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Chaoticity in nuclei is usually measured by the information entropy through analyzing wave functions, or 
by spectral statistics with the spectral rigidity and the nearest neighbor level spacing (NNLS) distribution. 
We show that although information entropy (or localization length) is a basis-dependent quantity, it is 
helpful for understanding the complexity of wave functions, especially when the corresponding levels 
lie in a highly-excited, dense region. On the other hand, although nuclear levels used for spectral 
statistics are quantum-mechanically observable, one has to treat them through a model- (and parameter-
) dependent unfolding procedure, which may introduce large uncertainties for drawing a conclusion. 
By applying the projected shell model, we address these problems with an ensemble of ∼ 20,000 
Jπ = 1/2+ levels calculated for the well-deformed, odd-mass nucleus 153Nd. Residual interactions that 
are responsible for nuclear chaoticity are discussed as well.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
In nuclear spectra from the ground state up to high excitation 
energy regime with high level density, the property of nuclear 
levels changes with appearance of specific structures. Near the 
ground state (of even-even nuclei, typically) with all nucleons be-
ing paired, the levels are characterized mainly as the collective ro-
tation and vibrations [1]. Soon after the first nucleon-pair breaking 
at the energy of 2� (pairing gap, with � ≈ 1 MeV typically), the 
system enters into a regime determined by the interplay between 
the collective and quasiparticle (qp) excitations. As excitation en-
ergy goes further up, more and more nucleon pairs are broken, 
and the system begins to show clear signs of qp’s in chaotic mo-
tion [2,3]. The features of the complicated dynamics in a chaotic 
nuclear system are controlled by residual interactions of qp’s. The 
actual stationary states become extremely complicated superposi-
tions of the original simple configurations. Zelevinsky et al. call 
this process ‘stochastization’ [4]. At the ultra-high spin and excita-
tion regime, new kinds of collective excitations can emerge when 
the old organizations have been completely destroyed [5]. In addi-
tion to the spectroscopic problems, there has been an interesting, 
but unsolved problem on the widths of neutron resonances. This 
question was discussed by Volya et al. (see Ref. [6] and the ref-
erences therein), and by E. Bogomolny in a following paper [7] to 
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improve the mathematical treatment. However, the final solution 
must involve detailed calculations for heavy, deformed nuclei.

Study of chaoticity in nuclei is not only of theoretical interest, 
but can also have important implications if the nuclei are ex-
posed to high-temperature environments. Nuclear level densities 
are known to play an essential role in the calculation of reac-
tion cross sections applied to astrophysical nucleosynthesis studies, 
nuclear energy production, and transmutation of nuclear waste. 
However, as the number of nuclear levels increases exponentially 
with excitation energy, typically for the rare earth region, the level 
density changes by a factor of one million when going from the 
ground state up to the neutron binding energy [8]. Understanding 
of such a huge ensemble of quantum levels in strongly-correlated 
quantum systems is a great challenge.

For the highly-excited nuclear states, the empirical information 
available on the structure of wave functions is rather limited. In 
most prevailing nuclear models, the multidimensional configura-
tion space is usually far from being sufficient for a quantitative 
discussion about the stochastization. Instead, one has to work with 
the states in very restricted Hilbert space. Such models are not 
very useful for understanding chaotic dynamics in actual many-
body systems where the approximation of isolated single-particle 
or collective degrees of freedom becomes invalid very quickly as 
the excitation energy increases [4].

In Ref. [4], Zelevinsky et al. carried out a pioneering research 
with realistic calculations. They reported the first results of the 
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analysis of eigenvalues and the eigenvectors of the nuclear shell 
model from the viewpoint of order, chaos, complexity and ther-
malization. Energy levels and wave functions were used to study 
quantum chaos and complexity of nuclear systems. The degree of 
complexity of wave functions was measured by the information 
entropy of the components. It was emphasized that the measures 
with information entropy depend sensitively on the representation. 
The construction of basis states with exact quantum numbers of 
angular momentum and isospin is important for the study. Nev-
ertheless, their shell-model valence space [4] is restricted to one 
major shell (24 valence states in the sd- or 40 in the f p-shell), 
which is still rather limited.

In the present work, we study quantum chaos and complex-
ity with realistic nuclear structure calculations by the projected 
shell model (PSM) [9]. The PSM is a shell model for heavy, de-
formed nuclei, practically with no restriction to the size of valence 
single-particle space. It can therefore be applied even to the heav-
iest nuclei [10] corresponding to systems at the extreme of level 
density. The aim of the present investigation is twofolds. First, in 
a typical PSM calculation, it takes several transformations among 
different bases. This provides us with possibilities to discuss the 
complexity in a realistic calculation by writing the wave functions 
in different representations. Through the study of the localization 
length, we can extract useful information for the complexity. Sec-
ond, we take the advantage of having a large number of levels with 
definite angular momentum and parity to perform statistical anal-
ysis. We touch upon a question occurring in every detailed spectral 
statistical analysis, i.e. uncertainties caused by the unfolding pro-
cedure. We take the odd-neutron nucleus 153Nd as the example. 
Odd-mass nuclei, having on average 5 - 7 times more levels than 
their even-even partners, are optimal for such study since many 
levels exist already at low-lying regions. However, chaoticity in 
odd-mass nuclei is seldom investigated.

Like a conventional shell model, a PSM calculation starts with 
an effective shell-model Hamiltonian Ĥ that consists of the one-
body (mean field) part Ĥ0 and the residual interaction Ĥ ′ of the 
two-body type:

Ĥ = Ĥ0 + Ĥ ′. (1)

The essential difference between the PSM and conventional shell 
models lies in the way of construction of shell model configu-
ration space. Unlike a conventional way of building many-body 
configurations by direct couplings of angular momenta, the PSM 
first transforms the representation from the spherical basis to the 
intrinsic frame described by a deformed Nilsson mean field [11]. 
Pairing correlations are treated by the BCS method for the de-
formed single-particle states obtained from the Nilsson calculation 
[9]. These correspond to two successive transformations: (1) a uni-
tary transformation of particles defined in the original spherical 
basis to those in a deformed basis, and (2) a Bogoliubov-type 
transformation that changes deformed single-particle states to qp 
states [1]. Note that the resulting qp basis with a properly cho-
sen deformation should be very close to the ‘true’ deformation of 
a nucleus. Through these operations, the deformed qp basis in-
corporates efficiently important correlations through the concept 
of spontaneous symmetry breaking in the spacial and gauge fields 
[12].

Working with the deformed qp basis, we can now construct 
multi-qp configurations. For odd-neutron nuclei, we have{
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†
ν j â
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where â†
ν (â†

π ) labels neutron (proton) qp creation operator as-
sociated with the qp vacuum |�〉. These multi-qp configurations 
are written in the spirit of the Tamm-Dancoff method [1], with 
each term having a well-defined physical meaning. For example, 
if â†

νi |�〉 describes the low-lying neutron single particle states, 
â†
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|�〉 (â†
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†
π j â
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|�〉) describes states with one broken neu-
tron (proton) pair. In the present work, up to 5-qp states are in-
cluded as in Ref. [13].

The configurations in Eq. (2) are based on deformed qp-states 
in the intrinsic frame, which violate rotational symmetry. There 
is the well-established numerical method to restore the rotational 
symmetry by applying exact angular-momentum projection opera-
tor to the configurations

P̂ I
M K = 2I + 1

8π2

∫
d�D I

M K (�)R̂(�), (3)

which is defined with the Euler angle �, the rotation operator R̂ , 
and the Wigner D-function D I

M K [14]. The PSM wave functions 
in the laboratory system can be expanded as superposition of the 
(angular-momentum) projected multi-qp configurations in Eq. (2)
(denoted by |�κ 〉),

|�ω
I M〉 =

∑
Kκ

F ω
I Kκ P̂ I

M K |�κ 〉. (4)

The expansion coefficients F ω
I Kκ are obtained by diagonalizing the 

Hamiltonian numerically. i.e., by solving the Hill-Wheeler-Griffin 
equation,∑
κ ′ K ′

(
H I

Kκ,K ′κ ′ − Eω
I N I

Kκ,K ′κ ′
)

F ω
I K ′κ ′ = 0, (5)

with the projected matrix elements for the Hamiltonian and the 
norm,

H I
Kκ,K ′κ ′ = 〈�κ |Ĥ P̂ I

K K ′ |�κ ′ 〉, (6a)

N I
Kκ,K ′κ ′ = 〈�κ | P̂ I

K K ′ |�κ ′ 〉. (6b)

It should be noted that the above norm matrix is not an identity 
matrix as in a usual eigenvalue equation, indicating that the pro-
jected basis in Eq. (4) is non-orthonormal. The rotational-invariant 
two-body Hamiltonian in terms of separable forces is adopted

Ĥ = Ĥ0 − χ

2

∑
μ

Q̂ †
2μ Q̂ 2μ − G M P̂ † P̂

− G Q

∑
μ

P̂ †
2μ P̂2μ + ĤGT, (7)

which includes the one-body term, the quadrupole-quadrupole 
interaction, the monopole-pairing interaction, the quadrupole-
pairing interaction, and the two-body Gamow-Teller (GT) force (see 
Ref. [13] for more details). We stress that our Hamiltonian does not 
contain any random elements. The chaoticity, if any, arises natu-
rally as a result of strong mixing of the configurations by residual 
interactions.

In addition to the non-orthonormal projected basis in Eq. (4), 
the projection calculation involves two more bases to express the 
PSM wave functions. One is the orthonormal mixing basis

|Wσ 〉 ≡ 1√
nσ

∑
Kκ

Uσ
Kκ P̂ I

M K |�κ 〉, (8)

where nσ (Uσ
Kκ ) labels the eigenvalue (eigenvector) of the norm 

matrix in Eq. (6b). The PSM wave functions can be expressed as 
(see Appendix),

|�ω
I M〉 =

∑
V Iω

σ |Wσ 〉. (9)

σ , nσ 
=0
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Fig. 1. The calculated energy levels for 59Fe [15] as compared with the data [16]
and shell-model calculations [17].

The other is the orthonormal intrinsic qp basis |Kκ〉, which is con-
structed based on Eq. (2), so that the PSM wave functions can also 
be written as (see Appendix for derivation)

|�ω
I M〉 =

∑
Kκ

gIω
Kκ |Kκ〉. (10)

Thus the wave functions in a projection theory can be expressed 
in terms of Eqs. (4), (9) and (10). Note that these bases are very 
different from the conventional shell model basis (such as those 
in Ref. [4]), although they all can represent the same shell-model 
wave functions. Besides, it can be seen from Eqs. (4), (9), (10) and 
(20) that in the cases of three different bases, the angular momen-
tum is conserved through exact angular-momentum projection.

Before discussing statistic features of nuclear systems, we first 
demonstrate that the PSM as an unconventional shell model can 
indeed well describe the basic nuclear properties. The pf -shell 
nuclei are the examples for which conventional shell-model calcu-
lations are still feasible. In Fig. 1, we compare the PSM calculation 
for a typical pf -shell nucleus, 59Fe [15] with the experimental data 
[16] as well as the shell-model calculation using the GXPF1A inter-
action [17]. It can be seen that PSM can describe the experimental 
levels equally well as the conventional shell model. The PSM has 
been tested for other pf -shell nuclei, for example, in Refs. [18–20].

We use the information entropy to measure the complexity of 
nuclear wave function, which is calculated as [4,21]

I H (α) =
d∑

i=1

−|Xα
i |2 ln(|Xα

i |2). (11)

In Eq. (11), Xα
i can be F ω

I Kκ in Eq. (4) of the non-orthonormal 
projected basis (termed as F-basis hereafter), or V Iω

σ in Eq. (9) of 
the orthonormal mixing basis (V-basis), or gIω

Kκ in Eq. (10) of the 
orthonormal intrinsic qp basis (g-basis). d in Eq. (11) is the di-
mension of the corresponding basis. For the GOE matrices (limit), 
〈I H 〉 = ln(0.48d). To avoid the dimension dependence of I H , the 
normalized localization length lH is introduced [4,21]

lH (α) = exp(I H (α))

0.48d
. (12)

Our discussion on the information entropy employs the heavy, 
deformed odd-neutron nucleus 153Nd, for which all parameters in 
the PSM calculations are adopted exactly as those in Ref. [13], 
which means it is a realistic calculation that can well reproduce 
both low-lying and high-lying states, as well as the known GT tran-
sitions [13]. The employed valence space is large as compared to 
Fig. 2. The calculated energy levels and the moments of inertia for the yrast band 
of 153Nd, as compared with the data [22].

a one-major shell model: three major harmonic shells with N =
4, 5, 6 (N = 3, 4, 5) are taken for neutrons (protons). It is important 
to work in a large, multi-shell basis to analyze chaoticity to avoid 
any artificial conclusions due to space limit. The quadrupole and 
hexadecapole deformation parameters are adopted as ε2 = 0.250
and ε4 = −0.073 taken from Ref. [23], for the construction of the 
deformed single-particle basis. Before the analysis of the informa-
tion entropy, we show in Fig. 2 the calculated energy levels and 
moments of inertia (MoI) for the yrast band of 153Nd, and com-
pared them with the data [22]. As one can see, both quantities are 
described nicely by the calculation, indicating that the PSM is a 
realistic model for heavy, deformed nuclei.

Fig. 3 shows the calculated lH for the above-mentioned three 
bases from an ensemble of ∼ 20,000 1/2+ states in 153Nd, from 
the ground state to excitations beyond 20 MeV. It is seen from 
Fig. 3(a) that the localization length lH (or information entropy) 
shows very sensitive basis-dependence. The calculated lH with the 
wave functions from the three bases have totally different distribu-
tions. For the results with the F-basis (filled squares in Fig. 3(a)), 
no useful information about complexity can be extracted because 
for most states in the ensemble, lH is practically zero (less than 
10−10). There are some scattered points in space with a few ex-
ceeding the GOE limit, which are unmeaningful. This means that 
the condition of orthonormality for the bases is indispensable if 
the wave functions are used for analyzing the information entropy. 
It is known that non-orthonormality in wave functions is a general 
consequence of the Hill-Wheeler-Griffin equation, and the wave 
functions (in the F-basis) from the (angular-momentum) projec-
tion theory do not represent probability [9].

For the two orthonormal bases, the g-basis corresponds to the 
intrinsic multi-qp basis |Kκ〉. Since 153Nd has a prolate shape with 
stable deformation, a resulting ε2 ≈ 0.25 [23–25] from variational 
calculations coincides approximately with the ‘true’ deformation of 
153Nd. As discussed before, each multi-qp configuration (i.e. those 
in Eq. (2)) constructed from such a ‘good’ mean-field has a clear 
physical meaning [12]. The calculated lH ’s in the g-basis are all 
small (see Fig. 3(a), open triangles), suggesting that the states are 
localized in |Kκ〉 of the g-basis. Physically, wave functions of low-
lying (higher-lying) states take major components from the lower-
order qp (higher-order qp) configurations. On the other hand, the 
orthonormal V-basis mixes the projected multi-qp configurations. 
The mixing coefficients are given by Uσ

Kκ in Eq. (8). The lH ’s cal-
culated in this basis (open circles in Fig. 3(a)) tend to be more 
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Fig. 3. The localization length lH of about 20,000 1/2+ states for 153Nd as a function of excitation energy above the yrast state, in terms of different bases for different cases 
(the deformation of bases and the Hamiltonian). The dashed line indicates lH = 1, corresponding to the GOE (totally chaotic) limit.
delocalized as compared with those in the g-basis, and have a 
generic Gaussian energy-dependence. In the most chaotic (middle) 
part of the spectrum, the lH ’s have an average value around 0.4. 
The maximum lH lie at ∼ 0.7, which does not reach the GOE limit. 
It should be pointed out that the degree of delocalization depends 
on the nature of the projected basis. The more the norm matrix 
(see Eq. (6)) departures from the identity matrix, the higher the 
degree of delocalization.

The above discussions have explored in some depth the basis-
dependent measures of information entropy in the PSM calcula-
tion. We can further analyze the basis dependence feature of lH by 
changing the basis deformation. We construct the single-particle 
basis with deformation parameter ε2 = 0.05, corresponding to a 
(near) spherical single-particle basis, while keeping all other cal-
culation conditions the same as in Fig. 3(a). With a near-zero de-
formation, the g-basis expressed by |Kκ〉 is now far from that with 
the ‘true’ deformation, and thus the so-calculated lH ’s through gIω

Kκ
of Eq. (10) are more delocalized, as seen in Fig. 3(b). For the V-
basis with a near-zero deformation, |Wσ 〉 in Eq. (9) should be 
close to |Kκ〉 because a PSM basis with a small deformation ap-
proaches the (spherical) shell-model basis. Indeed, it is seen from 
Fig. 3(b) that the lH distributions in the V- and g-bases exhibit 
similar energy dependence, with differences only in magnitude, 
showing a better Gaussian behavior as in conventional shell model 
calculations [4,26].

Quantum chaos is expected to set in when the level density 
is sufficiently high and levels are strongly mixed by residual in-
teractions [3,4]. An interesting question is which types of residual 
interaction play major roles for the emerging chaoticity [27,5]. One 
advantage of adopting separable forces in the Hamiltonian is that 
the roles of individual residual forces can be easily detected, as il-
lustrated in the study of neutrinoless double beta decay [28]. In 
Figs. 3(c) and (d), we show the energy dependence of lH in two 
additional calculations: one without the pairing forces (by setting 
G M = G Q = 0 in Eq. (7)) and the other without the GT force (by 
removing ĤGT in Eq. (7)). The resulting lH ’s for the g-basis are all 
small in Figs. 3(c) and (d). This is expected already in Fig. 3(a), 
which can be understood as for a basis with its deformation close 
to the ‘real’ situation, residual interactions are no longer significant 
in configuration mixing. However, very different result is found for 
the V-basis. As seen from Fig. 3(c), lH without pairing correlations 
decreases considerably, indicating that the pairing plays a role in 
enhancing chaoticity for both low- and high-energy regions. Such 
conclusion is drawn in Ref. [4], and is also consistent with that ob-
tained by analyzing electro-magnetic transitions [5]. In Ref. [29], 
the chaoticity of quantum states in a two-dimensional pairing 
model with a contact pairing force as the two-body interaction is 
found to increase rapidly when the pairing strength grows from 
zero, which is very similar to our conclusion as seen from Fig. 3(a) 
and (c). Interestingly, the chaoticity of quantum states turns out 
to decrease with the pairing strength when the pairing strength is 
very large, as seen from the Fig. 6 of Ref. [29]. On the other hand, 
the comparison of Figs. 3(d) and (a) reveals that for nuclear lev-
els in the middle range of the spectrum where the level density 
is high, a residual GT force that acts in the spin-isospin channel 
enhances the chaoticity. The dependence of quantum chaos in nu-
clear structure on residual interactions has been discussed in shell 
model studies [30].

In the above discussions, quantum chaos and complexity are 
discussed in terms of wave functions, which are not directly ob-
servable. Quantum chaos can also be measured by spectral sta-
tistical analysis [31], where the NNLS distributions P (s) and the 
spectral rigidity �3 are usually the quantities, provided that the 
spectrum is unfolded first to separate the fluctuating part from the 
smooth part. The principal technique used for unfolding is to cal-
culate the mean level density ρ̄(E), which is usually estimated by 
the local unfolding method,

ρ̄(Ei) = 2ν

Ei−ν − Ei+ν
, (13)

where a set of neighboring levels in a window of ν levels on each 
side of Ei is considered. Or one uses a more sophisticated Gaussian 
broadening unfolding method,

ρ̄(E) = 1

η
√

2π

∑
i

exp

{
− (E − Ei)

2

2η2

}
, (14)

where the sum runs over levels in the window of 2η effectively. 
With ρ̄(E), one obtains dimensionless unfolded energy levels, from 
which P (s) and �3(L) can be calculated in standard ways [31,32].
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Fig. 4. The spectral rigidity �3 at different excitation energy regions with different unfolding methods. The regular case (Poisson) and chaotic case (GOE) are illustrated 
correspondingly. For the �3 which characterizes the long-range level correlations, the closer the results reach the GOE limit, the higher degree of chaoticity can be read.

Fig. 5. The P (s) (histogram) at different excitation energy regions with different unfolding methods. The best fitted Brody distribution (solid red line) is displayed with 
corresponding fitted parameter q.
The unfolding procedure is a nontrivial step for a statistic anal-
ysis. The unfolding methods haves been applied over decades 
[31–34,30,35,36], but the dependence on different methods and/or 
parameters has seldom been discussed. We show that for a same 
ensemble, the local unfolding and Gaussian broadening unfold-
ing methods can bring different information on quantum chaos. 
Zelevinsky et al. realized this problem, and acknowledged in “Note 
added in proof” in their review article [4] that their results for the 
spectral rigidity �3 are very sensitive to the details of the unfold-
ing procedure.

To discuss uncertainties associated with unfolding, we again 
take 153Nd as example as in Fig. 3(a) with an ensemble of ∼20,000 
1/2+ levels from diagonalization of the full Hamiltonian of Eq. (7). 
Figs. 4 and 5 show �3 and P (s), with collected levels from three 
different excitation regions (0-3, 3-6, 6-9 MeV). To illustrate in-
fluences with different unfolding methods and parameters in the 
methods, we vary the parameter ν in Eq. (13) or η in Eq. (14). For 
�3 that characterizes long-range level correlations, a higher degree 
of chaoticity can be concluded for the system if the curve is closer 
to the GOE limit. It is seen from Fig. 4 that for smaller L, the de-
pendence of the �3 statistics on both the unfolding method and 
the unfolding procedure is not very large. However, the curves in 
Fig. 4 show larger departures from each other for larger L. For the 
local unfolding method as in Eq. (13), a lower degree of chaoticity 
is concluded if more levels are involved in the unfolding proce-
dure, as one compares the results with ν = 8 and ν = 16 in Fig. 4. 
On the contrary, for the Gaussian broadening unfolding method in 
Eq. (14), a higher degree of chaoticity is concluded if more levels 
in a larger window of 2η are considered in the unfolding proce-
dure, as one compares the results with η = 0.3 MeV and η = 0.6
MeV.

For the P (s) distribution which measures the short-range corre-
lations, the corresponding chaoticity is usually quantified in terms 
of a best fitted Brody distribution with a parameter q [37,21,33,36]. 
The Brody distribution reproduces the form of Poisson statistics 
that labels a regular system (with q = 0), and of the GOE distri-
bution that labels a chaotic system (with q ≈ 0.95). As seen from 
the different q-values in Figs. 5(a, d, g, j) or the corresponding P (s)
distribution (blue histogram), P (s) shows some dependence on the 
unfolding method and procedure at lows excitation energy region 
(0 ∼ 3 MeV). The dependence becomes weaker for higher exci-
tation regions, as seen from the q-values or corresponding P (s)
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distribution in the two lower panels in Fig. 5. It indicates that 
the NNLS distributions P (s) might be a more reliable measure for 
spectral statistical analysis of nuclear systems, especially for higher 
excitation regions. The same conclusion has been found in analyz-
ing the GOE level spectrum in Ref. [31].

In their recent publications, Zelevinsky and collaborators have 
emphasized [38,39] that shell model calculations invariably show 
the significant role of the matrix elements of the Hamiltonian 
which are not directly related to the global structure and collec-
tive motion. It was discussed that the effect occurs starting from 
some excitation energy after breaking a small number of pairs, 
and continues as the level density grows when mixing of close-
in-energy-configurations becomes strong even with weak residual 
interactions. These parts of the interaction determine the finite 
lifetime of the simple quasiparticle (or collective) modes and their 
fragmentation in terms of complicated eigenstates of exceedingly 
entangled nature. They loosely characterized the contributions as 
responsible for the incoherent collision-like interactions which do 
not influence considerably the mean field and collective effects. 
However, these parts of the Hamiltonian contribute considerably 
to the level density making it smoother and increasing its Gaus-
sian width [40,41]. At present it is not clear whether the PSM is 
an appropriate theory to address this question.

In summary, nuclear quantum chaos is expected to set in when 
the level density in an energy region is sufficiently high and the 
configurations that describe the levels are strongly mixed by resid-
ual interactions. One usually measures chaoticity in nuclei by using 
information entropy, or by studying spectral statistics with the 
spectral rigidity �3 and the nearest neighbor level spacing distri-
bution P (s). Prior to our work, information entropy, which reflects 
complexity in nuclear wave functions, was discussed in terms of 
configurations constructed in spherical mean-field bases. In the 
present work, we have shown, for the first time, that a model 
based on the angular-momentum projection method can pro-
vide us with several uniquely-defined bases (orthonormal vs. non-
orthonormal, intrinsic vs. laboratory frame, deformed vs. spheri-
cal). We have found very sensitive basis-dependence in measures 
of complexity, with a high chaoticity being concluded when the 
overlap between the ‘true’ nuclear states and the basis configura-
tions is small.

Among the two types of spectral statistics analysis, the results 
from spectral rigidity �3 using different unfolding methods and/or 
parameters are found to departure from each other very much, 
especially for large L. This could be dangerous for drawing a defi-
nite conclusion. The P (s) distribution shows a weaker dependence 
on unfolding methods and/or parameters for higher excitation re-
gions. However, for the lower excitation region (0-3 MeV) where 
the interplay between the collective and single-particle excitations 
dominates the physics, the conclusion on chaoticity has some de-
pendence on unfolding. One may use other measures such as the 
transition strengths to obtain information about quantum chaos, 
although such quantities are usually very difficult to obtain exper-
imentally, especially for highly excited states.

The nuclear pairing is found to be an important driving force 
for the system to become chaotic. Degrees of chaoticity are found 
to be sensitive to other residual interactions as well. In the most 
chaotic (middle) part of the spectrum, even a Gamow-Teller force 
acting on the spin-isospin channel can cause chaoticity.
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Appendix A

The Hill-Wheeler-Griffin equation, Eq. (5), corresponds to an 
eigenvalue equation in the non-orthonormal projected basis
P̂ I

M K |�κ 〉 (i.e., generally N I
Kκ,K ′κ ′ 
= 0), which can be solved as fol-

lows. First, the norm matrix is diagonalized
∑
K ′κ ′

N I
Kκ,K ′κ ′ Uσ

K ′κ ′ = nσ Uσ
Kκ , (15)

from which one can then construct the orthonormal mixing basis 
in Eq. (8), which fulfills

〈Wσ |W ′
σ 〉 = δσσ ′ . (16)

In the basis of {|Wσ 〉, nσ 
= 0}, the eigenvalue equation becomes 
[9]

G I
σσ ′ = 1√

nσ nσ ′

∑
Kκ K ′κ ′

Uσ
Kκ H I

Kκ,K ′κ ′ Uσ ′
K ′κ ′ , (17)

∑
σ ′

G I
σσ ′ V Iω

σ ′ = Eω
I V Iω

σ . (18)

One can then get the energy Eω
I and the eigenvector V Iω

σ which 
corresponds to coefficient in terms of the mixing basis.

In order to write the nuclear wave functions in terms of or-
thonormal qp states which have clear physical picture (pure mean-
field configuration) in the intrinsic system, we define |Kκ〉 as the 
orthonormal eigen-state for different qp configuration generally,∣∣∣�ω

I M

〉
=

∑
Kκ

∣∣∣Kκ
〉〈

Kκ
∣∣∣�ω

I M

〉
≡

∑
Kκ

gIω
Kκ

∣∣∣Kκ
〉
. (19)

To obtain the expression for gIω
Kκ , we note that

gIω
Kκ = 〈Kκ |

∑
K ′κ ′

F ω
I K ′κ ′ P̂ I

M K ′ |�κ ′ 〉

=
∑
K ′κ ′

F ω
I K ′κ ′ 〈Kκ | P̂ I

M K ′ |�κ ′ 〉, (20)

i.e., we need to know the expression for 〈Kκ | P̂ I
M K ′ |�κ ′ 〉, which 

fulfills
∑
Kκ

〈�κ ′′ | P̂ I†
M K ′′ |Kκ〉〈Kκ | P̂ I

M K ′ |�κ ′ 〉

= 〈�κ ′′ | P̂ I
K ′′ K ′ |�κ ′ 〉 = N I

K ′′κ ′′, K ′κ ′ . (21)

If we define

N 1/2 I
Kκ K ′κ ′ ≡

∑
σ

Uσ
Kκ

√
nσ Uσ∗

K ′κ ′ , (22)

one can prove that N 1/2 I
Kκ K ′κ ′ fulfills all the relations like Eq. (21)

that hold for 〈Kκ | P̂ I
M K ′ |�κ ′ 〉, i.e. [42]

N 1/2 I
Kκ K ′κ ′ = 〈Kκ | P̂ I

M K ′ |�κ ′ 〉. (23)
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Thus, we can obtain

gIω
Kκ =

∑
K ′κ ′

F ω
I K ′κ ′N 1/2 I

Kκ K ′κ ′

=
∑
K ′κ ′

F ω
I K ′κ ′

∑
σ

Uσ
Kκ

√
nσ Uσ∗

K ′κ ′

=
∑
K ′κ ′

∑
σ ′, nσ ′ 
=0

V Iω
σ ′ Uσ ′

K ′κ ′√
nσ ′

∑
σ

Uσ
Kκ

√
nσ Uσ∗

K ′κ ′

=
∑

σσ ′, nσ ′ 
=0

V Iω
σ ′√
nσ ′

Uσ
Kκ

√
nσ δσσ ′

=
∑

σ , nσ 
=0

V Iω
σ Uσ

Kκ , (24)

where we have used the expression F ω
I Kκ = ∑

σ , nσ 
=0
V Iω

σ Uσ
Kκ√

nσ
and 

the orthonormality of Uσ
Kκ .
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