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Abstract. For the event shapes thrust and c-parameter at next-to-leading order,
we examine the origins of next-to-leading power corrections. We track down the
origin of these factors for each shape of the event and compare our findings with
a recent method that makes use of the eikonal approximation and momentum
changes derived from the Low-Burnett-Kroll-Del Duca theorem. We do an ana-
lytical and numerical analysis of the differences. Both precise and approximate
findings are described in terms of elliptic integrals for the c-parameter; yet, it
exhibits patterns that are similar to those observed in the thrust results near the
elastic limit.

1 Introduction

In perturbative QCD, precise cross-section estimates must be obtained at the same rate as
collider-physics observations get more precise. Two contrasting approaches are used in this
endeavor. Initially, precise higher-order computations in the coupling αs are performed, and
pertinent techniques are developed. Second, under particular kinematic limits, when certain
classes of logarithmic terms become strengthened, all-order results are achieved. There are
numerous methods that can be used to resum these logarithmic terms to any order, and their
variety keeps growing. This holds true in particular for the near-elastic zone, also known
as the threshold region, where the phase space of emitted particles is bounded. In such a
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situation, the cancellation of infrared singularities, guaranteed by the KLN theorem [1, 2]
leaves large logarithmic remainders at any order in perturbation theory. To be more specific,
if ξ is a dimensionless kinematic variable, such that ξ → 0 towards the elastic region, the
corresponding differential cross-section has the generic form

dσ
dξ
=

∞
n=0


αs

π

n 
2n−1
m=0

cLP
nm


logm ξ

ξ



+

+ c(δ)
n δ(ξ) +

2n−1
m=0

cNLP
nm logm ξ + . . .

 . (1)

The first term on the right in the above equation is well-known to originate from soft
and/or collinear radiation and, together with the second term, makes up the leading power
(LP) terms. Much is known about LP terms to arbitrary order, and there have been numerous
approaches towards their resummation and power correction studies. The last term on the
right corresponds to terms that are next-to-leading power (NLP). These are produced via
collinear gluon, soft quark/anti-quark, and soft gluon emissions (next to). Even if they are
supressed by a power of ξ, the growth of these logarithmic terms towards threshold makes
them numerically relevant for the precision studies. The exact arrangement of these NLP
terms to all orders and arbitrary logarithmic accuracy is yet unclear, in contrast to the LP
terms. In this work [3], we focus on such NLP terms for two event shapes in e+e− collisions:
thrust [4, 5] and the C-parameter [6]. The calculation at NLO for spherocity can be found
in [7]. These observables are interesting in this regard because in contrast to most of the
previous studies in direct QCD, all QCD effects reside in the final state, and because their
definition involves special phase space constraints that were not considered so far. For these
observables, our aim is to trace the origin of the NLP terms near the elastic limit, to examine to
what extent there is a common pattern of NLP terms, and assess their size. Here we examine
to what extent NLP terms for two event shapes can be predicted using the kinematical shift
method, as well as the soft quark emission approximation [8, 9].

The leading logarithmic terms can alternatively be computed using the approach of shifted
kinematics [10], in this approach the matrix element that can capture terms up to NLP at NLO
is given by the formula


|M|2 = g2

s Nc(N2
c − 1)

2p1 · p2

(p1 · p3)(p2 · p3)
|M0(p1 − δp1, p2 − δp2)|2 , (2)

where |M0(p1, p2)|2 is the matrix element squared at the leading order (LO), and


denotes
the sum (average) over the final (initial) state spins and colours, p3 is the momentum of the
emitted radiation, and p1, p2 are the momenta of the particles already present at the Born
level. The shifts in the momenta are given by

δpµ1 = −
1
2


p2 · p3

p1 · p2
pµ1 −

p1 · p3

p1 · p2
pµ2 + pµ3


, δpµ2 = −

1
2


p1 · p3

p1 · p2
pµ2 −

p2 · p3

p1 · p2
pµ1 + pµ3


. (3)

Expressions (2) and (3) yield the dominant NLP contributions to the NLO matrix element.

2 Event shape distribution

In this work the process taken under consideration, and shown in figure below is

e+(pb) + e−(pa)→ γ∗(q)→ q(p1) + q(p2) + g(p3) . (4)

pa

pb

q, γ∗

e−

e+

qi

q̄j

p2

p3

e−

e+

q, γ∗

p3

p2

p1

pb

qi
pa

q̄j

p1
g

g

Figure 1. Feynman diagrams for the real emission of a gluon.

The event shape distribution at NLO has the form

dσ
dX
=

1
2s


dΦ3


|M(x1, x2)|2δ�X − X(x1, x2, x3)


, (5)

where s is the center of mass energy squared, and dΦ3 is the three-body phase space factor.
The scaleless energy fraction variables xi are defined for each parton as

xi =
2Ei

Q
, (6)

where Ei is the energy of ith parton, and Q is the centre of mass energy. The energy fraction
variables satisfy the constraint x1 + x2 + x3 = 2. The matrix element squared for the process
in eq. (4) is


|M(x1, x2)|2 = 8(e2eq)2g2

sCF Nc
1

3Q2


x2

1 + x2
2

(1 − x1)(1 − x2)

 , (7)

where α =

e2/4π


, eq is the charge of quarks in the unit of fundamental electric charge e,

αs = g
2
s/4π, CF = (N2

c − 1)/2Nc, and Nc is the number of quark colours. The two event shape
variables that we are going to study in this work are thrust and C-parameter. Thrust is defined
as

T = max
n̂


i |pi · n̂|

i Ei
. (8)

For a final state with three massless particles, eq. (8) takes the simple form

T = max

x1, x2, x3


. (9)

The C-paramter is given by

C = 3 − 3
2


i, j


pi · p j

2

(pi · q)

p j · q

 . (10)

For our process, we define a rescaled c-parameter, the expression for which is

c ≡ C
6
=

(1 − x1)(1 − x2)(1 − x3)
(2 − x1 − x2)(2 − x2 − x3)(2 − x1 − x3)

. (11)
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Figure 1. Feynman diagrams for the real emission of a gluon.
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We are going to use the above expressions of thrust and c-parameter1 (rescaled c parameter
instead of C-parameter) to compute their respective event shape distribution in upcoming
sections.

2.1 Thrust distribution

To obtain the thrust distribution one integrates over the x1, x2 variables in eq. (5) with the
appropriate limits:

1
σ0(s)

dσ
dT
=

2αs

3π

∫ 1

0
dx1

∫ 1−x1

0
dx2

x2
1 + x2

2

(1 − x1)(1 − x2)
× δ(T −max(x1, x2, x3)

)
(12)

where x3 = 2 − x1 − x2, and σ0(s) is the LO cross-section. For our purposes, we categorize
the contributions from three different regions of the phase space integration in eq. (12). These
regions are defined by which of x1, x2, or x3 is the largest, and we refer to them as region-I,
region-II, and region-III, respectively. The contribution from region I is then

1
σ0(s)

dσ
dT

∣∣∣∣∣∣
I
=

2αs

3π

∫ 1

0
dx2

∫ 1−x2

0
dx1

x2
1 + x2

2

(1 − x1)(1 − x2)
δ
(
T − x1

)
. (13)

Instead of T , we shall mostly use the variable τ = 1 − T , which vanishes in the zero-radius
dijet limit. Upon integrating and expanding around τ = 0

1
σ0(s)

dσ
dτ

∣∣∣∣∣∣
I
=

2αs

3π

(−3 − 4 log τ
2τ

+ 2 log τ +
3τ
2
− τ log τ + O(τ2)

)
. (14)

Region-I captures the leading log (LL) at LP and NLP both. In region II, due to the symmetry
under the interchange of x1 ↔ x2, the contribution from this region is identical to eq. (14).
Thus

1
σ0(s)

dσ
dτ

∣∣∣∣∣∣
II
=

2αs

3π

(−3 − 4 log τ
2τ

+ 2 log τ +
3τ
2
− τ log τ + O(τ2)

)
. (15)

In region III, the thrust axis is aligned with the momentum of the gluon. The contribution is
given by

1
σ0(s)

dσ
dT

∣∣∣∣∣∣
III
=

2αs

3π

∫ 1

0
dx2

∫ 1−x2

0
dx1

x2
1 + x2

2

(1 − x1)(1 − x2)
δ
(
T + x1 + x2 − 2

)
. (16)

Integrating and expanding in τ gives

1
σ0(s)

dσ
dτ

∣∣∣∣∣∣
III
=

2αs

3π

(
− 2 − 2 log τ + (2 − 2 log τ)τ + O(τ2)

)
. (17)

The region-III captures only the LL at NLP, and no contributions from LP gets captured here.
Combining the contributions from these three regions we finally get

1
σ0(s)

dσ
dτ

∣∣∣∣∣∣
NLO
=

2αs

3π

(−3 − 4 log τ
τ

− 2 + 2 log τ + (5τ − 4 log τ)τ + O(τ2)
)
. (18)

1c = C/6

Note that in eq. (18) at NLP all three regions produce LL terms, but a partial cancellation
takes place when combined.

The expression of matrix element squared under shifted formalism for our process derived
using eq. (2) reads as

∑
|Mshift(p1, p2)|2 = 8(e2eq)2Ncg

2
sCF

1
3Q2

(
2x1 + 2x2 − 2

(1 − x1)(1 − x2)

)
. (19)

The result of thrust distribution in region-I using fomalism of shifts results in

1
σ0(s)

dσ
dτ

∣∣∣∣∣∣
I
=

2αs

3π

(
−2 − 2 log τ

τ
+ 2 + 2 log τ + O(τ2)

)
. (20)

When we compare the above expression to eq. (14), we see that the LLs at both the LP
and NLP are correctly captured, while the NLL terms at LP are only partially reproduced.
Similarly the contribution from region-III for small values of τ is given as

1
σ0(s)

dσ
dτ

∣∣∣∣∣∣
III
=

2αs

3π

(
− 4τ log τ + O(τ2)

)
. (21)

This is as expected, as the hard gluon/soft quark region is not part of the shifted kinematics
method. Combining contributions from all three regions the thrust distribution from shifted
kinematics formalism at NLO reads or

1
σ0(s)

dσ
dτ

∣∣∣∣∣∣
shift
=

2αs

3π

[−4 − 4 log τ
τ

+ 4 + 4 log τ − (4 log τ)τ + O(τ2)
]
. (22)

The LL at LP are captured correctly, however LL at NLP are only captured partially.
In order to find the remaining LLs we use the soft quark approximation, the expression

of matrix element squared in this approximation is

∑
|Mrem(x1, x2)|2 = 8(e2eq)2NcCFg

2
s

1
3Q2

(1 − x2

1 − x1
+

1 − x1

1 − x2

)
. (23)

Thrust distribution computed from soft quark approximation results in

1
σ0(s)

dσ
dτ

∣∣∣∣∣∣
rem
=

2αs

3π

(1
τ
− 6 − 2 log τ + 5τ

)
. (24)

Thus we notice that the soft quark approximation captures the remaining logarithmic terms
at the LP and NLP for thrust distribution. The above expression when combined with shifted
kinematics result in eq. (22) produces all the terms of thrust distribution given in eq. (18).

2.2 C-parameter distribution

The c-parameter distribution for the process under consideration is given by the expression

1
σ0(s)

dσ
dc
=

1
2s

∫
dΦ3

∑
|M(x1, x2)|2 δ(c(y, z) − c

)
. (25)

where the expression of matrix element squared and c-parameter in terms of new set of vari-
ables y and z is given by
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at the LP and NLP for thrust distribution. The above expression when combined with shifted
kinematics result in eq. (22) produces all the terms of thrust distribution given in eq. (18).

2.2 C-parameter distribution

The c-parameter distribution for the process under consideration is given by the expression

1
σ0(s)

dσ
dc
=

1
2s

∫
dΦ3

∑
|M(x1, x2)|2 δ(c(y, z) − c

)
. (25)

where the expression of matrix element squared and c-parameter in terms of new set of vari-
ables y and z is given by
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∑
|M(y, z)|2 = 8(e2eq)2NcCFg

2
s

1
3Q2

(
2 + y(y − 2yz(1 − z) − 2)

y2z(1 − z)

)
, (26)

and

c(y, z) =
(1 − y)(1 − z)yz

(1 − y(1 − z))(1 − yz)
. (27)

The new variables are defined as

y = 2 − x1 − x2 ,

z =
1 − x2

y
, (28)

The expression for c-parameter distribution as given in eq. (25) upon substituting the above
expressions of matrix element squared and c-parameter reads as

1
σ0(s)

dσ
dc

∣∣∣∣∣∣
NLO
=

2αs

3π

∫ 1

0
dy
∫ 1

0
dz

2(y(z − 1) + 1)2(yz − 1)2(y(2y(z − 1)z + y − 2) + 2)
(y − 1)2y2(z − 1)z(2z − 1)

×
(
δ(z − z1) + δ(z − z2)

)
.

(29)

After the z integration the limits of y change to (y1, y2), see below in eq. (31). We have now

1
σ0(s)

dσ
dc

∣∣∣∣∣∣
NLO
=

2αs

3π

∫ y2

y1

dy
2(1 − y)(y

(
c(y − 2)2 + (y − 3)y + 4

)
− 2
)

c(cy + y − 1)
√
y(cy + y − 1)

(
c(y − 2)2 + (y − 1)y

) . (30)

y1 =
1 + 4c −

√
1 − 8c

2(1 + c)
, y2 =

1 + 4c +
√

1 − 8c
2(1 + c)

. (31)

The integration over y in eq. (30) produces incomplete elliptic integrals of three types, each
with somewhat involved arguments and coefficients. After conversion to their so-called com-
plete counterparts and carefully collecting their coefficients, the final expression can be orga-
nized in a compact form as follows

1
σ0(s)

dσ
dc

∣∣∣∣∣∣
NLO
=

2αs

3π

(
e(c) E[m1(c)] + p(c) Π[n1(c),m1(c)] + k(c) K[m1(c)]

)
, (32)

where E, Π, and K are the standard complete elliptic integrals of the first, second, and third
kind. The arguments of these elliptic integrals in eq. (32) have the following form

n1(c) =
2
√

1 − 8c

1 +
√

1 − 8c − 4c
,m1(c) =

2
√

1 − 8c

1 +
√

1 − 8c − 4c − 8c2
. (33)

The arguments have monotonic behavior. The elliptic integrals in eq. (32) have the following
asymptotic behavior as c→ 0

E[m1(c)] = 1 + O(c3 log c) ,

Π[n1(c),m1(c)] = − log c
8c2 +

6 log c − 3
8c

+
15 − 8 log c

16
+

9 log c + 10
3

c + O(c2) , (34)

K[m1(c)] = − 3 log c
2
+ O(c3 log c) .

The expression for the coefficients appearing in eq. (32) around c = 0 are

e(c) = − 3
c
+ 9 + 12c + 36c2 + O(c3) ,

p(c) = 32c + 112c2 + O(c3) , (35)

k(c) = 4 − 20c + 48c2 + O(c3) .

From eqs. (33), (34) and (35) the c-parameter distribution at NLO for small-c reads,

1
σ0(s)

dσ
dc

∣∣∣∣∣∣
NLO
=

2αs

3π

(−3 − 4 log c
c

− 3 + 4 log c + O(c)
)
. (36)

We next compute the c-parameter distribution using the shifted kinematics method, and again
assess to what extent LP and NLP terms in the exact NLO calculation are reproduced. The
approximation is The shifted matrix element in eq. (19), when written in terms of the trans-
formed variables (y, z), takes the form

∑
|Mshift(y, z)|2 = 8(e2eq)2NcCFg

2
s

1
3Q2

(
2(y − 1)
y2(z − 1)z

)
. (37)

After the z integration we have

1
σ0(s)

dσ
dc

∣∣∣∣∣∣
shift
=

2αs

3π

∫ y2

y1

dy
4(y − 1)2

c
√
y (y + cy − 1)

(
c(y − 2)2 + (y − 1)y

) . (38)

The above integral again results in to elliptic integrals as given in eq. (32). The small-c
behavior of coefficients of elliptic integrals obtained in this case are

es(c) = − 4
c
+ 16 − 4c + 72c2 + O(c3) ,

ps(c) = 32c + 128c2 + O(c3) , (39)

ks(c) = − 8c + O(c3) .

Using these results, the expression of c-paramter distribution at NLO up to NLP is given by

1
σ0(s)

dσ
dc

∣∣∣∣∣∣
shift
=

2αs

3π

(−4 − 4 log c
c

+ 4 + 8 log c + O(c)
)
. (40)

On the other hand the expression obtained from soft quark approximation reads as

1
σ0(s)

dσ
dc

∣∣∣∣∣∣
rem
=

2αs

3π

(
1
c
− 7 − 4 log c + O(c)

)
. (41)

Thus we notice from the two expressions above that the shifted approach along with the soft
quark approximation reproduces the LL up to NLP at NLO accurately.

3 Conclusions

Fixed-order studies in perturbative QCD face challenges from IR singularities, which persist
even after cancellation, leaving logarithmic corrections behind. These logarithms, catego-
rized as LL and NLL at different powers, including LP and NLP, must be resummed to derive
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∑
|M(y, z)|2 = 8(e2eq)2NcCFg

2
s

1
3Q2

(
2 + y(y − 2yz(1 − z) − 2)

y2z(1 − z)

)
, (26)

and

c(y, z) =
(1 − y)(1 − z)yz

(1 − y(1 − z))(1 − yz)
. (27)

The new variables are defined as

y = 2 − x1 − x2 ,

z =
1 − x2

y
, (28)

The expression for c-parameter distribution as given in eq. (25) upon substituting the above
expressions of matrix element squared and c-parameter reads as

1
σ0(s)

dσ
dc

∣∣∣∣∣∣
NLO
=

2αs

3π

∫ 1

0
dy
∫ 1

0
dz

2(y(z − 1) + 1)2(yz − 1)2(y(2y(z − 1)z + y − 2) + 2)
(y − 1)2y2(z − 1)z(2z − 1)

×
(
δ(z − z1) + δ(z − z2)

)
.

(29)

After the z integration the limits of y change to (y1, y2), see below in eq. (31). We have now

1
σ0(s)

dσ
dc

∣∣∣∣∣∣
NLO
=

2αs

3π

∫ y2

y1

dy
2(1 − y)(y

(
c(y − 2)2 + (y − 3)y + 4

)
− 2
)

c(cy + y − 1)
√
y(cy + y − 1)

(
c(y − 2)2 + (y − 1)y

) . (30)

y1 =
1 + 4c −

√
1 − 8c

2(1 + c)
, y2 =

1 + 4c +
√

1 − 8c
2(1 + c)

. (31)

The integration over y in eq. (30) produces incomplete elliptic integrals of three types, each
with somewhat involved arguments and coefficients. After conversion to their so-called com-
plete counterparts and carefully collecting their coefficients, the final expression can be orga-
nized in a compact form as follows

1
σ0(s)

dσ
dc

∣∣∣∣∣∣
NLO
=

2αs

3π

(
e(c) E[m1(c)] + p(c) Π[n1(c),m1(c)] + k(c) K[m1(c)]

)
, (32)

where E, Π, and K are the standard complete elliptic integrals of the first, second, and third
kind. The arguments of these elliptic integrals in eq. (32) have the following form

n1(c) =
2
√

1 − 8c

1 +
√

1 − 8c − 4c
,m1(c) =

2
√

1 − 8c

1 +
√

1 − 8c − 4c − 8c2
. (33)

The arguments have monotonic behavior. The elliptic integrals in eq. (32) have the following
asymptotic behavior as c→ 0

E[m1(c)] = 1 + O(c3 log c) ,

Π[n1(c),m1(c)] = − log c
8c2 +

6 log c − 3
8c

+
15 − 8 log c

16
+

9 log c + 10
3

c + O(c2) , (34)

K[m1(c)] = − 3 log c
2
+ O(c3 log c) .

The expression for the coefficients appearing in eq. (32) around c = 0 are

e(c) = − 3
c
+ 9 + 12c + 36c2 + O(c3) ,

p(c) = 32c + 112c2 + O(c3) , (35)

k(c) = 4 − 20c + 48c2 + O(c3) .

From eqs. (33), (34) and (35) the c-parameter distribution at NLO for small-c reads,

1
σ0(s)

dσ
dc

∣∣∣∣∣∣
NLO
=

2αs

3π

(−3 − 4 log c
c

− 3 + 4 log c + O(c)
)
. (36)

We next compute the c-parameter distribution using the shifted kinematics method, and again
assess to what extent LP and NLP terms in the exact NLO calculation are reproduced. The
approximation is The shifted matrix element in eq. (19), when written in terms of the trans-
formed variables (y, z), takes the form

∑
|Mshift(y, z)|2 = 8(e2eq)2NcCFg

2
s

1
3Q2

(
2(y − 1)
y2(z − 1)z

)
. (37)

After the z integration we have

1
σ0(s)

dσ
dc

∣∣∣∣∣∣
shift
=

2αs

3π

∫ y2

y1

dy
4(y − 1)2

c
√
y (y + cy − 1)

(
c(y − 2)2 + (y − 1)y

) . (38)

The above integral again results in to elliptic integrals as given in eq. (32). The small-c
behavior of coefficients of elliptic integrals obtained in this case are

es(c) = − 4
c
+ 16 − 4c + 72c2 + O(c3) ,

ps(c) = 32c + 128c2 + O(c3) , (39)

ks(c) = − 8c + O(c3) .

Using these results, the expression of c-paramter distribution at NLO up to NLP is given by

1
σ0(s)

dσ
dc

∣∣∣∣∣∣
shift
=

2αs

3π

(−4 − 4 log c
c

+ 4 + 8 log c + O(c)
)
. (40)

On the other hand the expression obtained from soft quark approximation reads as

1
σ0(s)

dσ
dc

∣∣∣∣∣∣
rem
=

2αs

3π

(
1
c
− 7 − 4 log c + O(c)

)
. (41)

Thus we notice from the two expressions above that the shifted approach along with the soft
quark approximation reproduces the LL up to NLP at NLO accurately.

3 Conclusions

Fixed-order studies in perturbative QCD face challenges from IR singularities, which persist
even after cancellation, leaving logarithmic corrections behind. These logarithms, catego-
rized as LL and NLL at different powers, including LP and NLP, must be resummed to derive
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meaningful results from these studies. We calculated these logarithms with the primary aim
of determining the LL at NLP for the event shape distributions of thrust and c-parameter.
We found that combining the shifted approach with the soft quark approximation effectively
captured the LL up to NLP. This method can be applied to other event shape variables and
processes to evaluate the accuracy of the shifted approach and to identify the significant LL
at NLP for resummation purposes.
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