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ABSTRACT 

Solving the cosmological constant problem in the unified theories by means of a scalar field 
results in the gauge coupling constants which are time-dependent beyond the observational 
upper bounds by many orders of magnitude. We propose a remedy by exploiting "hesitation 
behavior" of the scalar field, a highly nontrivial solution of the cosmological equations. In this 
connection we also propose a new type of experiment to probe a/ a, time variability of the 
fine-structure constant, by using a high-finesse Fabry-Perot interferometer. 
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In spite of remarkable achievements for an ultimate theory supposed to unify particle physics 
and gravitation, we find the cosmological constant still remaining to be a major problem; the 
theoretical prediction is larger than the observational upper bound by as much as 120 orders 
or so. So serious that, unfortunately or understandably, only few people have tried to face it. 
But we have to do something. Otherwise the whole program for unification will be seriously 
undermined. Probably the only promising way out is to abandon the very notion that the 
cosmological constant is a true constant. 

More specifically, one would expect that A(t) decays like � r2 as a function of the cosmic 
time t .  This is nice because it gives us a simple and natural way of understanding a small 
number like 10-120 . The point is that the present age of the universe t0 � 1010y is of the 
order of 1060 in units of the Planck time � 10-43sec, which is the fundamental time unit 
in the physics of unification. Its inverse square gives naturally 10-120 . In this scenario of "a 
decaying cosmological constant," today's cosmological constant is unusually small only because 
our universe is old, not due to any unnatural fine-tuning of parameters. 

The simplest way to implement this scenario, as a dynamical effect starting out from a 
truly constant A, is to introduce a scalar field, as in the Jordan-Brans-Dicke theory [1-2] . It is 
amusing to find that in most of the theoretical models of unification we find some candidates 
of the scalar field of this type. The most probable candidate is the "dilaton" field, having some 
relevance to two-dimensional conformal invariance of the theory. 

If we look into some details of this theory, we find that the scalar field must grow with time 
steadily without turning back. This is a condition necessary for the success of the scenario, as 
we can see from Weinberg's argument [3]. We should accept a scalar field which keeps changing 
with t·ime even today. 

Also there is a difference from the original JBD theory. The dilaton field, or almost any other 
candidate scalar field, couples to matter fields, particularly to the gauge fields. Combining this 
with the above result we come to conclude that the observed gauge coupling constants, including 
the usual fine-structure constant, must keep changing with time even today. Most naively, we 
expect a power-law behavior of a(t), then 6:/a � lo-10y-1 at the present time. 

How about the observation? Here is a brief summary of the past results. 

Table I: O bservational upper bounds on &./a and Cr.sf a., for the electromagnetic(E) 
and strong interaction(S), respectively. 

Source Interaction Upper bound (y-1 )  
Very long-lived nuclei [4] E 3 x 10-13 
Primordial nucleosynthesis [5] s 2 x 10-12 
Stellar nucleosynthesis [6] s 10-13 
Distant QSO [7] E 4 x 10-12 
Oklo phenomenon [8] s 5 x 10-19 
Comparison with atomic clocks [9] E 3 x 10-13 

Results for the electromagnetic and strong interactions should be interpreted as essentially 
the same from the point of view of unified theories. As we see, these are all the upper bounds; 
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no evidence for the time-variability has been ever reported at the level of 10-10y-1• The most 
stringent constraint gives a number as small as � 10-19y-1, nearly 9 orders smaller than what we 
expect naively. This seems to be another serious confrontation between theory and observation. 

I propose a remedy, taking advantage of what I call a "hesitation" behavior of the scalar 
field [2] . Recently we discovered a highly non-trivial solution of the cosmological equations in 
which the scalar field, which basically grows with time, may stay nearly constant for some 
time. This is due to a subtle competition between the "force" driving the scalar field and 
the cosmological "friction." According to this mechanism, the observed no time-variability of 
the coupling constants would be because we at the present time happen to live during this 
hesitation period. I also emphasize that this behavior is a rather common phenomenon sharing 
essentially the same origin as what is widely known as the "relaxation oscillation" in nonlinear 
systems. Incidentally, the cosmological constant had decayed sufficiently fast before the onset 
of the hesitation. 

The obvious drawback of this approach is that the theory is so flexible that it lacks predictive 
power; we have no unique prediction on how much iY./ a should be. At the same time, however, 
we have no theoretical reason why iY./ a should be far below the upper bounds obtained so far. 
It may be waiting for to be discovered right there. In this sense, searching for iY./ a with a better 
accuracy might be justified. In what follows, we suggest a possible new type of experiment. 

As an example, consider an alkali atom with a fine-structure doublet. For the two transitions 
(i = 1 , 2) ,  the frequencies or the wave-numbers are given by 

(1 )  

where a =  e2 /fie � 1/137. Also k0 = (µcZ2a2 /2n2fi ) and 

(2) 

where Ki = -£ - 1 or C, according to i; = C + 1/2 or C - 1/2, respectively. Notice that the ratio 
of the two wavelengths depends only on a2 and a pure constant. Measure this ratio at different 
occasions separated by a year, for example. We then may be able to probe a possible change 
of a. 

For this purpose we prepare a Fabry-Perot cavity as an ultra sensitive spectrometer, as shown 
in Fig. 1. A Fabry-Perot cavity or resonator consists of a completely reflecting mirror and a 
partially reflecting mirror with the reflection coefficient R, separated by a distance L. Suppose 
a laser beam is injected, taking aside the complication due to two beams for the moment. Major 
part of the beam is reflected back on the surface of the first mirror but the remaining part goes 
into the inside, going back and forth, re-emerging and producing an interference pattern at the 
photo detector. 

The re-emerging beam would be strong enough only at resonances defined by kL = 2ir x 
integer. On the other hand, the resonance width with respect to kL is 1 - VR � H l -R)/VR = 

(ir/2)F-1 ,  where F is called "finesse." The closer R to 1, the larger F, and hence giving the 
better resolving power of the spectrometer. Now suppose the length L is changed continuously. 
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Then at the detector we observe "dark fringes" appearing successively as L passes through the 
resonance positions. 

Laser -1 

Signal of!aser-1 

Vacuum chamber 

Fabry=Perot interferometer 
L 

Signal of laser-2 

Figure 1 :  A schematic illustration of the apparatus. 

In fact we inject two laser beams corresponding to the two transitions simultaneously and 
coaxially. But they are distinguished from each other by applying different modulation fre­
quencies . Make certain adjustment such that we observe dark fringes simultaneously for the 
two beams. Starting from this position of coincident dark fringes, move the mirror. We would 
observe no coincident dark fringes any more because the wavelengths are different. But after 
NI (N2) dark fringes have passed in the beam 1 (2), we may find another coincident or near 
coincident dark fringes again for NI/N2 >::! kI/k2• We may think of a vernier. Of course, the 
coincidence should be approximate in practice. 

Repeat the same experiment a year later (fi.t = ly). Namely first find a position of a 
coincident dark fringes for certain length. Starting from this position change the length L .  
After having passed NI dark fringes in  the beam 1 ,  check if  we find the coincident dark fringes 
again in the beam 2. If we do as before, a must be the same as a year before. If we find instead 
a shift of the positions of the two dark fringes, it would indicate the change of a. 

This shift can be expressed in terms of the phase difference c5.P given by 

(3) 

where fi.L is the change of distance, and fi.(3 is the difference of f3;· The phase difference is 
naturally proportional to ix/ a and the sensitivity, namely the finesse. 

As we learn, finesse as large as 106 is now available [10] . To measure the phase difference, 
we lock one of the wavelengths to a stabilized standard laser with its accuracy � 10-I3 .  This 
implies c5.P � 10-1. Using these values together with fi.(3 � 102 and fi.L � lOcm, we find that 
we can probe ix/a to 10-I7y-I . We may expect to improve the result even further. In spite of 
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many technical difficulties ahead, I believe this is a promising way, because this is a controlled 
laboratory experiment unlike most of the past attempts. 

To conclude, I add two remarks. First, the scalar field may show up as the fifth force 
[1 1 ] .  Although without any experimental evidence so far [12] , the theoretical motivation for this 
phenomenon is still strong. We have some good reasons why the strength would be weaker than 
what had been suspected earlier [2]. We still encourage the experimentalists to continue their 
efforts whenever a new technology becomes available for the better accuracy. I myself propose 
a new experiment by using an ultra-sensitive laser interferometer with high-finesse Fabry-Perot 
cavities, as an improvement of my past suggestion [13]. 

Secondly, and finally I add [14] that the hesitation behavior of the scalar field may allow 
us to understand a possible small but nonzero cosmological constant recently suggested by a 
number of cosmological analyses [15]. 
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