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Skalaarse tumeaine teke skaalainvariantsetes
mudelites

Toos uurime skalaarse tumeaine teket skaalainvariantsetes mudelites, tdpsemalt iihe
skalaarviljaga klassikaliselt skaalainvariantses mitteminimaalselt seotud skalaar-tensor
teoorias. Skaalainvariantsus rikutakse kvantefektide tottu tekkiva seosekonstantide
jooksmisega. Vaadeldav mudel voimaldab kirjeldada nii tumeenergiat, milleks on skalaarvilja
tasakaalupunktis olev energia, kui ka tumeainet, millele vastavad skalaarvilja vonkumised
tiimber tasakaalupunkti. Nende vonkumiste allikaks on tavalise nihtava aine energiatihedus.
Toos hinnatakse, kui palju tumeainet antud mudeli raames varajases kiirgusdominantses
universumis on vOimalik tekitada. See on iihtlasi selle to6 uuenduslik osa. Leiame, et madalatel
temperatuuridel tekib vidga viike hulk tumeainet vorreldes tinapieva universumis mdddetud
tumeaine kogusega. Korgematel temperatuuridel on sel viisil tumeainet voimalik rohkem
tekitada. Temperatuuril 7 ~ 100MeV, kui universumis domineeris osake-antiosake plasma, on

vOimalik tekitada skalaarvilja vonkumistena kogu tdnapéeval ndhtav tumeaine.
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Scalar dark matter production in scale invariant
models

We study the production of scalar dark matter in scale invariant models, specifically in a
classically scale invariant non-minimally coupled scalar-tensor model with one scalar field. The
scale invariance is broken by quantum effects causing the running of coupling constants. The
model can describe dark energy, which is the potential energy of the scalar field at the stable
point, and dark matter, which is represented by the oscillations of the scalar field around the
stable point. The oscillations are sourced by the energy density of ordinary visible matter. In
this work the amount of dark matter that can be produced in this model in an early radiation
dominated universe. That is the novel part of this work. We find that at low temperatures a
very small amount of dark matter is produced compared to the currently measured dark matter
content of the Universe. At higher temperatures, more dark matter can be produced using this
method. At temperatures of around 7 ~ 100MeV, when the universe was dominated by a

particle-antiparticle pair plasma, all the currently observable dark matter can be produced.
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Sissejuhatus

Tanapdeva kosmoloogia pohineb Albert Einteini poolt 1915. aastal rajatud iildrelatiivsusteoorial
[1]. Uldrelatiivusteooria abil on vdimalik universumit adekvaatsemalt kirjeldada, kui Newtoni
seaduste abil. Kosmoloogia alguseks voib pidada Einsteini 1917. aasta artiklit [2], kus ta
arutles kosmoloogia iile iildrelatiivusteooria raamides. Tdpsemalt uuris ta staatilist universumit
ja leidis, et staatilise universumi vOimaldamiseks on vaja kosmoloogilist konstanti, vastasel
korral gravitatsioonijoud tdmbab universumi kokku. Vihje selle kohta, et universum ei ole
staatiline, andis 1922. aastal avaldatud artikkel, kus 14 moddetud galaktikate keskmine maast
eemaldumise kiirus oli sadu kilomeetreid sekundis [3]. Aastal 1922. uuris Alexander Friedmann
mittestaatilisi universume [4]. Tema tuletatud Friedmanni vorrandid leiavad tdnapdeval rohket
kasutust universumi arengu kirjeldamisel. Friedmanni vorrandites eeldatakse, et universum
on homogeennne ja isotroopne, aga aine energiatihedused ja rohud vodivad ajas muutuda.
Friedmanni vorrandid lubavad ka niiteks eksponentsiaalselt paisuvat universumi ja universumi,
mis teatud hetkeni paisub ja seejidrel tombub kokku. Paisuva universumi mudelit kinnitasid
Hubble 1929. avaldatud tulemused, mille jdrgi kauged galaktikad liiguvad maast eemale
tildjoontes seda kiiremini, mida kaugemal nad on, kusjuures maast eemale litkumise kiirus
soltub kaugusest Hubble konstandi jiargi v = Hr [5]. Kuigi ta sai suurusjiargu vorra vale
tulemuse, oli tema tdhelepanek dige, et igas suunas vaadates liiguvad kauged galaktikad meist
eemale ja mida kaugemal nad on seda kiiremini nad liiguvad. Paisuvat universumi on kinnitanud
ka hilisemad supernoovade vaatlused [6], kusjuures nende moOtmiste jdrgi on paisumine
kiirenev ja universumi vanus ligikaudu 14 miljardit aastat. Paisuv ja homogeenne universum
viitab suurele paugule, kuna iildrelatiivsusteooria (konkreetsemalt Friedmanni vorrandite)
abil leiame, et ajas tagasi liikudes oli kogu universum kokku surutud jdrjest vdiksemasse

ruumipiirkonda.

Suure paugu teooriat kinnitab 1964. aastal avastatud kosmiline taustkiirgus [7]. Varajasem
universum oli kokku surutud ja korgel temperatuuril, seega kiirgas elektromagnetkiirgust.
Vaatlused kinnitavad, et see reliktkiirgus on védga lihedane musta keha kiirgusele, seega oli
varajane universum termodiinaamilises tasakaalus ja talle saab rakendada termodiinaamika ja

statistilise fiitisika seadusi. Korgetel temperatuuridel iile 3000K oli kogu aine ioniseeritud



plasma kujul ja seega vabade elektronide tottu elektromagnetkiirgusele 1dbipaistmatu. Jahtudes
tekkisid pohiliselt vesiniku ja heeliumi aatomid ja universum muutus ldbipaistvaks. Tédnapdeval
on niha seda sama elektromagnetkiirgust, mis universumi jahtudes sai hakata vabalt levima ja
tditis niiiid ning tdidab praegugi kogu universumi. Kosmiline reliktkiirgus on véga isotroopne,
aga mootes vdikeseid hdiritusi on voimalik kindlaks teha, et universum on lame, lisaks on
voimalik miidrata aine ja tumeenergia kogused. Plancki satelliidi andmete jdrgi moodustab
universumi kogu energiatihedusest 31% aine ja 69% tumeenergia, samas bariionainet
(prootonitest ja neutronitest koosnevat ainet) on ainult 4,9 % [8]. Tumeenergiaks kutsutakse
Friedmanni vorrandites teatavat liiget, mis pohjustab universumi paisumist. Tumeaineks
kutsutakse seda energiatiheduse osa, mis paisumisel kiditub gravitatsiooniliselt nagu tavaline
aine, aga mis kosmilise reliktkiirguse modtmiste jdrgi ei ole bariionaine, vaid hoopis mingi
senitundmatu aine. Lisaks on voimalik tuvastada tumeaine olemasolu jilgides tihtede orbiite
galaktikates [9]. Vaatlused nditavad, et galaktikate ndhtav mass ei ole piisavalt suur, et hoida
tahti nende orbiitidel ja seega peab seal olema lisaks tumeaine, mis tekitab tdhtede orbiidil
hoidmiseks vajaliku gravitatsioonijou. Vaadeldes galaktikaparvede kokkuporkeid on nihtud,
kuidas tavaline aine interakteerub kokkupodrkel, aga tumeaine liigub edasi ja ei interakteeru

(voi interakteerub vidga norgalt) ei tavalise aine ega teise galaktika parve tumeainega [10].

Tumeaine kohta on teada, et ta ei ole bariionainega elektromagnetilises vastastikmdjus, aga
interakteerub tavalise ainega gravitatsiooniliselt. Tumeaine voib olla iseendaga vastastikmdjus,
aga see vastastikmoju ei saa olla viga tugev. On olemas piirangud tumeaine osakeste massile
(jargnev piirang eeldab, et tumeaine on universumiga termodiinaamilises tasakaalus, see eeldus
koikides mudelites ei kehti, niditeks aksionide korral). Mida vidiksem on tumeaine osakese
mass, seda suurem on tema kiirus sama temperatuuri juures ja seda rohkem jouab tumeaine
jaotus iihtlustada. Kui tumeaine mass oleks viga viike (< 2keV), siis oleks tumeaine jaotus
nii Uhtlane, et ei lubaks arvestades universumi vanust tekkida praegu néhtaval universumi
struktuuril, kus aine on ebaiihtlaselt jaotunud [11]. Arvestades, et tumeaine ei ole bariionaine,
siis hetkel on olemas teooriaid, et tumeaine koosneb monedest seni avastamata ndrgalt
interakteeruvatest massiivsetest osakestest (WIMP), voi skalaarviljast (aksionidest voi mone
muu skalaarvélja vonkumistest). Koik need variandid on hetkel oletuslikud ja vajavad edasist

uurimist. [12]

Kiesoleva to60s uurime tumeaine klassikaliselt skaalainvariantset skalaarvélja mudelit [13—
16], tdpsemalt seda, kuidas ja kui palju tumeainet saab selle mudeli jédrgi tekkida. Tavalist
ildrelatiivsusteooriat laiendades lisame juurde skalaarvilja ja muudame Plancki massi
diinaamiliseks, soltuvaks skalaarviljast. Uurides selle skalaarvilja kditumist tuleb vilja, et
jaotades ta konstantseks ja ostsileeruvateks komponentideks, saab nende abil kirjeldada

vastavalt tumeenergiat ehk kosmoloogilist konstanti ja tumeainet. Vilja vonkumised tekitavad



energiatiheduse, mis interakteerub tavalise ainega gravitatsiooniliselt ja see energiatihedus
skaleerub universumi paisudes nagu tavaline aine, seega neid kahte aspekti arvestades
sobib antud teooria kirjeldama tumeainet. Antud teoorial on lisaks omadus, et skalaarvilja
ostsillatsioonid tekivad spontaanselt, vdimaldades seega tumeaine spontaanse tekkimise.
Teadaolevalt ei ole varasemalt tumeaine spontaanset teket skalaarvilja ostsillatsioonidena

uuritud, aga iildisemalt tumeaine skalaarvilja mudelit kiill varem toodud viidetes.

Selles mudelis tekitatakse Plancki mass (sisuliselt gravitatsioonikonstant) diinaamiliselt.
Seetottu kaob vorranditest dra iiks dimensionaalne konstant, mis skaalainvariantsust rikub ja
nii tehes on voimalik saada teooria, mis on klassikaliselt skaalainvariantne. Mirgin &ra, et
osakeste standardmudel on klassikaliselt peaaegu skaalainvariantne, seda on vdimalik teha
skaalainvariantseks lisades mudelile teatud skalaarviljasid ja et skaalainvariantsus oleks iiks
lahendus standardmudeli hierarhia probleemile [17]. Seetdttu on skaalainvariantsus huvipakkuv

teema.

Vaadeldav mudel on skalaar-tensor teooria [18]. Uheks levinud skalaar-tensor teooria
rakenduseks on inflatsiooni mudel, kus inflatsiooni tekitab skalaarvéli, millel on analoogne
moju paisumisele nagu kosmoloogilisel konstandil [19]. Skalaar-tensor teooriates on
tumeainet skalaarvilja vonkumistena varem uuritud [15, 16]. On teada, et mitte kdigi, aga
teatud skalaarvélja potentsiaalide korral kditub universumi paisudes skalaarvilja vonkumiste
energiatihedus nagu kiilma aine energiatihedus [16]. Et saada 0ige kogus tumeainet, tuleb
ildjuhul skalaarvilja algvidirtus tipselt paika seada, aga on leitud, et osade potentsiaalide korral
tumeaine energiatihedus omandab tdnapdeval moddetud véirtuse suure vahemiku algtingimuste
korral [16]. See lahendab peenhiilestuse probleemi ja ei teki kiisimust, miks moddetavad
parameetrid just sellised on. Parameetrite peenhiilestus ei ole nii veenev, kui sama tulemuse
saavutamine paljude algtingimuste korral. Kdesolevas t60s ndeme, et tumeaine tekkimiseks
peame parameetreid sobitama hakkama ja peenhidilestuse probleem jddb alles. Veel on
uuritud, kuidas Plancki mass mitteminimaalse seose korral ajas muutub [15]. Mitteminimaalne
seos tdhendab antud t00 kontekstis seda, et iildrelatiivsusteoorias olev Plancki mass soltub
skalaarvéljast ja on seega diinaamiline. On uuritud mudeleid, kus inflatsiooni ja tumeenergiat
tekitab iiks ja sama skalaarvili [20] ja ka nditeks mitteminimaalse seosega inflatsiooni mudeleid
[14].

Antud t60 esimeses peatiikis tutvustame teoreetilist tausta. Teises peatiikis kirjeldame uuritavat
mudelit ja seejdrel alapeatiikis (2.1) algab originaalne arvutuskdik, kus hakkame uurima
vonkumiste tekkimist selle mudeli raames. Nagu varem mainitud, siis teadaolevalt ei ole
skalaarse tumeaine kogust selliselt varem uuritud ja saadud tulemusi varem kusagil avaldatud
pole. Uuritava mudeli raames tekitab skalaarvilja vonkumisi néihtav aine ja see vOib teatud

juhtudel tekitada kogu tumeaine, mida me universumis nieme. Me uurime vorrandeid lineaarses



lahenduses, kisitledes eraldi madala ja kdrge temperatuuri juhtu. Seejérel analiiiisime tumeaine

teket relativistliku osake-antiosake plasma toimel. To6 16ppeb kokkuvottega.



Peatiikk 1

Teoreetiline taust

Kéesolevas toos kasutame loomulikke tihikuid, kus k = 1, 7 =1 ja ¢ = 1. Seetdttu on mass,
energia, temperatuur, pikkus ja aeg koik avaldatavad iihtede ja samade iihikute kaudu, milleks
valin eV voi GeV. Niiteks kehtivad

1
Im— —2 —51.10%Gev!, (1.1)
fic
Is 24 ~1

Is——=15-10"Gev, (1.2)
lkg — 1kg-c? =5,6-10°°GeV, (1.3)
1K= 1K -kg=28,6-10"1*GeV, (1.4)
17=6,2-10°GeV. (1.5)

Gravitatsioonikonstandi asemel kasutame (taandatud) Plancki massi, mis on avaldatav

gravitatsioonikonstandi kaudu

A

—43.10 ke =2.4-10'8GeV. 1.6
e ; g=72, e (1.6)

Mp =

See Plancki massi védrtus on arvutatud kasutades gravitatsioonikonstandi tdnapédevast véartust.
Hiljem vaatan mudelit, kus Plancki mass muutub. See vastab gravitatsioonikonstandi

muutumisele, teised konstandid loeme kogu aeg konstantseteks.



1.1 Uldrelatiivsusteooria

See peatiikk pohineb valdavalt raamatul [21]. Uldrelatiivsusteooria iiks pohilistest suurustest
on meetrika g,v. Meetrika on tensor (antud juhul meie jaoks 4x4 maatriks), mis médrab &ra

aegruumis kahe punkti vahelise kauguse

3
dszzguvdx“dxv <: Z g“vdx“dx‘/), (1.7)
u,v=0

kus kasutame summerimiskonventsiooni, mille jirgi iile korduvate indeksite summeeritakse.
Tasases ruumis gy, = diag(—1,1,1,1) ja saame tavalisest erirelatiivsusteooriast tuttava
pikkuselemendi avaldise. See pikkuselement on invariantne ehk ei sdltu koordinaatidest,
mida kasutame. Meetrika paneb paika aegruumi geomeetria, iildjuhul voib aegruum olla
koverdunud. Lisaks mddrab meetrika dra, kuidas vabad osakesed liiguvad (mitte vabade
osakeste korral tuleb arvestada osakestele mojuvaid joudusid). Koverat ruumi ei saa
paratamatult ristkoordinaadistikuga katta ja peame kasutama kdveraid koordinaate. Kdverdunud
koordinaatide korral vektorite ja muude suuruste tuletisi arvutades tuleb arvestada, et vektorite
komponendid muutuvad ka koordinaatide kdveruse tottu. Kuna tahame leida koordinaatidest
soltumatuid suurusi, siis tuletise votmisel selle muutuse maha arvestamiseks kasutatakse

kovariantset tuletist

VvV =9, V¥ —{—FXGVG, (1.8)
kus .
FZLG = Egva(augca +dogay — daguc)- (1.9)

Sellega oleme defineerinud kovariantse tuletise V;, mis arvestab vektorist tuletist vottes ainult
vektori tegelikku muutust, mitte koordinaatidest tulevat muutust. Kui tasases ruumis vektoreid
nihutada suvalist trajektoori pidi ja tuua vektor seejdrel tagasi algpunkti, siis ta jddb alati
algse vektoriga paralleelseks. Kdveras ruumis vektorit liigutades ja seejarel algpunkti tagasi
tuues vektorid vdivad muutuda (nditeks kui sfddril panna pdhjapoolusele suvaline vektor,
nihutada seda vektori sihis ekvaatorile, seejirel piki ekvaatorit teisele poole sfiiri ja siis tagasi
pohjapoolusele, leiame, et vektor on podratud teistpidi vorreldes esialgsega). Nihutades vektorit
V% infinitesimaalselt ringiratast piki koordinaatide x* ja x” koordinaattelgi (vektorit nihutatakse
modda roopkiilikut, mille kiilgedeks on vastavad koordinaatteljed) saame leida tekkiva muutuse

(ihikulise koordinaatide muutuse kohta)

VquVa — Vvvuva - _Racuvvc, (1.10)



kus R%suy on Riemanni tensor, mis kirjeldab ruumi kdverust. Selle avaldise voib votta
Riemanni tensori definitsiooniks ja seega ta niitab, kas ja kui palju vektorid muutuvad ruumi
koveruse tottu, kui neid mooda suletud trajektoori liigutada. Tasases ruumis on tema koik
komponendid nullid sdltumata koordinaatide valikust, RO‘G“V = 0. Riemanni tensori abil on
defineeritud Ricci tensor

Rau :Racuvgav (1.11)

ja Ricci skalaar
R=R%,, (1.12)

kus g°” on meetrika podrdmaatriksi elemendid. Uldrelatiivsusteooria viljavdrrandid ehk

Einsteini vOrrand on teist jirku mittelineaarsete diferentsiaalvorrandite siisteem meetrika jaoks

1 1
R,v—=R =—T 1.13
w5 8uv M12> Uv, ( )

kus 7,y on mateeria, kiirguse jm summaarne energia-impulsi tensor. Energia-impulsi tensoris
on aine energia- ja impulsitihedused, ning energia- ja impulsivoo tihedused. Niiteks

punktosakese energia-impulsi tensor on
Tuy = muyuy & (x —x(1)), (1.14)

kus v, on osakese nelikiiruse komponendid. Deltafunktsioon tuleneb sellest, et vaatleme

punktmassi ja punktmassi tihedusi kirjeldame deltafunktsiooni abil.

Uldrelatiivsusteooria vorrandid on vdimalik tuletada vihima mdju printsiibi jirgi majust

Sz/(%M,%R\/—g%—fM) d*x, (1.15)

kus g on meetrika determinant, %), on mateeriat kirjeldav lagranZiaanitiheduse osa, mis annab
vorrandis (1.13) oleva energia-impulsi tensori ja Ricci skalaar R annab vorrandi (1.13) vasaku
poole. Sellest suhteliselt lihtsat mojust on voimalik tuletada iildrelatiivsusteooria véljavorrandid

(1.13), kui vihima mdju printsiibi jirgi varieerida meetrikat.

1.2 Friedmanni universum

Universumit vaadeldes paistab kehtivat kosmoloogiline printsiip, mille jdrgi on aine
jaotus suurtel skaaladel homogeenne ja isotroopne. Homogeenset ja isotroopset ainet on

vOimalik kirjeldada ainult rdhu p ja energiatiheduse p abil. On voéimalik niidata, et

10



homogeenses ja isotroopses universumis peab meetrika olema sfédrilistes koordinaatides

Friedmanni—Lemaitre’i—-Robertsoni—Walkeri meetrika kujul

ds? = —d* + a(t)? ( +r2(d92+sin2(9)d¢2)) : (1.16)

1 —kr?
kus a(t) on dimensioonitu universumi mastaabikordaja ja k médrab dra ruumi kdveruse. Voib
mdelda, et a(r) mididrab universumi pikkuste skaala. Kui a(z) muutub, siis kdik pikkused
muutuvad sama kordaja vorra nagu a, sarnaselt nagu Shupalli paisudes koik punktid Shupalli
peal liiguvad teineteisest kaks korda kaugemale kui 6hupall paisub kaks korda suuremaks. Selle
meetrika abil on voimalik tuletada iildrelatiivsusteooria véljavorranditest (1.13) Friedmanni

vorrand ja pidevuse vorrand, mida saab kirja panna kujul

_ 3Mpk
a2

3M3H? = p : (1.17)

p+3H(p+p)=0, (1.18)

kus H = g on Hubble konstant, tinapieval Hy = 67 (km/s)/Mpc [8] !. Nendes avaldistes on p
ja p kogu mateeria energiatihedus ja rohk. Jaotame need jargnevateks komponentideks: aine,
kiirgus ja tumeenergia. Kehtivad jirgnevad olekuvorrandid rohu jaoks: aine korral py = 0,
kiirguse korral pr = %pR, tumeenergia korral pp = —pa. Asendades need vorrandisse (1.18)

Saame

pa(a) = paoa?, pr(a) = proa™™, pa(a) = pao, (1.19)

kus indeks O tdhistab viirtusi ajahetkel, kui a = 1. Universumi paisudes kui a suureneb, siis
mateeria ja kiirguse energiatihedused lihevad jirjest vidiksemaks. Tumeenergia energiatihedus
on konstantne ja kiirguse energiatihedus kahaneb kiiremini, kui aine energiatihedus. Seega ajas
tagasi litkkudes muutub tumeenergia osakaal jérjest tithisemaks ja kiirguse osakaal suureneb

vorreldes aine osakaaluga. Temperatuur on poordvordeline mastaabikordajaga

T () =

T(1). (1.20)

(1.21)

kus z = (A — A1)/A; on punanihe, t; on valguse lainepikkuse moStmise hetk ja ¢; on valguse

"Mpc tihistab megaparsekit



kiirgamise hetk. Siit on ndha, et mootes kaugete galaktikate punanihkeid on voimalik méérata

mastaabikordaja erinevatel ajahetkedel ja vorreldes saadud tulemusi Friedmanni vorrandiga
3MEH? = paga >+ proa * +pao — 3Mpka™> (1.22)

on voimalik sobitamise teel miirata energiatihedused. Viga tipselt saab médrata tiheduse
parameetrid kosmilise reliktkiirguse abil. Saadud tulemuste esitamisel ja ka iildisemalt
kasutatakse tihti tiheduste asemel tiheduste suhet vOrreldes kriitilise tihedusega p. = 3M1%H 2,

Suhet tdhistatakse tihega Q = p/p. Siis saame vorrandi (1.22) asemel vorrandi
1 =Q4+Qp+ QA+ Q. (1.23)

Plancki satelliidi reliktkiirguse modtmised niitavad, et tanapédeval universum on ligikaudu lame

|Q| < 0.005 [8] ja mateeria tihedusparameeter
Q4 =0,316+0,014, (1.24)
millest on tavalist ainet ja tumeainet vastavalt
Qyr = 0,049, Qpy = 0,265. (1.25)
Kiirguse tihedusparameeter on viga viike vorreldes tumeenergia tihedusparameetriga
Qr=925-107,  Q,=0,684. (1.26)

Kuna universum on ligikaudu lame, siis edaspidi jdtan koveruse tihedusparameetri €

arvestamata.

1.3 Skalaar-tensor teooriad

Skalaar-tensor teooriate kohta leiab iilevaate raamatust [18]. Uldrelatiivsusteooria
lagranZiaanitiheduses on viljaks meetrika, mis on tensor. Kui lisame lagranziaanitihedusse
skalaarviljasid, siis saame skalaar-tensor teooria, mis on modifitseeritud gravitatsiooni teooria.
Kidesolevas to6s uurime mitteminimaalse seosega skalaar-tensor teooriat ja skalaarvilja
kditumist selles teoorias. Enne mitteminimaalse seose juurde asumist tutvume kdigepealt

lihtsama niitena minimaalse seosega teooriaga, vaadates iiht selle rakendust.
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1.3.1 Inflatsioon

Uhe skalaar-tensor teooria rakendusena tutvume inflatsiooniga [22]. Inflatsioon on hiipoteetiline
kiire paisumise periood, mida saab modelleerida skalaar-tensor teooria abil. Inflatsioon toodi
kosmoloogiasse sisse, et pohjendada, miks ndhtav universum on lame, homogeenne ja miks on
ihtlane temperatuur ruumipiirkondades, mis ei oleks inflatsiooni arvestamata kunagi saanud

olla pohjuslikult seotud. Inflatsiooni on véimalik kirjeldada jirgneva mdjuga teooria abil

5= [ (53R~ 30u0)@0) - v(0) ) v=aas. (127

LagranZziaanitihedusse on lisatud skalaarvilja kineetilised ja potentsiaalsed litkmed. Sellise
lagranziaanitiheduse kohta deldakse, et skalaarvili on gravitatsiooniga minimaalselt seotud ehk
skalaarvili on lisatud eraldi liidetavatena. Hetkel vaatame universumi véga varajaseid hetki,
kus eeldame, et skalaarvili domineerib ja seega iilejddnud mateeriat ning kiirgust ignoreerime.
Eeldades, et universum on homogeenne, siis sellest lagranziaanitihedusest saab tuletada
vorrandid, mis on analoogsed Friedmanni vorranditega (1.17) ja (1.18), kus skalaarvilja
energiatihedus p = %(])2 +V jardohk p = %(1)2 — V. Hetkel ignoreerime ka kdveruse komponenti
Friedmanni vorrandites (kui seda liiget mitte ignoreerida, siis leiaksime, et inflatsioon ajab
koveruse litkme viga viikeseks ja universumi ligikaudu lamedaks). Saame Friedmanni
vOrranditest

3MH? = %qﬁ +V, (1.28)

¢ +3H)+V' =0. (1.29)

Oletame, et potentsiaal V on piisavalt lauge, et kehtib V'/V = &/Mp, kus € < 1
(tuntud kui slow-roll condition). Vorrandist (1.29) nideme, et <p tasakaalupunkt on
¢ = —V'/3H = —eV /(3MpH). Tasakaalupunktis

1., 5 Vv

=0 =V —rr— V. (1.30)
2 =S ey
Niisiis tingimus € < 1 tagab, et skalaarvélja ajaline tuletis ldheb tasakaalupunktis nii viikeseks,
et voime vorrandis (1.28) skalaarvilja ajalise tuletise litkme %4) dra jitta, sest see on teise

liitkmega V vorreldes viike. Jéttes selle litkme dra saame

AMAH?> =V — 2:1/3‘/7123 — a(t)za(to)exp<‘/;/7%(t—to)). (1.31)
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Niéeme, et universum paisub eksponentsiaalselt. Selline paisumine kestab seni, kuni tingimus
€ < 1 enam ei kehti. Mingil hetkel vili jduab miinimumini, hakkab iimber miinimumpunkti
vonkuma ja kannab enda energia iile iilejddnud universumile. Mida laugem potentsiaal valida,
seda rohkem universum paisub. Kuna potentsiaali kuju ei ole millegi muuga méiiratud, vilja
toime sisse just inflatsiooni tekitamiseks, siis saame ka valida vastava potentsiaali ja tekitada

vaatlustega kooskodlas oleva inflatsioonilise paisumise.

Selles ndites nigime, kuidas skalaarvilja potentsiaal paneb universumi paisuma ja kditub nagu
kosmoloogiline konstant ehk tumeenergia. Hiljem meie poolt vaadatud mudelis tekitab ka

skalaarvili tumeenergia.

1.3.2 Mitteminimaalne seos ja raamide vahetus

Kui lagranZiaanitiheduses Ricci skalaari ees olev kordaja soltub skalaarviljast, siis on
tegemist mitteminimaalse seosega. Kéesolevas t60s uurime skalaarse tumeaine teket just

mitteminimaalse seosega mudelis, mille mdjufunktsionaal on kujuga

s= [ 2vate= [ (E0R-@0)@"0) V(o) ) Va3

kus & on dimensioonitu kordaja. Mitteminimaalse seose korral tekkivast skaalainvariantsusest
radgime jargmises alapeatiikis. Kui Plancki mass on diinaamiline, siis deldakse, et tegemist
on Jordani raamiga. Lisaks on olemas Einsteini raam, kus Plancki mass on konstantne, aga
see-eest kineetilised litkmed ja energia-impulsi tensor tulevad teistsugused, kui Jordani raamis.
Uleminek kahe raami vahel toimub muutes pikkusiihikuid, ehk tehes asenduse guv — Q2 guvs
kus raamide vahetamise jaoks valime Q2 sellise, mis muudab Plancki massi konstantseks.
Léahemalt vaadates, kui teeme teisenduse g,y = nguv’ kus Q% = ﬁfz , siis saame uueks mojuks
(23]

(e oo fho) e

Néeme, et saadud mdjus mitteminimaalset seost enam ei ole, Plancki mass on konstantne MI%.

Kui teha asendus ¢ = Mp, /6 —|— LIn ¢, siis saab m&ju viia kanoonilisele kujule

2 4
= / (A%R - %(V“‘P)(Va‘m - #ﬁp)ﬂ(d)(@)) V—gd'x. (1.34)

Saadud mgju tundub justkui lihtsam, sest niiiid on tegemist tavalise mitteminimaalse seosega,

aga potentsiaali kuju on veidi teistsugune. Samas niiiid tuleb arvestada, et energia-impulsi tensor
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muutub. Energia-impulsi tensor on defineeritud jargnevalt [24]

L2 8sy
SERVE T IO

Seda definitsiooni kasutades saame leida energia-impulsi tensori mdlema raami meetrikat

(1.35)

kasutades ja need omavahel siduda

3 2 8Sy 2 gt SSy 2 8Sy M3

RV &7 N L SV P

Tulemusest ndeme, et Einsteini raamis on hoopis energia-impulsi tensor mitteminimaalselt

Tyy.  (1.36)

seotud skalaarviljaga. Voime moelda, et vilja potentsiaal soltub efektiivselt mateeria
energia-impulsi tensorist. Sisuliselt on tegemist muutujavahetusega, et kaotada é&ra
mitteminimaalne seos. VOrreldes minimaalse seosega ei ole mitteminimaalne seos ei ole
tdiesti eraldiseisev mudel, vaid alternatiivselt voib seda vaadata kui skalaarvilja potentsiaali
ja energia-impulsi tensori muutust. Meie teeme oma arvutused edaspidi Jordani raamis, aga
kédesoleva t00 analiiiisi oleks huvitav 14dbi viia ka Einsteini raamis, sest kahes raamis on osade
fiiisikaliste suuruste tdlgendused erinevad. Néiteks kui Jordani raamis liiguvad osakesed moéoda

geodeetilisi jooni, siis Einsteini raami iile minnes enam mitte [25].

1.4 Skaalainvariantsus

Skaalainvariantsuse all motleme seda, kui skaalateisenduse all mOjufunktsionaal jiib samale
kujule S’ = S. Sellisel juhul tulevad mdjust tuletatud liikumisvorrandid samad. See tihendab,
et kui nihutada koiki punkte teineteisest mingi kordaja vorra kaugemale ja ka vilju vastava
kordajaga skaleerida, siis siisteem kiitub tipselt samamoodi nagu enne. Nagu varsti ndeme,
siis kui mdjus puuduvad dimensiooniga konstandid, mis fikseerivad mingi skaala, on teooria

skaalainvariantne.

Ignoreerides hetkeks mateeria osa, lisame iildrelatiivsusteooria lagranZiaanitihedusele
skalaarvélja ¢. Nagu lagranZiaanitiheduse koostamisel on standartne, lisame skalaarvilja

kineetilised ja potentsiaalsed liikmed ja saame mdjuks
1 1
5= [ (3M3R- 36 @u0)(0v0) -V (9) ) Vg (137

Paneme tidhele, et loomulikes iihikutes on mdju iihikuta, seega lagranziaanitihedus on
iihikutes [M*], vili ¢ on iihikutes [M] ja Ricci skalaar R on iihikutes [M?]. Hetkel on
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lagranziaanitiheduses sees liks massiithikuga kordaja Mp ja varsti ndeme, et see konstant rikub

teooria skaalainvariantsust.

Skaalateisenduse all motleme teisendust, kus kdiki ruumipunkte nihutame konstantse kordaja

Q vorra liksteisest kaugemale. See tdhendab, et teeme asendused

guv — Q %guy, gV Q%Y. Vg Qg (1.38)

Paneme téhele, et seostuse kordajad (1.9) ei muutu sellise skaleerimise kdigus. Riemanni tensor
(1.10) on avaldatav seose kordajate kaudu, seega ka tema ei muutu skaleerimise kdigus. Kuna
R = R%4vgC®", siis saame R — Q?R. Vilja teisenemise skaalateisenduse all saame leida
tingimusest, et kineetiline liige oleks enne ja pérast teisenemist sama kujuga. Oletades, et vili

teiseneb nagu ¢ — Q" ¢, siis kineetiline liige teiseneb nagu

£ (3u0)(200)yE > Q2 L (9,0)(900)V 8. (139

Kuna skaalainvariantsuse jaoks peavad avaldised pirast teisenemist jiima samaks, siis w = 1.

Potentsiaali liige teiseneb nagu

V(9)v/—g = QW (Q)/—g. (1.40)
Sellest jireldame, et V(Q¢) = Q*V (¢) ja jirelikult peab kehtima

V()= %df‘, (1.41)

kus A on mingi dimensioonitu konstant. Edasi vaatame Ricci skalaariga liikme teisenemist

1 1
EMI%R\/—g — Q‘ziM%R\/—g. (1.42)

See liige ei jddnud samaks peale skaalateisendust, aga seda on vdimalik teha
skaalainvariantseks, kui konstantse Plancki massi asemel votame diinaamilise Plancki

massi M%, = £¢2, kus & on dimensioonitu konstant. Siis saame

SEOPRVE 5 1EORY (143)

ja lagranzZiaanitihedus tervikuna on skaalainvariantne ehk jdi tipselt samale kujule
£ = £. Kuigi lagranziaanitihedus on samal kujul, siis uues lagranziaanitiheduses
viljad ja meetrika ei ole voOrdsed esialgsete viljade ja meetrikaga, sest skaleerisime

neid ja niilid need vastavad skaleeritud universumile. Loppkokkuvottes paneme tdhele,
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et skaalainvariantsuse jaoks pidime dra kaotama massidimensiooniga konstandi Mp ja ka
potentsiaali avaldis tuli selline, et seal ei ole massidimensiooniga konstante. Skaalateisendus
muutis meetrikat ja vilju nii, et iga liidetav sai teguri € vastavalt teguri massidimensioonile
ja sisuliselt vastab see massiiihikute teisendusele. See tdhelepanek kehtib klassikalistes
teooriates ildisemalt, kui lagranziaanitiheduses ei ole massidimensiooniga konstante, siis
iga liidetava iihikud [M*] tulevad viljadest (meetrika on kiill dimensioonita, aga ta
ilmub koos koordinaatidega, niiteks g"V(dy)(dv) vdi /—gd*x, ja seon koordinaatide
dimensioonid meetrikaga). Kuna mojufunktsionaal oli iihikuta, siis vélju teisendades vastavalt
massiiihikutele jaab mojufunktsionaal samaks, sest teisendus vastab iihikute valikule. Seega kui
lagranziaanitiheduses on koik kordajad dimensioonitud, siis teooria on skaalainvariantne, aga

dimensiooniga konstandid rikuvad skaalainvariantsust.

Teine oluline tdhelepanek skaalainvariantsuse kohta on, et kui mateeria mojufunktsionaal
S = [ Z%yd*x on skaalainvariantne, siis sellest mdjufunktsionaalist saadud energia-impulsi

tensori jédlg on null [15].

1.4.1 JB-funktsioonid

Kvantviljateooriast on teada, et dimensioonitud kordajad lagranZiaanitiheduses sdltuvad
vaadeldavate protsesside energiast. Colemani-Weinberg tuletasid avaldise efektiivse
(kvantparandatud) potentsiaali jaoks [26]. Selle voib esimises lihenduses leida ldhtudes
parameetrite jooksmisest. Energiaskaala tuleb selles ldhenduses asendada vilja viirtusega.

Parameetrite & ja A jooksmisel kehtivad [15]

& oA
m—ﬁg, Jin = P (1.44)
kus 9 9
Be=558%  Bi=gsA (1.45)

on B-funktsioonid, mis miéravad &ra, kuidas kordajad muutuvad ehk jooksevad, ja u on

energiaskaala. Diferentsiaalvorrandid (1.44) lahendades saame

E(u) = o)

)
T ZEome W

= . (1.46)
1+ gaz A (Ho) In £

17



Eeldusel, et energiaskaala u on ug ldhedal, kasutame kordajate jaoks esimest jarku ldhendust

In % suhtes ning saame

E(w) =€(uo)+ﬁgln%, A(n) Zl(uo)+ﬁxln%- (1.47)

Efektiivse energiaskaala leidmiseks voib esimeses lihenduses teha asenduse u — ¢ [27].
Kvantparandite tottu tekkis dimensiooniga konstant ¢y, mis vastab sellele punktile, {imber
mille me kordajad ritta arendasime. See dimensiooniga konstant rikub skaalainvariantsust, sest
toob sisse fikseeritud iihikuga suuruse. Niisiis arvestades kvantparandeid ei ole teooria enam

skaalainvariantne. Kuna niiiid potentsiaal on kujul

Vo) = (e +pim ) ot (148)

siis potentsiaalil tekib uus nullist erinev (¢ # 0) miinimum. Kokkuvottes kordajate jooksmine
toob sisse uue parameetri, mis rikub skaalainvariantsuse, aga vOimaldab tekkida uuel

miinimumil, mis méirab &ra tasakaalupunkti, mille imber véli hakkab vonkuma.
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Peatiikk 2

Skalaarse tumeaine teke

Selles peatiikis uurin mitteminimaalse seosega skalaarvilja kditumist ldhemalt. Uurime

skaalainvariantset skalaar-tensor teooriat [15], mida kirjeldab mdjufunktsionaal

S:/d4x\/—_g (%MZR—%8u¢8“¢—V+$M), (2.1)
kus M?> = E¢? ja Bt
_pet 1 9
V==, ( 4+ln(¢0>)+Vo, (2.2)

kus kasutasime skaalainvariantsuse peatiikis 1.4.1 mainitud potentsiaali. Veel lisasime juurde
vaakumienergia Vj ja valisime punkti ¢ sellise, et punktis @y on potentsiaali miinimum (sellest
tuli liideta —%). Edasistes arvutustes eeldame, et V) voib olla Plancki tiheduse suurusjirgus,
kuna see on kvantparanditest tulev vaakumenergia. Plancki tihedus on pp = (1,221-10%eV)?,
aga tinapieva universumis on mdddetud pp = (2,281 -1073eV)*, mistdttu eeldame, et V > pj.
Eeldades, et universum on homogeenne ja isotroopne, siis valitud potentsiaali kuju tottu tulevad

mojust (2.1) litkumisvorrandid [15]

p2

3M*H? = —6EH O + S +V(0) +pra~*+ pya? (2.32)
2 2 _ _L _4 _ u
(0% +3Ha,) 9> = e <B o+ Ty ) (2.3b)

kus tdpp tihistab tuletist aja jirgi ¢ = J;¢ ja T,* on aine ning kiirguse energia-impulsi
tensori jdlg. Kuna kiirguse energia-impulsi tensori jdlg tuleb null, siis 7,* = —pma>,
kus pps on bariionaine tinapédevane energiatihedus ja tdnapidevale vastab a = 1. Viljal ¢
eksisteerib vorrandi (2.3b) jirgi tasakaalupunkt ¢y, mille korral selle vorrandi parem pool

on null. Vili iritab liikuda selle tasakaalupunkti poole sarnaselt sumbuva harmoonilise
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ostsillaatoriga, kuna vorrandi kuju meenutab sumbuva harmoonilise ostsillaatori vorrandit.
Tahame, et mateeria puudumisel langeks tasakaalupunkti potentsiaalse energia tihedus kokku

tumeenergia energiatihedusega. Seega tasakaalupunktis kehtivad

B _(Z)f 4V =0 2.4
17 W= (2.4a)
Bot (1 o}
=V =22 ——+4+In| Vo. 2.4b
par =V (1) 2 ;T % +Vo (2.4b)
Nendes kahest vorrandist on voimalik avaldada
ﬁ g pA/Vo
= . 2.
Vo 6 52e (2.5)
Tiahistame konstandi
M} = MePr Vo, (2.6)

Varem mainitud eelduse pp < Vy jirgi kehtib ligikaudu M12 R Mg ja seda ldhendust
kasutame edaspidistes avaldistes. Tasakaalupunkt M12 on vOrdne tdnapédevase Plancki massiga
M3 = (2,435-10'GeV)2. M; on diinaamilise Plancki massi tasakaalupunkt, iimber mille ta

hakkab vonkuma.

Lisaks votame kasutusele skalaarvilja osakese massi. Massi leiame potentsiaali teise tuletise
abil skalaarvilja jdrgi potentsiaali miinimumis (jdargnevas priim tdhistab tuletist potentsiaali
jdrgi). Osakese mass annab vonkumiste nurksageduse vorrandi (2.3b) jirgi, eeldusel, et & < 1
ja hoodrdetegurit pole. Hoordetegur muudab sagedust. Massi ruuduks saame

=Bz = vy = poz = a2 2.7)

§ 5

Jargmisena eeldan, et tumeaine teke toimus peale Suurt Pauku sellisel ajal, kui universumis

domineeris kiirgus. Siis saame Friedmanni vorrandis votta lihtsustatult
3M?H? = pra™*, (2.8)

kus pg on kiirguse energiatihedus tdnapideval ja valisime tdnapidevaseks mastaabikordajaks

a=1.

Edasi kasutame aja asemel muutujat N = In(a), siis saame Plancki massi lilkumisvorrandiks

ovM? 6M2a* m?
22y (1= ) M? = — < M*— M — —3). 2.
Iy +( oN or(1 1 68) 4M§( 1) —&pma (2.9)
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Vorrandi (2.9) tuletamisel ei ole me veel muid ldhendusi teinud, vilja arvatud Friedmanni
vorrandis (2.3a) eeldasime, et domineerib kiirgus ja teised litkmed jdtsime korvale. Niitid
on meil kahe vorrandiga siisteemi (2.3) asemel iiks vorrand, mille kditumist hakkame edasi
uurima. See on mittelineaarne diferentsiaalvorrand, mis oma kuju poolest jillegi meenutab
sumbumisega harmoonilise ostsilaatori diferentsiaalvorrandit. Hiljem nédeme, et lahendid
ligikaudu ka nii kédituvad. Vorrandil on paremal pool mateeria energiatihedusest py; tulenev
allikaliige. Selle liikme juures olev a3 pidevalt muutub. Seega vdrrandil ei leidu piisivat
tasakaalupunkti ja tekitatakse Plancki massi vOnkumised isegi siis, kui algvéértused valida
sellised, mille korral alghetkel vorrandi parem pool on null. Edasi uurime, kui palju tumeainet

see allikaliige on vOimeline tekitama.

Skalaarvili ¢ tekitab nii tumeaine kui tumeenergia. Tumeenergia osa tekitab potentsiaalne
energia tasakaalupunktis ja tumeaine vonkumiste energia. Jagan Friedmanni vOrrandis (2.3a)
oleva skalaarvilja energia kolme ossa
, ¢
(-6cH0¢) + (Vion) + (7+V<¢> —V<¢1>) , (2.10)
kus edaspidi esimest osa ignoreerime eeldusel £ < 1, teine osa on tumeenergia energiatihedus

ja kolmas osa on tumeaine energiatihedus. Skalaarvilja energiatiheduse saab kirjutada kujul

_ (a’(Mz))z m? 4 M* 4 Mf 4 4

Hiljem kasutame selle avaldise lineaarset 1dhendit tumeaine energiatiheduse arvutamiseks.

2.1 Lineaarne lihend

Selles peatiikis algab t60 originaalne osa, kus leiame varem mainitud mudeli jirgi
saadud vorrandile (2.9) lineaarse ldhendi ja hiljem hakkame uurima skalaarse tumeaine
teket selle voOrrandi jdrgi. Lineaarse ldhendi leidmiseks eeldame, et Plancki mass
muutub vihe ja leiame Plancki massi suhtes skalaarvilja iildisele liikumisvdorrandile (2.9)
lineaarse lihenduse. Defineerime Plancki massi muutuse SM? = §(M?) = M? — M?. Siis
M? = M? + §(M?) = M} + 5M? ja lihendame

M* — M} = (M? — M?)(M? + M?) = SM?(M? + M}) ~ 2M; SM>. (2.12)
Arvestame Plancki mass iildises liitkumisvdrrandis (2.9) ainult lineaarseid liikmeid S M2 jaselle
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tuletiste suhtes ja saame

6a’ 1
OROM? + ONOM? = ——— ((—m2M2 — Ma3) SM? — Ma3M2> . (2.13)
Lineaarses ldahenduses on skalaarvilja vonkumiste energiatihedus iildisest skalaarse tumeaine
energiatiheduse avaldisest (2.11) leitav asendades M? = M12 + 8M? ja jittes ainult esimest jirku
liikmed alles (lisaks kasutan M> ~ Mlz), mis annab

(9(8M?))?  m?(6M?)?
8EM? 8EM?

Pom = (2.14)

Saadud lineaarne liikumisvorrand (2.13) on endiselt piisavalt keeruline, et analiiiitilist lahendit

on sellele raske leida. Selle vorrandi paremal poolel sulgudes olevas avaldises

1
(EmZM% —é pMa—3> SM? (2.15)
sOltuvalt mastaabikordajast a vOib esimest vOi teist liidetavat lugeda tiihiseks ja nii saab

vOrrandit edasi lihtsustada.

Gravitatsioonikonstandi muutumine mdjutab nukleosiinteesi ja seeldbi universumi keemilist
koostist. Suured gravitatsioonikonstandi muutused tekitaksid vaatlustega vastuolu. Sellest
tuleneb vordlemisi nork piirang [15]

2
b _ 2 >35-107%. (2.16)

£2 &M;
Seda piirangut kasutame ka jargmistes alapeatiikkides korduvalt, et selgitada vilja, kui palju

tumeainet voib tekkida.

Kasutades mateeria energiatiheduse avaldist py; = (1,167 - 1073 eV)* ja piirangut (2.16), saame
leida, et avaldises (2.15) hakkab teine liidetav domineerima, kui universumi temperatuur
on T > 75TeV. Nii korgetel temperatuuridel tuleb arvestade eri juhte, mis komponendid
panustavad vorrandi (2.13) paremal poolel allikalitkmetesse. Tuletama meelde, et allikaliige tuli
energia-impulsi tensori jdljest. Osakesed, mille energia-impulsi tensori jélg tuleb null, sinna ei
panusta. Kui eeldame, et panustab ainult bariionaine, siis vorrand (2.13) kehtib, aga kui eeldame,
et allikalitkmesse panustab ka korgetel temperatuuridel domineeriv relativistlike massiivsete
osakeste plasma, siis tuleb energiatiheduste avaldisi muuta. Kdigepealt uurime alapeatiikis 2.2
vorrandi (2.13) kditumist juhul, kui avaldise (2.15) teise litkme jitame arvestamata. Seda juhtu
nimetame madala temperatuuri juhuks. Peale seda uurime alapeatiikis 2.3 juhtu, kui jdtame

esimese litkkme arvestamata, mida nimetame korge temperatuuri juhuks. Viimasena uurime
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juhtu, kus arvestame tekkiva plasmaga ja energiatiheduste avaldised muutuvad.

2.2 Madala temperatuuri juht

Siin uurime vorrandi (2.13) kditumist eeldusel

m2

M} > Epya. (2.17)
2M}

Suurte a véirtuste ehk hilise universumi korral kehtib see eeldus jédrjest paremini. Isegi kui
see tingimus alati ei kehti, siis selles alapeatiikis leitav lahend kirjeldab skalaarvilja kditumist
hilises universumis, kus temperatuurid on madalad ja mastaabikordaja on suur. Plancki massi

litkkumisvorrand (2.13) votab kuju

FSM? + Oy OM? = — 65a" ( m’ MSM? — pMa_3M2) (2.18)
N pr(1+6&) \26M2™! '
See vorrand on voimalik viia kujule
1
PO +x0uf + (x2 — 1—6) f=x" (2.19)
kus x = —kaz, konstandid
3m> M3 6EM?

e _ 6EMipu (2.20)

T pr(1168) 7 pr(1+68)

SM?(x) = 2, /%{x—l/“f(x). 2.21)

See on mittehomogeenne Besseli vorrand, mis ei soltu iihestki parameetrist. Sellele vorrandile

ja

oskab tarkvara Mathematica 11 leida tidpse analiiiitilise lahendi Besseli funktsioonide
ja hiipergeomeetriliste jadade kaudu. Suurte x-ide korral kéitub lahend ligikaudu nagu
f(x) o< sin(x) /4/x, mida on jooniselt 2.3 niha. Selles veendumiseks vaatame olukorda, kui suure
x korral jagada vérrandi (2.19) molemad pooled x2-ga libi, siis nieme, et allikaliige on viike ja

tekib ligikaudu sumbuva harmoonilise ostsillaatori vorrand

8xzf+}caxf+f:0, (2.22)
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mille lahendiks on ligikaudu sin(x)/4/x. Kui x on viike, siis on allikaliige suur ja vonkumise
amplituud kasvab. See vastab tumeaine tekkele ja jdrelikult tumeaine teke toimub varajases
universumis, millele vastab viike x. Valime algtingimused alghetkel x = € < 1 sellised, et
f(€) =0ja f'(€) = 0. Siis alghetkel on skalaarvili tasakaalupunktis paigal ja vonkumist ei
toimu, aga allikaliige paneb skalaarvilja vonkuma. Selliste algtingimuste valikuga vaatame
olukorda, kus varajases universumis (¢ < 1) tumeainet veel ei ole tekkinud (f(g) = 0 ja
f'(€) = 0) ja uurime, kas ja kui palju seda hakkab tekkima.

On teada, et teist tiilipi Besseli funktsioonid ldhevad 16pmatuks kui ldheneda punktile x = 0. Et
saada lahendi kditumisest paremat ettekujutust ja viltida vdimalikke probleeme, uurime, kuidas
vorrandi (2.19) lahend kiitub kui x < 1. Viikeste x viirtuste korral saame diferentsiaalvorrandi

heas ldhenduses iimber kirjutada jdrgnevalt:
1
x%ﬁww@f—ﬁfzfﬂ. (2.23)

Seda on vdimalik tidpselt lahendada astmefunktsioonidega ja arvestades algtingimusi tuleb
lahendiks

2
f:hm<k—§). (2.24)

X

Siit on néha, et voime viia alghetke valiku € — 0 ja lahend kaéitub jérjest paremas ldhenduses

nagu 2x3/4

. Sellest jiareldame, et alghetke € tdpne valik ei ole oluline ja ei muuda tumeaine
tekkimist, sest lahendi vddrtus mingis punktis x > € tuleb ligikaudu sama soltumata tdpsest
€ valikust. Seega tdpse € vadrtuse jitame edaspidi defineerimata ja eeldame, et € < 1. Niisiis
alghetkel € paigal olev funktsioon pannakse allikaliikme abil liikuma funktsiooni 2x3/4 kuju
jargi. Seda siis eeldusel, et x << 1, aga sealt edasi x kasvades hakkab lahend sumbuvalt

vonkuma ligikaudu vordeliselt sin(x) //x kuju jérgi.
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20} — f(x)
I 2,34
15
1.0
0.5+
| I I I | I I I | I I I | I I I | X
0.2 0.4 0.6 0.8 1.0

Joonis 2.1: f(x) vs 2x°/* viikeste x-ide korral, kui alghetk & < 1.

Nagu varasemalt Oeldud, siis suurte x-ide korral on lahend heas ldhenduses vordeline

funktsiooniga sin(x)/+/x. Vordelisuse kordaja leidmiseks paneme tihele, et kui f ~ ASi\n/(;),
siis
(V) + 0u(V/xf)? = A%, (2.25)

Leiame tarkvara Mathematica 11 abil tdpse lahendi diferentsiaalvOrrandile (2.19), varem
mainitud algtingimustega (kus € < 1) ja seejérel teeme tépse lahendi f(x) abil funktsioonist
(Vxf)? + du(v/xf)? graafiku. Joonisel 2.2 kujutame A? viirtust suurte x-ide korral, kus
sinusoidaalne lihend kehtib histi. Nideme, et kordaja A2 on tdepoolest ligikaudu konstantne.
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Joonis 2.2: A? = (v/xf)? 4 dx(\/xf)? suurte x-ide korral.

Joonise 2.2 pealt on niiha, et ligikaudu A% = 4,6475. Seega f ~ \/4,64755111—\/(;). Joonise 2.3 pealt

ndeme, et see ldhendus sobib iipriski histi ka viikeste x-ide korral.

20, — )

\ 4.6475 sin(x)

151 Vx

104

0.5

ANAANAAAAAAAAAN.
RIARAAAAAA AR

~05"

—1.0°F

Joonis 2.3: f(x) vs &\/(;C) ldhend.
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Tumeaine energiatiheduse leiame iildise skalaarvilja energiatiheduse valemi (2.14) abil,
kasutades eeldust £ < 1:

m2

= ((9x(8M?))* + (8M?)?) . (2.26)

PbMm

Plancki mass vongub sinusoidaalselt muutuva amplituudiga, kus amplituud o 1 /x3/ 4 Kui ithe

vonkeperioodi jooksul Plancki massi vonkumise amplituud ei muutu ehk 1 /x3/ 4

~ konst, siis
on tumeaine energiatihedus selle perioodi jooksul ka ligikaudu konstantne. Kui me ei oleks
teinud eeldust £ < 1, siis tumeenergia tihedus vonguks vilja vonkumisega kaasa, sest ilma selle
eelduseta oleks avaldises (2.26) iihe liidetava ees lisaks kordaja 1/(1+ &). Seega meie mudelis
peab kehtima £ < 1. Nieme, et skalaarse tumeaine energiatihedus ppys o< 1 /x3/ 2 1/a.
Saime oodatud tulemuse, mille jdrgi skalaarvilja energiatihedus muutub universumi paisudes
samamoodi sdltuvalt mastaabikordajast nagu tavaline aine. Seega sobib skalaarvili selles suhtes

kirjeldama tumeainet.

2.2.1 Mudeli parameetrite miiramine

Eelmises alapeatiikis tuletasime lahendi iildkuju ja tumeaine energiatiheduse itildkujud soltuvalt
konstantide védrtustest. Niitid proovime leida sellised konstantide véirtused, et tekiks kogu
tanapdeval moodetud kogus tumeainet. Nagu varsti ndeme, siis madala temperatuuri juhul ei

ole voimalik selliseid konstante leida.

Leian tinapdevase tumeaine tihedusparameetri Qpy = ppyr/3M?>H?, kus ppys leian skalaarse
tumeaine energiatiheduse valemi (2.26) abil. Selle jaoks vOotame a = 1, mis vastab tinapievale
ja saame

Qpy = 0,539QyB, (2.27)

kus B on Plancki massi vOnkumise amplituudi suhteline kordaja ehk kehtib
SM?/M? = Bsin(x)/x*/*. Avaldame B kasutades vorrandit (2.43) ja varem leitud ligikaudset

avaldist f(x) ~ \/4,6475sin(x)/+/x:

2\ 1/4 3/4
B=3475-D0 (%) (L) , (2.28)
Pr M, m 1—}—65

Vorrandiga (2.27) saime siduda skalaarvilja vonkumistest tekkiva tumeaine tdnapdevase
tihedusparameetri tidnapidevase tavalise bariionaine tihedusparameetriga. Teame, et kehtib
Qpr = 0,049. Suurus B miérab dra tekkiva tumeaine koguse. Lisaks suurus B defineerib Plancki

massi vonkumiste suhtelise amplituudi ja vaadates joonist 2.3 on niha, et sin(x) /x3/ 4 esimese
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vonke amplituud on suurusjédrgus 1, seega B annab ligikaudu Plancki massi suhtelise muutuse
SM? /M 12 esimese vonke amplituudi. Plancki mass suhteline muutus ei tohi minna suureks, sest
esiteks siis meie tehtud ldhendid ei kehti. Teiseks on artiklis [15] toodud juba varem mainitud

piirangut (2.16) arvestades voimalik avaldada vorrandist (2.28)

n(_& "

B<839-107 " | —— . 2.29

’ < 1+6& ) (229

Peab kehtima £ < 1, sest tumeaine energiatiheduse (2.26) tuletamisel tegime eelduse, et

1 +6& ~ 1, vastasel korral tumeaine energiatihedus vonguks viljaga kaasa. Kokkuvottes peab
kehtima B < 107! ja seetdttu ka

Qpy < 10711, (2.30)

Seega selle vaadeldud mudeliga saab tekitada ainult viga viikese koguse tinapievasest
tumeainest. Probleem tuleneb selllest, et Plancki massi vonkumiste suhteline amplituud peab

olema viike ja viikesed vonkumised vastavad viikesele skalaarse tumeaine energiatihedusele.

2.3 Korge temperatuuri juht

Selles alapeatiikis eeldame, et vorrandis (2.13) kehtib

1
EmZM% < Epya?, (2.31)

ja uurime lahendi kéitumist sellisel juhul. Nagu varem 6eldud, siis selle tingimuse kehtimise
jaoks peab universumi temperatuur olema 7 > 75TeV. Selles peatiikis eeldan, et allikaliige
Plancki massi liikumisvorrandis (2.13) jddb samale kujule, kuigi nii korgetel temperatuuridel
on kiisitav, kas mateeria energiatihedus jddb samaks, sest siis eksisteerib hoopis kvark-gluuon
plasma. Sellest hoolimata uurin Plancki massi liikumisvorrandi kditumist eeldusel (2.31) ja saan

vOrrandi

X292 f, — (% —|—x2) £ =0, (2.32)
kus x = 2v/kz\/a, M?(x) = x /2 f,(x) ja konstant

ky = 65 pu

= 2.33
pr(1+6&) (233

Uurime taaskord funktsiooni kéitumist eraldi suurte ja viikeste x-ide korral, nagu varem. Kui
X on suur, siis vOoime vorrandis (2.32) liiget % ignoreerida ja saame, et funktsioon f, kasvab

eksponentsiaalselt. Kuna vaatleme korgetemperatuurilist juhtu, siis alghetkel oli a ja ka x viike,
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seega uurin ldhemalt lahendit véikeste x-ide korral. Viikeste x-ide korral saame ldhendada:
272 3
x5 fr— Efz =0. (2.34)

Selle vorrandi iildlahendiks on kahe x astme kombinatsioon:

A =i o' (2.35)

Valime algviirtused nii, et (hetkel suvaliselt valitud) punktis £ oleks Plancki mass M? paigal
ja vordne tasakaalupunkti viirtusega M 12 Need on samad algtingimused, mis eelmises peatiikis
valisime ja see vastab olukorrale, kus Planck mass seisab tasakaalupunktis paigal ja me uurime,

kuidas ta edasi litkkuma hakkab. Nende algtingimustega saame lahendiks

M2(x) = M? (E (5>13ﬁ+@ (f)l_zﬁ> (2.36)
27 \& 27 \&
Vorrandi (2.36) abil on n#ha, et kui valime suhte x/€ piisavalt suure (nditeks valime € viga
viikese, ehk tumeaine algne paigaloleku hetke on viga varajane), siis saame Plancki massi ajada
tikskoik kui suureks. Lisaks nagu varem mainisime, siis x kasvades teatud piirist alates hakkab
Plancki mass lausa eksponentsiaalselt kasvama. Seega igal juhul vorrandi (2.32) jdrgi saame
tekitada suvalise Plancki massi nihke, valides vastava alghetke. Plancki mass kasvab, kuni iihel
hetkel universumi mastaabikordaja on ldinud nii viikeseks, et peatiiki alguses tehtud vOrratus
(2.31) enam ei kehti, vaid hakkab kehtima vastupidine vOrratus. Seejdrel hakkab Plancki mass

sumbuvalt vonkuma selliselt, nagu eelmises peatiikis ndgime. Oletame, et vonkumise alguseks
on tekitatud Plancki massi nihe §M?. Sellel hetkel kehtib (2.31) jirgi ligikaudu

2

m~_ 2pya” _ 2pu(a)

2 - 2
5 Ml Ml

3
(2.37)

Selles avaldises pys on tinapievane bariionaine energiatihedus ja py;(a) = ppra~> on bariionaine
tihedus vaadeldaval hetkel, kui algab skalaarvilja vonkumine. Kasutades seda seost leian
tumeaine energiatiheduse samal ajahetkel iildise tumeaine energiatiheduse valemi (2.14) abil.
Vottes lihtsustavalt, et 9, M? = 0, siis saame

pula) [ SM>\°
pou(a) =", (712> - (2.38)

Nii tumeaine kui bariionaine skaleeruvad samamoodi paisudes, seega kehtib viimane vorduse

iga a korral. Plancki massi suhtelise amplituudi jaoks kehtis piirang (2.29), mida arvestades
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peab kehtima

pom < 10722 pyy. (2.39)

Niéeme, et korgetel temperatuuridel > 75TeV on vOimalik veel vihem tumeainet tekitada,
kui madalamatel. Pohjus seisneb selles, et nii korgetel temperatuuridel saab kiill tekitada
ikskoik kui suure Plancki massi korvalekalde, aga nii korgel temperatuuril universum paisub
edasises arengus viga palju ja tumeaine energiatihedus hajub. Loppkokkuvéttes jareldame, et
vorrand (2.13) ei luba tekkida tanapédevasel kogusel tumeainel iikskdik milliseid temperatuure
arvestades. Sestap uurime jiargmisena olukorda, kus relativistlik osake-antiosake plasma

pohjustab tumeaine teket.

2.4 Relativistlike massiivsete osakeste panus

Selles osas uurin juhtu, kui nédhtava aine temperatuur on nii suur, et see sisaldab massiivseid
relativistlikke osakesi, mis kannavad suurt osa aine energiatihedusest. Nimetame seda osakeste
kogumit plasmaks. Olulisel miidral mingite osakeste tekkimise jaoks peab temperatuur olema
suurem kui osakese mass. Enamasti tekivad osake-antiosake paarid, mis annihileeruvad, kui
temperatuur on viiksem kui osakeste mass ja seega madalatel temperatuuridel osake-antiosake
paare praktiliselt ei eksisteeri. Plancki massi liilkumisvorrandis (2.13) tulenes liige ppa—>
energia-impulsi tensori jiljest. Korgetel temperatuuridel tekib osakesi juurde ja energiatihedus
suureneb, sest osakeste arv on Fermi ja Bose jaotuste jdrgi universumiga termodiinaamilises
tasaakaalus. Osakeste tekke tOttu universumi energiatihedus p muutub, aga kuna tegemist on
termodiinaamilises tasakaalus olevate osakestega, siis tuleb arvestada energia-impulsi tensori
jélje arvutamisel ka rohuga. Niiteks footonite korral tuleb jdlg null, sest footonitel p = %p.
Uldisemalt kehtib, nagu varem mainitud, et skaalainvariantse mdjufunktsionaaliga osakeste
energia-impulsi tensori jidlg tuleb null. Jdlge panustavad ainult need osakesed, mis saavad
oma massi skaalainvariantsust rikkuvate dimensiooniga konstantide kaudu. Eeldades praegu,
et vaatleme termodiinaamilises tasakaalus relativistlikke osakesi, mille korral jilg T * ei tule
null, siis seisumassiga my osakeste korral tuleb energia-impulsi tensori jiljeks [15]

2 2 22
gxmyT gxmy T B
B 27?2 - 27r2XazO =pra”?, (2.40)

T,*

kus gx on vaadeldava osakese vabadusastmete arv ja 7y = 2,7K on tdnapdeva universumi
temperatuur. Kuna plasma energia-impulsi tensori jdlg on vordeline massi ruuduga, siis
domineerivad kdige suurema massiga osakesed. Kui on iihest kvargist ja antikvargist koosnev
plasma, siis gx = 12, sest on kolme eri virve kvarke, kahe eri spinni védrtusega ja viimane tegur

kaks tuleb sellest, et plasmas on osake ja antiosake mdlemad. Elektron-positron plasma korral
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gx=4.

Teeme libi analoogse arvutuskiigu, mis alapeatiikis 2.2, aga asendame py;a—> — ppa—2. Lisaks
peame arvestama, et ka kiirguse pr vadrtus muutub, sest meil tekkis juurde relativistlikke
osakesi, mille energiatihedus on vorreldav kiirguse energiatihedusega. Relativistlike osakeste
energiatihedus skaleerub sarnaselt kiirgusega o a~*. Kiirguse ja relativistlike osakeste

energiatihedus on
2

p=5eT*, (2.41)
kus g, on osakeste summaarne vabadusastmete arv. Tdnapdevases energiatiheduses pg
on arvestatud nii footonite kui neutriinode panust. Footonite jaoks g = 2, neutriinode
jaoks efektiivselt g ~ 1,4 [8]. Varajases universumis on relativistlike osakeste tekke tottu
energiatihedus vastavalt koikide relativistlike osakeste vabadusastmete suhte vOrra suurem,

seega peame tegema asenduse

24+14+Y;8i

= 242

PR — PR

kus gr on relativistlike osakeste vabadusastmete suhe.

Lahendame niiiid Plancki massi liikumisvorrandi (2.18), arvestades relativistlike osakeste
panust. Konstandid k ja ¢ on samad, aga nendes on asendatud py; — pp ja pr — Prgr vorreldes
peatiikiga 2.2. Liheme taaskord iile muutujale x = */T%eZN ja teeme asenduse

SM2(x) = —— x4 f(x), (2.43)
()= 5 )
siis saame litkumisvorrandiks
1
XOLf +x0uf + (xz— E) f=x7" (2.44)
Selle lahendi kditumine on sarnane nagu peatiikis 2.2 ja saame analoogselt lahendades sarnase
tulemuse in(x)
SM? ~ /1,065—_ 101 2.45

Sellele vonkumisele vastav tdnapdevane (a = 1) skalaarse tumeaine tihedusparameeter on

kasutades skalaarvilja energiatiheduse avaldist (2.26)

2 V2N 34 2
Pp SM; /4 _ 8 my  \*gq4
Qpy =04 24
om =0, 96M§H2(pRgR)1/4 ( m? ) s < g/ (112MeV> s (248)

kus kasutasime éMlz /m? jaoks piirangut (2.16). Et tekiks tinapsieval nihtav kogus tumeainet
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(Qpyr = 0.265), siis peab kehtima

M 16
£> 58 (80 ev) . (2.47)
8 mx

Minimaalne & véirtus sdltub tugevalt massiivseima relativistliku osakese massist &, o< #
seega suurujargu madalamad massid my kui 80MeV ei vdimalda tdnapdevasel kogusel

tumeainel tekkida, kuna vajavad & > 1.

Niiteks kui valime & = 8,8- 1072, mx = 100MeV, g = 10, gr =30 jam = 1,3- 10" 12 eV, siis
tekib skalaarse tumeainena kogu universumi tumeaine. Nende parameetrite korral vonkumise
amplituud §M?/M? on ligikaudu 8,8 - 10~°. Siin iihtegi vastuolu ei tekkinud ja need konstandid
sobivad kirjeldama tumeaine teket. Saime tulemuseks, et korgetel temperatuuridel tekkivad
relativistlikud osakesed pohjustavad suurema skalaarvilja vOnkumiste tekke, mis soltuvalt
konstantidest voib tekitada kogu tinapdevase tumeaine. Konkreetse néite korral kui eeldame, et
kui temperatuuril iile 100MeV skalaarset tumeainet veel ei olnud, siis osake-antiosake plasma

selle spontaanselt tekitab. See on liks vOoimalus seletada, kust tumeaine périneb.
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Peatiikk 3

Kokkuvote

Uurisime skaalainvariantset skalaarse tumeaine mudelit, kus skaalainvariantsus on rikutud
kordajate jooksmise tottu. Skaalainvariantsuse rikkumine tekitab potentsiaalimiinimumi, mille
ldhedal hakkab meie mudelis skalaarvili vonkuma. Skalaarvilja vonkumiste tasakaalupunkti
energia vastab tumeenergiale ja vonkumiste energia tumeainele. Selline mudel vdimaldab
seletada nii tumeenergiat kui tumeainet skalaarvilja abil. Meie uurisime, kuidas need

vonkumised arenevad ja tekivad varajases universumis.

Kodigepealt kirjutasime vélja Plancki massi vOnkumise voOrrandid kiirgusdominantses
universumis ja seejdrel leidsime Plancki massi vidikese muutuse suhtes lineaarsed
vorrandid. Eeldasime, et tumeaine tekkesse panustav allikaliige skaleerub nagu a3, mis
vastab bariionainele. Uldisemalt on allikaliikmeks on kogu aine, mis saab oma massi
skaalainvariantsust rikkuvate konstantide kaudu, seega niiteks footonid ei tekita skalaarvilja
vOonkumisi. Soltuvalt sellest, kuidas elementaarosakesed oma massi saavad ja kas nende
mojufunktsionaal on skaalainvariantne vOi mitte, vdivad nad panustada skalaarse tumeaine
tekkesse vO1 mitte. Algselt vaatasime juhtu, kus tumeaine allikaks oli bariionaine. Hiljem
vaatasime juhtu, kus allikaks oli relativistlik elementaarosakeste plasma. Lineariseeritud
vorrandeid edasi uurides ja lihtsustades soltuvalt temperatuurist leidsime, et madalal
temperatuuril ei tekita bariionaine energiatihedus piisavalt suuri skalaarvilja vonkumisi, mis
suudaks seletada tdnases universumis nédhtava tumeaine kogust. Tumeaine tekkimist piiras
viike mateeria energiatihedus ja konstantidele kehtivad piirangud, mis tulenesid sellest, et
gravitatsioonikonstant ei saa véga kiiresti muutuda, vastasel korral oleks selle mdju universumi
keemilises koostises nidha. Korgematel temperatuuridel 7 > 75TeV voimaldas antud mudel
tekkida veel viiksemal kogusel tumeainel, sest Plancki massi maksimaalne korvalekalle
on piiratud ja kui skalaarne tumeaine tekkis vidga varajases universumis, on skalaarvilja

vonkumistel rohkem aega sumbuda. Eraldi vaatasime juhtu, kus vonkumiste allikalitkmeks on
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relativistlik plasma.

Arvestades tekkivat massiivsete osakeste relativistlikku plasmat ndgime, et oli voimalik leida
sellised konstantide vddrtused, mis lubavad tekkida tanapdevasel kogusel tumeainel. PShjus on
selles, et tinu osakeste spontaansele tekkimisele mateeria energiatihedus kasvab ja kuna see
mateeria oli vOnkumiste allikalitkmeks, siis tekitatakse rohkem skalaarset tumeainet. Piisava

tumeaine sai tekitada alates temperatuuridest suurusjargus 100 MeV.

34



Tanuavaldused
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kellega ma sain tihti kokku, meil olid huvitavad vestlused ja kes veetis palju aega mulle

koikvoimalikke asju seletades.

Andres Pdldaru
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