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A search for new heavy resonances in two-jet final states is described in this thesis. The

data were collected by the ATLAS detector proton-proton collisions at
√
s = 7 TeV and

correspond to a time-integrated luminosity of 6.1 pb−1. The background-only hypothesis

was tested on the observed data using BumpHunter test statistic. Consistency was found

between the observed data and the background-only prediction. No resonant features

were observed. A Bayesian approach using binned maximum likelihood was used to set

upper limits on the product of cross section and detector acceptance for excited-quark

(q∗) production as a function of q∗ mass. At 95% credibility level (CL), the q∗ mass in

the interval of 0.50 TeV < mq∗ < 1.62 TeV is excluded, extending the reach of previous

experiments.
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Chapter 1

Introduction

This thesis presents a search for new particles manifested as resonances in inclusive two-

jet, or dijet, events using the ATLAS detector at the CERN Large Hadron Collider (LHC).

The thesis content is organized as follows. Chapter 1 introduces briefly the Standard

Model and an extension to the Standard Model as a benchmark for the resonance search.

Chapter 2 gives a brief overview of the LHC and the ATLAS detector. Chapter 3 describes

the physics objects used in this analysis, jets. In Chapter 4, a search is conducted for

significant deviations from the Standard Model predictions. Chapter 5 describes a limit

setting procedure for a benchmark theory beyond the Standard Model. Concluding

remarks about the analysis are found in Chapter 6.

1.1 The Standard Model

At present, the Standard Model (SM) is the most successful theory for predicting the

results of high energy experiments. It is a mathematical framework describing the fun-

damental building blocks of nature and how they interact to form the matter that we see

around us. The SM describes the physics of three fundamental interactions1 under the

1Four interactions that we have found so far are the electromagnetic force, the weak force, the strong
force and the gravitational force.

1



Chapter 1. Introduction 2

local gauge symmetry SU(3)C × SU(2)L × U(1)Y
2 in quantum field theory: the strong,

weak, and electromagnetic (EM) interactions.

Eight massless gluons (g) under the SU(3)C gauge group mediate the strong interac-

tion. The photon (γ) and weak gauge bosons (W±/Z0) of SU(2)L × U(1)Y mediate the

electroweak interaction, a unification of the EM and the weak interactions. These force

carriers in the SM are bosons with one unit of intrinsic angular momentum (spin). The

SM includes another twelve spin-1/2 particles divided into two types: leptons and quarks.

Both leptons and quarks interact via the electroweak force, but only quarks experience

the strong force. The lepton sector consists of six particles: electrons e, muons µ, taus τ

and their neutrino counterparts νe, νµ and ντ . e, µ and τ have electric charge of −1 while

the respective neutrinos are electrically neutral. The remaining six particles constitute

the quark sector. These particles come in six distinct flavours: up u, down d, strange s,

charm c, bottom b and top t. The first three flavours u, c, t are referred to as up-type

quarks and carry an electric charge of 2/3. The remaining three flavours d, s, b are re-

ferred to as down-type and carry an electric charge of −1/3. The quarks and the leptons

can be paired up in their own sectors to form three families, or generations, which are

listed in ascending mass order in Table 1.1.

Hadrons are composite particles made of quarks. These hadrons can be classified into

mesons and baryons: baryons, such as the proton (uud), are composed of three quarks

and have half-integer spin, while mesons such as the pion (ud̄) are comprised of one quark

and one anti-quark and have integer spin.

1.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a quantum field theory describing the interaction

between quarks and gluons through colour charges. The colour charge comes in three

2The subscript C in SU(3)C stands for colour interactions. The subscript L in SU(2)L means that
only left-handed states are involved. The subscript Y in U(1)Y stands for hypercharge.
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Table 1.1: The Standard Model of elementary particles.

Three generations of matter (Fermions)
Electric charge

I II III

Quarks

(

u

d

) (

c

s

) (

t

b

) (

+2/3

−1/3

)

Leptons

(

e

νe

) (

µ

νµ

) (

τ

ντ

) (−1

0

)

Interaction Strong Electromagnetic Weak

Gauge Bosons g γ W±, Z0

types: red (r), green (g) and blue (b). Each (anti-)quark carries one (anti-)colour charge

and forms a triplet under SU(3)C . The gluon has eight independent colour states, which

are linear combinations of a colour and an anti-colour charge, constituting a colour octet.

The quark-gluon and gluon-gluon strong interaction vertexes are shown in Figure 1.1.

Note that besides being the force carriers between quarks, gluons couple strongly among

themselves as they carry colour charge. In the region where the four-momentum trans-

ferQ2 between two partons3 is much larger than the QCD energy scale ΛQCD, perturbative

techniques can be applied to the QCD theory. QCD is a renormalizable theory and the

strong coupling αs can be expressed as follows:

αs(Q
2) =

1

b0 ln
(

Q2/Λ2
QCD

) , (1.1)

where b0 = (11Nc − 2nf )/12π, and NC and nf are the numbers of colours and quark

flavours, respectively. Note that the parameter ΛQCD is essentially an energy scale below

which the perturbative method is no longer valid. As the value of ΛQCD is not well

3The term parton is the collective term for quarks and gluons and was first introduced in the quark-
parton model [1, 2].
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�q
q

g

(a) ∼ √
αs

�
(b) ∼ √

αs

�
(c) ∼ αs

Figure 1.1: The interaction vertexes of the Feynman diagrams of QCD.

defined, it is determined experimentally and is of the order of 200 MeV.

The coupling αs decreases logarithmically with Q2 as shown in Figure 1.2, which leads

to the “running” of the coupling constant. One of the consequences of this is asymptotic

freedom, meaning that the interactions among the gluons and the quarks become weak

in very high-energy reactions. Therefore, they become quasi-free partons at high energies

(or short distances). Another feature of QCD coupling is colour confinement. The colour

potential energy between one quark and one anti-quark increases linearly with their

separation due to increasing αs. Typically, at separations around the size of the proton,

the potential energy is large enough that a colourless quark-antiquark pair is produced

in the vacuum. This extra pair bonds with the departing partons to form two separate

hadrons. This process is called hadronization. Despite the absence of analytic proof, the

feature of colour confinement can be used to describe qualitatively why free (isolated)

quarks and coloured combinations of hadrons have not been observed in nature.

1.3 Jets in Proton-Proton Collisions

In the high-energy collision of two protons, the partons inside the protons go through a

series of interactions, with a dominant contribution coming from the QCD interaction.

This proton-proton scattering process can be understood as a sequence of three stages

shown heuristically in Figure 1.3:
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QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia
e+e–  Annihilation

Deep Inelastic Scattering

July 2009

Figure 1.2: The strong coupling constant αs as a function of the energy scaleQ. Extracted

from Reference [3, 4].
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fi(x1)

fj(x2)

σij

P1

P2

incoming

protons

p1=x1P1

p2=x2P2

spectator

partons

spectator

partons

partons for

hard scatter

Jets

Protons

approach
Hard

scatter

Parton

showers
Hadroni-

zation
Decay

Figure 1.3: Schematic view of a hard proton-proton interaction.

1. The partons inside each of the two incoming protons P1 and P2 approach each

other with some momentum fractions x1 and x2. The momentum distributions

fi(x1) and fj(x2) of the colliding partons inside the proton are described by parton

distribution functions, which are discussed in Section 1.3.1. The subscripts i and j

denote the flavours of the colliding partons.

2. One of the partons inside each of the incoming protons undergoes a hard scatter-

ing. The hard scattering takes place between this pair of partons behaving as free

particles. The cross section σ̂ij for this process can be calculated from perturbative

QCD. The remaining partons, called spectator partons, do not take part in the

hard scattering.

3. Outgoing partons are generated from the two scattered partons and, after parton

showering and hadronization, form jets.
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Figure 1.4: The parton distribution functions multiplied by parton momentum fraction x

at Q2 = 104 GeV2.

1.3.1 Parton Distribution Functions

In order to compute the cross section of the parton-parton collision, the initial energies

of the colliding partons are needed. The parton distribution function (PDF) is the

probability distribution of finding a parton of one kind with the momentum fraction x

with respect to the colliding proton momentum. Each kind of parton has its own PDF as

shown in Figure 1.4. The PDFs can be determined empirically by a fit to the experimental

data, for example, from deep inelastic scattering studies.4 Figure 1.4 shows the PDFs at

the momentum transfer Q2 = 104 GeV between two initial-state partons.

4Deep inelastic scattering (DIS) is a scattering process used to probe the internal structure of hadrons
using leptons like electrons, muons or neutrinos.
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1.4 Beyond the Standard Model

Although the SM has shown good agreement with various experimental results until now,

a number of outstanding puzzles are not explained adequately by the SM. These include,

for example, the missing description of gravitation, the matter-anti-matter asymmetry,

the observation of neutrino flavour oscillation, and the lack of dark matter candidates to

explain cosmological observations. Many models of new physics have been proposed to

address these puzzles. These models treat the SM as a starting point and predict new

phenomena that incorporate hypothetical particles extending the SM.

1.4.1 The Excited Quark Model

The excited quark model [5, 6, 7] was proposed in the early 80s and has been used as a

benchmark signal in high-energy experiments. This model is also used in this thesis to

compare our results with other experiments.

It has been suggested that the similarity among the three quark families could be

due to quark substructure. If quark compositeness exists, one of the consequences would

be excited states above the SM quark ground state. Additionally, if the compositeness

scale Λ of the q∗ model is smaller than the LHC centre-of-mass energy, excited quarks

are produced dominantly through s-channel processes. This results in the appearance of

a quark resonance.

Following Reference [7], the first generation of the first-excited state quarks, denoted

as q∗, are considered, i.e., q∗ = u∗, d∗. The spin and isospin5 of q∗ are assumed to be 1/2

for simplicity. The coupling among the excited (right-handed) quarks, the ground-state

(left-handed) quarks and the gauge bosons is given by an effective Lagrangian of the

magnetic-moment type [7]:

Lq∗ =
1

2Λ
q̄∗Rσ

µν

[

gsfs
λa

2
Ga

µν + gf
τ

2
Wµν + g′f ′Y

2
Bµν

]

qL + h.c. (1.2)

5Isospin (isobaric spin) is a quantum number that is conserved in strong interactions.
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where Ga
µν , Wµν and Bµν are the field-strength tensors of the SU(3), SU(2) and U(1)

gauge fields, respectively. The quantities λa, τ and Y are the corresponding gauge struc-

ture constants. gs, g and g′ are the corresponding gauge coupling constants. The corre-

sponding parameters fs, f and f control the composite dynamics and are expected to be

of order one. Figure 1.5 shows the interaction vertex with q∗.

From Equation 1.2, the excited quark q∗ can decay to the ground-state quark plus a

gauge boson. Assuming mq∗ > mV (V = W±, Z0) and neglecting the ground-state quark

masses, the partial widths [7, 8, 9] for the various electroweak and QCD decay channels

are

Γ(q∗ → qg) =
1

3
αsf

2
s

m3
q∗

Λ2
,

Γ(q∗ → qγ) =
1

4
αf 2

γ

m3
q∗

Λ2
,

Γ(q∗ → qV ) =
1

8

g2V
4π

f 2
V

m3
q∗

Λ2

(

1− m2
V

m2
q∗

)2(

2 +
m2

V

m2
q∗

)

, (1.3)

with

fγ = fT3 + f ′Y

2

fZ = fT3 cos
2 θW − f ′Y

2
sin2 θW

fW =
f√
2

.

T3 is the third component of the weak isospin and Y is the hypercharge of q∗. Here,

gW = e/ sin θW (e =
√
4πα) and gZ = gW/ cos θW are the SM W± and Z0 coupling

constants. Setting the compositeness scale Λ to be the q∗ mass and assuming the SM

coupling, i.e., Λ = mq∗ and fs = f = f ′ = 1, Table 1.2 shows the numerical values of the

relative branching ratios of the q∗. Note that the half partial width of the q∗ decaying

to qg is approximately given by 1
2
Γ(q∗ → qg) ≈ 0.02mq∗ . This width is significantly

narrower than the dijet mass resolution of the ATLAS detector discussed in Chapter 2.

In a proton-proton collider such as the LHC, the production of the first-family q∗

proceeds mainly through the quark-gluon fusion process. The q∗ final states are large
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�
Figure 1.5: The interaction vertex of the Feynman diagram of excited quark.

Table 1.2: The branching ratios to various decay channels and the relative decay widths

of the q∗ of mass mq∗ = 1, 2, 3 TeV. The ATLAS MC09 tuning is used [10].

1 TeV 2 TeV 3 TeV 1 TeV 2 TeV 3 TeV

BR(u∗ → ug) 82.7% 81.4% 80.7% BR(d∗ → dg) 82.7% 81.4% 80.7%

BR(u∗ → uγ) 2.4% 2.5% 2.6% BR(d∗ → dγ) 0.6% 0.6% 0.7%

BR(u∗ → uZ0) 3.5% 3.8% 4.0% BR(d∗ → dZ0) 5.3% 5.7% 5.9%

BR(u∗ → uW−) 11.4% 12.3% 12.8% BR(d∗ → dW+) 11.4% 12.3% 12.8%

Γ(u∗)/mu∗ 0.0374 0.0352 0.0341 Γ(d∗)/md∗ 0.0374 0.0352 0.0341

transverse momentum jet–jet, jet–γ, jet–Z0 or jet–W± pairs. The subsequent decay

of the q∗ leads to peaks in the invariant-mass distribution of pairs of jets due to a

larger branching fraction to hadronic decays. Since this analysis considers generic dijet

events, as discussed in Chapter 4, all the above channels which result in dijet topologies

contribute to the final sample, for example, Figure 4.4.



Chapter 2

ATLAS and the LHC

A Toroidal LHC ApparatuS (ATLAS) is a high-energy particle detector of the Large

Hadron Collider (LHC) at The European Organization for Nuclear Research (CERN).

ATLAS is designed to search for new physics in a TeV-scale energy regime. This chapter

briefly describes the LHC and the ATLAS detector.

2.1 The LHC

The Large Hadron Collider (LHC) is a circular proton-proton (pp) accelerator and collider

at CERN. There are four experiments1 located at four different interaction points (IP)

of the LHC shown in Figure 2.1: ALICE2 [13], ATLAS [14], CMS3 [15], and LHCb4 [16].

Initially, beams containing bunches of 1011 protons are accelerated to 50 MeV in a linear

accelerator (LINAC2). These beams are then injected to the Proton Synchrotron Booster

(PSB), the Proton Synchrotron (PS), and the Super Proton Synchrotron (SPS) in series

and accelerated to energies of 1.4 GeV, 26 GeV, and 450 GeV, respectively. Finally, two

1Two other detectors, LHC-forward (LHCf) and Total Cross Section, Elastic Scattering and Diffrac-
tion Dissociation (TOTEM), are of a much smaller scale than the other detectors, and share interaction
points with the other detectors. Details are found in Reference [11, 12].

2A Large Ion Collider Experiment
3Compact Muon Solenoid
4LHC-beauty

11
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Figure 2.1: Schematic diagram of the CERN accelerator complex.

proton beams are accelerated to 7 TeV in the clockwise and anti-clockwise directions in

the LHC, leading to the design centre-of-mass energy of
√
s = 14 TeV. 25 ns proton

bunch spacings translate to about 40 MHz initial bunching crossing per second, with 19

interactions per bunch crossing expected at the design luminosity of L ≈ 1034 cm−2 s−1.

Table 2.1 summarizes the expected operational parameters of the LHC. Due to safety

concerns following an incident in 2008 [17], the LHC operated at 3.5 TeV per beam with

a relatively low instantaneous luminosity of 1028–1031 cm−2 s−1at the beginning of 2010

LHC running.
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Table 2.1: The expected operational parameters of the LHC in pp mode. Extracted from

Reference [18, 19].

Operational parameter Value

Circumference 26659 m

Beam energy 7 TeV

Beam current 0.58 A

Number of beam bunches 2808

Number of protons per bunch 1.15× 1011

Bunch spacing 24.95 ns

Event collision per bunch crossing up to 20

Energy loss/proton/turn 6.71 keV

Luminosity 1034 cm−2 s−1

Dipole field at 7 TeV 8.33 T

Dipole current 11.850 kA

Helium temperature for dipole 1.8 K

Total cross section 100 mb

Inelastic cross section 60 mb
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2.2 The ATLAS Detector

The ATLAS detector is a nearly hermetic, i.e., −π ≤ φ < π and 0 ≤ |η| < 4.9, cylin-

drically symmetric, general-purpose detector designed for high-luminosity studies at the

LHC. The centre of the coordinate system for the detector is at the nominal IP. In the

right-handed ATLAS coordinate system, the beam direction defines the z-axis and the

xy-plane, with the x-axis pointing to the centre of the LHC and the y-axis pointing

upward. The azimuthal angle φ is measured around the z-axis and the polar angle θ

from the z-axis. The pseudo-rapidity is defined by η = − ln tan(θ/2), which is equiva-

lent to the rapidity y for massless objects. The distance ∆R in η–φ space is defined as

∆R =
√

∆η2 +∆φ2.

The ATLAS detector, shown in Figure 2.2, is composed of the following subdetectors:

the inner detector, the magnet system, the calorimeter, and the muon spectrometer. The

magnet system creates magnetic fields which bend the trajectories of charged particles

flying out from the IP. These trajectories are measured by the inner detector and the

muon spectrometer for momentum measurements. The calorimeter is responsible for

measuring particle energies. The trigger and data acquisition system filters and records

potentially interesting events for analysis. Details of these components can be found in

the following sections, where the subdetectors relevant to the dijet resonance analysis are

discussed in order of importance. More information for individual subdetectors can be

found in Reference [20].

2.2.1 Calorimeters

ATLAS uses sampling calorimeters to detect stable particles with energies up to the TeV

scale. Sampling calorimeters measure particle energy deposition by interleaving layers

of passive and active materials. An incident particle interacts with the calorimeter and

produces multiple low-energy particles. These particles continue to produce lower and
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Figure 2.2: Schematic diagram of the ATLAS detector.
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lower energy particles until all the energy is finally deposited in the calorimeter; this

cascade forms a shower inside the detector. The active material measures the deposited

energy of the incident particles by ionization, while the passive material, which is denser

than the active material, is used to limit the space over which showering occurs. Charges

created in the ionization process are then recorded by readout electrodes as a signal.

Depending on the type of incident particle, two types of shower developments can

occur: EM showering and hadronic showering. EM showers are initiated by EM particles

such as electrons and photons that deposit energy via the EM interaction. EM showers

can be measured precisely in the calorimeter. Hadronic showers are induced by hadrons

via both EM (if the hadrons are charged) and strong interactions. However, since nuclear

reactions are involved in hadronic showers, some of the energy deposited in the calorimeter

is undetectable. This makes hadronic showers harder to measure.

The empirical formula for the relative energy resolution σE/E of an incident particle

with energy E in the calorimeter is given by

σE

E
=

a1√
E

⊕ a2 ⊕
a3
E

. (2.1)

The parameters a1, a2, and a3 are called the sampling term, the constant term and the

noise term, respectively. The sampling term, sometimes called the stochastic term, ac-

counts for stochastic fluctuations of the energy deposition by the shower particles in the

active region. The number of shower particles traversing the active region is proportional

to the incident particle energy E. The fraction of energy deposited in the active region

with respect to the total deposited energy fluctuates from event to event according to

Poisson statistics. Thus, the relative precision of the fraction σE/E is proportional to

E−1/2. The constant term is mainly attributable to calorimeter non-uniformity and cali-

bration uncertainty, stemming from irregular detector geometry, temperature gradients,

radiation damage or imperfectly calibrated detector regions. The resulting contribution

to the absolute energy resolution σE is proportional to E. The noise term accounts for

the electronics noise of the readout channels and is independent of the incident particle
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energy E. Thus, the absolute energy resolution σE is independent of E.

The ATLAS calorimeter, shown in Figure 2.3, consists of five subsystems: the tile

calorimeter (TileCal), the hadronic endcap calorimeter (HEC), the forward calorimeter

(FCal), the electromagnetic barrel calorimeter (EMB), and the electromagnetic endcap

calorimeter (EMEC). The EMB is embedded in the barrel cryostat while the EMEC, the

HEC and the FCal are integrated in two endcap cryostats located on either side of the

IP. The ATLAS calorimeters provide particle energy measurement with uniform coverage

in φ for |η| < 5. Each calorimeter is segmented in φ, η, and the longitudinal direction

projected from the IP. Each segment, or “cell”, includes both passive and active media.

The cells vary in size between the subsystems and within each subsystem. These five

subsystems are categorized into two calorimetry systems.

• The electromagnetic calorimeter

The EM calorimeter consists of the EMB, the EMEC and the first compartment

of the FCal (FCal1), which provide coverage in the regions |η| < 1.475, 1.375 <

|η| < 3.2, and 3.1 < |η| < 4.9, respectively. The EMB is made up of two half-

barrels, separated by a small gap of 4 mm at z = 0. Each EMEC is mechanically

divided into two coaxial wheels: an outer wheel covering 1.375 < |η| < 2.5 and an

inner wheel covering 2.5 < |η| < 3.2. Lead is used as the absorber in the EMB

and EMEC, except for FCal1 that uses copper. Liquid Argon (LAr) is used as the

active material because it is radiation hard. Readout electrodes made of copper and

kapton are installed in the active region of the EMB and EMEC and are separated

from the lead plates by plastic meshes. The accordion geometry of the EMB and

EMEC provides a fast extraction of the signal at the rear or at the front of the

electrodes. It also provides a complete φ coverage without azimuthal cracks. The

total depth of the EM calorimeter exceeds 22 radiation lengths (X0) in the barrel

and 24X0 in the endcaps.

The EMB and EMEC are longitudinally segmented into three sampling layers. The
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innermost layer is finely segmented to provide good position resolution and acts as

a pre-shower detector for γ/π0 separation. The middle layer is the thickest of the

three layers; it captures most of the shower energy and is used for calorimeter

cluster triggering. The outer layer is similar to the middle layer, but has a coarser

granularity in η.

• The hadronic calorimeter

The hadronic calorimeter is comprised of the TileCal, the HEC, and the remaining

FCal components (FCal2 and FCal3), which provide coverage in the regions |η| <

1.7, 1.5 < |η| < 3.2 and 3.1 < |η| < 4.9, respectively. Table 2.3 shows details

of each subsystem’s pseudo-rapidity coverage, longitudinal segmentation and cell

granularity.

The TileCal contains a central barrel covering |η| < 1.0 and two extended barrels

spanning 0.8 < |η| < 1.7. Steel is used as the absorber and plastic scintillator acts

as the active material. The scintillator is connected by wavelength shifting fibres

to photo-multiplier tubes. The TileCal is segmented into three radial layers and 64

azimuthal modules normal to the z-axis. The total depth measured from the IP

ranges from 9 interaction lengths (λ) to 18λ.

The HEC is made up of a series of parallel planes interleaving LAr and copper

as the active and passive materials, respectively. It consists of two independent

modules per endcap located right behind the EMEC. Two modules share the same

cryostats with the EMEC and the FCal. The combined depth of the HEC and

EMEC is about 12− 13λ.

The FCal has three longitudinal sampling layers. The first layer uses copper as the

absorber mainly for EM measurements while the other two layers use tungsten as

the absorber for the measurements of the hadronic interactions. Each layer consists

of a metal matrix with regularly spaced cylindrical holes parallel to the beam axis.



Chapter 2. ATLAS and the LHC 19

Figure 2.3: Schematic diagram of the ATLAS Calorimeters.

These holes contain concentric tubes and rods, with LAr and fibres filling the gap

between them. The total depth of the FCal exceeds 9λ.

Since a significant amount of material is present in front of the EM calorimeter, a

presampling detector covering |η| < 1.8 is installed in front of the calorimeter. This

helps in correcting for the shower energy loss upstream of the calorimeter, especially by

electrons and photons. The presampler consists of one LAr layer in the barrel and one

in each of the endcaps. It provides a granularity of ∆η ×∆φ = 0.025 × 0.1. Unlike the

rest of the ATLAS calorimeter, the presampler has no absorber layer and behaves like a

single-layer LAr tracker. The presampler can also be used for γ/π0 separation. Table 2.2

lists details of the EM calorimeter’s pseudo-rapidity coverage, longitudinal segmentation

and cell granularity.
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Table 2.2: Pseudo-rapidity, longitudinal segmentation and granularity of the electromag-

netic calorimeter.

EM Calorimeter EMB EMEC

Coverage |η| < 1.475 1.375 < |η| < 3.2

Longitudinal segmentation 3 3 (Outer-wheel) 1.5 < |η| < 2.5

2 (Inner-wheel) 2.5 < |η| < 3.2

Granularity (∆η ×∆φ)

Sampling 1 (Innermost layer) 0.003× 0.1 0.025× 0.1 1.375 < |η| < 1.5

0.003× 0.1 1.5 < |η| < 1.8

0.004× 0.1 1.8 < |η| < 2.0

0.006× 0.1 2.0 < |η| < 2.5

0.1× 0.1 2.5 < |η| < 3.2

Sampling 2 (Middle layer) 0.025× 0.025 0.025× 0.025 1.375 < |η| < 2.5

0.1× 0.1 2.5 < |η| < 3.2

Sampling 3 (Outermost layer) 0.05× 0.025 0.05× 0.025 1.5 < |η| < 2.5



Chapter 2. ATLAS and the LHC 21

Table 2.3: Pseudo-rapidity, longitudinal segmentation and granularity of the hadronic

calorimeter.

TileCal Barrel Extended Barrel

Coverage |η| < 1.0 0.8 < |η| < 1.7

Longitudinal segmentation 3 3

Granularity (∆η ×∆φ)

Sampling 1 and 2 0.1× 0.1 0.1× 0.1

Sampling 3 0.2× 0.1 0.2× 0.1

HEC

Coverage 1.5 < |η| < 3.2

Longitudinal segmentation 3

Granularity (∆η ×∆φ) 0.1× 0.1 1.5 < |η| < 2.5

0.2× 0.2 2.5 < |η| < 3.2

FCal

Coverage 3.1 < |η| < 4.9

Longitudinal segmentation 3

Granularity (∆η ×∆φ) ∼ 0.2× 0.2
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2.2.2 Inner Detector

The inner detector (ID) instruments the innermost part of ATLAS. The ID measures

the charge, the momentum, and the direction of each charged particle trajectory, called

track, as well as its impact parameter with respect to the z-axis. As charged particles

traverse the ID, they deposit small amounts of energy that constitute hits. These hits are

then recombined offline into tracks. The ID is also responsible for reconstructing both

primary and secondary vertexes. The ID is immersed in a 2 T magnetic field to measure

the momenta of charged particles. This magnetic field is generated by a central solenoid,

which is discussed in Section 2.2.4.

The ID consists of three independent but complementary components shown in Fig-

ure 2.4. The silicon pixel detector, the innermost component of the ID, features three

cylindrical layers in the barrel, with three discs in each endcap, covering up to |η| < 2.5.

The pixel detector provides a high precision spatial measurement in both R–φ and z

coordinates.

The next outer component of the ID is SemiConducting Tracker (SCT). The SCT

contains four cylindrical layers in the barrel and nine discs in each endcap covering up

to |η| < 2.5. In addition to the measurement of the R–φ plane, the SCT provides stereo

pairs5 of hits which provide information in the z direction. Both the pixel detector and

the SCT together provide primary and secondary vertex identification capabilities.

The outermost part of the ID is the Transition Radiation Tracker (TRT), a straw

tube tracker. The TRT is composed of 4 mm diameter straw tubes filled with a Xe-based

gas mixture. It provides R–φ information for the track momentum measurement in the

range |η| < 2.0. When charged particles pass through, the gas inside the tubes is ionized.

Free electrons drift towards the wire at the centre of the tubes under a voltage difference

and create electrical signals. Moreover, charged particles emit low-energy transition-

5Two sensor modules glued back-to-back with the back sensor module offset a stereo (40 mad) angle
are installed in both the barrel and the first, the third, and the sixth disks of the endcaps.
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Figure 2.4: Schematic diagram of the ATLAS inner detector.

radiation photons. Since the intensity of these photons is much higher for electrons than

for hadrons at the same energy, this provides an independent discrimination between

electrons and hadrons.

2.2.3 Muon Spectrometer

The muon spectrometer is the largest ATLAS sub-detector as shown in Figure 2.5, defin-

ing the overall dimension of ATLAS. Its design goal is to provide triggering and bunch

crossing identification of events with high-pT muons as well as to achieve 10% momentum

resolution for 1 TeV muon tracks.

Four types of detection chambers are used in the muon spectrometer: Monitored

Drift Tube Chambers (MDTs) and Cathode Strip Chambers (CSCs) for momentum

measurements up to |η| < 2.7, and Resistive Plate Chambers (RPCs) and Thin Gap

Chambers (TGCs) for muon triggering up to |η| < 2.4. All these chambers are arranged

in cylindrical layers in the barrel region and in planes perpendicular to the z-axis in

the transition and endcap regions. The MDTs are drift tube chambers, covering |η| up

to 2.7, and provide high-precision measurements of the track coordinates. In the range

of 2.0 < |η| < 2.7 at the innermost layer, the CSCs are used instead of the MDTs
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Figure 2.5: Schematic diagram of the ATLAS muon spectrometer.

due to high particle flux and muon track density. The CSCs are multiwire proportional

chambers with the wires oriented in the radial direction. The RPCs are parallel electrode-

plate detectors used for muon track triggering and cover the |η| range up to 1.05. The

TGCs are also multiwire proportional chambers and provide triggering capabilities over

the range of 1.05 < |η| < 2.4.

2.2.4 Magnet System

ATLAS employs a hybrid system of four superconducting magnets: one central solenoid

around the ID, one barrel toroid, and two endcap toroids, both of which are embedded

in the muon spectrometer. This system provides the bending power needed for the

momentum measurements of the charged tracks.

The central solenoid is located inside the EM barrel calorimeter and provides a 2 T

nominal axial field for the momentum measurement in the ID. The solenoid coil is
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wrapped with a superconducting cable inside the support cylinder, which has a thickness

of 0.66 X0 at normal incidence.

The barrel toroid and the endcap toroid provide a maximum toroidal field of 3.9 T

and 4.1 T respectively in the barrel (|η| < 1.4) and the endcap (1.6 < |η| < 2.7) regions

of the muon spectrometer. In the transition region between 1.4 < |η| < 1.6, the fields

from the barrel and endcap toroids overlap each other. Eight coils of the barrel toroid

are housed in separate cryostats, which are linked together by a support structure.

2.3 Trigger and Data Acquisition System

The Trigger System is designed to select potentially interesting events up to a maximum

rate of 200 Hz from the 40 MHz initial bunch crossing rate. This requires fast rejection

decisions throughout the data-taking process. The trigger system is composed of three

levels of event selection: Level-1 (L1), Level-2 (L2), and Event Filter (EF), as shown in

Figure 2.6. The L2 and EF together form the High-level Trigger (HLT). Each trigger

level refines the previous decision by applying more stringent selection criteria.

The L1 trigger uses custom-made electronics to assess a subset of total detector

information, mainly from the muon trigger chambers and the calorimeters, for deci-

sion making. The L1 trigger aims to identify high-pT objects such as muons, elec-

trons/photons/jets, and τ -leptons decaying into hadrons; this trigger also selects events

with large missing transverse energy Emiss
T and total transverse energy ET. In particular,

L1 jet triggers use the information from approximately 7200 calorimeter segments called

trigger towers, which have the granularity of about ∆η ×∆φ = 0.1 × 0.1. L1 jet candi-

dates are built using various combinations of jet elements, which are 2 × 2 square sums

of trigger towers, and form window of sizes 0.4 × 0.4, 0.6 × 0.6 and 0.8 × 0.8 in η × φ.

The transverse energy sum of all possible jet candidates is compared with pre-determined

values to decide if a jet is accepted. A local transverse energy maximum is required to
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be centred within a window in order to avoid identifying overlapping jets.

At L1, the events are accepted at a rate of 75 kHz, which is the maximum bandwidth

of the readout system, within an average event processing time of 2.5 µs. These L1-

accepted events are used to define the Regions of Interest (RoI) that include information

on the geographical coordinates, the triggered signature types, and the passed threshold

criteria. These RoIs are used as HLT inputs.

The High-Level Trigger (HLT) uses software-based algorithms running on computer

farms. The HLT has access to the full granularity and precision of the calorimeter and

muon chamber data, as well as the data from the ID to refine the trigger selections. Better

information on the energy deposition improves the threshold cuts. Track reconstruction

in the ID enhances the particle identification. The L2 trigger uses the RoI information

from the L1 trigger to reduce the data transfer down to a rate of 3.5 kHz, with an

average event processing time of approximately 40 ms. The EF uses an offline analysis

procedure on fully-reconstructed events to further select interesting events at an event

rate of approximately 200 Hz, with an average event processing time of about 4 s.
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Figure 2.6: Schematic diagram of the ATLAS trigger system.
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Jets in ATLAS

Jets are produced in QCD hard scattering processes. The term jets is used to describe

the final state appearance of partons in high energy events. The number of jets in an

event and their kinematic properties can be used to characterize the underlying physics

processes. Jet development in collisions can be roughly divided into three levels: parton,

particle, and detector. A heuristic diagram depicting the stages of jet development is

shown in Figure 3.1.

Initially, several final-state partons are produced in the hard scattering of two incom-

ing protons. These final-state partons undergo a complex series of interactions (frag-

mentation) that can be factorized into two parts, parton showering and hadronization.

During parton showering, each of the final-state partons radiates additional partons.

Eventually, the original outgoing partons have been replaced by a number of low-energy

partons. During hadronization, which is characterized by the QCD energy scale ΛQCD,

the low-energy coloured partons are joined together to form numerous colour-neutral

hadrons. Jets built using stable, decayed particles as inputs are referred to as particle

jets or sometimes hadron jets. When referring to particle jets produced by a Monte Carlo

(MC) simulation, the term truth jets is often used.

Finally, the stable hadrons deposit energy in the various active and inactive compo-

28
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Figure 3.1: A schematic diagram of the stages of jet production.

nents of the detector as they traverse it. The signals recorded by the active component

can then be used as inputs to a jet reconstruction algorithm. A cluster of these inputs

without any correction is referred to as a calorimeter jet.

Observing jets provides information about the properties of the original partons pro-

duced after collisions. Note that the stages of jet formation described above are based

on MC simulations in order to model how jets develop from the final-state partons in the

event collisions.

The following sections discuss the essentials of jet reconstruction in ATLAS. Sec-

tion 3.1 outlines the desirable features of jet algorithms. Section 3.2 describes two types

of input constituents available for the jet finding algorithms. Section 3.3 discusses the

different jet algorithms available in ATLAS. Finally, in Section 3.4, the procedure for

calibrating jet energies and the associated jet energy uncertainty adopted by ATLAS are

detailed.
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3.1 Basic Features for Jet Algorithms

Some desirable properties of the jet algorithms are reviewed here. A jet algorithm should

be efficient at finding all physically relevant jets in an event. The same jets should be

found at the parton level, particle level, and calorimeter level. Jet algorithms should

also have a straightforward practical implementation. The jets defined by a jet algo-

rithm should be insensitive to both soft emission (infrared safety1) and collinear radiation

(collinear safety2); jet algorithms should have the same solutions in finding jets under

longitudinal Lorentz boosts. Jets should not depend strongly on the detector details; for

example, jets should not change due to the resolution smearing and angle biases intro-

duced by the detector. Furthermore, jets should not be affected by pile-up.3 Finally, jet

algorithms should be computationally efficient in identifying jets. More details can be

found in Reference [21].

3.2 Input Constituents to the Jet Algorithm

The ATLAS calorimeter has about 200,000 cells of various sizes and geometries. In order

to provide practical inputs for the jet finding algorithm, all these cells are combined into

larger calorimeter inputs. Two different types of calorimeter inputs are used in the jet

finding: signal towers and topological cell clusters.

1The property of infrared safety refers to the case that the same set of jets is found in an event if one
modifies the event by the addition of soft emissions.

2The property of collinear safety refers to the case that the same set of jets is found in an event if
one modifies the event by collinear splitting of the inputs.

3Pile-up corresponds to multiple pp interactions during a collision due to a large number of protons
in each bunch. If pile-up occurs during bunch crossing time, it is referred to as in-time pile-up; if it
occurs at a time longer than the bunch spacing, it is referred to as out-of-time pile-up.
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3.2.1 Signal Tower

The calorimeter cells are collected into bins of a regular 2D ∆η × ∆φ = 0.1 × 0.1 grid

forming 6400 towers in total, as heuristically shown in Figure 3.2. Cells that do not fill

or fit into a single tower completely are weighted according to the overlap area fraction

between the tower bin and the cell in ∆η and ∆φ. However, some towers whose energy

reading is dominated by electronics noise might have negative signals and thus cannot be

used in the jet finding. Various methods have been attempted to address this problem.

One of the approaches involves the construction of topological towers (topotowers). The

topotower is an attempt to combine the advantages of a well-defined regular grid from the

signal towers and the noise-suppressed clustering of topological cell clusters, described

in Section 3.2.2. Only the calorimeter cells that are included in topological cell clusters

are used to form the topotowers. Thus, topotower clustering is same as signal tower

clustering except that the noisy cells are removed.

3.2.2 Topological Cell Cluster

Topological clusters (topoclusters) are 3D clusters that are derived from calorimeter

cells by adding the energy in neighbouring cells with a dynamical topological cluster

algorithm. The clustering procedure is as follows. First, each cell energy Ecell is compared

to a stored value σnoise,cell representing the average effect of electronics noise and pile-

up. The clustering starts from a seed cell with signal-to-noise ratio Ecell/σnoise,cell above

four. Neighbouring cells are then added iteratively if σnoise,cell > 2. Finally, all cells with

σnoise,cell > 0 surrounding the cluster are merged as the cluster boundary. The above

clustering sequence is often referred to as 4/2/0.

The resulting clusters with more than one local signal maximum are then split into

smaller clusters, again in 3D, along the signal valleys between the maxima. These re-

sulting clusters are at the EM scale (discussed in Section 3.4). However, they can also
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Figure 3.2: Calorimeter cell signal contributions to towers on a regular ∆η×∆φ = 0.1×0.1

grid, for projective and non-projective cells. The signal contribution is expressed in η

and φ as a geometrical weight and is calculated as the ratio of the tower bin area over

the projective cell. Extracted from Reference [22].
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Figure 3.3: A simulated QCD event with two hard cone jets (1 and 2) with energies

around 2 TeV each and two softer jets with energies around 20 GeV (3 and 4) in ATLAS.

The same coloured bins belong to the same jet. The jet shape clearly depends on the

calorimeter signal definition. Extracted from Reference [23].

be calibrated to the hadronic scale, resulting in local-calibrated (LC) topoclusters [22].

The energy-weighted barycentre of the final clusters defines its direction.

Since the cells with no signal are most likely excluded from the topoclusters, topo-

logical cell clustering has noise suppression, unlike signal tower clustering. This reduces

the effect of electronics noise, resulting in substantially fewer cells for jets reconstructed

using the topoclusters compared to the jets built from signal towers. Figure 3.3 shows

the change of the jet shape depending on the jet input collection.
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3.3 Jet Finding Algorithm

Recombination algorithms and cone algorithms are two main classes of jet finding al-

gorithms used in ATLAS. Examples of the recombination algorithms include kT [24],

Cambridge/Aachen [25] and Anti-kT [26]. SISCone [27] is an example of the cone al-

gorithm. Since the Anti-kT algorithm has been adopted as the default jet algorithm in

ATLAS, it is discussed in Section 3.3.1 in detail as an example of the recombination

algorithms. Cone algorithms are then reviewed in Section 3.3.2.

3.3.1 Anti-kT Algorithm

The Anti-kT algorithm is one of the recombination algorithms that are modified from

the kT jet algorithm. It has nice theoretical properties including infrared safety and

collinear safety. One important feature of the Anti-kT jet algorithm is that the final

jet shape tends to be very conical compared with other recombination algorithms, as

shown in Figure 3.4. However, any substructure inside a jet can not be revealed using

the Anti-kT algorithm, in contrast to other recombination algorithms [24, 25].

Recombination algorithms are based on the pairwise clustering of input constituents.

Starting with a pair of calorimeter inputs indexed by the subscripts i and j, the dis-

tance dij is defined as

dij = min(kT,i
2p, kT,j

2p)
∆Rij

2

R2

∆Rij =
√

(yi − yj)2 + (φi − φj)2 . (3.1)

The parameters kT,i, yi, φi are the transverse momentum, rapidity, and azimuth of the

input i, respectively. The parameter R is an external parameter defining the jet size.

The parameter p is added to represent various recombination algorithms: p = −1 for the

Anti-kT algorithm, p = 0 for the Cambridge/Aachen algorithm, and p = 1 for the kT

algorithm. Another distance diB relative to the beam axis (denoted by subscript B) from
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Figure 3.4: A parton-level event clustered by [left] kT and [right] Anti-kT jet algorithms,

illustrating the catchment of the core jets with the shapes of the jet boundaries. Extracted

from Reference [26].

the input i is also defined:

diB = kT
2p
,i . (3.2)

For all possible combinations of indexes i and j, a list of distance values is compiled. The

entry with the minimum value is found. If this entry is one of the dij, the corresponding

inputs i and j are recombined (more details in Section 3.3.3), and the list is then recom-

piled. If instead the entry is one of the diB, input i is removed from the list and a new

list without the input i is created. The whole procedure continues until all the inputs are

removed from the list. Inputs that are removed from the list are considered as complete

jets. For the Anti-kT algorithm, the above procedure means that the nearby pairs of

high pT inputs are combined first. This results in a conical jet shape that is unaffected

by low pT inputs, for example, from soft quarks or gluons. In contrast, the procedure for

the kT algorithm involves merging nearby low pT inputs in order to mimic parton shower

splitting. This results in an irregular jet boundary, as shown in Figure 3.4.

Two jet sizes are available for the Anti-kT jet algorithm in ATLAS: R = 0.4 and

R = 0.6. The latter is used in the dijet resonance analysis, as discussed in Section 4.3.
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3.3.2 Cone Algorithm

Cone algorithms, as suggested by their name, form jets by grouping calorimeter inputs

within a cone of radius Rcone in the η–φ plane. ATLAS uses an iterative seeded fixed-cone

jet finder with Rcone = 0.4 for narrow jets and Rcone = 0.7 for wider jets. First, a list

of calorimeter inputs in descending order in ET is created for each event. The highest

input above a certain threshold of about 1 GeV is treated as a seed. All the inputs within

the cone size Rcone =
√

∆η2 +∆φ2 are then grouped with the seed. The centroid of the

initial cone is calculated from the sum of all constituent four-momenta and is taken as the

new cone centre. The inputs in the new cone are collected, and the centroid is updated

again; this continues until a stable cone is formed. The jet-finding procedure proceeds

with the next highest input until no more seeds are available. All possible cone jets are

then identified, but it is possible that some of the cone jets share the same calorimeter

inputs, resulting in overlapping jets. To avoid this, a split/merge step is introduced

based on the fraction of shared energy. In ATLAS, jets that share calorimeter inputs

corresponding to more than a certain fraction (spilt-merge factor fsm = 0.5 in ATLAS)

of the lower-energy jet’s pT are merged. Below this fraction, overlapping jets are split

and the shared inputs are assigned to the jets according to the proximity of the inputs

to the jet centroids.

Like most cone algorithms, the finding procedure suffers from infrared safety issue.

The Seedless Infrared-Safe Cone (SISCone) algorithm [27] was developed in order to be

infrared safe. It does not use seeds like traditional cone algorithms. Instead, it finds all

stable cones by sliding the cone around a pair of calorimeter inputs to ensure collinear and

infrared safe. However, the identified stable cone jets may still overlap, so the split/merge

procedure is then performed as for the ATLAS cone jet algorithm, but with fsm = 0.75

as recommended by the SISCone authors.
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3.3.3 Recombination Scheme

The same recombination scheme is used for all jet algorithms in ATLAS. Each input

constituent is considered as a massless pseudo-particle with four-momentum ki. The jet

with four-momentum pk is formed by summing the input constituent four-vectors, i.e.,

pk =
∑

i

ki . (3.3)

This scheme provides a meaningful single-jet mass as well as energy and momentum

conservation.

3.4 Jet Energy Calibration

After clustering the inputs using a jet finding algorithm, the resulting jet energy is cali-

brated at the EM scale. The EM scale is established using test-beam measurements for

electrons and muons in the EM and hadronic calorimeters [28, 29],4 and thus accounted

correctly for the energy of electrons and photons. But, it does not correct for instru-

mental effects including calorimeter non-compensation, dead materials, shower leakage

and out-of-cone effects. The goal of the jet energy calibration procedure is to correct the

energy and momentum of the jets from the EM scale to the hadronic scale.

In ATLAS, two major calibration approaches are developed: in-situ data-driven cor-

rections and MC-based calibrations. In the early phases of 2010 ATLAS running, the

amount of data collected was insufficient to extract reliable data-driven calibrations.

Instead, a simple calibration based on the MC simulation of the ATLAS detector was

adopted. This MC-based derivation is performed by comparing the jets calibrated at

the EM scale (called MC reconstructed jets) with the jets built from stable particles

except muons and neutrinos (called MC truth jets). The MC truth jets represent the

measurement goal of the “physics” jets.

4The method of the invariant mass reconstruction of Z0 → e+e− from 2010 collision data is used
later in the EM scale calibration.
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The jet energy correction is derived using numerical inversion technique [30] in five

pseudo-rapidity regions: 0.0 ≤ |η| ≤ 0.3, 0.3 ≤ |η| ≤ 0.8, 0.8 ≤ |η| ≤ 1.2, 1.2 ≤ |η| ≤ 2.1,

and 2.1 ≤ |η| ≤ 2.8. These divisions are chosen based on the transition of the calorimeter

subdetectors. The response for reconstructed jets at the EM scale is defined as the ratio

of the transverse momentum between the reconstructed jet preco,EMT and the truth jet ptrueT :

REM =
preco,EMT

ptrueT

. (3.4)

Since preco,EMT is normally distributed in bins of ptrueT , and the response REM is taken as

the Gaussian fitted mean at the centre of the ptrueT bins, i.e., REM = REM(ptrueT , η). As

our interest is in the calibration constants for a given preco,EMT , an inversion technique is

applied to transform the jet response measured as a function of ptrueT to that as a function

of preco,EMT . The resulting response as a function of preco,EMT and η is then parametrized

using the following function:

REM
(

preco,EMT , η
)

=
4
∑

i=0

ai(η)
[

ln preco,EMT /GeV
]i , (3.5)

where ai are free parameters. The jet energy correction is therefore defined as the inverse

of the response function of Equation 3.5. The transverse momentum of the calibrated

jet preco,calibT is calculated as:

preco,calibT =
1

REM
(

preco,EMT , η
) × preco,EMT . (3.6)

Figure 3.5 shows the average jet energy scale correction as a function of the EM-

scale reconstructed jet preco,EMT . On average, the jet energy is increased by about 30–

40% for jet preco,EMT > 100 GeV. Note that the jet direction remains unchanged after

applying the MC-based energy correction. Furthermore, multiple pp interactions produce

additional particles which deposit extra energy in the calorimeter. However, with the

low instantaneous luminosity in the initial ATLAS data taking period, the amount of

extra energy contributed from pile-up is insignificant. No correction for the pile-up is
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Figure 3.5: Average jet energy scale correction as a function of jet transverse momentum

at the electromagnetic scale preco,EMT for jets in the central barrel (black circles) and

endcap (red triangles) regions. Extracted from Reference [30].

applied to the jets, but this impact is taken as an additional source of the JES systematic

uncertainties as discussed in Section 3.4.1.

3.4.1 Jet Energy Scale Uncertainty

The JES uncertainty is one of the dominant experimental systematic errors in the dijet

resonance search. In particular, the JES uncertainty affects the reliability of the dijet

invariant mass calculation. The effect of this uncertainty in the dijet resonance analysis

is discussed in Chapter 5.

Various sources of contributions to the JES uncertainty are considered. The detector

geometry description and the amount of dead materials in MC simulations affect the

values of jet energy measurements. The difference between the noise description used in

MC and the electronics noise measured in data alters the topocluster noise thresholds

in jet finding algorithms. Shifts in the beam spot position cause biases in jet transverse

momentum during jet reconstruction. Detector conditions like temperature fluctuation
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in the LAr have an impact on the absolute EM scale values, which directly affect EM-

scale jet energies. Particular MC samples and specific jet selections cause biases to the

JES correction values. Choosing the barrel region as a fiducial region in the relative

JES calibration introduces an uncertainty on jet energy measurements in the endcap re-

gion. Variations in using different hadronic shower models, fragmentation and underlying

models, and MC event generators give uncertainties for JES calibrations.

Uncertainty from each of the above sources is found by comparing the jet response

with each variation applied to the nominal one in each jet pT and η bin. The total jet

energy scale uncertainty is obtained by combining all these uncertainties and is found to

be under 10% (7.6%) for pjetT > 20 GeV (60 GeV) and |ηjet| < 2.8, as shown in Figure 3.6.

3.4.2 Jet Cleaning

Jets are sometimes mis-reconstructed owing to hardware problems, beam backgrounds,

cosmic-ray showers, or air showers. These jets, called “fake” jets [31], are divided into

two types: bad jets (jets not associated with in-time calorimeter energy depositions) and

ugly jets (jets from real energy depositions of improperly calibrated inputs).

Three sources of bad jets are considered:

• Out-of-time jets. Large amounts of energy can be deposited in the calorimeter

outside the nominal timing window for collisions. This is mainly caused by cosmic

ray showers or beam background events. For each jet, the jet time tjet is defined

with respect to the nominal event time. These jets can be identified by requiring

that the energy-square-weighted cell time is outside two beam bunch crossings, i.e.,

|tjet| > 50 ns. The percentage of this type of mis-reconstructed jets is about 0.74%

for EM-scale jet pT above 20 GeV.

• Bad quality jets in the EM calorimeter. A noise burst occurring in the EM

calorimeter might lead to a “fake” jet. A large fraction of the energy of the resulting
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Figure 3.6: Relative jet energy scale systematic uncertainty as a function of pjetT for jets

in the pseudo-rapidity region [top] 0.3 < |η| < 0.8 and [bottom] 2.1 < |η| < 2.8 in the

calorimeter barrel. The total uncertainty is shown as the solid light blue area. The

individual sources are also shown, with statistical errors if applicable. Extracted from

Reference [30].
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jets comes from EM calorimeter inputs, i.e., fEM, or bad-quality
5 calorimeter cells,

denoted by fquality. These bad quality jets in the EM calorimeters are identified

by requiring fEM > 0.95 and |fquality| > 0.8. The percentage of this type of mis-

reconstructed jets is about 0.05% for EM-scale jet pT above 20 GeV.

• Single-cell jets in the HEC. Most “fake” jets come from sporadic noise bursts

in single calorimeter cells in the HEC. These jets typically have a large jet-energy

fraction in HEC, denoted by fHEC, and a low number of energy-ordered cells ac-

counting for at least 90% of the jet energy, denoted by n90. These problematic jets

in the HEC are identified by requiring fHEC > 0.8, n90 ≤ 5 and fHEC ≤ 1− fquality.

The percentage of this type of mis-reconstructed jets is about 4.97% for EM-scale

jet pT above 20 GeV.

Two sources of ugly jets are also considered:

• Jets extrapolated from masked cells. Cells with certified permanent problems

are masked during jet reconstruction and their energy is estimated from surrounding

cells. Jets that are built from a large fraction of masked cells are flagged as ugly.

These jets are selected based on a requirement that the fraction of the EM-scaled

jet energy coming from these masked cells, denoted by fcor, be greater than 0.5.

• Large energy fraction in the Tile-Gap layers. Since the calibration of the

scintillator response in the gap between the TileCal barrel and the endcap is not

yet fully understood, jets with an energy fraction from this region, denoted by fTG3,

larger than 0.5 are tagged as ugly, i.e., fTG3 > 0.5.

Table 3.1 summarizes the jet quality selections that are applied to the jets in the dijet

resonance search in Section 4.3.

5The calorimeter quality is a measure of the difference in the sampling of the measured pulse and the
reference pulse shape that is used to reconstruct the cell energy.
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Table 3.1: The “fake” jet requirements.

Jet Type Issue Criterion

Bad

Cosmics/beam background |tjet| > 50 ns

EM coherent noise fEM > 0.95, |fquality| > 0.8

HEC spike fHEC > 0.8, n90 ≤ 5, fHEC ≤ 1− fquality

Ugly
Large masked cell energy fcor > 0.5

Problematic TileCal energy fTG3 > 0.5



Chapter 4

Search in the Dijet Mass

Distribution

In the high-energy pp collisions of the LHC, a copious number of inclusive two-jet (dijet)

events are produced via QCD processes. However, several models beyond the SM predict

that new particles could also be produced strongly in the collisions. These particles

typically have large branching ratios for decaying to two coloured objects, resulting in a

two-jet final state. The following lists some of these exotic particles, in descending order

of production cross section at a mass of 2 TeV:

1. The excited composite quark q∗, exemplifying quark substructure [5, 6, 7].

2. The axigluon A, predicted by chiral colour models [32, 33].

3. The flavour-universal colour-octet coloron C [34, 35].

4. The diquark D, predicted by the superstring-inspired E6 GUT model [36].

5. The colour-octet techni-ρ meson ρT8, predicted by models of extended technicolour

and topcolour-assisted technicolour [37, 38, 39, 40].

44
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6. The graviton G, predicted by the Randall-Sundrum (RS) model with warped extra

spatial dimension [41, 42].

7. Additional gauge bosons W ′ and Z ′, predicted in grand unified theories (GUT) that

invoke higher dimensional gauge groups or left-right symmetric models [43, 44].

If these particle states have masses accessible to the LHC energies and large production

cross sections, a significant excess of events should be observed as a bump on top of the

QCD-predicted invariant mass spectrum.

Dijet invariant mass mjj is a particularly useful observable for new physics searches.

Past studies at the Fermilab Tevatron used this observable and showed good agreement

with next-to-leading-order (NLO) QCD predictions in the regions mjj < 1.2 TeV for

jet |η| < 1.0 [45] and mjj < 1.3 TeV for jet |y| < 1.0 [46]. The CDF experiment used

1.13 fb−1 of pp̄ data at
√
s = 1.96 TeV to exclude mass ranges for various exotic particles

decaying into dijets at 95% confidence level. The limits set by the Tevatron are listed in

Table 4.1.

This chapter focuses on the study of the dijet mass spectrum and a search for new

physics using this spectrum. Sections 4.1 and 4.2 describe the data and Monte Carlo

(MC) samples used in this search, respectively. The event selection for this analysis is

discussed in Section 4.3. Section 4.4 describes the data-driven technique used to estimate

the QCD background. Finally, a generic search for discrepancies on the background-only

dijet mass spectrum is performed in Section 4.5.

4.1 Data Sample

The data taken by ATLAS are divided into data periods, each of which represents data

collected with a consistent detector configuration and trigger menu. The data in periods

“A” to “G4” are included in this analysis, corresponding to a total integrated luminosity

of 6.1 pb−1 collected between March and September 2010 [50]. The data are required
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Table 4.1: The current Tevatron limits on existing exotic models.

New particle type Existing mass exclusion Source

Excited quark q∗ 260 GeV < m < 870 GeV CDF Run 2 [46], q∗ → jj

Axigluon A/Coloron C 260 GeV < m < 1250 GeV CDF Run 2 [46], A/C → jj

E6 diquark D 290 GeV < m < 630 GeV CDF Run 2 [46], D → jj

Technirho ρT8 260 GeV < m < 1100 GeV CDF Run 2 [46], ρT8 → jj

SM-like W ′ m < 1.12 TeV D0 Run 2 [47], W ′ → eν

SM-like Z ′ m < 1030 GeV CDF Run 2 [48], Z ′ → µ+µ−

G(k/M̄pl = 0.1) m < 1050 GeV D0 Run 2 [49], G → e+e−, γγ

to satisfy quality criteria [51] as set by the data quality and preparation group. The L1

jet triggers, the tracking (including pixel, SCT and TRT) and the calorimeter (including

EMB, EMEC, HEC, FCal and TileCal) subdetectors are required to be in good operating

condition. Furthermore, the solenoid must be operating at the nominal current. The

LHC beams must be stable and operating at 3.5 TeV and the integrated luminosity

calculations must be reliable. Only events recorded with these conditions are used in the

dijet resonance analysis.

4.2 Monte Carlo Simulation

All the MC samples that are used in this analysis are prepared using the standard AT-

LAS MC09 parameter tune [10]. This includes MRST2007 modified leading-order (LO)

parton distribution functions1 (PDF) from the LHAPDF library [53] and pythia [54]-

specific tuning using Tevatron data. After event generation, the events are simulated

with the ATLAS detector using the geant4 [55] simulation tool and then reconstructed

1MRST2007 Modified LO PDF is a PDF with leading-order αs that are modified to approximate
next-to-leading order results. Details can be found in Reference [52].
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in ATHENA [56] software release 15.6.9.8.

4.3 Event Selection

As discussed in detail in Chapter 3, offline jets reconstructed using the Anti-kT algorithm

with size R = 0.6 are used in this analysis. Topological clusters are taken as the input

constituents to the jets. The direction as well as the energy of the reconstructed jets are

constructed at the EM scale and are subsequently calibrated by a single numerical factor

using a MC-determined numerical inversion technique, as described in Section 3.4. The

jets after this correction are at the hadronic scale.

The observable used in this analysis is the dijet invariant mass mjj. It is defined as:

mjj =

√

(E1 + E2)
2 − (~p1 + ~p2)

2 , (4.1)

where E and ~p are the energies and momenta of the two jets. Data events are required

to satisfy the following criteria:

• There must be at least one primary vertex in order to suppress cosmic-ray and

beam-related backgrounds. Each primary vertex must have at least five recon-

structed charged particle tracks and must satisfy |z| < 10 cm.

• The unprescaled inclusive jet trigger at level 1, labelled as L1 J55, is used, where 55

is the minimum value of the EM-scale transverse energy, in GeV, to trigger the

event. A study of inclusive jet trigger efficiency as a function of calibrated jet pT

was conducted to determine the plateau point that is fully efficient (> 99%). Events

that pass this trigger and have calibrated jet pT above the plateau point would not

suffer biases from the trigger. In this analysis, at least one jet with transverse

energy higher than 150 GeV is used in order to be fully efficient.

• At least two jets are required in the event, with the leading (the highest transverse

momentum) jet satisfying pj1T > 150 GeV and the sub-leading jet satisfying pj2T >
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30 GeV. This ensures that the selected sample has a high and unbiased trigger

efficiency.

• Neither of the two leading jets in the event satisfies the “fake” jet criteria as dis-

cussed in Section 3.4.2.

• No “ugly” jet having pT > 15 GeV exists in the event. This prevents accidental

swapping between the sub-leading jet and the next-to-sub-leading jet.

• The two leading jets are required to be in the pseudo-rapidity region |ηjet| < 2.5 in

order to have full shower containment. If either one of the two jets lies between 1.3

and 1.8 in |η|, this event is vetoed, as there are transition regions among different

calorimeter technologies that are relatively poorly instrumented.

• The two leading jets are required to be “back-to-back” in pseudo-rapidity, i.e.,

∆η = |ηj1 − ηj2| < 1.3. This selection was optimized using MC-simulated QCD

and signal events, as discussed in detail in Section 4.3.1.

• Finally, all events are required to be in the region mjj ≥ 350 GeV in order to

eliminate any potential kinematic bias in the mjj distribution and to facilitate

fitting, as discussed in Section 4.4.

Note that no overlap removal between jets and other objects is applied in this analysis.

In total, 32185 data events (about 0.014%) survive the selection criteria, forming the

dijet mass distribution discussed in Section 4.4.2. Figure 4.1 shows the second highest

dijet invariant mass event in the selected sample.

The same criteria are applied to the MC QCD samples. The surviving QCD events

are used to validate the parametrization of Equation 4.2 in Section 4.4.

Similarly, after applying the above selection criteria, the acceptance A of the ex-

cited quark q∗2 model is found to range from 33% to 52% for mq∗ = 500 GeV and

2The couplings of q∗ to the SM SU(2), U(1), and SU(3) gauge groups are set to be f = f ′ = fs = 1,
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mq∗ = 2.0 TeV, respectively. Note that the signal acceptance A takes into account the

reconstruction efficiency, which is greater than 99% for all the signal masses considered.

Since no overlap removal is applied between jets and other objects, the above acceptance3

includes all other possible decay channels besides the two-jet final state. This acceptance

is used to set limits in Chapter 5. Table 4.2 details the acceptance A times the branching

fraction of the q∗ to all decay channels and the specific qg channels.

4.3.1 The ∆η Selection

The pseudo-rapidity distributions of the two leading jets using MC QCD and signal events

are shown in Figure 4.2. Since QCD events are produced dominantly via t-channel

processes, two leading jets are produced more in forward regions, resulting in a large

value of ∆η. The parameter ∆η is defined as the relative difference of the two jets

in pseudo-rapidity. In signal events, excited quarks q∗ are mainly produced through

s-channel processes, and so the two leading jets are distributed relatively uniformly in

pseudo-rapidity, resulting in a relatively small value of ∆η.

In the range of the dijet mass distribution that contains 68% of the MC signal, the

ratio s/
√
b as a function the absolute value of the maximum ∆η, denoted as |∆η|max, is

shown in Figure 4.3. The parameters s and b are the numbers of the MC signal and QCD

events, respectively, which have ∆η smaller than or equal to |∆η|max. The ratio reaches

a maximum around 1.3 in |∆η|max. Further cuts on the pseudo-rapidities of two jets are

applied in order to study the variation of the |∆η|max distributions. The peak around

1.3 in |∆η|max is essentially unchanged until the event statistics are limited by the η cuts

placed on the jets.

In order to suppress high-mass SM QCD background and improve the signal-to-

respectively [6]. The compositeness scale is set to the q∗ mass. Note that all the decay channels of the q∗

are permitted, including those decaying particles that did not become jets.
3For the specific qg final state, the signal acceptance A varies from 28% to 42% for mq∗ = 500 GeV

and mq∗ = 2.0 TeV, respectively.
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Figure 4.1: The event display with the second highest dijet invariant mass 1.9 TeV shown

in Figure 4.8. The kinematics (pT, y, φ) of the two leading jets are (890 GeV,−0.6,−2.8)

and (760 GeV, 0.6, 0.3).
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Table 4.2: The production cross section σq∗ and the acceptance times the branching

fractions both to all possible channels (A × Brq∗→all) and the specific qg channel (A ×

Brq∗→qg) are shown for various q∗ masses. The relative intrinsic mass width σmq∗
/mq∗

given by pythia and the relative reconstructed mass resolution σmjj/mjj by Gaussian

fit, together with the goodness-of-fit χ2/NDF value, are also listed. The parameter NDF

is the number of degree of freedom.

Index ν mq∗ [GeV] σq∗ [pb] A× Brq∗→qg A× Brq∗→all σmq∗
/mq∗ σmjj /mjj χ2/NDF

1 500 6.48× 103 0.28 0.33 0.040 (8.4± 0.4)× 10−2 1.2

2 600 2.74× 103 0.32 0.38 0.039 (9.1± 0.3)× 10−2 1.2

3 700 1.28× 103 0.33 0.39 0.039 (8.9± 0.4)× 10−2 1.3

4 800 6.48× 102 0.34 0.41 0.038 (7.8± 0.3)× 10−2 1.2

5 900 3.46× 102 0.36 0.43 0.038 (8.5± 0.3)× 10−2 1.3

6 1000 1.92× 102 0.37 0.44 0.037 (7.5± 0.3)× 10−2 0.7

7 1100 1.08× 102 0.38 0.46 0.037 (7.3± 0.3)× 10−2 1.4

8 1200 6.37× 101 0.39 0.47 0.037 (7.0± 0.2)× 10−2 0.7

9 1300 3.80× 101 0.39 0.48 0.037 (7.3± 0.2)× 10−2 0.9

10 1400 2.32× 101 0.40 0.48 0.036 (6.7± 0.2)× 10−2 1.0

11 1500 1.42× 101 0.41 0.50 0.036 (7.5± 0.2)× 10−2 1.4

12 1600 9.04× 100 0.41 0.50 0.036 (7.3± 0.2)× 10−2 1.3

13 1700 5.77× 100 0.41 0.51 0.036 (7.0± 0.2)× 10−2 1.6

14 1800 3.68× 100 0.41 0.50 0.036 (6.5± 0.2)× 10−2 1.0

15 1900 2.44× 100 0.42 0.52 0.035 (7.5± 0.2)× 10−2 1.0

16 2000 1.56× 100 0.42 0.52 0.035 (6.3± 0.2)× 10−2 0.8
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Figure 4.2: Surface plots describing the expected distributions of the event yields in

the observables ηj1 and ηj2 for dijet events in [left] the MC QCD and [right] the pre-

dicted q∗(1 TeV) samples. Both MC dijet events are selected in the dijet mass range of

68% (±1σ) coverage, i.e., 875 GeV ≤ mjj ≤ 1020 GeV, of the q∗ at 1 TeV.

background ratio, ∆η = 1.3 is chosen for this analysis. This value remains stable with

other q∗ signal masses.

4.3.2 Dijet mjj Binning

Using unbinned methods to analyze the reconstructed dijet mass spectrum can maxi-

mize the information extracted from the event distribution, thus enhancing the signal-

to-background sensitivity [57]. However, due to the fluctuation of the detector’s jet

energy response, the reconstructed invariant mass has a finite resolution below which no

useful information can be extracted.

In the dijet resonance search, binning themjj distribution is motivated by the absolute

mass resolution of the reconstructed signal. Figure 4.4 shows the reconstructed mjj

distribution for various q∗ mass points after the event selection. The width of each

signal mjj distribution results from the convolution of the intrinsic mass width and the
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Figure 4.3: The ratio s/
√
b from the background events b and the q∗(1 TeV) events s

is shown as a function of |∆η|max. Both MC dijet events are selected in the dijet mass

range of 68% (±1σ) coverage of the q∗ at 1 TeV as shown in Figure 4.2.
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energy resolution of the two reconstructed jets. Since the signal mass spectrum is not

steeply-falling compared to the QCD mass spectrum, the effect of bin migration is small

for the signal mass spectrum, so a constant bin width of 5 GeV is used.

Each q∗ distribution in Figure 4.4 is fit using a Gaussian function in the range

(−1.0,+2.0)σfit
4 around the peak, where σfit is the width of the final fitted Gaussian.5

The relative mass resolution of the signal q∗ is defined as the ratio of the fitted width to

the fitted mean of the final Gaussian distribution, as tabulated in Table 4.2. Table 4.2

also lists the corresponding intrinsic relative mass width for each q∗ mass.

Since the intrinsic mass width of the q∗ signal is smaller than the reconstructed mass

resolution, the resolution of the q∗ mass is mostly due to the detector resolution at the

reconstruction level. Figure 4.5 shows the dijet mass resolution as a function of the q∗

mass with a fit whose form is derived from the phenomenological jet energy resolution [58].

This will be used to define the dijet mass bins in the following.

Three issues are taken into account for dijet mass bin sizes: the number of degrees of

freedom in the fit of Equation 4.2, the final data event statistics, and the range of mjj

observed in data. After considering these issue, a bin size of 0.5σmjj is chosen. Mass

bin boundaries are calculated from σmjj and mjj using an iterative technique. Starting

with the first bin boundary at 350 GeV and a trial mass mjj
trial, the lower and upper

boundaries of the bin centred at mjj
trial are

(

mjj
trial − 0.5σmjj

trial

)

and
(

mjj
trial + 0.5σmjj

trial

)

,

respectively. The value of σmjj is calculated from the fit function of Figure 4.5. When

the value of the lower boundary is equal to that of the first bin boundary, i.e., mjj
trial −

0.5σmjj

trial

= 350 GeV, the upper boundary is fixed and then the next bin boundary search

begins. The above binning procedure ensures that the derived bins contain maximal

4An asymmetric mjj range around the peak in the fitting is used to minimize the effect of final-state
radiation in the low side of each signal mass distribution as shown in Figure 4.4.

5An iterative procedure of the Gaussian fit is performed in the range (−1.0,+2.0)σRMS in the be-
ginning, where σRMS is standard derivation of event distribution. The width of the fitted Gaussian σfit

is then used instead to define the fit range, and next fitting proceeds. The procedure ceases when the
value of σfit is stable during successive fittings. σfit is the width of the final fitted Gaussian.



Chapter 4. Search in the Dijet Mass Distribution 55

 [GeV]
jj

m

3
10E

v
e

n
ts

 /
 5

 G
e

V
 (

N
o

rm
a

liz
e

d
 t

o
 o

n
e

)

0

0.02

0.04

0.06

0.08
q*(200)

q*(300)

q*(400)

q*(500)

q*(600)

q*(800)

q*(900)

q*(1000)

Figure 4.4: The reconstructed mjj distributions in constant bins of 5 GeV due to hypo-

thetical excited quarks with masses of 200, 300, 400, 500, 600, 800, 900 and 1000 GeV

are shown after applying the selection criteria.

numbers of signal events, thus enhancing the signal-to-background sensitivity [57].

With the bin size of 0.5σmjj , the above procedure yields the following dijet mass bin

boundaries: 350, 391, 431, 474, 520, 569, 621, 676, 735, 797, 863, 933, 1007, 1085, 1168,

1256, 1349, 1447, 1551, 1661, 1777, 1900, 2167, 2312, 2465, 2627 GeV, for a total of 26

bins. This binning is used for all subsequent dijet mass distributions.

4.4 Background Determination

The background in the dijet mass spectrum can be determined in two ways, using either

MC simulation or a data-driven estimate based on a smooth parametrization. In past

dijet resonance searches, the former approach was adopted by the D0 experiment [59]

while the latter was adopted by the CDF experiment [46]. Since our understanding of the
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MC simulation is limited in the early phase of LHC data taking, a data-driven approach is

used in this analysis. The expected background is extracted from the observed spectrum

by fitting it with a theoretically motivated function [46]:

f(x) = p0
(1− x)p1

xp2+p3 lnx
, (4.2)

where x ≡ mjj/
√
s, and p0,1,2,3 are free parameters constrained such that f(1) = 0 and

f(0) → +∞. The (1 − x)p1 factor is related to the leading-order QCD matrix element

while the 1/xp2 factor follows from the PDF fall-off at high momentum fraction. The

x−p3 lnx factor is included to better describe the high-mjj part of the QCD spectrum.6

Equation 4.2 has been shown to fit the mjj observable well in pythia, herwig, and

NLO perturbative QCD predictions for pp̄ collisions at
√
s = 1.96 TeV [46]. Equation 4.2

is used to construct the expected background distribution from the observed data in

Section 4.4.2.

4.4.1 Testing the Parametrization with MC QCD

This section examines the capacity of Equation 4.2 to reproduce the mjj observable

at
√
s = 7 TeV of the LHC. After applying the selection criteria of Section 4.3 and

normalizing to the measured integrated luminosity of 6.1 pb−1, Figure 4.6 shows the MC

QCD dijet mass spectrum at the reconstruction level. The function obtained by fitting

Equation 4.2 over the mass range 350 GeV < mjj < 2627 GeV is also shown. The upper

bound value 2627 GeV is determined by the fact that no data event is observed above

this value, as shown in Figure 4.8. Figure 4.7 shows the bin-by-bin difference and the

significance between the QCD MC and the best fit of Equation 4.2. The MC spectrum

is described well by Equation 4.2 and yields χ2/NDF = 24.3/22, thereby confirming the

capability of Equation 4.2 to model the QCD background in the mjj distribution.

6Alternatives are studied besides Equation 4.2: a) f(x) = p0(1 − x)p1/xp2 , used in the CDF
Run 1A [60]; b) f(x) = p0(1 − x + p3x

2)p1/xp2 , used in the CDF Run 1B [61]; c) f(x) =
p0
[

(1− x) + p3(1− x)2
]p1

/xp2 and d) f(x) = (p0 + p1x)× (x− p2)
p3+p4x. However, none of the above

functions return a reasonable or “better” goodness-of-fit result with fewer fitting parameters.
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Figure 4.6: The pythia prediction at leading order for the reconstructed mjj spectrum,

rescaled to the observed time-integrated data luminosity of 6.1 pb−1. The fit function

Equation 4.2 to the QCD spectrum with χ2/NDF = 24.3/22 is shown in the mass range

of 350 GeV < mjj < 2627 GeV.
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Figure 4.7: [left] The relative bin-by-bin difference between the reconstructed pythia

QCD calculation and the fit function in Figure 4.6. [right] The significance of the bin-by-

bin difference between the reconstructed pythia QCD calculation and the fit function

in Figure 4.6.

4.4.2 Fitting Data

Figure 4.8 depicts the observed data mjj distribution overlaid with the result of fitting

Equation 4.2 to the observed data spectrum. Figure 4.9 shows the relative bin-by-bin

difference and the significance between the observed data distribution and the predicted

background. The data distribution is well described by Equation 4.2, yielding χ2/NDF =

11.4/22. The best fit parameters for the observed data distribution are found to be p0 =

(1.25±0.51)×10−4 GeV−1, p1 = 7.49±2.66, p2 = 5.20±0.16, and p3 = (1.55±5.15)×10−2.

4.5 Background-only Hypothesis Testing

Good agreement between the observed data distribution and the prediction from the fit

has been shown in Section 4.4.2. In the following, more sophisticated statistical tests

based on pseudo-experiments are used to test the consistency between the observed data
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predicted distributions in Figure 4.8. [right] The significance of the bin-by-bin differences

between the observed data and the predicted distributions in Figure 4.8.

and the predicted background.

4.5.1 Strategy

Assuming the background-only (null) hypothesis, about 103 dijet mass data spectra are

randomly generated from the expected spectrum using the parameters listed in Sec-

tion 4.4.2. Each of these spectra is treated as data observed in a pseudo-experiment.

The mjj distribution from one of the spectra is then analyzed by the same procedure as

the observed data for the background estimation.

Three test statistics are used in this analysis: BumpHunter [62], Pearson’s χ2 [63] and

− lnL. BumpHunter is a tailor-made test statistic to evaluate the consistency between

each mjj distribution and its predicted background in localized regions, as discussed in

detail in Section 4.5.4. The other two test statistics, Pearson’s χ2 [63] and − lnL, are

employed in Section 4.5.2 and 4.5.3, respectively, to help determine the consistency of

the background-only hypothesis.
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For each of the 103 spectra, the predicted background is found using Equation 4.2.

Each of the test statistics is computed to quantify the agreement between the mjj dis-

tribution and the corresponding predicted background. The distribution of the test

statistics obtained from the pseudo-experiments is compared with the value found in

the observed data. The p-value of the null hypothesis is then defined by the fraction of

pseudo-experiments for which the test statistic of the pseudo-spectrum is greater than or

equal to the test statistic of the observed data. By construction, this takes value from

0 to 1. Larger p-values indicate consistency between the observed data distribution and

the background-only hypothesis. Section 4.5.5 summarizes the results from the above

test statistics.

4.5.2 Pearson’s χ2 Test Statistic

One of the best-known test statistics used in this study is Pearson’s χ2 test [63]. Given

the null hypothesis, the value of the χ2 for the observed distribution is calculated to be

the sum of the χ2
i :

χ2 ≡
∑

i

χ2
i =

∑

i

(

di − bi√
bi

)2

. (4.3)

The parameters di and bi are the observed and predicted background event yields in

mass bin i, respectively. By following the procedure of Section 4.5.1, Figure 4.10 shows

the distribution of the lnχ2 statistic obtained from background-only pseudo-experiments.

Taking the logarithm of χ2 values is to make the distribution more visible. 951 pseudo-

experiments return larger χ2 values than the value found in the observed data; the p-value

is thus found to be 0.95.

4.5.3 − lnL Test Statistic

Since the Gaussian approximation for the statistical fluctuations becomes invalid for bins

with limited numbers of observed events, the χ2 test statistic may not be accurate for
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Figure 4.10: The distribution of lnχ2 statistic resulting from pseudo-experiments seeded

by a fit to the observed mjj data distribution. The value of the statistic found by the fit

to the data is indicated by the blue arrow. The p-value is found to be 0.95.
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Figure 4.11: The distribution of the − lnL statistic resulting from pseudo-experiments

seeded by a fit to the observed mjj data distribution. The value of the statistic found by

the fit to the data is indicated by the blue arrow. The p-value is found to be 0.93.

these bins. As the number of observed events is Poisson distributed in general, a test

statistic − lnL can be constructed from the product of the Poisson probabilities Li of

each dijet mass bin i:

− lnL ≡ − ln
∏

i

Li = −
∑

i

ln

(

bdii
di!

e−bi

)

. (4.4)

Figure 4.11 shows the distribution of the − lnL statistic for the background-only hypoth-

esis. 928 pseudo-experiments return larger values of the − lnL than the observed data

value; the p-value is thus found to be 0.93.

4.5.4 BumpHunter Test Statistic

The BumpHunter [62] statistic is related to the − lnL test statistic but is designed to

identify resonance-like features.
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The BumpHunter algorithm scans localized regions of various widths in the dijet

mass spectrum and returns a value that corresponds to the most discrepant region, i.e.,

the most resonance-like region. The localized region is composed of three windows: one

central window and two sideband windows on each side. Window is obtained by grouping

together successive bins. The size of the central window can vary from two to half of the

number of the dijet mass bins, while the size of each adjacent window is roughly equal

to half of the number of central window bins. Possible sizes of sideband-central-sideband

windows are thus 1-2-1, 1-3-1, 2-5-2, 3-7-3, etc. This configuration helps to compare the

central region with two controlled sideband regions. The p-val is defined as the Poisson

probability that the observed number of data events dj would fluctuate up to or above

the number of predicted events bi, i.e.,

Lj =



























∞
∑

k=dj

bkj
k!
e−bj , if dj ≥ bj

dj
∑

k=0

bkj
k!
e−bj , if dj < bj

(4.5)

The index j indicates either the left sideband window L, the central window C, or the

right sideband window R. The following criteria are applied to determine the most

resonance-like region:

• The number of observed events must be greater than the predicted value in the

central window, i.e., dC ≥ bC .

• Better agreement is found in the two sideband windows compared with the central

window, i.e., LL ≥ LC and LR ≥ LC .

If a localized region does not satisfy the above conditions, the Poisson probability of the

central window is set to one. LC = 1 thus implies that no resonance-like feature is found

in this region. After scanning the whole spectrum with various central window sizes, the

algorithm returns the largest central window test statistic as − lnLC . The larger the
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test statistic − lnLC is, the more incompatible the corresponding central region is with

respect to the expected background. The BumpHunter test statistic, in other words, is

the derivative of the − lnL statistic in a local area.

Figure 4.12 indicates all possible resonance-like intervals and their associated Poisson

probabilities in one of the pseudo-experiments. The interval with the smallest probability

is located around 850 GeV. Figure 4.13 shows the least consistent intervals found in

the pseudo-experiments. All intervals are even distributed, meaning that no resonance-

like feature in a particular region is found from the pseudo-experiments. 944 pseudo-

experiments have larger values of the BumpHunter statistic than found in the observed

data, as shown in Figure 4.14; the p-value is thus found to be 0.94.

4.5.5 Summary

The p-values extracted from the test statistic distributions shown in Figs. 4.10, 4.11

and 4.14 indicate that the observed data mjj distribution is consistent with the null

hypothesis.
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Figure 4.12: Possible resonance-like intervals with the corresponding probabilities in one

of the pseudo-experiments. 11 possible resonance-like intervals are found in a pseudo-

experiment indicated as red horizontal lines. The interval with the smallest Poisson

probability is found around 850 GeV. The smaller the Poisson probability (or the larger

− lnLC) returns, the least consistent are the intervals in this pseudo-experiment.
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Figure 4.14: The distribution of the BumpHunter statistic resulting from pseudo-

experiments seeded by a fit to the observed mjj data distribution. The value of the

statistic found by the fit to the data is indicated by the blue arrow. The p-value is found

to be 0.94.



Chapter 5

Limit Setting

Since no evidence was found for the existence of any resonance-like structure in the

observed data, we set limits on the production of excited quarks decaying to two-jet final

states. Section 5.1 presents mass limits on the q∗ model obtained without considering

systematic uncertainties. Section 5.2 details the systematic uncertainties that affect the q∗

mass limits. Section 5.3 describes the procedure used to integrate these uncertainties in a

statistical treatment. Finally, the results of the mass exclusion limit with the systematic

uncertainties are summarized.

5.1 Evaluation of Statistical Uncertainties

Since the observed data is consistent with our data-driven background prediction, as

discussed in Chapter 4, we use the data to exclude some q∗ regions. A Bayesian method

using binned maximum likelihood is adopted here. In this method, the 95% credibility

level1 (CL) upper limit on the production cross section times the detector acceptance

(σ × A) is calculated for q∗ decaying into dijets. For each q∗ mass of index ν listed in

1Credibility level refers to the likelihood that the true population parameter lies within the range
specified by the credible interval. The credible interval, or the Bayesian confidence interval, is a posterior
probability interval that incorporates the information from a prior information.

70
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Table 4.2, the likelihood function Lν is defined to be the product of Poisson probabilities

computed in all mass bins:

Lν(d|bν , s) =
∏

i

(bν,i + si(ν))
di

di!
e−(bν,i+si(ν)) . (5.1)

The parameters di and si(ν) are the numbers of observed data events and predicted

signal events in bin i. Note that the distribution of signal events is determined by

the MC simulation described in Section 4.2. The total number of the predicted signal

events is constrained for a given integrated luminosity, i.e., s =
∑

i si(ν). In order

to obtain the predicted number of background events bν,i in bin i, the observed data

are fitted simultaneously by both the fit function of Equation 4.2 and the relevant q∗

template.2 The expected background is then obtained by evaluating Equation 4.2, using

the parameters returned from the fit above. Each index ν corresponds to a given value

of the signal mjj in the region of interest. The posterior probability given the observed

data is then found by

Pν(s|d) = Lν(d|s)
π(s)

Nν

, (5.2)

where π(s) is the signal prior and Nν is a normalization constant. Assuming a flat prior

in the number of signal events s (or equivalently the signal cross section), i.e., π(s) = π,

the posterior probability density in s is equal to Equation 5.1 multiplied by a constant.

The 95% quantile of the number of the signal events excluded is found by integrating 95%

of the leftmost area of the posterior probability density. Figure 5.1 shows the posterior

probability distribution for one choice of the q∗ mass.

2For each of the fits with index ν, four parameters are assigned to the background function of
Equation 4.2 and one parameter is for the normalization of the relevant νth q∗ signal template that
controls the total number of signal events in the relevant signal template. As mentioned in the text, the
distribution of the signal events is predetermined by the MC simulation.
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Figure 5.1: The posterior probability distribution computed, assuming a flat prior, for

an excited quark mass of 900 GeV without considering systematic uncertainties. The

vertical red line indicates the 95% quantile signal values.
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5.1.1 Results

The number of events excluded at 95% CL for various q∗ masses are shown in Table 5.1.

These numbers are then divided by the total time-integrated luminosity of 6.1 pb−1 to

get the exclusion curve shown in Figure 5.2. The curve showing the product of q∗ cross

section and the detector acceptance σ × A from Table 4.2 is also shown. The observed

95% CL excited quark mass exclusion region is determined by the intersection of the two

curves. Therefore, in the presence of statistical errors only, the observed mass exclusion

region at 95% CL is found to be 0.50 TeV < mq∗ < 1.66 TeV. Note that the excluded

range starts from 500 GeV. It is because the low-side tail of the lowest q∗ mass distribution

is minimally affected by the minimum mjj criterion mentioned in Section 4.3. Also, there

is still a region that can be used as the left sideband for the fitting with the lowest q∗

mass described in Section 5.1.

The corresponding expected mass exclusion region is determined by generating 103

pseudo-experiments for a given q∗ mass index ν from the corresponding predicted back-

ground, i.e., bν . Each spectra from a pseudo-experiment is treated like the observed data

and is analyzed with the procedure described in Section 5.1. The mean of the resulting

event distribution is found for each of the q∗ masses. Figure 5.2 shows the expected ex-

clusion curve after the luminosity normalization, along with its 68% (1σ) and 95% (2σ)

confidence interval bands. The expected mass exclusion region at 95% CL is found to be

0.50 TeV < mq∗ < 1.78 TeV. The observed mass exclusion curve is close to the expected

exclusion curve within the confidence interval bands. Thus, the observed mass exclusion

range is consistent with the expected result.

5.1.2 Frequentist Coverage

To cross check the number of signal events excluded at 95% CL obtained from the

Bayesian technique in Section 5.1.1, a frequentist examination of the coverage proba-



Chapter 5. Limit Setting 74

Table 5.1: The observed and expected numbers of excluded q∗ events at 95% CL without

considering systematic uncertainties are listed. These numbers correspond to a time-

integrated luminosity of 6.1 pb−1.

Index ν mq∗ [GeV] Excluded events at 95% CL

Observed Expected

1 500 614 399

2 600 169 263

3 700 231 182

4 800 63.9 131

5 900 52.0 96.6

6 1000 86.5 69.3

7 1100 61.0 53.8

8 1200 34.5 41.9

9 1300 29.1 32.6

10 1400 25.5 26.9

11 1500 25.1 21.4

12 1600 22.8 17.8

13 1700 19.6 14.0

14 1800 16.2 11.7

15 1900 13.4 10.1

16 2000 10.8 8.80
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Figure 5.2: The dotted curve shows the expected 95% CL upper limit of σ×A as a func-

tion of the dijet resonance mass mjj. The 68% (1σ) and 95% (2σ) confidence interval

bands around the expected limits are represented in light and dark yellow bands, respec-

tively. The corresponding observed limit is shown by the black solid curve. The dashed

curve represents the hypothetical excited-quark σ×A prediction for MC09 tune. The ex-

pected and observed upper limits on the q∗ mass are found to be 1.78 TeV and 1.66 TeV,

respectively.
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bility is also used.

For each q∗ mass listed in Table 4.2, a new set of 103 pseudo-experiments are generated

from the combined template obtained by summing the expected background and the

luminosity-normalized signal template. The expected background is obtained from the

same procedure discussed in Section 5.1. The number of the signal events returned from

the combined fit of the signal plus background is found in each pseudo-experiment. Since

the number of injected signal events is known a priori, the coverage probability is defined

as the fraction of the pseudo-experiments for which the number of the signal events

returned is greater than or equal to the injected signal amount in the combined template.

Figure 5.3 shows the coverage probability as a function of the number of injected signal

events. This result verifies that the Bayesian technique used in Section 5.1 yields results

which are consistent with a frequentist treatment.

5.2 Systematic Uncertainties

The following sources of systematic uncertainty are considered in this analysis:

• Absolute jet energy scale (JES): affects the expected position of a given signal in

the dijet mass spectrum.

• Background fit: alters the number of the predicted background events.

• Luminosity: influences the number of expected signal events.

• Jet energy resolution (JER): affects the expected width of a given signal in the dijet

mass spectrum.

The uncertainties from the JES, luminosity and JER affect the MC signals while

the background fit uncertainty is applied to the predicted background. Each of the

systematic uncertainties are considered in the range of (−3,+3)σ, where σ is the value

of the relevant uncertainty. This range covers 99.7% of the uncertainty effect and is used
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Figure 5.3: The coverage probability as a function of signal yield for a hypothetical q∗

mass of 900 GeV. The coverage is defined by the fraction of pseudo-experiments that the

number of signal events returned from the background-plus-signal fit is greater than or

equal to the injected number of the signal events. The coverage probabilities exceed 95%,

indicating compatibility between Bayesian and Frequentist approaches.
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in the convolution calculation, which is discussed in Section 5.3. The uncertainties are

discussed in more detail in the following sections.

5.2.1 Jet Energy Scale

The JES uncertainty is derived from MC samples with various shifted generation and

simulation settings. The resulting uncertainty varies with both jet pT and η as discussed

in Section 3.4.1. Denoting the JES uncertainty by σJES, 13 variations in the range

of (−3,+3)σJES with a constant interval of 0.5σJES are used. For each variation, jets are

varied coherently by the same magnitude of the JES uncertainty. The JES uncertainty is

applied to all jets in the signal samples before the event selection. For instance, to vary

the JES by +1.5σJES, a jet of nominal pT = 100GeV and σJES = 5% has its momentum

multiplied by a scale factor of (1 + 1.5 × 5%) = 1.075; the shifted pT thus becomes

107.5 GeV. For each of the q∗ masses, 13 likelihoods are obtained from the calculation

of Section 5.1 after applying the above JES variations. These likelihoods are served in

the convolution calculation in Section 5.3.2.

5.2.2 Background Fit

The finite number of observed data events affects the accuracy of the expected background

estimate from the fit function of Equation 4.2. To take into account this uncertainty, the

statistical error of the number of the observed data events in each mjj bin is denoted as

σfit. Assuming that these are correlated from bin-to-bin, 13 variations are used, covering

the (−3,+3)σfit interval in steps of 0.5σfit. For each variation, the number of data events

in each mjj bins is scaled coherently according to the magnitude of σfit; this coherent

shift corresponds to the maximum possible variation and hence this uncertainty is treated

conservatively. Note that in each of these variations, the total number of data events

no longer corresponds to the one observed in data. The predicted background from the

shifted data is evaluated by fitting both Equation 4.2 and the dedicated signal template
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accordingly. 13 likelihoods are then derived from these 13 shifted background spectra

by following the steps of Section 5.1, for each signal. These likelihoods are served in the

convolution discussed in Section 5.3.2.

5.2.3 Luminosity

The total integrated luminosity L is determined on a run-by-run basis using the absolute

calibration obtained from Van der Meer scans [64]. The total uncertainty on this value is

estimated to be 11% [50]. This uncertainty can be translated directly into an uncertainty

on the number of expected q∗ events. Denoting the integrated luminosity uncertainty

by σlum, the (−3,+3)σlum interval contains 13 variations with a constant step size of

0.5σlum. For a given q∗ signal, the normalization of the mass template is rescaled by each

variation; this effectively changes the number of expected signal events. 13 likelihoods are

then constructed following Section 5.1 to be used in the convolution calculation procedure

of Section 5.3.2.

5.2.4 Jet Energy Resolution

The uncertainty on the jet energy resolution is expected to have a dependence on jet

transverse momentum pT and pseudo-rapidity η [58]. However, for simplicity, this un-

certainty is treated as uniform in both pT and η in the convolution calculation, with a

constant maximal value of 14% used for the relative resolution σpT/pT of all jets. De-

noting the JER uncertainty by σJER, the range between (−3,+3)σJER is divided into 13

variations with a constant interval of 0.5σJER. Since jets from the signal events are passed

through a simulation of the ATLAS calorimeter which includes resolution effects, their

reconstructed four-momenta are already subject to the JER. Thus, when considering the

JER variations, an uncertainty that is already present is being changed. For example, in
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the case of a +1.5σJER variation, the total JER is

σp′
T

p′T
=

σpT

pT
+ 1.5σJER

σpT

pT
= 1.21

σpT

pT
, (5.3)

where σpT/pT and σp′
T
/p′T are the relative jet pT resolution before and after the JER

variation, respectively. This increase in the relative resolution is obtained by adding to

each jet pT a random number r. This number r is sampled from a Gaussian distribution

with a mean of zero and a standard deviation of
√
1.212 − 1σpT . The resulting average

jet p′T is then 〈p′T〉 = 〈pT〉+ 〈r〉 = 〈pT〉, with a standard deviation of σp′
T
=
√

σ2
pT

+ σ2
r =

1.21σpT , which is equivalent to the desired JER in Equation 5.3.

For cases where the desired JER would be smaller than the nominal value, e.g.,

−0.5σJER, the JER cannot be reduced by introducing additional smearing. In this situ-

ation, the JER is thus left at its nominal value. This is a conservative approach, as for

reduced JER, the signal would have a narrower distribution compared to the nominal

one, and hence be more easily detected. Therefore, 13 likelihoods, of which seven are

identical, are constructed from the shifted signal templates. These likelihoods are then

used in the convolution discussed in Section 5.3.2.

5.3 Limits with Systematic Uncertainties Incorpo-

rated

5.3.1 Overview of the Convolution Method

The systematic uncertainties appear as nuisance parameters in the limit setting. A ded-

icated method, called the grid method, is developed in this analysis for the propagation

of the systematic effects to the limit setting. The grid method uses a set of grid points

with associated weights. A heuristic picture of the grid is shown in Figure 5.4. Without

loss of generality, the weight assigned to each grid point is determined from the normal

distribution shown in Figure 5.5. Each of the grid points in Figure 5.4 represents a
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Figure 5.4: A heuristic picture of 2D grid method with grid points spanning (-3,+3)σ,

where σ is systematic uncertainty.

particular combination of the variations described in Section 5.2. Each combination of

variations of the systematic uncertainties is applied to the MC events before the event

selection. A shifted mass template is obtained from each combination after the event se-

lection. This template is then used to compute the likelihood as discussed in Section 5.1.

A new posterior probability distribution is obtained by multiplying the weighted mean

of the likelihoods by the flat prior and normalization factor. More details are given in

Section 5.3.2.

5.3.2 The Convolution Details

The nuisance parameters representing the uncertainties on the JES, the background fit,

the luminosity and the JER are denoted by λ1, λ2, λ3 and λ4, respectively. For a given q∗

mass of index ν, the likelihood function in the presence of systematic uncertainties is now
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Figure 5.5: A simple diagram of the Gaussian weight for the grid points in Figure 5.4.

a function of the number of signal events s and the nuisance parameters λ1,2,3,4, i.e.,

Lν(d|bν , s, λ1, λ2, λ3, λ4) =
∏

i

(bν,i(λ2) + si(ν, λ1, λ3, λ4))
di

di!
e−(bν,i(λ2)+si(ν,λ1,λ3,λ4)) .

(5.4)

28561 (13×13×13×13) likelihoods are constructed to take into account all the possible

combinations of variations of the systematic uncertainties. The posterior probability

distribution is then given by

Pν(s, λ1, λ2, λ3, λ4|d) = Lν(d|bν , s, λ1, λ2, λ3, λ4)
πν(s, λ1, λ2, λ3, λ4)

Nν

, (5.5)

where πν(s, λ1, λ2, λ3, λ4) is the prior and Nν is a normalization constant. Assuming

that the variables of the prior are uncorrelated, with the nuisance parameters following

a normal distribution, the prior can be factorized as follows:

πν(s, λ1, λ2, λ3, λ4) = πν(s) ·
4
∏

i=1

π(λi) (5.6)

with π(λi) =
1√
2π
e−λ2

i /2 for i = 1, . . . , 4. By integrating over the nuisance parameters in

Equation 5.5, we obtain the posterior probability density

Pν(s|d) =
πν(s)

Nν

∫ ∫ ∫ ∫

Lν(d|bν , s, λ1, λ2, λ3, λ4)
4
∏

i=1

π(λi)dλi . (5.7)
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Figure 5.6: The posterior probability distributions computed, assuming a flat prior, for

an excited quark mass of 900 GeV with the effect of [left] the luminosity and the fit

uncertainties, and [right] the JES and the JER uncertainties. The distribution convolved

with the JER uncertainty has no significant difference from the one without systematic

uncertainties convolved. The effect of the systematic uncertainty convolution technique

is indicated by the shifts in the extracted 95% quantile signal values, represented by the

vertical red lines.

Equation 5.7 is then discretized in order to compute Pν(s|d) by numerical integration

using the trapezoid method [65], with λi ranging from −3 to 3 in steps of 0.5 in a 4D

grid of (λ1, λ2, λ3, λ4).

The 95% quantile of the number of the signal events excluded is found by integrating

95% of the leftmost area of the posterior probability density. Figure 5.6 demonstrates

the effect of each source of systematic uncertainty on the posterior probability computed

using one of the signal masses. As seen in figure, the effect of the JER uncertainty to

the posterior probability is found to be negligible compared to the other uncertainties.

Similar results are found for other q∗ signal masses. Therefore, the JER systematic

uncertainty is not considered in the final convolution calculations. Figure 5.7 shows the

posterior probability with some combinations of the systematic uncertainties convolved.
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Figure 5.7: The posterior probability distributions computed, assuming a flat prior, for

an excited quark mass of 900 GeV with the effect of no convolution, the effect of the

luminosity and the JES convolution, and the effect of the convolution of all systematic

uncertainties (except JER) listed in Section 5.2. The effect of the systematic uncertainty

convolution technique is indicated by the shifts in the extracted 95% quantile signal

values, represented by the vertical red lines.
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5.3.3 Results

The 95% quantiles of the number of the signal events excluded can be translated into

exclusion upper limits on σ×A as a function of the q∗ resonance masses. Figure 5.8 shows

the exclusion limits obtained with specific combinations of systematic uncertainties. As

more sources of systematic uncertainty are considered, the exclusion curves move upward,

resulting in smaller mass exclusion regions.

Figure 5.9 shows the exclusion upper limits on σ × A as a function of the q∗ reso-

nance masses including all the systematic uncertainties of Section 5.2. Table 5.2 lists

the 95% quantile of the number of signal events excluded for various q∗ masses. Linear

interpolation is used between the various mass points to determine where the experi-

mental bound intersects with the theoretical prediction, yielding the upper limit on the

excluded mass range. The observed q∗ mass exclusion region at 95% CL is found to be

0.50 TeV < q∗ < 1.62 TeV by using MRST2007 Modified LO PDF in the ATLAS default

MC09 tune.

Following the method of Section 5.1.1, about 103 pseudo-experiments are generated

to find the expected exclusion curve together with the 1σ and 2σ confidence interval

bands shown in Figure 5.9. With the incorporation of the systematic uncertainties, the

expected mass exclusion region at 95% CL is found to be 0.50 TeV < mq∗ < 1.67 TeV,

consistent with the observed mass exclusion range.
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Table 5.2: The observed and expected numbers of excluded q∗ events at 95% CL after

the convolution with the systematic uncertainties are listed. These numbers correspond

to a time-integrated luminosity of 6.1 pb−1.

Index ν mq∗ [GeV] Excluded events at 95% CL

Observed Expected

1 500 833 682

2 600 253 403

3 700 253 253

4 800 135 173

5 900 71.6 121

6 1000 92.5 93.8

7 1100 80.4 68.5

8 1200 49.4 54.6

9 1300 34.8 43.8

10 1400 29.7 34.6

11 1500 28.1 27.9

12 1600 25.6 23.5

13 1700 22.1 18.8

14 1800 19.0 15.2

15 1900 17.2 13.5

16 2000 14.3 11.3
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Figure 5.8: The 95% CL upper limit with various combinations of the systematic uncer-

tainties incorporated on σ ×A as a function of dijet resonance mass. The dashed curve

represents the excited-quark σ ×A prediction for MC09 tune.
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Figure 5.9: The 95% CL upper limit with systematic uncertainties incorporated on σ×A

as a function of dijet resonance mass (black filled circles). The black dotted curve shows

the expected 95% CL upper limit, and the light and dark yellow shaded bands represent

the 68% and 95% credibility intervals of the expected limit, respectively. The dashed

curve represents excited-quark σ × A prediction for MC09 tune. The expected and

observed upper limits on the q∗ mass are found to be 1.67 TeV and 1.62 TeV, respectively.
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Conclusions and Outlook

6.1 Conclusions

A search for physics beyond the SM manifested as a resonance in the dijet mass spectrum

was performed using 7 TeV data taken at ATLAS between March and September 2010

corresponding to an integrated luminosity of 6.1 pb−1. The QCD background was esti-

mated with a data-driven approach. The parametrization of Equation 4.2 was fit to the

dijet mass distribution from the ATLAS MC QCD simulation. The resulting goodness-

of-fit was found to be χ2/NDF = 24.3/22, showing that it adequately models the smooth,

steeply-falling mjj distribution of the QCD background. This parametrization was ap-

plied to the ATLAS data, resulting in a goodness-of-fit χ2/NDF of 11.4/22.

The SM-only hypothesis was tested in the observed data using the BumpHunter

statistic, which is tailor-made to search for resonance-like features. Together with the χ2,

the− lnL, all the tests returned p-values exceeding 0.94, which supported the background-

only hypothesis.

The excited quark model was chosen as a benchmark because first and foremost it has

been used in experiments like CDF and CMS. This enables us to compare results among

different experiments. It also has the highest MC signal cross section among other exotic

89
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models. Using a Bayesian binned maximum likelihood method, the observed q∗ mass

exclusion range at 95% CL without systematic uncertainties was found to be 0.50 TeV <

mq∗ < 1.66 TeV, close to the expected 0.50 TeV < mq∗ < 1.78 TeV. Adding the systematic

effects due to the time-integrated luminosity, the jet energy scale and the background

parametrization, the observed and expected q∗ mass exclusion ranges were found to be

0.50 TeV < mq∗ < 1.62 TeV and 0.50 TeV < mq∗ < 1.67 TeV, respectively. This extended

the upper limit on the q∗ mass previously set by ATLAS [66] and CMS [67] in 2010.

6.2 Outlook

Although no evidence of resonance-like features was found in this analysis, it is crucial to

repeat such a measurement as more data is collected. As our understanding of the LHC

and the performance of ATLAS detector improve over time, the systematic uncertainties

affecting this analysis will decrease, thus improving the limit setting after the systematic

uncertainty convolution. Setting limits on other exotic models exhibiting resonances

that decay to dijets, e.g., string resonances [68, 69], could also be interesting. More

advanced jet identification techniques such as particle flow methods are currently under

development at ATLAS. The limit setting procedure could be carried out in a more

model-independent way by employing a simple Gaussian with a fixed mean and width as

the signal template. This has been done and published in Reference [70]. An extensive

use of prescaled events allows us to search for exotic signals over a large range of dijet

mass spectrum. Another variation of the generic dijet resonance search involves searching

for tt̄ resonances. Candidate jets for a tt̄ resonance study may be found by identifying

substructure within jets.

This analysis has demonstrated that the dijet mass spectrum can be used to search

for new physics at the LHC. As the LHC is intended to run until 2012 at the same energy

with increasing instantaneous luminosity, ATLAS will continue to take data in which may
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reveal new physics and thus further extend our understanding of the universe.



Contributions

The analysis presented in this thesis was carried out by a collaboration of physicists

participating on the ATLAS experiment. However, most of the analysis work were done

by Georgios Choudalakis at The University of Chicago and the author. In particular, the

author’s contributions to this analysis include:

• Written an internal note about the MC expectations of this analysis at the centre-

of-mass energy of 10 TeV and 14 TeV,

• Validated MC signal event generation,

• Optimized event selections used in this analysis,

• Studied various forms of background parametrization with different MC-simulated

QCD samples,

• Established a complete independent code for cross checking, particularly, background-

only hypothesis using χ2, − lnL, and BumpHunter test statistics and limit setting

results by using a convolution method proposed by Demortier [71].

Besides the above, the author made general contributions to the ATLAS collaboration,

including the following:

• Taking charge of the shower parametrization simulation software for the forward

calorimeter for a total of two years,
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• Participating in the validation of the fast frozen shower simulation for the forward

calorimeter for a period of half an year,

• Developing a method of setting in-situ jet energy scale using γ + j events for a

period of one and half an year.
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