DELPHI Collaboration DELPHI 97-127 PROG 226
5 August, 1997

DELPHI analysis code administration and
distribution

Olof Barring,
University of Lund,
Physics Departement,
BOX 118,

S — 221 00 LUND, Sweden

Jean-Damien Durand
CERN, CH-1211 Geneva 23, Switzerland

or
Université Claude Bernard de Lyon,
IPNL, IN2P3-CNRS, F-69622,

Villeurbanne Cedex, France

Abstract

This note describes the technical details of the current implementation of the DEL-
PHI offline analysis software administration and distribution system. It is primary
intended as a reference manual for the librarian but some of its content also concerns
the people providing the software.

1 Philosophy, terminology and recommendations to
administrator

The current administration and distribution of DELPHI offline analysis software is based
on the following principles:

(a) The files released with a specific version (see definition below) should never change.
Any bug-fix or new feature will be added in the subsequent version.

(b) The files within the version should be unique within that version.

(c) The files within the version should be grouped according to their type and not their
contents. Four different types are defined:

(c1) Source code files (cradles and pams) reside in a src directory (to admit the
addition of other types of source code files a sub-level car was added so the
cradles and pams actually reside in src/car).

(c2) ASCII data files used for driving the analysis routines (e.g. alignment, calibra-
tion, luminosity and run quality files) reside in a dat directory.

(c3) Libraries reside in a lib directory.

(c4) Scripts and compiled programs reside in a bin directory.
(d) The file naming conventions:

(d1) Source code pams are named in lower case letters and have the extension .car

(d2) Source code cradles are named in lower case letters and have the extension
.cra

(d3) ASCII data files are named in upper case letters.

(d4) Archive libraries follow the standard UNIX naming with the prefix lib and the
extension .a (e.g. libdstanaxx.a).

(d5) Scripts and programs are named in lower case letters.

(d6) Cradles and libraries have version-independent names.
(e) The complete version is local on each DELSHIFT machine (no NFS or AFS mounts).

(f) All soft links within and between versions are relative. The major argument for this
is transportability.

Exceptions to the rule (a) are a few ASCII data files, e.g. FAT_GROU.NAMES, which
may be asynchronously updated at any time. However, source code files and libraries
never change within a version.

The following terminology will be used throughout this note:

e version: a version is a directory tree, structured according to the rules (c1-4) above,
which contains the complete set of files for DELPHI offline analysis. The root direc-
tory of a version is normally named with a date-stamp, YYMMDD (e.g. 960826).

production version: the production version is the currently used version to which
the DELPHI group environment variables (e.g. DELPHI_PAM) are pointing.

release: a release is a ready version which is or has once been the production version.
The primary criteria which determines whether a version is released or not is the
AFS ACL of the root share directory of the version in the DELPHI AFS project
space. If the AFS ACL group xx:user is within the AFS ACLs the version is
considered as released.

prerelease: a prerelease is a version built from development files for debugging pur-
pose. The prerelease version is rooted under the prerelease directory rather than the
usual date-stamped YYMMDD directory. The access to the prerelease-directory is
restricted to the AFS ACL group xx:swtest.

central repository: the central repository is the primary storage for all DELPHI
offline analysis files and libraries. It is defined to be in the DELPHI AFS project
space with the absolute paths:

/afs/cern.ch/delphi/share (share files)

/afs/cern.ch/delphi/@sys (specific files).

access path: the access path is the path which should be used to access the DELPHI
offline analysis files and libraries in the central repository. The use of the access
path is facilitated by the group defined environment variables (e.g. $DELPHI,
$DELPHI_PAM, $DELPHI_LIB etc.). On the DELSHIFT nodes where the DELPHI
offline analysis files and libraries are local the access path is the same as the actual
path. On AFS the access path is rooted under the DELPHI AFS group space, for
instance

/afs/cern.ch/group/xx/dstana

for the dstana product. Use of actual paths under AFS (e.g. the paths to the
central repository in the project space) is not recommended because the central
repository may contain incomplete and buggy versions.

package: a package is defined as a collection of files exported by a package responsible
(e.g. the UX pam and cradle for the ux package). Note that a package does not
necessary need to be associated to a library. For instance, the package btagging
contains a collection of btagging calibration files (auxiliary data files) but no source
code.

export area: the export area of a package is a predefined directory-tree containing
all the files which the package responsible wish to appear in the next release. An
example of an export area is the path:

/afs/cern.ch/user/d/dstana/public/export

which is the export area of the “dstana” package. A package responsible may choose
to create an additional export area for development files which will be used to build
the prerelease version. For instance:

/afs/cern.ch/user/d/dstana/public/new

is the export area for the dstana development version.

product: a version always belongs to a product. There are four defined products
in DELPHI: dstana, database, delana and delsim. Only the dstana and database

2

products are controlled by the software administration system described in this
note. Although the system will be described in the context of dstana (DELPHI
offline analysis), everything what is said also applies to the database product.

e auziliary data file: the ASCII data files which are used for the driving of the analysis
routines are called auziliary data files.

The DELPHI offline analysis software administration and distribution system may run
from any central CERN node which is a true AFS client. The central repository for all
DELPHI offline analysis files is found in the DELPHI project area in the AFS cell cern.ch
. The full path to the DELPHI project area is: /afs/cern.ch/delphi .

The following rules help to prevent and keep track of mistakes:

(a) Any action which may change the content of an existing (and released) version in
the central repository is strongly discouraged but if needed it should be done by the
appointed librarian using the AFS account dellib.

(b) Never remove a released version in the central repository without having first com-
pletely removed all dependence on it (inter-version dependence will be explained
later in section 3).

(c) Before releasing a version make sure that it has been successfully distributed to all
subscribed nodes.

Unreleased versions in the central repository may be removed without causing any dam-
age. On DELSHIFT there is no inter-version dependence so it is less dangerous to remove
a released version which is not in production. However, it should then be made sure that
no job depends on this version. Normally a version should be left on disk at least a few
days after it has been put out of production.

2 The dellib account

All administration of the DELPHI offline analysis software is done from the AFS account
dellib. The entire system is controlled by a set of scripts which are found in the public/etc
directory-tree. The different scripts will be described in section 4.1.

Any system status message will be mailed to dellib@afsmail.cern.ch and it is the
responsibility of the librarian to arrange with an appropriate .forward file.

When running a software administration script the product (dstana or database) con-
text is determined by the base-name of the configuration directory from which the script
runs. For instance when running in public/etc/dstana or public/etc/devlibs/dstana the
context is dstana. The configuration directory contains configuration files and some driver
scripts for the software administration system. The configuration and driver files which
may need to be modified by the librarian will be described in the following subsections.

2.1 Configuration file for the library building: build_defs.pl

build_defs.pl contains the settings for all parameters related to the building of the libraries.
Currently the following (perl) parameters are set in build_defs.pl :

name= $SHARE, type=scalar, value: path to the root directory for all ASCII files
(source code and auxiliary data files) in the DELPHI AFS project space.

name= QOSTYPE, type=array, value(s): supported OS types. The format is nor-
mally in the form of the predefined AFS symbol @sys (e.g. hp700_ux90 of HP-UX
9.0x systems).

name= QBUILD_MACHINES, type=array, value(s): node names of the reference
machines

name= QBUILD_DIRS, type=array, value(s): root path for the building of the
libraries on the corresponding reference machine (there should be an one-to-one
correspondence between each entry in @BUILD_MACHINES and @BUILD_DIRS).

name= %LIB_RESPONSIBLES, type=associative array, key(s): full library name
of each library which is built. Value(s): full mail-address to the responsible of that
library.

Here follows an example of the file build_defs.pl

#!/usr/local/bin/perl

#

Definition needed by update_specific.pl for building libs.

#

$SHARE="/afs/cern.ch/delphi/share/$PRODUCT" ;
@OSTYPES=("hp700_ux90’,

’alpha_osf1’,
’rs_aix32’,
’hp700_ux100’);

@BUILD_MACHINES=(’shift10.cern.ch’,

’shift27.cern.ch’,
’cernsp.cern.ch’,
’shift34.cern.ch’);

@BUILD_DIRS=("/scratch/dellib/build/$PRODUCT",

"/usr/dellib/build/$PRODUCT",
"/afs/cern.ch/delphi/rs_aix32/$PRODUCT/build",
"/var/users/dellib/build/$PRODUCT") ;

%LIB_RESPONSIBLES = (’libdstanaxx.a’ , ’Tzanko.Spassoff@cern.ch’
, ’libskelanaxx.a’ , ’Tzanko.Spassoff@cern.ch’
, ’libvdclapxx.a’ , ’Tzanko.Spassoff@cern.ch’
, ’libuxxx.a’ , ’grodid@frcpnll.in2p3.fr’
, ’libpxdstxx.a’ , ’Yves.Sacquin@cern.ch’
, ’libpxtag2xx.a’ , ’John.Wickens@cern.ch’
, ’libufieldxx.a’ , ’John.Wickens@cern.ch’
, ’libuhlibxx.a’ , ’John.Wickens@cern.ch’
, ’libtanagraxx.a’ , ’John.Wickens@cern.ch’
, ’libtriggerxx.a’ , ’Carlos.Lacasta@cern.ch’
, ’libherlibxx.a’ , ’Pierpaolo.Rebecchi@cern.ch’
, ’libkalxx.a’ , ’anders.borgland@fi.uib.no’
);

2.2 Package configuration files: (package) _config.pl

Collecting the (share) files from the export area of each package is probably the most
important but also the most complex and vulnerable part of the software administration

4

system. In 1993 it had to be forseen that the responsible for a package could choose
to work on CERNVM, VXCERN or a UNIX node. In addition, there were no imposed
standards on file-naming and directory structure for the files contained in the package.
The package configuration files were originally designed to resolve any file naming conflicts
with the rules listed in section 1 and to provide the system operations of copying files
from the export area to the central repository. There is one configuration file for each
package (e.g. phdst_config.pl for the phdst-package).

The variable names in the package configuration files have the prefix server when
referring to the package export area and client when referring to the share area in the
DELPHI AFS project space (given by the $SSHARE parameter defined in build_defs.pl).
For instance, the perl variable $server_file refers to a file in the package area whereas
$client_file refers to a file in the share area of the DELPHI AFS project space.

Each (package) _config.pl file contains the following perl routines:

e INIT : initialisation of the package specific parameters like the package name and
server root directory (the export area). INIT also performs the action of providing
a list (normally just a “1s -R” of the export area if it is under AFS) of the package
files to the software administration system.

e FILTER FILE NAME : translates (if needed) the server file name into an ap-
propriate client file name according to the rules in section 1.

e INIT_GET _FILES : CERNVM related function which was needed because ftp
had to be used rather than rcp to retreive files from CERNVM.

e END_GET_FILES : CERNVM related function which is dual to
INIT_GET_FILES.

e NEW : decision function to determine what to do if there are new files on the server
side. Normally this function simply calls UPDATE since this is the normal action
when a new file appears in the server area.

e UPDATE : does the actual update of a file from the server to the client area. In
the case the server area is under AFS the action in UPDATE is a simple “ cp”. If
the server area is on VXCERN the UPDATE does a “ rcp”. UPDATE normally
also checks for AFS cache corruption.

These routines are required although only INIT and UPDATE are really important. Ob-
viously some parts related to collecting package files form CERNVM are obsolete in the
package configuration files after the run-down of CERNVM. However, all the routines
listed above are called at least once and must therefore be provided.

If a new package is to be added by the librarian it is normally sufficient to copy one
of the old (package) _config.pl files (e.g. dstana_config.pl) and modify the INIT function
according to the new package (change $PACKAGE and $SERVER_ROOT).

2.3 The library building steering script mkspecific.csh

Except for the PHDST library all DELPHI offline analysis libraries are built using a
sophisticated script called makedlib. For any new library it is highly recommended that

the cradle is adapted to run with makedlib. The requirements for building a library with
makedlib will be explained in section 4.1.18.

The script mkspecific.csh constitutes the steering of the building of the libraries on
the reference machine. It performs the following tasks:

Install the source files associated with the version to be built.

Call makedlib for each library (except for PHDST where phlib.csh is called instead).

tar the libraries into a file (OS-type) _specific.tar

Sends status mails to the dellib account. If a compilation fails the corresponding log
file together with the failing FORTRAN file(s) are sent to dellib@afsmail.cern.ch .

If a new library is to be added it is normally sufficient to add a line:

../bin/makedlib lib<newlib>.a <newlib>.cra >>&makedlib.log

where (newlib) should be substituted with the name of the new library (e.g. dstanaxx).
For the support of a VMS version of the libraries there is a corresponding DCL com-file
mkspecific.com (which calls makedlib.com) to run on VXCERN.

2.4 Adding a new library

In summary: the adding of a new library normally implies the adding of an entry to
the %LIB_RESPONSIBLES associative array in build_defs.pl, creation of a (package)
_config.pl file and adding an entry to the mkspecific.csh script (if a VMS version is
supported an entry must also be added in mkspecific.com).

To add a new package which is not associated to the building of a library, the only
action needed is to create and configurate a new package configuration file.

3 Layout of the share and specific areas in the DEL-
PHI AFS project space

Several released versions of the dstana (and database) software are stored in the DELPHI
AFS project area. Up to about four months old versions can be found if the updates
have not been to frequent (in average once per two weeks or so). The only restriction for
storing older versions is the limited disk space.

The absolute paths of the share and specific areas
under the DELPHI AFS project area are:

e /afs/cern.ch/delphi/share/(product)
e /afs/cern.ch/delphi/@sys/(product)

where (product) is either database, delana, delsim or
dstana.

®
[s]
? g
[%)
s g
2 <
@ o]
[5)
3 8 E
(=) x
~ x
< 2
2 2
<] =
3 &
g
[ee]
: :
A
o
o £
]
g
%]
o
K]
8
o
=
[=X
o)
k=)
5
2 8
§ I
2 2
= z
(8]
3
o]
o
(=]
O
©
8 €
218 LS
B &
: g
>
o
5 c
R 3

Figure 1: Example of soft link connections between two versions.

It is obviously a waste of disk space to store the same file twice if it has not been
changed in between two versions. To avoid this a complex system of soft links between
the different versions is maintained. An example is show in figure 1. Between the two
versions 960826 and 960818 the file herlibxx.car was not updated. Rather than storing
the file twice the 960826 version of the file is actually a link pointing back to the 960818
version of the file (the real file). Similarly the file dstanal0.car was not updated between
the versions 960818 and 960731 (not visible in the figure). Therefore the 960818 version of
the file is actually a link pointing back to the 960731 version of the file (the real file). All
links are relative (which follows the rule (f) listed in section 1) and point always to real
files (there are never more than one level of links). This means that the 960826 version of
herlibxx.car points to ../../../960818/src/car/herlibxx.car. Relative links facilitates the
transportability of a version to another repository.

A similar structure to the share area is maintained for the specific areas (
/afs/cern.ch/delphi/@sys/dstana). Currently (960901) the following specific areas are

7

supported: alpha_osfl, alpha_osf20, alpha_osf32, alpha_osf32c, rs_aix32, rs_aix41 and
hp700_ux90 (however all alpha_... paths actually point to alpha osfl and similarly
rs_aix4l — rs_aix32).

Since the share and specific files are spread out over different directories, a spe-
cial access path has been setup for each version in the DELPHI AFS group directory
/afs/cern.ch/group/xx/dstana. Thus, when accessing the 960826 version of the pam-file
herlibxx.car the access path is
/afs/cern.ch/group/xx/dstana/960826 /src/car/herlibxx.car
and when accessing the 960826 version of the library libherlibxx.a the access path is:
/afs/cern.ch/group/xx/dstana/960826/lib/libherlibxx.a
Any file withing a version should be accessed using these paths or, even more convenient,
using the group defined environment variables $DELPHI_... .

There is one serious disadvantage with the net of soft links maintained between the
released versions in the central repository, namely: the removing of a version becomes
quite cumbersome. Simply removing the directory tree with rm -r 960818 implies that
the soft link 960826 /src/car/herlibxx.car points to nowhere. A special script, rmver-
sion.csh, (described in section 4.1.14) must therefore be used to disconnect (remove all
link dependencies) and remove a version.

4 The software administration and distribution sys-
tem

The DELPHI offline analysis software administration and distribution consists of the
following steps:

(a) Create a new version tree in the share area in the central repository and copy to
it all new files from the package export areas. These actions are performed by the
script update_share.pl.

(b) Spawn the library building on the reference machines. This action is performed by
the script update_specific.pl.

(c) When all compilations finished on the reference machines the compiled libraries (and
programs if any) must be copied back to the new version tree in the specific area of
the central repository. This action is performed by the script update_specific.pl.

(d) Distribute all files belonging to the new version to the local disks of each node in
the DELSHIFT cluster. This action is performed by the scripts shift/mkall.csh.

(e) Release the version for production. This action is performed by the script re-
lease.csh.

In addition to the listed basic tasks of the DELPHI offline analysis software librarian
there is also the following duty:

(f) Check disk space in the central repository and remove old versions if necessary.
Actions are performed by the scripts check_space.csh and rmversion.csh.

In addition to the action scripts listed above there are a few utilities needed for checking
the compilation status and AFS cache corruptions, cleanup non-released versions and
distribute a given file to all DELSHIFT nodes.

Two dual scripts start_libupdate.csh and end_libupdate.csh runs as acron-jobs on
CERNSP every night. These two scripts performs essentially all the tasks listed above
including checking the disk space and removing old versions. The output from these the
two acron-jobs are mailed to the dellib account from which it should be fowarded to
the DELPHI offline analysis software librarian. The only task not performed by the two
scripts is the actual release of the version. This must be done manually by the appointed
DELPHTI offline analysis software librarian after having carefully checked that all files have
been properly installed and distributed to all the subscribed (DELSHIFT) nodes.

The rest of this section contains a detail description of the individual scripts in the
software administration and distribution system. The scripts are listed in alphabetical
order.

4.1 Scripts

Although all utility scripts which are parts of the software administration and distribu-
tion system will be described in this section, the librarian should normally only use the
following: cleanup.csh, shift/mkall.csh, release.csh, rmversion.csh, update_share.pl and
update_specific.pl.

4.1.1 check_space.csh

check_space.csh checks the current space used in the central repository and compares it
with the AFS volume quota. Also the partition quota is checked since over-allocation
of AFS volumes may cause out-of-space on the partition. The alarm limits are set
by the two variables volumelimit (currently 80%) and partitionlimit (currently 95%).
check_space.csh returns 0 if the alarm limits are not exceeded and 1 in all other cases.
check_space.csh takes no arguments. The product context is given by the basename
of the directory from where it runs, e.g. it is dstana if the working directory is
/public/etc/dstana (see section 2).

4.1.2 check_status.pl [version]

check_status.pl checks the current status of the library compilations (if any) running on
the reference machines. The status information (written by makedlib) is taken from the
file upderr.log which is local on each reference machine. check_status.pl reads the library
building configuration file build_defs.pl and retrieves the upderr.log files using “ rcp” from
each nodes/directories given by the arrays @QBUILD_MACHINES and QBUILD_DIRS .
The following checks are done:

(a) Problems reported by makedlib for any of the libraries.

(b) Checks that there is one record for each library given by associative array
%LIB_RESPONSIBLES .

(c) Checks for version-consistency between the reference machines so that there are
not some machines compiling e.g. 960826 while others are compiling 960818.

9

If check_status.pl is called with the wversion argument, the version consistency is
checked against the specified version.

If at least one of these checks does not return success status (or in case of inter-
nal problems) check_status.pl sends a mail to dellib@afsmail.cern.ch and exits with
error (1) status. If makedlib reports ypatchy or compilation problems with a li-
brary check status.pl also sends a mail to the appropriate library responsible (given
by %LIB_RESPONSIBLES).

Since check_status.pl reads the build_defs.pl files it must run in a product configura-
tion directory. The product context is given by the basename of the directory from where

it runs, e.g. it is dstana if the working directory is /public/etc/dstana (see section 2).
The status records in the upderr.log have the format:

#<version>:<status>:<library>:<cradle>

For instance:

#961004:success:1libdstanaxx.a:dstanaxx.cra
#961004:fortran:1libskelanaxx.a:skelana.cra
#961004 :ypatchy:1libvdclapxx.a:vdclapxx.cra
#961004:success:libuxxx.a:uxxx.cra
#961004:success:1libufieldxx.a:ufield.cra
#961004:success:1libuhlibxx.a:uhlib.cra
#961004 :success:1libpxdstxx.a:pxdstxx.cra
#961004:success:libtanagraxx.a:tanagraxx.cra
#961004 :success:libtriggerxx.a:triggerxx.cra
#961004 :success:1libpxtag2xx.a:pxtag2xx.cra
#961004 :success:1libherlibxx.a:herlibxx.cra
#961004:success:1libkalxx.a:kalxx.cra

4.1.3 cleanup.csh

cleanup.csh cleans up non-released versions in the DELPHI AFS project space. Only
versions which are newer than the current production version are removed. If there are
non-released versions which are older than the current production version cleanup.csh
reports a warning but does not remove the version. This must be done by calling rmver-
sion.csh (see section 4.1.14) directly for that version.

cleanup.csh uses the criteria that neither the AFS ACL group xx:user nor xx:swtest
(for the prerelease) are in the AFS ACLs of the root share directory of the version in the
DELPHI AFS project area.

cleanup.csh does not take any argument.

4.1.4 cmp_dirs.pl dirl dir2

cmp_dirs.pl compares the files in dir! with the files in dir2 and returns non-zero status in
either of the two cases:

(a) one or more files in dir! are missing in dir2

(b) one (or several) files in dir2 whose content is not identical with the the content of
the corresponding file in dir1.

10

Note that it is the dir? which determines which files cmp_dirs.pl looks for in dir2. Thus,
dir2 may contain files which are not present in dirl. cmp_dirs.pl should be executed in
the directory at the level next above dir2. cmp_dirs.pl can be used to check whether a
package export area (under AFS) is different from the current share area in the central
repository. For instance:

cd $DELPHI_PAM/..
“/public/etc/cmp_dirs.pl “dstana/public/export/car car

compares the current $DELPHI_PAM with the pams in the dstana export area.

4.1.5 daily_tasks.csh

daily_tasks.csh is called by start_libupdate.csh. It simply calls other scripts to perform
daily tasks like copying the latest delana from the FARM or distributing new luminosity
or btagging calibration files to the DELSHIFT nodes.

4.1.6 distribute_fat_grou.csh
distribute_fat_grou.csh checks whether the FAT_GROU.NAMES file has changed in the

export area and if so the new version is copied to the current production version in the
central repository and distributed to all DELSHIFT nodes. = FAT_GROU.NAMES is
a particularly critical auxiliary data file which contains all FATMEN nicknames for the
different DELPHI datasets. distribute_fat_grou.csh is executed as a separated acron-job
once per hour. distribute_fat_grou.csh does not take any arguments.

4.1.7 distribute_files.pl export-dir

distribute_files.pl checks the export directory ezport-dir for new auxiliary data files which
are not present in the current production version in the central repository. If it finds any
new files they are copied to the current production version in the central repository as well
as to all DELSHIFT nodes. Note that existing files will never be updated in the current
production version, only new files can be added.

Only a restricted set of auxiliary data files are qualified to be distributed this way.
They are normally related to new datasets which cannot be analysed without the presence
of these files. Source code files should never be distributed this way (distribute_files.pl is
protected against this). Source code should always be synchronously released with a new
version (as was stated in the rules listed in section 1).

distribute_files.pl is called by daily_tasks.csh (section 4.1.5).

4.1.8 end_libupdate.csh

end_libupdate.csh runs as a daily acron-job dual to start_libupdate.csh. It performs the
following tasks:

e It checks whether there is a pending new version or prerelease (created by
start_libupdate.csh) which needs to be installed.

e If there is a new version (or prerelease) it checks calls check status.pl to see if the
compilation has finished and that everything is OK.

11

e If check_status.pl returns OK, end_libupdate.csh calls the update_specific.pl script
with the -assemble option to install the new libraries in the specific area in the
central repository.

e After the libraries have been successfully installed end_libupdate.csh calls
shift /mkall.csh to distribute the new version to all subscribed nodes (the DELSHIFT
cluster).

e If check_status.pl returns not OK, end_libupdate.csh calls cleanup.csh to remove
the unsuccessful version.

If a new official version (not a prerelease) is successfully installed and distributed by
end_libupdate.csh it can be released by the librarian using the release.csh utility. If the
version was not successful or if the version was a prerelease the librarian does not have to
do anything (a prerelease is never released it is simply installed and opened to the AFS
ACL group xx:swtest). In case of system or compilation problems the librarian might
need to follow up the cause for the problems.

4.1.9 mkxxlinks.pl

mkxxlinks.pl is the script which links the access paths in the DELPHI AFS group area
/afs/cern.ch/group/xx/dstana to the central repository in the DELPHI AFS project area
/afs/cern.ch/delphi/share/dstana and /afs/cern.ch/delphi/@sys/dstana (similarly for the
database). mkxxlinks.pl does not take any arguments. It should be started from the
root directory for the access path (e.g. /afs/cern.ch/group/xx/dstana for the dstana
product). Normally the librarian does not need to call mkxxlinks.pl directly, it is called
from release.csh whenever a new release is put in production.

4.1.10 purge.pl version

purge.pl disconnects version (removes all dependence on it from other versions) in the
central repository. It does not remove the version. It has to be called for individually for
the share directory and each of the specific directories of the version. purge.pl takes one
argument, the version to be removed. purge.pl should run from the directory at the level
next above the root directory of the version to be removed. For instance:

prompt > cd /afs/cern.ch/delphi/share/dstana
prompt > 1s
960617 960723 960814 960826
960715 960731 960818 prerelease
prompt > “/public/etc/purge.pl 960723

purge.pl does not disconnect released version, i.e. a version which is opened to the
AFS ACL group xx:user. purge.pl functions as follows:

e All real files in wversion are moved upstream to next higher version and a soft link
is maintained from the previous path of the file to the new path (this prevents that
the files “disappear” from the users while purge.pl is running). A file is removed
if it cannot be moved upstream, i.e. there is already a real file in the next higher
version.

12

e When all files have been moved or removed from the version all links pointing to
it from other versions are updated to point to the corresponding files in the next
higher version.

The librarian should normally not call purge.pl directly since a wrong usage can
corrupt other versions in the central repository. The script rmversion.csh should be used
to remove a version. Once purge.pl is running it should not be killed.

4.1.11 purge_oldest.csh

purge_oldest.csh disconnects and removes the oldest version in the central repository. It
does not take any arguments and it is called from the daily acron-job start_libupdate.csh
if there is not enough space in the central repository.

4.1.12 rcp_all.csh file remote-path

rcp_all.csh distributes the file file to the path remote-path on all DELSHIFT nodes. It is
useful if there is an urgent need for distributing a new auxiliary data file.

4.1.13 release.csh product version

release.csh should be used to release and put in production the version wversion of the
product product (dstana or database). release.csh does the following:

e Checks that the version is properly installed in the central repository.
e Opens the version to the AFS ACL group xx:user.

e Calls the script mkxxlinks.pl (see section 4.1.9) to create the access path to the
version in the DELPHI AFS group directory.

e Does a rsh to pubxx account on shift10 and shift27 to execute the script
new_libs which changes the group defined environment variables ($DELPHI, $DEL-
PHI_PAM, ... etc.) to point to the new version and broadcasts to all interactive
DELPHI users on shift10 and shift27 that the libraries have been updated.

Calling release.csh is the final step in the software administration and distribution system.
It should always be executed manually by the librarian after he has checked that the
version is properly installed everywhere (on AFS and DELSHIFT nodes).

release.csh can also be used to go back to the previous version if something went wrong
in the current production version. For example, if a disastrous bug was found in the new
version which cause all analysis programs to crash, there will be an urgent need to go
back to the previous production version. On DELSHIFT it must then be made sure that
the previous version is still installed (which is normally normally the case).

Using release.csh to go back one version works fine on DELSHIFT (which is the most
urgent) but it has no effect on the current production version under AFS. This is because
on AFS the group environment variables are automatically set to point to the access path
for the latest version. To go back one version on AFS one simply remove the access path
to the version in the DELPHI AFS group directory (/afs/cern.ch/group/xx/dstana for
the dstana product). Note that this will not remove the version itself from the central

13

repository, only the access path to it. To entirely remove the version the librarian should
use the rmversion.csh script.

4.1.14 rmversion.csh version

rmversion.csh is the librarian interface to remove a (released) version from the central
repository. Before calling rmversion.csh the librarian must remove the AFS ACL group
xx:user from the AFS ACL of the root share directory of the version. For example, assume
that the dstana version 960617 shall be removed:

prompt > cd /afs/cern.ch/delphi/share/dstana
prompt > fs sa -dir 960617 -acl xx:user none
prompt > “/public/etc/rmversion.csh 960617

rmversion.csh uses the DELPHI group environment variables to determine from which
product (dstana or database) it shall remove the version. To switch between the dstana
and database products the command dellevel should be used (do dellevel -h to find out
the usage).

4.1.15 start_libupdate.csh

start_libupdate.csh runs as a daily acron-job dual to end_libupdate.csh.
start_libupdate.csh follows different branches depending on the weekday. For instance,
in the beginning of the week (Sunday or Monday) it checks if a new version should be
created and proceed with the creation of one if it finds new code in the package export
areas. If there is no need for a new version (i.e. the files in the package export areas
have not changed) or if the weekday is not Sunday or Monday it tries to do a prerelease
update. The motivation for this logic is that a new version should only be released in the
beginning of the week when people are around. If a bug is found in the new release it is
normally immediately reported by angry users and the librarian will switch back to the
previous version. Releasing a new version on a Friday may stall all physics analysis jobs
running on DELSHIFT during the whole Weekend.

A prerelease on the other hand can be done at anytime since it is only used by the
people developing the code. A bug in the prerelease will not cause thousands of analysis
jobs to crash.

The execution flow of start_libupdate.csh is as follows:

e Define the environment and check that the necessary AFS commands are present.
Check if a version corresponding to todays date already exists and if so exit without
further action. This could be the case if there was a manual updating done by the
librarian during the day.

e Execute daily_tasks.csh see section 4.1.5.
e Cleanup unreleased versions (call cleanup.csh).

e Check if there is enough space in the DELPHI AFS project space. If not try first
to remove tar-files. If this does not help call purge_oldest.csh until the space is
sufficient.

14

e Determine whether the new version should be a prerelease or an official one. If it
is Sunday start_libupdate.csh follows the official version branch. If it is Monday
and there was no official Sunday release start_libupdate.csh also follows the official
version branch. If there is no need for an official release or if it is not Sunday or
Monday, start_libupdate.csh follows the prerelease branch.

e Call update_share.pl to update the share area with the new export files.

e If update_share.pl returned success status (i.e. library updating is needed) call
update_specific.pl -distribute to distribute the compilation of the libraries to the
reference machines.

4.1.16 update_rhosts.csh

update_rhosts.csh simply distributes an appropriate .rhosts file to all DELSHIFT ma-
chines. It is normally called from daily_tasks.csh .

4.1.17 update_share.pl

The two (perl) scripts update_share.pl and update_specific.pl constitute the kernel of
the DELPHI software administration and distribution system.

update_share.pl takes no arguments. It is driven by the configuration files (perl-scripts)
(package) _config.pl. The PRODUCT context is given by the base-name of the current
directory, e.g. PRODUCT=dstana if update_share.pl is started from
/afs/cern.ch /user/d/dellib/public/etc/dstana .

update_share.pl is a rather complex script with several hard-coded patches to take
care of dirty package export directories !.

The log-output from update_share.pl is written to a file update_share.log in the cur-
rent working directory. The log-output does only contain messages from update_share.pl.
Any stdout or stderr output from system calls inside update_share.pl is not written to
update_share.log.

In rough outline update_share.pl performs the following tasks:

e Setup a new wersion directory in the share area of the central repository. The
new version directory contains no files, only links which are pointing back to files
in previous versions. It can be considered as a clone of the last previous released
version of the share files in the central repository.

e Require the (package) _config.pl files one by one. The layout of the (package)
_config.pl scripts is described in section 2.2.

— Call INIT to get a list of files in the package export area.

— The format of the file-list depends on the operating system where the export
area reside (UNIX or VMS). Tt is therefore decoded into a OS independent file
list which is stored in an internal associative array. The decoding procedure
calls FILTER_FILE NAME for each file it finds in the export directory.

1Some package responsible prefer to use the export directory for the code development etc. which has
as a consequence their export directory may contain emacs backup or recovery files, CVS administration
directories etc.. All this “crap” should not be copied to the central repository.

15

— From the decoded file-list a (perl) script is written to get the files. If the file
already exist in on the client side (i.e. in the central repository) the script calls
UPDATE. If the file does not exist the script calls NEW. For historical rea-
sons the “get-file”-scripts are named: (package) .cntx (get files in the current
package context).

— Call the (package) .cntx script to get the files. The UPDATE routine should
normally copy the file file-name to a temporary file file-name#package which is
the file name update_share.pl searches for when it resolves file-clashes between
the packages.

e Check for file-clashes between the packages. This procedure checks for file file-
name#£package. If there are more than one package which exported file-name the
contents of the files are compared. If they are not different the file is silently installed
as file-name. If the files are different they are left as they are and a clash warning
is signalled in the log-file.

e If there were no file-clashes and if at least one file was updated, update_share.pl
calls /bin/tar to produce two tar-files: src.tar and dat.tar . The tar’ing may
be suppressed for either or both tar-files by setting (in the build_defs.pl file) the
parameters $TAR_SRC and $TAR_DAT to 0 (default is 1).

e update_share.pl returns 0 if the updating was successful (no clashes) and if at least
one file was updated. In all other cases it returns 1.

The decision to update a file from a package export area to the central repository is
taken on the basis of the contents of the files. This is obviously a quite heavy task since
all files must be read. Originally the file updating strategy was based on file modification
times. However, this turned out to be unsafe because a package responsible may choose
to go back to an older version of the file and a simple UNIX “ mv” (/bin/mv) preserves

the last modification time of the file.

In addition to the above tasks update_share.pl also make sure that there are only one
level of soft links between versions in the central repository. Assume for instance that the
last released version is 960916 and that it contains a link:

aabtagxx.car -> ../../../960617/src/car/aabtagxx.car

where the 960617 version contains the real file aabtagxx.car. When update_share.pl
creates a new version it makes sure that aabtagxx.car points to the real file, i.e.

aabtagxx.car -> ../../../960617/src/car/aabtagxx.car
rather than the link

aabtagxx.car -> ../../../960916/src/car/aabtagxx.car

4.1.18 update_specific.pl

The two (perl) scripts update_share.pl and update_specific.pl constitute the kernel of
the DELPHI software administration and distribution system.

update_specific.pl has two operation modes: distribution and assembling. The
operation mode is determined by the by the flags -distribute and -assemble of which
exactly one must be given.

16

As usual the PRODUCT context is give by the base-name of the current directory,
e.g. PRODUCT=dstana if update_specific.pl is started from
/afs/cern.ch /user/d/dellib/public/etc/dstana . update_specific.pl requires the configu-
ration file build_defs.pl described in section 2.1. update_specific.pl calls several scripts
which all should reside in the current working directory. Of the scripts listed below only
mkVMSspecific.csh, mkspecific.com and makedlib.com are optional. All others must be
provided.

The following scripts must be provided in the current working directory:

distribute_share.csh : called by update_specific.pl in distribute mode. It copies to
each reference machine the file src.tar which contains the entire src directory of the
version to be built. distribute_share.csh also copies the two scripts mkspecific.csh
and makedlib and starts the mkspecific.csh script on each reference machine.

get_specific.csh : called by update_specific.pl in assemble mode. It copies the TAR
files containing the compiled libraries (created by mkspecific.csh) and unTARs them
in the appropriate specific area in the central repository.

makedlib : is a sophisticated script which performs the actual compilation of a
library. It takes two arguments: the full library name and the full cradle name.
makedlib redefines the DELPHI environment variables $DELPHI_PAM and $DEL-
PHI_LIB to point to ../src/car and ../lib respectively. Thus, makedlib is intended
for creation of a local wversion of the target library and assumes that it is running
within that wversion. In the current setup mkspecific.csh calls makedlib from a
tmp directory within the local version. By redefining the DELPHI environment
makedlib makes sure that it uses the pams within the new version and not in the
production version when creating the libraries. For each operative step the return
status must be checked. If something goes wrong the building of the target library
should be immediately interrupted and a status record should be appended to the
file ../upderr.log. In case of successful creation of the library a success status record
should be written to ../upderr.log.

mkspecific.csh : is started by distribute_share.csh on each reference machine. In
the current setup mkspecific.csh is called with two arguments: the absolute path
to the build directory (given by $BUILD_DIRS) and the version to be built (e.g.
960924). Called with these two arguments mkspecific.csh redirects its output to
mkspecific.log and puts itself in background. mkspecific.csh cleans up the build
directory and unTARs the src.tar file and calls makedlib (or phlib.csh) to build
the libraries. mkspecific.csh is described in more detail in section 2.3.

mkVMSspecific.csh : copies the DCL COM files mkspecific.com and makedlib.com
and the two TAR-files src.tar and dat.tar to VXCERN and submits two batch jobs
MKSPECIFIC.COM two ALPHAS$LONG and VSCRNA_SYS$LONG for creation
of ALPHA/VMS and VAX/VMS libraries respectively. ~mkVMSspecific.csh is
optional (update_specific.pl calls it if present in current working directory).

mkspecific.com : (optional) VMS DCL version of the mkspecific.csh script.

makedlib.com : (optional) VMS DCL version of the makedlib script.

17

update_specific.pl assumes the version to be the most recent it finds in the share area
of the central repository and creates, if necessary, the corresponding version directories in
the specific area of the central repository.

4.1.19 shift/mkall.csh version [working-directory]

The mkall.csh script in the 7public/ etc/shift directory distributes and installs a ready
version to all DELSHIFT machines. The working-directory argument is optional and if
specified mkall.csh makes a cd to the working directory and puts itself in background.
mkall.csh calls the script install script mkshift.csh for each node in the DELSHIF T cluster.

5 Validation of a library release

Before any validation of an official release, the librarian is testing its stability with a
testjob. This section do not apply to prerelease mechanism, in which libraries contents is
left to their authors for testing and (or) debugging purposes.

5.1 The librarian testjob

The dellib account have to check that a testjob, with which the mostly used routines of
DELPHTI official codes are called, thus tested, is running correctly with this hypothetical
new release. The location of the dellib testjob area is the directory:

/afs/cern.ch/user/d/dellib/public/etc/testjob/

In this area:

e skelexa.cra is the cradle
e skelexa.car is the pam file

e test_libraries.csh is the script submitted to batch queues

All of these three files have been taken from the official DELPHI template area:
/afs/cern.ch/user/p/pubxx/public/testjob/, with very small modifications to fit the
librarian need.

The hypothetical new release libraries, source code and data files, after being copied to
any DELSHIFT node (see the section on mkall.csh), are tested once for every DELSHIFT
Operating System (e.g. HP-UX9, HP-UX10, OSF1 as of date of this note), resulting to
the following files:

e [library_version] _$0S.0$QSUB_REQID

where:

e [library_version] is the name of the library release, like: 970720, for example.
e $0S is the Operating System, like HP-UX10.

e $QSUB_REQID is the NQS identifier of the batch job

18

For example resulting files for the test of the 970720 release were:
e 970720_HP-UX9.052745 for the HP-UX9 Operating System,

e 970720_HP-UX10.052744 for the HP-UX10 Operating System,
e 970720_OSF1.052743 for the OSF1 Operating System

If the status of all the scripts running on all the possible DELSHIFT Operating Sys-
tems is good, e.g. :

e no crash during patchy-ing, compilation, linking and execution

e the desired output files are created (currently: one ntuple and selected events on
another file)

e global status code is 0

The release.csh script is executed and the tested version become the new official
one.

5.2 Putting Information on the World Wide Web

The next step is to inform all DELPHI people of this new release: the librarian have to:

e send a mail to the experts of delphicore mailing-list (delphi-core@delphi-
Ib.cern.ch) and to the other librarians (currently: the one for the in2p3.fr
cell, and the one for the Linux Operating System). This mail will
be archived automatically, accessible through the delphicore WWW page:
http://delphiwww.cern.ch:8001 /archive/delphicore/Welcome.html

e Once this mail is appearing into the archive (maximum 10 minutes after the
mail send to delphicore mailing-list is received), he have to update the file
/afs/cern.ch/user/d/dellib/www/release_history.html to reflect this change
into its own WWW page, creating a link to the mail archived in the delphicore
server

e send a news to the mnewsgroup called DELPHI.OFFLINE, telling people
that a release has been achieved, and a link to its WWW page, namely:

http://wwwen.cern.ch/~dellib/release_history.html This news will be visible from
the DELPHI NNTP server at: http://delnews.cern.ch:8065/VAXNEWS

19

