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Abstract
The integration of Generative Adversarial Networks (GANs) with Genetic Algorithms (GAs) represents a novel approach to 
enhancing cryptographic methods, particularly in addressing challenges posed by quantum computing and increasingly 
sophisticated cyber threats. This research focuses on improving encryption strength, adaptability, and robustness against 
decryption attempts. By leveraging the optimization capabilities of GAs to evolve neural network architectures within a 
GAN framework, we significantly enhance the generator’s ability to produce secure, quantum-resistant encryptions. The 
genetic algorithm optimized both the generator and discriminator networks over 300 generations, reducing generator 
loss from an initial 0.78 to a stable 0.65, while increasing discriminator loss, indicating improved encryption complexity. 
This study demonstrates the feasibility of using evolutionary techniques and adversarial training to create a dynamic, 
self-evolving cryptographic system, providing a foundation for future cryptographic innovations in quantum-resistant 
security. The methodology combines GA-driven network optimization and GAN-based adversarial training to address the 
challenges of quantum decryption and advanced adversarial attacks, setting new benchmarks for cryptographic security.

Keywords  Generative adversarial networks (GANs) · Genetic algorithms · Cryptography · Adversarial training · Quantum 
computing resistance

1  Introduction

In the evolving landscape of digital communication, the quest for unassailable cryptographic systems has never been 
more critical. With cyber threats becoming increasingly sophisticated, traditional cryptographic methods are constantly 
challenged, necessitating innovative approaches to secure data transmission. This paper introduces a groundbreaking 
methodology that leverages the synergistic potential of Genetic Algorithms and Generative Adversarial Networks (GANs) 
to fortify cryptographic mechanisms [1, 2]. By harnessing the adaptive capabilities of GAs in optimizing neural network 
architectures, combined with the adversarial training dynamics of GANs, our research inaugurates a new frontier in 
cryptographic security [3].

Historically, the field of cryptography has continually adapted to counteract evolving security threats. Recent advance-
ments in quantum computing and machine learning algorithms have escalated the urgency for cryptographic systems 
that can withstand these emerging challenges. Traditional methods like RSA, ECC, AES, and DES [4], while robust in their 
time, face limitations against such advanced threats. Genetic Algorithms, with their prowess in navigating complex 
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optimization landscapes, and Generative Adversarial Networks, known for their ability to generate data indistinguishable 
from genuine instances, present an untapped potential for enhancing cryptographic resilience.

The field of cryptography has continually adapted to counteract evolving security threats [5]. Recent advancements 
in quantum computing [6] and machine learning algorithms have escalated the urgency for cryptographic systems that 
can withstand these emerging challenges [7]. Genetic Algorithms, with their prowess in navigating complex optimiza-
tion landscapes [8], and Generative Adversarial Networks, known for their ability to generate data indistinguishable 
from genuine instances, present an untapped potential for enhancing cryptographic resilience [5]. Despite the consid-
erable advancements in cryptographic techniques, the integration of GAs and GANs within this domain remains largely 
unexplored. This research identifies a significant gap in the current cryptographic landscape: the lack of a dynamic, 
self-evolving cryptographic system capable of adapting to new threats in real time. Our investigation is motivated by 
the hypothesis that the amalgamation of GAs optimization capabilities and GANs’ adversarial training can yield a cryp-
tographic system of unparalleled security and adaptability [9].

This paper sets forth to explore this hypothesis through the development and evaluation of a novel cryptographic 
framework. Our objectives are twofold: first, to demonstrate the feasibility of employing GAs for evolving optimal neural 
network architectures for encryption and decryption; and second, to harness the power of GANs in simulating adver-
sarial scenarios that enhance the robustness of these cryptographic models against eavesdropping attempts [3]. The 
significance of our research lies not only in its potential to revolutionize the field of cryptography but also in its broader 
implications for secure communication in the digital age. By introducing a model that can autonomously adapt and 
evolve in response to emerging threats, we aim to establish a new paradigm in cryptographic security that can serve 
as a bedrock for future innovations.

This paper is structured as following this introduction, we delve into a comprehensive review of related work, highlight-
ing the evolution of cryptographic techniques and the role of machine learning in this domain. We then detail our meth-
odology, encompassing the integration of GAs and GANs, the design of our cryptographic models, and the adversarial 
training regime. Subsequent sections present our experimental setup, results, and a thorough analysis of the findings. 
We conclude with a discussion on the implications of our research, potential applications, and directions for future work.

2 � Related work

The field of cryptography has witnessed substantial advancements over the past few decades, driven by the escalating 
need for robust security mechanisms in the face of evolving cyber threats. Traditional cryptographic techniques, while 
foundational, are increasingly being challenged by the advent of quantum computing and sophisticated machine learn-
ing algorithms. This literature review delves into the evolution of cryptographic methods, the integration of machine 
learning, and the emergent potential of combining Genetic Algorithms with Generative Adversarial Networks (GANs) 
to enhance cryptographic resilience.

2.1 � Evolution of cryptographic techniques

Historically, cryptography has been the cornerstone of secure communication, with classical methods such as the Caesar 
cipher [10] and the Enigma machine laying the groundwork [11]. The introduction of public-key cryptography by Diffie 
and Hellman (1976) marked a paradigm shift, enabling secure key exchange over untrusted channels [12]. Subsequent 
developments, including RSA [13] and elliptic curve cryptography (ECC) [14], further strengthened cryptographic pro-
tocols, making them more robust against brute-force attacks [15].

However, the rise of quantum computing poses a significant threat to these classical methods. Shor’s algorithm, capa-
ble of factoring large integers exponentially faster than the best-known classical algorithms, could potentially break RSA 
and ECC, necessitating the development of quantum-resistant cryptographic algorithms [16].

2.2 � Integration of machine learning in cryptography

Machine learning has emerged as a powerful tool in enhancing cryptographic systems. Techniques such as deep 
learning have been employed to develop more efficient encryption algorithms and to identify vulnerabilities in 
existing protocols. Research has shown that neural networks can be trained to perform encryption tasks, mimicking 
traditional ciphers with comparable security levels [17].
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Generative Adversarial Networks (GANs), introduced by Goodfellow et al., have further revolutionized the field by generating 
data indistinguishable from real instances. GANs consist of two neural networks, a generator and a discriminator, which engage 
in a minimax game to improve each other’s performance. This adversarial training has been harnessed to simulate sophisticated 
attack scenarios, thereby fortifying cryptographic models against potential breaches [18].

2.3 � Genetic algorithms in cryptographic optimization

Genetic Algorithms (GAs), inspired by the principles of natural selection, have been widely used for optimization problems 
in various domains. In cryptography, GAs have been applied to optimize key schedules, enhance the strength of ciphers, and 
improve the efficiency of encryption and decryption processes [19]. GAs operates by evolving a population of candidate solu-
tions through selection, crossover, and mutation, iteratively refining them to achieve optimal performance.

The integration of GAs with neural network architectures has shown promising results in optimizing model parameters, 
thereby enhancing the overall robustness of cryptographic systems. Studies have demonstrated that GAs can effectively navigate 
complex search spaces, identifying configurations that traditional optimization methods might overlook [20].

The combination of GAs and GANs represents a novel frontier in cryptographic research. Our work explores this synergy to 
develop dynamic, self-evolving cryptographic models capable of adapting to new threats in real time. By leveraging the adap-
tive capabilities of GAs to optimize neural network architectures and the adversarial training dynamics of GANs, we introduce a 
cryptographic framework that enhances both encryption strength and robustness against decryption attempts [21].

In 2022, Gill et al. [22] explored quantum mechanics as the foundational pillar of quantum computing, emphasizing core 
principles like entanglement and superposition. Their study also delved into the challenges of realizing quantum-enabled com-
munication, particularly the need for fault-tolerant and reliable quantum computations. They highlighted the fragile nature of 
quantum states, requiring qubits to operate at extremely low temperatures and demanding precision in fabrication. However, 
their work notably omits any discussion on quantum security in the context of IoT communication.

Xu et  al. [23] addressed this gap by proposing a quantum key agreement protocol leveraging Green-
berger–Horne–Zeilinger (GHZ) states for secure key distribution. Their approach facilitates secret key exchange exclu-
sively among legitimate parties but falls short in providing detailed implementation insights. Similarly, Li et al. [24] intro-
duced a quantum authentication protocol for secure multiparty communication based on GHZ states. While innovative, 
their scheme does not sufficiently address vulnerabilities such as man-in-the-middle attacks (MIMA), denial-of-service 
(DoS) attacks, and traffic analysis threats.

In 2023, Primaatmaja et al. [25] conducted a comprehensive review of device-independent quantum key distribution 
methods. However, their analysis lacks consideration of techniques related to both quantum and post-quantum cryptog-
raphy. In the same year, Chawla et al. [26] examined the influence of quantum computing on classical cryptographic sys-
tems. Despite providing valuable insights, their study fails to offer an in-depth exploration of quantum-based solutions.

This innovative approach is underscored by our experimental results, which show significant improvements in genera-
tor and discriminator performance over multiple generations. The evolving GAN architectures, optimized through GAs, 
exhibit lower generator losses and higher discriminator losses, indicating enhanced encryption complexity and resilience.

3 � Methodology

This research employs a comprehensive approach to revolutionize cryptographic systems by integrating Genetic Algo-
rithms (GAs) and Generative Adversarial Networks (GANs). Our methodology is meticulously structured into three pivotal 
phases: the design of dynamic cryptographic models using GAs, the adversarial training of these models with GANs, 
and the evaluation of their effectiveness in simulated real-world cryptographic scenarios. Each phase is supported by 
rigorous experimental protocols and advanced analytical techniques, ensuring the reliability and impact of our findings. 
We can see the architecture diagram in Fig. 1.

3.1 � Phase 1: Genetic algorithm for cryptographic model optimization

We initiate our approach by leveraging a Genetic Algorithm (GAs) to optimize neural network architectures for secure 
message encryption and decryption. This process begins with the creation of an initial population of neural network 
architectures, configured by a predefined set of parameters dictating the number of layers and the neurons within 
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each layer. For simplicity, our models uniformly employ dense layers with ReLU activations for hidden layers and 
sigmoid for the output layer, focusing genetic variation on the network’s depth and breadth [27].

As the GA progresses through successive generations, it employs selection, crossover, and mutation operations to 
evolve these architectures [28]. Selection is executed via a tournament-based method, identifying architectures that 
excel in encrypting messages such that they can be accurately decrypted by the intended recipient while remaining 
secure against unauthorized eavesdropping [29]. This performance is quantitatively assessed by measuring decryp-
tion loss, serving as our fitness criterion.

Selection: In tournament selection, which is shown in Eq. (1), a subset of individuals is chosen randomly from the 
population, and the best individual (with the highest fitness) from this subset is selected as a parent [30].

where fi is the fitness of architecture i  and N is the population size.
Crossover: Crossover combines the features of two parent architectures to produce offspring can be achieved by 

using Eq. (2). A simple method is one-point crossover, where a single crossover point on both parents’ architecture 
representations is selected and all data beyond that point in either individual is swapped between the two parent 
architectures [31].

where � is a crossover coefficient between 0 and 1.

(1)P(selected) =
fi

∑N

j=1
fi

,

(2)Off springk = �.Parent1 + (1 − �).Parent2,

Fig. 1   GA-GAN cryptography Architectures diagram
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Crossover and mutation operations dynamically adjust the genetic makeup of candidate architectures, promoting 
exploration of the architectural parameter space.

Mutation: Mutation alters one or more genes in a parent architecture’s representation leading Eq. (3). This helps in 
maintaining genetic diversity within the population and avoids premature convergence [32].

where � is the mutation rate and N(0,1) is a standard normal distribution.
Crossover combines features from pairs of parent architectures to produce offspring, while mutation introduces ran-

dom alterations to an architecture’s parameters, ensuring a diverse genetic pool. This diversity is crucial for avoiding local 
optima and steering the population towards increasingly effective encryption-decryption schemes.

The Genetic Algorithm optimizes cryptographic systems by evolving neural network architectures across succes-
sive generations. Starting with an initial random population of architectures, each configuration undergoes selection 
based on its fitness score, which is determined by how well it encrypts and decrypts messages while resisting decryp-
tion by adversaries. By applying evolutionary operations such as selection, crossover, and mutation GAs continuously 
explores new architectural configurations. This iterative optimization process enables the cryptographic system to adapt 
to increasingly complex encryption scenarios, leading to architectures that traditional optimization methods might 
overlook. These evolved architectures improve encryption complexity, making it more difficult for unauthorized parties 
to decrypt the encrypted message, thus enhancing the robustness of the cryptographic system [33].

The optimization of Generative Adversarial Network (GAN) architectures using a Genetic Algorithm (GAs) is a critical 
component of our methodology. The process flow, as depicted in Fig. 2, outlines the iterative steps involved in evolving 
and refining GAN models to enhance their cryptographic capabilities.

3.1.1 � Initialize population with random GAN architectures

The process begins with the initialization of a population of random GAN architectures. Each architecture in the popula-
tion is defined by a unique configuration of neural network layers and neurons.

3.1.2 � Evaluate all architectures using GAN model

Each architecture in the population is evaluated by training and testing it within the GAN framework [34]. The perfor-
mance of each GAN is assessed based on its ability to encrypt and decrypt messages securely.

3.1.3 � Display best generator and discriminator losses

After evaluation, the generator and discriminator losses of each architecture are displayed. These losses serve as indicators of 
the model’s performance, with lower generator losses and higher discriminator losses indicating better encryption capabilities.

3.1.4 � Select parents based on GAN fitness

The selection of parent architectures is based on their fitness, which is determined by their performance on the test data. 
The architectures with the best performance are selected as parents for the next generation.

3.1.5 � Crossover and mutate to create next generation

Genetic operations such as crossover and mutation are applied to the selected parent architectures to create the next 
generation. Crossover combines features from pairs of parents to produce offspring, while mutation introduces random 
changes to maintain genetic diversity.

3.1.6 � Replace old population with new

The old population of GAN architectures is replaced with the new generation, which is expected to have better perfor-
mance due to the genetic operations.

(3)Mutatedi = Originali + �.N(0,1),
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3.1.7 � Check for maximum generations

This iterative process continues until a predefined maximum number of generations is reached. If the maximum is not 
reached, the process loops back to the evaluation step.

3.1.8 � Return best performing GAN architectures

Upon reaching the maximum number of generations, the process concludes by returning the best-performing GAN 
architectures. These architectures exhibit optimized configurations for secure encryption and decryption.

3.2 � Phase 2: Adversarial training with generative adversarial networks

With the optimized cryptographic models derived from GAs, we proceed to adversarial training using GANs. This phase simulates 
a cryptographic battleground where models (Alice and Bob) are trained to communicate securely in the presence of an adversary 
(Eve) attempting to decrypt the communication. Our GAN framework consists of two neural networks: a generator (Alice) that 
encrypts messages, and a discriminator (Eve) that attempts to decrypt these messages without the key.

In the GAN framework, adversarial training plays a critical role in enhancing security by simulating real-world attack scenarios. 
The generator network (Alice) is tasked with encrypting messages that are indistinguishable from noise, while the discriminator 
network (Eve) attempts to decrypt these messages without access to the encryption key. This constant competition forces the 
generator to continuously refine its encryption strategy, improving its ability to produce highly secure encryptions that evade 
decryption attempts by the discriminator. As the adversary (Eve) becomes more proficient at detecting patterns, Alice must 
evolve to maintain the encryption’s robustness. This adversarial dynamic mimic the real-world interaction between cryptogra-
phers and attackers, making the GAN-encrypted system more resilient to evolving decryption techniques.

Fig. 2   Flowchart of the Genetic Algorithm optimization process for GAN architectures



Vol.:(0123456789)

Discover Computing           (2025) 28:82  | https://doi.org/10.1007/s10791-025-09594-2 
	 Research

3.2.1 � Hyperparameter selection and optimization for GAN training

As we know that hyperparameter tuning is a crucial aspect of training Generative Adversarial Networks (GANs) effectively. 
The selection of optimal hyperparameters impacts both the computational efficiency and cryptographic strength of 
the GA-GAN framework. In this study, as show in Table 1, we employed a combination of empirical evaluation, genetic 
algorithm (GAs) optimization, and grid search techniques to optimize hyperparameters.

3.2.2 � Working mechanism of GANs

3.3 � Generator (Alice)

The generator’s role is to encrypt messages. It receives a plaintext message mm and a key k as inputs and produces an 
encrypted message e = G(m, k) . The objective of the generator is to create encrypted messages that are indistinguishable 
from random noise to the discriminator (Eve). The generator’s objective is to minimize the probability of the discriminator 
correctly identifying the fake data. This is achieved by minimizing the generator loss function.

The generator aims to produce encrypted messages that the discriminator cannot distinguish from real encrypted 
messages. This is achieved by minimizing the generator loss function shown as Eq. (4) [35], which measures the discrimi-
nator’s ability to correctly classify the generator’s output as fake.

where G represents the generator, D represents the discriminator, m is the plaintext message, and k is the encryption key.

3.4 � Discriminator (Eve)

The discriminator attempts to decrypt the message without the key. It takes the encrypted message ee and tries to deter-
mine if it is a valid encryption or just random noise. The output of the discriminator is a probability score D(e) indicating 
its confidence in the message being a valid encryption. The discriminator’s objective is to maximize the probability of 
correctly classifying real and fake data. This is achieved by maximizing the discriminator loss function.

The discriminator’s goal is to accurately distinguish between real encrypted messages (produced using genuine keys) 
and fake ones (produced by the generator). This is achieved by maximizing the discriminator loss function shown as 
Eq. (5), which measures the correctness of the discriminator’s classifications.

where G represents the generator, D represents the discriminator, m is the plaintext message, k is the encryption key, 
and e represents random noise.

The training process is iterative, with Alice striving to produce encrypted messages that Eve cannot decipher, thereby 
enhancing the encryption model’s robustness. Concurrently, Eve learns from both successful and unsuccessful decryption 
attempts, providing a dynamic and challenging adversarial environment [36]. This training not only refines the encryption 
capabilities of our models but also ensures their resilience against sophisticated decryption techniques.

The generator and discriminator engage in a minimax game, where the generator aims to minimize the discriminator’s 
ability to correctly classify the encrypted messages, while the discriminator strives to maximize its classification accuracy.

3.5 � Phase 3: Evaluation and validation

The final phase of our methodology involves a comprehensive evaluation of the evolved cryptographic models, focusing 
on their performance in simulated secure communication scenarios. We employ a suite of metrics tailored to assess the 
models’ effectiveness in real-world conditions. These metrics include:

(4)LG = Em,k∼Pdata

[

log(1 − D(G(m, k)))
]

,

(5)LD = Em,k∼Pdata

[

logD(G(m, k))
]

+ Ee∼Pnoise

[

log(1 − D(e))
]

,



Vol:.(1234567890)

Research	  
Discover Computing           (2025) 28:82  | https://doi.org/10.1007/s10791-025-09594-2

Ta
bl

e 
1  

K
ey

 h
yp

er
pa

ra
m

et
er

s 
co

ns
id

er
ed

H
yp

er
pa

ra
m

et
er

D
es

cr
ip

tio
n

O
pt

im
iz

at
io

n 
st

ra
te

gy
 u

se
d

Le
ar

ni
ng

 ra
te

 (η
)

Co
nt

ro
ls

 th
e 

st
ep

 s
iz

e 
du

rin
g 

gr
ad

ie
nt

 d
es

ce
nt

Ex
pe

rim
en

te
d 

w
ith

 0
.0

00
1 

to
 0

.0
1,

 fi
na

l s
el

ec
tio

n:
 0

.0
00

2 
(e

ns
ur

ed
 

st
ab

le
 c

on
ve

rg
en

ce
)

Ba
tc

h 
si

ze
N

um
be

r o
f s

am
pl

es
 p

ro
ce

ss
ed

 in
 o

ne
 fo

rw
ar

d/
ba

ck
w

ar
d 

pa
ss

Ev
al

ua
te

d 
32

, 6
4,

 1
28

, 2
56

. F
in

al
 S

el
ec

tio
n:

 6
4 

fo
r s

ta
bi

lit
y 

an
d 

effi
ci

en
cy

N
um

be
r o

f l
ay

er
s 

(g
en

er
at

or
 A

nd
 

D
is

cr
im

in
at

or
)

D
et

er
m

in
es

 n
et

w
or

k 
de

pt
h,

 a
ffe

ct
in

g 
ex

pr
es

si
ve

ne
ss

O
pt

im
iz

ed
 v

ia
 G

en
et

ic
 A

lg
or

ith
m

, b
es

t a
rc

hi
te

ct
ur

e:
 5

 la
ye

rs
 e

ac
h

N
eu

ro
ns

 p
er

 la
ye

r
A

ffe
ct

s 
ne

tw
or

k 
ca

pa
ci

ty
 fo

r p
at

te
rn

 re
co

gn
iti

on
Tu

ne
d 

be
tw

ee
n 

12
8 

to
 5

12
 n

eu
ro

ns
 p

er
 la

ye
r, 

op
tim

al
: 2

56
Ac

tiv
at

io
n 

fu
nc

tio
ns

D
et

er
m

in
es

 n
on

-li
ne

ar
ity

 in
 th

e 
ne

tw
or

k
Le

ak
y 

Re
LU

 fo
r D

is
cr

im
in

at
or

, T
an

h 
fo

r G
en

er
at

or
, i

m
pr

ov
in

g 
st

ab
ili

ty
D

ro
po

ut
 ra

te
H

el
ps

 in
 re

gu
la

riz
at

io
n 

to
 p

re
ve

nt
 o

ve
rfi

tt
in

g
Se

le
ct

ed
 0

.3
 b

as
ed

 o
n 

em
pi

ric
al

 te
st

in
g

O
pt

im
iz

er
O

pt
im

iz
at

io
n 

al
go

rit
hm

 fo
r u

pd
at

in
g 

w
ei

gh
ts

Ad
am

 o
pt

im
iz

er
 w

ith
 (β

1 
= 

0.
5,

 β
2 

= 
0.

99
9)

 fo
r b

et
te

r c
on

ve
rg

en
ce



Vol.:(0123456789)

Discover Computing           (2025) 28:82  | https://doi.org/10.1007/s10791-025-09594-2 
	 Research

•	 Decryption accuracy: Evaluating Bob’s ability to accurately decrypt messages encrypted by Alice, reflecting the integ-
rity of the communication.

•	 Resistance to Eavesdropping: Assessing the models’ robustness against Eve’s interception attempts, measured by 
Eve’s failure rate in decrypting the communications accurately.

This meticulous evaluation process not only underscores the models’ capability to secure communications against 
known threats but also highlights their adaptability to unforeseen challenges, marking a significant advancement in 
the field of cryptographic security.

3.6 � GA‑GAN synergy in cryptographic optimization

The integration of GAs and GAN in this research provides a powerful synergy that enhances cryptographic robustness. 
GAs optimizes the cryptographic system by evolving neural network architectures that can handle complex encryption 
tasks. At the same time, GAN’s adversarial training refines the security of the system by simulating real-world attack sce-
narios, where the generator constantly improves its encryption mechanism to resist decryption by adversarial networks. 
This combination allows for the creation of an adaptive, self-improving cryptographic system that evolves in response 
to potential threats, ensuring robust security even against advanced adversarial attempts.

4 � Pseudocode
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5 � Result and discussion

The results of our research provide a comprehensive analysis of the optimization and performance of Generative Adver-
sarial Networks (GANs) using a genetic algorithm for cryptographic applications.

5.1 � System specifications

All experiments were conducted on a high-performance computing system with the following specifications:
Processor: AMD Ryzen 7 5800X (AMD, Santa Clara, CA, USA).
GPU: Nvidia RTX 3070 (NVIDIA, Sunnyvale, CA, USA).
RAM: 16.00 GB
Operating System: 64-bit Windows 11.
Before delving into the specifics of our experimental results, it is essential to contextualize our approach by comparing 

it with several state-of-the-art cryptographic techniques. The comparison in Table 2, highlights the unique strengths and 
potential advantages of our GA-GAN-based framework.

5.2 � Detailed comparison analysis

The factors determining the classification as "low," "moderate," or "high" are based on established benchmarks and 
thresholds in cryptographic literature. Specifically:

Encryption strength: This is categorized based on resistance to cryptanalysis techniques such as differential and 
linear cryptanalysis. For instance, methods achieving a cryptanalysis success rate below 0.001% (as in GA-GAN) are 
rated as "Very High," while rates of 1–5% are rated as “Moderate” or “High”.

Adaptability: This measures the ability to dynamically adjust to new threats. Static cryptographic methods like RSA 
are rated as “Low”, while approaches using genetic algorithms for self-evolution are rated as “Very High”.

Computational efficiency: Benchmarks are derived from encryption/decryption time complexity. Methods with 
time complexity comparable to RSA (O(n3)) are considered "High," while those requiring iterative neural network 
training, like GA-GAN, are categorized as “Moderate” [42].

Quantum resistance: This evaluates the method’s susceptibility to quantum algorithms like Shor’s or Grover’s. 
Established cryptographic algorithms with known vulnerabilities are rated as "Low," while approaches showing theo-
retical resilience, such as GA-GAN, are rated as "Potentially High [43].

Our results indicate that the GA-GAN approach offers superior encryption strength and adaptability, making it 
a robust choice for future cryptographic systems that need to withstand both current and emerging threats [44]. 
This section details the evaluation metrics, stability analyses, and improvements observed over the course of 300 
generations.

5.3 � Computational complexity and GAN stability

While the combination of Genetic Algorithms and Generative Adversarial Networks presents a novel and power-
ful framework for cryptographic security, it does come with certain challenges, such as computational complexity 
and the stability of GAN training. However, our approach incorporates several mechanisms to mitigate these issues 
effectively.

Computational complexity: One of the key challenges in using GAs to optimize neural network architectures is the 
significant computational resources [45] required for evaluating large populations across multiple generations. Similarly, 
training GANs can be resource-intensive due to the iterative nature of adversarial training. To mitigate computational 
complexity, we implemented population size limits and tuned evolutionary parameters, such as mutation and crossover 
rates, to achieve efficient optimization without excessive resource consumption. Additionally, we limited the search space 
by constraining the neural network architectures to realistic configurations, thereby reducing the number of generations 
required for convergence. Our results show that the GA-GAN framework achieves substantial improvements in encryp-
tion strength while maintaining moderate computational efficiency, as indicated in our comparative analysis (Table 1).
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5.3.1 � Genetic algorithm complexity

The GAs optimizes neural network architectures across multiple generations. The complexity is governed by the 
population size P, the number of generations G, and the computational cost of evaluating each architecture, which 
includes training a GAN model for encryption and decryption tasks.

Population initialization:
Creating an initial population of P architectures involves sampling network configurations. If the search space 

includes L layers and N neurons per layer, the initialization cost shown in Eq. (6).

Fitness evaluation:
Each architecture is trained and evaluated for cryptographic performance. Assuming T training iterations for each 

GAN model and SS samples per iteration, the cost shown in Eq. (7):

Selection, crossover, and mutation:
These evolutionary operations occur in G generations. Assuming a linear selection complexity and constant cost 

for crossover and mutation per architecture, the total cost for these operations shown in Eq. (8) is approximately:

Combining these, the overall complexity of the GAs phase is illustrated as Eq. (9):

5.3.2 � GAN training complexity

The adversarial training involves a generator (Alice) and a discriminator (Eve) competing iteratively to improve encryp-
tion and decryption strategies.

Generator and Discriminator Updates:
Each training iteration updates the weights of both networks. For a generator with Wd parameters and a discriminator 

with Wd parameters, the complexity per iteration is shown in Eq. (10):

Total training cost:
Over T iterations with S samples per iteration and G generations as can be seen in Eq. (11), the total GAN training cost 

becomes:

GAN stability: Another common challenge is the stability of GAN training, as GANs are prone to issues such as mode 
collapse or oscillatory behaviour where the generator and discriminator fail to converge [46]. To enhance stability, we 
incorporated techniques such as batch normalization, early stopping, and adaptive learning rates during the GAN train-
ing process. These methods help in preventing the discriminator from becoming too strong, which can destabilize the 
training process, or the generator from producing unvarying outputs. Additionally, the genetic algorithm further con-
tributes to stability by continuously evolving and fine-tuning the GAN architectures, allowing the system to adapt and 
correct potential instabilities over successive generations. This combination of strategies ensures that the GAN-based 
cryptographic models not only perform well but also exhibit stable and consistent behaviour across training iterations.

5.3.3 � Combined complexity

The combined complexity of the GA-GAN framework integrates the costs of GA optimization and GAN training which 
is expressed in Eq. (12):

(6)O(P ⋅ L ⋅ N),

(7)O(P ⋅ T ⋅ S),

(8)O(P ⋅ G),

(9)O(P ⋅ T ⋅ S + P ⋅ G + P ⋅ L ⋅ N),

(10)O(Wg +Wd),

(11)O(G ⋅ T ⋅ S ⋅ (Wg +Wd)),
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5.3.4 � Mitigating computational overheads

To balance computational demands with cryptographic robustness, the following strategies were employed:
Limiting the population size P and the number of generations G to manageable levels without compromising optimi-

zation quality. Constraining the architecture search space by restricting L (number of layers) and N (neurons per layer) 
to realistic configurations. Using adaptive training techniques, such as early stopping and learning rate adjustments, to 
reduce T (iterations required for GAN convergence).

5.3.5 � Trade‑offs between complexity and security

While GA-GAN introduces moderate computational overhead compared to traditional cryptographic methods like RSA 
or ECC, the enhanced security and adaptability justify the trade-offs. The dynamic evolution of architectures ensures 
resistance to emerging threats, including quantum-based attacks, making it suitable for high-security applications where 
computational resources are less constrained.

(12)O(P ⋅ T ⋅ S + P ⋅ G + P ⋅ L ⋅ N + G ⋅ T ⋅ S ⋅ (Wg +Wd)),

Table 3   Summary statistics for 
generator and discriminator 
losses

Metric Generator loss(Alice-Bob) Discrimina-
tor loss(Eve)

Mean 0.654 1.175
Standard deviation 0.055 0.066
Minimum 0.468 0.922
Maximum 0.783 1.312

Table 4   List of Top 10 best 
performing generations

Rank Generation Best generator loss (Alice-Bob) Best discrimi-
nator loss (Eve)

1 147 0.468208 1.241247
2 74 0.508121 1.312027
3 224 0.495865 1.181218
4 100 0.507592 1.186315
5 146 0.507396 1.183389
6 134 0.516127 1.184224
7 125 0.551015 1.220032
8 188 0.551622 1.232629
9 54 0.537290 1.171664
10 287 0.537568 1.214837

Table 5   Mean and standard 
deviation of the losses over 
10 runs

Metric Generator loss (Alice-Bob) Discrimina-
tor loss 
(Eve)

Mean 0.616 1.192
Standard Deviation 0.054 0.032
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5.4 � Statistical analysis

The Table 3, presents the summary statistics for the generator and discriminator losses over all generations, highlighting 
the central tendency and variability of the loss values:

The mean generator loss was found to be 0.654 with a standard deviation of 0.055, while the discriminator loss had 
a mean of 1.175 with a standard deviation of 0.066. These statistics indicate a relatively consistent performance of the 
GAN across generations with some variations.

To identify the most effective architectures, we examined the top 10 generations with the lowest generator losses. 
The results are summarized in the following Table 4:

These generations demonstrate the capability of the genetic algorithm to identify highly efficient GAN architectures 
for encryption tasks. Generation 147 exhibited the best performance with a generator loss of 0.468208.

5.5 � Stability analysis

To assess the robustness of the best-performing architecture, we conducted multiple runs to evaluate its stability. The 
mean and standard deviation of the losses over 10 runs are summarized below in Table 5:

The stability analysis indicates that the best-performing architecture consistently produces low generator losses with 
minimal variation, demonstrating the reliability of the optimized GAN architecture.

The evolution of the generator and discriminator losses from the initial to the final generation shows significant improve-
ments which can be seen in Table 6:

The generator loss improved by 18.64%, indicating enhanced encryption performance. However, the discriminator loss 
increased by 37.18%, reflecting the increased difficulty for the discriminator to differentiate between real and encrypted 
messages as the generator became more adept at encryption.

5.6 � Quantum resistance evaluation

5.6.1 � Resilience against Shor’s algorithm

Shor’s algorithm exploits the ability of quantum computers to perform integer factorization and discrete logarithms expo-
nentially faster than classical algorithms. Traditional cryptographic systems, such as RSA and ECC, rely on the hardness of 
these mathematical problems, making them inherently vulnerable to Shor’s algorithm.

Key difference: The GA-GAN framework does not rely on factorization or logarithmic problems. Instead, it generates 
encryption keys and ciphertexts dynamically using genetic optimization and adversarial training, making it independent 
of vulnerabilities to Shor’s algorithm.

Let G(θ) represent the generator (encryption model), where θ denotes the model parameters evolved through the GAs. 
The ciphertext C is generated as shown in Eq. (13):

where P is the plaintext, and K is the key. The encryption process depends on θθ, which evolves dynamically, rendering 
static analysis (as used in Shor’s algorithm) ineffective.

(13)C = G(�, P, K ),

Table 6   Loss improvement 
over generations

Metric Initial value Final value Improvement (%)

Generator Loss (Alice) 0.783802 0.637561 18.64
Discriminator Loss (Eve) 0.922503 1.265228 − 37.18
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5.6.2 � Resilience against Grover’s algorithm

Grover’s algorithm reduces the complexity of brute-forcing a nn-bit key from O(2n) to O(2n/2). This poses a significant chal-
lenge for symmetric key cryptographic methods.

Key Adaptation in GA-GAN:

•	 The GA-GAN framework mitigates Grover’s advantage by:

–	 Dynamically increasing the effective key space through evolved architectures.
–	 Leveraging high-dimensional transformations that amplify computational complexity.

•	 Let the effective key space for the GA-GAN framework be denoted as Keff = 2n × T, where T represents the transformations 
applied through adversarial training. Grover’s algorithm would require 

√

O(2n ⋅ T ) queries to find the key, where T scales 
with the complexity of the evolving architecture.

For example, if T = 104, then the effective key space is expressed in Eq. (14):

Making Grover’s advantage less impactful by exponentially increasing the computational resources required.

5.6.3 � Dynamic evolutionary mechanism

The GA-GAN framework introduces further resilience by continuously evolving the generator network through Genetic 
Algorithms. This introduces unpredictability that quantum algorithms cannot exploit due to the non-deterministic nature 
of the optimization process.

Dynamic key evolution:
At each generation g, the parameters θg evolve according to Eq. (15):

where Δg​ represents the genetic variations (mutation and crossover). This ensures that the encryption mechanism adapts 
dynamically, further complicating decryption attempts.

The GA-GAN framework is inherently resistant to quantum-based decryption techniques, as it bypasses the reliance 
on static mathematical structures that are vulnerable to Shor’s and Grover’s algorithms. Unlike RSA and ECC, which are 
susceptible to quantum factorization and search algorithms, GA-GAN leverages dynamic key generation and evolving 
neural network architectures. Through genetic optimization, the encryption process adapts iteratively, rendering static 
analysis infeasible.

(14)Keff = 2n ⋅ 104,

(15)�g = �g − 1 + Δg,

Fig. 3   Generator loss over 
generations
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Against Grover’s algorithm, the GA-GAN model expands the effective key space exponentially by incorporating high-
dimensional transformations during adversarial training. For a key space of 2n and transformations scaling by T, the 
effective key space becomes 2n⋅T, significantly reducing the advantage of quantum search algorithms.

Additionally, the continuous evolution of the generator parameters introduces inherent unpredictability, ensuring 
that even powerful quantum algorithms cannot exploit deterministic patterns. These properties position GA-GAN as a 
robust cryptographic framework for future security needs in the quantum era.

5.7 � Visual analysis

Initially, the generator loss is relatively high, starting around 0.78. Over the first few generations, there is a significant 
drop, demonstrating the rapid initial improvement as the genetic algorithm optimizes the network architecture. In Fig. 3, 
throughout the generations, the loss values exhibit substantial variability, with peaks and troughs indicating the dynamic 
nature of the training process. However, despite the fluctuations, a general downward trend is observable, signifying 
the gradual improvement in the generator’s performance.In Figure By the end of the 300 generations, the generator 
loss stabilizes around 0.65, showing a notable improvement from the initial values. The consistency towards the later 
generations suggests that the genetic algorithm successfully identified and refined the network architectures to achieve 
lower generator losses, enhancing the GAN’s ability to encrypt messages effectively.

At the outset, the discriminator loss is relatively low, around 0.95, indicating that the discriminator initially finds it 
easier to differentiate between real and generated messages.

Fig. 4   Analysis of loss 
improvements over genera-
tions

Fig. 5   Distribution of genera-
tor and discriminator losses
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As the generations progress, the discriminator loss increases significantly, with frequent fluctuations. This increase 
reflects the growing challenge faced by the discriminator as the generator improves its encryption capability. The 
peaks and troughs in the graph signify the ongoing adaptation and competition between the generator and dis-
criminator networks. Around the midpoint of the generations, the discriminator loss shows considerable instability, 
with values oscillating between 1.0 and 1.3. In Fig. 4, this variability suggests periods of rapid learning and adapta-
tion, followed by phases where the discriminator struggles to catch up with the generator’s improvements. By the 
end of the 300 generations, the discriminator loss stabilizes around 1.2 to 1.3, indicating a higher level of difficulty 
in distinguishing real messages from encrypted ones. This consistent increase and final stabilization highlight the 
effectiveness of the genetic algorithm in enhancing the generator’s performance, thus making the encryption more 
robust and challenging for the discriminator to decode.

We have also plotted box plot that can be seen in Fig. 5, Distribution of Generator and Discriminator Losses pro-
vides a comparative visualization of the loss distributions for the generator and discriminator across all generations. 
The box plot for generator loss shows that the interquartile range (IQR) is tightly clustered around the median, 
indicating that most generator losses are concentrated within a narrow range around 0.65. The whiskers extend 
from approximately 0.55 to 0.75, covering the full range of observed losses. There are a few outliers above the upper 
whisker, indicating occasional spikes in generator loss. These outliers suggest instances where the generator faced 
challenges, possibly due to significant adaptations by the discriminator.

The percentage improvement in loss values for the generator and discriminator over successive generations in our 
optimized GAN model. In Fig. 6, the graph provides a clear visual representation of the enhancements achieved through 
our iterative optimization process.

In the case of the discriminator loss box plot has a higher median around 1.2, reflecting the overall greater difficulty 
the discriminator faces in distinguishing real from encrypted messages. The IQR for discriminator loss is wider than that 
for the generator loss, spanning from approximately 1.1 to 1.25. This spread indicates more variability in the discrimina-
tor’s performance. The whiskers extend from about 1.0 to 1.3, with several outliers below and above these values. The 
outliers below 1.0 suggest moments when the discriminator performed exceptionally well, likely due to temporary 
lapses in generator performance. The outliers above 1.3 indicate times when the discriminator struggled significantly.

6 � Quantifying decryption accuracy and resistance to eavesdropping:

To evaluate the effectiveness of our GA-GAN cryptographic model, we analyzed two key metrics: decryption accuracy 
and resistance to eavesdropping. These metrics provide insight into how well the optimized GAN architectures facilitate 
secure communication while resisting unauthorized decryption attempts.

Fig. 6   Discriminator loss over 
generations
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6.1 � Decryption accuracy

Decryption accuracy refers to the ability of the intended recipient (Bob) to successfully decrypt the message encrypted 
by Alice. In our experiments, this was indirectly measured through the reduction in generator loss. Over the course of 300 
generations, the generator loss decreased from an initial value of 0.783802 to 0.637561, reflecting an 18.64% improve-
ment in the generator’s encryption performance [47]. This reduction indicates that the generated encryptions became 
progressively more secure and efficient, ensuring that Bob could accurately decrypt the messages with increasing reli-
ability. The improved encryption robustness corresponds to more precise message decryption on Bob’s end, as a lower 
generator loss signifies stronger and more complex encryption. While decryption accuracy is not explicitly calculated 
as a percentage, this improvement in generator performance demonstrates that Bob’s ability to decrypt the messages 
has become significantly more effective throughout the optimization process.

6.2 � Resistance to eavesdropping

Resistance to eavesdropping measures the system’s ability to prevent an adversary (Eve) from successfully decrypting 
messages without access to the encryption key. This was evaluated by tracking changes in discriminator loss, which 
reflects Eve’s capacity to intercept and decrypt messages. Over the same 300 generations, the discriminator loss increased 
from 0.922503 to 1.265228, an increase of 37.18%. This rise in discriminator loss signifies that Eve’s ability to success-
fully decrypt the messages diminished as the generator improved its encryption techniques. The consistent increase in 
discriminator loss illustrates the growing difficulty for Eve to distinguish between real encrypted messages and noise, 
thereby enhancing the overall security of the cryptographic model against unauthorized decryption attempts. This 
rising failure rate for Eve demonstrates the robustness of the GA-GAN model in resisting eavesdropping, as adversarial 
attempts to decrypt the messages became progressively less successful.

The results from these metrics underscore the effectiveness of the GA-GAN framework in securing communication. The 
18.64% improvement in generator performance enhances the accuracy of decryption for legitimate parties (Bob), while 
the 37.18% increase in discriminator loss reflects the system’s strong resistance to unauthorized decryption attempts 
by adversaries (Eve). Together, these metrics demonstrate the ability of the GA-GAN model to create a dynamic, secure 
cryptographic environment that adapts to evolving threats, ensuring both the accuracy of legitimate decryption and 
the security of communication against interception.

The narrower distribution of generator losses suggests consistent performance improvements, while the broader 
distribution of discriminator losses indicates fluctuating challenges in keeping pace with the generator’s evolving encryp-
tion capabilities.

In Fig. 7, we can see that blue solid line shows the best generator loss per generation, demonstrating significant 
fluctuations throughout the training process. Despite these fluctuations, there is a clear downward trend in the early 
generations, indicating initial improvements in the generator’s performance. The generator loss stabilizes around the 

Fig. 7   Loss convergence over 
generations
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average value (blue dashed line) of approximately 0.65, which suggests that the generator has consistently improved 
and reached a stable state of performance.

The red solid line represents the best discriminator loss per generation, which exhibits more variability and a gener-
ally increasing trend. This indicates that as the generator improves, the discriminator faces greater challenges in distin-
guishing between real and encrypted messages. The discriminator loss converges to an average value (red dashed line) 
of around 1.2. This higher average compared to the generator’s average loss signifies the increasing difficulty for the 
discriminator in the face of an evolving generator.

The average generator loss (blue dashed line) at approximately 0.65 indicates the consistent performance of the gen-
erator across generations. The average discriminator loss (red dashed line) at around 1.2 reflects the overall increased 
difficulty for the discriminator as the generator’s encryption improves.

The convergence of these loss values over generations highlights the effectiveness of the genetic algorithm in opti-
mizing the GAN’s architecture. The stabilization of the generator loss at a lower value and the simultaneous increase 
in discriminator loss demonstrate the successful enhancement of the generator’s encryption capabilities, making it 
progressively harder for the discriminator to decrypt messages.

To further evaluate the robustness of our GA-GAN cryptographic framework, we propose the use of additional security 
metrics [48], as summarized in Table 7. The quantitative evaluation of cryptographic metrics is pivotal in assessing the 
security robustness and practical viability of any cryptosystem. In the case of GA-GAN, the key sensitivity and avalanche 
effect were subjected to rigorous testing across thousands of randomized samples. The results indicated performance 
close to theoretical ideals, showcasing effective diffusion and confusion, the two foundational principles of cryptographic 
design as laid out by Claude Shannon.

Fig. 8   Bar chart compar-
ing differential and linear 
cryptanalysis success rates for 
GA-GAN, RSA, and ECC

Fig. 9   Line graph showing 
the decline in Eve’s success 
rate during security game 
simulations
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In contrast to conventional cryptosystems like RSA and ECC, GA-GAN introduces adaptive security features through 
adversarial learning, enabling it to evolve resistance against newly emerging attacks. Although the time complex-
ity is marginally higher due to the GAN architecture’s computational overhead, the cryptographic strength gained 
in terms of randomness, key agility, and resistance to statistical and differential attacks significantly outweighs the 
performance trade-off.

Moreover, the entropy analysis supports the assertion that ciphertexts generated by GA-GAN are indistinguishable 
from random noise a key criterion for thwarting frequency analysis and known-plaintext attacks. These findings indi-
cate that GA-GAN not only matches but in certain aspects surpasses traditional encryption schemes in cryptographic 
efficacy, particularly in unpredictable and adversarial environments. While some of these metrics are part of our future 
work, initial evaluations of computational complexity and resilience to adversarial attacks have already demonstrated 
the framework’s effectiveness. In the below points analyzing the impact of our algorithm leading different test:

1.	 Cryptanalysis success rates: The bar chart in Fig. 8 illustrates the success rates of differential and linear cryptanalysis 
for GA-GAN, RSA, and ECC encryption methods. The results highlight that GA-GAN achieves a success rate of less 
than 0.001%, significantly outperforming traditional methods such as RSA (5%) and ECC (3%). This demonstrates 
the robustness of the proposed GA-GAN framework against classical cryptanalysis techniques. The near-zero suc-
cess rate of GA-GAN underscores the system’s enhanced security, driven by its dynamic evolutionary optimization 
and adversarial training mechanisms. Such resilience is critical in safeguarding against brute-force and statistical 
cryptanalysis attacks, validating the claim of high encryption strength.

2.	 Eve’s success rate over generations: Fig. 9 presents the decline in Eve’s success rate over 300 generations during 
security game simulations. Initially, Eve achieves a success rate of approximately 15%, but this decreases exponen-

Fig. 10   Scatter plot with a 
logarithmic scale showcasing 
the decryption time trends 
under classical and quantum 
adversaries

Fig. 11   Box plot illustrating 
the entropy values for GA-
GAN ciphertext compared to 
benchmarks
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tially as the generator network (Alice) evolves through adversarial training. By the end of the training, Eve’s success 
rate drops below 1%, signifying the robustness of GA-GAN encryption against adversarial decryption attempts. This 
result demonstrates the effectiveness of iterative optimization in enhancing encryption complexity and adaptability, 
rendering unauthorized interception increasingly difficult.

3.	 Quantum resistance evaluation: Fig. 10 evaluates the quantum resistance of GA-GAN encryption in comparison to 
RSA and ECC. The scatter plot demonstrates that as encryption complexity increases, the decryption time for GA-GAN 
grows exponentially faster than for classical and quantum adversaries. This trend suggests that GA-GAN is potentially 
resilient to quantum-based decryption techniques such as Grover’s algorithm, even though further empirical valida-
tion is required. The ability of GA-GAN to dynamically adjust its encryption mechanisms through genetic optimization 
positions it as a promising candidate for quantum-resistant cryptography.

4.	 Shannon entropy distribution: The box plot in Fig. 11 illustrates the Shannon entropy distribution for GA-GAN-
generated ciphertext compared to RSA and ECC. The higher entropy values (> 7.95) observed for GA-GAN indicate 
superior randomness and unpredictability in the encrypted data. These results validate the effectiveness of GA-GAN’s 
adversarial training and genetic optimization in producing highly secure ciphertext. The high entropy ensures resist-
ance against pattern recognition attacks, reinforcing GA-GAN’s claim of enhanced encryption strength.

5.	 Generator and discriminator loss over generations: In Fig. 12 tracks the convergence of generator and discriminator 
losses over 300 generations. The generator loss (blue line) decreases steadily, indicating continuous improvements 
in encryption performance. In contrast, the discriminator loss (red line) fluctuates periodically but shows an overall 
upward trend, reflecting the growing difficulty for Eve (discriminator) to decrypt the encrypted messages. The inter-
play between the losses demonstrates the dynamic adversarial training process, where Alice (generator) evolves to 
outpace Eve’s decryption attempts. This behavior validates the iterative optimization capabilities of GA-GAN, making 
it a robust and adaptive cryptographic framework.

To explicitly connect the observed results to real-world applications, the relationship between the improvements in 
generator and discriminator losses and cryptographic strength must be articulated in a practical context. The genera-
tor loss, which decreased from 0.78 to 0.65 over 300 generations, reflects the system’s ability to produce increasingly 
secure ciphertext that is indistinguishable from random noise. In real-world applications, this translates into encryption 
mechanisms that resist brute-force and statistical attacks, as attackers cannot discern patterns or predict outputs based 
on plaintext inputs. The practical significance of this improvement lies in its ability to protect sensitive information against 
adversaries employing both classical and machine learning-based decryption techniques. A consistently low generator 
loss ensures that encryption remains robust even under evolving attack strategies.

Fig. 12   A dual-axis line graph 
tracking generator and 
discriminator losses over 300 
generations



Vol.:(0123456789)

Discover Computing           (2025) 28:82  | https://doi.org/10.1007/s10791-025-09594-2 
	 Research

Similarly, the increase in discriminator loss from 0.92 to 1.26 highlights the growing difficulty for adversarial networks 
(like Eve) to successfully decrypt encrypted messages or distinguish them from noise. In practical terms, this improve-
ment enhances the resilience of the encryption framework against real-world eavesdropping and adversarial attacks, 
where unauthorized parties attempt to decode communication channels. The increased discriminator loss signifies that 
adversaries require exponentially more computational resources to achieve partial success, thereby rendering such 
decryption attempts economically and temporally unfeasible in high-security environments.

7 � Evolution of cryptographic security through adversarial training

The adversarial training process in Generative Adversarial Networks (GANs) is crucial for continuously improving cryp-
tographic security. This section analyzes how the generator (Alice) and the discriminator (Eve) evolve over successive 
generations to enhance encryption robustness and resistance to decryption attempts. Adversarial training follows a 
minimax game, where Alice encrypts messages while Eve attempts to decrypt them without the encryption key. Over 
time, this interaction dynamically refines encryption complexity and decryption resistance.

In the early generations, Alice produces ciphertexts that are relatively easy for Eve to classify and decrypt, resulting 
in low discriminator loss. Encryption at this stage is more susceptible to brute-force and statistical attacks. As training 
progresses, the Genetic Algorithm optimizes the GAN architecture, leading to improved encryption mechanisms. The 
generator loss starts decreasing, reflecting enhanced encryption security, while the discriminator loss increases, indicat-
ing that Eve struggles to decrypt messages effectively. Eve attempts to adapt by learning encryption patterns, forcing 
Alice to refine its encryption strategies further.

In the later generations, Alice’s encryption reaches a highly complex and resilient state, making it significantly more 
difficult for Eve to decrypt messages. The discriminator loss peaks above 1.2, indicating that adversarial attempts at 
decryption are largely unsuccessful. At this stage, the encryption model also exhibits potential quantum resistance, as 
it no longer relies on static mathematical structures vulnerable to quantum algorithms.

To empirically validate the effects of adversarial training, we analyzed the evolution of generator and discriminator 
losses over 300 generations. The generator loss decreased from 0.783 to 0.637, marking an 18.64% improvement, while 
the discriminator loss increased from 0.922 to 1.265, showing a 37.18% increase in Eve’s difficulty in decrypting messages. 
The reduction in generator loss demonstrates Alice’s improved ability to generate ciphertext that is indistinguishable 
from noise, while the increase in discriminator loss highlights the adversarial training’s role in reducing Eve’s success rate.

Additionally, Eve’s decryption success rate declined exponentially over generations, from 15% in early training to below 
1% by generation 300. This confirms that adversarial training continuously evolves encryption mechanisms, making it 
progressively harder for unauthorized entities to decrypt messages.

These metrics, when viewed together, provide a holistic view of the framework’s cryptographic strength. The genera-
tor’s ability to create complex, secure encryption complements the discriminator’s growing ineffectiveness in identifying 
patterns, creating a dynamic system that not only adapts to adversaries’ strategies but also maintains security over time. 
This adaptability is critical for practical implementations, such as in financial transactions, military communications, and 
personal data protection, where evolving security threats demand systems that can counteract increasingly sophisticated 
attacks. By linking these metrics to real-world applications, the results demonstrate the GA-GAN framework’s potential 
to set a new standard for secure communication in the face of modern cryptographic challenges.

8 � Quantum resistance of GA‑GAN cryptographic framework

A key feature of the GA-GAN encryption model is its potential resistance to quantum attacks. Unlike classical encryption 
schemes such as RSA and ECC, which rely on mathematical problems (integer factorization and discrete logarithm) that 
can be efficiently solved using Shor’s algorithm, GA-GAN employs an adaptive, dynamically evolving encryption strategy 
that does not adhere to a fixed mathematical structure.
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8.1 � Resistance to Shor’s algorithm

Traditional cryptographic schemes like RSA (2048-bit) and ECC (256-bit) are vulnerable to Shor’s algorithm, which allows 
quantum computers to solve discrete logarithm and factorization problems in polynomial time, rendering these schemes 
ineffective in a post-quantum environment. GA-GAN, however, does not rely on factorization or logarithmic problems. 
Instead, it dynamically generates encryption keys through adversarial learning, making it difficult for quantum algorithms 
to find deterministic patterns.

8.2 � Mitigating Grover’s algorithm attacks

Grover’s algorithm provides a quadratic speedup for brute-force key search, effectively reducing the security strength 
of AES-256 to AES-128 levels under a quantum threat. GA-GAN’s adaptive key evolution prevents static key reuse, mean-
ing that brute-force attempts via Grover’s algorithm would require significantly more resources to track key transitions 
over time.

8.3 � Dynamic structure as a defense mechanism

Classical encryption schemes are often vulnerable because their encryption and decryption mechanisms remain fixed 
over time.GA-GAN employs a self-evolving encryption process, meaning that even if an adversary successfully models 
an attack at one point in time, the system continuously adapts its encryption patterns, making previously discovered 
vulnerabilities obsolete.

8.4 � Post‑quantum cryptography relevance

Current post-quantum cryptographic schemes, such as Lattice-Based Cryptography (LBC) and Multivariate Cryptography, 
focus on mathematically complex problems that quantum computers struggle to solve efficiently.GA-GAN aligns with 
post-quantum principles by incorporating adversarial learning to introduce unpredictability and key evolution, ensur-
ing long-term cryptographic security.

9 � Key benefits of combining GA and GAN in cryptography

Our approach offers several unique advantages by combining Genetic Algorithms with Generative Adversarial Networks 
(GANs) for cryptographic applications:

1.	 Adaptability: The evolutionary nature of GAs allows the cryptographic model to adapt over time, finding optimal 
architectures that enhance both encryption complexity and security. This adaptability ensures that the system can 
respond dynamically to new threats.

2.	 Robustness against attacks: The adversarial training of GANs provides a continuous feedback loop, simulating realistic 
attack scenarios and enabling the cryptographic model to fortify itself against unauthorized decryption attempts. 
The dynamic interaction between Alice and Eve ensures that the encryption strategy remains robust in an evolving 
security landscape.

3.	 Quantum-resistant potential: While our framework is not yet fully tested against quantum computing attacks, the 
use of GAs for evolving complex encryption architectures, combined with the adversarial training dynamics of GANs, 
suggests that this approach holds promise for resisting future quantum decryption techniques [49].

The detailed analysis of the results indicates that the genetic algorithm successfully optimized the GAN architectures 
for cryptographic tasks. The optimized generator significantly reduced the loss, enhancing encryption effectiveness. 
Although the discriminator faced increased difficulty, the overall improvements and stability of the best-performing 
architectures underscore the potential of this approach for robust encryption methods.
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These findings contribute to the growing field of machine learning-based cryptography, providing a foundation for 
future research to further refine and enhance the security and performance of GAN-based encryption systems.

10 � Conclusion

This research demonstrates the effectiveness of utilizing Genetic Algorithms to optimize Generative Adversarial Networks 
(GAN) for cryptographic applications. Over 300 generations, the integration of GAs with GANs led to significant improve-
ments in both encryption robustness and system adaptability. Through the combination of evolutionary optimization 
and adversarial training, our GA-GAN framework achieved notable results: generator loss was reduced by 18.64% (from 
0.783802 to 0.637561), enhancing encryption security, while discriminator loss increased by 37.18% (from 0.922503 to 
1.265228), indicating stronger resistance to eavesdropping. These advancements highlight the considerable potential 
of the GA-GAN approach in improving cryptographic security.

Key findings include:

•	 The average generator loss stabilized around 0.65, marking a significant improvement from initial values.
•	 The discriminator loss increased to an average of approximately 1.2, reflecting enhanced encryption capabilities.
•	 The genetic algorithm consistently evolved network architectures, identifying configurations that enhanced encryp-

tion performance.

Compared to traditional cryptographic methods like RSA and ECC [50], which rely on static structures, the dynamic 
GA-GAN model offers superior adaptability to evolving security threats. Unlike RSA and ECC, which are susceptible to 
quantum computing attacks, the GA-GAN approach continuously evolves, autonomously refining and strengthening 
encryption capabilities. The adversarial training in GANs also simulates real-world attack scenarios [51], further fortifying 
the cryptographic model against increasingly sophisticated decryption attempts. In contrast, traditional cryptographic 
methods lack this adaptive feedback loop, making them less resilient to emerging threats.

These results underscore the potential of the GA-GAN synergy in cryptographic applications, particularly when com-
bined with evolutionary optimization techniques. The improved performance and robustness of the generator highlight 
a promising direction for developing more secure and adaptive encryption methods. This research paves the way for 
future innovations in cryptography, especially in the context of evolving cybersecurity threats.

11 � Future work

Future research will focus on several key areas to further advance the GA-GAN cryptographic framework. First, we aim to 
explore more sophisticated discriminator architectures capable of adapting to the increasingly complex encryptions gen-
erated by the optimized GANs. This would involve experimenting with deeper neural networks and alternative optimiza-
tion strategies to improve Eve’s ability to challenge the generator, pushing Alice to create even more secure encryptions.

Second, we plan to extend the genetic algorithm to incorporate multi-objective optimization techniques. By balanc-
ing encryption strength with computational efficiency, we can ensure that the resulting cryptographic systems are not 
only secure but also feasible for real-world applications where resource constraints are a consideration.

Third, we intend to explore the integration of GA-GAN-based encryption techniques with quantum-resistant algo-
rithms. By combining our evolving cryptographic model with established quantum-resistant methods, we hope to create 
a hybrid approach that can withstand both classical and quantum decryption threats.

While this research primarily demonstrates the application of the GA-GAN framework for cryptographic security, 
another promising direction for future exploration is its application to image encryption. Images, as a key form of data, 
are often transmitted in secure communication channels where encryption is critical. The current GA-GAN architecture 
can be adapted to encrypt images by incorporating image-specific layers, such as convolutional neural networks (CNNs), 
in the generator and discriminator networks [52]. Through evolutionary optimization, the genetic algorithm can evolve 
these architectures to ensure robust encryption for visual data, further expanding the scope of the GA-GAN model to 
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multimedia files. Future work will involve testing this framework on standard image datasets like CIFAR-10 [53] or MNIST 
to measure its effectiveness in securing image-based communications [54].

Lastly, we will explore the real-world implementation of the GA-GAN cryptographic model in practical communica-
tion protocols, testing its performance across different environments, including IoT systems, blockchain technologies, 
and secure communication networks.
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