
DELPHI Collaboration DELPHI 97-127 PROG 226

5 August, 1997

DELPHI analysis code administration and

distribution

Olof B�arring,

University of Lund,

Physics Departement,

BOX 118,

S { 221 00 LUND, Sweden

Jean-Damien Durand

CERN, CH-1211 Geneva 23, Switzerland

or

Universit�e Claude Bernard de Lyon,

IPNL, IN2P3-CNRS, F-69622,

Villeurbanne Cedex, France

Abstract

This note describes the technical details of the current implementation of the DEL-

PHI o�ine analysis software administration and distribution system. It is primary

intended as a reference manual for the librarian but some of its content also concerns

the people providing the software.

1 Philosophy, terminology and recommendations to

administrator

The current administration and distribution of DELPHI o�ine analysis software is based

on the following principles:

(a) The �les released with a speci�c version (see de�nition below) should never change.

Any bug-�x or new feature will be added in the subsequent version.

(b) The �les within the version should be unique within that version.

(c) The �les within the version should be grouped according to their type and not their

contents. Four di�erent types are de�ned:

(c1) Source code �les (cradles and pams) reside in a src directory (to admit the

addition of other types of source code �les a sub-level car was added so the

cradles and pams actually reside in src/car).

(c2) ASCII data �les used for driving the analysis routines (e.g. alignment, calibra-

tion, luminosity and run quality �les) reside in a dat directory.

(c3) Libraries reside in a lib directory.

(c4) Scripts and compiled programs reside in a bin directory.

(d) The �le naming conventions:

(d1) Source code pams are named in lower case letters and have the extension .car

(d2) Source code cradles are named in lower case letters and have the extension

.cra

(d3) ASCII data �les are named in upper case letters.

(d4) Archive libraries follow the standard UNIX naming with the pre�x lib and the

extension .a (e.g. libdstanaxx.a).

(d5) Scripts and programs are named in lower case letters.

(d6) Cradles and libraries have version-independent names.

(e) The complete version is local on each DELSHIFT machine (no NFS or AFS mounts).

(f) All soft links within and between versions are relative. The major argument for this

is transportability.

Exceptions to the rule (a) are a few ASCII data �les, e.g. FAT GROU.NAMES, which

may be asynchronously updated at any time. However, source code �les and libraries

never change within a version.

The following terminology will be used throughout this note:

� version: a version is a directory tree, structured according to the rules (c1-4) above,

which contains the complete set of �les for DELPHI o�ine analysis. The root direc-

tory of a version is normally named with a date-stamp, YYMMDD (e.g. 960826).

1

� production version: the production version is the currently used version to which

the DELPHI group environment variables (e.g. DELPHI PAM) are pointing.

� release: a release is a ready version which is or has once been the production version.

The primary criteria which determines whether a version is released or not is the

AFS ACL of the root share directory of the version in the DELPHI AFS project

space. If the AFS ACL group xx:user is within the AFS ACLs the version is

considered as released.

� prerelease: a prerelease is a version built from development �les for debugging pur-

pose. The prerelease version is rooted under the prerelease directory rather than the

usual date-stamped YYMMDD directory. The access to the prerelease-directory is

restricted to the AFS ACL group xx:swtest.

� central repository: the central repository is the primary storage for all DELPHI

o�ine analysis �les and libraries. It is de�ned to be in the DELPHI AFS project

space with the absolute paths:

/afs/cern.ch/delphi/share (share �les)

/afs/cern.ch/delphi/@sys (speci�c �les).

� access path: the access path is the path which should be used to access the DELPHI

o�ine analysis �les and libraries in the central repository. The use of the access

path is facilitated by the group de�ned environment variables (e.g. $DELPHI,

$DELPHI PAM, $DELPHI LIB etc.). On the DELSHIFT nodes where the DELPHI

o�ine analysis �les and libraries are local the access path is the same as the actual

path. On AFS the access path is rooted under the DELPHI AFS group space, for

instance

/afs/cern.ch/group/xx/dstana

for the dstana product. Use of actual paths under AFS (e.g. the paths to the

central repository in the project space) is not recommended because the central

repository may contain incomplete and buggy versions.

� package: a package is de�ned as a collection of �les exported by a package responsible

(e.g. the UX pam and cradle for the ux package). Note that a package does not

necessary need to be associated to a library. For instance, the package btagging

contains a collection of btagging calibration �les (auxiliary data �les) but no source

code.

� export area: the export area of a package is a prede�ned directory-tree containing

all the �les which the package responsible wish to appear in the next release. An

example of an export area is the path:

/afs/cern.ch/user/d/dstana/public/export

which is the export area of the \dstana" package. A package responsible may choose

to create an additional export area for development �les which will be used to build

the prerelease version. For instance:

/afs/cern.ch/user/d/dstana/public/new

is the export area for the dstana development version.

� product: a version always belongs to a product. There are four de�ned products

in DELPHI: dstana, database, delana and delsim. Only the dstana and database

2

products are controlled by the software administration system described in this

note. Although the system will be described in the context of dstana (DELPHI

o�ine analysis), everything what is said also applies to the database product.

� auxiliary data �le: the ASCII data �les which are used for the driving of the analysis

routines are called auxiliary data �les.

The DELPHI o�ine analysis software administration and distribution system may run

from any central CERN node which is a true AFS client. The central repository for all

DELPHI o�ine analysis �les is found in the DELPHI project area in the AFS cell cern.ch

. The full path to the DELPHI project area is: /afs/cern.ch/delphi .

The following rules help to prevent and keep track of mistakes:

(a) Any action which may change the content of an existing (and released) version in

the central repository is strongly discouraged but if needed it should be done by the

appointed librarian using the AFS account dellib.

(b) Never remove a released version in the central repository without having �rst com-

pletely removed all dependence on it (inter-version dependence will be explained

later in section 3).

(c) Before releasing a version make sure that it has been successfully distributed to all

subscribed nodes.

Unreleased versions in the central repository may be removed without causing any dam-

age. On DELSHIFT there is no inter-version dependence so it is less dangerous to remove

a released version which is not in production. However, it should then be made sure that

no job depends on this version. Normally a version should be left on disk at least a few

days after it has been put out of production.

2 The dellib account

All administration of the DELPHI o�ine analysis software is done from the AFS account

dellib. The entire system is controlled by a set of scripts which are found in the public/etc

directory-tree. The di�erent scripts will be described in section 4.1.

Any system status message will be mailed to dellib@afsmail.cern.ch and it is the

responsibility of the librarian to arrange with an appropriate .forward �le.

When running a software administration script the product (dstana or database) con-

text is determined by the base-name of the con�guration directory from which the script

runs. For instance when running in public/etc/dstana or public/etc/devlibs/dstana the

context is dstana. The con�guration directory contains con�guration �les and some driver

scripts for the software administration system. The con�guration and driver �les which

may need to be modi�ed by the librarian will be described in the following subsections.

2.1 Con�guration �le for the library building: build defs.pl

build defs.pl contains the settings for all parameters related to the building of the libraries.

Currently the following (perl) parameters are set in build defs.pl :

3

� name= $SHARE, type=scalar, value: path to the root directory for all ASCII �les

(source code and auxiliary data �les) in the DELPHI AFS project space.

� name= @OSTYPE, type=array, value(s): supported OS types. The format is nor-

mally in the form of the prede�ned AFS symbol @sys (e.g. hp700 ux90 of HP-UX

9.0x systems).

� name= @BUILD MACHINES, type=array, value(s): node names of the reference

machines

� name= @BUILD DIRS, type=array, value(s): root path for the building of the

libraries on the corresponding reference machine (there should be an one-to-one

correspondence between each entry in @BUILD MACHINES and @BUILD DIRS).

� name= %LIB RESPONSIBLES, type=associative array, key(s): full library name

of each library which is built. Value(s): full mail-address to the responsible of that

library.

Here follows an example of the �le build defs.pl

#!/usr/local/bin/perl

#

Definition needed by update_specific.pl for building libs.

#

$SHARE="/afs/cern.ch/delphi/share/$PRODUCT";

@OSTYPES=('hp700_ux90',

'alpha_osf1',

'rs_aix32',

'hp700_ux100');

@BUILD_MACHINES=('shift10.cern.ch',

'shift27.cern.ch',

'cernsp.cern.ch',

'shift34.cern.ch');

@BUILD_DIRS=("/scratch/dellib/build/$PRODUCT",

"/usr/dellib/build/$PRODUCT",

"/afs/cern.ch/delphi/rs_aix32/$PRODUCT/build",

"/var/users/dellib/build/$PRODUCT");

%LIB_RESPONSIBLES = ('libdstanaxx.a' , 'Tzanko.Spassoff@cern.ch'

, 'libskelanaxx.a' , 'Tzanko.Spassoff@cern.ch'

, 'libvdclapxx.a' , 'Tzanko.Spassoff@cern.ch'

, 'libuxxx.a' , 'grodid@frcpn11.in2p3.fr'

, 'libpxdstxx.a' , 'Yves.Sacquin@cern.ch'

, 'libpxtag2xx.a' , 'John.Wickens@cern.ch'

, 'libufieldxx.a' , 'John.Wickens@cern.ch'

, 'libuhlibxx.a' , 'John.Wickens@cern.ch'

, 'libtanagraxx.a' , 'John.Wickens@cern.ch'

, 'libtriggerxx.a' , 'Carlos.Lacasta@cern.ch'

, 'libherlibxx.a' , 'Pierpaolo.Rebecchi@cern.ch'

, 'libkalxx.a' , 'anders.borgland@fi.uib.no'

);

2.2 Package con�guration �les: h packagei con�g.pl

Collecting the (share) �les from the export area of each package is probably the most

important but also the most complex and vulnerable part of the software administration

4

system. In 1993 it had to be forseen that the responsible for a package could choose

to work on CERNVM, VXCERN or a UNIX node. In addition, there were no imposed

standards on �le-naming and directory structure for the �les contained in the package.

The package con�guration �les were originally designed to resolve any �le naming con
icts

with the rules listed in section 1 and to provide the system operations of copying �les

from the export area to the central repository. There is one con�guration �le for each

package (e.g. phdst con�g.pl for the phdst-package).

The variable names in the package con�guration �les have the pre�x server when

referring to the package export area and client when referring to the share area in the

DELPHI AFS project space (given by the $SHARE parameter de�ned in build defs.pl).

For instance, the perl variable $server �le refers to a �le in the package area whereas

$client �le refers to a �le in the share area of the DELPHI AFS project space.

Each h packagei con�g.pl �le contains the following perl routines:

� INIT : initialisation of the package speci�c parameters like the package name and

server root directory (the export area). INIT also performs the action of providing

a list (normally just a \ ls -R" of the export area if it is under AFS) of the package

�les to the software administration system.

� FILTER FILE NAME : translates (if needed) the server �le name into an ap-

propriate client �le name according to the rules in section 1.

� INIT GET FILES : CERNVM related function which was needed because ftp

had to be used rather than rcp to retreive �les from CERNVM.

� END GET FILES : CERNVM related function which is dual to

INIT GET FILES.

� NEW : decision function to determine what to do if there are new �les on the server

side. Normally this function simply calls UPDATE since this is the normal action

when a new �le appears in the server area.

� UPDATE : does the actual update of a �le from the server to the client area. In

the case the server area is under AFS the action in UPDATE is a simple \ cp". If

the server area is on VXCERN the UPDATE does a \ rcp". UPDATE normally

also checks for AFS cache corruption.

These routines are required although only INIT and UPDATE are really important. Ob-

viously some parts related to collecting package �les form CERNVM are obsolete in the

package con�guration �les after the run-down of CERNVM. However, all the routines

listed above are called at least once and must therefore be provided.

If a new package is to be added by the librarian it is normally su�cient to copy one

of the old h packagei con�g.pl �les (e.g. dstana con�g.pl) and modify the INIT function

according to the new package (change $PACKAGE and $SERVER ROOT).

2.3 The library building steering script mkspeci�c.csh

Except for the PHDST library all DELPHI o�ine analysis libraries are built using a

sophisticated script called makedlib. For any new library it is highly recommended that

5

the cradle is adapted to run with makedlib. The requirements for building a library with

makedlib will be explained in section 4.1.18.

The script mkspeci�c.csh constitutes the steering of the building of the libraries on

the reference machine. It performs the following tasks:

� Install the source �les associated with the version to be built.

� Call makedlib for each library (except for PHDST where phlib.csh is called instead).

� tar the libraries into a �le h OS-typei speci�c.tar

� Sends status mails to the dellib account. If a compilation fails the corresponding log

�le together with the failing FORTRAN �le(s) are sent to dellib@afsmail.cern.ch .

If a new library is to be added it is normally su�cient to add a line:

../bin/makedlib lib<newlib>.a <newlib>.cra >>&makedlib.log

where h newlibi should be substituted with the name of the new library (e.g. dstanaxx).

For the support of a VMS version of the libraries there is a corresponding DCL com-�le

mkspeci�c.com (which calls makedlib.com) to run on VXCERN.

2.4 Adding a new library

In summary: the adding of a new library normally implies the adding of an entry to

the %LIB RESPONSIBLES associative array in build defs.pl, creation of a h packagei

con�g.pl �le and adding an entry to the mkspeci�c.csh script (if a VMS version is

supported an entry must also be added in mkspeci�c.com).

To add a new package which is not associated to the building of a library, the only

action needed is to create and con�gurate a new package con�guration �le.

3 Layout of the share and speci�c areas in the DEL-

PHI AFS project space

Several released versions of the dstana (and database) software are stored in the DELPHI

AFS project area. Up to about four months old versions can be found if the updates

have not been to frequent (in average once per two weeks or so). The only restriction for

storing older versions is the limited disk space.

The absolute paths of the share and speci�c areas

under the DELPHI AFS project area are:

� /afs/cern.ch/delphi/share/h producti

� /afs/cern.ch/delphi/@sys/h producti

where h producti is either database, delana, delsim or

dstana.

6

(c
ur

re
nt

 v
er

si
on

)

96
08

18
96

08
26

bi
n

da
t

sr
c

ca
r

ds
ta

na
10

.c
ar

he
rl

ib
xx

.c
ar

bi
n

da
t

sr
c

ca
r

ds
ta

na
10

.c
ar

he
rl

ib
xx

.c
ar

../
../

../
96

07
31

/s
rc

/c
ar

/d
st

an
a1

0.
ca

r

(f
ile

)
(l

in
k)

(l
in

k)
(f

ile
)

/a
fs

/c
er

n.
ch

/d
el

ph
i/s

ha
re

/d
st

an
a

(o
ld

er
 v

er
si

on
s)

Figure 1: Example of soft link connections between two versions.

It is obviously a waste of disk space to store the same �le twice if it has not been

changed in between two versions. To avoid this a complex system of soft links between

the di�erent versions is maintained. An example is show in �gure 1. Between the two

versions 960826 and 960818 the �le herlibxx.car was not updated. Rather than storing

the �le twice the 960826 version of the �le is actually a link pointing back to the 960818

version of the �le (the real �le). Similarly the �le dstana10.car was not updated between

the versions 960818 and 960731 (not visible in the �gure). Therefore the 960818 version of

the �le is actually a link pointing back to the 960731 version of the �le (the real �le). All

links are relative (which follows the rule (f) listed in section 1) and point always to real

�les (there are never more than one level of links). This means that the 960826 version of

herlibxx.car points to ../../../960818/src/car/herlibxx.car. Relative links facilitates the

transportability of a version to another repository.

A similar structure to the share area is maintained for the speci�c areas (

/afs/cern.ch/delphi/@sys/dstana). Currently (960901) the following speci�c areas are

7

supported: alpha osf1, alpha osf20, alpha osf32, alpha osf32c, rs aix32, rs aix41 and

hp700 ux90 (however all alpha ... paths actually point to alpha osf1 and similarly

rs aix41 ! rs aix32).

Since the share and speci�c �les are spread out over di�erent directories, a spe-

cial access path has been setup for each version in the DELPHI AFS group directory

/afs/cern.ch/group/xx/dstana. Thus, when accessing the 960826 version of the pam-�le

herlibxx.car the access path is

/afs/cern.ch/group/xx/dstana/960826/src/car/herlibxx.car

and when accessing the 960826 version of the library libherlibxx.a the access path is:

/afs/cern.ch/group/xx/dstana/960826/lib/libherlibxx.a

Any �le withing a version should be accessed using these paths or, even more convenient,

using the group de�ned environment variables $DELPHI

There is one serious disadvantage with the net of soft links maintained between the

released versions in the central repository, namely: the removing of a version becomes

quite cumbersome. Simply removing the directory tree with rm -r 960818 implies that

the soft link 960826/src/car/herlibxx.car points to nowhere. A special script, rmver-

sion.csh, (described in section 4.1.14) must therefore be used to disconnect (remove all

link dependencies) and remove a version.

4 The software administration and distribution sys-

tem

The DELPHI o�ine analysis software administration and distribution consists of the

following steps:

(a) Create a new version tree in the share area in the central repository and copy to

it all new �les from the package export areas. These actions are performed by the

script update share.pl.

(b) Spawn the library building on the reference machines. This action is performed by

the script update speci�c.pl.

(c) When all compilations �nished on the reference machines the compiled libraries (and

programs if any) must be copied back to the new version tree in the speci�c area of

the central repository. This action is performed by the script update speci�c.pl.

(d) Distribute all �les belonging to the new version to the local disks of each node in

the DELSHIFT cluster. This action is performed by the scripts shift/mkall.csh.

(e) Release the version for production. This action is performed by the script re-

lease.csh.

In addition to the listed basic tasks of the DELPHI o�ine analysis software librarian

there is also the following duty:

(f) Check disk space in the central repository and remove old versions if necessary.

Actions are performed by the scripts check space.csh and rmversion.csh.

8

In addition to the action scripts listed above there are a few utilities needed for checking

the compilation status and AFS cache corruptions, cleanup non-released versions and

distribute a given �le to all DELSHIFT nodes.

Two dual scripts start libupdate.csh and end libupdate.csh runs as acron-jobs on

CERNSP every night. These two scripts performs essentially all the tasks listed above

including checking the disk space and removing old versions. The output from these the

two acron-jobs are mailed to the dellib account from which it should be fowarded to

the DELPHI o�ine analysis software librarian. The only task not performed by the two

scripts is the actual release of the version. This must be done manually by the appointed

DELPHI o�ine analysis software librarian after having carefully checked that all �les have

been properly installed and distributed to all the subscribed (DELSHIFT) nodes.

The rest of this section contains a detail description of the individual scripts in the

software administration and distribution system. The scripts are listed in alphabetical

order.

4.1 Scripts

Although all utility scripts which are parts of the software administration and distribu-

tion system will be described in this section, the librarian should normally only use the

following: cleanup.csh, shift/mkall.csh, release.csh, rmversion.csh, update share.pl and

update speci�c.pl.

4.1.1 check space.csh

check space.csh checks the current space used in the central repository and compares it

with the AFS volume quota. Also the partition quota is checked since over-allocation

of AFS volumes may cause out-of-space on the partition. The alarm limits are set

by the two variables volumelimit (currently 80%) and partitionlimit (currently 95%).

check space.csh returns 0 if the alarm limits are not exceeded and 1 in all other cases.

check space.csh takes no arguments. The product context is given by the basename

of the directory from where it runs, e.g. it is dstana if the working directory is

~

/public/etc/dstana (see section 2).

4.1.2 check status.pl [version]

check status.pl checks the current status of the library compilations (if any) running on

the reference machines. The status information (written by makedlib) is taken from the

�le upderr.log which is local on each reference machine. check status.pl reads the library

building con�guration �le build defs.pl and retrieves the upderr.log �les using \ rcp" from

each nodes/directories given by the arrays @BUILD MACHINES and @BUILD DIRS .

The following checks are done:

(a) Problems reported by makedlib for any of the libraries.

(b) Checks that there is one record for each library given by associative array

%LIB RESPONSIBLES .

(c) Checks for version-consistency between the reference machines so that there are

not some machines compiling e.g. 960826 while others are compiling 960818.

9

If check status.pl is called with the version argument, the version consistency is

checked against the speci�ed version.

If at least one of these checks does not return success status (or in case of inter-

nal problems) check status.pl sends a mail to dellib@afsmail.cern.ch and exits with

error (1) status. If makedlib reports ypatchy or compilation problems with a li-

brary check status.pl also sends a mail to the appropriate library responsible (given

by %LIB RESPONSIBLES).

Since check status.pl reads the build defs.pl �les it must run in a product con�gura-

tion directory. The product context is given by the basename of the directory from where

it runs, e.g. it is dstana if the working directory is

~

/public/etc/dstana (see section 2).

The status records in the upderr.log have the format:

#<version>:<status>:<library>:<cradle>

For instance:

#961004:success:libdstanaxx.a:dstanaxx.cra

#961004:fortran:libskelanaxx.a:skelana.cra

#961004:ypatchy:libvdclapxx.a:vdclapxx.cra

#961004:success:libuxxx.a:uxxx.cra

#961004:success:libufieldxx.a:ufield.cra

#961004:success:libuhlibxx.a:uhlib.cra

#961004:success:libpxdstxx.a:pxdstxx.cra

#961004:success:libtanagraxx.a:tanagraxx.cra

#961004:success:libtriggerxx.a:triggerxx.cra

#961004:success:libpxtag2xx.a:pxtag2xx.cra

#961004:success:libherlibxx.a:herlibxx.cra

#961004:success:libkalxx.a:kalxx.cra

4.1.3 cleanup.csh

cleanup.csh cleans up non-released versions in the DELPHI AFS project space. Only

versions which are newer than the current production version are removed. If there are

non-released versions which are older than the current production version cleanup.csh

reports a warning but does not remove the version. This must be done by calling rmver-

sion.csh (see section 4.1.14) directly for that version.

cleanup.csh uses the criteria that neither the AFS ACL group xx:user nor xx:swtest

(for the prerelease) are in the AFS ACLs of the root share directory of the version in the

DELPHI AFS project area.

cleanup.csh does not take any argument.

4.1.4 cmp dirs.pl dir1 dir2

cmp dirs.pl compares the �les in dir1 with the �les in dir2 and returns non-zero status in

either of the two cases:

(a) one or more �les in dir1 are missing in dir2

(b) one (or several) �les in dir2 whose content is not identical with the the content of

the corresponding �le in dir1.

10

Note that it is the dir1 which determines which �les cmp dirs.pl looks for in dir2. Thus,

dir2 may contain �les which are not present in dir1. cmp dirs.pl should be executed in

the directory at the level next above dir2. cmp dirs.pl can be used to check whether a

package export area (under AFS) is di�erent from the current share area in the central

repository. For instance:

cd $DELPHI_PAM/..

~/public/etc/cmp_dirs.pl ~dstana/public/export/car car

compares the current $DELPHI PAM with the pams in the dstana export area.

4.1.5 daily tasks.csh

daily tasks.csh is called by start libupdate.csh. It simply calls other scripts to perform

daily tasks like copying the latest delana from the FARM or distributing new luminosity

or btagging calibration �les to the DELSHIFT nodes.

4.1.6 distribute fat grou.csh

distribute fat grou.csh checks whether the FAT GROU.NAMES �le has changed in the

export area and if so the new version is copied to the current production version in the

central repository and distributed to all DELSHIFT nodes. FAT GROU.NAMES is

a particularly critical auxiliary data �le which contains all FATMEN nicknames for the

di�erent DELPHI datasets. distribute fat grou.csh is executed as a separated acron-job

once per hour. distribute fat grou.csh does not take any arguments.

4.1.7 distribute �les.pl export-dir

distribute �les.pl checks the export directory export-dir for new auxiliary data �les which

are not present in the current production version in the central repository. If it �nds any

new �les they are copied to the current production version in the central repository as well

as to all DELSHIFT nodes. Note that existing �les will never be updated in the current

production version, only new �les can be added.

Only a restricted set of auxiliary data �les are quali�ed to be distributed this way.

They are normally related to new datasets which cannot be analysed without the presence

of these �les. Source code �les should never be distributed this way (distribute �les.pl is

protected against this). Source code should always be synchronously released with a new

version (as was stated in the rules listed in section 1).

distribute �les.pl is called by daily tasks.csh (section 4.1.5).

4.1.8 end libupdate.csh

end libupdate.csh runs as a daily acron-job dual to start libupdate.csh. It performs the

following tasks:

� It checks whether there is a pending new version or prerelease (created by

start libupdate.csh) which needs to be installed.

� If there is a new version (or prerelease) it checks calls check status.pl to see if the

compilation has �nished and that everything is OK.

11

� If check status.pl returns OK, end libupdate.csh calls the update speci�c.pl script

with the -assemble option to install the new libraries in the speci�c area in the

central repository.

� After the libraries have been successfully installed end libupdate.csh calls

shift/mkall.csh to distribute the new version to all subscribed nodes (the DELSHIFT

cluster).

� If check status.pl returns not OK, end libupdate.csh calls cleanup.csh to remove

the unsuccessful version.

If a new o�cial version (not a prerelease) is successfully installed and distributed by

end libupdate.csh it can be released by the librarian using the release.csh utility. If the

version was not successful or if the version was a prerelease the librarian does not have to

do anything (a prerelease is never released it is simply installed and opened to the AFS

ACL group xx:swtest). In case of system or compilation problems the librarian might

need to follow up the cause for the problems.

4.1.9 mkxxlinks.pl

mkxxlinks.pl is the script which links the access paths in the DELPHI AFS group area

/afs/cern.ch/group/xx/dstana to the central repository in the DELPHI AFS project area

/afs/cern.ch/delphi/share/dstana and /afs/cern.ch/delphi/@sys/dstana (similarly for the

database). mkxxlinks.pl does not take any arguments. It should be started from the

root directory for the access path (e.g. /afs/cern.ch/group/xx/dstana for the dstana

product). Normally the librarian does not need to call mkxxlinks.pl directly, it is called

from release.csh whenever a new release is put in production.

4.1.10 purge.pl version

purge.pl disconnects version (removes all dependence on it from other versions) in the

central repository. It does not remove the version. It has to be called for individually for

the share directory and each of the speci�c directories of the version. purge.pl takes one

argument, the version to be removed. purge.pl should run from the directory at the level

next above the root directory of the version to be removed. For instance:

prompt > cd /afs/cern.ch/delphi/share/dstana

prompt > ls

960617 960723 960814 960826

960715 960731 960818 prerelease

prompt > ~/public/etc/purge.pl 960723

purge.pl does not disconnect released version, i.e. a version which is opened to the

AFS ACL group xx:user. purge.pl functions as follows:

� All real �les in version are moved upstream to next higher version and a soft link

is maintained from the previous path of the �le to the new path (this prevents that

the �les \disappear" from the users while purge.pl is running). A �le is removed

if it cannot be moved upstream, i.e. there is already a real �le in the next higher

version.

12

� When all �les have been moved or removed from the version all links pointing to

it from other versions are updated to point to the corresponding �les in the next

higher version.

The librarian should normally not call purge.pl directly since a wrong usage can

corrupt other versions in the central repository. The script rmversion.csh should be used

to remove a version. Once purge.pl is running it should not be killed.

4.1.11 purge oldest.csh

purge oldest.csh disconnects and removes the oldest version in the central repository. It

does not take any arguments and it is called from the daily acron-job start libupdate.csh

if there is not enough space in the central repository.

4.1.12 rcp all.csh �le remote-path

rcp all.csh distributes the �le �le to the path remote-path on all DELSHIFT nodes. It is

useful if there is an urgent need for distributing a new auxiliary data �le.

4.1.13 release.csh product version

release.csh should be used to release and put in production the version version of the

product product (dstana or database). release.csh does the following:

� Checks that the version is properly installed in the central repository.

� Opens the version to the AFS ACL group xx:user.

� Calls the script mkxxlinks.pl (see section 4.1.9) to create the access path to the

version in the DELPHI AFS group directory.

� Does a rsh to pubxx account on shift10 and shift27 to execute the script

new libs which changes the group de�ned environment variables ($DELPHI, $DEL-

PHI PAM, ... etc.) to point to the new version and broadcasts to all interactive

DELPHI users on shift10 and shift27 that the libraries have been updated.

Calling release.csh is the �nal step in the software administration and distribution system.

It should always be executed manually by the librarian after he has checked that the

version is properly installed everywhere (on AFS and DELSHIFT nodes).

release.csh can also be used to go back to the previous version if something went wrong

in the current production version. For example, if a disastrous bug was found in the new

version which cause all analysis programs to crash, there will be an urgent need to go

back to the previous production version. On DELSHIFT it must then be made sure that

the previous version is still installed (which is normally normally the case).

Using release.csh to go back one version works �ne on DELSHIFT (which is the most

urgent) but it has no e�ect on the current production version under AFS. This is because

on AFS the group environment variables are automatically set to point to the access path

for the latest version. To go back one version on AFS one simply remove the access path

to the version in the DELPHI AFS group directory (/afs/cern.ch/group/xx/dstana for

the dstana product). Note that this will not remove the version itself from the central

13

repository, only the access path to it. To entirely remove the version the librarian should

use the rmversion.csh script.

4.1.14 rmversion.csh version

rmversion.csh is the librarian interface to remove a (released) version from the central

repository. Before calling rmversion.csh the librarian must remove the AFS ACL group

xx:user from the AFS ACL of the root share directory of the version. For example, assume

that the dstana version 960617 shall be removed:

prompt > cd /afs/cern.ch/delphi/share/dstana

prompt > fs sa -dir 960617 -acl xx:user none

prompt > ~/public/etc/rmversion.csh 960617

rmversion.csh uses the DELPHI group environment variables to determine from which

product (dstana or database) it shall remove the version. To switch between the dstana

and database products the command dellevel should be used (do dellevel -h to �nd out

the usage).

4.1.15 start libupdate.csh

start libupdate.csh runs as a daily acron-job dual to end libupdate.csh.

start libupdate.csh follows di�erent branches depending on the weekday. For instance,

in the beginning of the week (Sunday or Monday) it checks if a new version should be

created and proceed with the creation of one if it �nds new code in the package export

areas. If there is no need for a new version (i.e. the �les in the package export areas

have not changed) or if the weekday is not Sunday or Monday it tries to do a prerelease

update. The motivation for this logic is that a new version should only be released in the

beginning of the week when people are around. If a bug is found in the new release it is

normally immediately reported by angry users and the librarian will switch back to the

previous version. Releasing a new version on a Friday may stall all physics analysis jobs

running on DELSHIFT during the whole Weekend.

A prerelease on the other hand can be done at anytime since it is only used by the

people developing the code. A bug in the prerelease will not cause thousands of analysis

jobs to crash.

The execution
ow of start libupdate.csh is as follows:

� De�ne the environment and check that the necessary AFS commands are present.

Check if a version corresponding to todays date already exists and if so exit without

further action. This could be the case if there was a manual updating done by the

librarian during the day.

� Execute daily tasks.csh see section 4.1.5.

� Cleanup unreleased versions (call cleanup.csh).

� Check if there is enough space in the DELPHI AFS project space. If not try �rst

to remove tar-�les. If this does not help call purge oldest.csh until the space is

su�cient.

14

� Determine whether the new version should be a prerelease or an o�cial one. If it

is Sunday start libupdate.csh follows the o�cial version branch. If it is Monday

and there was no o�cial Sunday release start libupdate.csh also follows the o�cial

version branch. If there is no need for an o�cial release or if it is not Sunday or

Monday, start libupdate.csh follows the prerelease branch.

� Call update share.pl to update the share area with the new export �les.

� If update share.pl returned success status (i.e. library updating is needed) call

update speci�c.pl -distribute to distribute the compilation of the libraries to the

reference machines.

4.1.16 update rhosts.csh

update rhosts.csh simply distributes an appropriate .rhosts �le to all DELSHIFT ma-

chines. It is normally called from daily tasks.csh .

4.1.17 update share.pl

The two (perl) scripts update share.pl and update speci�c.pl constitute the kernel of

the DELPHI software administration and distribution system.

update share.pl takes no arguments. It is driven by the con�guration �les (perl-scripts)

h packagei con�g.pl. The PRODUCT context is given by the base-name of the current

directory, e.g. PRODUCT=dstana if update share.pl is started from

/afs/cern.ch/user/d/dellib/public/etc/dstana .

update share.pl is a rather complex script with several hard-coded patches to take

care of dirty package export directories

1

.

The log-output from update share.pl is written to a �le update share.log in the cur-

rent working directory. The log-output does only contain messages from update share.pl.

Any stdout or stderr output from system calls inside update share.pl is not written to

update share.log.

In rough outline update share.pl performs the following tasks:

� Setup a new version directory in the share area of the central repository. The

new version directory contains no �les, only links which are pointing back to �les

in previous versions. It can be considered as a clone of the last previous released

version of the share �les in the central repository.

� Require the h packagei con�g.pl �les one by one. The layout of the h packagei

con�g.pl scripts is described in section 2.2.

{ Call INIT to get a list of �les in the package export area.

{ The format of the �le-list depends on the operating system where the export

area reside (UNIX or VMS). It is therefore decoded into a OS independent �le

list which is stored in an internal associative array. The decoding procedure

calls FILTER FILE NAME for each �le it �nds in the export directory.

1

Some package responsible prefer to use the export directory for the code development etc. which has

as a consequence their export directory may contain emacs backup or recovery �les, CVS administration

directories etc.. All this \crap" should not be copied to the central repository.

15

{ From the decoded �le-list a (perl) script is written to get the �les. If the �le

already exist in on the client side (i.e. in the central repository) the script calls

UPDATE. If the �le does not exist the script calls NEW. For historical rea-

sons the \get-�le"-scripts are named: h packagei .cntx (get �les in the current

package context).

{ Call the h packagei .cntx script to get the �les. The UPDATE routine should

normally copy the �le �le-name to a temporary �le �le-name#package which is

the �le name update share.pl searches for when it resolves �le-clashes between

the packages.

� Check for �le-clashes between the packages. This procedure checks for �le �le-

name#package. If there are more than one package which exported �le-name the

contents of the �les are compared. If they are not di�erent the �le is silently installed

as �le-name. If the �les are di�erent they are left as they are and a clash warning

is signalled in the log-�le.

� If there were no �le-clashes and if at least one �le was updated, update share.pl

calls /bin/tar to produce two tar-�les: src.tar and dat.tar . The tar'ing may

be suppressed for either or both tar-�les by setting (in the build defs.pl �le) the

parameters $TAR SRC and $TAR DAT to 0 (default is 1).

� update share.pl returns 0 if the updating was successful (no clashes) and if at least

one �le was updated. In all other cases it returns 1.

The decision to update a �le from a package export area to the central repository is

taken on the basis of the contents of the �les. This is obviously a quite heavy task since

all �les must be read. Originally the �le updating strategy was based on �le modi�cation

times. However, this turned out to be unsafe because a package responsible may choose

to go back to an older version of the �le and a simple UNIX \ mv" (/bin/mv) preserves

the last modi�cation time of the �le.

In addition to the above tasks update share.pl also make sure that there are only one

level of soft links between versions in the central repository. Assume for instance that the

last released version is 960916 and that it contains a link:

aabtagxx.car -> ../../../960617/src/car/aabtagxx.car

where the 960617 version contains the real �le aabtagxx.car. When update share.pl

creates a new version it makes sure that aabtagxx.car points to the real �le, i.e.

aabtagxx.car -> ../../../960617/src/car/aabtagxx.car

rather than the link

aabtagxx.car -> ../../../960916/src/car/aabtagxx.car

4.1.18 update speci�c.pl

The two (perl) scripts update share.pl and update speci�c.pl constitute the kernel of

the DELPHI software administration and distribution system.

update speci�c.pl has two operation modes: distribution and assembling. The

operation mode is determined by the by the
ags -distribute and -assemble of which

exactly one must be given.

16

As usual the PRODUCT context is give by the base-name of the current directory,

e.g. PRODUCT=dstana if update speci�c.pl is started from

/afs/cern.ch/user/d/dellib/public/etc/dstana . update speci�c.pl requires the con�gu-

ration �le build defs.pl described in section 2.1. update speci�c.pl calls several scripts

which all should reside in the current working directory. Of the scripts listed below only

mkVMSspeci�c.csh, mkspeci�c.com and makedlib.com are optional. All others must be

provided.

The following scripts must be provided in the current working directory:

� distribute share.csh : called by update speci�c.pl in distribute mode. It copies to

each reference machine the �le src.tar which contains the entire src directory of the

version to be built. distribute share.csh also copies the two scripts mkspeci�c.csh

and makedlib and starts the mkspeci�c.csh script on each reference machine.

� get speci�c.csh : called by update speci�c.pl in assemble mode. It copies the TAR

�les containing the compiled libraries (created by mkspeci�c.csh) and unTARs them

in the appropriate speci�c area in the central repository.

� makedlib : is a sophisticated script which performs the actual compilation of a

library. It takes two arguments: the full library name and the full cradle name.

makedlib rede�nes the DELPHI environment variables $DELPHI PAM and $DEL-

PHI LIB to point to ../src/car and ../lib respectively. Thus, makedlib is intended

for creation of a local version of the target library and assumes that it is running

within that version. In the current setup mkspeci�c.csh calls makedlib from a

tmp directory within the local version. By rede�ning the DELPHI environment

makedlib makes sure that it uses the pams within the new version and not in the

production version when creating the libraries. For each operative step the return

status must be checked. If something goes wrong the building of the target library

should be immediately interrupted and a status record should be appended to the

�le ../upderr.log. In case of successful creation of the library a success status record

should be written to ../upderr.log.

� mkspeci�c.csh : is started by distribute share.csh on each reference machine. In

the current setup mkspeci�c.csh is called with two arguments: the absolute path

to the build directory (given by $BUILD DIRS) and the version to be built (e.g.

960924). Called with these two arguments mkspeci�c.csh redirects its output to

mkspeci�c.log and puts itself in background. mkspeci�c.csh cleans up the build

directory and unTARs the src.tar �le and calls makedlib (or phlib.csh) to build

the libraries. mkspeci�c.csh is described in more detail in section 2.3.

� mkVMSspeci�c.csh : copies the DCL COM �les mkspeci�c.com and makedlib.com

and the two TAR-�les src.tar and dat.tar to VXCERN and submits two batch jobs

MKSPECIFIC.COM two ALPHA$LONG and VSCRNA SYS$LONG for creation

of ALPHA/VMS and VAX/VMS libraries respectively. mkVMSspeci�c.csh is

optional (update speci�c.pl calls it if present in current working directory).

� mkspeci�c.com : (optional) VMS DCL version of the mkspeci�c.csh script.

� makedlib.com : (optional) VMS DCL version of the makedlib script.

17

update speci�c.pl assumes the version to be the most recent it �nds in the share area

of the central repository and creates, if necessary, the corresponding version directories in

the speci�c area of the central repository.

4.1.19 shift/mkall.csh version [working-directory]

The mkall.csh script in the

~

/public/etc/shift directory distributes and installs a ready

version to all DELSHIFT machines. The working-directory argument is optional and if

speci�ed mkall.csh makes a cd to the working directory and puts itself in background.

mkall.csh calls the script install script mkshift.csh for each node in the DELSHIFT cluster.

5 Validation of a library release

Before any validation of an o�cial release, the librarian is testing its stability with a

testjob. This section do not apply to prerelease mechanism, in which libraries contents is

left to their authors for testing and (or) debugging purposes.

5.1 The librarian testjob

The dellib account have to check that a testjob, with which the mostly used routines of

DELPHI o�cial codes are called, thus tested, is running correctly with this hypothetical

new release. The location of the dellib testjob area is the directory:

/afs/cern.ch/user/d/dellib/public/etc/testjob/

In this area:

� skelexa.cra is the cradle

� skelexa.car is the pam �le

� test_libraries.csh is the script submitted to batch queues

All of these three �les have been taken from the o�cial DELPHI template area:

/afs/cern.ch/user/p/pubxx/public/testjob/, with very small modi�cations to �t the

librarian need.

The hypothetical new release libraries, source code and data �les, after being copied to

any DELSHIFT node (see the section on mkall.csh), are tested once for every DELSHIFT

Operating System (e.g. HP-UX9, HP-UX10, OSF1 as of date of this note), resulting to

the following �les:

� [library version] $OS.o$QSUB REQID

where:

� [library version] is the name of the library release, like: 970720, for example.

� $OS is the Operating System, like HP-UX10.

� $QSUB REQID is the NQS identi�er of the batch job

18

For example resulting �les for the test of the 970720 release were:

� 970720 HP-UX9.o52745 for the HP-UX9 Operating System,

� 970720 HP-UX10.o52744 for the HP-UX10 Operating System,

� 970720 OSF1.o52743 for the OSF1 Operating System

If the status of all the scripts running on all the possible DELSHIFT Operating Sys-

tems is good, e.g. :

� no crash during patchy-ing, compilation, linking and execution

� the desired output �les are created (currently: one ntuple and selected events on

another �le)

� global status code is 0

The release.csh script is executed and the tested version become the new o�cial

one.

5.2 Putting Information on the World Wide Web

The next step is to inform all DELPHI people of this new release: the librarian have to:

� send a mail to the experts of delphicore mailing-list (delphi-core@delphi-

lb.cern.ch) and to the other librarians (currently: the one for the in2p3.fr

cell, and the one for the Linux Operating System). This mail will

be archived automatically, accessible through the delphicore WWW page:

http://delphiwww.cern.ch:8001/archive/delphicore/Welcome.html

� Once this mail is appearing into the archive (maximum 10 minutes after the

mail send to delphicore mailing-list is received), he have to update the �le

/afs/cern.ch/user/d/dellib/www/release_history.html to re
ect this change

into its own WWW page, creating a link to the mail archived in the delphicore

server

� send a news to the newsgroup called DELPHI.OFFLINE, telling people

that a release has been achieved, and a link to its WWW page, namely:

http://wwwcn.cern.ch/~dellib/release history.html This news will be visible from

the DELPHI NNTP server at: http://delnews.cern.ch:8065/VAXNEWS

19

