
CMS Partial Releases: Model, Tools, and Applications 
Online and Framework­Light Releases

Christopher D. Jones, David Lange, Emilio Meschi,  Shahzad Muzaffar, 
Andreas Pfeiffer, Natalia Ratnikova1, Elizabeth Sexton­Kennedy

Institut für Experimentelle Kernphysik, KIT, Wolfgang­Gaede­Str. 1
76131 Karlsruhe, Germany 

Email: Natalia.Ratnikova@cern.ch

Abstract.With   the   integration   of   all   CMS   software   packages   into   one   release,   the   CMS 
software   release   management   team   faced   the   problem   that   for   some   applications   a   big 
distribution  size  and  a   large  number  of  unused  packages  have  become a   real   issue.  TWe 
describe   a   solution   to   this  problem.  Based  on   functionality   requirements   and  dependency 
analysis, we define a self­contained subset of the full CMS software release and create a Partial 
Release for such applications. We describe a high level architecture for this model, and tools 
that are used to automate the release preparation. Finally we discuss the two most important 
use cases for which this approach is currently implemented.

1.  Introduction 
The   Offline   software   system   [2]   of   the   CMS   experiment   [1]   comprises   more   than   thousand 

packages  organized   in   subsystems  for  analysis,   event  display,   reconstruction,   simulation,  detector 
description, data formats, common framework, and other utilities and tools which are all maintained 
within one common project CMSSW. Each CMSSW release depends on about a hundred external 
products,  which we also build  from source and package for  distribution.  In order   to  manage this 
complex system efficiently the CMS Software Development Tools group has been working on the 
automation of the software release integration and distribution procedures using a range of tools [3] 
developed  within  or   adopted  by  CMS.  Thus,  CMS  has   adopted   the  RPM Package  Manager   [4] 
technology for the software packaging, and has chosen the Advanced Packaging Tool, APT [5] for the 
package management and distribution.                 

Briefly, the release procedure consists of the following steps. First, the content of the release is 
defined. All CMSSW packages and their respective versions are defined in the CMS Tag Collector 
[6].   External   products,   their   versions,   configurations,   and   build   instructions   are   defined   in   the 
CMSDIST [7] repository.  Next, every external package is built and packaged in rpm format. Then the 
whole CMSSW release is configured, built and packaged into one rpm file. Finally, all resulting rpm 

1  To whom any correspondence should be addressed.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042051 doi:10.1088/1742-6596/219/4/042051

c© 2010 IOP Publishing Ltd 1

mailto:Natalia.Ratnikova@cern.ch


files   are  uploaded   into  a   central   repository   for   further   distribution   and  deployment  on   the  CMS 
computing resources.

Alongside this generic approach there are specific use cases where only limited subsets of packages 
and externals are required.

The two most important examples are:
•High Level Trigger (HLT) algorithms running  on the online Event Filter farm [8].
•CMS lightweight interactive physics analysis tool, Framework­light[9].

Details of these use cases will be considered later in Section 5. In the next two sections we present 
the model of Partial Releases and the tools that allow to build customized releases for the specific 
applications. In Section 4 we describe the implementation of the Partial Releases and how we address 
the two main technical challenges: consistency with the full release, ensured by construction, and the 
automation of all steps of the procedure for optimal support at reduced maintenance cost.

2.  Concepts
The model of partial releases is based on the following concepts:
•Base Release – is a given version of a standard CMS Software release, including the full set of 
CMSSW   packages,   and   a   configuration   of   external   software   products,   built,   packaged   and 
distributed using standard CMS release management tools.
•Application Set  ­ is a subset of packages of the base release that directly provides the desired 
functionality. 
•Build Set   ­ is a complete minimal subset of packages and external products of the Base Release, 
required for building all packages of the Application Set.
•Partial Release   ­ is an application oriented independent software release of packages defined in 
the Build Set. 
The Partial Release is built and packaged using standard CMS release management tools.

3.  Tools
The procedure of creating a Partial Release relies on the following tools developed within CMS:
•Ignominy  [10] is a powerful general purpose tool used to analyse the source code, binaries and 
other contents of the software release, in order to detect different types of dependencies between 
software packages.
•buildset  provides a simple interface that allows one to query the output produced by Ignominy, 
and recursively calculates the list of dependencies for a given package or a list of packages.
•CMSDIST  is   a   repository   of   specifications   files   that   contain   instructions   for   the   product 
configuration,   build,   packaging,   installation,   and   setup.   Here,   each   external   package,   the   full 
CMSSW release, and each partial release  is considered as a  separate product.
•PKGTOOLS  is   a   framework   for   building,   packaging   and   uploading   software   distributions 
according to instructions in the CMSDIST.
•Tag Collector  is  a central   interface for  adding   new versions  of  packages   to   the   release and 
managing the contents of the CMSSW release on a package level.
•SCRAM  provides   the   CMS   software   build   and   configuration   management   system   and   user 
interface.

4.  Implementation

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042051 doi:10.1088/1742-6596/219/4/042051

2



As illustrated by Figure 1 below, the Base Release represents a large number of interdependent 
packages. We define a subset of these packages that provides a desired functionality for a particular 
application and call it Application Set. Some packages included in an Application Set may depend on 
another package of the Base Release which is not a part of the Application set. All packages included 
in or required by the Application Set and all corresponding external products constitute a Build Set for 
the Partial Release.

Figure 1 : Illustration of the partial release model.

The procedure of building a Partial Release starts from the request of the application manager. 
Based   on   the   functionality   requirements   he   or   she   defines   the   base   CMSSW   release   and   the 
corresponding Application Set. All the subsequent steps are performed by the release manager.

The crucial point of finding the correct Build Set is the discovery of the dependencies between the 
packages. These dependencies may occur at different levels. For example, source code dependencies 
happen at compilation time, primarily via included header files. Binary dependencies occur at link 
time via symbols in the libraries. Run time dependencies may happen via dynamically loaded plug­in 
modules. All dependencies need to be satisfied for the package to build and run successfully.

In order to extract and collect all necessary dependency information for the Base Release, we run 
Ignominy. The Ignominy analyzer examines the source code, the binaries (executables and libraries), 
and configuration files available in the installation of the Base Release and corresponding external 
packages and produces a simple dependency database in a form of an ASCII text file. This database 
and   the   accompanying   log   file   include   the   details   about   each   individual   source   of   dependency 
identified.

Next, we run the  buildset  script which takes as input the Application Set and the results of the 
Ignominy analysis for the Base Release. The buildset recursively analyzes the package dependencies 
and discards any superfluous connections such as extra dependencies introduced in the local unit tests. 
The resulting output contains the final self­contained list of packages and external products for the 
Partial Release.

Note, that in this procedure we ensure by construction that the Partial Release only includes those 
packages that are either required by functionality or come as a necessary dependency via the Build 
Set.

Once the Build Set is defined, we start building the release. As mentioned before, package build 
and configuration rules are defined in the specification files stored in the CMSDIST repository. The 

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042051 doi:10.1088/1742-6596/219/4/042051

3



specification file for the Partial Release is constructed in such a way that it first downloads the source 
code distribution of the corresponding Base Release. Then, all packages included into the Build Set 
are   selected   and  copied   into   the  build  area  of   the  partial   release.  Thus,   the  Partial  Release  will 
automatically reuse the source code of the Base Release, but only packages included into the Build Set 
are built.

The list of external products for the Partial Release is maintained separately. This list only includes 
the names of  products,  without  specifying their  versions.  The consistency on the version  level   is 
enforced by the PKGTOOLS framework [7].

Build and configuration rules for CMSSW packages are defined in the shared area in CMSDIST. 
Partial Release uses the same set of rules as the base CMSSW release does. In this implementation the 
overall consistency of the code, external products, and common build rules used in the Partial and 
Base releases, is ensured by construction.

5.  Examples of Applications
The concept of CMS Partial Releases was driven by two major use cases: the software distribution 

of   the  HLT algorithms  running  on   the online  farm,  and  the  distribution  of   the   lightweight  CMS 
software framework for the interactive physics analysis in the ROOT environment.

5.1.  Online Release
The goal of the Online Release [10] is to provide the software environment for the HLT online 

operation. A general requirement to the online environment is that it must be consistent with the 
Offline software environment. It is also important to minimize the amount of code to be deployed on 
the online farm.

Additional requirements [11] were identified due to a special nature of the online computing 
environment:

•Minimal amount of code to improve robustness and stability of the online operations.
•Possibility to apply specific compiler options for optimizations, hence different architecture name 
and completely separate set of binaries.
•Possibility to reuse packages already available on the local system, such as online version of data 
acquisition software Xdaq [12], and corresponding external products.
•Software distribution must be suitable for use with the Quattor tool [13], which is used to manage 
software deployment on the online farm, and has a number of constraints with respect to the regular 
CMSSW installation method based on APT.
•We should also offer  the possibility of  producing patch releases forking from the mainstream 
CMSSW release sequence to retrofit necessary fixes while guaranteeing stable operations of the 
online HLT.

The online release Application Set   includes  HLT reconstruction packages,   filter  modules,  data 
acquisition, and Data Quality Monitoring tools. A special effort has been applied to make sure that 
none  of   the  packages   included  into   the Online  Application Set  would  bring   in  a  dependency on 
detector simulation and physics analysis packages. The configuration has been adjusted in such a way 
that   required external  products,  which are  available   in   the  system installation  including compiler, 
XDAQ,  and some other packages, would be used in place of versions normally distributed with CMS 
software.

The rpm packages for all remaining external products and the Online release itself are then built 
and named according to the conventions used in the Online system according to requirements imposed 
by the use of Quattor.  

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042051 doi:10.1088/1742-6596/219/4/042051

4



To enable a possibility of quick updates of the HLT modules in case of urgent corrections, an 
additional procedure of patch releases has been developed. The patch release distribution only includes 
new versions of packages specified by the Online application manager in a dedicated release queue of 
the CMS Tag Collector. The rest of the packages are distributed with the original “parent” release. 

5.2.  Framework­light release
The goal of the Framework­light application is to provide the possibility of analyzing CMS physics 

data in an interactive ROOT [14] environment on the user's laptop. CMS Analysis Object Data (AOD) 
are   stored   directly   in   ROOT   format,   hence   access   to   these   data   from   the   interactive   analysis 
environment   is   natural   provided   that   all   necessary   libraries   for   the   data   classes   are   available. 
Consequently, Framework­light Application Set contains the following:

•ROOT and external packages required by ROOT
•All necessary CMS Data Format packages
•Tools and algorithms for the interactive physics analysis

A special effort was made to eliminate any accidental dependencies that would bring additional 
unneeded   packages   into   the   Framework­light   distribution.   A   small   distribution   size   allows   easy 
download and installation of the Framework­light distribution onto the user's laptops. Minimal number 
of external dependencies and small amount of code simplify porting to other platforms. Currently 
Framework­light runs on all basic Linux distributions and on the MacOS platform.

Modest size and easy access to CMS data structures, combined with powerful ROOT visualization 
tools, make the Framework­light tool attractive and popular among the physicists.

6.  Summary and Conclusions
The model of Partial Releases enables us to build and distribute customized software releases for a 

number of well­defined applications where the large size and complexity of the standard full CMSSW 
distribution become an issue. For illustration, in a full CMSSW Base Release including 1114 packages 
and 83 external products, the Application Set for the Framework­light application contains only 30 
packages.   The   corresponding   Framework­light   release   distribution   includes   86   packages   and   16 
external products.

In the past two years a considerable development effort has been applied to correctly define   the 
dependencies between the packages, package categories, and external software products in order to 
eliminate unnecessary connections. The Application Set and Build Set for the two major applications 
have been stabilized. The dependency discovery and checking procedures are still strictly required, as 
every development step potentially involves a change in the dependency pattern. Now, in this stable 
phase, we are changing over to a preventive strategy. Dependency checking is done for every software 
integration build so  that  any accidentally­introduced and unwanted dependencies are detected and 
cured at the early stage in the release integration process.

References
[1]http://cmsdoc.cern.ch/cms/outreach/html/   , CMS Experiment
[2]http://cms.cern.ch/iCMS/jsp/page.jsp?mode=cms&action=url&urlkey=CMS_OFFLINE   ,  CMS 
Offline Software
[3]D. Lange contribution to CHEP2009,  Software Integration and Development Tools in CMS
[4]http://rpm.org      RPMS Package Manager
[5]http://www.debian.org/doc/manuals/apt­howto   , Advanced Package Manager 
[6]https://cmstags.cern.ch/cgi­bin/CmsTC/CmsTCLogin   , CMS Tag Collector
[7]http://indico.cern.ch/contributionDisplay.py?contribId=302&confId=3580   , CMS packaging system

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042051 doi:10.1088/1742-6596/219/4/042051

5

http://indico.cern.ch/contributionDisplay.py?contribId=302&confId=3580
https://cmstags.cern.ch/cgi-bin/CmsTC/CmsTCLogin
http://www.debian.org/doc/manuals/apt-howto
http://rpm.org/
http://cms.cern.ch/iCMS/jsp/page.jsp?mode=cms&action=url&urlkey=CMS_OFFLINE
http://cmsdoc.cern.ch/cms/outreach/html/


[8]https://twiki.cern.ch/twiki/bin/view/CMS/EventFilter   , CMS Event Filter
[9]https://twiki.cern.ch/twiki/bin/view/CMS/SWGuideFWLiteAnalysis   , Framework­light Analysis 
Tutorial
[10]http://www.ihep.ac.cn/~chep01/paper/8­024.pdf   ,  Ignominy: a tool for software dependency and 
metric analysis with examples from large HEP  packages 
[11]https://twiki.cern.ch/twiki/bin/view/CMS/HowToInstallONLINErelease   ,  Online Releases 
installation guidelines
[12]https://twiki.cern.ch/twiki/bin/view/CMS/SWDevToolsWorkshopApr07   , CMS Software 
Development Tools Workshop, agenda. Report on CMS Software Development Tools Workshop, 
Internal Note: CMS IN 2007/000
[13]https://twiki.cern.ch/twiki/bin/view/XdaqWiki   , Xdaq, a platform for the development of 
distributed data acquisition system
[14]http://www.quattor.org   , The quator administration tool suite
[15]http://root.cern.ch    , ROOT 

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042051 doi:10.1088/1742-6596/219/4/042051

6

http://www.quattor.org/
http://www.quattor.org/
https://twiki.cern.ch/twiki/bin/view/XdaqWiki
https://twiki.cern.ch/twiki/bin/view/CMS/SWDevToolsWorkshopApr07
https://twiki.cern.ch/twiki/bin/view/CMS/HowToInstallONLINErelease
http://www.ihep.ac.cn/~chep01/paper/8-024.pdf
https://twiki.cern.ch/twiki/bin/view/CMS/SWGuideFWLiteAnalysis
https://twiki.cern.ch/twiki/bin/view/CMS/EventFilter



