
Large–scale shell model calculations for 140Xe

Sevdalina Dimitrova1 and Nicola Lo Iudice2,3

1Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
2Dipartimento di Fisica, Università di Napoli Federico II, Monte S. Angelo, via Cintia, I-80126 Napoli, Italy
3Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Monte S. Angelo, via Cintia, I-80126 Napoli, Italy

Abstract. This paper presents the results of a large–scale shell model calculations of the yrast spectrum of
140Xe. We extend the previous calculations confined to low-lying angular momenta to high-spin states apply-
ing the same importance sampling iterative matrix diagonalization algorithm. Excitation energies and transi-
tion probabilities are obtained by using an effective nucleon–nucleon interaction derived from the CD-Bonn
nucleon-nucleon potential. A satisfactory agreement with the experimental data and the previous results for
low lying states is achieved.

1 Introduction

The interplay of nuclear collectivity and shell effects is an
interesting phenomenon, which is intensively studied both
theoretically and experimentally. Spectroscopic measure-
ments on several chains of nuclei including Te, Xe, Ba, and
Ce isotopes [1] have been supported by theoretical investi-
gations carried out within the quasiparticle-phonon model
(QPM) (see [2] for references), large–scale shell model
[3–7], and in the nucleon pair approximation [8].

All theoretical studies were focused mainly on the
quadrupole collectivity of the lowest isoscalar and mixed
symmetry 2+ states and therefore treated only low-lying
levels of low spin. We intend to explore the possibility
of extending the description of the spectroscopic proper-
ties of the nuclei in this region by computing the levels
of higher spins. The Te and Xe isotopic chains have been
studied already within a shell model approach endowed
with an importance sampling [9] using the CD-Bonn two-
body potential in a large configuration space [7]. The cal-
culations were confined to the levels of spin up to Jπ = 6+.

In this paper our attention will be concentrated on the
neutron-rich 140Xe isotope. The first results for 138Xe have
been reported in [10]. We adopt the same approach to in-
vestigate the spectroscopic properties of the yrast line of
140Xe up to Jπ = 12+.

After a brief description of the algorithm we analyze
the results by relating them to the available experimental
data.

2 The algorithm

The algorithm we use for the present large-scale shell
model calculations is described in [9, 11]. Here we will
sketch briefly the main steps of the procedure.

Let us consider a symmetric matrix representing a self-
adjoint operator Â in an orthonormal basis {| 1⟩, | 2⟩, . . . , |

N⟩}. In order to determine the lowest m eigenvectors of
the matrix we have to follow an initialization loop and a
subsequent set of refinement loops.
The initialization loop:

• The initialization begins by diagonalizing the ma-
trix (ai j) (i, j = 1, n), where n fulfills the relation
(m < n′ ≪ N).

•We choose the lowest m eigenvalues λi and eigenvectors
| ϕi⟩ and construct a new matrix of dimensions (m + n′).

α =

(
λ b j

b j a′

)
, (1)

where {λ} is a diagonal block composed of the eigenvalues
(λn′

i , i = 1,m), a′ is the new submatrix a′j j′ = ⟨ j | Â | j′⟩
with ( j, j′ = n + 1, n′), and {b j} is an off-diagonal block
connecting λ to a and is composed of the elements bi j =

⟨ ϕn
i | Â | j ⟩ where (i = 1,m; j = n + 1, n′).

• We add the lowest m eigenvalues λn′
i together with the

corresponding eigenvectors | ϕn′
i ⟩ to a new subset of or-

thonormal states | j⟩ to build a new matrix and proceed as
we did for α.

This initialization loop ends when the whole config-
uration space is exhausted. As a result, a zero order ap-
proximation to the lowest eigenvalues and eigenvectors is
obtained

E(0)
i ≡ λ

N
i , | ψ(0)

i ⟩ ≡| ϕ
N
i ⟩ =

N∑
j=1

c(N)
j | j⟩ , {i = 1,m}.

(2)
The refinement loop:

The solutions of the eigenvalue Eqs. (2) are used as an
entry to the first refinement loop, which goes through the
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same steps as described above with one difference. One
should just solve an eigenvalue problem of general form
since the vectors | ϕ ⟩ and | j ⟩ are no longer orthogonal. It
has been shown in [9] that the eigenvalues E(n) and eigen-
vectors | ψ(n)⟩ obtained after the n-th loop converge to the
solution of the exact diagonalization of ⟨Â⟩.
The importance sampling:

The implementation of the method requires an ad-
equate sampling criterion for reducing the size of the
configuration space. Bearing in mind that the algorithm
provides accurate solutions already after the initialization
loop, one can sample the configuration space as follows:

• Diagonalize the submatrix {ai j} (i, j = 1,m) and obtain
its eigenvalues λi;

• For j = m+1, . . . ,N, diagonalize the m+1-dimensional
matrix

α =

 Λm b⃗ j

b⃗T
j a j j

 , (3)

where b⃗ j = {b1 j, b2 j, ·, bm j}.

• Accept the new state only if
∑
i=1,m

| λ′i − λi |> ϵ , (4)

otherwise ignore the state and continue the sampling pro-
cess with a new vector j. In the relation above ϵ is a small
parameter which allows to control the accuracy of the trun-
cation. In the actual calculations we use an upgraded im-
portant sampling procedure [12, 13].

The algorithm outlined above contains the two key el-
ements, the diagonalization procedure and the importance
sampling, which are closely related. Thy ensure a robust
and always ghost–free solutions. Moreover, the accuracy
of the truncation procedure is fully under control.

3 Shell model calculations

We will keep the details of our calculations un-
changed as reported in [10]. The nucleus 140Xe
is considered as a 132Sn core plus four valence
protons in the (1g7/2,d5/2,2d3/2,1h11/2,3s1/2) model
space and four valence neutrons occupying the
(2 f7/2,3p3/2,1h9/2,3p1/2,2 f5/2,1i13/2) levels. The single-
particle energies are the same as in [7, 10]. They are listed
in Table 1.

The effective two–body potential is a renormalized G
matrix [14] derived from the CD–Bonn potential [15]. As
in the previous calculations [7, 10] scaling factors for the
pairing-like components of the two–body potential were
adopted. We will scale just the proton–proton Jπ = 0+

components by the factor of 0.85 as we find it optimal for
reproducing the experimental values of the excitation lev-
els up to Jπ = 12+ for 138Xe [16].

We perform the shell model calculations in the m–
scheme. It is useful to replace the standard two–body
Hamiltonian by the modified one

H = H + α [Ĵ2 − J(J + 1)] , (5)

Table 1. Effective single particle energies in MeV.

Protons Neutrons

1g7/2 0.00 2 f7/2 0.00
2d5/2 0.96 3p3/2 0.85
2d3/2 2.71 1h9/2 1.56
1h11/2 2.80 3p1/2 1.66
3s1/2 3.50 2 f5/2 2.00

1i13/2 2.11

where α is a positive constant. Due to the additional term,
the states with total spin different from J are pushed up
in energy for a sufficiently large value of α. Thus, the
diagonalization yields only the low-lying states of a given
spin J.

For ensuring the convergence of the results
we determine a series of small positive values
{ϵ1 > ϵ2 > . . . > ϵm} and used them as a sam-
pling criterion in Eq. (4). To each value of ϵ corresponds
an unique number of configuration states which deter-
mines the dimension of the Hamiltonian matrix to be
diagonalized.

The shell model problem for 140Xe does not need a se-
vere truncation of the configuration space for any Jπ value,
but we will use the importance sampling to restrict the
size of the Hamiltonian. In [10], the behavior of the en-
ergies of the lowest Jπ = 0+ states and the value of the
B(E2; 0+1 → 2+1 ) as functions of the size of the Hamilto-
nian matrix is demonstrated. The efficiency of the method
is observed also for the low lying states of 140Xe. In Figs. 1
and 2 we present the convergence of the eigenvalues of the
modified Hamiltonian for high-spin states Jπ = 10+ and
Jπ = 12+ as a function of the dimension of the Hamilto-
nian matrix n normalized to the total size of the configura-
tion space N.

Figure 1. Convergence of the eigenvalues of the modified Hamil-
tonian for the lowest Jπ = 10+ states in 140Xe.

It is seen that the properties of the important sampling
do not depend on the spin of the modified Hamiltonian (5).
The convergence of the eigenvalues of the Hamiltonian is
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It is seen that the properties of the important sampling
do not depend on the spin of the modified Hamiltonian (5).
The convergence of the eigenvalues of the Hamiltonian is

Figure 2. Convergence of the eigenvalues of the modified Hamil-
tonian for the lowest Jπ = 12+ states in 140Xe.

reached for less then 10% of the size of the Hamiltonian.
One should mention that for large configuration space the
conversions is reached even for much smaller fraction of
it. As demonstrated in [17] for 98Zr high accuracy of the
solution of the eigenvalue problem is obtained for n/N ∼
10−5.

4 Results

In this section we will discuss the spectroscopic properties
of the yrast line of 140Xe up to Jπ = 12+. The energy spec-
trum of 140Xe is presented in Fig.3. It is compared with
the experimental data [18] and the previous shell model
calculations [7].

The present results for the low-lying states slightly im-
prove the agreement with the experimental data [16] com-
pared with the previous calculations [7]. The calculated
values of excitation energies of the Jπ = 10+ and Jπ = 12+

states are reproduced not so accurately but one should bear
in mind, that the parameters of the problem we use, are fit-
ted to the 138Xe spectrum.

The experimental data on the transition rates for the
xenon isotopes are too scarce for a detailed analysis of the
nuclear structure. Table 2 shows the comparison between
the experimental B(E2, Ji → J f ) transition rates [18] with
the two sets of theoretical shell model calculations. In both
sets the adopted proton and neutron effective charges are
eπ = 1.6e and eν = 0.7e respectively. It is seen that the the-
oretical results follow the trend of the experimental data,
although they slightly overestimate them. We like to point
out, however, that the B(E2) are very sensitive to the ef-
fective charges. If we reduced both eπ and eν values by a
factor 0.9 we get B(E2) strengths considerably close to the
experimental data (for instance B(E2, 2+1 → 0+1 ) =27.87,
and B(E2, 4+1 → 2+1 ) =40.89).

As already discussed in [7] it is worth mentioning that
the large B(E2, 4+1 → 2+1 ) value, observed experimentally
and reproduced fairy good by the calculations, suggests a
large quadrupole deformation of the yrast 4+ state.

It is also interesting to study the low-lying non-yrast
Jπ = 2+ states, although only the experimental value just
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Figure 3. Low energy spectrum of 140Xe, compared with the
experimental data from ref. [18] and the previous shell model
calculations [7].

Table 2. Experimental and theoretical B(E2, Ji → J f ) values in
[W.u.].

Ji → J f Exp [18] SM [7] this work

2+1 → 0+1 24.08 ± 4.63 30.93 34.41
4+1 → 2+1 40 (8) 46.00 50.48
6+1 → 4+1 > 22 48.44 52.98
8+1 → 6+1 49.14
10+1 → 8+1 56.07
12+1 → 10+1 45.82

for the first 2+ excitation energy is available [18]. The
spectrum of the Jπ = 2+i , i = 1− 6 states is shown in Fig. 4
and compared with the results from [7]. It is seen that there
are significant differences in the excitation energies of the
states higher then 2+3 . The properties of the first excited
Jπ = 2+ states in both sets in the shell model calculations
are fairy close. The excitation energies and the E2 and M1
transitions strength in 140Xe do not differ significantly as
well as seen in Table 3.

5 Conclusions

The present study has shown that the importance sampling
algorithm can be extended successfully to high spin states
of the neutron rich xenon isotop 140Xe. It is able to repro-
duce the properties of the excited states of the yrast line
up to Jπ = 12+ as well as the available experimental E2
transition rate. The present work confirms that the low and
high spin spectra of the nuclei in the region around 132Sn
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Figure 4. Low energy spectrum of 140Xe, compared with the
experimental data [18] and the previous shell model calculations
[7].

Table 3. E2 and M1 transitions strength in 140Xe.

Ji → J f SM [7] this work

B(E2)(W.u.)

2+1 → 0+1 30.93 34.41
2+2 → 0+1 0.94 2.06
2+2 → 2+1 5.79 4.41

B(M1)(W.u.)

2+2 → 2+1 0.00 0.02

can be studied simultaneously using the importance sam-
pling algorithm and the same parameters of the large scale
shell model problem.
This work is partly supported by the DFNI-T02/19 grant of the

Bulgarian Science Fond. This financial support is gratefully ac-
knowledged.
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