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Abstract This work presents a quantum sensing interferometric scheme for the simultaneous estimation of multiple parameters at
the ultimate quantum scaling precision in a two-mode optical network. This scheme is experimentally feasible because it employs
input Gaussian states such as squeezed and coherent states and a relatively low number of experimental runs. We focus on the precise
and simultaneous measurement of two unknown phase shifts and an unknown beam splitter reflectivity, achieving Heisenberg scaling
sensitivity in all three parameters without any constraints on the parameter values.

1 Introduction

Quantum mechanics has significantly improved the ability for precision measurements in metrology by using quantum properties
such as entanglement and squeezing [1–7]. The main benefit of the use of quantum resources is the ability to surpass the classical shot
noise limit, where measurement precision typically scales as 1/

√
N with the number of resources N used, such as average number

of photons, energy, or time. In contrast, quantum systems can achieve subshot noise scaling up to Heisenberg scaling precision with
a scaling of 1/N [5, 8–13].

Over the last decade multiparameter estimation has emerged as of significant importance in the field of quantum metrology [14–20].
The simultaneous estimation of multiple physical parameters is gaining attention not only for its potential for resource efficiency,
but also for its wide range of applications across various technological fields such as quantum imaging [21–24], biological mea-
surements [25–27], astronomy [28, 29], sensor networks [30, 31], and gravitational wave detection [32, 33]. All these quantum
technologies are beyond the single-parameter estimation. Although multiparameter estimation has many applications and has seen
recent progress, it still faces major challenges. For instance, using photon number states and entangled states is not easy, both in
terms of generating them and maintaining quantum coherence [18, 34]. Moreover, some estimation methods place constraints on
the values of unknown parameters, making them unsuitable for use in arbitrarily distributed networks [35–39].

Achieving Heisenberg scaling precision simultaneously in the estimation of multiple parameters consists of multiple uncertainty
relations, and the interplay among these multiple uncertainty relations remains largely unexplored. Although much more complex
scenarios involving multiple parameters have been theoretically explored in quantum metrology [14, 40–44], and some experiments
have also been investigated for multiparameter estimation [45–48], none have yet achieved the ultimate precision for all parameters
simultaneously. Therefore, finding the optimal measurement protocols to achieve Heisenberg-limited sensitivity for multiple param-
eters at the same time still remains a major challenge [49]. In a recent work, Heisenberg scaling is achieved in the simultaneous
estimation of two phase parameters of a Mach–Zehnder interferometer [50]. Other two-parameter estimation scenarios have also
been explored, including the simultaneous estimation of phase and diffusion noise [51, 52], phase and imperfection in the probe
state [53]. However, so far, no scheme has been given for the simultaneous estimation of more than two parameters in an optical net-
work, with Heisenberg scaling using scalable resources such as squeezed states and robust measurement methods such as homodyne
detection.

In this article, we introduce a scheme for the estimation of three unknown parameters in a two-mode optical network consisting
of two unknown phase shifts and a beam splitter with unknown reflectivity, as shown in Fig. 1, estimating both the phase shifts and
the reflectivity simultaneously, and achieving the Heisenberg scaling precision for all three parameters. Our approach involves the
injection of a squeezed vacuum and a squeezed-coherent state into the input ports of the optical network, and a measurement with
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Fig. 1 Experimental scheme for
simultaneous estimation of three
parameters φ0, φ1 and φ2 in the
two-channel network described by
the unitary matrix U in Eq. (2).
The input probe is initialized
using a squeezed vacuum state and
a squeezed-coherent state of light,
as defined in Eq. (3). Homodyne
measurement is performed at both
output ports, with local oscillators
characterized by phases θ1 and θ2

the use of two-homodyne detectors at the output. The advantage of our proposed scheme is that it does not impose any constraints
on the values of the unknown parameters, allowing the attainment of Heisenberg scaling in sensitivity, regardless of the values of the
parameters. Moreover, our scheme does not require parameter-dependent adaptations within the optical setup, which enhances its
practical applicability. We demonstrate that this methodology not only reaches the Heisenberg scaling multiparameter Cramér-Rao
bound (CRB) for all three unknown parameters, but is also experimentally scalable.

2 Two channel network

We consider a two-channel linear passive optical network composed of a beam splitter and phase shifters in each arm. In this setup,
the beam splitter is characterized by a reflectivity parameter, φ0, while the phase shifts in the upper and lower arms are denoted by
φ1 and φ2, respectively, as illustrated in Fig. 1. The operations of the beam splitter (BS) and the phase shifters (PSs) on the optical
modes are represented by the unitary matrices

UBS � exp
(
iφ0σy

) �
(

cos φ0 sin φ0

− sin φ0 cos φ0

)
,

UPS(φ1, φ2) �
(
eiφ1 0

0 eiφ2

)
,

(1)

respectively, where σy is the second Pauli matrix. Therefore, the overall optical network, as depicted in Fig. 1, can be described by
the unitary matrix

U � UPSUBS � (
√
pi j e

iγi j )i j �
(

eiφ1 cos φ0 eiφ1 sin φ0

−eiφ2 sin φ0 eiφ2 cos φ0

)
. (2)

The elements of this unitary matrix are expressed as Ui j � √
pi j eiγi j , where pi j � |Ui j |2 with i , j � 1, 2 represents the transition

probability of a photon from input channel j to output channel i within the interferometer, and γi j � Arg[Ui j ] is the corresponding
phase shift experienced by the photon. Given that U is a 2 × 2 unitary matrix, it follows that p11 � p22 � p1 and p12 � p21 � p2.

Here, we propose an estimation scheme which aims to achieve Heisenberg scaling precision in the simultaneous estimation of
three unknown parameters, particularly the two phase shifts φ1, φ2 and the BS reflectivity φ0. As depicted in Fig. 1, the input probe
we consider in our scheme is given by

|ψ〉in � |r1〉 ⊗ |α, r2〉, (3)

where |r1〉 is a squeezed vacuum state with an average photon number Ns1 � sinh2 (r1), and |α, r2〉 is a displaced squeezed state
with an average photon number Nc + Ns2 � |α|2+ sinh2 (r2), injected into the first and second input ports, respectively. Here, r1, 2

are the real squeezing parameters, and |α| represents the amplitude of the coherent light.
At the final step, we perform balanced homodyne detections at both output ports to measure the quadratures x̂i , θi (for i � 1, 2),

where θi is the phase of the local oscillator associated with the i-th homodyne detector. From these measurements, the unknown
parameters φ � (φ0, φ1, φ2) can be inferred. The joint probability distribution function associated with the outcomes of homodyne
measurements follows a Gaussian distribution

pφ(�x) � 1

2π
√

Det[	]
exp

[
− (�x − �μ)T	−1(�x − �μ)

2

]
, (4)

where 	 is the covariance matrix and �μ is the mean vector, both of which depends on the unknown parameters φ0, φ1 and φ2 through
the interferometric transformation of the input state. Detailed expressions for the first and second moments of the output state can
be found in Appendix A. Given that both output ports are measured and probes are injected into both input ports, all elements of the
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unitary matrix U described in Eq. (2) become relevant. The mean vector �μ and the elements of the covariance matrix 	 for equal
squeezing (r1 � r2 � r ), in terms of the phases of the two local oscillators, reads

�μ � √
2α

(
sin φ0 sin(θ1 − φ1)
cos φ0 sin(θ2 − φ2)

)
, (5)

and

	11 � 1

2
[cosh 2r + cos 2(φ1 − θ1) sinh 2r ],

	22 � 1

2
[cosh 2r + cos 2(φ2 − θ2) sinh 2r ],

	12 � 	21 � 0.

(6)

3 Multiparameter Fisher information matrix

In our optical setup, multiple unknown parameters are involved; therefore, our theoretical analysis of the precision in their estimation
needs to make use of a multiparameter formalism. The Fisher information matrix (FIM) describes the precision in the estimation of
multiple parameters [54]. It quantifies the amount of information a given measurement can extract about the unknown parameters
to be estimated. Here, we compute the FIM for the simultaneous estimation of the reflectivity of the BS φ0 and the two phase shifts
φ1 and φ2 using homodyne detection at the output ports of the optical network in Fig. 1. The FIM establishes a lower bound on the
estimation error, commonly known as the CRB, given by

Cov[φ̃] ≥ 1

ν
F−1[φ], (7)

where ν is the number of independent measurements,F represents the positive semi-definite FIM, and Cov[φ̃] refers to the covariance
matrix of the estimators φ̃ � (φ̃0, φ̃1, φ̃2) of the parameters φ � (φ0, φ1, φ2). By utilizing the probability distribution given in
Eq. (4), we derive the elements of the FIM as shown in Appendix B. These elements can be written as:

Fmn � ∂φm �μT	−1∂φn �μ
︸ ︷︷ ︸

FSmn

+
1

2
Tr

[
	−1(∂φm	)	−1(∂φn	)

]

︸ ︷︷ ︸
FNmn

, (8)

for m, n ∈ {0, 1, 2}, where Tr[·] denotes the trace operation. The FIM in Eq. (8) decomposes into the sum of two terms, FS and
FN , representing respectively the contribution from the signal and the noise of the outcome of homodyne measurements.

To proceed further, we define the total average number of photons in the squeezed inputs as Ns � Ns1 + Ns2, and the total photon
number in both the input ports as N � Nc + Ns . In the following section, we demonstrate that under the assumption Nc, s � O(N ),
it is possible to achieve a precision at the Heisenberg scaling, O(1/N), in estimating all three parameters φ0, φ1, and φ2 without
requiring any adaptation of the optical system. This scaling is achieved after we impose that the local oscillator phases of the
homodyne detection are experimentally tuned values of θ1 and θ2 of the asymptotic form

θi � γi +
ki
Nsi

, i � 1, 2, (9)

where γi � γi i ± π
2 specifies the phases of the quadrature fields x̂i , γi at which the minimum variance is observed. In other words,

the local oscillator phases are detuned from γi by an additional term ki/Nsi , where ki is an arbitrary constant independent of Ns .
In the following section, we show that the Fisher information related to the variation of noise, FN , in Eq. (8), is sufficient to

achieve Heisenberg scaling precision for the estimation of the two unknown phases φ1 and φ2. Additionally, by exploiting the
information contained in the variation of the signal, FS , we demonstrate that it is eventually possible to estimate also the BS
reflectivity parameter φ0 with Heisenberg scaling.

4 Three-parameter estimation

In this section, we focus on the simultaneous estimation of the three parameters φ � (φ0, φ1, φ2) using the homodyne measurement
outcomes described earlier. As the FIM have contributions from both the signal and noise in Eq. (8), we will analyze these two
contributions separately. First, we obtain the information associated with the variation of the noise given by the second term FN
in the FIM 8 by substituting 	−1 and the derivatives of 	 with respect to the parameters using Eq. (6), and we find that the only
nonzero elements of matrix FN are the diagonal ones
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FN
22 � 2Ns(Ns + 2) sin [2(φ1 − θ1)]2

1 + Ns +
√
Ns

√
Ns + 2 cos [2(φ1 − θ1)]2

,

FN
33 � 2Ns(Ns + 2) sin [2(φ2 − θ2)]2

1 + Ns +
√
Ns

√
Ns + 2 cos [2(φ2 − θ2)]2

.

(10)

To achieve Heisenberg scaling in the CRB of parameters, φ1 and φ2 both elements in Eq. (10) must be of the order N 2
s , which can be

reached by tuning the local oscillators in the homodyne detections according to the condition 9 with the minimum variance phase
γi of the measured quadrature field x̂i , with i � 1, 2. For a large number of photons, FN asymptotically reads

FN �

⎛

⎜
⎜
⎝

0 0 0

0
128k2

1 N
2
s

(1+16k2
1 )2 0

0 0
128k2

2 N
2
s

(1+16k2
2 )2

⎞

⎟
⎟
⎠. (11)

Now, we analyze the first contribution to the FIM 8, which is the information extracted from the variation of the displacement �μ
with respect to the parameters. By choosing k1 � k2 � k in the condition 9, FS asymptotically reads (see Appendix C)

FS �
⎛

⎝
8NcNs
1+16k2 0 0

0 0 0
0 0 0

⎞

⎠ (12)

where all orders smaller than O(N 2), which do not contribute to the Heisenberg scaling, are neglected. To estimate all three parameters
φ0, φ1, and φ2 simultaneously at the Heisenberg-limited sensitivity, we consider the total FIM F � FS + FN in Eqs. (11) and (12):

F �

⎛

⎜⎜
⎝

8NcNs
1+16k2 0 0

0 128k2N2
s

(1+16k2)2 0

0 0 128k2N2
s

(1+16k2)2

⎞

⎟⎟
⎠. (13)

The CRB in Eq. (7) then reads

(�φ0)2 ≥ (�φCRB
0 )2 � 1

ν

(1 + 16k2)

8NcNs
, (14)

(�φ1)2 ≥ (�φCRB
1 )2 � 1

ν

(
1 + 16k2

)2

128k2N 2
s

, (15)

(�φ2)2 ≥ (�φCRB
2 )2 � 1

ν

(
1 + 16k2

)2

128k2N 2
s

, (16)

and gives the Heisenberg scaling in all three parameters simultaneously. The FIMF in Eq. (13) is diagonal to leading order in O(N 2),
implying that each of the three parameters can be estimated with the Heisenberg scaling precision independently. In other words,
achieving Heisenberg scaling for one parameter does not affect the estimation of the others. We also observe that for k � 1/4, the
prefactors for the uncertainties of both φ1 and φ2 are minimized.

This demonstrates that the precision for estimating all three parameters achieves Heisenberg scaling in the asymptotic limit. In
particular, the estimation of the parameters φ1 and φ2 reaches this scaling with a precision of �φ1(2) � O(1/Ns), regardless of the
intensity of the coherent state, as it depends solely on the number of squeezed photons. On the other hand, the estimation of φ0 also
achieves the Heisenberg scaling provided that the average photon numbers in both the coherent state (Nc) and the squeezed state
(Ns) are proportional to the total average photon number N � Ns + Nc. The precision is optimal when Nc � Ns � N/2, i.e., when
averagely half of the input photons are coherent and half are squeezed, yielding �φ0 � O(1/N ). We note that in our model, the two
squeezed inputs remain separable after the beam splitter, resulting in the output covariance matrix 	 being independent of the beam
splitter reflectivity φ0 and depends only on the phases φ1 and φ2. Consequently, the Fisher term FN , which arises from variation of
	, encodes solely the phase shift information, whereas the term FS , originating from derivatives of the mean vector �μ, allows the
estimation of the reflectivity φ0 with Heisenberg scaling.

The Cramér-Rao bounds in Eqs. (14)–(16) are asymptotically saturated through the use of maximum likelihood estimators,
thus achieving the desired Heisenberg scaling precision. The analytical form of the maximum likelihood estimators (MLEs) for
parameters φ0, φ1 and φ2 is

φ̃0 MLE � arctan

[−μ̃1

μ̃2

]
, (17)
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Fig. 2 Maximum likelihood
estimation of parameters φ0
(green continuous line), φ1 (red
dashed line), and φ2 (blue dotted
line) as a function of the number
of measurements ν. (a) Relative
bias and (b) saturation of the CRB
for the estimated parameters
obtained from the maximum
likelihood estimation. We notice
in panel (a) that φ̃0 is already
unbiased for a very small number
of experimental iterations ν (see
appendix E). The CRB in
Eqs. (15) and (16) is saturated,
reaching already a ratio
�φ̃i /�φi

C RB close to 1.05 (i.e.,
within 5% of the CRB) for
number of experimental iterations
ν � 100 and saturates the bounds
for a number of repetitions of the
measurement already of the order
of 500. The CRB for φ̃0 is already
saturated for even a very small
number of iterations ν (see
appendix F). Here, we take the
values of φ0, 1, 2 � π/5, π/3,
π/4, |α|2� 5 and Ns � 5

Fig. 3 Maximum likelihood
estimation of the parameters φ0,
φ1 and φ2 as a function of total
number of photons N , with equal
average number of squeezed and
coherent photons,
Nc � Ns � N/2. (a) Bias in the
estimated parameters φ0 (green
continuous line), φ1 (red dashed
line), and φ2 (blue dotted line); (b)
Heisenberg scaling in the
uncertainty for all the parameters,
�φi � O(1/N ) with i � 1, 2, 3.
In (b), the uncertainty in the
estimation of φ0 (green squares),
φ1 (red asterisks) and φ2 (blue
circles) are compared with the
CRBs of φ0 (black continuous
line) and φ1, 2 (black dashed line)
derived in Eqs. (14)–(16), for
k � 1/4. The uncertainties �φ̃i in
the estimator φ̃i approach the
CRB already for a relatively small
number N of photons. Here, we
take the value of φ0, 1, 2 � π/3,
π/7, π/8, and the sample size
ν � 1000

φ̃1 MLE � θ1 +
1

2

[

−2π + arccos

(
2	̃11 − cosh 2r

sinh 2r

)]

, (18)

φ̃2 MLE � θ2 +
1

2

[

−4π + arccos

(
2	̃22 − cosh 2r

sinh 2r

)]

, (19)
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and a detailed calculation is provided in Appendix D. In Figs. 2 and 3, the precision of such estimators is analyzed in terms of
the number of probe photons and experimental repetitions. In particular, Fig. 2(a) plots the relative bias (E[φ̃i ] − φi )/φi for each
parameter as a function of the measurement repetitions, where E[φ̃i ] is the expected value of the estimator φ̃i , and φi is the true
value of the parameter, with i � 0, 1, 2. Figure 3(a) shows the bias as a function of the average photon number N . Figures 2(b)
and 3(b) depict the uncertainties �φi in comparison with the CRBs.

The results demonstrate that the estimators φ̃1 and φ̃2 are asymptotically unbiased and achieve the CRB with Heisenberg scaling
for a number of measurement repetitions already of the order of 500. Notably, the estimator φ̃0 is approximately unbiased for even
very small iterations and average number of photons (see Appendix E for a detailed calculation). The bias of φ̃0 is approximately
zero up to O(1/ν2N 4) which remains negligible even for a relatively very small average number of input photons. (See the solid
green plot in Figs. 2(a)and 3(a)). Furthermore, the variance of the estimator φ̃0 asymptotically matches the CRB of the parameter
φ0 in Eq. (14) up to first error correction term of O(1/ν3N 6), which is negligible even for very small values average number of
photons, saturating the CRB as shown in Figs. 2b and 3b (see Appendix F).

5 Conclusions

In this paper, we have presented a scheme that simultaneously estimates three unknown parameters with ultimate Heisenberg scaling
precision in a two-channel optical network, which is illuminated by both squeezed light and squeezed-coherent light sources at the
input. Homodyne measurements at both output ports allow us to reach the ultimate scaling irrespective of the values of the parameters,
and our scheme does not need any adaptation of the network. We show that the Heisenberg scaling of two phase parameters, φ1

and φ2, is only given by the variation of the noise of the measurement, whereas the unknown reflectivity φ0 is extracted only
from the variation of the signal of the homodyne measurement. We also show that the CRBs are parameter-independent functions.
Additionally, we have demonstrated that the maximum likelihood estimator reaches the theoretical CRB with only a number of
experimental iterations of order 500, making the scheme experimentally feasible. While our analysis is based on the CRB and
employs maximum likelihood estimation, which is well-known to be effective in the asymptotic regime, alternative global and
Bayesian methods have been developed to address the inherent limitations of the CRB approach [53, 55–58]. Interestingly, the
parameter φ0 shows an unbiased behavior and saturates the CRB already for very small average number of photons in the channel.
Achieving the ultimate quantum sensitivity in the estimation of three parameters simultaneously opens a new frontier in quantum
optical metrology. Recently, large optical squeezing has been demonstrated [59]. Although our scheme achieves three-parameter
Heisenberg scaling sensitivity in a lossless optical network, investigating the effects of losses and detector inefficiencies remains an
interesting direction for future work [60, 61].

Acknowledgements This project is partially supported by Xairos Systems Inc. VT also acknowledges partial support from the Air Force Office of
Scientific Research under award number FA8655-23-17046. PF was partially supported by Istituto Nazionale di Fisica Nucleare (INFN) through the project
“QUANTUM,” by the Italian National Group of Mathematical Physics (GNFM-INdAM), and by the Italian funding within the “Budget MUR - Dipartimenti
di Eccellenza 2023–2027” - Quantum Sensing and Modelling for One-Health (QuaSiModO). D.T. acknowledges the Italian Space Agency (ASI, Agenzia
Spaziale Italiana) through the project Subdiffraction Quantum Imaging (SQI) n. 2023-13-HH.0.

Data Availability Statement This manuscript has no associated data.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A Details of balanced Homodyne measurement outcomes

Here, we will derive the expressions for the mean vector �μ and the covariance matrix 	, presented in Eqs. (5) and (6), respectively,
associated with the outcomes of the homodyne measurements.

We can describe a 2-mode Gaussian state using its Wigner distribution function, defined as

W (z) � 1

(2π )2
√

det 

exp

[
−1

2
(z − d)T
−1(z − d)

]
, z ∈ R

4, (A1)

where d is the displacement vector and 
 is the covariance matrix of the input state |r1〉 ⊗ |α, r2〉 in Eq. (3). Here, r1 and r2 are the
real squeezing parameters and α � |α|eiπ/2 is a complex displacement amplitude. The covariance matrix and displacement vector
in phase space are given by


 � 1
2 diag(e2r1 , e2r2 , e−2r1 , e−2r2), d � √

2 (0, 0, 0, |α|)T . (A2)
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The Wigner distribution W (z) of the state Û |r1〉 ⊗ |α, r2〉 after applying Û obtained by rotating the initial Wigner distribution with
the orthogonal and symplectic matrix R associated with the unitary matrix U reads

R �
(

Re[U ] −Im[U ]
Im[U ] Re[U ]

)
, (A3)

so that


U � R 
 RT , dU � R d. (A4)

Finally, balanced homodyne detection with local oscillator phases θ1, 2 projects onto quadratures x̂i , θi . This can be implemented by
applying an additional unitary rotationU (θ ) � diag(e−iθ1 , e−iθ2 ) to the state Û |r1〉⊗|α, r2〉, which introduces a phase e−iθi to each
element of the i-th row of U. Thus, the elements of the overall unitary matrix can be written as

√
pi j ei(γi j−θi ), where γi j � arg[Ui j ]

for i , j � 1, 2. The resulting joint outcome of the homodyne detection is a Gaussian distribution characterized by a mean vector
and a covariance matrix. The mean �μ corresponds to the first two elements of the transformed displacement vector dU , given by

�μ � √
2|α|

(−√
p2 sin(γ12 − θ1)

−√
p1 sin(γ22 − θ2)

)
, (A5)

and covariance matrix 	 given by the upper 2 × 2 block of 
U . Its components are explicitly given by:

	11 � 1

2

[
p1(cosh 2r1 + cos 2(γ11 − θ1) sinh 2r1) + p2(cosh 2r2 + cos 2(γ12 − θ1) sinh 2r2)

]
,

	22 � 1

2

[
p2(cosh 2r1 + cos 2(γ21 − θ2) sinh 2r1) + p1(cosh 2r2 + cos 2(γ22 − θ2) sinh 2r2)

]
,

	12 � 	21 �
√
p1 p2

2

[
cos(γ11 − γ21 − θ1 + θ2) cosh 2r1 + cos(γ11 + γ21 − θ1 − θ2) sinh 2r1

+ cos(γ12 − γ22 − θ1 + θ2) cosh 2r2 + cos(γ12 + γ22 − θ1 − θ2) sinh 2r2
]
. (A6)

For the unitary matrix in Eq. (2) and equal input squeezings r1 � r2 � r , the expressions for �μ and 	 in Eqs. (A5) and (A6) reduce
respectively to Eqs. (5) and (6) of the main text.

Appendix B Deriving the Fisher information matrix for Gaussian probability in Eq. (8)

In this appendix, for completeness, we derive the well-known FIM of a multivariate Gaussian distribution based on the joint
probability distribution of homodyne measurements [62]. In general, the FIM is defined by [54]

Fmn � Epφ

[(
∂φm log pφ(�x)

)(
∂φn log pφ(�x)

)]
. (B1)

To compute the FIM, we first evaluate the logarithmic derivatives of pφ(�x) given by

pφ(�x) � 1

2π
√

Det[	]
exp

[
− (�x − �μ)T	−1(�x − �μ)

2

]
, (B2)

where the mean vector �μ and the covariance matrix 	 are functions of the parameters φ � (φ0, φ1, φ2). This requires using the
properties of Gaussian integrals, which allow us to simplify the expectation values of polynomial terms involving (�x − �μ) up to
fourth order:

Epφ
[(xi − μi )] � 0,

Epφ

[
(xi − μi )(x j − μ j )

] � 	i j ,

Epφ

[
(xi − μi )(x j − μ j )(xk − μk)

] � 0,

Epφ

[
(xi − μi )(x j − μ j )(xk − μk)(xl − μl )

] � 	i j	kl + 	ik	 jl + 	il	 jk .

(B3)

Substituting these results into the expression for Fmn yields

Fmn � 1

4

(
∂φm log Det[	]

)(
∂φn log Det[	]

)

+
2∑

i , j�1

(
(∂φm �μT )	−1

)

i

(
(∂φn �μT )	−1

)

j
Epφ

[
(xi − μi )(x j − μ j )

]

+
1

4

(
∂φm log Det[	]

) 2∑

i , j�1

(∂φn	
−1
i j )Epφ

[
(xi − μi )(x j − μ j )

]
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+
1

4

(
∂φn log Det[	]

) 2∑

i , j�1

(∂φm	−1
i j )Epφ

[
(xi − μi )(x j − μ j )

]

+
1

4

2∑

i , j ,k,l�1

(∂φm	−1
i j )(∂φn	

−1
kl )Epφ

[
(xi − μi )(x j − μ j )(xk − μk)(xl − μl )

]
. (B4)

Using Jacobi’s formula for the derivative of the determinant of a matrix

∂φi Det[	]

Det[	]
� Tr

[
	−1∂φi 	

] � −Tr
[
∂φi 	

−1	
]
, (B5)

we simplify Eq. (B4) as

Fmn � ∂φm �μT	−1∂φn �μ
︸ ︷︷ ︸

FSmn

+
1

2
Tr

[
	−1(∂φm	)	−1(∂φn	)

]

︸ ︷︷ ︸
FNmn

, (B6)

Here, the first term FS tells how the mean of the homodyne outcome �μ changes with the change in parameters, while the second
term FN arises from the derivatives of the covariance matrix 	, which quantifies how the parameters affect the fluctuations of the
measurement outcome. The total FIM gives the complete information of the parameters encoded in a general Gaussian state.

Appendix C Evaluation of FS in equation (12)

To evaluate the value of FS in Eq. (12), we first calculate the derivatives of �μ in Eq. (5) with respect to parameters φ0, φ1 and φ2:

∂φ0 �μ � √
2α

(
cos φ0 sin(θ1 − φ1)

− sin φ0 sin(θ2 − φ2)

)
,

∂φ1 �μ � √
2α

(− sin φ0 cos(θ1 − φ1)
0

)
,

∂φ2 �μ � √
2α

(
0

− cos φ0 cos(θ2 − φ2)

)
.

(C1)

By substituting the inverse of the covariance matrix 	 in Eq. (6) and the derivatives of μ in Eq. (C1) into Eq. (8), FS reads
⎛

⎜⎜
⎝

4Nc cos2(φ0) sin2(φ1−θ1)
1+Ns+

√
Ns

√
Ns+2 cos[2(φ1−θ1)]

+ 4Nc sin2(ω) sin2(φ2−θ2)
1+Ns+

√
Ns

√
Ns+2 cos[2(φ2−θ2)]

Nc sin(2φ0) sin[2(φ1−θ1)]
1+Ns+

√
Ns

√
Ns+2 cos[2(φ1−θ1)]

−Nc sin(2φ0) sin[2(φ2−θ2)]
1+Ns+

√
Ns

√
Ns+2 cos[2(φ2−θ2)]

4Nc sin2(ω) sin2(φ2−θ2)
1+Ns+

√
Ns

√
Ns+2 cos[2(φ1−θ1)]

4Nc sin2(φ0) cos2(φ1−θ1)
1+Ns+

√
Ns

√
Ns+2 cos[2(φ1−θ1)]

0
−Nc sin(2φ0) sin[2(φ2−θ2)]

1+Ns+
√
Ns

√
Ns+2 cos[2(φ2−θ2)]

0 4Nc cos2(φ0) cos2(φ2−θ2)
1+Ns+

√
Ns

√
Ns+2 cos[2(φ2−θ2)]

⎞

⎟⎟
⎠ (C2)

After using the condition on the local oscillator in (9) and for a symmetric case, say k1 � k2 � k, FS can be written asymptotically
as

FS �

⎛

⎜⎜
⎝

8NcNs
1+16k2 + O(N ) 8kNc sin(2φ0)

1+16k2 + O(N 0) −8kNc sin(2φ0)
1+16k2 + O(N 0)

8kNc sin(2φ0)
1+16k2 + O(N 0) 32k2Nc sin2(φ0)

Ns (1+16k2)
0

−8kNc sin(2φ0)
1+16k2 + O(N 0) 0 32k2Nc cos2(φ0)

Ns (1+16k2)

⎞

⎟⎟
⎠ (C3)

and reduce to Eq. (12) up to O(N 2).

Appendix D Maximum Likelihood Estimators

In this appendix, we find the maximum likelihood estimators (MLEs) saturating the CRBs as given in Eq. (7). Consider ν repeated
independent measurements using two-homodyne detection of the quadratures x̂i , θi , giving a set of outcomes {�x1, . . . , �xν}. The
likelihood function is expressed as

L(φ|�x1, ..., �xν) �
ν∏

i�1

p(�xi |φ), (D1)
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where p(�xi |φ) represents the probability density function associated with the joint homodyne measurement described in Eq. (4). To
find the MLE φ̃, we maximize the log-likelihood function log (L), and obtain

0 � ∇φ log L(φ|�x1, ..., �xν)

∣
∣
∣
∣
φ�φ̃MLE

� ∇φ

ν∑

i�1

log p(�xi |φ)

∣
∣
∣
∣
φ�φ̃MLE

�
[

− ν

2
∇φ log(det[	]) − 1

2
∇φ

ν∑

i�1

(�xi − �μ)T	−1(�xi − �μ)

]

φ�φ̃MLE

�
[

− ν

2
Tr

[
	−1∇φ	

] − 1

2
∇φ

ν∑

i�1

Tr
[
	−1(�xi − �μ)(�xi − �μ)T

]
]

φ�φ̃MLE

�
[

(∇φ �μ)T	−1
(

ν �μ −
ν∑

i�1

�xi
)]

φ�φ̃MLE

+
1

2
Tr

[
∇φ	−1

(
ν	 −

ν∑

i�1

(�xi − �μ)(�xi − �μ)T
)]

φ�φ̃MLE

. (D2)

Note that Eq. (D2) leads to three separate equations, corresponding to the derivatives with respect to φ0, φ1 and φ2. In general, these
equations are not analytically solvable. However, in the case discussed in the main text when squeezed amplitudes are equal, the
equations simplify, and the covariance matrix 	 becomes independent of φ0, and therefore the derivative with respect to φ0 reduces
to

0 �
[

(∇φ0 �μ)T	−1
(

ν �μ −
ν∑

i�1

�xi
)]

φ0�φ̃MLE
0

, (D3)

which gives the estimator �̃μ � 1
ν

∑ν
i�1 �xi for the mean �μ. By utilizing Eqs. (5) along with the local oscillator conditions in Eq. (9),

where k1 � k2, this further simplifies as

μ1

μ2
� μ̃1

μ̃2
⇒ − sin φ̃0

cos φ̃0
� μ̃1

μ̃2
, (D4)

leading to an explicit expression for the MLE of φ0 in Eq. (17) in the main text

φ̃0 MLE � arctan

[
− μ̃1

μ̃2

]
. (D5)

However for the parameters φ1 and φ2, both terms in Eq. (D2) in general contribute to the solution. Considering the asymptotic
behavior for large N , we find that under the local oscillator condition (9) ∂φ1(2) �μ � O(N 0), ∂φ1(2)	

−1 � O(N 2), 	−1 � O(N ),
	 � O(N ), and �μ grows as O(N 1/2). Consequently, the first term of Eq. (D2) scales as O(N), while the second term is of order
O(N 2). Thus, for large N , second term dominant and Eq. (D2) can be written as

0 � 1

2
Tr

[
∇φ	−1

(
ν	 −

ν∑

i�1

(�xi − �μ)(�xi − �μ)T
)]

φ�φ̃MLE

. (D6)

This can be solved and provide the sample covariance matrix

	̃ � 1

ν

ν∑

i�1

(�xi − �̃μ)(�xi − �̃μ)T , (D7)

which is an estimator for the actual covariance matrix 	. Substituting this into the above equation and equating the result to the
diagonal matrix 	 in Eq. (6), we obtain the maximum likelihood estimators for φ1 and φ2 in Eqs. (18) and (19) in the main text,
given by

φ̃1 MLE � θ1 +
1

2

[

−2π + arccos

( ˜2	11 − cosh 2r

sinh 2r

)]

, (D8)

φ̃2 MLE � θ2 +
1

2

[

−4π + arccos

(
2	̃22 − cosh 2r

sinh 2r

)]

, (D9)

where 	̃i j are the entries of the matrix 	̃. It is worth noting that the estimators φ̃1 and φ̃2 in Eqs. (18) and (19) give a good
approximation to the solutions of Eq. (D2), even for smaller values of N , also shown in Fig. 2 and Fig. 3 of the main text.
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Appendix E Unbiasness of estimator φ̃0

In this appendix, we aim to show that the MLE φ̃0 � arctan
[ − μ̃1/μ̃2

]
in Eq. (17) is approximately an unbiased estimator of the

parameter φ0 � arctan
[ − μ1/μ2

]
, if the higher-order terms are negligible, where μ̃1 and μ̃2 are the sample means of bivariate

normal distribution and μ1 and μ2 are the means of the marginal distribution.
We know that the sample means μ̃1 and μ̃2 are unbiased estimators of the population means μ1 and μ2, respectively. To analyze

the unbiasedness of φ̃0, we begin by expanding f (μ̃1, μ̃2) � arctan [−μ̃1/μ̃2] around (μ1, μ2) using a Taylor series expansion

f (μ̃1, μ̃2) � f (μ1, μ2) +
∂ f

∂μ̃1

∣
∣
∣
∣
∣
μ1,μ2

(μ̃1 − μ1) +
∂ f

∂μ̃2

∣
∣
∣
∣
∣
μ1,μ2

(μ̃2 − μ2) +
1

2

∂2 f

∂μ̃2
1

∣
∣
∣
∣
∣
μ1,μ2

(μ̃1 − μ1)2

+
1

2

∂2 f

∂μ̃2
2

∣
∣
∣
∣
∣
μ1,μ2

(μ̃2 − μ2)2 +
∂2 f

∂μ̃1∂μ̃2

∣
∣
∣
∣
∣
μ1,μ2

(μ̃1 − μ1)(μ̃2 − μ2) + higher-order terms. (E1)

Taking the expectation of the above expression, we get

E[ f (μ̃1, μ̃2)] � f (μ1, μ2) +
∂ f

∂μ̃1

∣
∣
∣
∣
∣
μ1,μ2

E[μ̃1 − μ1] +
∂ f

∂μ̃2

∣
∣
∣
∣
∣
μ1,μ2

E[μ̃2 − μ2] +
1

2

∂2 f

∂μ̃2
1

∣
∣
∣
∣
∣
μ1,μ2

E[(μ̃1 − μ1)2]

+
1

2

∂2 f

∂μ̃2
2

∣∣∣∣∣
μ1,μ2

E[(μ̃2 − μ2)2] +
∂2 f

∂μ̃1∂μ̃2

∣∣∣∣∣
μ1,μ2

E[(μ̃1 − μ1)(μ̃2 − μ2)] + E[higher-order terms]. (E2)

Since μ̃1 and μ̃2 are unbiased estimators, E[μ̃1 − μ1] � 0 and E[μ̃2 − μ2] � 0, the first-order correction term vanishes, leading to
E[φ̃0] ≈ arctan[−μ1/μ2] � φ0. This shows that φ̃0 is an unbiased estimator to first order. Furthermore Eq. (E2) can be written as

E[φ̃0] � φ0 +
μ1μ2

(μ2
1 + μ2

2)2
Var[μ̃1] − μ1μ2

(μ2
1 + μ2

2)2
Var[μ̃2]

+
μ2

1 − μ2
2

(μ2
1 + μ2

2)2
Cov[μ̃1, μ̃2] + E[higher-order terms] (E3)

where Var[μ̃1] and Var[μ̃2] are the variances and Cov[μ̃1, μ̃2] is the covariance of the sample mean μ̃1 and μ̃2 and are directly
related to the population variance 	 in Eq. (6) for a sample size ν, reads

Var[μ̃1] � 	11

ν
, Var[μ̃2] � 	22

ν
, and Cov[μ̃1, μ̃2] � 	12

ν
. (E4)

By substituting μ1, μ2 and 	 from Eqs. (5) and (6), using the condition (9), into Eq. (E3), we can express E[φ̃0] as

E[φ̃0] � φ0 +
(C2 − C1) sin (2φ0)

4νNcNs
+ O(

1

ν2N 4 ) + . . . ≈ φ0, (E5)

where C1(2) � (16k1(2) + 1)2/4. For the the case k1 � k2 � k, the bias E[φ̃0] − φ0 � O(1/ν2N 4) vanishes rapidly with increasing
ν and N , and implies that the MLE φ̃0 is unbiased since the error term O(1/ν2N 4) is negligible. In particular, Figs. 2(a) and 3(a)
show φ̃0 is unbiased for a very small number of iterations ν and small average photons N .

Appendix F Variance of the estimator φ̃0

Here, we will show that the CRB of the estimator φ̃0 is approximately saturated even for very small iterations and a small average
number of photons. To evaluate the asymptotic behavior of the CRB of φ̃0, we first calculate the variance (�φ̃0)2, given by

(�φ̃0)2 � E[φ̃2
0] − E[φ̃0]2

� E[
(

arctan

[
− μ̃1

μ̃2

])2
] − E[arctan

[
− μ̃1

μ̃2

]
]2

�
(

arctan

[
μ1

μ2

]2

+
μ2(μ2 − 2μ1 arctan [μ1/μ2])Var[μ̃1]

(μ2
1 + μ2

2)2
+

μ1(μ1 + 2μ2 arctan [μ1/μ2])Var[μ̃2]

(μ2
1 + μ2

2)2
+

−2μ1μ2 + 2(μ2
1 − μ2

2) arctan [μ1/μ2])Cov[μ̃1, μ̃2]

(μ2
1 + μ2

2)2
+ E[higher-order terms]

)
−

(
arctan

[
− μ1

μ2

]
+

μ1μ2Var[μ̃1]

(μ2
1 + μ2

2)2
− μ1μ2Var[μ̃2]

(μ2
1 + μ2

2)2
+

μ2
1 − μ2

2Cov[μ̃1, μ̃2]

(μ2
1 + μ2

2)2
+ E[higher-order terms]

)2
. (F1)
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Similar to the above calculation ofE[φ̃] in Appendix E, by substituting μ1, μ2, and 	 from Eqs. (5) and (6) and using the condition (9),
we can derive an asymptotic form of the variance (�φ̃0)2, which reads

(�φ̃0)2 � (C1 + C2) + (C1 − C2) cos (2φ0)

4νNcNs
− (C1 − C2) sin2 (2φ0)

16ν2N 2
c N

2
s

+ O(1/ν3N 6) + . . . . (F2)

Here, we can see that even the term O(1/ν2N 4) is very small and the estimator is efficient neglecting O(1/ν2N 4). For the case
k1 � k2 � k, (�φ̃0)2 can be written as

(�φ̃0)2 � 1

ν

16k2 + 1

8NcNs
+ O(1/ν3N 6) + . . . ≈ 1

ν

16k2 + 1

8NcNs
; (F3)

this expression is the CRB of the parameter φ0 given in Eq. (14) in the main text. The asymptotic variance (�φ̃0)2 confirms that the
MLE for parameter φ0 saturates its CRB, since the higher-order error terms are negligible even for a very small number of iterations
ν and small average number of photons N , as shown in Figs. 2b and 3b.
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43. S. Ragy, M. Jarzyna, R. Demkowicz-Dobrzański, Compatibility in multiparameter quantum metrology. Phys. Rev. A 94, 052108 (2016). https://doi.

org/10.1103/PhysRevA.94.052108
44. D. Triggiani, P. Facchi, V. Tamma, Heisenberg scaling precision in the estimation of functions of parameters in linear optical networks. Phys. Rev. A

104, 062603 (2021). https://doi.org/10.1103/PhysRevA.104.062603
45. E. Polino, M. Riva, M. Valeri, R. Silvestri, G. Corrielli, A. Crespi, N. Spagnolo, R. Osellame, F. Sciarrino, Experimental multiphase estimation on a

chip. Optica 6(3), 288–295 (2019)
46. Z. Hou, H. Zhu, G.-Y. Xiang, C.-F. Li, G.-C. Guo, Achieving quantum precision limit in adaptive qubit state tomography. NPJ Quantum Inf. 2(1), 1–5

(2016)
47. P.M. Birchall, E.J. Allen, T.M. Stace, J.L. O’Brien, J.C.F. Matthews, H. Cable, Quantum optical metrology of correlated phase and loss. Phys. Rev. Lett.

124, 140501 (2020). https://doi.org/10.1103/PhysRevLett.124.140501
48. E. Roccia, I. Gianani, L. Mancino, M. Sbroscia, F. Somma, M.G. Genoni, M. Barbieri, Entangling measurements for multiparameter estimation with

two qubits. Quant. Sci. Technol. 3(1), 01–01 (2017)
49. E. Polino, M. Valeri, N. Spagnolo, F. Sciarrino, Photonic quantum metrology. AVS Quantum Science 2(2) (2020)
50. A. Rai, D. Triggiani, P. Facchi, V. Tamma, Heisenberg-limited sensitivity in the estimation of two parameters in a mach-zehnder interferometer. arXiv

preprint arXiv:2405.17115 (2024)
51. M.D. Vidrighin, G. Donati, M.G. Genoni, X.-M. Jin, W.S. Kolthammer, M. Kim, A. Datta, M. Barbieri, I.A. Walmsley, Joint estimation of phase and

phase diffusion for quantum metrology. Nat. Commun. 5(1), 3532 (2014)
52. M. Altorio, M.G. Genoni, M.D. Vidrighin, F. Somma, M. Barbieri, Weak measurements and the joint estimation of phase and phase diffusion. Phys.

Rev. A 92, 032114 (2015). https://doi.org/10.1103/PhysRevA.92.032114
53. E. Roccia, V. Cimini, M. Sbroscia, I. Gianani, L. Ruggiero, L. Mancino, M.G. Genoni, M.A. Ricci, M. Barbieri, Multiparameter approach to quantum

phase estimation with limited visibility. Optica 5(10), 1171–1176 (2018). https://doi.org/10.1364/OPTICA.5.001171
54. H. Cramér, Mathematical Methods of Statistics, vol. 9 (Princeton University Press, Princeton, NJ, 1999)
55. M. Valeri, E. Polino, D. Poderini, I. Gianani, G. Corrielli, A. Crespi, R. Osellame, N. Spagnolo, F. Sciarrino, Experimental adaptive Bayesian estimation

of multiple phases with limited data. NPJ Quant. Inf. 6(1), 92 (2020)
56. J. Rubio, P.A. Knott, T.J. Proctor, J.A. Dunningham, Quantum sensing networks for the estimation of linear functions. J. Phys. A: Math. Theor. 53(34),

344001 (2020)
57. K.K. Lee, C. Gagatsos, S. Guha, A. Ashok, Quantum multi-parameter adaptive bayesian estimation and application to super-resolution imaging. arXiv

preprint arXiv:2202.09980 (2022)
58. B. Liu, K.-X. Yang, Y.-L. Mao, L. Feng, B. Guo, S. Xu, H. Chen, Z.-D. Li, J. Fan, Experimental adaptive Bayesian estimation for a linear function of

distributed phases in photonic quantum networks. Optica 11(10), 1419–1424 (2024). https://doi.org/10.1364/OPTICA.532865
59. H. Vahlbruch, M. Mehmet, K. Danzmann, R. Schnabel, Detection of 15 DB squeezed states of light and their application for the absolute calibration of

photoelectric quantum efficiency. Phys. Rev. Lett. 117, 110801 (2016). https://doi.org/10.1103/PhysRevLett.117.110801
60. R. Demkowicz-Dobrzanski, U. Dorner, B.J. Smith, J.S. Lundeen, W. Wasilewski, K. Banaszek, I.A. Walmsley, Quantum phase estimation with lossy

interferometers. Phys. Rev. A 80, 013825 (2009). https://doi.org/10.1103/PhysRevA.80.013825
61. G. Frascella, S. Agne, F.Y. Khalili, M.V. Chekhova, Overcoming detection loss and noise in squeezing-based optical sensing. NPJ Quantum Inf. 7(1),

72 (2021)
62. S.M. Kay, Fundamentals of statistical processing, volume I: estimation theory (Prentice Hall PTR, Upper Saddle River, NJ, 1993)

123

https://doi.org/10.1103/PhysRevX.9.041023
https://doi.org/10.1103/PhysRevResearch.1.032024
https://doi.org/10.1103/PhysRevA.105.012607
https://doi.org/10.1103/PhysRevLett.116.030801
https://doi.org/10.1103/PhysRevA.94.052108
https://doi.org/10.1103/PhysRevA.104.062603
https://doi.org/10.1103/PhysRevLett.124.140501
http://arxiv.org/abs/2405.17115
https://doi.org/10.1103/PhysRevA.92.032114
https://doi.org/10.1364/OPTICA.5.001171
http://arxiv.org/abs/2202.09980
https://doi.org/10.1364/OPTICA.532865
https://doi.org/10.1103/PhysRevLett.117.110801
https://doi.org/10.1103/PhysRevA.80.013825

	Simultaneous estimation of three parameters with Heisenberg scaling sensitivity in a two-channel optical network
	Abstract
	1 Introduction
	2 Two channel network
	3 Multiparameter Fisher information matrix
	4 Three-parameter estimation
	5 Conclusions
	Acknowledgements
	Appendix A Details of balanced Homodyne measurement outcomes
	Appendix B Deriving the Fisher information matrix for Gaussian probability in Eq. (8)
	Appendix C Evaluation of F^mathcalS in equation (12)
	Appendix D Maximum Likelihood Estimators
	Appendix E Unbiasness of estimator tildeφ_0
	Appendix F Variance of the estimator tildeφ_0
	References


