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Abstract

This note describes the measurement of the ratio of branching fractions of
B(B0

s → D±
s K

∓)/B(B0
s → D−

s π
+) with the full data sample corresponding to

an integrate luminosity of 9.3fb−1. The value obtained for the ratio of branch-
ing fractions B(B0

s → D±
s K

∓)/B(B0
s → D−

s π
+) = 0.0777± 0.0079 (stat) ±

0.0026 (sys) is compatible with the state-of-art measurements and with the
theoretical prediction.
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1 Introduction

The decay mode B0
s → D±s K

∓ is interesting because it can be used to extract
the CKM-matrix γ angle, with a time-dependent, flavor-tagged measurement. The
relative weak phase between B0

s → D−s K
+ and B0

s → D+
s K

− is the CKM γ angle,
or rather arg(−VcsV ∗ub/VusV ∗cb) as shown in figure 1. The precise value of CKM γ
angle is one of the remaining open question in flavour physics.

Figure 1: Diagram contributing to B0
s → D±s K

∓. The relative phase between the
two diagrams is γ = arg(−VcsV ∗ub/VusV ∗cb).
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In this note we describe a measurement of B(B0
s → D±s K

∓)/B(B0
s → D−s π

+).
An analysis of the B0

s → D±s K
∓ decays has been performed at CDF in 2007 with a

sample of integrated luminosity correspoding to 1.2fb−1 [3].

2 Data sample

The analysis uses the data collected by the B_CHARM trigger between Decem-
ber 2004 (run 190697) to September 2011 (run 312510), corresponding to the
follow period range P1-P30.1 We produced BSt-ntuple using the official Bottom-
Mods executable v6.1.4.m and we selected the candidates from the Bs-DsPi-PhiPi
block of BSt-ntuple. We run the executable over the following SAM datasets:
xbhdih, xbhdii, xbhdij, xbhdik, xbhdfm, xbhdfn and xbhdfp. We used the
standard good run list following the prescription of the B-Group (Good Run list
V45, goodrun_b_bs_nocal_nomu.list). The integrated luminosity of the sample
is about 9.3 fb−1.

The selection cuts, listed in table 1, have been applied to the data sample.

Table 1: Preselection cuts used applied to the candidates.

B0
s → D−s π

+ unit selection
χ2

2D(B0
s ) − < 40

χ2
3D(B0

s ) − < 100
Lxy(B0

s ) µm > 0
pT (B0

s ) GeV/c > 5
|d0(B0

s )| µm < 100
Lxy(Ds)B0

s
µm > 0

∆R(Ds, πB0
s
) − < 2

pT (πB0
s
) GeV/c > 2

|η(all tracks)| − < 1
m(KK) GeV/c2 [1.012, 1.027]
m(φK) GeV/c2 [1.949, 1.989]

The variables in the table 1 characterize the decay of the B0
s . In particular

χ2
2D(B0

s ) and χ2
3D(B0

s ) are, respectively, the χ2 of the fit on the 2-dimensional and 3-
dimensional vertex of tracks. The Lxy(B0

s ) is the decay length of B0
s in the transverse

plane; similar Lxy(Ds)B0
s
is the decay length of Ds but it refers to the B0

s decay
vertex. pT is the transverse momentum, d0 is the impact parameter that is the
minimum distance of the track from the beam line and η is the pseudo-rapidity of
the track. ∆R is the angular distance defined as ∆R =

√
∆η2 + ∆φ2

Figure 2 shows the distribution of invariant mass of the B0
s candidates (in the

Dsπ hypothesis), after the cuts listed in 1. We can observe the B0
s → D−s π

+ peak
at the B0

s nominal mass of 5.3663 GeV/c2. At higher mass of the B0
s → D−s π

+

peak we expected the combinatorial background, which is mostly composed of
random charged particles, displaced from the beam-line, accidentally satisfying the

1We excluded the period zero because the dE/dx response is not calibrated on this period.
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Figure 2: Invariant mass distribution of the pair D−s π+ after the baseline cuts
summarized in table 1.

selection requirements. In addition, in lower mass region, we expect background due
to partially-reconstructed heavy-flavor decays (referred as “physics background”)
interpreted as mis-reconstructed b-hadron decays. We expect, also, the B0

s → D±s K
∓

signal shifted with respect to the B0
s → D−s π

+peak.
To give a rough estimate of the signal yield and of the purity of the sample, a

simple χ2-binned fits was performed. A Gaussian shape was assumed to parametrize
the “signal” peak, while an exponential distribution was used to parametrize the
combinatorial background. The region mass of the physics background was excluded
from this fit. The figure 2 shows the invariant mass distribution of the B0

s candidates
with the fit overlaid.

We estimate a yield of 5029± 278 B0
s → D−s π

+ events with a standard deviation
σ = (19.7±0.6) MeV/c2, and a purity S/B ≈ 0.95 at the peak. The one-dimensional
binned fit is only a qualitative tool to estimate the yield and the purity of the final
optimized samples in a quick way.

3 Monte Carlo

Monte Carlo samples for Bs → DsX modes have been generated following the
standard prescription of the B Monte Carlo Group that takes into account the many
changes of detector and trigger configurations during the data-taking: changes of
silicon coverage, of the XFT and the SVT configurations, as well as of the Two-Track
Trigger trigger selection. In the Monte Carlo, the beamline, the detector and the
trigger performance corresponding to the configuration of each run are simulated.

We generated single B0, B0
s and Λ0

b meson using BGenerator: fragmentation was
turned off and rapidity and pT (B) distributions were taken from an external his-
togram containing a smooth fit to the data published in CDF Run II measurement [1],
according to the standard prescription of the B Monte Carlo Group.

The generated sample was processed with the realistic trigger and GEANT



3.1 Monte Carlo validation 5

]2
c [GeV/

πsDm
5.0 5.5 6.0 6.5

2
c

C
a
n
d
id

a
te

s
 p

e
r 

6
.8

 M
e
V

/

0

2000

4000

CDF Run II Monte Carlo

π s D→ sB

 Ks D→ sB

 p
(*)

s D→ bΛ

 h
(*)

s D→ 
0

B

π D → 0B

ρ 
(*)

s D→ sB

π 
*

s D→ sB

 K
*

s D→ sB

 X
(*)

s D→ sB

CDF Run II Monte Carlo

]2
c [GeV/πsDm

5.0 5.5 6.0 6.5

2
c

C
a

n
d

id
a

te
s
 p

e
r 

6
.8

 M
e

V
/

1

10

210

3
10

410

CDF Run II Monte Carlo

π s D→ sB

 Ks D→ sB

 p
(*)

s D→ bΛ

 h
(*)

s D→ 
0

B

π D → 0B

ρ 
(*)

s D→ sB

π 
*

s D→ sB

 K
*

s D→ sB

 X
(*)

s D→ sB

CDF Run II Monte Carlo

Figure 3: Invariant Dsπ-mass distribution of the simulated B0
s Λ0

b B0 and B−.
Relative fractions are weighted using measured branching ratios for the for the
observed modes.

simulation, and then reconstructed using the release 6.1.4.m of ProductionExe.
Radiative tails (Final State Radiation) have been included through the PHOTOS
package embedded in the full CDF Simulation. B − B̄ oscillations were inhibited
(∆md = ∆ms = 0), and the lifetime difference in the B0

s system was set to zero
(∆Γs/Γs = 0). Figure 3 shows the expected Dsπ-mass distribution of the data
sample, resulting from the Monte Carlo simulation of each mode normalized using
the branching fractions derived from the current experimental knowledge [19]. As
expected, in the Dsπ mass assignment, we have a high peak due to the B0

s → D−s π
+

decay at the nominal B0
s mass, while the B0

s → D±s K
∓ peak is shifted at lower

masses with an asymmetric tail, due to the wrong mass assignment. The different
contributions of mis-reconstructed decays can be seen in the figure 3.

3.1 Monte Carlo validation

In order to evaluate whether the Monte Carlo simulation describes the data
reliably, we performed a comparison between their kinematics distributions. To
extract the signal distributions we must accurately subtract the background. However
this is not possible with an high accuracy from the sample selected by the our baseline
cuts (see tab. 1), since the amount of background in the sample is sizeable (see
figure 2). We then decided to use a tighter selection, inspired to the work done in
ref. [3]. Therefore we used different requirement reported in the table 2, and the
Dsπ-mass distribution obtained is reported in figure 4. The background level is now
acceptable for our purpose.

3.1.1 Kinematic composition of the sample

The data sample is collected using three different trigger paths: B_CHARM_LOWPT,
B_CHARM, and B_CHARM_HIGHPT. These trigger paths have different momentum thresh-
olds, thus our final data sample is composed by a mixture of different kinematics.
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Table 2: Cuts applied to the data sample to perform the comparison between
simulated and real events.

B0
s → D−s h

+ unit selection
χ2

2D(B0
s ) − < 10

χ2
3D(Ds) − < 15
Lxy(B0

s ) µm > 300
pT (B0

s ) GeV/c > 5.5
|d0(B0

s )| µm < 60
Lxy(Ds)B0

s
µm > 0

∆R(Ds, h) − < 1.5
pT (h) GeV/c > 2
|η| − < 1

m(KK) GeV/c2 [1.013, 1.028]
m(φh) GeV/c2 [1.948, 1.988]
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Figure 4: Dsπ-mass distribution after cuts reported in table 2.
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Table 3: Kinematic composition of the data sample.

sub-sample kinematic fraction

L B_CHARM_LOWPT 27.2%

M B_CHARM 46.5%

H B_CHARM_HIGHPT 26.3%

Since our trigger system uses dynamical prescales, even the coefficient of the three
kinematics are not trivial to determine. In fact we can have, for example, some
events triggered by B_CHARM_HIGHPT and not by B_CHARM, although the B_CHARM
kinematics includes the B_CHARM_HIGHPT. Therefore, in order perform a correct
comparison between data and Monte Carlo we have to take into account this effect.

The simulation does not have access to the database trigger dynamical prescales
information, therefore we have to separately generate the different trigger scenarios,
and combine them with the relative fraction observed in data. To extract these
fractions we divided the data sample in three independent sub-samples with well-
defined kinematics. The three sub-samples were defined as follows:

Sample L where events triggered B_CHARM_LOWPT;

Sample M where events triggered B_CHARM, but did not trigger B_CHARM_LOWPT

Sample H where events triggered B_CHARM_HIGHTPT, but triggered neither
B_CHARM nor B_CHARM_LOWPT.

The composition of the sample is reported in table 3. The Dsπ mass distribution
is shown in the figure 5 for the three different sub-samples.

3.1.2 Primary Vertex

The primary vertex requires a special treatment. In fact, there is a difference
between the calculation of the primary vertex in the data and in the simulation.
In data the spatial position of the primary vertex is measured using algorithms
exploiting the global event information, in which the candidate of interest is removed.
In our Monte Carlo, we generate only the B0

s candidates so we have no access to the
distributions of the large number of additional tracks in the detector coming from the
pp̄ collision. This means that in the Monte Carlo we cannot use the same procedure
of data. Thus to estimate the simulated primary vertex, we get the point of the
beamline at the minimum distance from the straight line which has the momentum
of the B0

s candidate as direction and passes through its decay vertex. The figure 6
shows the comparison of the distributions of the coordinate of the primary vertex
(PVx, PVy, PVz); the agreement is satisfactory. Incidentally, this confirms that the
offline algorithm does a good job in determining the vertex from the global event
information.
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Figure 5: Invariant mass distribution of the pair Dsπ in the three samples described
in the text.

3.1.3 Transverse decay-length error

We notice a discrepancy between data and Monte Carlo for the distribution of the
transverse decay-length error σLT as reported in figure 7. Since probing the sources
of this discrepancy requires a large amount of work, which is clearly out of scope of
this work, we decide do not use σLT as variable in any part of the selection procedure
(or a related observable such as the transverse decay-length significance LT /σLT ).

3.1.4 pT (B) reweighting of the Monte Carlo

We also observe a very small discrepancy at lower value in the pT (B) distribution
between simulated b-hadrons candidates and real data (see fig. 8). Therefore, to
obtain a better match, we reweight the pT (B) spectrum of the simulation to the
pT (B) spectrum observed in data.

We compare the distributions of several observables for the B0
s → D−s π

+ mode,
for which we can easily extract a sizeable and clean signal from data (see fig. 4).
The comparisons between the distribution of several observables of the sideband
subtracted data and the simulation are shown in the fig 9, 10 and 11, respectively
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for the sub-samples L, M and H. The agreement between simulation and data is
satisfactory for all the observables. We expect the same level of agreement to occur
for the B0

s → D±s K
∓ mode, which is kinematically very similar to the B0

s → D−s π
+.
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Figure 6: Distribution of the primary vertex coordinate in data (points with error
bars) and in Monte Carlo (filled histogram): x-coordinate (a), y-coordinate (b),
z-coordinate (c).
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Figure 9: Comparison of background-subtracted distributions in the B0
s → D−s π

+

decay and equivalent Monte Carlo distributions for sub-sample L: pT (B0
s ) (a),

LT (B0
s ) (b), d0(B0

s ) (c), χ2
3D(B0

s ) (d), χ2
2D(B0

s ) (e), αT (f), η(B0
s ) (g), ϕ(B0

s ) (h),
LT (Ds)B0

s
(i), cos θ∗(Ds) (j), mφπ (k), mKK (l). Data (points with error bars) are

compared with reweighted Monte Carlo simulation (filled histogram).
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Figure 10: Comparison of background-subtracted distributions in the B0
s → D−s π

+

decay and equivalent Monte Carlo distributions for sub-sample M: pT (B0
s ) (a),

LT (B0
s ) (b), d0(B0

s ) (c), χ2
3D(B0

s ) (d), χ2
2D(B0

s ) (e), αT (f), η(B0
s ) (g), ϕ(B0

s ) (h),
LT (Ds)B0

s
(i), cos θ∗(Ds) (j), mφπ (k), mKK (l). Data (points with error bars) are

compared with reweighted Monte Carlo simulation (filled histogram).
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Figure 11: Comparison of background-subtracted distributions in the B0
s → D−s π

+

decay and equivalent Monte Carlo distributions for sub-sample H: pT (B0
s ) (a),

LT (B0
s ) (b), d0(B0

s ) (c), χ2
3D(B0

s ) (d), χ2
2D(B0

s ) (e), αT (f), η(B0
s ) (g), ϕ(B0

s ) (h),
LT (Ds)B0

s
(i), cos θ∗(Ds) (j), mφπ (k), mKK (l). Data (points with error bars) are

compared with reweighted Monte Carlo simulation (filled histogram).
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4 Neural Network optimization
The procedure used to optimize the selection of the data sample is based on an

Artificial Neural Network (NN). The NN is implemented in the software packages
Toolkit for Multivariate Analysis (TMVA) [30].

4.1 Cuts optimization

We chose as input of the Neural Network the following variables:

pT (B0
s )− transverse momentum of the B0

s candidates;

LT (B0
s )− transverse decay-length of the B0

s candidates;

χ2
3D(B0

s )− the χ2 of the 3-dimensional fit to the B0
s candidates decay vertex;

d0(B0
s )− impact parameter of the B0

s candidates;

αT (B0
s )− pointing angle in the transverse plane of the B0

s candidates;

LT (Ds)B0
s
− transverse decay-length for the Ds candidates with respect to the

decay vertex of the B0
s candidates;

cos (θ∗
Ds

)− angular distribution of the Ds candidates in the center of mass frame
of the B0

s .

The signal input distributions are taken from the Monte Carlo of the B0
s →

D±s K
∓, as described in section 3, while for the background sample we chose the

higher mass sideband, i.e. events with masses in the range [5.5, 6.5] GeV/c2. The
distribution of the training variables, for signal and background, are shown in
figure 12. These variables have been chosen because of their discriminant power
which is satisfactory for the scope of this work. Adding other variables would not
improve greatly the separation power, at the price of an they will increasing of the
level of complexity of the Neural Network. In fact using too many variables may
be very powerful but also very dangerous. The supervised learning approach is
based on the assumption that the simulation perfectly reproduces real data. Since
this is clearly wrong, a NN which uses a very large numbers of input variables may
use “small” discrepancies between data and Monte Carlo to reject signal events,
leading to a non optimal (maybe biased) selection. Fortunately in our data sample
we can a posteriori verifies that NN works fine looking at the reference B0

s → D−s π
+

peak. Anyway, the variables of our choice are both expected, and experimentally
verified, to be well-reproduced by our simulations with all their correlations, being
of essentially kinematical nature. A separate discussion is worthwhile for the specific
case of the pointing angle (αT (B0

s )).

4.1.1 Pointing angle

As explained in the section 3.1.2, the position of the primary vertex (PV) is
estimated in the Monte Carlo using a different algorithm than data. We used
the information from candidates and the beamline to extract the primary vertex
coordinates. Although the agreement between data and Monte Carlo is satisfactory
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Figure 12: Input variables to the Neural Network: pT (B0
s ) (a), LT (B0

s ) (b),
d0(B0

s ) (c), χ2
3D(B0

s ) (d), αT (e), LT (Ds)B0
s

(f), cos θ∗(Ds) (g). The signal is
the filled histogram (in blue), while the background is the hatched one (in red). The
histograms are normalized to one.
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Figure 13: Comparison of the pointing angle distribution in data and in the simulation
(where the coordinates of the primary vertex are estimated with the algorithm
explained in the text). (a) The 3-dimensional pointing angle, (b) the transverse
pointing angle.
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Figure 14: Comparison of the transverse pointing angle distribution in data and in
simulation. The pointing angle is calculated for both data and simulation with the
primary vertex estimate with the algorithm used in the simulation.

(see fig. 6) the strategy used introduces an issue in the estimate of the pointing angle
(see fig. 13a). In fact the PV position extracted in such a way, is highly correlated to
the direction of the momentum of the B0

s candidates, above all in the z-coordinate,
where we have a large uncertainty. Unfortunately the pT (B0

s ) and the position of
the PV directly enter in the definition of the three-dimensional pointing angle α3D.

Since the problem affects especially the z-direction (see fig. 13b), we decide to use
the projection of the pointing angle onto the transverse plane. To avoid introducing
a bias in the Neural Network, we decided to use own algorithm for determination
the primary vertex both in the simulation and real data, for both the signal and the
background sample, and the agreement is satisfactory (see fig. 14 and fig. 15).
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Figure 15: Comparison of pointing angle distribution, in the combinatorial back-
ground mass region [5.5, 6.5] GeV/c2, calculate with the algorithm introduced in
Monte Carlo simulation for calculation of the primary vertex (points) and with
the standard algorithm (hatched histogram). (a) 3-dimensional pointing angle, (b)
transverse pointing angle.

4.2 Final selection

Finally we trained the Neural Network and we obtain as output the distributions
shown in figure 16. Figure 16a shows the distribution of the output variable of the
NN for the signal (in blue), peaked at 1, and for the background (in red). The
separation between the two distributions is the equivalent of 3.1 standard deviations
between Gaussians. Figure 16 reports the correlation matrix of the variables used in
the NN training, for the signal sample (see fig. 16c) and for the background sample
(fig. 16d).

The cut on the NN output response is chosen by maximizing the score function

score function = S√
S +B

, (1)

where S is the number of B0
s → D±s K

∓ events estimated by the simulation, while B
is the number of background events taken by fitting, with an exponential function,
the high mass sideband in the data. The score function in (1) is a good choice
for a typical “counting experiment” being inversely proportional to the statistical
uncertainty of the measurement of a signal yield. The figure 17 shows the score
function for several cuts on the NN variable. We choose as our final selection the
cut NN > 0.9.

The Dsπ-mass distribution is shown in the figure 18b. For comparison in the
figure 18a is also reported the mass distribution with the baseline selection of
table 1. A strong reduction of background is apparent, with little reduction of the
B0
s → D−s π

+ peak height, as expected from the good separation shown in fig. 16.
Background reduction is particularly strong in the region above the B0

s → D−s π
+

peak, which is essentially pure combinatorial.
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Figure 16: Output response of the Neural Network (a); output response of the Neural
Network in logarithmic scale (b). The histograms are normalized to one. Also it is
reported the linear correlation matrix for the signal (c) and for the background (d)
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Figure 18: Invariant mass distribution of the Dsπ pair after the baseline selection
(a), and after the final selection cut (b).

4.3 Procedure validation

To validate the optimization procedure we check that the simulation and real
data have the same response for different NN requirements, using the reference
B0
s → D−s π

+ peak. Table 4 reports the efficiency for different NN requirements, as
resulting from simulation and real data. The B0

s → D−s π
+ yield is roughly estimated

with the same strategy described in section 2, through a χ2-binned fit.
Although the efficiency in data is systematically higher than of that observed in

the simulation, the agreement is satisfactory, confirming that the NN gives a similar
response if applied to data or simulation. The observed systematic effect may be
due to the trivial technique used to extract the B0

s → D−s π
+ number of events.

Table 4: Comparison between the Monte Carlo efficiency and the efficiency of the
B0
s → D−s π

+ decay mode.

NN cut εMC εData

0.9 0.796 0.861± 0.078
0.8 0.856 0.905± 0.082
0.7 0.892 0.929± 0.085
0.6 0.914 0.953± 0.087
0.5 0.934 0.972± 0.089
0.4 0.948 0.992± 0.092
0.3 0.961 0.993± 0.093

5 Particle identification

Individual hadron identification is difficult with the CDF II detector, since
the detector was designed for high-pT physics measurements. The TOF is the
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only detector entirely devoted to do this function, but its performance is marginal
for particles of interest for this analysis, having transverse momenta greater than
2 GeV/c. For charged particles with pT & 2 GeV/c, a reasonably effective separation
can be obtained from the rate of energy loss through ionization (dE/dx) in the gas
that fills the active volume of the drift chamber. The dE/dx calibration is based
on a large samples of D0 → K−π+ and Λ→ pπ− decays taken with the displaced
track trigger. In this work we use the official CDF dE/dx universal curves and the
official templates for the different mass hypothesis [33].

5.1 dE/dx residual

The dE/dx residual (in mA mass hypothesis) of a charged particle, with momen-
tum p and observed specific energy-loss dE/dx|obs, is defined as

resA = dE

dx

∣∣∣∣
obs
− dE

dx

∣∣∣∣
A
, (2)

where the dE/dx|A is the expected dE/dx,evaluated at βγ = p/mA. The official
CDF II parameterization of dE/dx residual distributions with the correct mass
hypothesis (see ref. [33]) is made with analytical functions (convolution of several
Gaussian terms), currently available in a stand-alone C code. Figure 19 shows the
dE/dx residual distribution observed for pions, kaons and protons, in the mπ,mK

and mp mass hypothesis, respectively, and their official parameterizations. We will
indicate with Pπ+(resπ+) the parameterization of the positive pion dE/dx residual,
and with PK+(resK+), Pp(resp) the parameterization of the positive kaon and proton
residual, respectively. The anti-particles have similar notation.

In order to have just one single dE/dx observable, to be used in the fit of com-
position (see section 6), we modified these templates to account for the momentum
dependence, as explained in the next subsection.

5.2 PID observable

In this analysis we follow a statistical approach that combines information from
PID and kinematics into a fit of composition as we will describe in section 6. We use
the PID information on the daughter track of the B0

s candidates, and the information
is summarized in a single observable, the dE/dx residual in the pion hypothesis:

resπ = dE

dx

∣∣∣∣
obs
− dE

dx

∣∣∣∣
π
. (3)

The resπ is a momentum-dependent observable, as it can be seen from figure 21, if
the daughter particle of the B0

s candidates is not a pion. We then have to account
for this momentum dependence in the Likelihood terms [34]. Therefore we decide to
integrate over the momentum dependence to avoid a complex momentum-dependent
parametrization of the mis-reconstructed decay modes. If the daughter particle of
the B0

s candidates is a pion, the template is exactly the Pπ(resπ) function, from
ref. [33], as reported in figures 19a and 19b. Instead if it is a kaon, a proton or
an electron, some adjustments are necessary. For instance the probability density
function (p.d.f.) of the dE/dx residual in the positive pion mass hypothesis of a
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Figure 19: Distribution of observed dE/dx residual, for pions (with pion mass
hypothesis) (a, b), for kaons (with kaon mass hypothesis) (c, d) and for protons (with
proton mass hypothesis) (e, f).
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generic particle A+ (A+ = K+, p, e+), that we can indicate with ℘A(resπ+), can be
extracted by marginalizing the momentum dependence:

℘π+(resπ+) = Pπ+(resπ+),

℘A+(resπ+) =
∫
PA+(resπ+ + δπ

+A+(p)) fA+(p) dp

'
∑
i

PA+(resπ+ + δπ
+A+(pi)) fA+(pi) ∆pi,

where fA+(p) is the particle momentum distribution and δπ+A+(p) is the difference
between expected dE/dx in π+ and A+ mass hypothesis, according to the universal
curves of fig. 21:

δπ
+A+(p) = dE

dx

∣∣∣∣
π+
− dE

dx

∣∣∣∣
A+

.

To simplify calculations, we performed a numerical integration by dividing the
momentum distribution in ten bins, where ∆pi is the width of each bin, as shown in
fig. 20. We will assess a systematic uncertainty due to the binning of the momentum
in the section 7. The p.d.f.s of negatively-charged particles are extracted in the same
way.

The result of the procedure is reported in figure 22a, where we compare dE/dx
response for positively-charged pions, kaons (from B0

s → D−s K
+ decay), protons

(from Λ0
b → D−s p decay) and electrons (from B0

s → D−s e
+νe decay). The separation

power between pions and kaons is ≈ 1.4σ, between pions and protons is ≈ 1.6σ, and
between pions and electrons is ≈ 0.9σ. The PID distributions for negatively-charged
particles have similar separation power, and are shown in figure 22b. Distributions
of daughter particle of the other decays are similar.
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Figure 21: Universal curves as a function of particle momentum for positive (a) and
negative (b) particle.
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Figure 22: Comparison of the PID distribution for pions, kaons, protons and electrons.
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6 Fit of composition

To disentangle all the components of the data sample we decide to perform an
extended unbinned Maximum Likelihood fit. A good choice of the discriminating
observables is crucial to fully exploit the available information. The goal is to obtain
most of the available information using the minimum number of observables. In
addition, the independence of variables simplifies the modeling of the probability
density, since it factorizes the joint probability density.

We represent the kinematic and PID information using two discriminating
observables:

mDsπ− invariant mass of the final state particles with the Dsπ mass assignments;

resπ− dE/dx residual in the pion mass hypothesis.

Particle identification information is summarized with one observable, the residual
resπ, defined as

resπ = dE

dx

∣∣∣∣
obs
− dE

dx

∣∣∣∣
π
, (4)

where dE/dx|obs indicates the observed energy-loss, while dE/dx|π indicates the
expected energy-loss in pion mass hypothesis.

6.1 Likelihood function

The Likelihood function L is the product of the Likelihoods Li of all events:

L (ν,θ) = νN

N ! e
−ν ·

N∏
i=1

Li(θ|xi) (5)

where the index i runs over the events. N is the total number of events passing
the final selection, θ is the vector of parameters that we want to estimate, x is the
vector of the discriminating observables xi = {mDsπ, resπ}i. The Poisson term in
eq. (5) takes into account the uncertainty due to the finite size of the total sample,
where ν is the mean number of events.

The Likelihood of each event is written as the sum of a “decays” term and a
combinatorial background term:

Li = fbkg ·L bkg
i + (1− fbkg) ·L dec

i . (6)

The index bkg (dec) labels the part of the function that describes the combinatorial
background (all the decays) term; fbkg is the fraction of combinatorial background
events and 1 − fbkg is the fraction of all the decays in the data sample. We
conventionally label as ℘m the term that describes the invariant-mass distributions
(“mass term”), and ℘PID the term that models the dE/dx density (“PID term”).
The Likelihood of each individual decay mode is factorized as a product of two
p.d.f.s:

L dec =
s∑
j=1

fj · ℘mj (mDsπ) · ℘PID
j (resπ), (7)
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in which the index j runs over the thirteen expected components: B0
s → D−s π

+,
B0
s → D±s K

∓, B0
s → D?−

s π+, B0
s → D?±

s K∓, B0 → D
(?)+
s π−, B0 → D

(?)−
s K+,

B0
s → D−s ρ

+, B0
s → D−s π

+π0, B0
s → D−s e

+νe, B0
s → D−s µ

+νµ, Λ0
b → D−s p, Λ0

b →
D?−
s p and B0 → D−π+. The parameters fj are their fractions and are determined

by the fit. From the (s− 1) independent fractions resulting by the normalization
condition,

fs =
s−1∑
j=1

fj , (8)

we determine the yield of each mode. The fractions fj are the same for a decay
mode and its CP conjugate, therefore the parameter we measure in our fit is the
CP-averaged branching ratio B(B0

s → D±s K
∓) ≡ [B(B0

s → D+
s K

−) + B(B0
s →

D−s K
+) + B(B̄0

s → D+
s K

−) + B(B̄0
s → D−s K

+)]/2.
The Likelihood of the background term factorizes as the decays term:

L bkg = ℘m(mDsπ) · ℘PID(resπ). (9)

In equations (6)-(9) the functional dependence on the vector θ was omitted, since in
the equations we explicitly wrote some terms of this vector as fbkg and fj .

6.2 Mass probability density function

Signal and full reconstructed decays

We extract the p.d.f. mass templates of various decays mode from Monte Carlo
sample of B → DX described in the section 3. The mass line shape of the full
reconstructed decay modes, in particular the signal modes B0

s → D±s h
∓ (see fig. 23),

is parameterized using the following p.d.f.:

℘m(m;α) =fbulk

[
f1G (m;µ1, σ1) + (1− f1)G (m;µ2, σ2)

]
+ (1− fbulk)T (m; b, c, µ1),

(10)

where

G (m;µ, σ) = 1√
2πσ

exp
(
− 1

2
(m− µ

σ

)2)
,

T (m; b, c, µ) = 1
K

exp
(
b(m− µ)

)
· erfc

(
c(m− µ)

)
,

K =
∫ m2

m1
exp

(
b(m− µ)

)
· erfc

(
c(m− µ)

)
dm,

erfc(x) = 1− erf(x) = 2√
π

∫ +∞

x
e−t

2
dt.

We use a sum of two Gaussians to parameterize the bulk of the distribution, while
the long lower-mass tail is parameterized with the function T (m; b, c, µ). fbulk is
the relative fraction of the double Gaussian bulk with respect to the total (bulk plus
tail), while 1− fbulk is the fraction of the tail term.
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Figure 23: Mass p.d.f. for the B0
s → D±s h

∓ decays. (a) B0
s → D−s π

+, (b) B0
s →

D±s K
∓.

Mis-reconstructed

ThemDsπ distribution for the mis-reconstructed decay modes is modeled with the
convolution of a resolution function, a Gaussian, and a so-called “Argus function” [14]:

℘m(m;β) = G (m; 0, σ) ∗A (m;mA, cA),

A (m;mA, cA) =


1
KA

[
m ·

√√√√1−
(
m

mA

)2
· exp

(
− cA

(
m

mA

)2)]
if m < mA,

0 if m ≥ mA,

where the normalization KA is:

KA =
∫ mA

m1
m ·

√√√√1−
(
m

mA

)2
· exp

(
− cA

(
m

mA

)2)
dm (m1 < mA),

where mA and cA are the Argus function parameters, while σ is the resolution
parameter. Some mass templates are reported in figure 25.

The semi-leptonic decays enter in the category of mis-reconstructed decays, since
the neutrino is not detected. The p.d.f mass templates of those decay modes (see
figures 25f (g)) are parameterized with an exponential function:

E (m; a) = 1
K

exp(−am),

K =
∫ m2

m1
exp(−am) dm.

(11)

Background mass term

The mass shape of the combinatorial background is extracted from real data,
using the higher mass side-band. The mass region [5.6, 6.5] GeV/c2, excluded from
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Figure 24: Mass template of various fully-reconstructed decay modes: B0 →
D

(?)+
s π− (a), B0 → D

(?)−
s K+ (b), Λ0

b → D−s p (c), and B0 → D−π+ (d).
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Figure 26: Mass template of the background term. (a) mass distribution of the pair
Dsπ in log-scale. (b) mass distribution of the pair Dsπ in linear-scale, where the
background p.d.f. is extrapolated in the lower mass region.

the central fit, is fitted with an exponential function (see eq. (11)), as shown in
Figure 26. The value of the slope of the exponential function obtained is abkg =
(0.98± 0.10) (GeV/c2)−1, and it is a fixed parameter in the central fit. A systematic
uncertainty on the level of knowledge of this slope will be assessed, details are
reported in section 7.

6.3 PID probability density function

Here we report p.d.f.s for kaons, protons and electrons for some decays (see
figure 27). The p.d.f.s of the other decays are similar. We assume that the background
is mostly composed by pions and kaons. Therefore the p.d.f. of the background can
be written as:

℘PID
bkg (resπ+) = fπbkg · ℘π+(resπ+) + (1− fπbkg) · ℘K+(resπ+), (12)

℘PID
bkg (resπ−) = fπbkg · ℘π−(resπ−) + (1− fπbkg) · ℘K−(resπ−), (13)

where ℘π±(resπ±), ℘K±(resπ±) are the p.d.f.s for positively- and negatively-charged
pions and kaons in the pion mass hypothesis, respectively. fπbkg(1 − fπbkg) is the
inclusive charge-averaged fraction of pions(kaons) in the background.

6.4 Fit implementation

The fit of composition is performed on the Dsh data sample. We use only
candidates whose discriminating observables satisfy the following conditions: the
invariant Dsπ mass within [5.1, 5.6] GeV/c2, and |resπ| < 6. The requirement
|resπ| > 6 excludes candidates with unlikely values of observed dE/dx to reduce
a small contamination from tracks with corrupted dE/dx information. The total
number of fitted candidates is N = 12453.



6.4 Fit implementation 31

)[ns]
+

(K
π

res
­10 ­5 0 5 10

F
re

q
u

e
n

c
y

0.0

0.1

0.2

Residual positive Kaon (pion hypothesis)

+
K

 Ks D→ sB

Residual positive Kaon (pion hypothesis)

(a)

)[ns]
­

(K
π

res
­10 ­5 0 5 10

F
re

q
u

e
n

c
y

0.0

0.1

0.2

Residual negative Kaon (pion hypothesis)

­
K

 Ks D→ sB

Residual negative Kaon (pion hypothesis)

(b)

(p)[ns]πres
­10 ­5 0 5 10

F
re

q
u

e
n

c
y

0.0

0.1

0.2

Residual positive proton (pion hypothesis)

p

 ps D→ bΛ

Residual positive proton (pion hypothesis)

(c)

)[ns]p(πres
­10 ­5 0 5 10

F
re

q
u

e
n

c
y

0.0

0.1

0.2

Residual negative anti­proton (pion hypothesis)

p

 ps D→ bΛ

Residual negative anti­proton (pion hypothesis)

(d)

)[ns]+
e(

π
res

­10 ­5 0 5 10

F
re

q
u

e
n

c
y

0.0

0.1

0.2

Residual positive electron (pion hypothesis)

+
e

eν e s D→ sB

Residual positive electron (pion hypothesis)

(e)

)[ns]­
e(

π
res

­10 ­5 0 5 10

F
re

q
u

e
n

c
y

0.00

0.05

0.10

0.15

0.20

Residual negative electron (pion hypothesis)

­
e

eν e s D→ sB

Residual negative electron (pion hypothesis)

(f)

Figure 27: PID templates of the daughter tracks of some decays. (a, b) kaons from
B0
s → D±s K

∓, (c, d) protons from Λ0
b → D−s p, (e, f) electrons from B0

s → D
(?)−
s e+νe.
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Table 5: Table of the parameter constrained in the fit of composition and their
values.

parameter (λi) branching fractions [?] constrain (µi ± σi)
B(B0

s → D−s π
+) = (3.2± 0.4)× 10−3 −

f
B0→D(?)+

s π−

fB0
s→D

−
s π+

B(B0→D(?)+
s π−)

B(B0
s→D

−
s π+) = (2.16± 0.26)× 10−5

(3.2± 0.4)× 10−3 (3.3± 0.5)× 10−2

f
B0→D(?)−

s K+

fB0
s→D

−
s π+

B(B0→D(?)−
s K+)

B(B0
s→D

−
s π+) = (2.2± 0.5)× 10−5

(3.2± 0.4)× 10−3 (2.6± 0.7)× 10−2

fB0
s→D

?−
s π+

fB0
s→D

−
s π+

B(B0
s→D

?−
s π+)

B(B0
s→D

−
s π+) = 0.65+0.15

−0.13 ± 0.07 0.45± 0.11

fB0
s→D

−
s ρ+

fB0
s→D

−
s π+

B(B0
s→D

−
s ρ

+)
B(B0

s→D
−
s π+) = 2.3± 0.4± 0.2 0.31± 0.08

6.4.1 Gaussian constrains

Branching fractions of several mis-reconstructed decay modes are known. There-
fore we added a Gaussian constraint to the fit for each known mode to help the
convergence. For each of them the Likelihood function L multiplies a Gaussian
term G (λi;µi, σi), where λi is the parameter to be constrained, µi is the expected
value of such a parameter and σi is its total uncertainty. For instance, if we consider
a generic B → DX decays, and its branching fraction relative to the B0

s → D−s π
+

decay mode is known, the λB→DX parameter can be written as:

λB→DX = fB→DX
fB0

s→D
−
s π+

. (14)

fB→DX and fB0
s→D

−
s π+ are the observed relative fraction in our data sample. How-

ever, to translate the information from a ratio of branching fractions to a ratio of
relative fractions we need to account for several different factors, as the reconstruc-
tion efficiency correction ε (see section 6.6 for the definition). In fact we obtain
that

fB→DX
fB0

s→D
−
s π+

= B(B → DX)
B(B0

s → D−s π+)
· fq
fs
· ε(B → DX)
ε(B0

s → D−s π+)
· B(D → Y )
B(Ds → φπ) , (15)

where ε(B0
s → D−s π

+) and ε(B → DX) are respectively the reconstruction efficiencies
for the B0

s → D−s π
+ and for B → DX. Y is the final state of the D decay and

fq (q = d, s) is the probability that a b-quark hadronized in a B meson with a
q-quark. If the B(B → DX) is known, we can easily calculate the value of λB→DX ,
and its uncertainty using the equation (15). All input branching fractions, fs, fq
come from PDG [19], while efficiency corrections from CDF simulation. Table 5
reports the constrained parameters in the fit, the known values of branching fractions
ratios and the applied constraints (third column).
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6.4.2 Mass shift and resolution

By the comparison between simulated and real B0
s → D−s π

+ decays we observe
that simulation does not accurately reproduce data. This is a known feature of the
CDF simulation. In particular the simulated invariant mass distribution is shifted
by few MeV with respect to data, and the mass resolution is smaller, about 10%.
Table 6 reports the values obtained for data and simulation.

To account for these differences we added to the fit of composition two free
parameters. One is a global mass shift, assumed the same for all the decays, to
allow the mass scale to be determined by the real data. The other one is a mass
resolution scale factor. This was applied only to the B0

s → D−s π
+ decay p.d.f., which

is reconstructed with a correct mass assignments. In particular σ1, σ2 of eq. (10)
are re-defined as σ1 → sσ1 and σ2 → sσ2, where s is a free parameter of the fit,
close to the unit. Instead for all other mis-reconstructed decays, including also
B0
s → D±s K

∓ mode, we did not apply any mass resolution scale factor, because
the shapes of their mass distributions is much wider and mainly determined by the
wrong mass assignment, which dominates over the 10% effect on resolution. We
assess systematic uncertainty due to neglecting the resolution corrections on the
other decays in section 7.

Table 6: Mass mean values and widths for data and simulation for the B0
s → D−s π

+

decay.

parameter Data Simulation
µ [GeV/c2] 5.36574± 0.00036 5.37431± 0.00018
σ [GeV/c2] (2.001± 0.036)× 10−2 (1.7861± 0.0015)× 10−2

6.4.3 Simultaneous fit of D−s h+ and D+
s h
− samples

The probability density function of the fit of composition we wrote so far, does
not distinguish between D−s h

+ and D+
s h
− final sample. However since the PID

response is separately parameterized for negatively- and positively-charged particles
(see section 6.3), we must account for that in the fit. Therefore we perform a
simultaneous fit of these two sub-samples and we can write the total Likelihood
function L of all events:

L (θ) =
N+∏
i=1

L +
i (θ|x+

i ) ·
N−∏
i=1

L −
i (θ|x−i )

where the index i runs over the events. N+ is the number of events of the D−s h+

sample, N− is the number of events of D+
s h
− sample, and where N = N+ +N− is

the total number of events. θ is the vector of parameters that we want to estimate,
x+ (x−) is the vector of the discriminating observables x+

i = {mDsπ, resπ+}i (x−i =
{mDsπ, resπ−}i). As in section 6.1 we have to account for the poissonian uncertainty
due to the finite size of the total sample N , plus a term for the binomial uncertainty
due to the fact we splitted the sample in two sub-samples N = N+ + N−. This
means that we have to consider N as a Poisson variable with mean ν and and that
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N+ and N− are binomially distributed, with a probability p to have N+, and 1− p
to have N− events, when the sum is constrained to be, in our specific case, equal to
N . Then the new extended Likelihood function can be written as:

L (ν, p,θ) = νN

N ! e
−ν · N !

N+!(N −N+)!p
N+(1−p)N−N+ ·

N+∏
i=1

L +
i (θ|x+

i ) ·
N−∏
i=1

L −
i (θ|x−i ).

All the parameters θ remain unchanged, as described in the previous sections.
They do not double since they are in common (charge averaged) between the two
sub-samples during the minimization.

6.5 Fit results

The fit of composition was performed by minimizing the quantity −2 ln(L ),
as defined in equation (6), using the Minuit numerical minimization package [31].
Table 7 reports the results, while the corresponding correlation matrix is discussed
in subsection 6.5.1. Table 8 reports the yields returned from the fit.

As expected from the current known branching fractions involved, we have a
sizable (≈ 80% of the sample) contribution from the three modes B0

s → D−s π
+,

B0
s → D−s ρ

+ and B0
s → D?−

s π+. All the other decay modes have comparable
fractions and share about the 20% of the sample. The global shift and mass
resolution scale factor parameters are in agreement with the simple estimate done in
subsection 6.4.2 (see table 6). The values returned from the fit are consistent with
nominal values of the b-hadrons masses, and are consistent with what we observe in
other similar analyses in CDF [4, 10]. Table 7 also reports the uncorrected value of
the ratio of branching fractions f(B0

s → D±s K
∓)/f(B0

s → D−s π
+).

6.5.1 Correlation matrix

The correlation matrix corresponding to the fit of composition is shown in table 9.
The correlation coefficients are defined as ρij = Cov(θi, θj)/σθiσθj , where Cov(θi, θj)
is the off-diagonal element of the estimated covariance matrix of the fit. The large
correlation coefficients, related to the relative fraction of the B0

s → D−s π
+ and the

B0
s → D±s K

∓ decay modes are: ρ6,4 ≈ −50% and ρ6,5 ≈ −34%, ρ13,4 ≈ −31%
and ρ13,5 ≈ −34%. These are due to the limited separation power of the fit to
disentangle Λ0

b → D
(?)−
s p and B0 → D−π+ decay modes from signals. In fact they

lay down exactly under the B0
s → Dsh modes, and the PID is not helping too

much. In fact the pions of the B0 → D−π+ are not distinguishable from pions of
B0
s → D−s π

+, and protons of Λ0
b → D

(?)−
s p are very similar to kaons of B0

s → D∓s K
±.

Other considerable correlations are ρ12,2 ≈ −57% and ρ6,1 ≈ −48%. ρ12,2. This can
be explained considering that the decay B0

s → D−s π
+π0 is at the low edge of the

fitted mass region and a global shift influence its fraction. Instead, the amount of
background can vary the fraction of the mode Λ0

b → D
(?)−
s p, which generates ρ6,1.
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Table 7: Results of the fit of composition. The last row report the legend to convert
the parameter into physics quantity for interpreting the correlation matrix.
C-conjugate modes are implied.

parameter value parameter #
fbkg 0.1246± 0.0069 1
global shift [GeV/c2] 0.00768± 0.00002 2
scale factor (B0

s → D−s π
+) 1.094± 0.017 3

fB0
s→D

−
s π+ 0.4127± 0.0057 4

fB0
s→D

±
s K∓ 0.0307± 0.0031 5

fΛ0
b
→D−

s p
0.0104± 0.0026 6

fΛ0
b
→D?−

s p fixed to fΛ0
b
→D−

s p
-

f
B0→D(?)+

s π− 0.0148± 0.0020 7
f
B0→D(?)−

s K+ 0.0096± 0.0025 8
fB0

s→D
−
s ρ+ 0.136± 0.013 9

fB0
s→D

?±
s K∓ 0.0426± 0.0059 10

fB0
s→D

−
s e+νe

0.0375± 0.0051 11
fB0

s→D
−
s µ+νµ

fixed to fB0
s→D

−
s e+νe

/εrel -
fB0

s→D
−
s π+π0 0.0141± 0.0097 12

fB0→D−π+ 0.0157± 0.0037 13
fB0

s→D
?−
s π+ 0.248± 0.015 1−∑s−1

j=1 fj
fπbkg 0.738± 0.041 14
ν 12453± 112 15
p 0.508± 0.004 16
fB0

s→D
±
s K∓

fB0
s→D

−
s π+

0.0744± 0.0076 -

Table 8: Yields returned from the fit of composition. C-conjugate modes are implied.

mode number of events
N (B0

s → D−s π
+) 4498± 138

N (B0
s → D±s K

∓) 335± 40
N (Λ0

b → D−s p) +N (Λ0
b → D?−

s p) 114± 31
N (B0 → D+

s π
−) +N (B0 → D?+

s π−) 162± 24
N (B0 → D−s K

+) +N (B0 → D?−
s K+) 104± 29

N (B0
s → D−s ρ

+) 1480± 170
N (B0

s → D?±
s K∓) 464± 71

N (B0
s → D−s e

+νe) 409± 63
N (B0

s → D−s µ
+νµ) 188± 29

N (B0
s → D−s π

+π0) 153± 108
N (B0 → D−π+) 172± 43
N (B0

s → D?−
s π+) 2709± 209
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6.5.2 Fit projections

In order to test the goodness of our fit, we compare the distributions of data
with the joint p.d.f. corresponding to the Likelihood function with the maximized
set of parameters θ̄. If x = x1, . . . , xn is a generic vector of observables and ℘(x, θ̄)
is the probability density function of the observables x, we can define the projection
onto the observable xi as the following one-dimensional function:

℘(xi, θ̄) =
∫
℘(x, θ̄) dx1 . . . dxi−1dxi+1 . . . dxn, (16)

which is the predicted distribution for xi under the assumed values for the fit
parameters, and can be overlaid to the experimental data. This allows a way of
detecting possible discrepancy between the observed distributions and the model.
Distributions of the discriminating observables with the fit projection overlaid are
shown in figures 28-29. The distributions of individual components are also shown.
To better visualize the agreement between the PID discriminating observable and
the data we complemented the projection of resπ, with the projection of its mean
value (〈resπ〉) as function of the invariant mass (see fig 30). The agreement between
data and fit projections is satisfactory.

6.6 Efficiency correction

In order to translate the parameters returned from the fit of composition into a
physics measurement we need to apply the correction for the different reconstruction
efficiency. In general, the efficiency for each mode is defined as the ratio between
the number of events passing the final selection (Npassing) and the number of real
events produced (Nproduced):

ε = Npassing
Nproduced

. (17)

This term accounts for all the acceptance effects. It includes the trigger efficiency
and the efficiency of the offline reconstruction and selection. For our measurement
we extract the efficiency from the CDF Monte Carlo simulation. Any geometric
acceptance effect is properly taken into account, since the simulation reproduces the
kinematic distributions of the decays and it includes an accurate description of the
detector geometry. Any possible discrepancy between real data and the simulation
vanishes in the efficiency ratio between two different modes.

Thus for the B0
s → D±s K

∓ we can write

B(B0
s → D±s K

∓)
B(B0

s → D−s π+)
=
fB0

s→D
±
s K∓

fB0
s→D

−
s π+

· ε(B
0
s → D−s π

+)
ε(B0

s → D±s K∓)
, (18)

where ε(B0
s → D−s π

+) and ε(B0
s → D±s K

∓) are respectively the reconstruction
efficiencies for the B0

s → D−s π
+ and for B0

s → D±s K
∓. The efficiency correction

extracted from simulation is
ε(B0

s → D−s π
+)

ε(B0
s → D±s K∓)

= 1.044± 0.007, (19)

where the uncertainty is due to the finite statistics of the simulated sample. It
corresponds to the Poisson fluctuation of the number of events passing the selection.
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Figure 28: mDsπ distribution with the fit projection overlaid: (a) the fit projection
with all the fit components (logarithmic scale (b)), (c) the components are grouped
for clarity. The residual plot at the bottom of the figure (c) shows the number of σ
discrepancy (data minus projection).
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Figure 29: resπ distribution with the fit projection overlaid: (a) the fit projection
with all the fit components (logarithmic scale (b)), (c) the components are grouped
for clarity. The residual plot at the bottom of the figure (c) shows the number of σ
discrepancy (data minus projection).
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figure).
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6.7 Corrected result

In summary, using the ratio of relative fractions returned from the fit of compo-
sition

fB0
s→D

±
s K∓

fB0
s→D

−
s π+

= 0.0744± 0.0076 (20)

and the efficiency ratio returned from CDF simulation

ε(B0
s → D−s π

+)
ε(B0

s → D±s K∓)
= 1.044± 0.007, (21)

we obtain the measurement of the following ratio of branching fractions:

B(B0
s → D±s K

∓)
B(B0

s → D−s π+)
= 0.0777± 0.0079 (stat), (22)

where the uncertainty is only statistical.

7 Evaluation of systematic uncertainties

The measurement described in this note focuses on a ratio of branching fractions
of kinematically similar decay modes. We expect that most systematic effects related
to the individual modes, e.g., the uncertainty on the integrated luminosity of the
sample, will cancel out in the ratio.

To evaluate the systematic uncertainty we used the following method. For each
source of systematic effects, s, we varied the value of s within a range of ±1σs,
where σs is the statistical uncertainty on the parameter s. The resulting systematic
uncertainty associated to s is the largest difference between the results of the analysis
of the samples with alternative configurations, and the results of the sample with
the nominal configuration.

7.1 Uncertainty on the nominal b-hadron masses (nominal masses)

The B0, B0
s , and Λ0

b masses are external inputs of the Monte Carlo simulation
and therefore inputs to our p.d.f.s. To evaluate the systematic uncertainty associated
to our limited experimental knowledge of nominal input masses we repeated our fit
after shifting independently the B0, B0

s , and Λ0
b input masses within ±1σ uncertainty.

We fitted the eight possible combinations of B0, B0
s , and Λ0

b masses by independently
increasing (decreasing) by one statistical standard deviation world-average mass
values [?]: mB0 = (5279.58± 0.17) MeV/c2, mB0

s
= (5366.77± 0.24) MeV/c2 and

mB0 = (5619.4± 0.7) MeV/c2. The largest discrepancy between the results of the
analysis with alternative masses configuration and the results of the sample with
the nominal configuration was taken as the systematic uncertainty.

Since we added to the fit a global mass shift parameter, as explained in the
subsection 6.4.2, we do not have any systematic uncertainty associated to the global
mass scale uncertainty. The uncertainty of the knowledge of the absolute mass scale
is already included in the statistical error returned from the fit of composition.
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Figure 31: Comparison of the invariant mass distribution of the B0
s → D±s K

∓ before
and after the transformation in eq. (23).

7.2 Uncertainty on mass resolution (mass resolution)

As explained in subsection 6.4.2, we added to the fit a scale factor to inflate the
width of the p.d.f. of the B0

s → D−s π
+ extracted from the Monte Carlo, since we

observe a smaller mass resolution in it with respect to data. This has been done
only for the B0

s → D−s π
+ decay, because we assumed negligible the net effect of

the discrepancy between real data and simulation for the mis-reconstructed decays,
since the enlargement is mainly due to the wrong mass assignment. We assess a
systematic uncertainty on these assumptions.

From the central fit we exactly know the size of the scale factor s = 1.094± 0.017
of the B0

s → D−s π
+ which is fully reconstructed with the correct mass assignment.

However we cannot use this factor to enlarge the mis-reconstructed modes since
their mass invariant spectrum is sculpted by the fact that we assigned wrong masses
to the particles in the final state, and the final effect is much smaller of what we
observe for the B0

s → D−s π
+ decays.

For instance to estimate the scaling factor of the “mis-reconstructed” B0
s →

D∓s K
± decays (and Λ0

b → D−s p, B0 → D−s K
+) we scaled our simulation event-by-

event with the following transformation:

mi
Dsπ →

mi
Dsπ
− µ(piDs , p

i
π)

s
+ µ(piDs , p

i
π), (23)

where µ(piDs , p
i
π) is the expected Dsπ-mass 〈mDsπ〉 given the momenta pDs and pπ,

when we assign the pion mass to the kaon (or to the proton) in the final state, and
s is the scaling factor obtained from the fit of composition for the B0

s → D−s π
+

decay. Figure 31 reports the comparison of the invariant mass distribution of the
B0
s → D±s K

∓ before and after the transformation in eq. (23). As expected, the
widening of the distribution is small, but not completely negligible. In conclusion to
assess the systematic uncertainty we re-adapted the fit of composition where: 1) the
mass distribution of the B0

s → D±s K
∓, Λ0

b → D−s p and B0 → D−s K
+ is scaled using

the transformation of equation 23; 2) the mass distribution of the B0 → D−s π
+ is

scaled as the B0
s → D−s π

+, 3) no scaling is applied to the mass distribution of the
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Figure 32: Comparison between the pure combinatorial background sample and the
data-background.

decays in which some particles escape from the detection, as a neutrino, a photon or
a neutral pion, because in this case the mass invariant shape is mainly sculpted by
the wrong mass assignments and by the fact that part of the energy of the decay is
lost; 4) we add a free parameter for the scale of the B0 → D−π+, since we do not
know calculate the scaling factor for this decay mode in a simple way. The difference
between this fit and the central fit is our systematic uncertainty.

7.3 Uncertainty on the combinatorial background mass term

Since our central analysis assume an empirical mass model for the combinatorial
background we assess a systematic uncertainty due to our limited knowledge of the
real distribution. We use an exponential shape, where the slope abkg = (0.98± 0.10)
(GeV/c2)−1 is extracted from the higher mass side-band (see section 6.2)). To assess
a systematic uncertainty we repeat the fit of composition varying the slope of the
background distribution within ±1σ range, and the largest difference between these
two fits and the central one is quoted as systematic uncertainty (bkg p.d.f.).

In supporting to our background mass model we generated an alternative “pure”
combinatorial background data sample. This is done by combining a real D−s decay
of the ith event with an independent pion, that is the pion associated to the B0

s

candidate in the (i+ 1)th event. The resulting invariant mass is reported in figure 32
superimposed to the invariant mass distribution of real decays. It confirms that
our background mass model is reasonable. The two backgrounds samples seem
very similar in the higher mass region, however the pure combinatorial background
sample has a lower slope apure comb. = (0.27± 0.05) (GeV/c2)−1, with respect to the
slope extracted from real data. Since this artificial background is very realistic, we
repeat the fit of composition using apure comb. as the slope of the exponential of the
combinatorial p.d.f., and the difference with the central fit is taken as an additional
systematic uncertainty (pure comb. bkg).
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7.4 dE/dx related systematic

Section 6.3 summarize how the fit of composition exploit the PID information
in separating the different signal modes and backgrounds. The model used to
introduce this information in the Likelihood is sophisticated, need a large number of
parameters (see ref. [33]), extracted using high statistics and very pure samples of
charged pions and kaons (from the decay D0 → K−π+), and protons and antiprotons
(from Λ→ pπ−).

The systematic uncertainty related to the statistical uncertainty on the determi-
nation of PID probability density functions is assessed following a standard CDF
procedure (see ref. [4]), by repeating the fit of composition in which all PID pa-
rameters are randomly varied in a 1σ-radius multidimensional sphere, keeping into
account all the statistical correlations among parameters. In order to statistically
sample a sufficient number of directions in this large dimensions space, we repeat the
analysis for various (500) seed values. For each seed value the PID functions change
in a different way and we can obtain a measurement of the effect of systematic
uncertainties on the analysis results. The systematic uncertainty on the physics ob-
servables associated to the statistical uncertainty of the templates parameterization
is given by the 3×r.m.s. of the distribution of the observables returned from the fits
of composition performed with different seeds (dE/dx).

In addition to the systematic uncertainty due to the limited knowledge of
PID templates, we have also to account for the approximated procedure used to
marginalize the momentum dependence, as discussed in section 5. The associated
systematic uncertainty is assessed by re-binning the momentum distribution by a
factor 2 and by a factor 1/2 and extracting alternative PID templates (binning
dE/dx mom.). We repeat the fit of composition in the two cases and the largest
difference between the values obtained and central value is taken as systematic
uncertainty.

7.5 Uncertainty related to the efficiency correction (MC stat.)

The relative efficiency ratio (see sec. 6.6) used to convert the ratio of event yields
in ratio of branching fractions, is determined with O(0.6%) statistical uncertainty
(see eq. (19)). The ratio of branching fractions is reevaluated by using acceptance
correction shifted by one standard deviation in either direction. The largest difference
between the resulting ratios of branching fractions and the central value is taken as
systematic uncertainty.

7.6 Total systematic uncertainties

All systematic uncertainties are summarized in the table 10. The total systematic
uncertainty on the measurement is determined as the sum in quadrature of the
individual systematic uncertainties.

8 Final results
Using the raw fit results and the efficiency correction from section 6 and the

systematic uncertainty from section 7 we obtain the measurement of branching
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Table 10: Summary of the systematic uncertainties for the observable measured in
this work.

source B(B0
s → D±s K

∓)
B(B0

s → D−s π+)
nominal masses 0.0002
mass resolution 0.0021
bkg p.d.f. 0.0002
pure comb. bkg 0.0009
dE/dx 0.0005
binning dE/dx mom. 0.0009
MC stat. 0.0005
Total 0.0026

fraction of the B0
s → D±s K

∓ decay mode relative to the B0
s → D−s π

+ decay mode at
CDF with 9.3 fb−1 of data. From the observed yields of N(B0

s → D±s K
∓) = 335±40

and N(B0
s → D−s π

+) = 4498 ± 138 we measure the following ratio of branching
fractions:

B(B0
s → D±s K

∓)
B(B0

s → D−s π+)
= 0.0777± 0.0079 (stat)± 0.0026 (sys), (24)

where the first uncertainty is statistical and second one is systematic. This result is
compatible with the other existing measurements:

B(B0
s → D±s K

∓)
B(B0

s → D−s π+)
=


0.097± 0.018 (stat)± 0.009 (sys) CDF (2008) [3],
0.065+0.035

−0.029 (stat) Belle (2008) [32],
0.0646± 0.0043 (stat)± 0.0025 (sys) LHCb (2012) [2].

The final statistical uncertainty of our measurement is better than by a factor 2.3
with respect to the previous CDF result published in 2008, it is much better than
Belle result, and it is worse than by a factor 1.8 with respect to the very recent
LHCb measurement which is today the world’s best result2. On the other hand the
systematic uncertainty is at the same level of LHCb measurement and it is better
than previous CDF measurement by a factor 3.5.

Our result is in agreement with a very recent theoretical expectation from ref. [23]:

B(B0
s → D±s K

∓)
B(B0

s → D−s π+)

∣∣∣∣∣
theory, SU(3)

= 0.0864+0.0087
−0.0072, (25)

where the SU(3) flavor symmetry was assumed. Without the SU(3) assumption,
the estimated lower bound on the ratio of branching fractions is [23]

B(B0
s → D±s K

∓)
B(B0

s → D−s π+)

∣∣∣∣∣
theory

≥ 0.080± 0.007, (26)

2LHCb measurement is performed using an inclusive data sample of reconstructed D−
s →

K+K−π− decays, including also D−
s → φπ− decays, which is the only decay mode used in

our measurement. Therefore a more appropriate comparison between current LHCb and CDF
performances would require a measurement with the same set of D−

s decay modes.
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Figure 33: Current knowledge of the ratio of branching fractions B(B0
s →

D±s K
∓)/B(B0

s → D−s π
+), including this thesis measurement. The hatched re-

gion is the uncertainty of theoretical predicted value (central line in the hatched
region) assuming the SU(3) flavor symmetry. Filled region represents the permitted
region theoretical predicted.

and our result is on the lower bound of the allowed region. A smaller value of the
branching fractions ratio would imply a not real value for the hadronic parameter
xs ∝ RbAf/Āf which quantifies the strength of the interference effects between
the B0

s → D+
s K

− and B̄0
s → D+

s K
− decay processes induced through the B0

s −
B̄0
s mixing; the parameter Rb ∝ |Vub/(λVcb)| measures one side of the unitary

triangle. Figure 33 summarize experimental values obtained for the ratio of branching
fractions (including our result). Also it reports the allowed region and the theoretical
expectation.

8.1 Absolute branching fraction

Using the world average value B(B0
s → D−s π

+) = (3.2± 0.4)× 10−3 from PDG
2012 [19] we can extracted the following absolute branching fraction:

B(B0
s → D±s K

∓) = (2.49± 0.25 (stat)± 0.08 (syst)± 0.31 (br))× 10−4, (27)

where the last uncertainty is dominated by the uncertainty on the value of B(B0
s →

D−s π
+). This agrees with the world average B(B0

s → D±s K
∓) = (2.9± 0.6)× 10−4

reported in the PDG 2012 [19]. However LHCb, very recently, measured B(B0
s →

D−s π
+) = (2.95±0.05±0.17+0.18

−0.22)×10−3 [2] (the third uncertainty is the uncertainty
from the fs/fd measurement), which is more precise than PDG 2012 [19]. Thus if we
use the LHCb measurement as input, instead of PDG 2012, we obtain the following
absolute branching fraction

B(B0
s → D±s K

∓) = (2.29± 0.23 (stat)± 0.08 (syst)± 0.21 (br))× 10−4, (28)

which agrees with B(B0
s → D±s K

∓) = (1.90±0.12±0.13+0.12
−0.14)×10−4 from LHCb [2].
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