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1 Introduction

Superstring theory in an AdS5×S5 background can be studied with both the pure spinor [1]
and the Green-Scharwz formalisms [2], see [3, 4] for reviews.1 In particular, the worldsheet
action is known. Note that both the action and the vertex operators are BRST invariant in
the pure spinor formalism and kappa symmetric in the Green-Scharwz formalism. Despite
the many progresses in the study of superstrings in this background, explicit superfield
expressions for the vertex operators are unknown. In this work, we made progress in
this direction by finding expressions for all the half-BPS vertex operators in the pure
spinor formalism. These vertex operators were known before only close to the boundary of

1For recent developments using the Neveu-Scharwz-Ramond formalism and ambitwistor strings in AdS,
see [5] and [6, 7] respectively.

– 1 –



J
H
E
P
0
7
(
2
0
2
1
)
2
1
0

AdS5 [8] and they were used to compute open-closed string amplitudes in [9, 10] reproducing
the expected holographic results. Note that the vertices were also known in a different
picture [11] and in the plane wave limit [12].2 In [8], it was used that the half-BPS
operators in N = 4 super-Yang-Mills (SYM) can be written in terms of traces of the
Sohnius superfield [14] and harmonic variables [15–17]. The duals to these operators were
constructed using the same variables in [18, 19]. In this paper, we are going to focus on the
bottom components of the half-BPS supermultiplets. However, acting with supersymmetry
generators, it is possible to generate all the states and we expect that the result can be
written in terms of the superfields just mentioned. In this work, we use the pure spinor
formalism but it should be possible to extend our results to the Green-Scharwz formalism
and it will also be very interesting to make connection with the recent understanding of
both formalisms as Chern-Simons theories [20, 21].

As already mentioned, the main results of this paper are explicit expressions for the
supergravity vertex operators in AdS5 × S5. The vertices are states in the cohomology of
the BRST operator with ghost number two. They are annihilated by twenty four super-
symmetries and this implies that they depend only on eight worldsheet fermionic variables
θa+, with a = 1, . . . , 8. The vertices are schematically of the form (bottom state of the
supermultiplet)

V0(n) = en(z+w)
[(
λ̄2
)

+
(
λ̄2θ2

+

)
P1 (n)+

(
λ̄2θ4

+

)
P2 (n)+

(
λ̄2θ6

+

)
P3 (n)+

(
λ̄2θ8

+

)
P4 (n)

]
,

(1.1)
where both z and w are worldsheet variables and λ̄ are pure spinors. The subscript zero
means zero picture and its meaning will be explained in the next section. The variable z is
related to the distance to the AdS5 boundary and w parametrizes an equator of S5. The
integer n measures the dimension and R-charge of the state. For example, the case n = 0
corresponds to the dilaton vertex operator of [22]. The Pi(n) are complicated polynomials
but with maximum degree four in n and this truncation to a very low order might seem
surprising. The vertices are expected to have a nonsingular flat space limit and in fact
this implies the observed truncation of the polynomials. The flat space limit consists in
rescaling the generators of psu(2, 2|4) and deforming this algebra continuously to the ten
dimensional super-Poincaré algebra. The parameter n and the coordinates θa+ are also
rescaled in the process. The only terms that survive this limit are the ones of the form
nkθ2k

+ and any term of the form nk
′
θ2k

+ with k′ > 2k has a singular limit. Notice that the
vertices do not depend on the other bosonic worldsheet variables. This follows because we
are considering a particular polarization and a specific spacetime position. It is possible to
perform PSU(2, 2|4) transformations and get more general expressions.

The vertices in (1.1) are in a very particular gauge and they do not depend on all
the pure spinor variables. In order to understand this better recall that in any type II
superstring background the supergravity multiplet is described in the pure spinor formalism
by the unintegrated vertex operator [23, 24]

V = λ
α
Lλ

β̂

RAαβ̂

(
xM , θ

α
L, θ

α̂
R

)
, (1.2)

2The β deformed vertex is discussed in [13].
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where Aαβ̂ is a bispinor superfield depending on the appropriate type II superspace variables

(xM , θαL, θ
α̂
R), with M = 1, . . . , 10 being space-time indices and α, α̂ = 1, . . . , 16 Weyl

spinor indices. The (λαL, λ
α̂
R) are the bosonic pure spinor variables satisfying λαLγMαβλ

β

L =

λ
α̂
Rγ

M
α̂β̂
λ
β̂

R = 0 with γMαβ the SO(10) Pauli matrices. Note that the superfield Aαβ̂ appearing
in (1.2) is a supergravity gauge field. The BRST operator Q has a complicated action on
general states but it simplifies a lot when acting on the supergravity vertices. In this case,
the operator is given by

Q = λ
α
L∇Lα + λ

α̂
R∇Rα̂ , (1.3)

where ∇Lα and ∇Rα̂ are the super-covariant derivatives. A necessary condition for the
vertex operator (1.2) to be a physical state is Q · V = 0 and this implies

γ
αβ

MNPQR∇LαAβγ̂ = γ
α̂β̂

MNPQR∇Rα̂Aγβ̂ = 0 . (1.4)

In addition, if V of (1.2) describes a physical state then it cannot be written as V = Q · Ω
for any Ω. Note that the superfield Aαβ̂ is defined up to the gauge transformations (V ∼
V + Q · Ω)

δAαβ̂ = ∇LαΩRβ̂ +∇Rβ̂ΩLα , (1.5)

with
γ
αβ

MNPQR∇LαΩLβ = γ
α̂β̂

MNPQR∇Rα̂ΩRβ̂ = 0 . (1.6)

In some backgrounds such as flat and AdS5 × S5, it is possible to choose a very
convenient gauge for the vertex operators. We will demonstrate this for a flat background
below. The AdS5 × S5 case will be explained in section 4. Note that the existence of this
gauge is important for defining the vertex operators in different pictures. In a general type
II background the covariant derivatives satisfy the following algebra[
∇Lα,∇Lβ

]
+

= 2γMαβ∇M ,
[
∇Rα̂,∇Rβ̂

]
+

= 2γM
α̂β̂
∇M ,

[
∇Lα,∇Rα̂

]
+

= Fαα̂ ,

(1.7)
where Fαα̂ is a bi-spinor that describes the superspace curvature [25] and the subscript
plus means anticommutation. In what follows, we will organize the covariant derivatives
with SO(1, 9) spinorial indices into chiral and anti-chiral SO(8) spinors (∇a,∇ȧ) with
a, ȧ = 1, . . . , 8. In a flat background, we can go to a frame where the only non-vanishing
component of the momentum is k+ = k0 + k9. It is possible to show that in this frame the
covariant derivatives when acting on a massless state obey the following algebra [11]

[∇La,∇Lb]+ = 2k+δab , [∇Ra,∇Rb]+ = 2k+δab , [∇L,∇R]+ = 0 , (1.8)

and the other commutators are not going to be used. The commutators above imply that
we can invert both ∇La and ∇Ra and using this property we can go to a gauge where the
supergravity gauge fields have the components

Aab = Aȧb = Aaḃ = 0 . (1.9)

– 3 –
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The proof is as follows. Let’s do a gauge transformation with parameters ΩRβ̂ . The
equation (1.5) implies

δAaȧ = ∇LaΩRȧ , δAab = ∇LaΩRb . (1.10)

We want δAaȧ = −Aaȧ and δAab = −Aab. By replacing these variations above, we can
solve the equations and get ΩRβ̂ ∝ ∇LaAaβ̂ . Moreover, it is easy to see that this ΩRβ̂ solves
the necessary conditions (1.6). This follows from equation (1.4) and the last commutators
of (1.8). After this gauge transformation, we have Aaȧ = Aab = 0. Now we can perform
a new gauge transformation with parameter ΩLȧ and using the same reasoning we arrive
at (1.9). We believe that it is possible to adapt the argument just given to AdS5 × S5.
However, one needs to carefully deal with the transformations of the pure spinors variables
(they are not BRST invariant any more). In addition the commutation relations of the
covariant derivatives are more complicated and it is necessary to fix the USp(2, 2)×USp(4)
gauge transformations of the pure spinors variables. We will argue that the gauge (1.9) is
reachable for this background in section 4.3

The strategy used in this paper for obtaining the vertex operators was to start with
their expressions in the minus eight picture proposed in [11] and higher their picture up
to zero. This strategy was proposed recently. Previously, in a flat background, the closed
superstring vertex operators were constructed by taking the left-right product of the open
superstring vertex operators, see [26] for a review. Note that any method based on holo-
morphicity cannot work in AdS5 as the current algebra computed in [27–29] is not holo-
morphic already at leading order in α′. The picture raising procedure is best understood
by bosonizing some of the variables and this will be reviewed in the next section. In a
flat background, it is possible to change the picture of a vertex operator analytically and
write a close expression for the vertex in any picture, see [30, 31]. In AdS5×S5, the BRST
transformations of the worldsheet variables are very complicated, in particular, the pure
spinor variables transform. It is more complicated to do any analytic calculation in AdS5
as a huge number of terms are generated every time we act with a new picture raising
operator. Many simplifications are possible but they are hard to implement as the pure
spinor constraints are quadratic. In this work, the majority of the simplifications were
done numerically. Notice that the same numerical techniques can be used to compute the
cohomology of the BRST operator directly at picture zero. This is an alternative way of
obtaining the vertex operators. The procedure consists in writing the vertices using a com-
plete basis of invariants respecting all the symmetries and depending on two pure spinors
and fitting for the coefficients by imposing that the vertex is BRST closed and not BRST
exact. In this paper, we chose a particular parametrization of the AdS5 × S5 superspace.
If one wants to compute the vertices using a different parametrization, we noted that the
fitting procedure just described is much faster in terms of computer time.

One very strong motivation for computing the vertex operators is the calculation of
string amplitudes [32]. Apart from the open-closed amplitude mentioned before, no other

3The arguments are only valid for the bottom state of the multiplet. It is possible that there are subtleties
for the other states and it deserves further investigation. We thank Nathan Berkovits for pointing this out
to us.
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amplitude has been computed using the pure spinor formalism in AdS5×S5 and one of the
reasons was the lack of explicit expressions for the vertices. The other ingredient needed for
amplitude computations is a prescription for dealing with the zero modes of the worldsheet
variables including the pure spinor ghosts. For example, in a flat background to obtain
the tree-level three open strings amplitude, the prescription consist in multiplying the
three vertices and reading the term proportional to a combination of three pure spinors
and five thetas, see [33] for more details. In [22], a PSU(2, 2|4) invariant prescription
for the AdS5 × S5 amplitude was proposed and it involves an integration over all the
thirty two θ’s. However, this prescription gives a vanishing result for any three point
amplitude involving massless states since, in the light cone gauge, each massless state can
contribute with at maximum of eight θ’s.4 Having the explicit expressions for the vertex
operators, it is possible to test any proposal by comparing with existing results in the
literature. For example, it is known that the three point amplitude of half-BPS operators
is completely fixed by supersymmetry and the result is just a normalization constant times
kinematical factors [34–36]. In order to compute higher than three point amplitudes, it
will be necessary to compute the integrated vertex operators as well. In this work, we only
consider the unintegrated one. However, it is possible to adapt several existing results in
the literature [37, 38]. Another important element for multiloop calculations is the b ghost
which is a composite operator in the pure spinor formalism. The b ghost is known in this
background and it was computed in [39].

This paper is organized as follows. In section 2, we review the flat space vertex oper-
ators and their recent minus eight picture realizations. The section 3 contains our conven-
tions for the AdS5 × S5 pure spinor superstring. In particular, we define our worldsheet
variables and the BRST operator. Our main results, the expressions for the vertex op-
erators, is presented in section 4. In the same section, we argue that the picture raising
procedure is well defined in AdS5×S5, that our results reduce correctly to the well known
dilaton vertex operator in an appropriate limit and that the vertices have the correct flat
space limit. In section 5, we find how the boundary of AdS5 is described in our coordinates
and explain how to obtain a vertex operator with a general polarization and for an arbi-
trary spacetime position. Finally, section 6 has our conclusions. The appendices have our
conventions for the psu(2, 2|4) algebra, explicit expressions for the BRST transformations
and the vertex operators written in a compact SO(8) notation.

2 The flat space vertex operators

In this section, we review the known massless vertex operators in a flat background. In
particular, we explain their recent minus eight picture realizations. Recall that in [18], the
ten dimensional type IIB superspace was parametrized in terms of holomorphic θα+ and
anti-holomorphic θα− combinations of fermionic coordinates. These variables are given by

θ
α
+ = θ

α
L + iθ

α̂
R , θ

α
− = θ

α
L − iθ

α̂
R , (2.1)

4This fact was explained to us by Nathan Berkovits (private communication).
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where θαL and θα̂R were defined below (1.2). The complex conjugate of these variables can
be deduced from (θαL)∗ = θ

α
L and (θα̂R)∗ = θ

α̂
R, which implies that (θα±)∗ = θ

α
∓. Note that

the signs ± denotes the R-charge. In addition, it was shown that the type IIB onshell
supergravity multiplet can be described in terms of an analytic superfield Φ obeying a
certain reality condition, which is

(∇−)αΦ = 0, (∇+)4
αβγδΦ = (∇−)4

αβγδΦ∗ . (2.2)

It is possible to work in coordinates where

(∇−)α = ∂

∂θ
α
+
, (2.3)

and the constraint of analyticity is easily solved in these coordinates by requiring that the
fermionic variables that enters in Φ is only θα−. Expanding in components the superfield
Φ, we have

Φ(y, θ−) = φ(y) + ψα(y)θα− + Fαβ(y)θα−θ
β
− + ψαβγ(y)θα−θ

β
−θ

γ
− + Fαβγδ(y)θα−θ

β
−θ

γ
−θ

δ
− + . . . ,

(2.4)
where y are the bosonic coordinates and the terms with higher orders in θα− are not inde-
pendent but are derivatives of the fields showed above.

In the expansion (2.4), the φ(y) is a combination of the dilaton and the axion. The ψα
contains the two dilatinos. The Fαβ contains the NSNS and the RR 3-form field strengths.
The ψαβγ contains the two gravitinos. Finally, the Fαβγδ combines the Weyl tensor and
the self-dual RR 5-form field strength.

In what follows, we are going to work in the light-cone frame where the only non-
zero component of the momentum is k+ = k0 + k9. Going to that frame breaks Lorentz
symmetry SO(1, 9) down to SO(1, 1)× SO(8). Thus the ten dimensional Weyl spinors will
split into a pair of Weyl and anti-Weyl SO(8) spinors

θ
α
± =

(
θa±, θ̄

ȧ
±

)
, (2.5)

with a, ȧ = 1, . . . 8 being the Weyl and anti-Weyl indices respectively.
The superfield Φ in light-cone frame becomes the superfield of [40] where the ten

dimensional reality condition and analyticity becomes

∇a−Φ = 0, ∇̄ȧ±Φ = 0, (∇+)4
abcd Φ = 1

4!εabcd
efgh (∇−)4

efgh Φ∗ . (2.6)

Note that generically it is possible to choose coordinates such that the superfield Φ depends
only on sixteen thetas instead of thirty two as in (2.4). However, in light-cone frame, it is
possible to reduce the number of fermionic coordinates even further down to eight.

Recently in [11, 30, 31], a closed string vertex operator was constructed in terms of
the above light-cone superfield. It was also shown that the vertex have a very compact
expression (just one term) when written in the minus eight picture. In this picture the
vertex becomes

V flat
−8 =

(
λ̄ȧLλ̄

ȧ
R

)( 8∏
a=1

δ(λa+)
)

Φ∗ = (λ̄ȧLλ̄ȧR)
( 8∏
a=1

δ(λa+)∇a+

)
Φ . (2.7)

– 6 –



J
H
E
P
0
7
(
2
0
2
1
)
2
1
0

Several comments are in order. First, the variables λa+ appearing above and their cousin
variables λa− are defined similarly to the θ± in (2.1) as

λ
α
+ = λ

α
L + iλ

α̂
R , λ

α
− = λ

α
L − iλ

α̂
R . (2.8)

Notice that it is possible to take λa+ as an unconstrained variable and the product of eight
delta functions is well defined. The proof was given in [30] and it consists in showing that
λa− can be expresssed as a function of the other λ’s. We are going to repeat the proof
here for the reader convenience. The pure spinor constraints (λLγMλL) = (λRγMλR) = 0
become in SO(8) notation

λaLλ
a
L = λaRλ

a
R = λ̄ȧLλ̄

ȧ
L = λ̄ȧRλ̄

ȧ
R = 0 , λaLσ

m
aȧλ̄

ȧ
L = λaRσ

m
aȧλ̄

ȧ
R = 0 , (2.9)

or, equivalently, using (2.8) the constraints are

λa+λ
a
+ + λa−λ

a
− = 0 , λ̄ȧ+λ̄

ȧ
+ + λ̄ȧ−λ̄

ȧ
− = 0 , λa+λ

a
− = 0 , λ̄ȧ+λ̄

ȧ
− = 0 ,

λa+σ
m
aȧλ̄

ȧ
+ + λa−σ

m
aȧλ̄

ȧ
− = 0 , λa+σ

m
aȧλ̄

ȧ
− + λa−σ

m
aȧλ̄

ȧ
+ = 0 ,

(2.10)
and we have used the SO(8) Pauli Matrices

σ
m
aȧ , and σ

m
ȧa , (2.11)

with m = 1, . . . , 8. Using the Fierz identity

δabδȧḃ = σ
m

aḃ
σ
m
ȧb −

1
4σ

mn
ab σ

mn

ȧḃ
, (2.12)

one has as desired,

λa− =
λ̄ȧ+λ̄

ȧ
+(

λ̄+λ̄+
)λa− =

λ̄ȧ+(
λ̄+λ̄+

) ((σmλ̄+
)a (

σmλ̄−
)ȧ
− 1

4
(
σmmλ̄+

)ȧ (
σmmλ̄−

)a)

=
(
σmλ̄+

)a (λ̄+σ
mλ−

)
(
λ̄+λ̄+

) = −
(
σmλ̄+

)a (λ+σ
mλ̄−

)
(
λ̄+λ̄+

) = 1
4

(
λ̄+σ

mnλ̄−
)

(
λ̄+λ̄+

) (σmnλ+)a .

(2.13)
Note that the expression above is only defined for (λ̄+λ̄+) 6= 0. This means that we solve
partially the constraints such that λa− is completely fixed by the other components while
λa+ is completely unconstrained.

Then by taking λa+ as independent variables, one can formally bosonizes them together
with their conjugate momenta w+

a as [41]

λa+
∼= η(a)eφ

(a)
, w+

a
∼= −e−φ

(a)
∂ξ(a) , δ(λa+) ∼= −e−φ

(a)
. (2.14)

The number of delta functions determines the picture of the vertex operators. Notice that
the delta functions are fermionic objects. In [11, 42], it was postulate how to change the
picture of a given vertex operator. For example, the picture minus seven vertex operator
is obtained as follows

V
(b)
−7 = Q · ξ(b) · V−8 , (2.15)

– 7 –
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and
ξ(a) · δ(λa+) = 1

λa+
. (2.16)

Apparently, due to the rule above the V
(b)
−7 vertex would have λ’s in the denominator

and thus a problematic pole. However, it was argued in [11, 42] that the denominators
always disappear in a flat background. The same is true in AdS and this will be proven
in section 4. The flat space argument is as follows, if V δ(λ) is a BRST invariant operator
then necessarily QV = λ(. . . ) with the same λ appearing in the argument of the delta
function, thus Q(ξV δ(λ)) = λ

λ(. . . ), i.e. the denominator always cancel. The absence of
denominators is used as a consistency check in the calculations.

It is not hard to see that V flat
−8 of (2.7) is BRST invariant as required, see [11, 30, 31]

for more details. In a flat background the pure spinors are BRST invariant and both the
prefactor in (2.7) and the delta functions are invariant. Moreover, expressing the BRST
operator of (1.3) in terms of the covariant derivatives ∇± and the pure spinors λ± and
using the commutation relations

[∇+,∇−]+ ∝ k+ , (2.17)

and the properties of the superfield Φ given in (2.6), one can show that only terms pro-
portional to λa− are left when acting with the BRST operator on the vertex. However,
we have

λa−

( 8∏
a=1

δ(λa+)
)

= 0 . (2.18)

This follows because of (2.13), i.e. λa− can be expressed as a sum of terms and each term
is proportional to λa+. So, the vertex is BRST invariant.

To go from the minus eight picture to the usual zero picture, we act with eight picture
raising operators Q · ξ(a). In this way, the zero picture vertex operator V0 is written in
terms of the minus eight picture vertex V−8 as

V0 = Q
(
ξ(8) . . . Q

(
ξ(1) · V−8

)
. . .
)
. (2.19)

In [30, 31], it was shown that V flat
0 obtained from the procedure above takes the form

V flat
0 = V flat

0,0 + V flat
0,2 + V flat

0,4 + V flat
0,6 + V flat

0,8 . (2.20)

where V0,n preserves SO(8) invariance and contains n derivatives ∇+ acting on the su-
perfield Φ. In the section 4, we are going to take the flat space limit of our AdS vertex
operators and compare the results with the flat space ones. In AdS we have only computed
the bottom state of the supermultiplet so we are going to show explicit expressions for
V flat

0 only for Φ ∼ e(ik+y). Notice that the conventions in this paper differ from the ones
in [11, 30] by some numerical factors. The relevant flat space BRST transformations in
this paper are

Q · θa+ = λa+ , Q · e(ik+y) = ik+λ
a
−θ

a
+ e

(ik+y) . (2.21)

– 8 –
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The term V flat
0,0 in the vertex is given by

V flat
0,0 = 2i

(
λ̄ȧLλ̄

ȧ
R

)
e(ik+y) =

(
λ̄ȧ+λ̄

ȧ
+

)
e(ik+y) , (2.22)

where we have used the constraints (2.10). In addition,

V flat
0,2 = −k+

4
(
λ̄Lσ

ij λ̄R
)

(θ+σijθ+) e(ik+y) , (2.23)

and
V flat

0,4 = (ik+)2 i

192
(
λ̄Lσ

ijklλ̄R
)

(θ+σijθ+) (θ+σklθ+) e(ik+y) . (2.24)

The remaining terms are

V flat
0,6 = (ik+)3 i

11520
(
λ̄Lσ

ijklmnλ̄R
)

(θ+σijθ+) (θ+σklθ+) (θ+σmnθ+) e(ik+y) , (2.25)

and
V flat

0,8 = 2i (ik+)4
(
λ̄ȧLλ̄

ȧ
R

)
θ1

+θ
2
+θ

3
+θ

4
+θ

5
+θ

6
+θ

7
+θ

8
+ . (2.26)

In order to derive the expressions for V flat
0,n given above, in addition to (2.13) the following

relations are useful (see [11, 30, 31] for more details)

4!(λ̄+σ
[ij λ̄−)(λ̄+σ

kl]λ̄−) = 4(λ̄ȧ+λ̄ȧ+)(λ̄+σ
ijklλ̄+ − λ̄−σijklλ̄−) ,

6!(λ̄+σ
[ij λ̄−)(λ̄+σ

klmn]λ̄+ − λ̄−σklmn]λ̄−) = 288(λ̄ȧ+λ̄ȧ+)(λ̄+σ
ijklmnλ̄−) ,

(2.27)

and

(λ̄+σ
ij λ̄−)(λ̄+σ

klmnλ̄+ − λ̄−σklmnλ̄−)(λ+σijθ+)(θ+σklθ+)(θ+σmnθ+) =

2(λ̄+σ
[ij λ̄−)(λ̄+σ

klmn]λ̄+ − λ̄−σklmn]λ̄−)(λ+σijθ+)(θ+σklθ+)(θ+σmnθ+) .
(2.28)

Note that the vertex operator (2.20) is in the gauge

V flat
0 = λ̄ȧLλ̄

ḃ
RAȧḃ . (2.29)

Naively, it seems that all the vertex operators obtained by acting with picture raising
operators in lower picture vertices are BRST exact. In fact, for example, we have by
construction that

V0 = Q
(
ξ(8) · V−1

)
= Q

(
Ṽ−1
λ8

+

)
, with V−1 = Ṽ−1δ

(
λ8

+

)
. (2.30)

It turns out that we must be careful with the inverse powers of λa+. Operators that involve
inverse powers of λa+ are not globally defined in the pure spinor space, but only in a patch
where λa+ 6= 0. If we include states that are not globally defined in the pure spinor space
the BRST cohomology trivializes since Q(θ1/λ1) = 1, so any BRST closed state would
also be exact. This force us to consider only states that are globally defined in the pure
spinor space and this implies that the vertices in this construction are not necessarily
BRST trivial.

– 9 –



J
H
E
P
0
7
(
2
0
2
1
)
2
1
0

In the construction of the flat space vertex operators revised above, we see that both
the vertex in the minus eight picture (2.7) and the vertex in the zero picture (2.20) are in
the gauge where only the component Aȧḃ of the gauge superfield is non-zero. This is not
a coincidence and in fact the vertex in all the intermediate pictures between minus eight
and zero are also in this gauge in flat space, see below. Before ending this section, we are
going to describe the possibility of redefining ξ(a) and changing the argument of the delta
functions to Q(θa+) instead of λa+. This redefinition will not be used in the next sections,
but it may be useful for some readers. In a flat background, these two quantities are equal
but this is not true in general. The delta functions δ(Q(θa+)) are well defined if the Q(θa+)’s
are independent of each other and one way of verifying this is by computing the Jacobian
to change the delta functions to δ(λa+) and verifying that it is non-singular. Suppose we
are considering a supergravity background where some of its vertex operators have a minus
eight picture description. These vertices will have the following general form

V−8 = 1
8!εa1...a8

(
Ṽ−8

)a1...a8
8∏

a=1
δ
(
Q
(
θa+
))
. (2.31)

In the formula above, (Ṽ−8)a1...a8 is anti-symmetric on the indices ai = 1, . . . , 8. The BRST
invariance of V−8 implies that

Q
(
Ṽ−8

)a1...a8 = Q(θ[a1
+ )(Ṽ−7)a2...a8] , (2.32)

with (Ṽ−7)a1...a7 also anti-symmetric in all its indices. This follows because the BRST
operator is nilpotent and it trivially annihilates the delta functions. We can use the (Ṽ−7)’s
to construct a vertex operator in the minus seven picture as

V
(a)
−7 = 1

7!ε
a
a1...a7

(
Ṽ−7

)a1...a7 ∏
b 6=a

δ
(
Q
(
θb+

))
. (2.33)

Note that the minus eight picture vertex operator and the minus seven picture vertex
operator constructed above are related by the generalized picture raising procedure given by

Q
(
ξ(a) · V−8

)
= V

(a)
−7 , with ξ(a)δ(Q(θa+)) = 1

Q
(
θa+
) . (2.34)

Similar relations are obtained for all pictures. BRST invariance implies

Q(Ṽ−n)a1...aan = Q(θ[a1
+ )(Ṽ−n+1)a2...an] , (2.35)

and the −n picture vertex operator is given by

V
(a1...a(8−n))
−n = εa1...a(8−n)b1...bn(Ṽ−n)b1...bn

∏
c 6=(a1...a8−n)

δ
(
Q
(
θc+
))
. (2.36)

Notice that following the manipulations above, one can see that in a flat background if
Ṽ−8 only contains λ̄ this will also be true for all the Ṽ−n until we reach V0. So the gauge
condition is maintained by the picture raising procedure in the flat case.
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In the section 4, we are going to present the supergravity vertex operators in an
AdS5×S5 background. In that section, we are going to focus on a particular state instead of
the full supermultiplet. However, it was argued in [19] that first order on-shell fluctuations
about AdS5×S5 can also be described by a chiral superfield Φ obeying similar constraints as
the ones in (2.2). Thus we expect that our vertex operators can be covariantizied similarly
to what was done in flat space but this time using the AdS5 × S5 algebra of covariant
derivatives.

3 The AdS5× S5 pure spinor formalism

The AdS5 × S5 pure spinor formalism is based in the superspace given by the following
supercoset

PSU(2, 2|4)
USp(2, 2)×USp(4) . (3.1)

The bosonic subgroups USp(2, 2) and USp(4) appearing in the denominator are the spin
groups associated to the SO(4, 1) ⊂ SO(4, 2) and SO(5) ⊂ SO(6) isometries of AdS5 × S5.
These subgroups are usually called the isotropy groups. Note that the bosonic part of the
numerator is given by SU(2, 2) × SU(4) which are the spin groups respective to SO(4, 2)
and SO(6). This coset can be parametrized by ten bosonic coordinates xαα̇, z, yīi, w with α,
α̇, i, ī = 1, 2 and thirty two fermionic coordinates θI

Î
and θÎI , and the indices decompose

as I = {i, ī} and Î = {α, α̇}. Notice that the fermionic variables are distinguished by the
positions of their indices so we must be careful if we want to lower and raise them using
the ε symbols. Our coset parametrization will be given by

g = g+ḡ+ḡ−g−g0 = e(θαi q
i
α+θīα̇qα̇ī +xαα̇Kα̇

α+yīiK
i
ī
)e(θα̇i q

i
α̇+θīαqαī )e(θiα̇qα̇i +θα

ī
qīα)e(θiαqαi +θα̇

ī
qīα̇)ez∆+wJ ,

(3.2)
where the q’s are the supersymmetry generators,5 the K’s are the conformal boosts, the
∆ is the dilatation generator and J is its R-charge analogous. The additional generators
of the psu(2, 2|4) algebra are the translations P ’s and the rotations M̂ ’s. Our conventions
for the algebra are given in the appendix A. Choosing a coset parametrization as the
one given in (3.2) is equivalent to fix the USp(2, 2) × USp(4) gauge symmetries and the
coordinates appearing in the coset are all gauge invariant by construction. Recall that
the coset transforms under an infinitesimal USp(2, 2)×USp(4) gauge transformation with
parameters Σ′’s as

δg= g
(
M̂α
β Σ′βα +M̂ α̇

β̇
Σ′β̇α̇ +M̂ i

jΣ
′j
i +M̂ ī

j̄Σ
′j̄
ī

+
(
Pαα̇ +εα̇β̇ε

αβK β̇
β

)
Σ′α̇α +

(
P īi +εijεīj̄Kj

j̄

)
Σ′iī
)
.

(3.3)
The coset choice (3.2) was not arbitrary. We have chosen a parametrization where all the
generators that annihilate our vertex operators (see the next section) are located at the
left. This choice greatly simplifies the calculations. In particular, the vertex operators will
not depend on θαi , θīα̇, θīα, θα̇i , θαī , θ

i
α̇, x

α
α̇ and yīi.

5Usually the fermionic generators of psu(2, 2|4) are divided into supercharges q and special conformal
supercharges s. In our notation, the sixteen generators s are {qiα, qīα, qα̇i , qα̇ī }.
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Under a BRST transformation generated by Q the coset transforms as

Q·g= g (λ+q−+λ−q++λ̄+q̄−+λ̄−q̄+)

+g
(
M̂α
β Σβ

α+M̂ α̇
β̇

Σβ̇
α̇+M̂ i

jΣ
j
i+M̂

ī
j̄Σ

j̄
ī
+(Pαα̇ +εα̇β̇ε

αβK β̇
β )Σα̇

α+(P īi +εijεīj̄Kj
j̄
)Σi

ī

)
,

(3.4)
where the λ’s are the bosonic pure spinor variables and we have used the definitions

λa+ =
(
λiα, λ

α̇
ī

)
, λa− =

(
λīα̇, λ

α
i

)
, λ̄ȧ+ =

(
λiα̇, λ

α
ī

)
, λ̄ȧ− =

(
λīα, λ

α̇
i

)
, (3.5)

and
qa+ =

(
qiα, q

α̇
ī

)
, qa− =

(
qīα̇, q

α
i

)
, q̄ȧ+ =

(
qαī , q

i
α̇

)
, q̄ȧ− =

(
qīα, q

α̇
i

)
, (3.6)

where a and ȧ are SO(8) spinor indices. The subscripts in the definitions above indicate
the charge under the generator J . The contraction of the indices in (3.4) is the obvious
one, for example,

λ+q− = λiαq
α
i + λα̇ī q

ī
α̇ . (3.7)

In (3.4), the second line contains a restoring gauge transformation parametrized by the
Σ’s. This is always the case when we want to preserve a coset parametrization. In AdS,
the λ’s are not BRST invariant anymore and they transform as

Q · λI
Î

= ΣI
Jλ

J
Î
− ΣĴ

Î
λI
Ĵ
, (3.8)

and similarly for Î ↔ I. Notice that a different approach is possible, one example being [23],
where the USp(2, 2)×USp(4) gauge transformations are not fixed. In this case, the BRST
transformations are defined up to a gauge transformation. Here we are fixing the gauge
and fixing a particular BRST transformation that preserves our coset parametrization.

In order for the BRST operator to be nilpotent,6 and the theory well defined, the vari-
ables λ’s have to satisfy several quadratic constraints, the so called pure spinor constraints.
One way to derive these constraints is by noticing that (with a compact notation)

Q2 · g = g(λq + Σ)(λq + Σ) + g((Q · λ)q + (Q · Σ)) , (3.9)

and using the BRST transformation of λ given in (3.8), one concludes that the necessary
condition for Q to be nilpotent is

{λq, λq} ∈ usp(2, 2)× usp(4) . (3.10)

To see the implications of the above constraints, we need the following definitions

λ̃ ≡
{
λαi , λ

α̇
ī , λ

α
ī , λ

α̇
i

}
, q̃ ≡

{
qiα, q

ī
α̇, q

ī
α, q

i
α̇

}
,

˜̄λ ≡
{
−εijεαβλjβ ,−ε̄ij̄ε

α̇β̇λj̄
β̇
, εīj̄ε

αβλj̄β , εijε
α̇β̇λj

β̇

}
,

˜̄q ≡
{
−εijεαβqβj ,−ε

īj̄εα̇β̇q
β̇
j̄
, εīj̄εαβq

β
j̄
, εijεα̇β̇q

β̇
j

}
.

(3.11)

6If the gauge symmetry is not fixed the BRST operator can be nilpotent up to gauge transformations,
but in this work, since we gauge fix, the BRST operator must be nilpotent.
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The last two definitions can be written compactly as

˜̄λÎI = σÎ Ĵ6 (σ6)IJ λ
J
Ĵ
, ˜̄qI

Î
= σIJ6 (σ6)Î Ĵq

Ĵ
J , (3.12)

where σIJn are SO(6) Pauli matrices, with n = 1, . . . , 6. They obey

σIJn = 1
2ε

IJKL(σn)KL , (3.13)

and in our conventions
σIJ6 =

(
εij 0
0 −εīj̄

)
. (3.14)

This motivates the definitions

εIJ = σIJ6 , εÎ Ĵ = σÎ Ĵ6 , εIJ = σ6
IJ , εÎ Ĵ = σ6

Î Ĵ
, (3.15)

which enables us to raise and lower indices that transform under USp(2, 2) and USp(4).
Taking the following linear combination of the generators

iqR ≡ q̃ + ˜̄q , qL ≡ q̃ − ˜̄q , (3.16)

it is possible to show using the commutation relations of the appendix A that

{qR, qL} ∈ usp(2, 2)× usp(4) , and {qR, qR}, {qL, qL} 6∈ usp(2, 2)× usp(4) . (3.17)

The next step is to write the combination of λ’s and q’s appearing in the BRST transfor-
mation (3.4) in the new notation(
λ+q−+λ−q++λ̄+q̄−+λ̄−q̄+

)
= λ̃q̃+˜̄λ˜̄q= 1

2i
(
λ̃+˜̄λ

)
qR+ 1

2
(
λ̃− ˜̄λ

)
qL≡

1
2λR qR+ 1

2λL qL .
(3.18)

Thus the pure spinor constraints become

{λR qR, λR qR} = 0 , {λL qL, λL qL} = 0 , (3.19)

or equivalently[(
λ̃q̃
)
,
(
λ̃˜̄q
)]

+
[(˜̄λq̃

)
,
(˜̄λ˜̄q

)]
= 0 ,

[(
λ̃q̃
)
,
(˜̄λ˜̄q

)]
+
[(˜̄λq̃

)
,
(
λ̃˜̄q
)]

= 0 . (3.20)

Evaluating the commutators, the constraints become in components

λ̂I
Î
λ̂ÎJ + εIKεJLλ̂

L
Î
λ̂ÎK = 1

2δ
I
J

(
λ̂K
Î
λ̂ÎK

)
,

εÎ Ĵ λ̂I
Î
λ̂J
Ĵ

+ εIKεJLεÎ Ĵ λ̂
Î
K λ̂

Ĵ
L = 1

4ε
IJ
(
εK̂L̂ε

KLλ̂K̂K λ̂
L̂
L + εK̂L̂εKLλ̂

K
K̂
λ̂L
L̂

)
,

(3.21)

and similarly for I ↔ Î. In the expression above, we have used the definitions

λ̂īα = −λīα , λ̂α̇i = −λα̇i , and λ̂I
Ĵ

= λI
Ĵ
, λ̂ÎJ = λÎJ otherwise. (3.22)

Note that the pure spinor constraints above are given in SO(8) notation in (2.10).
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In the next section, we will define and compute the half-BPS vertex operators in
two different pictures. The procedure for moving between pictures was defined in [11,
42] and involves BRST transformations. In flat space, the BRST transformation of the
variables is simpler and one can change the picture analytically [30, 31]. In AdS, the
calculation is complicated by the fact that the λ’s are not BRST invariant, see (3.8), and
the transformations of the remaining worldsheet variables have many terms. The full set
of BRST transformations solving (3.4) are given in the appendix B. Thus in this work, all
the AdS calculations were performed using a computer. Our strategy was to replace every
λa− by the other λ’s by using (2.13) and then using the additional constraints

λ̄+λ̄+ + λ̄−λ̄− = 0 , λ̄+λ̄− = 0 . (3.23)

The remaining simplifications using the pure spinor constraints where done numerically.
The solution of the pure spinor constraints using an U(5) notation is well known and
it can be found in many places in the literature, see [33] for example. In particular, the
solution is parametrized by eleven numbers which is the number of independent components
of a pure spinor in ten dimensions. It is not difficult to map numerical solutions in U(5)
notation to solutions of the constraints in SO(8) or SO(6) notation given in (2.10) and (3.21)
respectively.

The pure spinor action in AdS5 × S5 is known and it is written in terms of currents
constructed from the coset g. The action will not be needed in this work and we refer the
reader to the literature for its expression. However, the action will be important for the
computation of amplitudes because we will need to know the OPE’s of various worldsheet
fields. In this work, only the BRST transformations are needed and the knowledge that
physical states are states in the cohomology of the BRST operator with ghost number two.

We have chosen to work with the coset parametrization (3.2) where the worldsheet
coordinates are gauge invariant. As mentioned before, in this case the λ’s are not BRST
invariant and transform under restoring gauge transformations. Alternatively, it is possible
to use different cosets and define gauge invariant λ’s. In the appendix B, we give an example
of such a coset. The main disadvantage of such cosets is that the pure spinor constraints are
more involved and working with them even numerically is quite complicated. Nevertheless,
we believe that the easiest way of obtaining the vertex operators for any alternative cosets is
to generate a basis of invariants and solving the condition of BRST closeness by numerically
fitting for the coefficients of the basis. It is also possible to write a second basis and verify
that the obtained vertex is not BRST exact.

4 The half-BPS vertex operators

In this section, we are going to compute the vertex operator for any half-BPS state in the
zero picture. This is the main result of the paper. As mentioned in the Introduction, it is
known that these vertex operators can be described by just one superfield [23]. However,
the explicit expression for this superfield was not known. Our strategy for the calculation
was to start with the vertices in the minus eight picture derived in [11, 42] and change the
picture step by step until we reach the zero picture vertices. In this section, we are going to
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redefine the θ’s in order to absorb some of the exponential factors and have more compact
expressions, we will use

θ̃± ≡ e±
w−z

2 θ± ,
˜̄θ± ≡ e±

w+z
2 θ̄± , (4.1)

where
θa+ =

(
θiα, θ

α̇
ī

)
, θa− =

(
θīα̇, θ

α
i

)
, θ̄ȧ+ =

(
θiα̇, θ

α
ī

)
, θ̄ȧ− =

(
θīα, θ

α̇
i

)
. (4.2)

The BRST transformations of the θ̃’s are easily deduced

Q
(
θ̃±
)

= e±
w−z

2 Q (θ±)± 1
2Q (w − z) θ̃± , Q

( ˜̄θ±
)

= e±
w+z

2 Q
(
θ̄±
)
± 1

2Q(w + z)˜̄θ± .
(4.3)

Notice that the θ̃ are chargerless under ∆ and J , see the appendix A for our conventions.
In what follows, we are going to suppress the tilde from the θ’s to avoid cluttering and we
hope that this does not cause any confusion.

Let’s start by reviewing the properties of half-BPS operators. It is well known that
the AdS5×S5 superstring theory is dual to N = 4 Super-Yang-Mills (SYM). All the single
trace gauge invariant half-BPS operators in SYM have been classified and they take the
following form

OL (x, y) = Tr
((
ȳ · Φ̂

)L)
(x̃) , (4.4)

where the trace is over the gauge group indices, ȳ is a null six dimensional vector ȳ ·
ȳ = 0 called the polarization vector, L is the length of the operator, x̃ is its spacetime
position (the relation between the variables x̃µ and the variables xαα̇ appearing in the coset
parametrization (3.2) will be discussed in the next section) and finally Φ̂’s are the six real
scalars of the theory. We are going to consider these operators at the spacetime position
x̃µ = 0 and select a specific polarization vector such as the operator has charge L under
the U(1) generator J . One possible choice of polarization is

ȳ = {1, i, 0, 0, 0, 0} . (4.5)

Starting with an operator with this properties, it is possible to get more general ones by
applying spacetime translations and SO(6) rotations. This specific set of operators have
∆ = J = L. Being a half-BPS operator, it is annihilated by twenty four supercharges.
The operators are superconformal primaries and thus any susy generator that lower its
dimension has to annihilated it. The operators are also SO(6) highest weight operators so
any susy generator that raises its J charge must annihilate it. The conclusion is that all
the susy’s generators with J − ∆ ≥ 0 annihilate it. The charge of all the generators can
be found in the appendix A. The conclusion is that the supermultiplet that our half-BPS
operators belong only depends on θa+ defined in (4.2). In what follows, we will look for
vertex operators with the same properties. In the minus eight picture they are given by

V−8 (n) =
(
λ̄+λ̄+

)
en(z+w) ∏

α̇,̄i=1,2
θα̇ī

∏
α,i=1,2

θiα
∏

α̇,̄i=1,2
δ
(
λα̇ī

) ∏
α,i=1,2

δ
(
λiα

)
, (4.6)
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where n is equal to −L and that comes from how the vertex operators transform under
PSU(2, 2|4). The prefactor is(

λ̄+λ̄+
)

= λαī λ
β
j̄
εαβε

īj̄ − λiα̇λ
j

β̇
εijε

α̇β̇ . (4.7)

Notice that using the more usual scalar prefactor (λLλR) where both λL and λR were
defined in (3.18) is equivalent. The term (λLλR) depends on all the λ’s but the dependency
in λ+ and λ− are killed by the delta functions in V−8 and the dependency in λ̄− can be
eliminated due to the first pure spinor constraint given in (3.23). It is possible to show
that all V−8(n) are annihilated by the same set of generators that annihilate the dual
operators. This follows because of their SO(4) × SO(4) invariance, i.e. it is possible to
write V−8(n) with all the indices α, α̇, i, ī contracted with ε’s tensors. Alternatively, one can
show this explicitly by computing the global PSU(2, 2|4) transformations of the wordsheet
variables. Recall that under a global PSU(2, 2|4) transformation with an element gp the
coset representative g of (3.2) transforms as

gp g(z, w, θ, x, y) = g
(
z′, w′, θ′, x′, y′

)
h , (4.8)

where the variables with primes are transformed variables and h is a gauge transformation.
For the case of an infinitesimal transformation with parameter εA the formula above takes
the form (TA are generators of the supergroup and XM are the collection of all worldsheet
variables with X ′M = XM + δXM )(

1 + εATA
)
g (X) =

(
g (X) + δXM ∂g (X)

∂XM

)
(1 + δh) , (4.9)

equivalently

g (X)−1
(
εATA

)
g (X) = δXM êAMTA + δh , with êAMTA = g (X)−1 ∂g (X)

∂XM
. (4.10)

Notice that for a general PSU(2, 2|4) transformation there is a compensating gauge trans-
formation (the factor δh above) and the pure spinor variables rotate accordingly. This is
similar to the BRST transformations of the pure spinors given in (3.8). By computing
the transformations of the worldsheet variables using (4.10) for different generators, it is
possible to show that our vertex operators V−8(n) given in (4.6) are annihilated by all
susy generators with J −∆ ≥ 0 and by both Kα̇

α and Ki
ī
. In fact, the combination z + w

appearing in the exponential has the only nontrivial transformations

δz + δw = −εiαθαi + εα̇ī θ
ī
α̇ − yīiεiī + xαα̇ε

α̇
α . (4.11)

Note that the parameters εiα and εα̇
ī
are associated with the supersymmetry generators

qa− which all have J − ∆ = −1 and both εi
ī
and εα̇α are associated with the translation

generators P īi and Pαα̇ . Moreover, not considering transformations generated by the P ’s
and qa−, we have

δθiα = −1
2θ

i
α

(
εjα̇θ

α̇
j − ε

β
ī
θīβ

)
− εiα̇θjαθα̇j + εβ

ī
θiβθ

ī
α ,

δθα̇ī = 1
2θ

α̇
ī

(
εαj̄ θ

j̄
α − εiβ̇θ

β̇
i

)
− εi

β̇
θβ̇
ī
θα̇i − εαī θ

j̄
αθ

α̇
j̄ .

(4.12)
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Despite the fact that θiα and θα̇
ī
have nontrivial transformations, the combination of eight

thetas appearing in the vertex V−8(n) is invariant due to cancellations. Finally, again
setting εiα, εα̇ī , ε

i
ī
, εα̇α → 0, the compensating gauge transformation δh is given in terms of

the following rotation parameters (up to factors involving traces), see (3.3),

Σ′βα = −εβ
ī
θīα , Σ′β̇α̇ = −εiα̇θ

β̇
i , Σ′ji = −εjα̇θα̇i , Σ′j̄

ī
= −εαī θ

j̄
α , Σ′α̇α = 0 , Σ′iī = 0 .

(4.13)
It is easy to show that the prefactor (λ̄+λ̄+) and the product of eight deltas are invariant
under the above gauge transformations. These arguments prove that V−8(n) are annihilated
by both twenty four supersymmetries and the K’s as required.

To show that the vertices V−8(n) are BRST invariant one uses the explicit transfor-
mations given in the appendix B. First, all the terms in δz + δw contains a θa+. Second,
all the terms in the sigmas Σα̇

α and Σi
ī
of (3.4) contain also at least one θa+. The remain-

ing Σ’s are related with transformations generated by the M̂ ’s and these transformations
annihilated the vertex because both the prefactor (λ̄+λ̄+) and the product of eight delta
functions are SO(4)× SO(4) invariant. Finally, δθa+ has the term λa+ which is killed by the
delta functions and the remaining terms cancel between the transformations of the eight
thetas. Alternatively, one can think that the arguments of the delta functions are Q · λa+
as was done in (2.31), so the invariance of the vertex operators under the BRST transfor-
mations of the θa+ is manifest. Then expanding the delta functions, all terms proportional
to derivatives contain at least one θa+ and are killed, thus we return to the expression for
V−8(n) in (4.6). During our computation we have checked that all the V−n′(n) are BRST
invariant for any n′ between zero and eight. This is expected since the BRST operator is
nilpotent. In the subsection below, we also argue that the picture raising procedure is well
defined in AdS5 × S5.

The picture zero vertex operators V0(n) that are obtained by the picture raising pro-
cedure starting with the picture minus eight vertices V−8(n) are

e−n(z+w)V0(n) = V 0
0 + V 2

0 + V 4
0 + V 6

0 + V 8
0 , (4.14)

and in the notation above the superscript indicates the number of thetas. We have

V 0
0 =

(
λ̄+λ̄+

)
, (4.15)

where (λ̄+λ̄+) was defined in (4.7). We will also need the definitions

λ̄2
+1 ≡ λαī λ

β
j̄
εīj̄εαβ , λ̄2

+2 ≡ λiα̇λ
j

β̇
εα̇β̇εij ,

λ̄2
−1 ≡ λīαλ

j̄
β ε̄ij̄ε

αβ , λ̄2
−2 ≡ λα̇i λ

β̇
j εα̇β̇ε

ij .
(4.16)

Note that the terms above are not all independent due to the pure spinor cointraints

λ̄2
+1 − λ̄2

+2 + λ̄2
−1 − λ̄2

−2 = 0 . (4.17)

The term V 2
0 is given by

V 2
0 =−(1+n)

(
λαī λ

ī
γθ
i
αθ

j
βεijε

βγ+λiα̇λ
β̇
i θ

α̇
ī θ

γ̇
j̄
εγ̇β̇ε

īj̄
)

−(1−n)
(
λαī λ

j̄
αθ

α̇
k̄
θβ̇
j̄
εα̇β̇ε

īk̄+λiα̇λα̇j θ
j
βθ

k
γε
βγεik

)
+2n

(
λαī λ

α̇
j θ

β̇
j̄
θjαε

īj̄εβ̇α̇−λ
i
α̇λ

ī
αθ

α̇
ī θ

j
βεijε

βα
)
.

(4.18)
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Moreover,
V 4

0 = V 4
0,1 + V 4

0,2 , (4.19)

with
V 4

0,1 =
(
2 + n2

) (
λ̄2

+1 − λ̄2
−2

) (
θ1

1θ
1
2θ

2
1θ

2
2 + θ1̇

1̄θ
1̇
2̄θ

2̇
1̄θ

2̇
2̄

)
+ 3n (λ̄2

+1 + λ̄2
−2)θ1

1θ
1
2θ

2
1θ

2
2 + 3n (λ̄2

+2 + λ̄2
−1)θ1̇

1̄θ
1̇
2̄θ

2̇
1̄θ

2̇
2̄ ,

(4.20)

and

V 4
0,2 =

(
1− 3

2n−
1
2n

2
)(

λαī λ
β
j̄
θiαθ

j
βθ

α̇
k̄
θβ̇
l̄
εīk̄εj̄ l̄εijεα̇β̇ − λ

i
α̇λ

j

β̇
θkαθ

p
βθ

α̇
ī θ

β̇
j̄
εikεjpε

īj̄εαβ
)

+
(
−2

3 + 2n+ 2
3n

2
)(

λiα̇λ
α
ī θ

α̇
j̄ θ

j
βθ

k
αθ

l
γεijε

īj̄εβγεkl + λiα̇λ
α
ī θ

j
αθ

α̇
k̄
θβ̇
j̄
θγ̇
l̄
εijε

īj̄εk̄l̄εβ̇γ̇

)
+
(

1 + 3
2n−

1
2n

2
)(

λα̇i λ
β̇
j θ

i
αθ

j
βθ

γ̇
ī
θδ̇j̄ ε

īj̄εαβεα̇γ̇εβ̇δ̇ − λ
ī
αλ

j̄
βθ

i
γθ
j
δθ
α̇
ī θ

β̇
j̄
εαγεβδεijεα̇β̇

)
+
(2

3 + 2n− 2
3n

2
)(

λα̇i λ
ī
αθ

β̇
ī
θiγθ

j
βθ

k
δ εα̇β̇ε

αβεγδεjk − λα̇i λīαθiβθ
β̇
j̄
θγ̇
ī
θδ̇
k̄
εβαεα̇β̇εγ̇δ̇ε

j̄k̄
)
.

(4.21)
In addition, the term with six θ+’s is

V 6
0 =

(
−8+19n+2n2−n3

)(
λiα̇λ

β̇
i θ

α̇
ī θ

γ̇
j̄
εīj̄εβ̇γ̇θ

1
1θ

1
2θ

2
1θ

2
2−λαī λ

ī
βθ

i
αθ

j
γεijε

βγθ1̇
1̄θ

1̇
2̄θ

2̇
1̄θ

2̇
2̄

)
+
(
8+19n−2n2−n3

)(
λiα̇λ

α̇
j θ

j
αθ

k
βε
αβεikθ

1̇
1̄θ

1̇
2̄θ

2̇
1̄θ

2̇
2̄−λ

α
j̄ λ

ī
αθ

α̇
ī θ

β̇

k̄
εj̄k̄εα̇β̇θ

1
1θ

1
2θ

2
1θ

2
2

)
+
(38

9 n−
2
9n

3
)(

λαī λ
α̇
i θ

i
βθ

j
αθ

k
γθ
β̇

k̄
θγ̇
j̄
θδ̇
l̄
εīj̄εα̇β̇εjkε

βγεk̄l̄εγ̇δ̇−λ
i
α̇λ

ī
αθ

j
γθ
k
βθ

l
δθ
α̇
j̄ θ

β̇
ī
θγ̇
k̄
εijε

αβεγδεklεβ̇γ̇ε
j̄k̄
)
.

(4.22)
Finally,

V 8
0 =

(
λ̄+λ̄+

)
θ8

+

(
72− 37n2 + n4

)
, (4.23)

where we have used the definition

θ8
+ = θ1

1θ
1
2θ

2
1θ

2
2θ

1̇
1̄θ

1̇
2̄θ

2̇
1̄θ

2̇
2̄ . (4.24)

The vertex operators (4.14) are the main results of this paper. Notice that they are in
the gauge where only the component Aȧḃ of the gauge superfield (1.2) is nonzero. However,
it is possible to write the vertices in the more usual form (1.2) by adding to it BRST trivial
terms and making appropriated USp(2, 2) × USp(4) gauge transformations. This will be
explained below. These vertices correspond to particular dual operator as explained in
the beginning of the section. However, it is possible to translate the vertices to different
spacetime positions and arbitrary R-charge orientations. This can be done by computing
the finite PSU(2, 2|4) transformations of the worldsheet variables by solving (4.8). Notice
that for computing amplitudes and getting non-trivial results, it will be important to have
vertices with different R-charge orientations. It is also possible to get the other states of the
supermultiplet by applying supersymmetry transformations. The result of this procedure is
equivalent to write the vertex in terms of the chiral superfield Φ described in the section 2.
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4.1 Arguing that the AdS picture raising procedure is well defined

In this subsection, we are going to argue that the procedure of changing pictures used
above is justified in AdS5 × S5. In other words that all the denominators are canceled at
every step and globally defined states are mapped into globally defined states. In AdS, the
pure spinors are not BRST invariant and the same is true for the delta functions. In our
conventions

Q · δ(n)(λ) = (Q · λ) δ(n+1)(λ) , (4.25)

where the superscripts denote the number of derivatives. Thus a vertex operator Ṽ−n in a
picture −n has the following expansion

Ṽ−n = A0 δ
(
λi
)

+A1 δ
(1)
(
λi
)

+A2 δ
(2)
(
λi
)

+ . . . , (4.26)

where we have selected a particular pure spinor component λi. Note that if n 6= 1, the
other delta functions are inside the Ai’s. Since the vertex operator Ṽ−n for a particular
state has a definite grading all the Ai’s have necessarily the same grading a (the delta
functions and their derivatives are fermionic). By construction the vertex is BRST closed.
Using the notation (one can check that terms with (λa+)2 are only generated by the BRST
transformations Q · λ for λa+ and if one replaces λa− by (2.13), see the explicit formulas in
the appendix B)

Q ·Aj = X0
j + λiX1

j +
(
λi
)2
X2
j , Q · λi = Z0 + λiZ1 +

(
λi
)2
Z2. (4.27)

The condition Q · Ṽ−n = 0 implies by reading the coefficients of both the delta function
and its derivatives that

0 = X0
0 −X1

1 + 2X2
2 − (−1)a (A0Z1 − 2A1Z2) ,

0 = X0
1 − 2X1

2 + 6X2
3 + (−1)a (A0Z0 − 2A1Z1 + 6A2Z2) ,

. . .

0 = X0
i−1 − iX1

i + i (i+ 1)X2
i+1 + (−1)a (Ai−2Z0 − iAi−1Zi + i (i+ 1)AiZ2) .

(4.28)

To derive the formulas above, we have used that

λi δ(n)
(
λi
)

= −n δ(n−1)
(
λi
)
, and

(
λi
)2

δ(n)
(
λi
)

= n (n+ 1) δ(n−2)
(
λi
)
. (4.29)

and these formula will be justified below. Now using

ξ(i) · δ(n)(λi) =
(
d

dλi

)n 1
λi
, (4.30)

we have
ξ(i) · Ṽ−n = (−1)aA0

1
λi

+ (−1)aA1
−1

(λi)2 + (−1)aA2
2

(λi)3 + . . . . (4.31)

It is not difficult to see that the conditions (4.28) imply

Ṽ−(n−1) = Q · ξ(i) · Ṽ−n = (−1)aX1
0 − (−1)aX2

1 −A0Z2 + (−1)aλiX2
0 . (4.32)
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The conclusion is that all terms with the pure spinor λi in the denominator have cancelled.
This is necessary for the picture raising procedure to be well defined in AdS. In addition
the term λiX2

0 necessarily have a derivative of delta inside it.
Let us work out an example to see this cancellation in practice. Suppose we have

the following minus two picture vertex operator (Ã can in principle depends on all the
worldsheet variables)

V−2 = Ã0 δ
(
λ2
)
δ
(
λ1
)

+ Ã1 δ
(3)
(
λ2
)
δ(1)

(
λ1
)

+ Ã2 δ
(1)
(
λ2
)
δ(2)

(
λ1
)

= A0 δ
(
λ1
)

+A1 δ
(1)
(
λ1
)

+A2 δ
(2)(λ1) .

(4.33)

By construction the vertex is BRST invariant and this implies (We are going to suppose
that V−2 is bosonic and accordingly all the Ai’s are fermionic)

Q·V−2 = 0 = (Q·A0) δ
(
λ1
)
−A0

(
Q·δ

(
λ1
))

+(Q·A1) δ(1)
(
λ1
)
−A1

(
Q·δ(1)

(
λ1
))

+(Q·A2) δ(2)
(
λ1
)
−A2

(
Q·δ(2)

(
λ1
))

.

(4.34)
Now using both (4.27) with i = 1 and (4.25), we have that the formula above is equal to

0 =
(
λ1X1

0 +X0
0 +

(
λ1
)2
X2

0

)
δ
(
λ1
)
−A0

(
Z0 + λ1Z1 +

(
λ1
)2
Z2

)
δ(1)

(
λ1
)

+
(
X0

1 + λ1X1
1 +

(
λ1
)2
X2

1

)
δ(1)

(
λ1
)
−A1

(
Z0 + λ1Z1 +

(
λ1
)2
Z2

)
δ(2)

(
λ1
)

+
(
X0

2 + λ1X1
2 +

(
λ1
)2
X2

2

)
δ(2)

(
λ1
)
−A2

(
Z0 + λ1Z1 +

(
λ1
)2
Z2

)
δ(3)

(
λ1
)
.

(4.35)
Finally, by using (4.29) and collecting the terms proportional to each δ(i)(λ1), we arrive at
the following conditions (to be compared with (4.28))

0 = X0
0 −X1

1 + 2X2
2 +A0Z1 − 2A1Z2 ,

0 = X0
1 − 2X1

2 −A0Z0 + 2A1Z1 − 6A2Z2 ,

0 = X0
2 −A1Z0 + 3A2Z1 ,

0 = A2Z0 .

(4.36)

The next step is to apply a picture raising operator in the vertex V−2 of (4.33). We have

V−1 = Q · ξ1 · V−2 = −Q ·
(
A0

1
λ1 +A1

−1
(λ1)2 +A2

2
(λ1)3

)
= −(Q ·A0) 1

λ1 +A0

(
Q · 1

λ1

)
+ (Q ·A1) 1

(λ1)2 −A1

(
Q · 1

(λ1)2

)
− 2(Q ·A2) 1

(λ1)3 + 2A2

(
Q · 1

(λ1)3

)
= −X1

0 +X2
1 −A0Z2 − λ1X2

0 .

(4.37)

where we have used (4.27), (4.36) and(
Q · 1

(λ1)i

)
= −i 1

(λ1)i+1 (Q · λ1) . (4.38)
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We see from (4.37) that only (4.32) survives as claimed. Since we have replaced all λ−
by (2.13) (we are working with delta functions), one question is if all the 1/(λ̄+λ̄+) disap-
pears. For our coset, we have checked in a massive number of cases that this denominator
either cancels or it recombined back when derivatives of deltas are presented. So the vertex
in any picture does not have any pure spinor in the denominator. For our case, we believe
that this can be proved because the λ− only appears in the rotation of the pure spinors
and in a particular combination in Q ·θ+. However, the proof of this cancellation in general
deserves further investigation.

We will now explain the formulas (4.29) and (4.30). There are three ways of deducing
them. The first way uses the theory of distribution where we view δ(λa+) and ξ(a) = Θ(w+

a )
(Heaviside step function) as being integrated against test functions f(λa+) and f̃(w+

a ), which
are related by Fourier transform

f(λa+) =
∫
dw+

a e
iw+

(a)λ
a
+ · f̃(w+

a ) , δ(λa+) =
∫
dw+

a

2π e
iw+

(a)λ
a
+ · 1 . (4.39)

Thus

ξ(a) · δ(n)(λa+) =
(

d

dλa+

)n ∫
dw+

a

2π Θ(w+
a ) eiw

+
(a)λ

a
+ =

(
d

dλa+

)n 1
λa+

, (4.40)

where we have performed the contour integral on w+
a from 0 to i∞ along the imaginary

line. Now, to obtain rules for the multiplication between δ(n)(λa+) and λa+ we view this
product as a new distribution being integrated against a test function f(λa+):

∫
dλa+

(
λa+ · δ(n)(λa+)

)
f(λa+) =

∫
dλa+δ

(n−1)(λa+)
(

d

dλa+

)(
−λa+f(λa+)

)
= (4.41)

=
∫
dλa+δ(λa+)

(
d

dλa+

)n (
(−1)nλa+f(λa+)

)
=
∫
dλa+δ(λa+)

(
d

dλa+

)n−1 (
(−1)nnf(λa+)

)
=
∫
dλa+

(
−nδ(n−1)(λa+)

)
f(λa+) ,

where we have used integration by parts, the commutator [ d
dλa+

, λa+] = 1 and δ(λa+)λa+ = 0.
The second way uses the formal expressions for ξ(a) appearing in [30]

ξ(a) =
∫ 1
τ
e
−τ ∂

∂λa+ dτ (4.42)

and the Fourier transform of δ(λa+) such that

ξ(a) · δ(n)(λa+) =
(

d

dλa+

)n ∫
dτ

∫
dw

2π
1
τ
eiw(λa+−τ) =

(
d

dλa+

)n 1
λa+

, (4.43)

and

λa+ · δ(n)(λa+) =
∫
dw

2π (iw)nλa+eiwλ
a
+ =

∫
dw

2π (iw)n
(
d eiwλ

a
+

idw

)
= −n δ(n−1)(λa+) . (4.44)
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The third way makes use of the bosonized formulas given in (2.14) and written again
below for the reader convenience

λa+
∼= η(a)eφ

(a)
, w+

a
∼= −e−φ

(a)
∂ξ(a) , δ(λa+) ∼= −e−φ

(a)
. (4.45)

The nontrivial OPE’s of the fields are

φ(a)(z)φ(a)(0) ∼ − log(z) , η(a)(z)ξ(a)(0) ∼ 1
z
, ξ(a)(z)η(a)(0) ∼ 1

z
. (4.46)

and using the above expressions, we have for example (omitting the indices (a) and the +)∮
w(z)λ(0) = 1 , (4.47)

or more generally ∮
w(z)f(λ(0)) = f ′(λ(0)) . (4.48)

Using the rule above it is not difficult to see that

δ(1)(λ) ∼=
∮

: ∂ξe−φ(z) :: −e−φ(0) := −∂ξe−2φ(0) , (4.49)

and the n-th derivative case is

δ(n)(λ) ∼= f(n)
n∏
i=1

∂iξ

(i− 1)!e
−(n+1)φ(0) , (4.50)

where f(n) is a sign alternating function ±1 for every two terms.7 From the expression
above, one can easily derive (4.29):

λ · δ(n)(λ) = lim
z→0

: ηeφ(z) :: f(n)
n∏
i=1

∂iξ

(i− 1)!e
−(n+1)φ(0) := −n δ(n−1)(λ) . (4.51)

Moreover, we have

ξ · δ(n)(λ) = f(n) ξ
n∏
i=1

∂iξ

(i− 1)!e
−(n+1)φ(0) . (4.52)

The final step consists in rewriting the expression above in terms of the λ’s. The easiest
way of doing this is by acting on (4.52) with n+1 λ’s successively. For just one λ, we have,
for example

λ · ξ · δ(n)(λ)
∣∣∣
n 6=0

= lim
z→0

: ηeφ(z) :: f(n) ξ
n∏
i=1

∂iξ

(i− 1)!e
−(n+1)φ(0) :

= −n f(n)(−1)(n+1) ξ
n−1∏
i=1

∂iξ

(i− 1)!e
−nφ(0) .

(4.53)

Proceeding in this way, one eventually concludes that

ξ · δ(n)(λ) =
(

d

dλa+

)n 1
λa+

. (4.54)

7One example being f(n) = −
√

2 sin
( (2n+1)π

4

)
.
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Note that there are various deltas involved in our computation and we always have consid-
ered them as fermions. In the bosonized language we need to work with cocycles to ensure
that the deltas are fermions, see [43] for example.

We end this section by commenting on the fact that our vertices (4.14) are in the
gauge where only the component Aȧḃ of the superfield appearing in (1.2) is nonzero. We
proved in the Introduction that this gauge can be reached in a flat background by starting
with (1.2) and by adding BRST trivial quantities. Certainly, a similar proof can be given
in AdS but there are many new details due to the BRST transformations of the λ’s and
complicated covariant derivatives. We are not going to try to write this proof here but
only argue why the existence of this gauge is justified. Yet a second argument will be
given in the last subsection of this section. Notice that only a few terms survive in (4.32),
in particular, this implies that if the vertex operator V−8 is in this gauge then the term
with no derivatives of the delta functions in all the vertices V−n are going to have only
λ̄’s. This follows because for our variables the covariant derivatives, see appendix B,
which contains USp(2, 2)×USp(4) gauge transformations that mix λ̄ȧ with λa are the ones
in (B.15). These covariant derivatives appear in the BRST operator always multiplied by
a λ̄ȧ and this implies that the number of λ̄ is conserved after canceling a possible λ+ in
the denominator.

4.2 The dilaton vertex operator

One important test of our vertex operators (4.14) is that for n = 0 it reduces to the known
dilaton vertex operator of [22]. The dilaton vertex operator is manifestly PSU(2, 2|4)
invariant and it is given by

Vdilaton = ηαα̂λ
α
Lλ

α̂
R , (4.55)

where ηαα̂ is the background value of the component Bαα̂ of the B field. Its value is
numerically given by ηαα̂ =

(
γ01234)

αα̂. In [22], it was argued that this state is physical in
AdS despite the fact of being trivial in a flat background (ηαα̂λαLλ

α̂
R = Q|flat · ηαα̂θ

α
Lλ

α̂
R). A

direct proof that (4.55) is not BRST exact is complicated. The easiest way to argue this is
by verifying that the integrated form of this vertex operator is the Lagrangian so it must
be in the cohomology.

For n = 0, our vertex operators (4.14) still have a very nontrivial dependency on the
θ’s. However, we can add to it the following BRST exact quantity

V ′n=0 = Vn=0 +Q · (λa+θa+) + 1
12 Q ·

(
λαi θ

i
βθ

j
αθ

k
γε
βγεjk − λīα̇θα̇j̄ θ

β̇
ī
θγ̇
k̄
εj̄k̄εβ̇γ̇

)
, (4.56)

and we have
V ′n=0 =

(
λ̄+λ̄+

)
+ (λ+λ+) , (4.57)

with
(λ+λ+) = λiαλ

j
βε
αβεij − λα̇ī λ

β̇
j̄
εα̇β̇ε

īj̄ , (4.58)

and (λ̄+λ̄+) was defined in (4.7). Note that all the dependency on the θ’s have disappeared
and we have recovered the dilaton vertex operator of (4.55) in our notation. It is possible
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to write (4.57) more symmetrically including the dependency on the λa− and λ̄ȧ− by using
the pure spinor constraints (2.10).

Using the same reasoning, it is possible to remove all the θ’s dependency of the term
with n0 of our vertices by adding the exponential factors to (4.56) and we are left with

V ′2(n) = V ′n=0e
n(z+w) + terms with ni and i > 0 . (4.59)

Since V ′n=0 is a state in the cohomology, it is possible to argue that V ′2(n) is also in the
cohomology. This is one way of seeing that our vertex operators are not BRST exact.
First, let us focus in the term of order n0 and consider n generic. The only possibility for
removing this term is by adding to the vertices the following schematically trivial quantity
Q · (λθen(z+w) + . . .). We known that for n = 0 the vertex is not exact, but when the Q acts
on the exponential it drops a factor of n and it does not help with possible cancellations.
In addition, adding terms with factors of n in the denominator does not help as well (the
possible remaining terms with n in the denominator have to be also exact by themselves)
because such terms could also be constructed in the case n = 0 by multiplying any such
term by z + w (any remaining terms with z + w have to be exact by themselves as well,
because no BRST transformation produce a z + w, see appendix B). It is also possible to
see that the vertices are not trivial by starting with their original expressions (4.14). The
only way to cancel V 0

0 = (λ̄+λ̄+)en(z+w) is by adding minus the term Q · ((λ̄+θ̄+)en(z+w))
to the vertices. Many terms will survive after this cancellation, in particular, a term
B ∝ (λ̄+θ̄+)(λ−θ+). This term has multiple origins, one is when Q acts on en(z+w) and
as a consequence its numerical prefactor is linear in n. There are other independent terms
with a θ̄+ and a θ+ as well. It is not difficult to see that there no C with three θ’s such
that Q · C will remove it. Yet another way to see that the vertices are not BRST exact
is by analysing the flat space limit and verifying that the vertices reduce correctly to the
flat space ones which we know are not BRST trivial. This limit, interesting by its own, is
considered below.

4.3 The flat space limit

Another important test of our vertex operators (4.14) is that they reduce correctly in the
flat space limit. This limit corresponds to take the radius of AdS5 × S5 very large such
that the superspace approach to the type IIB flat superspace [44]. Here we perform this
limit by splitting the PSU(2, 2|4) generators into three groups that we will call rotations
(M), translations (P ) and supercharges (q):

M =
{
M̂α
β , M̂

α̇
β̇
,
(
Pαα̇ + εα̇β̇ε

αβK β̇
β

)
, M̂ i

j , M̂
ī
j̄ ,
(
P īi + εijε

īj̄Kj
j̄

)}
,

P =
{
K β̇
β ,K

j
j̄
,∆, J

}
, q =

{
qαī , q

i
α̇, q

ī
α, q

α̇
i , q

i
α, q

α̇
ī , q

ī
α̇, q

α
i

}
.

(4.60)

Note that this procedure gauge fix the USp(2, 2)×USp(4) gauge symmetry by picking what
are the generators of SU(2, 2)×SU(4) that will be interpreted as generators of translations.
It could have been any linear combination of the bosonic generators that is linearly inde-
pendent from the generators in M . The commutation relations are schematically of the
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form
[M,M ] ∼M, [P, P ] ∼M + P, [M,P ] ∼ P +M,

[P, q] ∼ q, [M, q] ∼ q, [q, q] ∼ P +M .
(4.61)

In terms of these generators, the flat space limit is defined by the re-scaling

M →M, P → Λ−1P, q → Λ−
1
2 q . (4.62)

with Λ→ 0. Note that for Λ 6= 1 we lose PSU(2, 2|4) if we do not re-scale some of the struc-
ture constants as well. This will give us a continuously deformation from the PSU(2, 2|4)
algebra to the super-Poincaré algebra. Actually after taking this limit we obtain just a sub-
algebra of super-Poincaré, where the missing generators are actually outer automorphisms
of this subalgebra. Once we promote this outer automorphisms to generators, we get the
full Poincaré algebra. Notice that this limit is singular since we have inverse powers of Λ.
Physically this limit is given by looking at small distances in AdS5 × S5. It describes a
small neighborhood around the origin where the coset acts. Since we are rescaling all the
momenta, in order to get well defined expressions we rescale the worldsheet coordinates
as well

z → Λz , w → Λw , x→ Λx , y → Λy , θ → Λ
1
2 θ . (4.63)

The relevant AdS5×S5 BRST transformations, see the appendix B, have the following
form in the Λ→ 0 limit

Q (z + w) = λαi θ
i
α − λīα̇θα̇ī , Q

(
θa+
)

= λa+ , (4.64)

and the transformations above are the usual flat space ones of (2.21). To do the flat
space limit of our half-BPS vertex operators with charge n we also need to maintain the
combination n(z + w) appearing in the exponentials fixed, so n → Λ−1n. In addition,
to compare the flat space limit of our vertices with the vertex operators obtained in [30]
and revised in the section 2, it is also necessary to make the replacements n ↔ ik+ and
(z + w)↔ y.

Due to (4.63), the terms surviving the flat space limit will be the ones of the form
nkθ2k. Looking at the appendix C, we see that the terms with this structure preserve
SO(8) and there is just one term for every nk. This means that our AdS vertices have the
correct flat space limit. A further verification of this fact is that the vertex operators after
the limit are BRST closed considering the flat BRST transformations of (4.64). Note that
the n = 0 vertex operator becomes BRST exact in the flat space limit, see the discusion
in previous subsection. This is expected since the n = 0 vertex operator correspond to the
moduli of type IIB AdS5 × S5 background which is absent in the flat background.

Using the fact that the vertex operators must have the correct flat space limit, it is
possible to give an alternative argument for the existence of the gauge where only the
component Aȧḃ is nonzero for the picture zero vertex. Notice that all the terms of the form
nkθ2k can be put in this gauge because the λ’s do not scale with Λ only the coordinates,
see (4.63). In addition, again due to the flat space limit, it is not possible to have terms
of the type nkθk′ with k′ < 2k. However, it is possible to have terms with k′ > 2k.
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As mentioned before, the covariant derivatives that mix λ̄ȧ with λa appear in the BRST
operator always multiplied by a λ̄ȧ. The conclusion, due to the fact that the vertices are
BRST closed and only depends on θa+ by supersymmetry, is that this show recursively that
it is possible to put the full vertex in the gauge where only Aȧḃ is nonzero.

5 The AdS5 × S5 boundary

In this section, we are going to locate the AdS5 boundary in our coordinates appearing in
the supercoset (3.2). This is important because we would like to apply translations to our
vertex operators and find their expressions at different points. In order to do this we start
by setting all the fermionic coordinates to zero. The supercoset (3.2) reduces to

g′ = uv, with u ∈ SU(2, 2)
USp(2, 2) , v ∈ SU(4)

USp(4) . (5.1)

Note that u parametrizes the AdS5 space and v parametrizes the S5 space. Explicitly

u =
(
ex

α
α̇K

α̇
α ez∆

)
, v =

(
ey
ī
iK

i
ī ewJ

)
, (5.2)

and we have used that the SU(2, 2) generators commute with the SU(4) generators. The
generators that appear in the exponent are given in terms of matrices by (see (A.1))

[xα
β̇
K β̇
α ] =

(
0 0
xα
β̇

0

)
, [yījK

j
ī
] =

(
0 yīj
0 0

)
, (5.3)

which means that the exponentiation stops at first order in (xK) and (yK). The coset
elements (5.2) are given by

[uR̃R] =
(

e
z
2 δαβ 0
e
z
2xα

β̇
e−

z
2 δα̇
β̇

)
, [vJ̃I ] =

(
e
w
2 δij e

−w
2 yīj

0 e−
w
2 δī

j̄

)
. (5.4)

It is possible to construct an embedding of both AdS5 and S5 into R4,2 and R6 respectively
by using the coset elements above. We define

XRS = uR̃Ru
S̃
S(σ−1)R̃S̃ , YIJ = vĨIv

J̃
J (σ6)Ĩ J̃ , (5.5)

where the sigma matrix (σ6)Ĩ J̃ can be obtained from the one in (3.15) by using (3.13) and
the sigma matrix (σ−1)Ĩ J̃ is similar. The variables defined above satisfy

1
8ε

RSTUXRSXTU = 1
8ε

IJKLYIJYKL = −1 . (5.6)

which are the SU(2, 2) and SU(4) notation for the usual AdS5 and S5 equations with
embedding coordinates

−(X−1)2 − (X0)2 + (X1)2 + (X2)2 + (X3)2 + (X4)2 = −1 ,
(Y1)2 + (Y2)2 + (Y3)2 + (Y4)2 + (Y5)2 + (Y6)2 = 1 ,

(5.7)

– 26 –



J
H
E
P
0
7
(
2
0
2
1
)
2
1
0

where XRS = Xm(σm)RS and YIJ = Y m′(σm′)IJ . The XRS and YIJ of (5.5) have the
following representation in our conventions

[XRS ] =
(

ezεαβ ezεαβx
β

β̇

ezxγα̇εγβ −(ezx2+e−z)εα̇β̇

)
, [YIJ ] =

(
(ew+e−wy2)εij −e−wyk̄i εk̄j̄
−e−wyk̄j ε̄ik̄ −e−w ε̄ij̄

)
,

(5.8)
where x2 = −(1/2)εαβεα̇β̇xαα̇x

β

β̇
and y2 = −(1/2)εij ε̄ij̄yīiy

j̄
j .

Let’s focus in the AdS5 part, we will make further comments about the variables YIJ
and S5 in the next subsection. From the expression above, we can see that X12 > 0, which
means that our coordinate system covers only a patch of AdS5. Recall that the boundary
of AdS5 in global coordinates is the intersection of the embedding with the R4,2 infinity.
If we scale XRS → X̄RS = ΛXRS in order to keep the embedding coordinates finite as we
move towards the R4,2 infinity, the embedding equation becomes

εRSTU X̄RSX̄TU = 0 , (5.9)

since 1/Λ2 → 0. This means that the boundary can be defined by the equation above
under the scaling equivalence X̄RS

∼= ΛX̄RS . The result is the well known conformal
compactification of Minkowski space [45].

Since in our coordinates we have X̄12 6= 0 we can parametrize the boundary of our
patch by xαβ̇ = X̄αβ̇/X̄12. This means that in our coordinates the boundary lies at z =∞
where X12 → ∞. Recall that the points X12 = 0 are not covered and these points are
the horizon of our coordinate system. Notice that these points belong to the bulk of AdS5
in global coordinates. Another standard way of computing the AdS5 metric and locating
the boundary is by using the vielbeins êAM defined in (4.10). Setting all the fermionic
coordinates to zero, we have (ηAB is the flat metric)

ds2
AdS = ηAB ê

A
M êBN dx

MdxN = dz2 + e2zεαβε
α̇β̇dxαα̇ dx

β

β̇
, (5.10)

and once again we see that the boundary is at z →∞.
It is instructive to compare our coordinates with the usual Poincaré coordinates (z̃, x̃)

where (these coordinates are defined by using the coset ũ = (ex̃α̇αPαα̇ ez̃∆) instead of the coset
u given in (5.2)).

[X̃RS ] =
(

(ez̃ − e−z̃x̃2)εαβ −e−z̃x̃γ̇αεγ̇β̇
−e−z̃xγ̇βεα̇γ̇ −e−z̃εα̇β̇

)
, (5.11)

Note that these coordinates cover the region where X̃43 > 0 and the intersection of this
coordinates with the boundary can be parametrized by x̃αβ̇ = (X̃αβ̇/X̃34).

We can relate our coordinates (z, x) with the Poincaré coordinates (z̃, x̃), when both
X12 and X̃43 are non-zero. The relation is given by

x̃αβ̇ =
xαβ̇

(e−2z + x2) , e−z̃ = (e−z + ezx2) . (5.12)

and at the boundary z →∞ (z̃ → −∞) it becomes

x̃αβ̇ =
xαβ̇
x2 . (5.13)
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x̃µ = 0
<latexit sha1_base64="EkqGQvmOVG62LNUBVlNr0Oir4wo="></latexit>

xµ = 0
<latexit sha1_base64="SCs+fkUMtkYn5B8rZqqmVAjE2Xs="></latexit>

Boundary 

Euclidean AdS 

String State

Figure 1. Euclidean AdS5 as a unit ball: the boundary is S4 and our half-BPS state is coming
from the north pole x =∞ (x̃ = 0).

This means that at the boundary the origin of the Poincaré patch is a point at infinity of
our coordinates and vice-versa. This is indeed expected since the action of conformal boost
in xαβ̇ is simply a translation while in x̃αβ̇ is the sequence of an inversion, a translation
and an inversion again.

One last comment is that it is also possible to choose the coset û =
(ex̂

α̇
α(Pαα̇−εα̇β̇ε

αβKβ̇
β

)eẑ∆). In fact, this would be the most natural choice, since this com-
bination of generators with a relative plus sign is the one appearing in the isotropy group,
see (4.60). The coordinates x̂ are interesting as they cover AdS5 completely. Our choice
to work with the coset u of (5.2) instead of û is only technical. The calculations greatly
simplify if the generators appearing in the coset are the ones that annihilate the vertex
operators.

We have considered up to now the case of an AdS5 space with Lorentz signature. If
we perform a Wick rotation of the time coordinate X0 we obtain the Euclidean AdS5. The
points XE

12 = 0 does not belong to the Euclidean AdS5 anymore since (x2
E) ≥ 0 and

XE
12X

E
34 +

(
x2
E

)
= −1 . (5.14)

This happens because the Wick rotation maps the horizon of our coordinates to a single
point at the boundary, so our coordinates cover all the bulk of Euclidean AdS5 [46]. The
same is true for the Poincaré coordinates.

The boundary of Euclidean AdS5 have the topology of S4 where the Poincaré coor-
dinates and ours are complementary, as indicated in equation (5.13) and figure 1. Our
half-BPS vertex operators describe the state in which the string is coming from the point
x =∞ (x̃ = 0) at the boundary. This string state have n units of angular momenta along
the sixth direction of S5 and also n units of z momenta in AdS5.

5.1 The S5 parametrization and harmonic variables

In this subsection, we define the so called harmonic variables and we related them to our
variables. As mentioned in the Introduction, previously the supergravity vertex operators
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were only known close to the boundary and the harmonic superspace tecniques were used
in that construction. It will be nice two compare the two results in the region of common
validity and for this we will need to understand better the harmonic variables. The S5 in
this paper is viewed as the following coset

S5 =
(SO(6)

SO(5)

)
. (5.15)

The interpretation of this expression is that we can generate the whole S5 by acting with
SO(6) on a point called the origin. The points are vectors in a six dimensional Euclidean
space. The SO(5) is the subgroup that preserves the origin. We can take, for example, the
origin to be an unit vector in the sixth direction. In this case, the SO(5) subgroup that
preserve this unit vector are rotations generated by the ten generators (M12, . . . ,M45) of
SO(6). Thus, an arbitrary point of S5 can be obtained by acting on the origin with the
five remaining generators (M16, . . . ,M56), or any combinations of them that are linearly
independent from the chosen so(5) generators. In terms of spin groups, we have(SO(6)

SO(5)

)
∼=
( SU(4)

USp(4)

)
, (5.16)

where SO(6) unit vectors are described now by the variables YIJ = −YJI introduced
previosuly. In our conventions, the unit vector in the sixth direction corresponds to Y 0

12 =
Y 0

34 = 1 and Y 0
13 = Y 0

14 = Y 0
23 = Y 0

24 = 0, see (3.15). By breaking the SU(4) indices I, J into
I = (i, ī) and J = (j, j̄), we have compactly Y 0

ij = εij , Y 0
īj̄

= ε̄ij̄ and Y 0
ij̄

= 0. We can now
act with SU(4) elements uIJ in Y 0

IJ and obtain the other points, we have

YIJ = uiIu
j
Jεij + uīIu

j̄
Jεīj̄ . (5.17)

The USp(4) subgroup, i.e. the isotropy group in (5.16), constitute of the (ũiI , ũīI) variables
that satisfy

ũki ũ
l
jεkl + ũk̄i ũ

l̄
jεk̄l̄ = εij , ũkī ũ

l
j̄εkl + ũk̄ī ũ

l̄
j̄εk̄l̄ = ε̄ij̄ , ũki ũ

l
j̄εkl + ũk̄i ũ

l̄
j̄εk̄l̄ = 0 . (5.18)

The S5 can then be parametrized by the SU(4) elements uĨI with the identification

uĨI
∼= uJ̃I ũ

Ĩ
J̃
. (5.19)

This provides a global parametrization of S5 which maintain the compactness of the space
manifest. However, the parametrization we used in the paper, see (5.2), is a different one.
We have complefixied the S5 and gauge fixed the USp(4)C subgroup such that we end up
with uJ̃I given in (5.4) where both w and yi

ī
are now complex variables. In order to obtain

the real S5 we need to impose a reality condition on the variables which guarantee that

(YIJ)∗ = 1
2ε

IJKLYKL , (5.20)

with YKL given in (5.8). These parametrization does not make the compactness of S5

manifest since it covers just a patch defined by Y43 6= 0.
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Now we are going to relate our S5 variables with the harmonic variables, which
parametrize projective six-dimensional complex null vectors

ȲIJ ∼= ΛȲIJ , εIJKLȲIJ ȲKL = 0 , (5.21)

with Λ a constant. Picking the null vector Ȳ 0
ij
∼= εij and Y 0

īj̄
= Y 0

ij̄
= 0 to be the origin in

this case, we can obtain all the other projective null vectors by acting on Y 0
īj̄

with SO(6)
rotations. The subgroup that preserves the origin is given by SO(2)× SO(4) so we have a
coset

Ȳ =
( SO(6)

SO(2)× SO(4)

)
. (5.22)

In terms of spin groups we have

( SO(6)
SO(2)× SO(4)

)
∼=
( SU(4)
S(U(2)×U(2))

)
, (5.23)

and this is the usual way in which harmonic variables are usually presented. Acting with
SU(4) elements uIJ in Ȳ 0

IJ will give

ȲIJ ∼= uiIu
j
Jεij . (5.24)

and the subgroup S(U(2)×U(2)) will constitute the ûJI variables that satisfy

ûki û
l
jεkl = εij , ûkī û

l
j̄εkl = 0, ûkī û

l
jεkl = 0 . (5.25)

Note that the ûJI are also SU(4) variables so they satisfy additional constraints. The
harmonic variables will be given by the identification

u′ĨI
∼= uJ̃I ũ

Ĩ
J̃
. (5.26)

Another parametrization of the projective six-dimensional null vectors is given by complex-
ifying SU(4) such that we can gauge fix [47, 48]

[u′ĨI ] =
(
δij (y′)īj
0 δī

j̄

)
. (5.27)

which is similar to our S5 variables but here (y′)īi does not satisfy any reality condition.
It is interesting to recover the radius dependence R for both the AdS5 and the S5 space
which gives

εRSTUXRSXTU = εIJKLYIJYKL = −8R2. (5.28)

Now, both the boundary and the harmonic variables can be obtained by simply taking the
limit R→ 0 together with the appropriate identifications XRS ∼= ΛXRS and Y IJ ∼= Λ′Y IJ .
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5.2 Boundary superspace

As showed above the boundary is located at z →∞. At the boundary we expect to recover a
superspace resembling the d = 4N = 4 Minkowski superspace with sixteen odd dimensions.
We will define the boundary superspace to be the superspace that represents the scaling
preserving transformations of the boundary in a given patch. Recall that the boundary
can constitute in many patches. This happens for example in our coordinates x and the
Poincaré coordinates x̃ introduced previously. They together cover the boundary and are
glued by an inversion transformation. Notice that scale preserving transformation of one
patch is not in general a scale preserving transformation of another patch. In the patch
covered by x the scaling preserving transformations are the ones in which the generators
have negative charge under ∆. The generators satisfying this property are {K, qa+, q̄ȧ−}
which implies that the superspace is parametrized by {x, θa−, θ̄ȧ+}. In the Poincaré patch
the scaling preserving transformations are the ones respective to generators with positive
charge under ∆. It is also possible to glue these two superspaces by a super-diffeomorphism
and obtain a global superspace for the boundary. This super-diffeomorphism is nothing
more than the inversion acted on both the bosonic and fermionic coordinates. Here the
inversion of fermionic coordinates is defined by

θIα ↔ θIα̇, θαI ↔ θα̇I . (5.29)

It is interesting to study the PSU(2, 2|4) transformations of the worldsheet variables
when they approach the boundary. We compute them in infinitesimal form by using the
formula (4.10) and taking the limit z →∞. For some cosets it is possible to consistently set
sixteen of the thirty two θ’s at the boundary to zero because the transformations of these
variables under PSU(2, 2|4) tend to zero as z →∞. For other cosets all the transformations
are nonvanishing at the boundary and one has instead to verify that the dependence of the
bulk fields tends to only sixteen θ’s at the boundary, see [19]. Our coset belongs to the
second class because it is inconsistent to set θa+ = θ̄ȧ− = 0 at the boundary and indeed our
vertex operators only depend on eight θ’s instead of all the thirty two. For example, we
have under the infinitesimal transformation parametrized by εα̇α that

δθiα

∣∣∣
boundary

= εα̇αθ
i
α̇ , δθα̇ī

∣∣∣
boundary

= −εα̇αθαī . (5.30)

Apparently, it seems inconsistent that our vertex operators depend on θa+ which are
not the θ’s in the superspace covered by our variables x at the boundary. However, recall
that our vertex operators are at the point x = ∞ which is only covered by the Poincaré
patch whose superspace contains θa+.

6 Conclusions

In this paper, we have found for the first time explicit expressions for the gauge superfields
appearing in the superstring vertex operators [23] in the pure spinor formalism in an
AdS5×S5 background. This generalizes the results of [8], where the vertices were computed
only close to the boundary. The vertex operators are labelled by an integer n which
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corresponds to the dimension and R-charge of the states. For n = 0, it reduces correctly
to the well known dilaton vertex operator which in integrated form corresponds to the
Lagrangian. We have also taken the flat space limit of our results. This amounts to deform
the psu(2, 2|4) algebra continuously to the ten dimensional super-Poincaré algebra. In the
limit, our vertices coincide with the flat space ones as expected. Moreover, we have both
located the boundary of AdS5 in our coordinates and described a way of finding the vertex
operators at different positions.

One immediate application of our results would be the calculation of string ampli-
tudes [32]. Many amplitudes have been computed using the pure spinor formalism in a
flat space background. It is likely that we can use in AdS5 some of the techniques and the
computer packages used in those calculations such as [49]. Technically, the main difference
between the calculations is that the OPE’s of the worldsheet variables receive α′ correc-
tions in AdS and they have to be computed order by order, or eventually bootstraped.
There were many progresses and new ideas for computing these amplitudes using boot-
strap, localization and integrability techniques and several amplitude results already exist
in the literature for four-point and five-point functions [50–85]. It will be great if we could
rederive any of these results using the pure spinor language.

Another research direction is the construction of the massive vertex operators. They
are known in a flat background [86–89], but these tecniques have not been used in AdS
yet. One difficult is that the masses of the states are very complicated functions of α′ as
the worldsheet theory is interacting. The spectrum can be obtained by using string and
integrability tecniques [90–93]. In this direction, it will be very interesting to take the OPE’s
of our vertices after translations. The brute force calculation can be done by reading the
interaction terms from the Lagragian and using standard methods for computing OPE’s in
interacting quantum field theories, see [94] for example. Another way of trying to construct
the massive vertex operators is by generalizing the techniques developed in [95]. It will be
also very interesting to better understand the current algebra of the model at the quantum
level, see [29, 96] for progresses. Notice that the BRST operator is a pure spinor times
a fermionic current. In addition, the current algebra was already used to compute part
of the spectrum in [97] by deriving the so called Y -system. The current algebra is very
constrained and maybe one can try to set a bootstrap program for it.
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Kα̇
α Pαα̇ Ki

ī
P īi qa± q̄ȧ±

CJ : 0 0 1 -1 ±1/2 ±1/2

C∆ : -1 1 0 0 ∓1/2 ±1/2

Table 1. The charge of the generators under ∆ and J . The values of CJ and C∆ of the generators
not appearing in the table are zero. Both the q’s and the q̄’s are defined in (A.4).

(qαi , qαī ) (qiα, qīα) (qα̇i , qα̇ī ) (qiα̇, qīα̇)

CB : 1/2 -1/2 1/2 -1/2

Table 2. The hypercharge of the generators. The values of CB for the generators not appearing in
the table are zero.

A The psu(2, 2|4) algebra

We start by describing the superalgebra pu(2, 2|4). The p is due to the fact that we
always work with representations with vanishing central charge. The generators of this
superalgebra can be organized as follows

MA
B =


Mα
β Pα

β̇
qαj qα

j̄

Kα̇
β M α̇

β̇
qα̇j qα̇

j̄

qiβ qi
β̇

M i
j Ki

j̄

qīβ qī
β̇

P īj M ī
j̄

 , (A.1)

where α, α̇, i, ī = 1, 2 and the q’s are the thirty two fermionic generators. Note that the
position of the indices in the q’s are used to distinguish the different generators so we
cannot raise and lower the indices with the ε tensors while preserving the symbol q. The
P ’s are the translation generators and the K’s are the special translation generators of the
bosonic subgroups. The diagonal generators are further decomposed into

Mα
β = M̂α

β + 1
2δ

α
β∆ + 1

2δ
α
βB , M α̇

β̇
= M̂ α̇

β̇
− 1

2δ
α̇
β̇

∆ + 1
2δ

α̇
β̇
B ,

M i
j = M̂ i

j + 1
2δ

i
jJ −

1
2δ

i
jB , M ī

j̄ = M̂ ī
j̄ −

1
2δ

ī
j̄J −

1
2δ

ī
j̄B ,

(A.2)

where the M̂ ’s are the rotation generators, ∆ is the dilatation, J is the diagonal R-charge
generator and B is the so called hypercharge generator. The commutation relations with
the last three generators are diagonal and takes the form[

∆,MA
B

]
= C∆

(
MA
B

)
MA
B ,

[
J,MA

B

]
= CJ

(
MA
B

)
MA
B ,

[
B,MA

B

]
= CB(MA

B )MA
B ,

(A.3)
and the nonzero numerical values of the C’s can be read from the tables 1 and 2 below. It
will be convenient to group the fermionic generators in groups with definite ∆− J charge
using SO(8) notation as follows

q̄ȧ+ =
(
qαī , q

i
α̇

)
, q̄ȧ− =

(
qīα, q

α̇
i

)
, qa+ =

(
qiα, q

α̇
ī

)
, qa− =

(
qīα̇, q

α
i

)
. (A.4)
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In the definition above, the subscript indicates the charge under J and a, ȧ are chiral and
antichiral SO(8) spinor indices.

The remaining commutators of the algebra are of the form[
MB
A ,M

D
C

]
= δDAM

B
C − (−1)([A]+[B])([C]+[D]) δBCM

A
D . (A.5)

where [A] = 1 if A = i or A = ī and zero otherwise. Notice that it is possible to deduce
the commutators involving the M̂ generators from the expression above and the definitions
in (A.2). One has, [

M̂α
β , M̂

γ
δ

]
=
[
Mα
β ,M

γ
δ

]
, (A.6)

and [
M̂α
β ,M

A
B

]
=
[
Mα
β ,M

A
B

]
− 1

2δ
α
β

[
∆,MA

B

]
− 1

2δ
α
β

[
B,MA

B

]
. (A.7)

which gives, for example, [
M̂α
β , q

γ
i

]
= δγβq

α
i −

1
2δ

α
β q

γ
i . (A.8)

One important property of the commutation relations is that the hypercharge generator
B never appears on the right hand side of (A.5). Keeping the commutations relations and
dropping B one arrives at the psu(2, 2|4) algebra. An important subalgebra (isotropy group)
is usp(2, 2)× usp(4) which are generated by the following generators{

M̂α
β , M̂

α̇
β̇
,
(
Pαα̇ + εα̇β̇ε

αβK β̇
β

)}
×
{
M̂ i
j , M̂

ī
j̄ ,
(
P īi + εijε

īj̄Kj
j̄

)}
, (A.9)

and in our conventions ε12 = ε12 = 1.

B BRST transformations

In this appendix, we provide all the BRST transformations of the worldsheet variables for
the coset given in (3.2). In addition, we also consider a second coset (SU(2, 2) × SU(4)
covariant parametrization) where it is easier to define gauge invariant pure spinors.

B.1 BRST transformations for the coset (3.2)

In order to find the BRST transformations for the worldsheet variables parametrizing
the coset (3.2), one has to solve the equation (3.4). In the process, one also gets the
compensating gauge transformation parameters Σ’s. The manipulations are standard but
tedious and the result is given below in terms of commutators. We will use the definitions

K̃i
ī = ewKi

ī , K̃α̇
α = e−zKα̇

α , (B.1)

and the BRST transformations are (Σī
i and Σα

α̇ will be given below and we are using a
compact notation where the contractions of the indices are the obvious ones)

(Qz)∆ + (Qw)J − ΣM̂ =
[
θ+q−, e

w−z
2 λ−q+

]
+
[
θ̄+q̄−, e

w+z
2 λ̄−q̄+

]
+
[
θ̄+q̄−,

[
θ+q−,ΣK̃

]]
,

(B.2)
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and

(Qθ+)q− = e
z−w

2 λ+q− −
1
2
[
θ+q−,

[
θ+q−, e

w−z
2 λ−q+

]]
−
[
θ+q−,

[
θ̄+q̄−, e

w+z
2 λ̄−q̄+

]]
−
[
θ+q−,

[
θ̄+q̄−,

[
θ+q−,ΣK̃

]]]
,

(Qθ̄+)q̄− = e−
w+z

2 λ̄+q̄− −
1
2
[
θ̄+q̄−,

[
θ̄+q̄−,

[
θ+q−,ΣK̃

]]]
− 1

2
[
θ̄+q̄−,

[
θ̄+q̄−, e

w+z
2 λ̄−q̄+

]]
+
[
θ+q−,ΣK̃

]
q̄−
,

(Qθ̄−)q̄+ = e
w+z

2 λ̄−q̄+ +
[
θ+q−,ΣK̃

]
q̄+
,

(B.3)

finally,
(Qθ−)q+ = e

w−z
2 λ−q+ +

[
θ̄−q̄+,

[
θ̄+q̄−, e

w−z
2 λ−q+

]]
+
[
θ̄−q̄+,ΣK̃

]
+
[
θ̄+q̄−,ΣK̃

]
+ 1

2
[
θ̄−q̄+,

[
θ̄+q̄−,

[
θ̄+q̄−, ΣK̃

]]]
,

(B.4)

and

(Qx)K + (Qy)K = ΣK̃ +
[
θ̄+q̄−, e

w−z
2 λ−q+

]
+
[
θ̄−q̄+, e

w−z
2 λ−q+

]
+

+ 1
2
[
θ̄−q̄+,

[
θ̄−q̄+,

[
θ̄+q̄−, e

w−z
2 λ−q+

]]]
+ 1

2
[
θ̄−q̄+

[
θ̄−q̄+,ΣK̃

]]
+ 1

2
[
θ̄+q̄−,

[
θ̄+q̄−,ΣK̃

]]
+
[
θ̄−q̄+,

[
θ̄+q̄−,ΣK̃

]]
+ 1

4
[
θ̄−q̄+,

[
θ̄−q̄+,

[
θ̄+q̄−,

[
θ̄+q̄−,ΣK̃

]]]]
.

(B.5)

The remaining Σ’s can be obtained by solving the following equations

Σα
α̇ = εαβεα̇β̇Σβ̇

β , Σi
ī = εij ε̄ij̄Σ

j̄
j ,

Θα̇
α + Σα̇

α + Σī
i

(
θ̃iαθ̃

α̇
ī

)
= 0 , Θi

ī + Σi
ī + Σα

α̇

(
θ̃α̇ī θ̃

i
α

)
= 0 ,

(B.6)

where
Θα̇
α ≡ θ̃iαλα̇i + θ̃α̇ī λ

ī
α , Θi

ī ≡ θ̃
i
αλ

α
ī + θ̃α̇ī λ

i
α̇ , (B.7)

and the θ̃’s were defined in (4.1). The solution to these equations is (Θα
α̇ = εαβεα̇β̇Θβ̇

β and
Θī
i = εijε

īj̄Θj
j̄
)

Σα̇
α =−Θα̇

α+
(
θ̃α̇ī Θī

iθ̃
i
α

)
−
(
εīj̄ θ̃α̇ī θ̃

β̇
j̄

)(
εij θ̃

i
αθ̃

j
β

)
Θβ

β̇
+
(
εīj̄ θ̃α̇ī θ̃

β̇
j̄

)(
εij θ̃

i
αθ̃

j
β

)
εγ̇β̇ε

γβ
(
θ̃γ̇
k̄
Θk̄
i θ̃
i
γ

)
,

Σi
ī =−Θi

ī+
(
θ̃iαΘα

α̇θ̃
α̇
ī

)
−
(
εαβ θ̃iαθ̃

j
β

)(
εα̇β̇ θ̃

α̇
ī θ̃

β̇
j̄

)
Θj̄
j+
(
εαβ θ̃iαθ̃

j
β

)(
εα̇β̇ θ̃

α̇
ī θ̃

β̇
j̄

)
εjkε

j̄k̄
(
θ̃kγΘγ

γ̇ θ̃
γ̇

k̄

)
.

(B.8)

B.2 Covariant derivatives for the coset (3.2)

In this subsection, we will write down the covariant derivatives ∇’s relatively to the
coset (3.2). It is possible to read the fermionic derivatives from the BRST transforma-
tions given previously, since the BRST charge takes the following form in our conventions

Q = λiα∇αi + λiα̇∇α̇i + λīα∇αī + λīα̇∇α̇ī + λαi ∇iα + λα̇i ∇iα̇ + λαī ∇
ī
α + λα̇ī ∇

ī
α̇ . (B.9)
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An alternative procedure [98] that does not involve the knowledge of the BRST trans-
formations and enables the computation of all covariant derivatives including the bosonic
ones uses the Cartan form (Ya are the generators appearing in the coset and Xb are the
generators of the isotropy group)

g−1dg = ωaY Ya + ωbXXb , (B.10)

and consists in solving the system of equations below(
d+ ωbXXb

)
ψk = ωaY∇aψk , (B.11)

where ψk is any field in the k representation of the isotropy group. The covariant derivatives
are complicated objects and some of them have a very high order expansion in the θ’s. We
have

∇αi = e
1
2 (z−w) ∂

∂θiα
, ∇īα̇ = e

1
2 (z−w) ∂

∂θα̇
ī

,

∇iα = e
1
2 (w−z) ∂

∂θαi
+e

1
2 (z−w)θ̃iβ θ̃

j
α

∂

∂θjβ
+e

1
2 (w−z)θ̃iα̇θ̃

α̇
j

∂

∂θαj
−e

1
2 (w−z)θ̃iα̇θ̃

ī
α

∂

∂θīα̇
−θ̃iβM̂β

α−θ̃jαM̂ i
j

+ 1
2 θ̃

i
α

(
∂

∂z
+ ∂

∂w

)
+e−z θ̃iα̇

∂

∂xαα̇
+ewθ̃īα

∂

∂yīi
−ewθ̃iα̇θ̃īαθ̃α̇j

∂

∂yīj
,

(B.12)
and

∇α̇ī = e
1
2 (w−z) ∂

∂θīα̇
+e

1
2 (w−z)θ̃αī θ̃

α̇
i

∂

∂θαi
+e

1
2 (z−w) θ̃α̇j̄ θ̃

β̇
ī

∂

∂θβ̇
j̄

+e
1
2 (w−z)θ̃j̄αθ̃

α
ī

∂

∂θj̄α̇

−θ̃α̇j̄ M̂
j̄
ī
−θ̃β̇

ī
M̂ α̇
β̇

− 1
2 θ̃

α̇
ī

(
∂

∂z
+ ∂

∂w

)
+e−z θ̃αī

∂

∂xαα̇
+ewθ̃α̇i

∂

∂yīi
+ewθ̃j̄β θ̃

β
ī
θ̃α̇j

∂

∂yj̄j

.

(B.13)
In the expressions above the θ̃’s were defined in (4.1) and the M̂ ’s only act on the λ’s. The
action is canonical and given by

M̂A
B · λC = δCB λ

A − 1
2δ

A
Bλ

C , M̂A
B · λC = −δAC λB + 1

2δ
A
BλC . (B.14)

The remaining covariant derivatives are the most complicated ones. Due to the fact that
our vertex operators only depend on z + w, λ’s and θ̃a+, we are going to write down only
the terms that act non-trivially on the vertices. We have, schematically,

∇α̇,̄ii,α
∣∣∣no gauge

vertex
= e

1
2 (z−w)

[
θ̃2

+
˜̄θ+

∂

∂θ+
+ θ̃7

+
˜̄θ+

∂

∂θ+

]α̇,̄i
i,α

+ 1
2
[
θ̃2

+
˜̄θ+ + θ̃6

+
˜̄θ+
]α̇,̄i
i,α

(
∂

∂z
− ∂

∂w

)
,

∇i,α
α̇,̄i

∣∣∣no gauge

vertex
= e

1
2 (z−w)

[
θ̃+

˜̄θ+
∂

∂θ+
+ θ̃5

+
˜̄θ+

∂

∂θ+

]i,α
α̇,̄i

+ 1
2
[
θ̃4

+
˜̄θ+ + θ̃8

+
˜̄θ+
]i,α
α̇,̄i

(
∂

∂z
− ∂

∂w

)
,

(B.15)
where no gauge means that we have omitted terms acting on the λ’s which are quite
complicated. In any case, these terms can be deduced from the BRST transformations.
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The BRST operator given in (1.3) and written in terms of λαL and λα̂R can be obtained
from (B.9) by reorganising the terms and by using the definitions of both the left and right
pure spinors of (3.18) and (3.11). We have

Q = 1
2
(
(λL)αi (∇L)iα + (λL)α̇ī (∇L)īα̇ + (λL)αī (∇L)īα + (λL)α̇i (∇L)iα̇ + L→ R

)
, (B.16)

where
(∇L)iα = ∇iα + εijεαβ∇βj , (∇L)īα̇ = ∇īα̇ + εīj̄εα̇β̇∇

β̇
j̄
,

(∇L)iα̇ = ∇iα̇ − εijεα̇β̇∇
β̇
j , (∇L)īα = ∇īα − εīj̄εαβ∇

β
j̄
,

(B.17)

and the covariant derivatives with R are similar and they are obtained by flipping the sign
before the second ∇ on the right hand side of the expressions above. In the Introduction, we
proved that the supergravity vertex operators in a flat background can be put in the gauge
λ̄ȧLλ̄

ḃ
RAȧḃ. The proof was based on the commutation algebra of the flat space covariant

derivatives. We believe that a similar proof is possible for AdS5 and we compute some of
the commutation relations of the covariant derivatives below. In the expressions, we only
show the potentially nonzero terms when acting on our vertices, we have

[
(∇L)iα, (∇L)i′α′

]
+

∣∣∣∣∣
vertex

= εi
′iεα′α

(
∂

∂z
+ ∂

∂w

)

+ εi
′iεα′βθ

j
α

∂

∂θjβ
− εi′jεα′αθiβ

∂

∂θjβ
+ εii

′
εαβθ

j
α′

∂

∂θjβ
− εijεαα′θi

′
β

∂

∂θjβ

− εi′iεα′βM̂β
α − εi

′jεα′αM̂
i
j − εii

′
εαβM̂

β
α′ − ε

ijεαα′M̂
i′
j .

(B.18)
In fact, due to the fact that our vertex operators preserve a SO(4)× SO(4) symmetry and
only depends on λ̄ȧ, the terms with M̂ ’s and derivatives of θ’s cancel among themselves as
they correspond to SO(4)× SO(4) rotations. So, in fact, the expressions simplify to

[
(∇L)iα, (∇L)i′α′

]
+

∣∣∣∣∣
vertex

= εi
′iεα′α

(
∂

∂z
+ ∂

∂w

)
,
[
(∇L)iα, (∇R)i′α′

]
+

∣∣∣∣∣
vertex

= 0 ,

[
(∇R)iα, (∇R)i′α′

]
+

∣∣∣∣∣
vertex

= −εi′iεα′α
(
∂

∂z
+ ∂

∂w

)
,

(B.19)

and the commutators involving (∇L)īα̇ and (∇R)īα̇ are similar to the ones above.

B.3 The SU(2, 2)× SU(4) covariant parametrization

In [42], gauge invariant pure spinors were defined and used. We give here the explicit
BRST transformations for a coset similar to the one used in [42]. One of the difficulties
in working with gauge invariant pure spinors is that the pure spinor constraints become
more complicated. In the main text, we decide to work with the coset (3.2) and pure
spinors that transform under gauge transformations because it was easier to work out the
simplifications for moving from the picture minus eight to the picture zero. In any case,
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we hope that the explicit BRST transformations of this alternative coset might be useful
for some readers and future applications. The alternative coset is

g = eθ̄−q̄+eθ̄+q̄−eθ−q+eθ+q−G(X)H(Y ) , (B.20)

where now G(X) parametrizes the coset SO(2,4)
SO(1,4) and H(Y ) parametrizes SO(6)

SO(5) . We are
going to denote the elements of the coset by both G(X)R̃R and H(Y )ĨI where the indices
with a tilde are spinor indices of the isotropy group. The BRST transformations of the
variables can be computed as usual from the coset transformation

Q · g = g(λq + Σ)

= eθ̄−q̄+eθ̄+q̄−eθ−q+eθ+q−(λ̃q)G(X)H(Y )

+ eθ̄−q̄+eθ̄+q̄−eθ−q+eθ+q−(G(X)Σ1)H(Y ) + eθ̄−q̄+eθ̄+q̄−eθ−q+eθ+q−G(X)(H(Y )Σ2) ,
(B.21)

where λ̃ are gauge invariant pure spinors given by

λ̃RI = G−1(X)R
R̃
H(Y )ĨIλR̃Ĩ , λ̃IR = G(X)R̃RH−1(Y )I

Ĩ
λĨ
R̃
. (B.22)

The AdS5 and S5 coordinates are given as

XRS ≡ G(X)R̃Rσ−1
R̃S̃
G(X)S̃S , YIJ ≡ H(Y )ĨIσ6

Ĩ J̃
H(Y )J̃J , (B.23)

where the direction, i.e. indices -1 and 6 in the sigma matrices σn
ĨJ̃

is the one invariant
under the isotropy groups. The variables above are constrained as follows

1
8ε

RSTUXRSXTU = 1
8ε

IJKLYIJYKL = −1 . (B.24)

In the formulas below, the pure spinor variables are always the gauge invariant ones
and we are going to suppress the tildes to avoid cluttering. To write down the formulas,
we will use the following definitions

Σ(0,−−) = −a0 + a1 − a2 + a3 − a4 + a5 , (B.25)

where a0 =
[
θ−q+, λ̄+q̄−

]
and an = [θ−q+, [θ+q−, an−1]] and

Σ(++,0) = b0 + b1 − b2 + b3 − b4 + b5 , (B.26)

where b0 =
[
θ−q+, λ̄−q̄+

]
and bn = [θ−q+, [θ+q−, bn−1]]. Moreover

Σ(0,++) = −1
2
[
θ+q−,

[
θ+q−,Σ(++,0)

]]
, Σ(−−,0) = −1

2
[
θ+q−,

[
θ+q−,Σ(0,−−)

]]
.

(B.27)
In terms of the Σ’s above, the BRST transformations of the fermionic variables are

(Qθ+)q−=λ+q−+ 1
2 [[(θ+q−),(λ−q+)] ,(θ+q−)]+

[[
θ̄+q̄−,(λ̄−q̄+−

[
θ+q−,Σ(++,0)

]
)
]
,θ+q−

]
,

(Qθ−)q+ =λ−q++
[[
θ̄+q̄−,(λ̄−q̄++

[
θ+q−,Σ(++,0)

]
)
]
,θ−q+

]
,

(Qθ̄+)q̄−= λ̄+q̄−+
[
θ+q−,Σ(0,−−)

]
+ 1

2
[[
θ̄+q̄−,(λ̄−q̄++

[
θ+q−,Σ(++,0)

]
)
]
, θ̄+q̄−

]
,

(Qθ̄−)q̄+ = λ̄−q̄++
[
θ+q−,Σ(++,0)

]
.

(B.28)
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Note that the indices R and I appearing in G and H are not BRST invariant and they
rotate. The rotation parameters

ΣM = ΣI
JM

J
I + ΣR

SM
S
R , (B.29)

are given by

ΣM = [(θ+q−), (λ−q+)] +
[
(θ+q−), (λ̄+q̄−)

]
+
[
θ+q−, λ̄−q̄+

]
+[

θ̄+q̄−, (λ̄−q̄+ +
[
θ+q−,Σ(++,0)

]
)
]
− (Σ(−−,0) + Σ(0,−−) + Σ(++,0) + Σ(0,++)) .

(B.30)
So, for example,

Q · XRS = ΣT
RXTS + ΣT

S XRT . (B.31)

The explicit form of Σ1 and Σ2 appearing in (B.21) is not necessary in general because one
only works with gauge invariant quantities and these matrices rotates the indices belonging
to the isotropy groups.

B.4 The gauge invariant pure spinor constraints

In order to perform computations using the SU(2, 2) × SU(4) covariant parametrization
just described, we have to write the pure spinor constraints in terms of the gauge invariant
pure spinors λ̃ defined in (B.22) and solve them. One way of doing it is to relate the λ̃ with
the λ’s used in the main text, see (3.4) and (3.5), and we already know the solution of the
constraints in terms of the λ’s. The relation is as follows (u and v were defined in (5.2))

λ̃q = (uv)λq(uv)−1 = eyKe(z∆+wJ)(λq)e−(z∆+wJ)e−yK = eyK(λ′q)e−yK , (B.32)

and we have used the shorthand notation yK = xαα̇K
α̇
α + yīiK

i
ī
. Since K have charge +1

under J −∆ the series truncate

λ̃q = λ′q +
[
yK, λ′q

]
+ 1

2
[
yK,

[
yK, λ′q

]]
. (B.33)

In components, we have

λ̃+q− = λ′+q−,
˜̄λ+q̄− + ˜̄λ−q+ = λ̄′+q̄− + λ̄′−q+ +

[
yK, λ′+q−

]
,

λ̃−q+ = λ′−q+ +
[
yK,

(
λ̄′+q̄− + λ̄′−q+

)]
+ 1

2
[
yK,

[
yK, λ′+q−

]]
.

(B.34)

Moreover, we can easily invert the expressions above and get

λ′+q− = λ̃+q−, λ̄′+q̄− + λ̄′−q̄+ = ˜̄λ+q̄− + ˜̄λ−q̄+ −
[
yK, λ̃+q−

]
,

λ′−q+ = λ̃−q+ −
[
yK,

(˜̄λ+q̄− + ˜̄λ−q̄+
)]

+ 1
2
[
yK,

[
yK, λ̃+q−

]]
.

(B.35)
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It is easy to evaluate both (B.34) and (B.35) given above. The result can be written in
terms of the gauge invariant variables XRS and YIJ defined in (5.8) as follows

λiα̇ =
(
Y12
X34

)− 1
2 (
λ̃iα̇ +Xα

α̇ λ̃
i
α

)
, λαī =

(
Y12
X34

)− 1
2 (
λ̃αī −X

α
α̇ λ̃

α̇
ī

)
,

λα̇i =
(
Y12
X34

)+ 1
2 (
λ̃α̇i + Y ī

i λ̃
α̇
ī

)
, λīα =

(
Y12
X34

)+ 1
2 (
λ̃īα − Y ī

i λ̃
i
α

)
,

λīα̇ = (Y12X34)+ 1
2

(
λ̃īα̇ +Xα

α̇ λ̃
ī
α − Y ī

i λ̃
i
α̇ −

1
2X

α
α̇Y

ī
i λ̃

i
α

)
,

λαi = (Y12X34)+ 1
2

(
λ̃αi −Xα

α̇ λ̃
α̇
i + Y ī

i λ̃
α
ī −

1
2X

α
α̇Y

ī
i λ̃

α̇
ī

)
,

λiα = (Y12X34)−
1
2 λ̃iα , λα̇ī = (Y12X34)−

1
2 λ̃α̇ī ,

(B.36)

equivalently,

λ̃iα̇ = e+ (w+z)
2
(
λiα̇ −Xα

α̇λ
i
α

)
, λ̃αī = e+ (w+z)

2
(
λαī +Xα

α̇λ
α̇
ī

)
,

λ̃α̇i = e−
(w+z)

2
(
λα̇i − Y ī

i λ
α̇
ī

)
, λ̃īα = e−

(w+z)
2
(
λīα + Y ī

i λ
i
α

)
,

λ̃īα̇ = e−
(w−z)

2

(
λīα̇ −Xα

α̇λ
ī
α + Y ī

i λ
i
α̇ −

1
2X

α
α̇Y

ī
i λ

i
α

)
,

λ̃αi = e−
(w−z)

2

(
λαi +Xα

α̇λ
α̇
i − Y ī

i λ
α
ī −

1
2X

α
α̇Y

ī
i λ

α̇
ī

)
,

λ̃iα = e+ (w−z)
2 λiα , λ̃α̇ī = e+ (w−z)

2 λα̇ī .

(B.37)

In the main text, we demonstrated that it is possible to express λa− as function of the other
λ’s and this implies that λiα and λα̇

ī
can be taken as unconstrained variables. The same is

true for λ̃iα and λ̃α̇
ī
and this follows from the equations above. In fact, using

λa− =

(
λ̄+σ

mnλ̄−
)

4
(
λ̄+λ̄+

) (σmnλ+)a , (B.38)

it is not difficult to see that λ̃a− can be written in terms of the others λ̃’s. The conclusion
is that δ(λ̃a+) makes sense and it is possible to define minus eight picture vertex operators
for the SU(2, 2)× SU(4) covariant parametrization.

C Half-BPS vertex operators in SO(8) notation

In this appendix, we rewrite the vertex operators given in (4.14) in a more compact SO(8)
notation, see (3.5) and (4.2). We will use the SO(8) Pauli Matrices

σ
m
aȧ , and σ

m
ȧa , (C.1)

with m, a, ȧ = 1, . . . , 8. In what follows we will use the notation

σ̂ab =
(
σ1234

)
ab
, (C.2)
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where σ1234 is totally anti-symmetric in the indices {1, 2, 3, 4}. The vertices take the form

e−n(z+w)Vso(8)(n) = V 0
so(8) + V 2

so(8) + V 4
so(8) + V 6

so(8) + V 8
so(8) , (C.3)

and as usual the superscripts indicate the number of θ+’s. We have

V 0
so(8) = (λ̄+λ̄+) , V 8

so(8) =
(
λ̄+λ̄+

)
θ8

+

(
72− 37n2 + n4

)
, (C.4)

where (λ̄+λ̄+) and θ8
+ were defined in (4.7) and (4.24) respectively. For the remaining

terms, we are going to use the notation(
θ2

+

)
ij

= θa+

(
σij
)
ab
θb+ ,

(
θ̂2

+

)
ij

= θa+

(
σ̂σij

)
ab
θb+ ,(

λ̄xλ̄y
)i1j1,...,imjm = λ̄ȧx

(
σi1j1 . . . σimjm

)
ȧḃ
λ̄ḃy ,(

λ̄xλ̄y
)i1j1,...,imjm

hat
= λ̄[ȧ

x

(
σ̂σi1j1 . . . σimjm

)
ȧḃ
λ̄ḃ]y ,

(C.5)

where [ȧḃ] = ȧḃ− ḃȧ without a factor of two and

σ
ij

ab = 1
2
(
σiσj − σjσi

)
ab
. (C.6)

The remaining terms in (C.3) are given by

V 2
so(8) = − 1

16
(
λ̄+λ̄−

)ij
hat

(
θ̂2

+

)
ij
− n

8
(
λ̄+λ̄−

)ij (
θ2

+

)
ij
, (C.7)

and
V 6
so(8) = −

(
1

2304 −
n2

9216

)(
λ̄+λ̄−

)ijklmn
hat

(
θ̂2

+

)
ij

(
θ̂2

+

)
kl

(
θ̂2

+

)
mn

+
(

19n
46080 −

n3

46080

)(
λ̄+λ̄−

)ijklmn (
θ2

+

)
ij

(
θ2

+

)
kl

(
θ2

+

)
mn

.

(C.8)

Finally,

V 4
so(8) = 1

768
(
1− n2

) (
λ̄2

+ − λ̄2
−

)ijkl (
θ2

+

)
ij

(
θ2

+

)
kl
− 3n

768
(
λ̄2

+ + λ̄2
−

)ijkl (
θ2

+

)
ij

(
θ2

+

)
kl

− 1
256

(
λ̄2

+ − λ̄2
−

)ijkl (
θ̂2

+

)
ij

(
θ̂2

+

)
kl
− n

128
(
λ̄2

+

)ijkl
hat

(
θ2

+

)
ij

(
θ̂2

+

)
kl
.

(C.9)
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