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We consider a model of an unstable state defined by the truncated
Breit—Wigner energy density distribution function. An analytical form of
the survival amplitude a(t) of the state considered is found. Our attention
is focused on the late time properties of a(t) and on effects generated by
the non-exponential behavior of this amplitude in the late time region: In
1957, Khalfin proved that this amplitude tends to zero as ¢t goes to the
infinity more slowly than any exponential function of ¢. This effect can
be described using a time-dependent decay rate «y(t), and then the Khalfin
result means that this () is not a constant but at late times, it tends
to zero as t goes to the infinity. It appears that the energy E(t) of the
unstable state behaves similarly: It tends to the minimal energy E;, of the
system as ¢t — oco. Within the model considered, we find two first leading
time-dependent elements of late time asymptotic expansions of E(t) and
~(t). We discuss also possible implications of such a late time asymptotic
properties of E(t) and (t) and cases where these properties may manifest
themselves.
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1. Introduction

Attempts to describe time evolution of unstable states within the Quan-
tum Mechanics have been practically made from times when this theory
started to be born. The most known result from these times is the Weisskopf—
Wigner theory of spontaneous emission [1]. Considering the excited atomic
levels and applying the Shrodinger equation to describe the time evolution,
Weisskopf and Wigner found that to a good approximation the non-decay
probability of the exited levels is a decreasing function of time having an
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exponential form [1]. Further theoretical studies of the quantum decay pro-
cess showed that basic principles of the quantum theory does not allow it
to be described by an exponential decay law at very late times [2, 3] and
at initial stage of the decay process (see [3| and references therein). The-
oretical analysis shows that at late times, the survival probability (i.e. the
decay law) should tend to zero as t — oo much more slowly than any ex-
ponential function of time and that as a function of time, it has the inverse
power-like form at this regime of time [2, 3]. There were many unsuccessful
attempts to verify experimentally predicted deviations from the exponential
form of the decay law at late times regime (see, e.g., [4]). The first and only
experimental evidence of these deviations at long-time regime was reported
in [5]. Rothe and his group preparing their experiment used successfully
conclusions resulting from theoretical studies of models of unstable states
and conditions leading to the non-exponential behavior of the survival am-
plitude (see, e.g., [6-10]). The result reported by Rothe’s group gives rise
to another important problem: If (and how) the late time deviations from
the exponential decay affect the energy of the unstable state and its decay
rate. Theoretical studies of models of unstable states can bring us closer to
understanding and explaining this problem. This paper contains analysis of
the quantum unstable system modeled by the Breit—Wigner energy density
distribution function. Studies of such models are known in the literature
but usually these studies were limited to the analysis of properties of the
survival amplitude (see, e.g., [11] and [12-15]). The first leading late time
terms of asymptotic series expansions for the energy E(t) and decay rate
v(t) of the unstable state were found within such a model in [12, 13]. In this
paper, we show how to find the 2" or higher leading terms of the late time
expressions for F(t) and 7(¢).

The aim of this paper is to find analytical expressions for the survival am-
plitude a(t), the effective Hamiltonian h(t) governing the time evolution in
the one-dimensional subspace of the unstable states considered and analyti-
cal late time expressions for a(t), h(t), and also of the instantaneous energy
E(t) and decay rate (t) with the accuracy to the first two non-trivial lead-
ing elements of the asymptotic series expansions of these quantities within
the model considered.

The paper is organized as follows. Section 2 contains a brief description
of general properties of evolving in time unstable states and basic defini-
tions of quantities discussed in next sections. In Section 3, the model of an
unstable state defined by the truncated Breit—-Wigner energy density distri-
bution function is analyzed: There are found analytical expressions for the
survival amplitude a(t), effective Hamiltonian h(t) as well as the late time
asymptotic series expansions of a(t), h(t), E(t) and ~(t). Section 4 contains
graphical presentations of results of numerical calculations of quantities dis-
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cussed in Section 3. Section 5 contains a discussion of possible cosmological
applications of results presented in Sections 3 and 4. In Section 6, one finds
a discussion and final remarks.

2. Preliminaries

Studying quantum unstable systems, one usually analyzes their decay law
(that is in their survival probability), which contains main information about
properties of such systems. If one knows that the system is in the initial
unstable state |¢) € H (H is the Hilbert space of states of the considered
system), which was prepared at the initial instant ty = 0, then one can
calculate its survival probability, P(t), of the unstable state |¢) decaying in
vacuum, which equals

P(t) = la(t) 2, (1)

where a(t) is the probability amplitude of finding the system at the time ¢
in the initial unstable state |¢)

a(t) = (¢lo(t)) , (2)
and |¢(t)) is the solution of the Schrodinger equation for the initial condition

6(0)) = [9) 5
iho 16(t)) = H|(t)) . (3)

Here, |¢),|o(t)) € H, and H denotes the total self-adjoint Hamiltonian
for the system considered. We assume that there exists a common inertial
reference rest frame Oy for the observer and for the unstable system. So,
P(t) is the probability of finding the system at time ¢ in the rest reference
frame Op in the initial unstable state |¢).

An important property of the state |¢) representing an unstable state
is that the |¢) cannot be an eigenvector for H: Simply, in such a case, the
eigenvalue equation H|¢) = Ey|$) has no solutions.

An unstable state |¢) can be modeled as a wave packets using solutions
of the following eigenvalue equation:

H|E) = E|E), Eco.(H), (4)

where o.(H) denotes a continuum spectrum of H. Eigenvectors |E) are
normalized as usual

(E|IE") =6 (E—FE') . (5)
Using vectors |E), we can model an unstable state as the following wave-
packet:

[e.9]

9= [ e®)iE)aE, (6)

Emin
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where expansion coefficients ¢(E) are functions of the energy E, and Eni,
is the lower bound of the spectrum o.(H) of H. The state |¢) is normalized
(¢l¢) = 1, which means that it has to be [ |¢(E)[*dE = 1.

Using the definition of the survival amplitude a(t), expansion (6), and
relation (4), we can find a(t), which takes the following form within the
formalism considered:

at) = / w(B) e 1 Etap, (7)

Emin

where w(E) = |c¢(E)|? > 0.

As it is seen from (7), the amplitude a(t), and thus the decay law P(t)
of the unstable state |¢), are completely determined by the density of the
energy distribution w(E) for the system in this state [16] (see also |2, 3, 17—
22]. Now, if to apply Riemann—Lebesque lemma to (7), then the conclusion
follows: a(t) — 0 as t — oo. It is because the normalization condition
a(0) = fSpeC(H) w(F)dm = 1 ensures the absolute integrability of w(E). So
it has to be P(t) — 0 in the case considered. (It appears that this approach
can also be applied for Quantum Field Theory models [23-25].)

Now, if to follow Khalfin [2] and to assume that the spectrum of H
must be bounded from below, E,;, > —oo, and to use the Paley—Wiener
Theorem [26], then one comes to Khalfin’s conclusion that in the case of
unstable states, there must be |a(t)] > A exp[-bt?], for |t| — oco. Here,
A>0,b>0and 0 < g < 1. This means that the decay law P(t) of
unstable states decaying in the vacuum, (1), cannot be described by an
exponential function of time t if time ¢ is suitably long, ¢ — oo, and that
for these lengths of time P(t) tends to zero as ¢ — oo more slowly than
any exponential function of ¢. Not so long ago, this effect was confirmed by
Rothe and his group in the experiment described in [5].

It appears that information about the survival probability Py () of the
state |¢), strictly speaking about the decay rate 7o of this state, as well
as the energy Ej of the system in this state can be extracted from a(t).
One can do this using the rigorous equation governing the time evolution
in the subspace of unstable states, H| 3 [¢)| = |¢). Such an equation can
be derived using the Schrodinger equation (3) for the total state space H.
Namely, starting from (3), one finds that within the problem considered,
when #,| is the one-dimensional subspace of H,

ih 2 (016(1)) = (Gl HIo(1) 0
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Thus, taking into account (2), it can be said that the amplitude a(t) satisfies
the following equation:

 Oa(t)
ih 5t = h(t)a(t), (9)
where
_ (olH[p(t)) _ (¢lH|o(1))
"= T e .

and in the case considered in this paper, h(t) is the effective Hamiltonian
governing the time evolution in the one-dimensional subspace of unstable
states H| = PH, where P = P? = P7 is the projection operator. (In
the considered case: P = [¢)(#|.) The subspace H can describe an one-
component unstable subsystem (see [27, 28| and also [12, 13| and references
therein) or a multi-component subsystem (like neutral kaons complex) and
other the like (see [29-31] and references therein). The subspace H © H | =
Hi = QH is the subspace of decay products. Here, Q@ =1 — P.

A subtle problem appears when one considers the multi-component (or
multi-state) quantum unstable system, i.e. when dimH > 2. Namely, in
such a case, the survival probability P(t) defined by relation (1) should be
distinguished from the non-decay probability Pp-q(t)

Pu-a(t) = Plo(t)) [*= (6()|Ple(t)) - (11)

There is P(t) = Py-a(t) only when dim % = 1, that is in the case considered
in this paper. In the general case, when dim H| > 2, we have P(t) # Py-q(1)-
An equivalent formula for h(t) has the following form [12, 13, 27]:

ih Oal(t)

h(t) = o) ot

(12)

The effective Hamiltonian h(t) is used when one starts with the Schrodin-
ger equation for the total state space H and looks for the rigorous evolution
equation for a distinguished subspace of states H) C H (see, e.g., [27-32]
and also [21, 22|). In general, h(t) is a complex function of time. In the
case of H| of dimension two or more, the effective Hamiltonian governing
the time evolution in such a subspace is a non-Hermitian matrix H) or a
non-Hermitian operator [28, 29, 32|. We have

h(t) = E(t) — 57(t), (13)

and
E(t)=R[A@®)], () =-23[h()] (14)
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are the instantaneous mass energy F(t) and the instantaneous decay rate,
~(t) (see [27] and [12, 13]). Here, R (z) and I (z) denote the real and imag-
inary parts of z respectively. Relations (9), (12) and (14) are very helpful
when the density w(F) is given and one wants to find the instantaneous
energy E(t) and decay rate y(¢): In such a case, inserting w(FE) into (7), one
obtains the amplitude a(t), and then using (12), one finds the A(t) and thus
E(t) and ~(t).

In closing this section, we should pay attention to another problem:
The vector |¢) of the form of (6) describing a quantum unstable subsystem
cannot be an eigenvector of the Hamiltonian H, otherwise it would be that
P(t) = [(¢|p(1))|? = |(¢]exp [—£tH]¢)|* = 1 for all times t. The fact that
this vector |¢) is not the eigenvector for H means that the energy of the
quantum unstable object is not defined. Simply, the energy cannot take
the exact constant value in this state |¢). In such a case, quantum systems
are characterized by the energy distribution density w(E) and the average
energy (E) = fg:ﬂn Ew(E)dEFE or by the instantaneous energy E(t) but not
by an exact value of the energy.

3. An unstable system defined by the truncated Breit—Wigner
energy density distribution: analytical results

In the large literature, many quantum unstable systems are described
within the Fock—Krylov theory using Breit—Wigner energy density distribu-
tion function wpw (E). The use of wpw (E) is convenient because it relatively
well describes a large class of unstable systems and allows to find analytical
form of the survival amplitude a(t) (see, e.g., [11-13] and other papers). It
appears that for this energy density distribution, one can also find the an-
alytical form of a(t) at very late times as well as the analytical asymptotic
form of h(t), E(t) and ~(t) for such times.

3.1. A survival amplitude

Let us assume that Spec.(H) = [Emin,o0) and let us choose w(E) as
follows:
def V'

. ] Y0
5 O(E — Euin) (15)

(E=BoP + (3

where N is a normalization constant and O(E) is the unit step function:
O(E) =1 for E > 0 and ©(FE) = 0 for E < 0. For such w(F), using the
integral representation of the survival amplitude (7), one finds

w(E) = wpw(F)

(e 9]

N Y

T ) (E-Eo?+(R)2
Emin

a(t) e HElaE, (16)
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where
o0

1 1 70

— = dE. 1

N o / (E— Eo)* + ()2 (17)
Emin

Using dimensionless variables

E — Ey Ey — Eny t
n= —, p="Umn and 7= 08 def T(t), (18)
70 70 h
integral (16) can be rewritten in the following form:
N i [ 1
_ _ —+FEyint —i8T —inT
at) = a(r(t) = o e~ it =i /Me "y, (19)
N _ip . ¢+ _i
= et =BT gy (20)
2m
where
o0
def 1 —q
Ig(T) —/ e T dn. (21)
n”+ g

After some algebra, one can express the function Ig(t) defined by relation
(21) in terms of the integral-exponential functions Fj(z)

150 = (@) = 20e 78 {1 = | B (=i (64 5) )

cm( )]} e

(We use Ej(z) defined according to formula 6.2.1 in [33].) From (22) and
(20), the following formula follows:
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or equivalently,

a(t) = Ne_% (EO_Z.%O)t

e £ (- (B o))
v (- (B ) ) | o

where EFr = By — Enin.

Results (23) and (24) mean that, in general, |a(t)|? is not a pure ex-
ponential function of time within the model considered. What is more, it
appears that the survival amplitude a(¢) cannot coincide with the canonical
survival amplitude a.(t),

ao(t) < 4 e 5 (Bo—370) ¢

at any finite time interval. In order to see that let us assume that there exist
such a time interval [tq, t2], where ¢ < t9, that

a(t) = ac(t)

for all t € [t1,t2]. Then using (24), one finds that it should be in such a case

Ae_% (EO_%P)/O)t = Ne_% (Eo—i’%o)t
= e B = (Bt L)t
X - PR —
27r6 1 3 R 270

7 7
—-1VE{|—=( Er — = ) 2
+( )1( h(R 2’70>t>]} (25)
This means that
A 7 [ ot ) 1
_ = 2 I _Z 2
=5 27r[e L El( h(ER+27°)t>

or
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for ¢t € [t1,t2]. So, there should be in the considered case

dx ()
=0
dt
for ¢t € [t1,t2]. Using (27), one finds that
dx(t) _ 7o 20t i i
———=—eh B |—=(Er+=zm]t) . 28
a —on ¢ P TR\ PRT 0 (28)
From the last relation and from properties of integral-exponential function
E(z), one concludes that the condition d’é—gf) = 0 can be satisfied for isolated

values of time ¢ at most. This means that there does not exist any time
interval [t,t2] such that x(¢) = const. for all t € [t1,t2], or that there does
not exist any time interval [¢, t2] and any A # 0 such that for ¢ € [t1,to], it
could be P(t) = |a(t)|? = |ac(t)]? = |A]* exp [~70t] in the considered model
defined by w(E) = wpw(E).

3.2. Instantaneous energy E(t) and decay rate y(t)

Now, let us analyze properties of the instantaneous energy F(t) and
instantaneous decay rate y(¢) in the model considered. These quantities are

defined using the effective Hamiltonian A(t). In order to find h(t), we need

for the quantity i h 8%5;” (see (12)). From (20), one finds that

. Oa(t N i
ih a(t) = Eoalt) + 205 ¢ 10 J5(r(0) (29)
where
o0
. »
sor) = [ e an )
1
-B
or simply (see (21)),
0I5(T)
Ja(T) =i gi (31)

This last relation is very convenient when one tries to find an analytical
expression for Jg(7): One just has to find an analytical formula for I(7)
and then use relation (31).

Now, the use of (20), (29) and (12) leads to the conclusion that

(32)
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which means that

B =Rt = B+ R |7 (33)
and
) = =230h(0] = —220 3 | 2500 (34)

In order to visualize properties of E(t), it is convenient to use the fol-
lowing function:
def E(t) - Emin

k(t) = By B (35)

Using (33), one finds that

E(t) - Emin = EO - Emin +’70§R |:J18(T):| .

I5(7)

If to divide two sides of the above equation by Ey — Fin, then one obtains
the function k(t) (see (35)) we are looking for

(36)

1o [Js(r()
k() =14+=R [ . (37)
B Ls(r(1)
An alternative analytical formula for A(t) can be obtained using analyt-

ical expressions for a(t) and 8%9. One can express integral (30) defining

Ja(7) in terms of the exponential integral functions, which allows us to

rewrite formula (29) for ihaz—(tt) as follows:
da(t N _i _ i
ih CL( ) = Ey a(t) + (—Z) Y0 5 e h (EO 270) ¢

ot

ey | i (a4t gt
><{1—i—27T [e Ey [ z<,6’+2> T:| —i—El[ Z<,B 2> T:|:|} . (38)
This relation together with (23) gives

i
h(t) = Eo— 570

1+t [T By [—i (B+ %) 7] + Er[—i(B — $)7]]
X . - A . . .
Lo [T B (mi(B+35)7) =B (=i (B—3)7)]
Taking the real part of h(t) given by the last relation, one obtains E(t) =
R [h(t)] and then one can calculate x(¢) and so on.

(39)
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3.3. Late time properties of a(t), h(t) and ~(t)

The late time asymptotic form of a(t) and h(t) can be found using e.g.
formulae (21), (32) respectively. In order to do this, for the beginning,
we should find the asymptotic form of integrals Ig(7) and Jg(7) used in
formula (32) for h(t). These integrals are defined by expressions (21) and
(30) respectively. It is relatively simple to find asymptotic expressions Ig(7)
and Jg(7) for 7 — oo directly from (21) and (30) using, e.g., the method of
the integration by parts. We have for 7 — oo

Ig(1) = i;;i}{_HgffiijLﬂ?ii 1_53651 <;>2
e ()
+</322f1>2 ) (ﬁinZ)Q : /3122521 ) 1] ORI
and
ng;ﬂ{m b 535:{3] ol
o ‘wzgi)? = ‘1] 5
T T wiﬁf;fﬂ?ﬁz% () )

These two last asymptotic expressions allow one to find for 7 — oo the

asymptotic form of the ratio ‘1{5((3 used in relations (32), (33) and (36),

which has much simpler form than asymptotic expansions for Ig(7) and
J3(7). In order to do this, let us define an auxiliary function ¢(x)

B+ a1z + ar? + azad + asxt + ...
T —14bix + box? + bzad + byt . ..

: (42)

where = = i/7. Now, taking into account that at late times 1/7 < 1, which
means that |z| < 1 at this times region, and expanding ¢(x) given by (42)
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in Taylor series around = = 0, one finds after some algebra that

o(x) ~ —5,x+622f}1x2
1 142453 — 2832 — 968% + 6454
i @+’ )
16— 215+ 483% — 6433 — 2883* 4 46453°
i 1) o

(43)

for |x| < 1. Hence, there is for 7 — oo,

1 14245 —286% — 96833 +645* 1
! (52+3)° a

1 6 —218+486% — 64/3% — 2883* + 464/3° 1

! (82+1)° i

o, (44)

where 7 and [ are defined by formulae (18) respectively.
Using relation (20), one finds from (40) the late time asymptotic form
ay(t) of the survival amplitude a(t). There is (compare [34])

_ip ¢
def N e A'/min
alt(t) é

a()tyoo = 5 il
4

{ _h 28 (h)2
X —t————7 | —
Yt B2+ 3 \ ot

I PR (h)

B2+ B2+ 5| \ot

243 28> R }
+(B2+i)2 Fo 1] (wf) +. b (45)

Starting from the asymptotic expression (44) and using formula (32),
one can find the late time asymptotic form of A(t) and thus of E(t) and ~y(t)
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for model considered,

E(t)‘tﬁoo = %[h(t)]‘tﬁoo
EO - Emin (h>2
=~ Emin -2
% (B2 +1) \t
_ 2 3_ 4 5 4
%6 216+48B3 643 124886 +46483 (h) N (16)
70 (52+Z) t
and
V) isoo = —25 [A(t)]
k114243 —288% —968° + 6481 K\’
~ 2o+ 2 Er) (t> +... (47

These three last relations are valid for ¢t > T', where T denotes the cross-over
time, 7.e. the time when canonical exponential and late time inverse power
law contributions to the survival amplitude become comparable

lac(t)]* = Ja (t)]* . (48)

The cross-over time 7' is the solution of the last general equation, which in
the case under consideration takes the form of

_ 1 1 1\?
cra kL (L) "
4 (ﬁ2+%) Tas

4. Numerical results

This section contains results of numerical studies of the quantities an-
alyzed in the previous section. Their results were obtained for the chosen
values of 8 and are presented graphically in Figs. 1-4. In all figures, one can
find a typical form of the quantities characterizing properties of the unstable
state as a function of time: Decay curves P(t), instantaneous decay rates
~(t), and instantaneous energies E(t).

In all figures: The horizontal dashed line in panels (B) denotes the situ-
ation when % =1 (that is when ~(¢/7) = 79), and the horizontal dashed
line in panels (C) denotes the case x(t/7) = 1 which is equivalent to the

condition E(t/1) = Ey.
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Fig.1. The case 8 = 2. (A) The decay curve, (B) the instantaneous decay rate, (C)
the instantaneous energy. Axes: x — in all panels time ¢ measured in lifetimes 7:
z=t/7; (A) —y = P(t/7) (the logarithmic scale); (B) — y = v(¢t/7)/70; (C) —
k(t/7) (k(t/T) is defined by formula (35)).
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Fig.2. The case § = 10. (A) The decay curve, (B) the instantaneous decay rate, (C)
the instantaneous energy. Axes: x — in all panels time ¢ measured in lifetimes 7:
x =t/7; (A) — y = P(t/7) (the logarithmic scale); (B) — y = v(¢t/7)/70; (C) —
k(t/T) (k(t/7) is defined by formula (35)).
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Fig.4. The case 8 = 100. (A) The decay curve, (B) the instantaneous decay rate,
(C) the instantaneous energy. Axes: z — in all panels time ¢ measured in lifetimes
T x =1t/7; (A) — y = P(t/7) (the logarithmic scale); (B) — y = v(t/7)/70; (C)
— k(t/7)t (k(t/7) is defined by formula (35)).
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5. Possible cosmological applications

From the literature, it is known that the cosmological constant A of the
form

D
A= At) = Avare + 3. (50)

(where D = const.) was considered in many papers: Similar form of A was
obtained in [35], where the invariance under scale transformations of the
generalized Einstein equations was studied. Such a time dependence of A
was postulated also in [36] as the result of the analysis of the large numbers
hypothesis. The cosmological model with time-dependent A of the above
postulated form was studied also in [37]|. This form of A was assumed in e.g.
in [38] but there was no explanation what physics suggests such a choice.
Cosmological model with time dependent A was also studied in much more
recent papers.

Krauss and Dent in their paper [39, 40| made a hypothesis that some false
vacuum regions do survive well up to the time T or later. So, let |¢) = |0)f21se,
be a false, |0)P2™ — a bare, true vacuum states and Ey = E(f)z"ls‘3 be the energy
of a state corresponding to the false vacuum measured at the canonical decay
time and Egare = Emnin be the energy of true vacuum (i.e. the true ground
state of the system). As it is seen from the results presented in Section 3, the
problem is that the energy of those false vacuum regions which survived up
to T" and much later differs from E(f)alse. Going from quantum mechanics to
quantum field theory, one should take into account among others a volume
factors so that survival probabilities per unit volume per unit time should
be considered. The standard false vacuum decay calculations show that the
same volume factors should appear in both early and late time decay rate
estimations (see Krauss and Dent [39]). This means that the calculations of
cross-over time 1" can be applied to survival probabilities per unit volume.
For the same reasons within the quantum field theory, the quantity E(t)
can be replaced by the energy per unit volume p(t) = E(t)/V because these
volume factors V' appear in the numerator and denominator of formula (12)
for h(t). Therefore, assuming that we live in the Universe with a false
vacuum and based on result (46), one concludes that there should be at
times t > T

fal 0 €2, ¢
Ease(t):Ebare—i_tiQ—i_tj"‘? for t>>,1—17 (51)
(where c2 = ¢ and ¢4 = ¢j}), or

po(t) def plalse(t)y ~ pbare L 2 L 2 for t> T, (52)
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(where pf1%¢ () is the energy density in the false vacuum state, dy = d, dy = d,
po(t) = pfle(t) = Efalse(t) )V, pbare = EPae /V). The standard relation is

A
__ _bare 2 0
= -t = 53
po = po G (53)
where Ag = Abare g the bare cosmological constant.
So the relations
do da D, Dy
p0<t) = pgare + th + tj and A(t) = Abare + tT + tT (54)

(where Dy, Dy are real) are equivalent and they both are a manifestation of
quantum long-time properties of unstable states. These last two relations
explain why it is reasonable to use A of the form of (50), especially when
one considers cosmologies with the false vacua.

6. Discussion and final remarks

Analytical form of the survival amplitude a(t) as well as its late time
asymptotic form ay;(t) was discussed in many papers (see, e.g., |2, 3, 11]) but
in all the mentioned papers, considerations were limited to the leading first
non-trivial term of ay (¢). Within the model considered, we found in Section 3
the late time asymptotic expansion of ay(t) with the accuracy to the two
leading terms. Thus, our results complement and broaden the discussion
presented in the mentioned papers. We also analyzed properties of quantities
not considered by other authors: We analyzed properties of the effective
Hamiltonian h(t), the instantaneous energy FE(t) and instantaneous decay
rate y(t) as well as the graphical form of E(t) and ~(t). We found the late
time asymptotic expansions of F(t) and ~(¢) within the same accuracy as the
amplitude ay (). Moreover, the analytical form of the effective Hamiltonian
h(t) was found in Section 3.

A similar form of a decay curves to those presented in panels (A) of
Figs. 1-4 one meets for a very large class of models defined by energy den-
sities w(F) of the following type:

N

w@):éng—EmﬂE—EmV
x % kp), (55)
(B — Eo)*+ 5=

where A > 0, f(F) is a form-factor — it is a smooth function going to zero
as F — oo and it has no threshold and no pole. The asymptotical large time
behavior of a(t) is due to the term (E — Ep,)* and the choice of A. The
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density w(F) defined by relation (55) fulfills all physical requirements and
it leads to the decay curves having a very similar form at transition times
region (where t ~ T') to the decay curves presented above. The character-
istic feature of all these decay curves is the presence of sharp and frequent
oscillations at the transition times region. This means that derivatives of
the amplitude a(t) may reach extremely large values for some times from
this time region and the modulus of these derivatives is much larger than
the modulus of a(t), which is very small for these times. This explains why
in this time region, the real and imaginary parts of h(t) = E(t) — 3 ~(¢),
which can be expressed by relation (12), i.e. by a large derivative of a(t)
divided by a very small a(t), reach values much larger than the energy Ej
of the unstable state measured at times for which the decay curve has the
exponential form.

Results presented in Section 3 show that within the model considered,
there does not exist a finite time interval where it could be a(t) = ac(t). So
one can expect |a(t) — ac(t)] # 0 and varies over time ¢ not only at times
t ~ T but also even for times t < T (see also [41]). On the other hand,
results of numerical calculations presented in graphical form in Section 4
show that at these times, |a(t)|? ~ |ac(t)]? to a very good approximation.
So the amplitude of the mentioned variations of |a(t) — ac(t)| in time for
t < T is rather almost negligible small. Such a conclusion agrees with the
conclusion resulting from analysis of the form of E(t) and 7(¢) obtained
numerically and presented in Section 4: We observe that at times ¢t < T
E(t) ~ Ey and y(t) ~ .

Analyzing a numerical results presented in Section 4, one can observe the
large fluctuations of the instantaneous energy E(t) (panels (C)) and decay
rate y(t) (panels (B)) at the transition times region, when ¢ ~ 7. One can
see also negative values of ¥(t) at some time intervals at these times (see
panels (B)). In our opinion, these negative values are a sign of regeneration
processes. This effect is accompanied by local amplitude increases at these
time intervals. In this context, note that the equivalent formula (10) for A(t)
means that h(t) is the so-called “weak value”. The behavior of E(t) and ~y(t)
at the transition times region, when ¢ ~ T, presented in Figs. 1-4 is quite
obvious for the weak values.

The question is whether and where this effect can manifest itself. As it
was mentioned earlier, the effect presented in panels (A) in Figs. 1-4, that is
the transition of the exponential form of the decay law Py(t) = |a(t)|? into
the inverse power law form, was confirmed experimentally by Rothe and his
group. This means that effects presented in panels (B) and (C) of these
figures and resulting from the properties of the amplitude a(¢) have to take
place for h(t) too, and thus for E(t) and ~(t).
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It seems that the following cases are the most likely ones where the
above described long-time properties of unstable states may manifest itself
or where they can be observed; (i) One should analyze properties of unstable
states having not too long values of the cross-over time 7', or (ii) one should
find a possibility to observe a suitably large number of events, i.e. unstable
particles, created by the same source.

The problem of broad resonances in the scalar sector (¢ meson problem)
discussed in [42, 43|, where the hypothesis was formulated that this problem
could be connected with properties of the decay amplitude in the transi-
tion time region, seems to be possible manifestations of this effect and this
problem refers to the first possibility mentioned above.

Astrophysical and cosmological processes in which extremely huge num-
bers of unstable particles are created seem to be another possibility for the
above discussed effect to become manifest. The probability Py(t) = |a(t)[*
that an unstable particle, say ¢, survives up to time ¢t ~ T is extremely
small: Let Py(t) be such that

,be(t)‘th ~ 107k7 (56)

where k£ > 1, then there is a chance to observe some of particles ¢ survived
at t ~ T only if there is a source creating these particles in NV, number such
that

Po(t)]yop No > 1. (57)

So if a source exists, that creates a flux containing
Ny ~ 10 (58)

unstable particles and [ > k, then the probability theory states that the
number of unstable particles

Nsury = Po(t)|pop N ~ 107 >0 (59)

has to survive up to time ¢t ~ T.

Sources creating such numbers of unstable particles are known from cos-
mology and astrophysics: The Big Bang; processes taking place in galactic
nuclei (galactic cores); processes taking place inside stars (supernova explo-
sions); etc. So one should look for a manifestation of the quantum effect
presented in panels (B) and (C) in Figs. 2-4 in astronomical observations
and in cosmology.

The third case, where the late time properties of the instantaneous energy
E(t) of the unstable state can play important role is cosmology and this case
was discussed in Section 5.
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Summing up: Late time properties of evolving in time quantum unsta-
ble systems are extremely difficult to observe. Discussion presented in this
section shows where there is a chance to observe a manifestation of these
late time effects and in which cases taking into account these properties may
explain why some theories are worth a deeper analysis: A good example is
the cosmology with time-dependent cosmological “constant” A(t).
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