgs(iwn,q) =
I (—iwy, q) and 1T (iwy, q) = I, (iwn, —q).

By the proper analytic continuation Hgs(iwn — w + 17, q), the polarization function can
be written as

11, (iwn, q) = Rell) (w + in, @)]w—iw, + i sign(w,)ImID (w + i, @)]w—iw, - (6.1.12)
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The imaginary part is given by,
d*p
0 )
ImIT (q,w +in) = —Nchﬂ'/ 2y
p-(pta)
pllp + 4

b (p—i_q)}
| (w—|p+q|+
ol | ( Ip+4q| + [p|)

X{UﬂmeO—ﬁﬂp+m+uHP— }Mw+m+qr4m>

+wﬂm+quo—ﬁﬂm—uﬂﬁ—

p-(p+q)
+ p+q|—p)—1+ fr(|p|+ {1+ }5w—p+q—p
/e (| | —w) fr(lpl + )] Pl (w—| | = |pl)
p-(P+q)
+ 11— fr(lp+q|l+p) — fr(lpl — 1 [1+ ]5w+p+q+p}.
[1— fr(] |+ 1) = fr(lp| = w)] PP+ 4l (w | |+ Ipl)
(6.1.13)
Each delta function is evaluated as
— 2pw —
O(w+|p+dql—|pl) = 5( p d )e(p—w), (6.1.14)
w? +2 W —
Sw—Ip+aql+p) =25 (:r p a ) O(p + w), (6.1.15)
p—l—w pr — ¢
o(w—Ip+al—|pl) = 0 (:c 2a ) 0(—p + w), (6.1.16)
5(w+lp+q|+|pl)—_p_wcS(x—w) 0(—p — w) (6.1.17)
pq 2pq ’ o
where = cos 6. Considering the argument of the delta function, we find,
w? — ¢
ImHgs(w +in,q) = NyN.T {m [1+ 6—5(Q/2+u+w/2)} —In[l+4e (¢/2+p— w/Q)}
q

+1n [1 + e—ﬂ(a/Z—quw/?)} —1In [1 + e Pla/2mp—w/2) } + Bwb(jw| — g }
(6.1.18)

while it have been numerically found in Ref. [88].

Introducing an effective coupling constant g4, between quarks and a fluctuation field [18],
we define the chiral pair fluctuation fields as g;qquﬁa. Then the Green’s function of chiral pair
fluctuation fields, Gps(iwy, q), can be then defined by the use of the two-point function (6.1.8):

Gps(iwn, q) = gD (iwn, q)] 7, (6.1.19)

where g, is an effective coupling constant between quarks and a fluctuation field [18]. Since
the behavior around |q| = ¢. and w,, = 0 is important in the vicinity of the phase boundary,
we expand it as
1. 2
Gl (iwn, @) ~ 7+ (la* — )" + alwal, (6.1.20)
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where 7 = G;1(0,]q| = q.), v = 5*G,.}(0,]q| = ¢.)/(d|q*)?, and a = g3, dImII) (w =
0, ‘Q| = QC)/dw'

Using the effective action with the background field method, we can evaluate the fluctu-
ation effects?. Inserting ¢, = BP(q)dn0daz + & into Eq. (6.1.6), the effective action can be
written as

SO(¢a) = SO(q)) + Sl(q)a Sa)' (6121)

Accordingly, the thermodynamic potential is given by the functional integral:
Q@) =TS,(P) — Tlog/HDfanp[—Sl(cp, €] (6.1.22)

Each vertex function in Eq. (6.1.10) is then given by
Y]
0P(—q1)0P(—q2) -+ 0P(—qn) [

The key equation is the first functional derivative,
o€ A d3q2 dSQ3
2 s = Gyl (0a) () + g [
( ﬂ-) 5@ (_q ) ps ( 7q1) (ql) + 3' (27'(')6
1 T2Z/ d*qy d3q3

X [(&3 (iwn, q2) &3 (—Wm (I3)>§ + (&0 (iwn, 2) & (—iwy, qg)>§] ®(q1 —q2 — q3)
(6.1.24)

D (q2) ®(g3) @ (q1 — g2 — g3)

where the symbol (---)¢ denotes the thermal average, and we have used the following rela-
tion: <€0 (iwn, QQ) 50 (_iwna Q3)>§ = <€l (iwm q2) 51 (_iwna Q3)>§ = <€2 (iwm q2) 52 (—iwn, Q3)>§'
In general, the thermal average (& (iwy,, g2)&(—iwy, g3))¢ has the off-diagonal momentum com-
ponents, but we can neglect such components as long as the loop integrals are concerned [86].
Thus,

(€aliwn, @2)€a(—iwn, @3))e = B(2m)35(qa + q3)Galiwn, 2). (6.1.25)

where G, (iw,, q) is the self-consistent Green’s function, given by G, (iw,, q) = [re +7(|q|* —
@?)? + a|w,|] ! with,

no= v s [ e de@e 0+ 57T [0 [Galina) + Galivn. a)

2/ (2m)3
A d? A
= 74 V_li/ (2733@ (@)® (—q) + 5 (1(rs) + 1i(ro)) (6.1.26)
The integrals I,, are defined by,
d*q [0V 1
T : 6.1.27
" Z/ 2n)? (a) r+ (e — @7 + alr] (6:1.27)

4We evaluate the thermodynamic potential in an O(4) symmetric way, while other ¢, (except for ¢3) has
been discarded in Ref. [88].
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where the integrals with n < 2 should be regularized by some regularization methods (see
Appendix E for details). Similarly, ro(= 1 = r5) reads,

1 A d?’q A

ro=71+V" — 5P (q) ®(—q) + - (Ii(r3) + Li(ro)) - (6.1.28)
6 /) (2m) 2

While, strictly speaking, there are other two diagrams contributing to r3 and r¢, their contri-

bution can be neglected in the region 7";/02 < ¢, [86]. Using r3, Eq. (6.1.24) can be rewritten

as,

(27T>3—6q)((5?q1) Z[r3+7(\q1|2—qz)2}<b( D=V 1%(1)( )/é%é@(qgcb(_%)
+%/%‘P(%)¢(%)fb(ql — @ a). (6.1.29)

Thus, T'™™ is obviously vanished as should be expected. Subsequent derivatives of Q0 give
the even-order vertex functions. Note here that r, is a functional of ® and their derivatives
satisfy the following equations:

ors _ (2m) V7 IAD(qo) %]2(7“0) . org (6.1.30)

0P(—q2) 1- ——72( 3) — 21(r3) 0®(—q2)’

A
2 21

o _ @m7V 50) | ors) | _Ora (6.1.31)

0P (—g») 1 — 215(ro) 1—21(rg) 6®(—qs)

The second-order vertex function thus reads,

I®(q, g2) = (27)%6(q1 + @2) (7r +1(1a]* — ¢2)), (6.1.32)

where 7 = r3(® = 0) = ro(® = 0). Likewise, the fourth-order vertex function renders,

TD({a@}) =2m)°\ (a1 + g2 + @3 + qu)

2 Iy(7r)

2 3‘/71
MRSy

[6(q1 + g2)d(qs + q4) + 2 permutations] |.  (6.1.33)
6.1.3 Brazovskii-Dyugaev effect

In this section, we discuss the fluctuation-induced first-order phase transition for the inho-
mogeneous chiral phase transition. First, we consider the second-order term (6.1.32). If 75
becomes zero, it should be a signal of the second-order phase transition. From Eq. (6.1.26),
TR satisfies,

TR = T+ Mi(Tr), (6.1.34)
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Figure 6.2: The 7 dependences of g at T' # 0 (purple curve) and 7" = 0 (green line). 7x
always takes positive values when T' # 0, while, when T" = 0, it vanishes at 7 = AL

— Tt T
(The figure is taken from Ref.[121].)

with,

D VAR e 7?2 70 1/2 1 Tq> anT's
=y — 2L ds | £ 2 Ze ) | e~*coth . (6.1.35
TR o TR/A2 S[ Z <(47q38)3) G <475) © ( TR ) ( )

Looking into the behavior around 7z = 0, we find that,

ATq.

TxTR— ——— for T #0, (6.1.36)
4#71/27'3/
while
AA3
TXTR — m for T =0. (6137)
This is due to the singularity of G (iw,,q) on the sphere |q| = ¢, which is a common

feature for inhomogeneous phase transitions in isotropic systems [86, 87, 129, 137, 138].
From Eq. (6.1.36) and Fig. 6.2, we can see that 7 diverges at 7g = 0 and 75 is always positive
for all range of 7, which implies that the phase transition is prohibited at finite 7. On the
other hand, there is no divergence at zero temperature [121]. In addition, the point 75 = 0
at T' = 0 is somewhat shifted from the point 7 = 0. The difference of T" # 0 and T = 0
can be easily understood from the fact that the lowest Matsubara frequency is dominant and
the leading behavior (6.1.36) can be obtained by putting w, = 0 into the integral I;. Thus
we can observe that there takes place a kind of dimensional reduction from 1+ 3 to 0 + 3
dimensions at T # 0. It would be interesting to see a similarity to the Coleman-Mermin-
Wagner theorem [151, 152], which claims that the lower critical dimension is 1+2 for thermal
fluctuations [153]. In the case of T' = 0, the imaginary part in Gy, becomes important to lead
to no divergent behavior; quantum fluctuations are gentle and only shifts the critical point.
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The above considerations are insufficient for the possibility of the phase transition due
to the only consideration for the second-order phase transition. Next, we shall introduce the
fourth-order and sixth-order vertex functions to see whether the system undergoes the first-
order phase transition. The sign change of the fourth-order vertex function by fluctuations
has been first shown by Brazovskii at 7' # 0 and Dyugaev at "= 0. The integral I5(7r) in
'™ which will be seen in Eq. (6.1.43) can be evaluated as,

T [~ 1 T 1/2 ~1/2 7q’s 1/2 —3/2 anT's
I =—— — | —— — “*coth .
o) =gz [0 |5 (qare) 7+ () o (U5
(6.1.38)
Looking into the behavior around 7z = 0, we find that,
Tq. _
bmﬁ:—%;ﬂ@w for T #0, (6.1.39)
while,
qc —-1/2
IﬂfR):-—Za;Eyﬂgq%/ for T =0. (6.1.40)

This result shows that the effects of fluctuations lead to the divergence of the integral I, near
the phase boundary. Unlike 7z, quantum fluctuations also give rise to a singular behavior,
while it is less drastic than thermal fluctuations. These features can be understood as for
the case of 7. The expression (6.1.33) is physically given by summing up the “dangerous
diagrams,” which are composed of bubbles of the renormalized propagator in the chiral-
restored phase,

Gﬁg(iwn7 q) = Gps(iwna q;T = TR)
1

= , 6.1.41
(4P — P + o] (o141
and also represent the long-range interaction among chiral pair fluctuations,
L(k) = TZ/ P9 G (0 )R (—iwn ke — q) (6.1.42)
- (27T)3 ps nsy ps nsy * b

We can easily see that L(k) becomes the most singular and L(k) — —Iy(7g) as k — 0: the
singularities in GF (iw,, q) and GF (—iw,, k — q) come closer as k — 0 to make the integral
divergent. Finally, we find,

1 -+ %IQ(TR)

T = (27)3p- 3 2TR)
( ﬂ-) 1 — )\IQ(TR)

6(q1 + g2+ g3 + qu), (6.1.43)

assuming the form of the condensate as ® = Asin(q.z). Hence, the sign of I'® is changed at
the point, 1+ %IQ(TR) = 0, which suggests that the phase transition is of first order, i.e., the
fluctuation-induced first-order phase transition.
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In the above discussion, the O(4) model including four fluctuation fields is considered. We
next extend the discussion to the O(NN) model. For arbitrary N, Eqgs. (6.1.26) and (6.1.28)
are recast into,

o= v [ Ehe@e g+ (n+ T ) 1

(2r)? 2 3
o= el | (jﬂ‘;cb(q)@(—qwg(11<r3>+N3‘ 1h<ro>). (6.1.45)

Consequently, I'® is modified as follows:
1 + 10— N)\[2(TR)
N+2 /\12< )

In the case of N = 1, the result obtamed in [88] is reproduced, and the result for N = 4
coincides with Eq. (6.1.43). In the case of N > 10, on the other hand, the fluctuation-induced
first-order phase transition does not occur because I'¥ never becomes negative.

Next, we consider the continuity of the roles of fluctuations across the R-boundary. We
have found that the effects of fluctuations are remarkable for the phase transition, and the
role of thermal fluctuations is more profound than that of quantum fluctuations. On the other
hand, it has been shown that the fluctuations in iCP® are important to cause the instability
of one-dimensional structures at finite 7' [84]: the scalar or pseudoscalar correlation function,
fa(r) = (¢a(r)da(0)) where ¢, denote the quark bilinear fields in scalar or pseudoscalar
channel (i.e., ¢g = ¥ and ¢; = iys7ith), algebraically decays at large distances due to the
low-energy NG excitations. It is in accord with the Landau-Peierls theorem [93, 131]. For
definiteness, we here consider the DCDW condensate. There appear three NG modes (5;)
with the anisotropic dispersion w? = A;k? + B;k}. In the case of T = 0, we find

d*k 1
(V2N — 1.4
(Bilr)"yr=0 CZ/ (2m)* k2 + Ak2 + Bkt (6.1.47)

where k, is the momentum in the direction parallel to the wave vector of the modulation,
while k; is that in the directions perpendicular to the modulation. Here the coefficients
¢i, A;, and B; can be evaluated within chiral effective models [28]. The above integral is
convergent in the infrared region. In the case of T # 0, on the other hand, we find

<5(T) B CTZ/ /AL d’k, 1
i(r))rse = @ l 2w? + Ak2 + Bkt

T
871'\/ Asz

which is divergent in the infrared region (lll — 0). The most dominant contribution comes
from the lowest Matsubara frequency w, = 0,

M @2k 1
(Bi (1)) 70 ~ ¢ / /l Cr) AR+ AT (6.1.49)

®A similar argument has been given for the LO-type liquid-crystal states [154].

' = (27r)3)\

o(q1 + g2+ g3 + qa). (6.1.46)

1n<AJ_lJ_), (6148)
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and exhibits an infrared singularity due to the effective dimensional reduction. This implies
that thermal fluctuations play a more important role in the infrared singularity than quantum
ones. In this way, we can see the similar features to our results obtained in the previous
subsection.

The stability of the DCDW phase an also be understood in the same way. Here the
correlation function of the order parameter ¢z takes the form [84, 85],

(93(2)3(0)) ~ e BE=5OF (6.1.50)
We find that for T' = 0,

) B d4k’ 1— ezkzz
(Bs(2) = 3O )0 = 3 | o B
_ zkzz

C3
_ dk dk. | d 6.1.51
1673+/B; / 0/ / m/& T AR+ a2 ( )

where = v/B;k? . Furthermore, putting y = \/22 + k2, we can obtain.

_ 1k:zz

(18s(2) = Bs (O }r=0 = 167r2\/_/ dk/ ydyy 2+ Azk2

3 —47 ' yl2]
T —— d 1 — 3 Y
1671'2\/14.333/ J c )

C3
—A for 1 6.1.52
Torvam, lorlarse |zl (6.1.52)

where the ultraviolet cutoff A is inserted. In the case of T' # 0, on the other hand, the leading
contribution comes from the lowest Matsubara frequency,

9 Pk 1 — etk=2
([B3(2) = B3(0)] )70 ~ C3T/ (27)3 A;k2 +ng4

ol / dk. / dr
= T
87'('2\/ Bs A3k2 + a2
1/2
CgT A —A; x|z
= doe——. 6.1.53
87'('\/ A3Bg fL‘ T ( )

Here we insert the regulator,

_1/2A‘Z| 733
2 c3T A 1—e
1Ba) = Bu 000~ Mg ) o
c3T 1/ _ € _
= gg%—gmjm[ (4317AJ21) = T(e) + T(e, A7 V*Al2))
CgT

87'('\/ Ang

In (A;1/2A|z]> for large |2/, (6.1.54)
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which logarithmically diverges in the limit |z| — oo, Similarly, the same results can be
obtained for other order parameters. Here thermal fluctuations are still important for the
same reason. Therefore, we can conclude that the correlation function algebraically decays
only for T'# 0 and the DCDW phase exhibits the feature of quasi-long range order [84] (see
also [85] for real kink crystal). These results may suggest some continuity of the roles of
fluctuations before and after the phase transition, as far as the one-dimensional modulation
is concerned.

6.1.4 Singularlity in the thermodynamic quantities

It is well-known that fluctuations affect the thermodynamic quantities around the phase
boundary. Singular behavior in various susceptibilities (the second derivatives of the ther-
modynamic potential) are characteristic features near the critical point of the second-order
phase transition; the specific-heat sigularity, C,, ~ (T — T.)~*/2, has been shown due to fluc-
tuations at the critical temperature 7, of superconductivity, while there is generated a finite
discontinuity within the MFA. In the context of the usual chiral transition, the divergence of
the quark number susceptibility, ON/Ou, has been discussed [155].

The singular behavior of the propagator gives rise to new types of sigularities in the ther-
modynamic quantities for the inhomogeneous phase transition. In the context of the FFLO
state in superconductivity, Ohashi have indicated the divergence of the electron number due
to the fluctuation [129], where N ~ 77!/2 within the linear approximation, which means that
the first derivative of the thermodynamic potential becomes singular. As we have seen in
the previous section, 7 is renormalized to keep it to be positive definite by the non-linear
effects, and the singularity mentioned above can not be observed. However, its remnant
should be observed. Thus, the fluctuation-induced first-order transition is characterized by
the discontinuity and singular behavior of the first derivative.

In the following, we shall discuss the quark number and the entropy for the inhomogeneous
chiral transition. In the chiral-restored phase (& = 0), the thermodynamic potential is given
by,

Q@ = 0) = Qf—vaZ/ ’q (G2 (iwn, q)) . (6.1.55)

which is a simple generalization of Eq. (6.1.9) with a replacement of 7 by 7z. The quark
number density can be written as,

. 0 =0
Gipe (it q)@ﬂgs(wn, q), (6.1.56)

where, NIV
ng ==L [ pdp(flp—n) — flp+p). (6.1.57)
™ 0

Using Eq. (6.1.41) and [; derived from Appendix E, the fluctuation effects then can be seen
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separately:

1 NfNCQC 1 qc 2p — (.
L A v 72 8172 / pdp [eBe+072  e=Bri/2]2 (4+ D 1n‘szr G for T'#0,
(6.1.58)
while,
NyNA? — qe
nwnf—m (4,u+qcln T for T =0, (6.1.59)

as the leading contribution. Thus we can see a singular behavior at T # 0, while at T'= 0
. : o ) —1/2y . :

only a finite gap is produced. A similar divergence (ox 75, /%) is also observed in the entropy.

The entropy density is given by,

s—sf—ZZ/ K lnGR (iw,

where,

(1w, )%Hgs(iwn,q), (6.1.60)

2NN,

p pdp [(2p — p) In(1 + e PPy 4+ (2p + p) In(1 + e_ﬂ(p_“))} . (6.1.61)
0

Sf =

The second term gives a minor contribution (o< In 75), while the leading contribution comes
from the third term,

1 NyNege /°° p(p+ 1) gg Tep | 2P %
7-}1%/2 8mi3~1/2T [eBp+m)/2 4 e—ﬁ(p+u)/2]2 P (2p+q.

SNSf—

) . (6.1.62)

around the phase boundary. Such a singular behavior may be reflected in the particle produc-
tion during relativistic heavy-ion collisions, if the system crosses the phase boundary. Here
it would be worth mentioning that the entropy anomaly may also be a signal of the FFLO
state.

6.2 Stability of the DCDW phase against the fluctua-
tion in the presence of the magnetic field

In this section, we calculate the effect of the NG modes by using the low-energy effective
potential described by the order parameter in the presence of the magnetic field while the
NG mode excitations destroy iCP at the finite 7" in the absence of the magnetic field [84, 85].

To this end, we introduce an effective potential, which is composed by some low order
terms with respect to the order parameter A(x), to approximately describe the original
effective potential, V(A(x)), around the minimum point, A(x) = A¢(x). The form of the
low-energy effective potential is determined only by the symmetry of the system. In the
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following, we consider only the one-flavor case for simplicity. By the symmetry of the NJL
model in the presence of the magnetic field, the effective potential renders,

V(A(®)) = az| A(@)* + a3 B Im[A(2) 9, A" ()] + cua A()[* + | 0:A ()]
+ a5 B; Im[0? A(x) ;A" ()] + asp B; Im[|A(m)|2A(m)8iA*(a:)}
+ aga| A () |® 4 g | A ()P |A(Z) | + agRe0;A(x) A* (x)]? + a6d|8i2A(azé\22, Y

up to the sixth-order terms. Here we can not obtain the explicit form of the coefficients but
the details of the coefficients are not important in the present analysis. Note that, in the
presence of the magnetic field, the form of the odd order terms is restricted as in Eq. (6.2.1)
due to the peculiarity of the NJL model (for detail see the Appendix C). In Eq.(6.2.1),
we explicitly write the magnetic field dependence in the coefficients of the odd order terms
because they should vanish in the absence of the magnetic field. When only the second
derivative of the time is considered, the effective Lagrangian takes the form,

L= d|o,Ax)|]> - V. (6.2.2)

For simplicity, the direction of the magnetic field is taken along the z direction, B = Bz. If
we consider DCDW as the ground state, Ag(x) = me'?*, where the wave vector g is taken

parallel to the magnetic field [45], the effective potential can be written as,
V(Do) = agm?® — asBm?q + cgam® + ayym?¢® + asa Bg*m?

— agsBmiq + agam® + agym*® + agem?q?. (6.2.3)

The extremum conditions can be obtained as,

0 IV (A)
- Om
= 2m(ay — a3Bq + 20u,m* + ang® + 5. Bq° — 205, Bm*q + 3agam” + 206m°¢" + aeq”),
(6.2.4)
OV (Ay)
0=
Jq
=m*( — a3B + 2auq + 3a5,B¢° — a5 Bm® + 2a6m*q + 4ae.q°). (6.2.5)

Then we introduce the fluctuations d(x), 6(x) around the ground state. A is represented as,
A(x) = (m + §(z))e' T (6.2.6)

including the fluctuations. If the second order terms about the fluctuations are kept, the
effective potential renders,

V(A) = V(Ag) + C16% + 2C560.0 + C3(0:0)* + C4(0:6)* + Cs [(9.0)* + (9.0)?]
+ 2C60.00%0 + ag. [(070)” + (070)%] (6.2.7)

)
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where we redefine as mf(x) — 6(x). By using the extremum conditions (6.2.4), (6.2.5), the
coefficients are obtained as,

Cy = dayym?® — 4o Bm?q + 12a6,m* + dagym?¢?, (6.2.8)
Cy = —ag Bm? + 2ag,m*q, (6.2.9)
B
Cs = 2—q(—045me2 + 2a6,m°q) (o3 + a5aq” + aspm?), (6.2.10)
Cy = aup + a5, Bq + agm?® + doggm® + 206.¢°, (6.2.11)
Cs = 205, Bq + 4a.q, (6.2.12)
06 = Oé5aB + 4@60q. (6213)
Furthermore, the equations of motion about the fluctuations, % = 0, take the form,
— dy020 — C10 — C0.0 + C10*5 + C50%5 + C0%0,0 — a0 = 0, (6.2.14)
— dy020 + C50.6 + C30%0 + C50%0 — C50%0.6 — a.0'0 = 0, (6.2.15)

By the Fourier transformation, the equations can be rewritten in the momentum space (w, k)
as,

d2w2 — Cl - C4k32 — 051{?3 — 0660k4 ZCQkZ -+ i06k2l€2 5 —0 (6 9 16)
—iCok, — iFKk%k, dow?® — Csk? — Csk? — agk? 0 ) o
When the matrix is diagonalized, two dispersions are obtained as,
2 1 2 222 2 4
wi = Cy+Cuk*+ | C5 + k:+ O(kY)|, (6.2.17)
ds C
2 1 2 _ 222 2 4
dg C(1

where wy represents the massive mode and wy denotes the massless mode. It is the fluctuation
of the massless mode to pay attention because the massless mode gives rise to the infrared
divergence to destroy the spatial structure of the ground state. In the following, the massless
mode (6.2.18) is represented as u(x). From the dispersion, the free energy, F', about u(x)
renders,

F = / P {03 [Vu(x)]* + (05 — g—%) [B.u(x))” + 0((v2u)2)} . (6.2.19)

Using the free energy, we can evaluate the correlation function of u(x) as,

(w@f) ~ [ ) u(aye

ke dSk
1 :
1 Cyk? + (G5 — &) k2 + O(kY)
~T [k.+O(L™)], (6.2.20)
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L and k. denote the length of the system and the ultraviolet cutoff, respectively. In the
present case, if we consider the infinite system, L. — oo, the correlation function remains
finite and there is no infrared divergence. Therefore, it is found that the DCDW phase is
stable against fluctuation. On the other hand, when B = 0, we can see that the distribution
changes to w3 ~ k* + O(k*) for C' = 0 from Eq. (6.2.10), which corresponds to the dispersion
argued in Ref. [84]. In this case, the correlation function is evaluated as,

) ke A3k
)~ | o
~ Tn(k.L), (6.2.21)

which has a logalithmic divergence for L — 0. Therefore the DCDW phase is unstable
against thermal fluctuations. From the above argument, we can conclude that the DCDW
phase is stabilized against the fluctuations in the presence of the magnetic field.
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Chapter 7

Summary and outlook

In this thesis, we have mainly discussed the various phenomena due to axial anomaly in iCP.
In the presence of the magnetic field or in 1+1 dimensions, the energy spectrum may be
asymmetric about zero with DCDW and spectral asymmetry gives rise to axial anomaly.

First, we have shown that quark matter has the spontaneous magnetization in the DCDW
phase where the response to the external magnetic field changes from the one in the usual SSB
ohase or the chiral-restored phase; the term linearly dependent on the magnetic field emerges
in the thermodynamic potential. In Ref.[49], they have simply discussed the possibility of
the spontaneous magnetization by using the WZW term in the effective meson Lagrangian.
However, we have seen that AQM has not only the anomalous contribution closely related
to the WZW term but also the contribution of valence quarks. In this sense, the fermion
degrees of freedom and their dynamics are indispensable. Thus we can say that DCDW
provides a realistic ground where the spontaneous magnetization is realized. Furthermore
the spontaneous magnetization discussed here has an interesting feature different from the
usual spin alignment [94]: the magnetization in the DCDW phase is caused by the different
operators from the naive magnetic moment.

We have emphasized that spectral asymmetry is important for the mechanism of the spon-
taneous magnetization. Since the complex order parameter A(r) is necessary for the energy
spectrum to be asymmetric [46], it is conceivable that there is no spontaneous magnetization
in the RKC phase with the real order parameter A(r). On the other hand, the spontaneous
magnetization should emerge in the similar way in the phase with hybrid chiral condensate
[96].

For the ferromagnetic transition in the DCDW phase, the magnetic susceptibility does
not diverge. This behavior is different from the ferromagnetic phase transition in the spin
system. Furthermore, we have discussed the possible existence of the massless mode like
magnon in the DCDW phase. By counting the number of the independent massless modes
in the ground state, we found that there are only pions as the NG modes in this case. The
result that the massless mode corresponding to magnon does not appear is also different from
the spin system.

Secondly, we have discussed the effect of the finite current mass m. on iCP at B # 0.
The thermodynamic potential around the phase transition is obtained by the generalized GL
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expansion based on the NJL model. It is found that the magnetic field extends the massive
DCDW phase over the low density region similar to the DCDW phase in the chiral limit, while
m. tends to reduce this phase. Then, there is the first order phase transition between the
massive DCDW phase and the homogeneously broken phase. Furthermore, chiral symmetry
is strongly broken in this phase compared to the homogeneously broken phase.

Within our analysis, the magnetic field seems to increase the critical temperature. A
mechanism similar to the magnetic catalysis should lead to this behavior. On the other hand,
we have adjusted the coupling constant of the NJL model to estimate the qualitative influence
of the inverse magnetic catalysis. As a consequence, the critical temperature decreases.
However, the massive DCDW phase can develop in the region: u/T < 1 if m, is sufficiently
small. Therefore we suggest that iCP can be found by the lattice QCD simulations just
by choosing some proper method, for example, the reweighting method or the canonical
approach. Since there is few work where the local chiral condensate is discussed [156], it is a
challenging work to directly confirm the existence of iCP by the lattice QCD simulations.

Thirdly, using the duality relation, we have discussed the roles of axial anomaly and
nesting in the context of iCP. We have seen that the NJLy model has U(1) x U (1) g symmetry
in the classical level, but symmetry is broken due to axial anomaly in the presence of the
gauge field, U(1), x U(1)g — Uy(1). Invoking the technique of the fictious gauge field,
B* = (p,0), such anomaly effect can be built in the thermodynamic potential in medium
as anomalous quark number, which is given by spectral asymmetry of the quark field [46].
The NJL; model can be written as another form by way of the duality transformation. New
Lagrangian has a suitable form to describe a kind of superconductivity in the presence of the
magnetic field, which resembles the FFLO state in the condensed matter physics.

After the duality transformation we have seen a different manifestation of axial anomaly:
spectral asymmetry of quasiparticles does not necessarily implies the anomalous number in
this case. Instead, anomalous magnetization is generated for the complex order parameter.
Existence of magnetization means the different numbers for L- and R-quarks and leads to
the different sizes of the Dirac seas. Consequently, the FF state distinctively behaves in the
magnetic field due to anomaly, and the phase diagram becomes much different from the one
for the FF state in condensed matter physics. It develops, once the magnetic field is applied,
i.e., the lower critical field hXf = 0. We have confirmed this result by considering an anomaly
free-model, two flavor NJLy model, where the FF state appears beyond the lower critical field
as in condensed matter physics.

Based on these considerations we have discussed how nesting plays in the context of
iCP. In the case of the anomaly free model we have first seen that the usual nesting (type-I
nesting) works for both chiral spiral and RKC; the wave number becomes O(2u). After the
duality transformation we have considered the different type of nesting (type-II nesting) in
the context of superconductivity. Using the concept of the type-II nesting, we have shown
that the type-II nesting holds for both cases. Interestingly, we have observed an ideal type-II
nesting for the LO state, where the new phase is brought about by the second order phase
transition, and the wave number smoothly increases from the zero value to the maximum
value of 2u. For the NJL; model, anomaly modifies these pictures, especially for chiral
spiral. Sometimes one may attribute the relation ¢ = 2u to the type-I nesting, but we have
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emphasized that axial anomaly may be mainly responsible to this relation to conceal the
nesting effect: nesting effect should be really appreciated in anomaly-free models.

Besides, we would like to make a comment about a phenomenological perspective of our
result. If there is the low dimensional system, where all right(left)-going electrons have
up(down) spin, a new type of superconductivity, which corresponds to our FF state and
reflects anomaly may be found. If it can be created, we can see the FF state for a tiny
magnetic field.

Fourthly, we have discussed the effects of chiral pair fluctuations on the inhomogeneous
chiral transition. We have taken into account the non-linear effects of chiral-pair fluctuations
in a systematic way beyond the linear approximation. Eventually, we have elucidated the
salient roles of quantum and thermal fluctuations separately; the latter is more drastic than
the former due to the dimensional reduction, but both lead to the fluctuation-induced first-
order phase transition. The curvature parameter 7 is renormalized by the fluctuation effects
to be positive definite at T" # 0, while for T = 0 it is mildly shifted from the one within
MFA. Thus, we have observed that the second-order phase transition is prohibited by thermal
fluctuations. More importantly, the dangerous diagrams composed of the bubbles of two
fluctuation Green’s function become essential and change the sign of the fourth-order vertex
function for both the T"= 0 and T" # 0 cases. The sign of the sixth-order vertex function can
be shown to be positive definite, and thus we can clearly see the first-order phase transition.
These features are brought about by the unique behavior of the dispersion of chiral pair
fluctuations, and also common in any inhomogeneous phase transition.

The first derivative of the thermodynamic potential exhibits a singular behavior through
the momentum integral, since the dispersion of chiral pair fluctuations has a minimum on the
sphere |q| = ¢.. To figure out such a singular behavior, we have evaluated the number density
and entropy density, with the result that the fluctuation-induced first-order phase transition
can be characterized by the discontinuity and singular behavior of the first derivatives. It
would be worth mentioning that our formalism to treat the non-linear effects of fluctuations
may also be applied to other cases, such as the FFLO state in superconductivity; the effect of
the Cooper pair fluctuations are composed of the particle-particle ladder diagrams instead,
but the dispersion relation has a similar feature discussed here. Accordingly, the entropy
anomaly may be a possible evidence for the phase transition.

Furthermore, we have considered the stability the DCDW phase against the fluctuations.
While it has been known that the thermal fluctuation induces the logarithmic divergence in
the correlation function of the NG modes, we have found that the quantum fluctuation does
not give rise to any divergence in that. Therefore, the DCDW phase becomes stable and
shows the long range order at 7' = 0. The result also implies that the effect of the thermal
fluctuation is severer than the quantum fluctuation due to the dimensional reduction. On the
other hand, when the magnetic field is switched on, the dispersion relation of the fluctuation
changes and the DCDW phase is stabilized even at finite temperature.

Finally, we would like to present some outlooks of our works. From the phenomenological
view, it is important to obtain the phase diagram of quark matter with the finite current
quark mass. Since our analysis about the massive DCDW phase works only at high 7', we
need investigate the growth of the massive DCDW phase at zero or low T to be applied to
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quark matter in neutron stars. In particular, in order to explain the strong magnetic field
in neutron stars by the mechanism in Chapter 3, it is necessary to study the appearance
of the massive DCDW phase in more realistic situations such as under charge neutrality
or chemical equilibrium. Besides, it is thought that quark matter including s-quarks may
exist with strong magnetic field in neutron stars. If the s-quark condensate is assumed to
be homogeneous as in the previous works [42, 157], the analysis in this thesis may be easily
extended to the three-flavor system. However, the relevant form and the properties of the
inhomogeneous condensate including s-quarks are open questions.

From the theoretical view, it is interesting to analyze the behavior of the vertex functions
by solving the flow equations within the renormalization group approach. The renormal-
ization group is somewhat different from the usual treatment due to the existence of the
special point ¢. in momentum space, but can be formulated in the similar way to the work
by Shankar [158] for fermion many-body systems, where the Fermi momentum corresponds
to g.. Since our formalism is very much similar to theirs, it is expected that our findings in
Chapter 6 may be confirmed by the renormalization group approach.

Throughout Chapter 6, we have discussed the properties of the R-boundary. As for the
L-boundary, it has been shown that it should be of first order in the case of DCDW, while of
second order in the case of RKC. Therefore, it would be interesting to apply our argument to
the L-boundary of RKC, where the number susceptibility has been suggested to be divergent
within the MFA [44].

Lastly, we would like to make some comments in the light of recent development about
topological materials, such as Weyl semimetal, in condensed matter physics [159, 160, 161,
162]. We can see that quarks in the DCDW phase exhibit the same dispersion as electrons
in the Weyl semimetal [163], which suggests the DCDW phase can be regarded as a Weyl
semimetal. For the Weyl semimetal, ¢ is related to the spin polarization of electrons, while
that denotes the wave number of the chiral condensate for DCDW. Therefore it is inter-
esting to investigate the similarities between DCDW and the Weyl semimetal. It has been
known that there is the anomalous Hall current and the Hall conductivity is approximately
proportional to ¢ [163]. Similarly, for DCDW, the Maxwell equations are modified and the
anomalous Hall current appears due to axial anomaly [164]. Tt is expected that, for DCDW,
the Hall conductivity has two parts, the anomalous contribution proportional to ¢ and the
contribution of valence quarks.
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Appendix A

Mermin-Wagner-Coleman theorem

In this appendix, we argue Mermin-Wagner-Coleman (MWC) theorem [151, 152], which
claims the relation between SSB of a continuous symmetry and dimension of the system.
Generally, if a continuous symmetry is spontaneously broken, the NG modes corresponding
to the broken generators appear as low energy excitations. MWC theorem tells that if a
symmetry is spontaneously broken in the 1+2 or less dimensional system, the broken phase
is not stable against the thermal fluctuations of the NG mode. In other words, the symmetry
can not always be broken.

Concretely, we consider the Heisenberg model, which is a model for describing ferromag-
netic transition. In the Heisenberg model, the spins with the O(n) symmetry are located on
each lattice site separated by the lattice spacing A\. The Hamiltonian renders,

H = —Jzzn:sg-sg, (A.0.1)

(i,§) a=1

where J denotes the coupling constant and the summation of ¢ and j is taken about the
neighboring sites. When the O(n) symmetry is spontaneously broken, the spins are aligned
in one direction. In the following, we consider the phase where the spins are aligned in the
direction @ = 1. The ground state is described as (Sp) = (1,0,---,0). If the fluctuation of
the direction, {o,}, is introduced, the spin with the fluctuation takes the form,

S = (A.0.2)
where ZZ: 02 < 1 is assumed. Then, the Hamiltonian is expanded as,
J n—1
H:Ho+§ZZ(a?—a§“)2+---. (A.0.3)
(i,j) a=1

If we consider the continuum limit, a — 0 and ignore the constant term, The Hamiltonian is
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calculated as,

H = g/dda:;(Vaa(a:))Q e (A.0.4)

where o represent the n — 1 NG bosons, which appear due to SSB, O(n) — O(n—1). From
the partition function, Z = e~"/T the two-point correlation function in the d dimension can
be calculated as,

1/a Ak eik

o @) =5 [ G (105

At T =# 0, the correlation function on the same point renders,

1/A

(02(0)) ~ / dkk4=3, (A.0.6)
0

This result means that the the expectation value of the fluctuation includes the ultraviolet

divergence at d < 2. On the other hand, from Eq. (A.0.2), the expectation value of the spin

renders,

(So=1y — 1 %ng) +oen (A.0.7)

a=1

Therefore, the divergence of the second term contradicts the spin alignement. In other words,
when the number of spatial dimension is less than two, it is seen that the ordered state is
destroyed by the thermal fluctuation. The result can be extended to the case of the general
field theory.

Within the 1+3 dimensional NJL model, three pions appear as the NG modes in the
two-flavor case when chiral symmetry is spontaneously broken. When the magnetic field
is applied, the motion of quarks is limited to one direction. However the important is the
number of the dimension where pions can move. The charged pions, 7+, are no longer NG
modes because they combine have the effective mass due to the coupling with the magnetic
field. On the other hand, the motion of the neutral pion 7" is not limited due to no interaction
with the magnetic field. Therefore it is 143 dimensional NG mode. From the above, it turns
out that even if the magnetic field is applied in the 143 dimensions and the motion of quarks
is limited, the chiral symmetry breaking do not conflict with MWC theorem.
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Appendix B

Proper time regularization

In this appendix, we explain the way of the proper time regularization (PTR). “Proper
time” has been considered by Schwinger for calculating the propagator of the fermion in the
presence of the magnetic field [99]. The proper time 7 is introduced in the way,

1 / dr exp (—TA), (B.0.1)
Ao

where A > 0 is assumed. Furthermore, integrating that equation about A, we can obtain the
relation,

*d ~d
InA = Inc — / il exp (—TA) +/ il exp (—7c), (B.0.2)
0 0

T T

where ¢ denotes the arbitrary constant value and the constant terms are irrelevant in most
cases. When this prescription is applied to the vacuum part in the thermodynamic potential
(2.1.27), it renders

d3p
Qvac :_Nch ?ZEs(p)
)
d4
—hmszN/ Zln Py — (Es(p) + ic) ]

e—0

dT ZT p ES ) +ie
= limg =Ny N, / E Z/ 0 }
—N;N, / d'pp Z/ dT T —pp—p] —(\/p§+m2+sq/2)]

NfNC de +m2+s /2)?
~]73/2 Z/ 75/2 ! (B.0.3)

After taking the momentum integral, the ultraviolet divergence appears on 7 — 0. Therefore,
introducing the cutoff in the lower limit of 7 integral to regularize the divergence, we can
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obtained the vacuum part with PTR as,

N Nc d z —T m ’ -7 me— ?
I / 1A% Ts/z{ (Vozma+as2)” | =r(Vizemi=ar2)"| (B.0.4)

© {73/2

PTR may be appropriate for the regularization in the anisotropic system compared to the
three or four momentum cutoff.
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Appendix C

Generalized Ginzburg-Landau
expansion

In this appendix, the thermodynamic potential is expanded about the order parameter and
its derivative with m. # 0. We also expand it around the external magnetic field (B) along
the z axis, based on Nickel’s work [89]. We use the 2-flavor NJL model and the Lagrangian
within MFA renders,
_ - < A(2)?

Lyr = Y[S5" — ReA(2) — iy ImA(2)]) — %, (C.0.1)
with A = m, + A(z), where A(z) is given in Eq. (4.1.2) and € is independent of the order
parameters. Sp corresponds to the propagator in the chiral limit,

1
D+

where D, represents the covariant derivative, D, = 0, + teA,. From the Lagrangian, the
thermodynamic potential takes the form,

Sk (C.0.2)

dx |Al?
V4G
x| A
V4G

Qu,T,B) = _éTrD,c,f,V Ln [S; — (ReA + Z"}/5T31H1A>} +/
= — % Z %Trp@f’v [SB (ReA + i75T3ImA)}j + / (C.0.3)

Jj=1

where the trace is taken about the Dirac space, color, flavor, volume and imaginary time.
Then odd j terms always vanish by the Dirac trace. We need the expansion up to the fifth
order about A and its derivative to obtain the thermodynamic potential constituted by the
terms up to the fourth order about A and its derivative and the first order in m.. The
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thermodynamic potential is expanded into the form in B = 0 [85],

o=+ [ G290+ % A - re (387)] + 120

-t [ TE[52 (a0 2maea) + 5 1811+ Am AP Re + [T~ mRes)
A2 2
+ G + O(m2), (C.0.4)

with the GL coefficients,

[(wr +ip)? + p?]

_1)j4NcNfTZ/ (;ljgg ,1 -, (C.0.5)
k

Switching on B, the energy spectrum in ay; should change the follows,

5 2N, Z lesB| Z/dpz (C.0.6)

p? — pg + 2|efB|n, (C.0.7)

AN,N;

where n denontes the Landau levels. Furthermore some odd order terms are added from the
derivative expansion. The third order term is derived from a part of j = 2 in Eq. (C.0.3),

T1
v 2TrD e f,V [SB (ReA + 275T3IH1A>]
T1
- — ——N Z/d4 d*z'tr{| [ReA(x3) + iv50 /ImA (3)]Sp(x, ')
[ReA (x3) + Z’}/50'fImA (xg)] — :cg)SB( :c)}
les B (1) A* AL
d3
:dg/ 7 [Im (A*A") + m JmA'], (C.0.8)
with o, = +1,04 = —1. It is convenient to use Sp in the momentum representation [99, 122].
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The fifth order terms are derived from a part of j = 2 in Eq. (C.0.3),

T1 < s s <\12
— V§TrDch [SB (ReA + 1’7 ImA)]

— — ZlN Z/d4xd4mltr{[ReA(:p3) + ivs0 ImA(23)]Sp(z, ')

X E[ReA’”(a:g) + i%afImA’"(xg)] (2 — 23)3Sp(c, a:)}

B |€fB| ¥ /dgw A AM
e Z i (5 +ing ) [ T (8087)
d3
= C~k4b / 7IH1AH/ + O(AA/H). (C09)
From a part of 7 =4,

T1 I SNE
— VZTYDCJCV |:SB (RGA—FZ’)/ T ImA)}

— — V_N Z/d4xd4 'd*x ”d%’"tr{[ReA(x;;) + iys0  ImA (23)]Sp(z, ')

x [ReA(x3) + ivs0, TmA (23))]Sp (2, o) [ReA(xs) + ivso  ImA(23))Sp (2", )
x [ReA(x3) + ivs0  ImA (x3)] (2 — x3)Sp(z", a:)}
(C.0.10)

Here we can see that only |A]PIm(A*A") ~ mc|APImA’ + 2m ReAIm(A*A’) term survives
after taking the Dirac trace and integrating. Therefore this term can be described as,

3
&4a/d [|APImA” + 2ReAIm(A*A')] (C.0.11)

where the coefficient is written as ay, for convenience. In summary, the thermodynamic
potential takes the form (4.1.4) up to fourth-order.
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Appendix D

Consistent UV regularization

We explain the UV cutoff procedure in the calculation of the physical quantities such as
quark number density or magnetization. In the free theory without the magnetic field h, the
fermion field renders,

0) O,
X(O)(x):/@em a€0)€(p)+b_p(o?]§ 2 ; (D.0.1)
2m ap 0(—p) — b=, 0(p)
(0)

where a, (b§)0) ) denotes the annihilation operator of the (anti-)particle with the energy £ =
|p|. When h is switched on, we define the creation and annihilation operators,

[ dp e (a,0(p) + b 0(—p)
x(@) = / o’ (ape<—p> - bnﬁ(p)) ’ (D-0-2)

where a,(b,) denotes the annihilation operator of the (anti-)particle with E' = (p — h)sign(p).
It seems that the energy spectrum of R(L)-particles and anti-particles is just shifted by —h(h)
from no magnetic field case. The h-vacuum |0) is defined by filling all the “negative energy
states”,

apl0) = 0 (p>h,p<0), (D.0.3)
allo) = 0 (0<p<h), (D.0.4)
b_pl0) = 0 (p>h,p<0), (D.0.5)
b0y = 0 (0<p<h) (D.0.6)
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In this case, the quark number density can be calculated as,

mo= 5 [Tl

A 0
= Jm (0 / %(%%‘5)‘ /A%(bpb‘p_é
0 q 1 A dp 1
T lala,— =)= [ Z(of p_,—=) 10
+/_A27r (“pap 2> /0 2w(‘p > 2)}”

hdp hdp

pr— 1 h— T h— T

Jim {]ﬁ 27r<0\apap|0> ‘/E 5;;<0!bpb-p|0>}

= 0, (D.0.7)

which means that the number density of R-particles is % and that of L-anti-particle is
simultaneously produced by just % compared to the normal vacuum. Therefore the net
quark number density vanishes but magnetization has the finite value, % It corresponds to
the right panel in Fig.5.2. Furthermore, the momentum cutoff A is introduced to regularize
the divergence.

Next we consider the quark number density in the FF state. By equating Eq. (D.0.2) with
Eq. (5.2.8), the Bogoliubov transformation is obtained as,

(
I N R AV (p>q/2)

a, = 5 S Gpigo/& TP+ bpgo/6o—D  (—q/2<p<q/2) , (D.0.8)

P bT_p_q/Q\/ € +D+ bp—q/2\/ €&p — P (p < _Q/2>
bp—q/?\/ €p+ P — bT_p_q/Q\/ €&p — D (p > Q/2)
B, = \/? ai“q/y/ep +p— bipfq/zw/ep —p (—¢/2<p<q/2) . (D.0.9)
P L aT_p_;,_q/Q\/ €p +p+ Aprq/2N/€p — P (p < _Q/Q)
Setting m = 0 in Eq. (5.2.8), it should reproduce the free field theory with h even if ¢ is still

finite. Therefore the quark number density in the FF state becomes independent on ¢ and
coincides with Eq. (D.0.7) at m = 0. At m = 0, the transformation renders,

-

a >0

ap = {éﬁﬁ g<0§, (D.0.10)
bg_q/z (p>q/2)

B, = aﬁﬂﬂ (O<p=<a2) (D.0.11)
=bl, e (m4/2<p<0)
Aptq/2 (r < —q/2)

Once we introduce the lower and upper momentum cutoffs independently, [Apin, Amax], t0
determine the appropriate one in the FF state, the quark number density renders from
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. R/ €p + €p —
= lim ‘7|/ = [ TO‘P - O‘T—pO‘—P> IJQTP + (ﬁgﬁp - Bipﬁ—IJ p2€ p} o).

p

(D.0.12)

Setting m = 0, the ground state becomes |0) and the quark number density can be calculated
as,

| e
n= lim (0] / T - aT_pOéfp) 0(p) + (5;5;7 - BT—pﬁ*p> ‘9(_17)] 0)
Amax —> O mm
Amin — —00
m1x+q/2 d 0 d
— Lm (0 / L (abay —bL0) + / L (abay — b0, | 10D,
Amax OO 0 27T m1n+q/2 27T
Amln —00
(D.0.13)

where the transformation (D.0.10), (D.0.11) is used. Therefore we can see that quark number
density in the FF state reproduces Eq. (D.0.7) at m = 0 when the momentum cutoff is put to
be asymmetric, Apax = A—q/2, Apin = —A—¢/2. 1t can be also confirmed that magnetization
is consistently calculated in the same way by using that asymmetric momentum cutoff.
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Appendix E

Integrals I,

We evaluate the integrals [,, by using the proper time formalism,
dSq o] B ( 2 2)\2
_ n—1 } : n—1,_—s|r+v(lal?—a2) " +alwmn|

The Matsubara frequency can be summed up as follows:

I(r) = (~1)"'T / (;i‘;?, /O s st 09 ot(anTs), (E0.2)

If r is sufficiently small, the main contribution to the integral comes from |q| ~ ¢.. Therefore,
the integral can be approximated as

_1\n—1 o] o]
I(r) ~ (Z)—QT/ qqu/ ds st {e‘s[r+47qg(q_qc)2] + e_s[r+47qz(q+qc)2]} coth(anT's)
a —00 0

_yeir e (1 )
ey A <§\/(47;s)3+\/ 232>3n_16_%th(“”T8>- (E0.3)
0 C

When n = 1,2, the proper time regularization should be introduced because the integrals
have an ultraviolet divergence. However, the leading contribution is not affected by the cutoff
at r ~ 0, except forn =1at T'= 0.
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