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Abstract. The properties of quantum phase transitions in the semimicroscopic algebraic
cluster model are investigated. The order of the quantum phase transition is shown to depend
on the path taken in the parameter space and a novel procedure to obtain the Maxwell set
separatrix is discussed. The first steps toward a description of systems of deformed cluster and
heavy nuclei are presented.

1. Introduction
Research on quantum phase transitions (QPT) in nuclear systems has a long tradition [1]. It
has been studied in the Interacting Boson Approximation (IBA) [2], in boson systems with an
arbitrary number of bosons [3], and in the Semimicoscopic Algebraic Cluster Model (SACM)
[4]. In these studies, the Hamiltonians used have a simple structure containing up to second
order interactions, and in order to study QPTs a potential is constructed as the expectation
value of the Hamiltonian in the coherent states basis of the system. This potential represents a
semi-classical approximation and it is susceptible to a stability structure analysis of the physical
system in terms of its parameters.

However, for models studied in the past the semi-classical potentials obtained are relatively
simple. In contrast, in the SACM the semi-classical potential is quite complicated due to the
coherent state, which reflects the Wildermuth condition [5], which is necessary for the observation
of the Pauli exclusion principle. This kind of complicated potential was investigated in [4, 6] and
may serve as an example for other potentials of similar complexity, that originate in physical
systems of interest to the community.

For a complete investigation of QPTs within the SACM we use the catastrophe theory [7],
which was already applied with great success to the IBA-I Hamiltonian [8]. In [6] we presented
the results of this investigation and showed how the catastrophe theory can help to obtain
analytical solutions for systems with an involved structure (see comments at the end of Section
2). This contribution is meant to give a brief review on these methods, summarizing the results
of [6] and extending the treatment to include systems of deformed clusters.
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In the Section 2 we give a brief summary of what is the essence of catastrophe theory [7] and
what is the advantage of using this theory. Section 3 gives an account of the SACM and its
main characteristics. In section 4 some of the main results will be presented. In section 5 an
extension when dealing with systems of deformed clusters will be introduced in preparation for
future work. Finally, in section 6 conclusions will be drawn.

2. Brief summary to catastrophe theory
The physical system of interest is usually described by a Hamiltonian, depending on some
interaction parameters. The expectation value of this Hamiltonian with respect to a trial state
defines a semi-classical potential, depending also on the interaction parameters. The variables
are related to some physical object: For example, the variable α, in the example presented here,
is related to the distance between the two clusters [6, 9].

Important information of the physical properties of the system can be obtained by studying
the stability structure of the potential and how their extrema depend on the change of the
parameters. The straightforward approach consist in finding the critical points, calculating the
Hessian matrix to find whether they are maxima, minima or saddle points, and so on. In practice
this approach may lead to not very friendly expressions to solve analytically.

Catastrophe theory is a program to determine the dependence of parameters on the critical
points of a function, thus, avoiding to get the variables at the critical points as a function of the
parameters. An essential concept of catastrophe theory is that of the critical manifold, which is
an hypersurface of all the critical points of the function spanned by the continuous variation of
the parameters.

The essence of catastrophe theory lies in the singular mapping of the critical manifold to
the parameter space. In Fig. 1 the critical manifold of the elementary cusp catastrophe [7]
is shown, the singular mapping occurs when the tangent plane to the surface is vertical, i.e.
when the Jacobian determinant of the transformation vanishes. The result of the application
of catastrophe theory is the division of the parameter space in regions where the qualitative
behavior of the potential is the same. For example, the set of points in the parameter space
obtained by the projection of the points where the tangent plane to the critical manifold is
vertical is known as the bifurcation set separatrix, which determines the emergence of critical
points. In Section 3 the method used to calculate the Maxwell set separatrix, based on
catastrophe theory, is described.

The structure of the semi-classical potential obtained within the SACM is not a simple
polynomial with at most on simple factor of the type (1 + x2)n, but rather involved. Such
complicated structures are common and the catastrophe theory provides us with an elegant
method to tackle them.

3. The SACM
In the SACM [10, 11] the relative motion between clusters is described by the creation π†m
and annihilation πm operators of the π bosons with angular momentum ` = 1. (We use the
notation of co- and contra-variant indices by lower and upper labels, respectively.) A cut-off
N = nπ + nσ is introduced, keeping N constant, by adding the creation σ† and annihilation
σ of the σ bosons with angular momentum ` = 0. Thus, the relative motion is described by a
UR(4) group structure.

The space used in this model is obtained by calculating the direct product of the SU(3) irreps
(λk, µk) of the clusters and the relative motion (nπ, 0) irrep, where nπ ≥ n0 the number of π
bosons is bounded from below satisfying the Wildermuth condition [5]. This product results in
a linear combination of irreps, which is then compared with the fully antisymmetric shell model
space, with the overlapping irreps used as the SACM space, thus observing the Pauli exclusion
principle.
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Figure 1. Critical manifold of the cusp catastrophe: V (x; a, b) = x4/4 +ax2/2 + bx. The green
curve in the parameter space corresponds to the projection of the points where the tangent plane
to the critical manifold is vertical, and is the bifurcation set separatrix.

In Fig. 2 the Wildermuth condition is illustrated and explained in the caption. It is a
necessary condition and a violation leads automatically to a Pauli forbidden state.

Figure 2. The Wildermuth condition illustrated for the system 16O+α → 20Ne. The left hand
side show the distribution of nucleons of the two clusters within the shell model space and the
right hand side gives the distribution in the united nucleus. From the left hand side we count 0
oscillation quanta for the α-particle plus 12 quanta from the 16O nucleus, i.e., there are in total
12 oscillation quanta. The united nucleus has in total 20 oscillation quanta. Thus, in order to
observe the Pauli Exclusion Principle the necessary condition is to add to the cluster system
at least 8 quanta, the difference from the left to the right hand side of the figure. A smaller
number of relative oscillation quanta automatically implies to put a nucleon in a lower, already
occupied level. The black dots refer to protons and the gray ones to neutrons.

For the present time we will consider only systems of spherical clusters (λk, µk) = (0, 0) to
illustrate the procedure used, anticipating that when considering systems of deformed clusters
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only makes the relations between the parameters of the model {a, b, c, ξ} and the parameters
{A,B,C,D}, introduced below, more cumbersome, as will be shown in section 5.

The Hamiltonian considered consists of a linear combination of Casimir operators of the
two dynamical symmetry group chains: SUR(3) and SOR(4). The following simple form is
considered:

H = HSU(3) +HSO(4) (1)

with

HSU(3) = h̄ωnπ + (a− b∆nπ)C2(nπ, 0) + ξL2 (2)

HSO(4) =
c

4

[
(π† · π†)− (σ†)2

] [
(π · π)− (σ)2

]
(3)

with ∆nπ is the number of shell excitations. When n0 is the minimal number of quanta needed
to satisfy the Wildermuth condition and nπ the number of relative oscillation quanta, then this
∆nπ is given by nπ − n0. The second order Casimir operator of SUR(3) for the case of two
spherical clusters is given by C2(nπ, 0) = nπ(nπ + 3).

The semi-classical potential is obtained as the expectation value V (α) = 〈α|H|α〉 of this
Hamiltonian in the basis of the coherent sates defined as [9]

|α〉 =
N !

(N + n0)!
NN,n0

dn0

dγn0
[σ† + γ(α∗ · π†)]|0〉

∣∣∣∣
γ=1

(4)

where

N−2N,n0
=

(N !)2

(N + n0)!

dn0

dγn0
1

dn0

dγn0
2

[1 + γ1γ2(α
∗ ·α)]N+n0

∣∣∣∣∣
γ1=γ2=1

(5)

is the normalization constant. It is convenient to define the arbitrary complex variables αm in
terms of spherical coordinates:

α±1 =
α√
2
e±iφ sin θ (6)

α0 = α cos θ. (7)

The semi-classical potential is then obtained as

V = −b
[
A

(
α2F11(α

2)

F00(α2)
− n0

)
+
(
B + C sin2 2θ

)(
α4F22(α

2)

F00(α2)
− n0(n0 − 1)

)

+

(
α6F33(α

2)

F00(α2)
− n0(n0 − 1)(n0 − 2)

)
+D cos 2θα2F20(α

2)

F00(α2)

]
, (8)

with functions Fpq(α) defined in [12] and the ci = {A,B,C,D} control parameters of the
potential given in terms of the Hamiltonian parameters by

Ā = h̄ω + 4(a+ b(n0 − 1)) + 2ξ − c

2
(N + n0 − 1)

B̄ = a+ b(n0 − 6) +
c

2

C̄ = ξ − c

4

D̄ =
c

2
X̄ = −bX, with X ∈ ci. (9)
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The procedure described works for any system of two spherical clusters, specified by the
proper selection of n0 and N . As an example we consider the 16O + α → 20Ne system, with
n0 = 8 and N = 12, and by no means represents the real nucleus 20Ne, it will serve only to
illustrate the structure of QPTs and to provide an n0. The potential can then be written as

V (α, θ; ci) = −b α2

q0(α)

(
ApA(α) + (B + C sin2 2θ)pB(α) +D cos 2θpD(α) + p0(α)

)
, (10)

with pA(α), pB(α), pD(α), p0(α) and q0(α) polynomials in even powers of α and positive
coefficients.

4. Results
For our purposes, the basic concepts of catastrophe theory, that we used throughout the study of
QPTs, are summarized in section 3 of [6]. There, the elementary cusp catastrophe is considered
as an example and a novel procedure for the calculation of the Maxwell set is introduced.
The Maxwell set is the subspace in parameter space where the value of the potential at two
or more critical points is the same, e.g. the potential has two minima at the same depth,
V (x1; ci) = V (x2; ci) = −V0. The procedure developed to obtain the Maxwell set of a parameter
dependent potential is based on the essence of catastrophe theory, which is the singular mapping
of a critical manifold, ∇V (x; ci) = 0, to the parameter space (c1, . . . , cn). In this case we
construct what we call the roots manifold, V (x; ci) + V0 = 0, and calculate where the mapping
to the parameter space is singular. This is justified because, whereas the singular mapping of the
critical manifold happens at the coalescence of two critical points, the singular mapping of the
roots manifold happens at the coalescence of two roots, thus creating a critical point xc for which
the value of the potential is at V (xc; ci) = −V0. The singularity of the mapping is determined
by the vanishing of the Jacobian determinant of the transformation, i.e. when the mapping is
not invertible. For the present contribution we shall turn our attention to the potential (10) and
specify the properties of QPTs found with the methods described above.

The semi-classical potential of the SACM depends on two variables (α, θ) and four parameters
{A,B,C,D}. However, by applying the methods of catastrophe theory we found that there are
only three essential parameters (ρ2 = A, ρ1 = B+C,D2/C) and in the SUR(3) limit the essential
parameter space is two dimensional (D = 0). We are able, therefore, to begin in the (ρ2, ρ1)
parameter space and treat the SOR(4) dynamical symmetry (D 6= 0) as an extension in the
essential parameter space.

Evaluating the critical points of (10) in its two variables we obtain the following partial
derivatives:

∂V

∂θ
= −b 2α2

q0(α)

(
C sin 4θpB(α)−D sin 2θpD(α)

)
∂V

∂α
= −b α

q20(α)

(
AWA(α) + (B + C sin2 2θ)WB(α) +D cos 2θWD(α) +W0(α)

)
, (11)

where we defined the function WX(α) = αW (q0, pX)+2q0(α)pX(α), with W (f, g) = f(α)g′(α)−
f ′(α)g(α) the Wronskian determinant, and the prime indicates differentiation with respect to α.

The angular θ variable partial derivative vanishes when cos 2θc = DpD(α)/2CpB(α), which
is α dependent. This allows us to write the potential as a single variable function and in terms
of the three essential parameters as:

V (α; ρ2, ρ1, D
2/C) = −b α2

q0(α)

[
ρ2pA(α) + ρ1pB(α) +

D2

C

p2D(α)

4pB(α)
+ p0(α)

]
. (12)
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Here we can restrict ourselves to the SUR(3) limit by setting D = 0. Applying the methods of
catastrophe theory, described in [6], we divided the parameter space (ρ2, ρ1) in six regions with
the known separatrices, e.g. bifurcation set and Maxwell set.

In Fig. 3 the parameter space in the SUR(3) limit is shown. The parameter space is divided in
six regions where the potential has a similar qualitative behavior, and crossing the separatrices
from one region to another signifies a QPT. The QPT is of first order when crossing the Maxwell
set (red line). The QPT is of second order when crossing the blue line separatrix, illustrated
in paths a) and b) in Fig. 3. A third order QPT occurs when crossing the so-called germ [7],
represented as point i, along the blue line separatrix, as depicted in path c) in Fig. 3. In Fig. 4
we depict a potential whose qualitative behavior is representative for each of the six regions in
the (ρ2, ρ1) parameter space.

Figure 3. In the left is the parameter space (ρ2, ρ1) in the SUR(3) limit (taken from [6]). The
green dashed line is the bifurcation set and the red dashed line is the Maxwell set. The blue
dashed line characterizes the critical point α0 = 0, i.e. it determines whether it is a maximum
or a minimum. The purple dashed line divides the parameter space in two parts determining
the asymptotic behavior, as α→∞, of the potential, i.e. whether it is stable (V (α→∞) > 0)
or unstable (V (α→∞) < 0). In the right is the parameter space zoomed in the vicinity of the
germ and three paths taken. The order of the QPT of each path is: a) second order, b) second
order, and c) third order.

5. Hamiltonian and parameter relations for systems of deformed clusters
When considering deformed clusters the second order Casimir operator C2(λ, µ) of SUR(3) is
given by

C2(λ, µ) = 2Q2 +
3

4
L2 (13)

with Q = QC +QR, the total quadrupole operator, given as the sum of the cluster and relative
quadrupole operators. The cluster quadrupole operator can be further divided as the sum of
the two individual cluster quadrupole operators QC = QC1

+QC2
. Similarly, the square of the

angular momentum operator can be written as L = (LC + LR)2 = L2
C + L2

R + 2(LC · LR),
where LC corresponds to the cluster angular momentum, which can be further decomposed as
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Figure 4. Example of representative potential of all six regions in (ρ2, ρ1) parameter space
depicted in Fig. 3. Potentials in regions I through IV, above the purple line in parameter
space, are stable; while potentials in regions V and VI, below the purple line, are unstable. The
potential can have two minima, one at α0 = 0 and other at αc > 0. The bifurcation set is crossed
going from region I to region II, and then the critical point at αc > 0 emerges. The Maxwell
set is crossed going from region II to region III, and then the minimum at αc > 0 is the global
minimum.

LC = LC1 +LC2 , the sum of the individual clusters angular momentum. Thus, the second order
Casimir operator can be written as:

C2(λ, µ) = C2(λC , µC) +C2(nπ, 0) + 4QC ·QR +
3

2
LC ·LR, (14)

with (λC , µC) the SU(3) irrep of the cluster system, and C2(nπ, 0) = 2Q2
R+3L2

R/4 is the second
order Casimir operator of the relative motion.

Previously, when considering spherical clusters the Hamiltonian consisted only on relative
motion operators, the expectation value of the Hamiltonian was performed in the basis of
coherent states defined in (4). In the case of deformed cluster systems, the coherent states
are changed to incorporate the internal cluster structure as done in [9].

The Hamiltonian considered for the case of deformed clusters is similar to the one defined in
(1), the only change occurs in the SUR(3) Hamiltonian, which is now considered to be

HSU(3) = h̄ωnπ + (a− b∆nπ)C2(λ, µ) + (ā− b̄∆nπ)C2(nπ, 0) + ξL2. (15)

With similar algebraic manipulations as the ones performed in the previous case, we obtain
the semi-classical potential V ≡ V (α, θ; ci) as

V = −(b+ b̄)

[(
A+ E cos θ

)(
α2F11(α)

F00(α)
− n0

)
+
(
B + F cos θ + C sin2 2θ

)(
α4F22(α)

F00(α)
− n0(n0 − 1)

)
+

(
α6F33(α)

F00(α)
− n0(n0 − 1)(n0 − 2)

)
+D cos θα2F20(α)

F00(α)

]
, (16)
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with the control parameters ci = {A,B,C,D,E, F} of the potential given by

Ā = h̄ω − b〈C2(λC , µC)〉+ 4((a+ ā) + (b+ b̄)(n0 − 1))− c

2
(N + n0 − 1)

+(a+ b(n0 − 1))Γ12 + 2ξ

B̄ = a+ ā+ (b+ b̄)(n0 − 6) +
c

2
− bΓ12

C̄ = ξ − c

4
D̄ =

c

2
(17)

Ē = 3(a+ b(n0 − 1))Γ12

F̄ = −3bΓ12

X̄ = −(b+ b̄)X, with X ∈ ci,

with Γ12 = −(Γ1 + Γ2)/
√

2 and Γk = 〈(λk, µk)|QCk,0|(λk, µk)〉, the expectation value of m = 0
component of the quadrupole operator of cluster k [12].

6. Conclusions
We presented a short review of the main results of previous work concerning QPTs in a non-
trivial model [6]. We divided the essential parameter space of the SACM in distinct stability
regions, where the family of potentials have similar qualitative behavior. This was done with the
methods of catastrophe theory, and we described a novel procedure for obtaining the Maxwell
set of a parameter dependent potential. We found that the order of the QPT may depend on the
particular direction taken in the parameter space, as depicted in Fig. 3. Furthermore, the first
steps in a line of research concerning systems of deformed clusters were presented. It was possible
to obtain a semi-classical potential, and a more cumbersome relation between the interacting
parameters and the control parameters was established, deserving further investigation.

Some of the future work to continue the line of research presented here is: Extend the results
to systems of deformed clusters, modify the SACM to be able to include the analysis of systems
of heavy nuclei, and the study of QPTs of excited states in the SACM using the cranking method.

Acknowledgements
We acknowledge financial support by DGAPA-PAPIIT (IN100418) and CONACyT (251817).

References

[1] Cejnar P, Jolie J and Casten R F 2010 Rev. Mod. Phys. 82 2155
[2] Iachello F and Arima A 2011 The Interacting Boson Model (Cambridge: Cambridge University Press)
[3] Cejnar P and Iachello F 2007 J. Phys. A: Math. Theor. 40 581
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