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Abstract

We prove the existence of quasi-Jacobi form solutions for an analogue of the Kaneko—
Zagier differential equation for Jacobi forms. The transformation properties of the
solutions under the Jacobi group are derived. A special feature of the solutions is the
polynomial dependence of the index parameter. The results yield an explicit conjectural
description for all double ramification cycle integrals in the Gromov—Witten theory of
K3 surfaces.
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1 Introduction
1.1 K3 surfaces

The Yau—Zaslow formula (proven by Beauville [2] and Bryan—Leung [3]) evaluates
the generating series of counts of rational curves on K3 surfaces in primitive classes
as the inverse of the discriminant

A(r) =g ]a—-¢gH*

n>1
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where ¢ = ¢>™" and t € H is the standard variable of the upper half-plane.
More general curve counts on K3 surfaces are defined by the Gromov—Witten
invariants

S

n
i om) = fﬁ 2*@ [Tevon)
g8 JMy (8.1 E '

where ﬁg,n(S , B) is the moduli space of n-marked genus g stable maps to a K3
surface S representing the class 8 € H?(S, Z), and

T Mgn(S,B) > Mgy, evi:Mgu(S,p)—>S,i=1,....n

are the forgetful and evaluation maps. The integral is taken over the reduced virtual
fundamental class and the insertions are arbitrary classes

a€ H Mg n), Vi,-..,vn € H(S).

Let a = (aj,...,a,) be a list of integers with ), a; = 0. The moduli space
Mg,n(IP’l, a), defined in relative Gromov—Witten theory, parametrizes stable maps
from a curve of genus g to P! with ramification profiles over 0 and oo given respectively
by the positive and negative entries in a. The double ramification cycle

DR, (a) € H*¥(M,.,)

is defined as the pushforward under the forgetful map Mg’n(]P’l, a) — Mg’n of the
virtual class on this moduli space (see [6]).

Let also z € C and p = ¢%, and consider the odd (renormalized) Jacobi theta
function

1— my(l — —1,m
0.7 = (pf2 = [ P

m>1

The following formula was found in the study of the quantum cohomology of the
Hilbert scheme of points of a K3 surface in [15], and related to K3 surfaces in [16].

Conjecture 1.1 ([15,16]) There exist quasi-Jacobiforms ¢, (z, T), @m.n(z, T) suchthat
for all primitive effective p € H*(S, 7) we have

> (PR, eI
ga§V1,~.-»Vn> - Z = = dezon
g=0 8.p ni a;

1
Coeffq%ﬂz Z ﬁ H(Vaj’ Vbj)(ﬂaj,bj : l_I(J/ij ﬂ)@cj
J J

{(aj.bj)}j. e}
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Here, the sum on the right side is over all partitions of the set {(a;, y;)}{_, into parts of
size < 2. The parts of size 1 are labeled by (cj, yc;), and the parts of size 2 are labeled
{(aj, va;), (bj, vb;)}. Moreover, deg(y) denotes half the cohomological degree of y,
ie.y € H*9€W)(8) and (—, —) is the Mukai pairing on H*(S) defined by

((r1, D1, n1), (r2, Dy, n2)) = riny +rany — Dy - Dy

where we write Dy - Dy = f ¢ D1 U Dy for the intersection of divisors.

We refer to Sect. 2.3 for the definition of quasi-Jacobi forms. The left hand side
of the conjecture is a (virtual) count of curves on K3 surfaces, whose normalization
admits a map to P! with prescribed ramification over two points of the target and
with the ramification points incident to given cycles y;. If there are no marked points,
the double ramification cycle is the top Chern class A, of the Hodge bundle over the
moduli spae of curves,

DR, (%) = (—1)$A,.

In this case the conjecture specializes to the Katz—Klemm-—Vafa formula

S 2g !
Z()‘g)g,ﬂz = Coeff 1p (m)

proven in [12].

While the functions ¢,,, ¢, Were conjectured to be quasi-Jacobi forms (of explicit
weight and index) they have been left indeterminate in [15,16]. The goal of this paper
is simply to give an explicit formula for these functions and study their properties.

1.2 A Kaneko-Zagier equation for Jacobi forms

Let D; = %di =q5- d and consider the ratio

. DO(Z) . dn d/22n
F@ =55 = Z;;jm/d) (p )%q

where, as we will often do, have dropped 7 from the argument.

We define formal series ¢, € Q[pi%][[q]] for all m € 7Z by the differential
equation

D2<pm =m F(pm, @))
together with the constant term

om = (" = p"H + 0(g). )
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Since the constant term of F in g vanishes, (1) determines the functions ¢, uniquely
from the initial data. By definition, we have ¢p_,, = —¢y,.
Our first main result is the following characterization of the functions ¢,,.

Theorem 1.2 For all m > 0 we have

@(x—i—z))m

Pm = Resy—o < @()C)

In particular, ¢y, is a quasi-Jacobi form of weight —1 and index |m|/2 for every m.
Consider the ratio of theta functions

O +2)

fx) = 00

whose appearance in mathematics goes back to work of Eisenstein [19]. Since its
inverse has Taylor expansion 1/ f(x) = O(z)"'x + 0(x?), the function 1/ f(x) can
be formally inverted. By Lagrange inversion, Theorem 1.2 then precisely says that the
inverse series is the generating series of the ¢y,:

1 ©Om
_ Y. 3
Y=t & Z 3)

Let us explain the connection of the differential equation (1) to a well-known
differential equation for modular forms. Recall the Eisenstein series

Ek(t)—l——Zde q",

n>1 dln

where the weight k > 2 is even and By are the Bernoulli numbers. Let

k
Uk = Dr — EEz(f)
be the Serre derivative which restricts to an operator Mod;, — Mody» on the space
of modular forms of weight k. The Kaneko—Zagier equation [9] is the differential
equation

k+2
D2V fi = (14+ ) B0 fi. @

If k = 0 or 4 mod 6 it has non-trivial solutions which are modular forms of weight k.

A direct calculation shows that a function fj is a solution to (4) if and only if gz =
fi/n* T2 with n(t) = ¢'/* anl (1 — ¢™) the Dedekind function, is a solution of

2 E4(7)

D2g, =
8m 142 8m

T
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We observe that the differential equation (1) is a Jacobi-form analogue of the
Kaneko—Zagier equation. Even stronger, since (1) does not involve derivatives in the
elliptic variable, we can specialise it to 5 = a for any a € Q and in this way obtain
an infinite family of Kaneko—Zagier type differential equations with modular solutions
for a congruence subgroup.! The inversion formula (3) has the classical analogue [9,
Thm. 5(@iv)]

~1/3
fr—1 £’ (x)
x=Y W = y= ,
k -2
k>1

where the role of f(x) is played by the formal cube root of the derivative p’(x) =
%5@ (x) of the Weierstrass elliptic function g (x), and the solutions fj are normalized
accordingly.

We refer to Sect. 5 for a general construction of differential equations of Kaneko—
Zagier type.

1.3 Differential equation of the second kind
We are also interested in a second family of functions, defined in terms of the ¢,, of
the previous section.

Define formal series ¢, , € Q[ pil/ 2][[q]] for all m,n € Z by the differential

equation
De@mn = mn@m@nF + (Drom) (D ¢p) (&)
together with the condition that the constant term vanishes:
Pmn = 0(q).
Since ¢, is odd in m, the definition implies the symmetries
Vi, n: Qman = Qnm = P-m,—n-

Moreover, ¢m.0 = 0 as ¢o = 0. Our second main result describes the modular prop-
erties of @ »:

Theorem 1.3 For all m, n € Z the difference

Pm,n — |n|5m+n,0

is a quasi-Jacobi form of weight 0 and index %(|m| + |n]).

' For any a € Q the ratio @)(E)X (jc')“ ) isa meromorphic Jacobi form of index O (of higher level). Hence all its

Taylor coefficients are modular forms.
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If m # —n the proof of Theorem 1.3 is easy. Indeed, in this case we have

m n
Pm,.n = (mer((pn) + Dr(‘pm)ﬁl)n (6)
m+n m-+n

and since the algebra of quasi-Jacobi forms is closed under differentiation with respect
to both z and t the result follows from Theorem 1.2. It hence remains to consider the
case m = —n. However, since the algebra of quasi-Jacobi forms is not closed under
integration, this case is not obvious at all.

A key feature of the functions ¢, is their polynomial dependence on m. Precisely,
their Taylor expansion in the elliptic variable is of the form

$m = Z Py (m)z*

k>1

where each Py is a polynomial in m of degree < k with coefficients quasi-modular
forms. This implies that the ¢, , depend polynomially on m, n as well. Hence we are
allowed to take the limit of the formula (6). The result is

@n,—n = D (@) + n(Dr (@) on — ¢, Dr @),

where ¢/, is the formal derivative of ¢, with respect to u. But, by inspection the
function ¢, is usually not a quasi-Jacobi and hence from this point it is still unclear
why ¢, —, should be quasi-Jacobi. Instead our proof of Theorem 1.3 relies on a subtle
interplay between holomorphic anomaly equations, which measure the defect of ¢,
and ¢, , to be honest Jacobi forms, and the aforementioned polynomiality.

The holomorphic anomaly equations we derive are also of independent interest
since they determine the precise transformation behaviour of the functions ¢,, and ¢,,, ,
under the Jacobi group. As another indirect consequence of the proof of Theorem 1.3
we obtain a third, recursive characterization of the function ¢, :

Proposition 1.4 For all m,n > 1 we have

1 1 1 1
Pm+n = EDZ(V)m)(Pn + prsz(‘Pn) + ' Z lT‘Pi,n(pj + Z lT(Pi,m(pj‘
i+j=m i+j=n

We finally relate the functions ¢, and ¢, , to the geometry of K3 surfaces.

Conjecture 1.5 The functions ¢, and ¢, , as defined above are the functions appear-
ing in Conjecture 1.1.

Besides plenty of evidence which is known for Conjecture 1.1, e.g. [18], there
are several qualitative features of the ¢’s which correspond to similar features in
Gromov—Witten theory. The polynomial dependence is reflected in the polynomial
dependence of the double ramification cycle on the ramification profiles [6]. In their
Taylor expansions the z-coefficients of the ¢’s are quasi-modular forms. This matches a
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result of [12]. The quasi-Jacobi form property and the holomorphic anomaly equations
are expected from holomorphic-symplectic geometry [15] and the results of [17].

Conjecture 1.1 yields an explicit formula for the Gromov—Witten theory of K 3 x P!
relative to two fibers over P! In terms of this theory, efficient algorithms to determine
the Gromov—Witten invariants of all CHL Calabi—Yau threefolds are known [1]. This
leads to deep relations between counting on K3 surfaces and Conway moonshine. We
hope to come back to these questions in future work.

2 Preliminaries
2.1 Quasi-modular forms

For all even k > 0 consider the renormalized Eisenstein series

Gi(t) = _2% +Y ) dgn

n>1 dln

The C-algebras Mod = ®;Mod; and QMod = &;QMod;, of modular and quasi-
modular forms can be described by Eisenstein series:

Mod = C[G4, Gs], QMod = C[G>, G4, Gg].
The algebra QMod is acted on by both D; = ¢ diq and the operator dde which takes
the formal derivative in G, when a quasi-modular forms is written as a polynomial

in G2, G4, Gg. Let also wt be the operator on QMod that acts on QModj by multipli-
cation by k. We have the sl,-commutation relation

d D;|=-2wt
dGzy T - .

2.2 Theta functions

Letz € Cand p = ¢*. Let

2
H(z,7) = Z (_I)Lvaqu /2
v€Z+%

be the odd Jacobi theta function.> By the Jacobi triple product we have

O(z) = 1 (z. 1)/’ (7).

2 The Jacobi function ¥ defines the unique section on the elliptic curve Cy, /(Z + tZ) which vanishes at
the origin. In our convention the variable w of the complex plane C,, is related to z by z = 27iw. In other
words, the fundamental region of the curve is given by ﬁ ela+bt|a,bel0,1]}.
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The product formula for ® yields also the expansion

k
Z
O(z) = Zexp -2 E ka . (7)
k>2

2.3 Quasi-Jacobi forms

Jacobi forms are a generalization of classical modular forms which depend on an
elliptic parameter z € C and a modular parameter 7 € H, see [4] for an introduction.
Quasi-Jacobi forms are constant terms of almost holomorphic Jacobi forms. Following
[11] and [14, Sec.1] we shortly recall the definition.

Consider the real-analytic functions

1 _ S(z/27i)
"o YT s

An almost holomorphic function on C x H is a function of the form

v = Z K”i,j(Z» T)l)iOlj

i,j=0

such that each of the finitely many non-zero v; ; is holomorphic and admits a
Fourier expansion of the form ) ,_ (> ., c(n,r)g" p” in the region |g| < 1. An
almost holomorphic weak Jacobi form of weight k and index m € Z is an almost
holomorphic function on C x H which satisfies the transformations laws of Jacobi
forms of this weight and index [4]. A quasi-Jacobi form of weight k and index m
is a function ¥ (z, t) such that there exists an almost holomorphic weak Jacobi
form )=, ;¥ jv'al with o0 = ¥

In this paper we will also work with quasi-Jacobi forms of half-integral index
7€ %Z. These are defined identical as above except that we include (in the usual
way) a character in the required transformation law. The character we use for index
m /2 is defined by the transformation properties of ©" (z) under the Jacobi group.? In
particular, ®(z) is a (quasi) Jacobi form of weight —1 and index 1/2; its square ® (2)?
is a Jacobi form without character.

The algebra of quasi-Jacobi forms is bigraded by weight k and index m:

Qlac = @ @ QJac -
k

1
me57Z

In index 0 we recover the algebra of quasi-modular forms: QJacy o = QMod.

3 This character is essentially uniquely determined by requiring that the square of a half-integral weight
Jacobi form is a Jacobi form without character, see for example the discussion in [5].
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Similar to the case of quasi-modular forms, the algebra of quasi-Jacobi forms can

be embedded in a polynomial algebra. Let D, = dd—z = p% and consider the series

m

_ D.0(z) _ _l _ V4
AMI="355 =72 ,%%uqm

and the Weierstral} elliptic function

1 )4 _
P =+t Y k(=24 p g’
12 d-p) d>1 kid

We write 9'(z, ) = D, (z, 7) for its derivative with respect to z. Since taking the
derivative with respect to z and t preserves the algebra of quasi-Jacobi forms ([14]) it
is easy to see that all of these are (meromorphic) quasi-Jacobi forms.

Proposition 2.1 The algebra R = C[O®, A, G2, o, ', G4] is a free polynomial ring,
and QJac is equal to the subring of all polynomials which define holomorphic func-
tions C x H — H.

Proof It is immediate that if f € R is holomorphic, then it is a quasi-Jacobi form.
Conversely, divide any quasi-Jacobi form of index m /2 by ®". The result then follows
from [11, Sec. 2]. O

Remark 1 The algebra R is the algebra of all meromorphic quasi-Jacobi forms with
the property that all poles are at the lattice points z = m 4+ nt with m, n € Z. Indeed,
since ®, A and G» lie in R, it suffices to show that meromorphic Jacobi forms of
index 0 with the latter property are elements of R. For such a Jacobi form there exists
a polynomial in g and g’ with modular coefficients such that the sum is holomorphic
and elliptic, hence constant. Therefore, every such meromorphic Jacobi form lies in k.
A

The weight and index of the generators of R are given as follows:

Generator Weight Index

) T 12
A 1 0
Go 2 0
© 2 0
24 3 0
Gy 4 0

Consider the formal derivative operators j—A and %. Let wt and ind be the operators
which act on QJacy ,, by multiplication by the weight k and the index m respectively.
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By [14, (12)] we have the commutation relations:

d d

—, D; | = —2wt, —, D, | =2ind

dGy dA ®)
d d d

—\ D, | =—-2—, —, D | =D,.

dG, dA dA

The almost-holomorphic Jacobi forms completing A and G, are given by
A=A+a, Gr=Gyr+v. )

Moreover all other generators of R are (meromorphic) Jacobi forms. Hence the for-
mal derivatives diA and dde of a quasi-Jacobi form measure the dependence of its
completion on the non-holomorphic variables « and v, or in other words the failure
of a quasi-Jacobi forms to be an honest Jacobi forms. For a quasi-Jacobi form we
call %1/; its holomorphic anomaly. An equation of the form (%W = ...) will be
called a holomorphic anomaly equation. Similar definitions apply to %.

As explained in [14] knowing the holomorphic-anomaly equations of a quasi-Jacobi
form is equivalent to knowing their transformation properties unter the Jacobi group.
Concretely, we have the following (the case of half-integral index is similar):

Lemma 2.2 ([14]) Let ¥ (z, ) € QJack ;, withm € Z. Then

z at + b X cm(z/Zm')2
= d =
I/I(C‘C-I—d’ct—i-d) (et + )e( ct+d x

d z d
CH~— Ca~— 5+
< dG, + 2mi dA) vz, 1)

_47ri(cr +d) ct+d

d
Y(Ez+2miAt+p), 1) = e(—mkzt — ZAm%) exp <_)‘ﬁ) Y(z, 1),

forally = (? Z) € SLo(Z) and (A, ) € 72, where we write e(x) forexp(2mix).
2.4 Multivariate quasi-Jacobi forms

As in [14, Sec. 2] one can similarly define quasi-Jacobi forms of rank » in which the
dependence of the variable z € C is generalized to a dependence on the vector

z=(21,....22) € C".
The index of quasi-Jacobi forms of rank » is given by a symmetric matrix

mip - Mip

Mmuy1 -+ Hpp
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Although a description of the algebra QJac™ of rank n quasi-Jacobi forms in terms of
concrete polynomial rings is not available in general, using the expansions (9) shows
that we have an embedding

QJac™ < MJac™ [Ga, A(z1), ..., A(zn)]

where we let MJac"™ denote the algebra of meromorphic-Jacobi forms of rank 7. In
particular, the formal derivative operators

d d

dA(z;))" dG,

are well-defined.* By [14, (12)] the operators satisfy the commutation relations

d d
——, D, | = —2wt, ——, D,. | =2ind; j,
[dGz r} v |:dA(Zi) z"} e (10)
[ ; } : [ : }
_7DZ,' = _2 ) —7D‘[ = DZ;”
dG; dA(z;) dA(z)

where the operator ind; ; multiplies a quasi-Jacobi form of index m by m;;.

2.5 Polynomiality

The following simple lemma about polynomials will be convenient for us later.

Lemma 2.3 Let f(u, v) be a polynomial in variables u, v and let F (u) be the unique
polynomial such thatVn > 1: F(n) = Z'};(l) f(j,n—j). Then

n
F(=n) ==Y f(=j,—n+j).
j=1
Proof For all m € Z,n > 0 define

n—1

Glm,n) =" f(j.m—j).
=0

This agrees with a unique polynomial P (m, n). Now extend G to all m,n € Z by
setting G (m, 0) = 0 and

Gm.n)=-Y G(=j.m+ )
j=1

4 See also [14] for a direct definition via the almost-holomorphic completions.
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for all m € Z,n < 0. We then have that G(m,n + 1) — G(m,n) = f(n,m — n)
is a polynomial for all m, n. But P(m,n + 1) — P(m, n) is also a polynomial. The
two polynomials agree for n > 0, so they agree for all n; since G and P also agree
for n > 0, this means that they must also agree for all n.

The lemma now follows, since it is just saying that F(—n) = P(—n, —n) =
G(—n, —n). O

We also will find the following language convenient: we say that a set of power
series f,(2) € R[[z]], m € Z for some coefficient ring R is polynomial in m if there
exist polynomials Py (u#) € R[u] such that

VmeZL: fu@) =) Pumz".

k=0

Inour case the coefficient ring R will usually be the ring of quasi-modular forms QMod.

3 Differential equation

In this section we study the function ¢, defined by the differential equation (1) and
the constant term ¢, = p"™/> — p™"/2 + 0(q). We first prove the evaluation

@(x+z))’"

which immediately implies that ¢, is a quasi-Jacobi form. We then study the Fourier
expansion of ¢, discuss the dependence of ¢,, on the parameter m, and derive a
holomorphic anomaly equation.

3.1 Proof of Theorem 1.2

Define functions ¢,, m > 0 by the claim of the theorem i.e. let ¢, =

Res,;—o (Géjc(j)Z))m. We need to check that these function satisfy the differential
equations (1) and have the right constant term (2). Checking the constant term is
straightforward and we omit the details (see also Sect. 3.2). To check the differential
equation we form the generating series g(y) = Zmz 1 Y"om/m. Letalso Dy = ydiy.

The differential equation (1) is then equivalent to

D2g(y) = F(z. 1)Dg(y). (1)

Consider the function f(x) = % and apply the variable change

1
)’—m — x=g1)
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where we have used Lagrange inversion to identify the inverse of 1/ f with the gener-
ating series g(y). Let f/(x) := Dy f := %f(x). By differentiating f(g(y)) = y and
applying the chain rule we find the transformations

I =Y

D,

Dyg(y) = —%, Drg(y) = _T/f’ Dig(y) = F T g

D2 _ 1 2 N2 _ / / " 2
1800 = ~ s [DXNG =27 DD + S De(f7].

Applying these and changing variables the differential equation (11) becomes

Dy (f)2D2(f) — 2Dx(f)Dx Dy (f)Dr (f) + D2(f)D (f)? = F(z. 7) - DX log(f) - f3.
(12)

The functions ®(x + z) and ®(x) are Jacobi forms of rank 2 in the elliptic vari-
ables (x, z) of index %(} }) and (1({ 2 00) respectively. Hence f(x) is a Jacobi form of

weight 0 and index
0 1/2
1/2 1/2)°

We need to show that the following function vanishes:

F(x,2) = Dx(f)*DE(f) = 2Dx(f)Dx D (f) D= (f) + D2(f) D (f)*
—F(z,7) - Dilog(f) - f°.

As a polynomial in the derivatives of f, the function F is a rank 2 quasi-Jacobi form
of weight 6 and index %(g 2) Using the commutation relations (10) a direct check
shows

d d

i -0
dG» dA(x)f

In particular, by [14, Lem. 6] we have F(x + 2rwit,z) = p_3f(x, 7). Moreover,
by considering the Taylor expansion one checks (e.g. using a computer®) that F is
holomorphic at x = 0 and vanishes to order 3 at x = —z (use the variable change X =
x 4 z). We conclude that the ratio F/ f3 is a doubly periodic and holomorphic in x,
so a constant in x. The constant is a quasi-Jacobi form in z and is easily checked to
vanish. This shows that the differential equation is satisfied. The claim that the ¢,, are
quasi-Jacobi forms of the specified weight follows from Lemma 3.1 below. O
Define the operator on the algebra of quasi-Jacobi forms by

d
D =D.+2G,-—
SRR

5 The code for this computation as well as a parallel computation in Sect. 4.2 can be found on the webpage
of the second author. It also contains functions which express the ¢, ¢, in terms of the generators of R.
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We conclude the following structure result.
Lemma 3.1 For every m > 0 there exist modular forms hy € Mod,,,_x—1 such that
m—1

om =Y _ hi(x)  D*O@R)™).

k=0

Hence every ¢, is a quasi-Jacobi form of weight —1 and index @ and ddeq?m =0

Proof of Corollary For any power series f(z) we have

P f() = flx+2).
Moreover, the Baker—Campbell-Hausdorf formula and the relations (8) yield

d 020 020
eDngzc%le — exD 2x“Gy ind —e 2x szdexD. (13)

We find that

®(x +Z)m _ —m ,D;x m
—G)(x)m =0x) Me (@(Z) )
— @(x)—meDerZGdefo (®(Z)m)
(2) @(x)—me—mszzexD (@(Z)m)

k

—xexp <2m > Gk%> P (O()") (14)

where we used (7) in the last step. Taking the coefficient of x ! yields the first claim.
The second claim follows from the commutation relation [%, D] =0. |

Remark 2 For all m > 0 we have

Ox —{—z))_m

$—m = Resy=—_; ( o)

Indeed, after the variable change x’ = —(x + z) the right hand side becomes

O(—x' —2)\"
—Resy—o (#) = —®m-
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3.2 Fourier expansion

By integrating the function

Ok +2)\"
= (%5557)
around the sides of a fundamental region and using f,,(x + 7, z) = p~" fi(x, z) one
gets

@m = Resy— fru = (1 — p7")Coeff ;0 fiu (x, 2, T)
where o = ¢* is the Fourier variable associated to x.°
An application of the Jacobi triple product and computing the power by m by taking
first the log of each product term, multiplying it by m and then exponentiating again,
together with a bit of reordering the terms, then yields from this the expression

1— k
om = (p™* — p_’"/z)Coeffﬂo exp Z M ok P
k= 1—gk
k0 (15)
1 —p%\ m'@
— (pn/2 _ ,—m/2

where the sum in the second equation is over all generalized partitions with non-zero
parts summing up to 0. Moreover, if we write a = (i);ez\(0) then 3(a) = [T i%a;!
is the standard automorphism factor. The first Fourier coefficients of ¢,, are

o =" =57 (1= m*(s =572 + 0(g))

where we have written s = e¥/2 so p = s2.

3.3 The solution ¢, as a function of m

In this section we consider ¢,, as a function of m viewed as a (formal) variable. To
distinguish with the case m € Z we will replace m by a variable u.
We give three different formulas for ¢, . First, consider the expansion

Fop = Y R, e ==Y (5) 6l -y

k>1 dlk

where as before we have used s = ¢¥/? so p = s2. Then by an immediate check the
differential equation (1) for ¢,, is equivalent to the following formula:

6 See also [17, App. A] for a similar argument.
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_ Fy, (S)sz(s)"‘Fk (s) k.. 4k, 2
ou = (pu/2 —p u/2) 1+ 1 r q 1tk 2r |
gkly_;@l k3 (ky + k)2 (kg + o+ k)2

(16)
Second we can use the Fourier expansion of the ¢,, as discussed in Sect. 3.2:

ou=(p u/2 —u/2) Z l—[ ul(a)
—q“I 3(a)

lal=0 \ i

where we used that (15) makes sense for arbitrary u. We see that Theorem 1.2 is
equivalent to the following non-trivial identity:

Z 1—[ 1—p ul@ — 14 Z F, (S)sz(s)"'Fkr (5) qk|+...+kru2r
A2 1—q% | 3(a) = K3kt + k)2 (ky + o+ k)2

ki, kr=1

For the third formula, we use a Taylor expansion in u. For positive integers u one
can write the solution

@ u
Coeff -1 Sx+2)
O(x)
as
Cootp_ KT D" 5 ka—(x+z)k
o = Confln e (2D, G

= COeffx,1 Z (’Z) (%)l exp <2u Zk22 Gka_(I++Z)k> . 17

=1

The latter expression makes sense as an element of C[[z]] for all u € C. For example,
the first terms read

1 1 5
ou = uz — Go®z> + <<§G2 - ﬁG4> u’ + (6G§ -~ ﬁG4> u3> 2+ 0.

The expansion (17) yields the following important structure result.

Proposition 3.2 For every k > 1 there exist odd polynomials Py (u) of degree < k with
coefficients in QMody_1 such that for allm € 7

> Fpom).

odd k>1
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Moreover, Py(u) = u and if k > 2, then u> | Py(u).

3.4 Anomaly equation

We consider the holomorphic anomaly of ¢,, with respect to the variable z.
Proposition 3.3 For all m > 1 one has

2

d 1 m
=5 D, i)

1
i+j=m J
i,j=1

It follows that every z* coefficient of %wm is polynomial in m in the range m > 0.
However the dependence on m is only piecewise polynomial in general:

Corollary 3.4 The difference

A

P = Om — MZPmSm <0

dA

depends polynomially on m, i.e. there exist polynomials Q(u) of degree < k + 1 with
coefficients in QMody,_, such that (p,ﬁ = Zkzz 2K Qr(m). Moreover, u* | Qy for all k.

Proof of Corollary 3.4 We first rewrite the proposition as

d m—1 0 )
m—j

—_— =m ..

aa’m ,-221 =

Hence for all m > 0 we have ﬁgom =Y, 0x(m)z" where the polynomials Q, are
determined by

m—1
o
Quimy=m " Z&(j)imfj”

k+l=n j=1
k. £>1

for all m > 0. Here Py (m) are the polynomials of Proposition 3.2.
For all m > 0 by Lemma 2.3 we have

- P
O,(—m) = —(—m) Z Zpk(_j) ( Z:M))

krt=n j=1 u=—mtj
k. 0>1
m—1
L Pe(=m+ )
=-m Z Z Pk(])T—F' —mP,_1(m),
k+l=n j=1 J

k. >1
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where we used the second part of Proposition 3.2 for the last equality. Summing up
we obtain as desired

Zz On(—m) = __‘/)m Mmzgm.

O

Proof of Proposition 3.3 We give first a proof via generating series. As in the proof of
Theorem 1.2 consider the generating series

HOEDS %ym

m>1

and let Dy = y - d . We need to prove the equality

d
mg(y) g(y)Dyg(y).

Let f(x) = Og‘(j;) so that f(g(y)) = .Then by [, D.] = 2ind we have

d d DzX®(Z) B [ﬁ(z), DZ]XED*J@(Z)
A’ T aAn ewm ow)

=x-f(x). (18

Applying £ to f(g(y)) = 1/y we get (& /)(g() + (Dx )(g(»))&g(y) = 0,
and hence

e(y) = —— 8
dA() v-(Def)

Since we also have

1 1
Dy (f(g(3) = (Dx fH(g(y)Dy(g(y)) = ~3 and hence D.f =—y-Dyg(y)

X
the claim follows. O

We give a more direct proof of Proposition 3.3 using the following combinatorial
Lemma whose proof follows directly from Lagrange inversion and is left to the reader.

Lemma3.5 Let f(x) be a power series and k € N. Then for all m > 1 we have

ERTOUREEEIED'S ]_[—[f(x) P

ni+..4ng=mi=1

where we write [—]m for taking the coefficient of x™
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Second proof of Proposition 3.3 Observe that by (18) we have

d K@(x +z)>’”} . [(@(x +z)>’”}
dA O(x) -l A(x) 2

Applying Lemma 3.5 withk =2 and f = x% yields the desired result. O

4 Differential equation of the second kind

Recall the two defining properties of the series @y, ,:

o the differential equation: D¢ n = mn@men F + (Dr@m)(Drgy)
o the vanishing of the constant term: ¢, , = O(q).

The goal of this section is to first prove that ¢y, , are quasi-Jacobi forms (Theorem 1.3),
and then derive their holomorphic anomaly equations (Sect. 4.4).

4.1 Polynomiality

We first recall the following.

Proposition 4.1 [f m # —n then we have

m n
Oman = ———Om D (@n) + ——— Do (@) Pn.
m-+n m-+n

Proof The differential equation follows from the defining differential equation (1)
satisfied by ¢,,. The vanishing of the constant term is observed directly. O

By definition and the polynomiality of ¢,, the series ¢, , is a power series in z
and g with coefficients which are polynomials in m and n. We use Proposition 4.1 to
prove a stronger statement.

Proposition 4.2 There exist polynomials P, (u, v) of degree at most r in variables u, v
with coefficients quasi-modular forms of weight r such that for allm,n € 7

Pm,n = erpr(m, n).

r>0

Moreover; the polynomials Py (u, v) are divisible by both u* and v>.

Proof By the defining differential equation (5) and the polynomiality of ¢, there exist
polynomials P, ,(u, v) of degree r + 2 with rational coefficients such that

Pm,n = er anpa,r(ma n)

r>0 a>1
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for all m, n € 7Z. Here we have r > 0 since ¢,,(z = 0) = 0 for all m.
On the other hand by Proposition 4.1 for all m, n € Z with m # —n we have

1
O =Y —— 3" (nDe(PLlm) Pe(n) + m P (m) De (Pe(n) )
r>0 m+n k+l=r

where Py (u) are the polynomials of Proposition 3.2. Since the inner sum vanishes
when setting m = —n and it is polynomial of degree at most » + 1 in m, n, there exists
a polynomial P, (u, v) of degree at most r with coefficients in QMod, such that

Pmn =Y Pr(m,n)

r>0

whenever m # —n.
The equality of polynomials

> g Pay(u, v) = Pr(u, v)

a>1
holds after evaluating (u, v) at (m, n) for all integers m # —n. Hence the equality
holds as an equality of polynomials.
The last statement follows since n D, (Px(m)) P¢(n) + m Py (m) Dy (P (n)) is divis-
ible by both m? and n”, hence the same holds for the term obtained by dividing
by m + n. O

Example 4.3 The first terms in the Fourier and Taylor expansions of ¢, , are
Pmn = —mn(s" —s7")(s" =57 (s =57 + 0(q7)

where s = ¢%/2, and

5 4., 2 7
Gu = ((265 - 6G4> u2v2) #+((- 263+ 56264~ =5 Go)wh? +uvt)

720
2 1 7 2 5 7
— 2634 -G,G —6)33 (—763 7GG——G>22)6 o).
+<32+624+7206uv+ 32+624 1446uvz+(z)

4.2 Holomorphic anomaly equations

From Proposition 4.1 we can deduce for all m # —n the following anomaly equation:

d n d d
a(pm’" = m——Hz (Dz((Pm)(pn + Dr(ﬁﬁom)(Pn + D (om) - a‘/%)

m d d
+ m——l—n <‘mez((pn) + (d_Aﬁom) » D (@n) + o - Dy d_A‘Pn> (19)
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By the anomaly equation for ¢, this gives an expression for d%(pm,,, whenever m #
—n.
In case m, n > 0 we can find a more efficient equation:

Proposition 4.4 Forallm,n > 0,

-1 n—1
d m-n ~— m n
a‘pm,n = m——l—n(pm+n + ; 7(pm—j,n‘pj + ]X_; 7¢m,n—j‘ﬁj (20)

Proof We prove that the right hand side in (20) is equal to the right hand side in (19).
By the anomaly equation for ¢, and comparing terms it is equivalent to prove the
following equation for all m, n > 1:

1 1 1 1
=—D —@mD E —Q; i E —@; i 21
DPm+n m 2 (@m)Pn + n§0m 2 (on) + 2 l.%,n(ﬂj + L l.%,m% (21)
i+j=m i+j=n

We multiply both sides with x”y” and sum over all m,n > 1. With g(x) =
Zmz 1 X" @ /m the equation becomes

Dyg(x) — xDy ~
PR ZIDE0) — Do) Dyg0) + Drg(n) - Degy) + (D + D) Dyt ) D)

+ ((Dx + Dy) "' Dyh(x, ) Dyg() (22)

where (D +Dy) ~l acts term-wise by multiplying the coefficient of x” y" by (m+n)~!
(this is well defined since both m, n are positive for all non-zero coefficients) and we
have used (Dy + Dy) Y fmnymyn = Dyh(x, y) with

m,n>1 "m

h(x,y) = Dxg(x) - D:g(y) + D:g(x) - Dyg(y).

Rewriting Dy = (Dy + Dy) — Dy we have
(Dy 4+ Dy)"'Dyh = h — (D, + Dy) "' D, h.

Inserting this the (D, + Dy)_1 term factors out and we obtain that (22) is equivalent
to

1
Dyg(y) — Dyg(x)

Dyg(x) — xD
% <y g(x)z _); yg(y) —D,g(x) - Dyg(y) + Dyg(x) - ng(y)>>

Dyh = (D, + Dy)(
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Expanding and using that (Dyx + Dy)(y/(x — y)) = 0 this is equivalent to

(D2e(n) - Dyg») = Dag®) - D)) - (1 + Deg@) + Deg(y) + )
+(Dyg(y) = Dxg(®)) - (Dz(Dag(x) - Dyg(»)) + Dag(@) Dy(h) + Dyg(y) Dih) =0,
(23)

We consider again the function f(x) = % and apply the variable change

1 1

= YT S x=gl), y=2g0).

Let us denote f/(x) = % f(x). We then have the transformations

D,
Dyg(x) = —% Deglx) = - ff
f o= Do/
D2 -2l L J M7 D- = -
xg('x) f/ (f/)z g(X) f/
[ f'D(f) = f'De(f) [ "D(f) = /D)
DxDr =7 ’ DXDZ BT
g(x) Iz (f/)z g(x) 7 (f/)Z

where on the right hand side we have omitted the argument x in f and its derivatives.
After changing variables and clearing denominators we find that (23) is equivalent

to

(J‘”(X)f(x)f/(y)2 - f”(y)f(y)f’(X)2> CH(fOf D= f)f(»)- D=0
(24)

where we have written x, y for X, y and

C=f =D f(x) f' () — fF' XD f(y)+ f@)D f(y) + De f(x) - f(¥)
D= (f"x)D.f(x) = f'@X)D.f'(x)) f'(»)*
+ (S DD f ) = F' D' () f'@)?
— ('@ f@) = f ) FOID f() = (f' () D f(x) = £/ @) De f1(x)) FO) ()
— ('O f@) = £ @D fx) = (£ D f () = £ D= f' () f ) f (x).
Let F(x, y, z, t) be the left hand side of (24). We need to show that 7 = 0. We

will argue as in Sect. 3.1. Since it is a polynomial in derivatives of Jacobi forms the
function F is a quasi-Jacobi form of the three elliptic variables x, y, z. Itis of weight 6

and index
0 0 3/2
L=]10 0 3/2].

3/2 3/2 3/2
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A quick check using the commutation relations (10) shows that in the algebra of such
quasi-Jacobi forms we have

d d d

F= F= F=0.
dG, dA(x) dA(y)

By a direct check (e.g. using a computer) F has no poles at y = 0 and vanishes to
order 3 at y = —z. Hence the ratio

F(x,y)
F@3f)3

is holomorphic in y. Since by [14, Lem. 6] it is also 2-periodic, we find that it is
constant in y. But F is symmetric in x and y so it is also constant in x. By checking
that the constant term vanishes we are done. O

Remark 3 1In the proof we established (21), which is precisely Proposition 1.4.

By Proposition 4.1 for all m, n > 0 the function ¢y, , is determined by ¢,, and @,.
Hence (21) yields recursive formulas for ¢,,, and hence provides an alternative def-
inition of the set of functions ¢, starting from the initial condition ¢; = ®(z). For
example, the case (n, 1) yields

n—1

1 1
On+1 = D(@1)on + - @1 Dz (@n) + > TP Pni-

i=1

4.3 Proof of Theorem 1.3
We need to show that for all n > 1 we have
@n,—n —n € Qlacy ;.

The idea of the proof is to consider the two expressions for %(ﬂm’ » for positive m, n
given by (19) and (20). These terms are equal for m > 0, and (with minor modifica-
tions) they have natural extensions to m < (. We will observe that these extensions
are both polynomial in m (when fixing n) up to the same non-polynomial correction
term. Hence they are equal for all m.

Concretely, let n > 0 be fixed and let R(m, n) be the right hand side of (19). Then
by Corollary 3.4 the sum of R(m, n) and

n

m
—mz8, <0 ( Dr(@m)(ﬂn + —Qﬁme(wn)> = _m28m<0¢m,n

m+n m+n

is polynomial in m. We write

R(m,n) = R(m,n) — MZPm n6m<0
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to denote this polynomial function.
We consider now the right hand side of (20) and we want to make sense of it for
negative m. For all m > 0, with m # n in the second line, define

m—1 n—1
m-n m n
S(m,n) := m+n + Zl 7§0m7j,n§0j + Zl 7(pm,n7j§0j
J J
“m-n m—1
S(=m,n) := - m+n+z_‘ﬂ m+j,n®j +Z ~P—mn—jPj-
—m—+n = ] iz 1]

By a direct application of Lemma 2.3 the sum
g(mv n) = S(m, n) — mz@m ndm<0

is polynomial in m.
By Proposition 4.4 we have R(m, n) = S(m, n) hence R(m n) = S(m n) for all
m > 0. By polynomiality in m we get R(m,n) = S(m, n) for all m # —n. Thus

Vm # —n : R(m,n) = S(m, n). (25)

We specialize (25) tom = —n — 1. Since

" n+1
S(=n—1,n) = —(n+ Dngi + (1 + De_pnp1 + ) Y-t +n®)
j=2

n—1
n
+ E =P+ D)n—jPj
=17

and ¢ = O(z), the Eq. (25) yields

1 “n+1 an
g — = ————— R—n—l,n—g —_ i ~—E —p_ _ivi .
$—n.n (I’l T 1)@ ( ( ) ] P—(n+1)+j.nPj = j<ﬂ (n+1),n—jPj

j=2

The term in the bracket on the right lies in QJac_1 ;41,2 by inspection. Moreover,
again by inspection it vanishes at z = 0. Hence it must be divisible in algebra of
quasi-Jacobi forms by ®(z). This gives ¢_, , —n € QJacy ;. O

Remark 4 The proof yields more information. For m # —n we have %(pm,n =
R(m, n) by (19). Using that R(m, n) = S(m, n) for all m # —n we find the anomaly
equation

d —m-n

d_Ago_m’" g +n

m— _
m n
O—min + Z 7‘p—m+j,n(pj + Z jw—mﬁ—jwj
Jj=1 J=1
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where m,n > 0 and m # —n.A

4.4 Holomorphic anomaly equations I

We finally derive the precise modular properties of the functions ¢, , in terms of
holomorphic anomaly equations.

Proposition 4.5 For all m,n € Z we have

d
@) —mn =20men.

i
(b) ﬁ@ = —‘Pern + Z (01 n@j + Z (ﬂm iPj
i+j=m i+j=n

with the convention in (b) that the first term vanishes if m + n = 0 and that in a sum
with condition i + j = £ (for £ = m or £ = n) we sum over all positive i, j if £ is
positive, and over all negative i, j if £ is negative.

Proof Part (a) follows from the defining differential equation (5) by applying d/d G>.
In part (b) by Proposition 4.4 and Remark 4 we only need to prove the case m = —n.
For that we restrict ourself to the region m < 0 and n > 0. Applying d/dA to (5)
yields

d d
= Pm,n = ﬁ (mnemen F + (Degm)(Dr@y)) -

D, g, D
Pm.n + " IA

The right-hand side and the first term on the left-hand side are polynomial in m and n
(in the considered region). Hence diAgom,n is polynomial in m, n up to a constant in g.”
Let T (u, v) be the polynomial series such that

+ Z _‘P1n§0]+ Z _<sz§0]

i+j=m i+j=n

T(m,n) =

for all m # —n in the region. We already know T (m, n) = %gﬁm,n forall m # —n
so by the polynomiality of diA(pm,n we get for all m, n in the region

d
—@m.n + Cm,n(z)

T(m,n) = JA

for some ¢, , (z) which does not depend on g. Specializing to m = —n we see

d
d_Aﬁa—n,n +cnu@ =T(—n,n) = —n? z+ Z —901 n®j + Z —90 n,i®j-
H—/——n t+/—n

7 There is a small subtlety here since at first it only follows that diA(pm, n 1s a power series in z, ¢ whose
coefficients are polynomial in m, n. But then dLA(pm,n is a quasi-Jacobi form for every m, n so that this
actually has to be a power series in z with coefficients which are polynomials with coefficients quasi-modular
forms (of determined weight).
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But diAgo_,,,,, is homogeneous as a quasi-Jacobi form of weight —1 and index n. Hence
the constant terms in ¢ on both sides must match up and so as desired

d n n

——@—nn = E ~Qinpj + E —~P—n,i®j-

dA . J =]
i+j=—n i+j=n

O

Remark 5 Once we know that ¢, _, is quasi-Jacobi and know its A-derivative it is
not difficult to derive a recursive formula for it (ignoring that we already obtained
a formula in the proof of Theorem 1.3). Indeed, consider the defining differential
equation

Doy = mnepon F + (Dr@p) (Do gy).

Applying (% twice and using the commutation relations we get

d d\? d\*
(Im| + |nD@m.n +2D; a‘/)m,n + D; <ﬁ> Pm,n = <a) (mn(ﬂm(pnF + (Dr‘/’m)(Dr(Pn)>

Since (%)" ©m.n 1s determined recursively from functions indexed by m’, n’ with m’ +
n’ < m + n this yields one more formula for g, ,,.A

5 The classical Kaneko-Zagier equation

The differential equation introduced by Kaneko and Zagier [9] can be characterized
among quadratic differential equations as those for which the solution space is invari-
ant under the modular transformation for the full modular group, so that it is essentially
unique [7]. If one however considers congruence subgroups, further differential equa-
tions of the same type have been found by Kaneko and Koike [8]. In this section
we give a general construction which takes as input a meromorphic Jacobi form of
weight —1 and gives as output a differential equation of Kaneko—Zagier type. The two
Kaneko—-Zagier equations above and our case studied in this paper are all given by this
construction.®

5.1 A general construction

A general recipe to construct Kaneko—Zagier type differential equations is as follows.
Let g be a meromorphic Jacobi form of weight —1. Define

2
D g(7) and H(f):Drg(t).

E =
=0 2(0)

8 A certain differential equation for index 1 Jacobi forms was studied by Kiyuna [10] and was called a
Kaneko—Zagier type equation. Howver, since it is of 4-th order it does not fit our framework.
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By construction E and H are meromorphic quasi-Jacobi forms. For all m > 1 we
consider the differential equation

D2g, = m>H(T)gm.

To obtain the connection to the classical presentation, we set m = k + 1, and
consider

fi = gkr1/g"!

which is of weight k. The corresponding differential equation for f; reads
D2 fi + 20k + DE() Dy fic + k(k + 1)(E(x)* — H(1)) fie = 0.
For this choice of g (and hence of E), we define a modified Serre derivative
0 = Dr + Ewt.

The operator 6, is a derivation vanishing on g. Moreover, the above differential equa-
tion can be rewritten as

07 fi = H wi(wt +2) fi. (26)

We give several examples:

(0) In this paper we considered the case g(z, T) = ®(z, t) (which contains the cases
g(t) = O(a, t) forany a € Q).
(1) For the classical Kaneko—Zagier equation we let

and get H(t) = E4(t)/144. The operator 0, is the Serre derivative.
(2) For the differential equation studied in [8] we take

1

8(0) = n(t)n2r)

and get
1 1
E(r) = 21 (Ex(7) +2E2(27) 2°H () = S (Ea(r) +4E420)).

The operator 6, matches the derivative operator of [8, Sec. 2]. Unpublished work
by Tomoaki Nakaya [13, Section 3.5] shows that in this case

®2z, ZT))—(k+1)/2

= Res,= (D P E——
Jie =Res;—o ( D; 0G. 1)
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is a solution of the differential equation (26) for all k > 1.

5.2 Recursive construction of the solutions

Let fi and f; be two solutions of (26) of weight k and / respectively. We write

Lf,h]:=kOg(f)h —1f0O4(h)
= kDr(f)h - lfDr(h)

which specializes to the first Rankin-Cohen bracket on modular forms.

Proposition 5.1 We have

k—1
Ocl o> fil = =5 i, 0 (f0))

O fi fil = (k=D (k =1 =) HL fi, fil + k(k =D fil fi, H].
Proof This follows from a direct computation. O

Corollary 5.2 Suppose that [ f;, H] = 0. Then

[fe, f18° and [fig™ ™, filg 2
are solutions of (26) of weight k — 1 — 2 and k + | 4 2 respectively.

Hence if a function f; as in the corollary exists, then from any given solution we
can recursively write down solutions of (26) with weight in the same residue class
modulo /.

Example 5.3 For the classical Kaneko—Zagier equation we can take f; = E4. Then
indeed [ f;, H] = 0, so that if f} is a solution we have that [ fi, E4]/A is a solution
of weight k — 6, and [fkn_4k_4, E4]174k+4 is a solution of weight k + 6. The first of
these equations can also be found in [7, Proposition 1(i)].

Example 5.4 For the Kaneko—Zagier equation in Example (2) we can take f; =
2E>(2t) — E»(t). Then, indeed [ f;, H] = 0, so solutions can be constructed 4-
periodically, compare also with [8].

Remark 6 However, in the differential equation of Example (0) considered in this
paper, it turns out that the recursive structure described in Corollary 5.2 does not
exist. To see this, suppose (for our general family of Kaneko-Zagier equations) that
there exists a solution f; and that moreover we have [ f;, H] = 0. Then the condition
[fi, H] = 0 1is equivalent to

[ (D3 D g
0,1 =—- == s )
s/ 4<D%g+ g)ﬁ
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Applying 6, to this equation and using the differential equation for the left hand side,
we obtain

D? D} D? D3g\* D3¢ D
160 +2)=8 = 4 ;g+12 fg+(l—4)( ;g> +2(31 +4) ;g 4]
8 Dtg g D.[g Drg
D 2
1331 +4) <_fg) ,
g

For g = n~2 this equation is only satisfied if [ = 4, and for g = (n(z)n(27))~! only
if [ = 2. However, for g = ®(z) this equation is never satisfied, so Corollary 5.2
cannot be applied.A
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