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Résumé

Le Modele Standard de la physique des particules (MS) est une théorie fondamentale
de la nature dont la validité a été largement établie par diverses expériences. Par contre,
quelques problémes théoriques et expérimentaux subsistent, ce qui motive la recherche
de théories alternatives. La Supersymétrie (SUSY), famille de théories dans laquelle une
nouvelle particule est associée a chaque particules du MS, est une des théories ayant les
meilleures motivations pour étendre la portée du modele. Par exemple, plusieurs théories
supersymétriques prédisent de nouvelles particules stables et interagissant seulement par
la force faible, ce qui pourrait expliquer les observations astronomiques de la matiere
sombre. La découverte de SUSY représenterait aussi une importante étape dans le chemin
vers une théorie unifiée de l'univers. Les recherches de supersymétrie sont au coeur
du programme expérimental de la collaboration ATLAS, qui exploite un détecteur de
particules installé au Grand Collisioneur de Hadrons (LHC) au CERN a Geneéve, mais a
ce jours aucune preuve en faveur de la supersymétrie n’a été enregistrée par les présentes
analyses, largement basées sur des techniques simples et bien comprises.

Cette thése documente I'implémentation d"une nouvelle approche a la recherche de
particules basée sur l'apprentissage profond, utilisant seulement les quadri-impulsions
comme variables discriminatoires; cette analyse utilise 'ensemble complet de données
d’ATLAS enregistré en 2015-2018. Les problémes de la naturalité du MS et de la matiere
sombre orientent la recherche vers les partenaires supersymétriques du gluon (le gluino),
des quarks de troisiéme génération (stop et sbottom), ainsi que des bosons de gauge (le
neutralino). Plusieurs techniques récentes sont employées, telles que 'utilisation directe
des quadri-impulsions reconstruites a partir des données enregistrées par le détecteur
ATLAS ainsi que la paramétrisation d'un réseau de neurone avec les masses des par-
ticules recherchées, ce qui permet d’atteindre une performance optimale quelle que soit
I'hypothese de masses. Cette méthode améliore la signification statistique par un facteur
85 par rapport au dernier résultat d’ATLAS pour certaines hypotheses de masses, et ce
avec la méme luminosité.

Aucun exces signifif au-dela du Modele Standard n’est observé. Les masses du gluino
en dega de 2.45 TeV et du neutralino en deca de 1.7 TeV sont exclues a un niveau de
confiance de 95%, ce qui étend largement les limites précédentes sur deux modéles de pro-

ductions de paires de gluinos faisant intervenir des stops et des sbottoms, respectivement.

Mots-clés: Physique des particules, Supersymétrie, LHC, ATLAS, Apprentissage ma-
chine, Apprentissage profond, Réseaux de neurones.



Abstract

The Standard Model of particle physics (SM) is a fundamental theory of nature whose
validity has been extensively confirmed by experiments. However, some theoretical and
experimental problems subsist, which motivates searches for alternative theories to super-
sede it. Supersymmetry (SUSY), which associate new fundamental particles to each SM
particle, is one of the best-motivated such theory and could solve some of the biggest out-
standing problems with the SM. For example, many SUSY scenarios predict stable neutral
particles that could explain observations of dark matter in the universe. The discovery of
SUSY would also represent a huge step towards a unified theory of the universe. Searches
for SUSY are at the heart of the experimental program of the ATLAS collaboration, which
exploits a state-of-the-art particle detector installed at the Large Hadron Collider (LHC)
at CERN in Geneva. The probability to observe many supersymmetric particles went
up when the LHC ramped up its collision energy to 13 TeV, the highest ever achieved in
laboratory, but so far no evidence for SUSY has been recorded by current searches, which
are mostly based on well-known simple techniques such as counting experiments.

This thesis documents the implementation of a novel deep learning-based approach
using only the four-momenta of selected physics objects, and its application to the search
for supersymmetric particles using the full ATLAS 2015-2018 /s = 13 TeV dataset. Moti-
vated by naturalness considerations as well as by the problem of dark matter, the search
focuses on finding evidence for supersymmetric partners of the gluon (the gluino), third
generation quarks (the stop and the sbottom), and gauge bosons (the neutralino). Many
recently introduced physics-specific machine learning developments are employed, such
as directly using detector-recorded energies and momenta of produced particles instead
of first deriving a restricted set of physically motivated variables and parametrizing the
classification model with the masses of the particles searched for, which allows optimal
sensitivity for all mass hypothesis. This method improves the statistical significance of the
search by up to 85 times that of the previous ATLAS analysis for some mass hypotheses,
after accounting for the luminosity difference.

No significant excesses above the SM background are recorded. Gluino masses below
2.45 TeV and neutralino masses below 1.7 TeV are excluded at the 95% confidence level,
greatly increasing the previous limit on two simplified models of gluino pair production
with off-shell stops and sbottoms, respectively.

Keywords: Particle physics, Supersymmetry, LHC, ATLAS, Machine learning, Deep
learning, Neural networks.
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Introduction

In the year 2020, it seems that the field of particle physics is in very good shape. The
Standard Model of particle physics, an elegant and very successful fundamental theory
of nature, is theoretically complete since the 70s, and all its constituent fundamental
particles have been observed in various experiments, from the discovery of the electron
in the late 19th century [1] to the recent observation of the Higgs boson [2, 3] by the
ATLAS [4] and CMS [5] collaborations at the LHC [6]. And yet, searches for so-called
Beyond-the-Standard-Model physics are still ongoing in full force; there are even serious
discussions about building bigger and more powerful particle accelerators to carry out this
work in the future. Beyond the need to validate the Standard Model with high-precision
measurements, which might still uncover flaws in the theory, there is still a number of
theoretical problems with the Standard Model that motivate this state of affairs. For
instance, the model does not explain astronomical observations of dark matter; nor does
it explain the huge energy difference between the characteristic scale of weak interactions
and that of gravitational phenomena. In fact, the Standard Model does not even try to
describe gravity, instead positing that a new model is needed for energy scales above the

Plank mass.

Supersymmetry, an extension of the fundamental space-time symmetries that asso-
ciates new bosons to Standard Model fermions and vice-versa, was sometimes touted in
pre-LHC times as an easy and elegant way to fix such problems. Indeed, the projected
cross-sections for a large class of supersymmetric processes would lead to clear effects at
the LHC if realized in nature; to this date, no clear and unambiguous sign of such effects
have been detected by any of the LHC collaborations, or by any other experiments. Faced
with this situation, we then have, at least, three paths moving forward. Firstly, we could
simply abandon altogether supersymmetry searches and focus on alternate Beyond-the-
Standard-Model theories. Secondly, we could also just note that after its second data-taking
run, the LHC has only produced about five percent of its eventual final dataset and be
patient, hoping that supersymmetry lurks right around the corner and that more data
will clarify the situation. The third option, which is not mutually exclusive to the second



one, is to improve existing search methodology or to implement new search strategies to
maximize the discovery potential given the data that we have right now.

Recent developments in the field of artificial intelligence, most notably the so-called
deep learning revolution [7], have pushed the boundaries of machine learning techniques
further than would have been thought possible a few decades ago. Granted, machine
learning has already been in extensive usage throughout the field of high-energy physics
for already quite some time, but the recent renaissance of the field of neural network
research has lead to many new possibilities. The reasons are many: the existence of well-
understood models such as deep neural networks along with enough data to train them;
ubiquity of accelerated hardware in the form of graphical processing units (GPU); and
the availability of high-quality free-software libraries enabling researchers to tap into the
power of modern Al without reinventing the wheel.

With these reasons in mind, this thesis will apply deep learning techniques to the
problem of the search for supersymmetry at the LHC, using data recorded by the ATLAS
detector. It will build upon previous work by the ATLAS collaboration in which super-
symmetric partners of the gluon, third generation quarks, and gauge bosons are searched
for in events with a significant amount of missing transverse energy and many b-jets [8,
9]. More specifically, a single neural network is trained to classify events as originating
from a supersymmetric signal or from a Standard Model background, using low-level
(four-momenta) inputs reconstructed from ATLAS detector data.

In Chapter the theoretical underpinnings of the Standard Model are briefly re-
viewed, including a discussion of some of the aforementioned problems, before presenting
in Chapter 2| the proposed solution, supersymmetry. The LHC and the ATLAS detector
are presented in Chapter[3] In Chapter[d, the theory of neural networks is presented, along
with an example application in the context of track reconstruction. Finally, the search itself
is presented in Chapter 5, before concluding.
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Chapter 1

The Standard Model

1.1 SU(3) x SU(2) X U(1): Theoretical overview

Note: unless otherwise noted, this section is based on References [10-13]

Modern particle physics is formulated within a framework known as Quantum Field
Theory, or QFT. In this framework, pretty much everything is unsurprisingly described in
terms of quantum fields; what we call particles are really just excitations of fundamental
quantum fields away from their ground states [14]. There are two basic classes of fields,
distinguished by the nature of the spins of the particles they carry. Fermionic tields allow for
half-integer spin states, while bosonic fields allow integer spin states. What we commonly
refer to as matter are excitations in fermionic fields with spin = 1/2. What we think of
as forces are due to excitations in the bosonic fields; local interactions arise due to the
exchange of force carrying gauge bosons that have unit spin. Another important field is the
spinless bosonic field, which describes scalar bosons; it enters the theory as the Higgs field.

But how is the Standard Model built from these ingredients? The basic recipe is to start
with non-interacting matter only, and requiring something called local gauge invariance,
which implies the existence of the force carrying gauge bosons. In Section we review
the fundamental concept of local gauge invariance, and take a look at how it can give
rise to a realistic theory: Quantum Electrodynamics, or QED. We then follow the same
blueprint to build the Standard Model of particle physics (SM) itself: starting with the
SM fermions, we use gauge theory to describe the two sub-theories of the SM; Quantum
Chromodynamics (QCD) in Section[I.1.2]and the electroweak model in Section [1.1.3]



1.1.1 Local gauge invariance

“[Local gauge invariance] is the essential concept out of which the Standard Model is
built: a concept that has all the features of a fundamental principle of nature.”
— Gian Guidice [15]

As promised, we start from one of the simplest possible situations: a single free fermion
with mass m. For familiarity let’s call it an electron. From QFT, we know that we need to
use the Dirac Lagrangian to derive the equation of motion of spin-1/2 fermions. In the

position basis:

L=y@id-m)yp, (1.1)

in which we used the “Feynman slash notation”, y*d, = d, to contract the four-momentum
with the Dirac matrices y#. Using the Euler-Lagrange equations, we obtain the Dirac
equation:

(id —m)yp =0, (1.2)

which is a differential equation with a plane wave solution of the form:

P = wp)e, (1.3)
p

where the w(p) terms are the normalization coefficients for each momentum mode.

Let’s now try a first gauge transformation, that of the global unitary group of order
one, U(1). This group describes phase transformations of the wave-function without any
change in normalization such that unitarity is preserved. Applying this to a wave with a
single momentum mode:

P — e%Y = wpePr¥HO, (1.4)

which is still a solution of the Dirac equation. Let’s consider the effect of the transformation
on the Lagrangian:
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L=y(id - myp — Pe™(id - m)e'yp = L'. (1.5)

Since this is a global transformation, e'9 is constant; thus, the contributions from J and
Y cancel out and £ = L’. Such transformations that leave the Lagrangian unchanged are
called global gauge symmetries, and are symptomatic of fundamental redundancies in the

mathematical description of the system.

This doesn’t seem very important or interesting. We simply pick the most convenient
representation for the task at hand from the gauge group once and for all; the choice doesn’t
fundamentally matter, since all these representations are exactly equivalent. But if indeed
they are, it’s not a big stretch to wonder why we have to pick only one representation
for all space-time; it might be logically or aesthetically pleasing to be able to smoothly
interpolate between different representations throughout space-time. In other words,
it’s almost unavoidable that we would ask ourselves what happens when we use a local

transformation group rather than a global one:

Y — Oy = ey, (1.6)

An explicit scale factor g for the phase transformation was introduced, for reasons that
will soon become apparent. The dependence on space-time makes the Lagrangian non-

invariant under the transformation, since we get an extra term when taking the derivative:

I — A(OY) = (90)y + Oy, (1.7)
= L — L-19qd0(x)y. (1.8)

In plain English: the theory of the free electron does not satisfy local gauge invariance.
To make it so, the model needs to be extended; let’s start by introducing a gauge boson,
Ay, which we will call the photon, for familiarity. Our first task is to incorporate it in the

Lagrangian:

L=9(id - gh-m)y. (1.9)
Our second and final task is to modify the transformation to simultaneously act on both
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the electron and the photon:

170 — giqe(x)wl
Ay = Ay 36(x).

(1.10)

Clearly, the extra —d0(x) term from the transformation of the photon cancels the unwanted
term in Eq. (I.8). Thus, the Lagrangian of Eq. is invariant under the local gauge
transformation of Eq. (1.10). After having done so, the theory is no longer free since the
following term appeared in the Lagrangian:

ig Ay, (1.11)

which is an interaction term between electrons and the force-carrying photon, with overall
strength governed by q, which we can call the electric charge, for familiarity.

In summary, we've started from the theory of the free electron, and we’ve seen that
requiring local gauge invariance forced us to introduce the photon in the theory. As a con-
sequence, there appeared an unavoidable interaction between electrons, which also gained
a charge. The resulting theory is called Quantum Electrodynamics [16-21]], or QED, and it
is sufficient to accurately describe all electromagnetic phenomena. It is without a doubt
one of the most successful physical theories ever devised; for instance, the experimental
measurement of the electron’s magnetic moment matches the theoretical prediction up to
a 107"% deviation [22]!

In the next few sections we follow the same simple procedure to derive the Standard
Model itself, in which QED is embedded.

1.1.2 SU(3): Quantum Chromodynamics

We've just seen how we can derive a realistic theory by starting from a free electron
and requiring invariance under the U(1) local gauge group. Let’s now try something a
little different — starting from free quarks [23], we’ll require invariance under local gauge
transformations described by the special unitary group of order 3, SU(3).

Instead of a single O(x) scalar term, the transformations corresponding to SU(3) are
generated by a basis of eight|3 X 3 matrices:

13 X 3 = 9, so why not nine parts? What makes this gauge group “special” is that the transformation
matrix has unit determinant, which removes one degree of freedom.
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S = /\1qi)1 + A2¢2 ce /lggi)g. (1.12)

Here, the A terms are the Gell-Mann matrices. Let’s write the transformation a little more
explicitly for the k-th of the eight components in exponential form:

Y — Spp = e HMMPry, (1.13)

We already know what will happen, since it is analogous to Eq. the free fermionic
Lagrangian acquires an extra term:

L— L-iqpdArdi)y. (1.14)

We know what to do. First, add a gauge boson Ay and obtain:

L=y(id - ighhy — m)y. (1.15)

Then, add the Ay transformation term, which takes care of the extra term. Are we done
now? If so, then the situation is quite similar to the QED case, with eight new bosons
instead of a single one. There is, however, one final piece missing. When we derived
QED, we obtained the Lagrangian of Eq. but it is incomplete; it is missing the part
for the free boson, F*" = J*A" — 9" AH. This was of no great consequence for this term
is trivially gauge invariant, but the situation is different in the SU(3) case. There are now
eight gauge bosons, each represented by a generator matrix; since matrix multiplication is
not commutative, the new free Lagrangian has a mixed terms that forbids us to think of
each of the eight transformations in purely separate terms:

8
Gl = MAL - AL =20 Y fiuiAVAY, (1.16)
ij=1

where fi;; are the structure constants of SU(3). The gauge transformation must account
for this extra term, and we end up with:
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Figure 1.1 - Color-changing interaction via gluon exchange. In the basis of the left diagram,
the gluon is in a superposition of color states, g = %(b? + rb) [11].

v ooy, (1.17)
A;{l — Ag —JdPr —2q Z%zl Frijil\j.

The implications are rich. First, since the SU(3) transformations are represented by 3 x3
matrices, the wave-function 1) must have a three-component part that represents the charge
of the interaction (much like the electron became electrically charged when we added-in
the photons). The three components of the charge SU(3) charge basis are labeled red,
green, and blue; the resulting theory is called Quantum Chromodynamics [24-26], or QCD.
Particles that carry such charges are colored particles, and colored fermions are precisely
the three Standard Model quarks. Each color has to be represented, and since each quark
has single unit of color, there actually are three “copies” of each quark, one for each charge.
The theory gained eight bosons: the gluons, which form a color octet and allow for color
changing interactions as seen in Figure Moreover, the appearance of terms involving
the SU(3) structure constant imply that gluons are self-coupled, that is, there exist 3- and

4-gluon interactions.
The full QCD Lagrangian is:

Lacp = ), (i@ =my)g. (1.18)
q,c
- Z Jqlcas/\kcc’Aklpq,C’ (1.19)
q,c,¢’k
LG G 1.20
_Z kuvoy s ( . )

where g indexes the quark flavor (6 in total), c and ¢’ are color indices and k is the gluon

32



0s(g?)
E EJF EJF §+ % :
0s(q2)

Figure 1.2 — Through the renormalization procedure, a sum of a number of diagrams
involving the bare QCD coupling constant is replaced by a single diagram with an energy-
dependent coupling [11].

index. The second term represent the quark-quark-gluon color-changing interactions while
the third term allows three- and four-gluon interactions, with the definition of the G term
given by Eq. The a; factor is the strong coupling constant, scaling the overall strength
of the interaction.

Taking as to be the QCD coupling constant is, however, misleading. This constant
enters mathematical expressions corresponding to individual Feynman diagrams (one
power of a; for each vertex), but many such diagrams have the same initial and final states
and must be summed together when computing the amplitude for the corresponding
process. Moreover, diagrams with many vertices only contribute significantly when there
is enough energy to distribute between all its branches, and so the number of diagrams
that have to be considered in a computation is dependent on the momentum transfer Q
of an interaction. This behavior can instead be absorbed in the definition of the coupling
constant through the renormalization procedure [27], in which the sum of all diagrams with
fixed couplings is replaced with a single diagram but with an energy dependent running
coupling, as can be seen in Figure

This behavior is exhibited by all of the forces in the Standard Model, but the depen-
dence of a; on the energy scale, shown in Figure is a bit peculiar: as the energy
scale increases, the strong interaction amplitude decreases — a behavior termed asymptotic
freedom. In natural units, lengths are equivalent to Energy!, and so high energy scales are
equivalent to small length scales. The implication for color interactions is that they are
very weak over small length scales; for instance, colored particles do not interact much
within the proton nucleus. Towards the low-energy limit, the behavior is reversed: as
the energy (length) scale decreases (increases), the color interaction amplitude increases.
Correspondingly, as colored particles radiate out of an interaction point, they tend to ex-
change gluons and sprout quark-antiquark pairs, and ultimately form colorless hadrons
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Figure 1.3 — Dependence of the strong coupling constant a; on the energy scale of the
interaction, exhibiting the peculiar behavior of the strong force known as asymptotic
freedom: the strong force actually gets weaker and weaker as the energy scale of the
interaction increases [28].

through the color confinement hypothesis; this process is known as hadronization and
can be seen in Figure The resulting collections of hadronic cascades, called jets, are
hallmarks of hadronic colliders. Their phenomenology is a bit problematic however, since
at energy scales characteristic of hadronization, as can become 2 1 and consequently
perturbative expansions cannot be used; instead, parameterized models such as the Lund
string model [29] must be used. Nevertheless, predictions based on such models have been
extensively studied at the LHC with satisfactory results; see, for example, Figure

Another important consequence of confinement is that collisions between initial state
hadrons such as protons can give rise to interactions between gluons and quarks or an-
tiquarks beyond the valence quark content. In order to take this into account in theoret-
ical computations, a non-perturbative part must be factored out of the computation and
into experimentally-determined parton distribution functions, or PDFs, which describe the
quark/gluon densities as a function of the parton’s momentum fraction of the parton and
the energy scale of the interaction; see Figure[1.6|for an example.

1.1.3 SU(2) X U(1): The electroweak model

At this point in our journey, we have two forces: the Strong force of QCD, or the SU(3) part
of the SM, and the electrical force of QED, which needs to be incorporated into the SM. By
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Figure 1.4 — Hadronization via gluon exchange [11].
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Figure 1.5 — (a) Comparison of the detector-level jet p spectrum from different generators

and LHC data for an inclusive jet sample in the || < 2.1 region. (b) Average transverse mo-
mentum fraction { = p2*""'/p)", after unfolding to particle-level. Both plots show a good
agreement between data and simulation, confirming the soundness of the hadronization

model [30].
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while the gluon is by far the most abundant at low x.
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construction, QCD and QED are remarkably similar; pretty much the same procedure was
followed in both cases, with two different gauge groups. In these two models, interaction
vertices enter amplitude computations as vector currents proportional to Ely“gbg. As a
consequence, these interactions are parity invariant, meaning that they proceed in exactly
the same way under a sign change of the spatial coordinates. This seems almost trivially
true; and yet:

The physics community was stunned to learn in the 1950s that some events, unlike
billiard ball collisions, follow different rules in their mirror-image versions. [32]

This quotation refers to the 1957 experiment on f-decay performed by C.S. Wu et al [33],
which showed that parity isn’t always conserved. This discovery has a big implication for
particle physics: since both QED and QCD are structurally constrained to be transparent
to parity, then there must be another kind of interaction that doesn’t have this limitation.

In order to stay as close as possible to our previous path, we still want to proceed via
exchange of vector bosons, customarily called the Ws. To break parity invariance, the new
interaction needs to have an axial-vector part, that is, oc 1, #)°1s, since axial-vectors do
not change sign under parity transformations. Experimentally, the structure is determined
to be “Vector minus Axial”, or V-A:

= yty® = (1 - y0). (1.21)

In this expression, we find the left-handed chirality projection operator:

PLE%u—y%. (1.22)
This means that the W boson will only couple to left-handed particles (or right-handed
anti-particles): the Standard Model is a chiral theory.

The W is observed to couple together particles differing by a unit of electric charge;
therefore, there are really two such bosons, the W* and W~ = W*. The particles they
couple to are grouped in left-handed “doublets”, ¢p;. Members of a given doublet have the
same value of weak isospin, Iy, the charge governing this interaction, and consequently the
term “isospin doublet” is sometimes used. Doublets are formed either by lepton—neutrino
pairs or by different-flavor quark pairs; it is the only SM interaction that allows such
couplings, allowing phenomena such as charged pion decay to leptons and neutrinos, or
top decay to a bottom quark, as seen in Figure
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(a) (b)
Figure 1.7 — (a) Charged pion and (b) top quark decays via the charged weak interaction.

jm¥|

Analogously to QED and QCD, we can derive the existence of the W* bosons by
writing a Lagrangian for free isospin doublets and requiring local gauge invariance under
the SU(2) local gauge group. The derivation is very similar to the SU(3) case; the main
difference, of course, is that there are three generators instead of eight: Wi, W, Ws. Since
these bosons act on the doublet ¢, they don’t correspond directly to the physical bosons,
which couples to actual particles; the physical bosons are actually linear combinations of

W1 2,3 that pick out particles from the doublets. Following Thomson [11]:

%(01+i02) _ va(g (1)) (1.23)
%(01 —ig9) = \/5((1) 8) (1.24)

And so the two corresponding currents will pick out particles from the doublets:

1
]f o (v ep)yt (0 ) (VL) =vyyter =vyHPL e, (1.25)
00 er
0 0
]E oc (vp ep)yt ( ) (VL) =epytvy =eytPrv. (1.26)
1 0f\eg

This is exactly what is needed. Therefore, the physical W bosons are:
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W* = %(wl T iW,). (1.27)

What about the W3? It cannot account by itself for the experimentally-motivated neutral

current since it needs to also couple to right-handed particles. The solution is simple:

SU2) — suE@)xu(l)y. (1.28)

That is, we need yet another U(1) gauge boson, the B,. It can’t just be the QED photon
since experiments pointed to a massive neutral boson (as for the W*), hence the Y suffix
appended to the gauge group in the equation below which stands for the hypercharge, the
charge governing the neutral part of the electroweak model.

Amazingly, by including this boson, the need for QED as a standalone theory is com-
pletely removed. The price to pay for this electroweak unification is to introduce a new free
parameter in the model, the weak mixing angle, Ow. Then,

Zy —sin Oy cos Oy | \Ws

cos Ow  sin Gw) ( B, ) (129)

where A, is the photon and Z,, is the required neutral weak boson.

There is, however, one thing that needs to be taken care of before calling it a day. We’ve
mentioned how the weak gauge bosons are massive, and that they entered the theory via
local gauge invariance, as they should. This poses a great problem: local gauge invariance
forbids such massive force carriers. It even forbids fermion masses, and we know for sure
that electrons are massive! Do we get rid of the local gauge principle, then? We don’t need
to; we simply add the missing piece, which takes us from a locally gauge invariant model
to the real world : the Higgs mechanism [34-36].

In the Higgs mechanism, two scalar fields, one charged and one neutral, enter the
theory in a single complex doublet ¢;,. Analogously to what we did before, we start with

the Lagrangian for a non-interacting Higgs:

Li = (0 ¢n)(0udn)" = V(n). (1.30)
It is customary to work in the unitary gauge, in which the charged Higgs and the imaginary
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Figure 1.8 — Higgs field potential, for different u? regimes. The y? < 1 case is realized in
nature, and the resulting potential exhibits a so-called “Mexican hat” shape, which implies
a non-zero vacuum expectation value of the Higgs field.

part of the neutral Higgs are absorbed as longitudinal polarization modes of the W and Z
bosons:

¢n = NG (¢0( )) ¢°(x) € R. (1.31)

The potential V(¢") has the form:

V(") = 1P pdp" + A(pdp™)*. (1.32)

As seen in Figure this potential potential has minima away from zero for the u? < 0

case, which is realized in nature:
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(0¢}]0) = v. (1.33)

This motivates a change of variable of the Higgs as a perturbation away from this minimum:

¢° =0 + h(x). (1.34)

Therefore, any particle that couples to the Higgs field then acquires a mass proportional
to the vacuum expectation value. For a vector boson V# this would look like:

1 1 1
SOHEVVE = S0V VE + Sh(x)V,VE. (1.35)

Indeed, the first term on the right is a kinetic energy term with mass my = v.

Let’s see how this works out in our model. First, the W 2 3 and B, bosons are introduced
in the Higgs Lagrangian such that the whole thing is locally gauge invariant. Using the
covariant derivative notation:

Ly — (DFop)(Dudn)' = V(pn), (1.36)
g - W Y
Dt =" +igy 5 — + ig'EB“. (1.37)

Expanding this Lagrangian, we get the following kinetic term for Wi »:

2 2 +
— W, W =—|\W* W . 1.38
g3 (W 2)(0 1)(%) > )(0 e |- (138)
And so:
mw = %ng. (1.39)

A similar procedure for W3 and B yields:
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1
my, = 50“5{3, + g7 (1.40)

Thus, through electroweak symmetry breaking by the Higgs mechanism, the W and Z bosons
are permitted to have a mass, but the Lagrangian of Eq. is still locally gauge invariant?|

Comparing Equations and

Ver +87% _ mw

Qw  cosOw’

My, = My (1.41)

Here, Ow is the same “weak mixing angle” than that of Eq.[1.29} it allows the electromag-

netic coupling and charge of QED to be expressed in terms of the electroweak parameters:

e = gwsin Ow = g’ cos Ow, (1.42)
Y
1= L (143

Let’s briefly recap. Left-handed fermions of the Standard Model were placed in left-
handed doublets; requiring that these doublets’ Lagrangians be invariant under SU(2) local
gauge transformation, we deduced the existence of the W 3 3 bosons. Correspondingly, the
model gained a charge: weak isospin, I,. Another gauge group, U(1)y, was used to imply
the existence of the B u bosons, which mixes with the W3 to give rise to the Z boson and the
photon. Another charge appeared, the hypercharge Y. Local gauge invariance of the Higgs
field under SU(2) x U(1)y was then required, which explains the origin of masses, and the
breaking of the SU(2) x U(1) sector into weak charged, weak neutral, and electromagnetic
interactions. This is the Electroweak model [38-40]]; the physical Higgs boson was observed
in 2012 by the ATLAS and CMS collaborations [2, 3], finally confirming its validity.

1.1.4 Summary: The complete Standard Model

We are now ready to write the full standard model Lagrangian. Schematically, we can
break it down into the following constituent parts:

Lsv = Linatter + Loep + LEwk + Liggs- (1.44)

2“The global minimum of the theory defines the ground state, and spontaneous symmetry breaking implies that
there is a (global and/or local) symmetry of the system that is not respected by the ground state.” [37]
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The first part, Latter, is the kinetic term for all Standard Model fermions:

Liatter = Z E(l(; - mf)Hb (1.45)

feSM

Here, the sum runs over all fermions. Their masses are generated by interactions with
the Higgs field, as is the case for the electroweak bosons; however, the SM does not
provide prediction for their observed values and so they enter the model as free parameters
constrained by experiment: three for the charged leptons (electron, e; muon, y; tau, ) and
six for the quarks (up, u; down, d; strange, s; charm, c; bottom, b; top, t). The SM also
includes an anti-particle for each fermion, differing by one unit of electric charge — both
constituent of particle-antiparticle pairs have the same mass. Similarly, there are three
color-differing copies of each quark with the same mass. In the vanilla Standard Model,
the three neutrinos (ve, v, and v;) are assumed to be massles The SM fermions can be

grouped into three generations ordered by increasing mass, separately for the leptons and

L)
66

The Lqgcp term describes color-changing interaction via gluon exchange:

the quarks:

— 1
Lqocp = - Z Y, AsAkeor R, = ZGk,wGZV- (1.48)
q,c,c’,k

The sum runs over quarks (q), color (¢ and ¢’) and gluons (k). This term contains another
free parameter: s, which governs the strength of the strong interaction; the gluon itself
remains massless.

The Lrwk term represents the electroweak interaction before gauge symmetry break-

ing:

30f course, they are known to be massive. The actual values are under-constrained, but they are known
to be extremely small; therefore, in collider physics it is of no great consequence to ignore this complication.
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Lewk = _g7w ;EL(ULQ,?; - Wi,2,3.0)¢L — %Zf: Jf(YWBy)Ebf- (1.49)

Here we have the remaining two free parameters associated to gauge couplings, g and g’.
The part involving the W bosons couple together “left-handed doublets” and is the chiral
part of the model. Flavor-changing interactions involving quark doublets are under-
constrained, and four additional parameters are needed to describe them through the
CKM matrix [41, 42]].

Finally, we have the Higgs sector:

LHiggs = (D¢)(qu)+ - H2¢¢+ + A(¢¢+)2/ (150)
D=d+ igwai'TW" + ig’gBy. (1.51)

We find here the remaining SM parameters — The Higgs parameter, u2, which sets the
“bare” (non-renormalized) mass of the Higgs, m;O) = W The observed mass of the
Higgs, which differs from the bare value due to higher-order loop diagrams, is our last
parameter of interest, my,.

So there we have it, the Standard Model in all its glory: 15 fermions, eight gluons, three
electroweak gauge bosons and one Higgs boson, interacting together through the chromo-
dynamic, electroweak, and Higgs sectors. Its gauge-theory based theoretical structure is
parameterized by 18 free variabled? This theory has passed a large number of experimental
tests with great success, as can be seen for example in Figure

1.2 Problems with the Standard Model

In the previous few sections, we’ve seen how the Standard Model is a theoretically sophis-
ticated and experimentally successful theory of nature. However, it is not perfect; there
are a some problems that still subsist. To name a few:

e The energy gap between the Plank and weak scales, Mp and My, is very large, which

4There is an additional parameter, the “QCD vacuum angle” (6qcp), which in principle allows for CP-
violation from QCD interactions; this parameter is experimentally constrained to be ~ 0. There are also
further parameters describing non-zero neutrino masses (grouped into the the PMNS matrix), which do
not arise out-of-the-box in the Standard Model but are needed to explain phenomena such as neutrino
oscillations. These topics are out of the scope of this thesis.
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ical expectations and ratio with respect to best prediction.
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implies an unnatural fine-tuning of the Higgs mass;
e Astronomical observations of Dark Matter and Dark Energy are not accounted for;
e Gravity is not accounted for;

e The theory is not completely unified, as the electroweak model and QCD require

separate descriptions;

e Thematter-antimatter asymmetry observed in our universe require additional sources

of CP violation beyond the SM mechanisms;
e Neutrino masses are not accounted for;

e The energy gap between the SM vacuum expectation value and the observed cos-
mological constant Ag is extremely large, implying an unnatural fine-tuning of Ag to

120 orders of magnitude.

For this thesis however, we only need to look into the first two problems in details.
The hierarchy problem and the closely related Higgs fine-tuning problem and numerical
naturalness principle are discussed in Section and the subject of Dark Matter is
treated in Section

1.2.1 Naturalness

Let’s first define the concept of numerical naturalness, as it relates the the construction of
physical theories. In his 1985 paper “Naturalness in theoretical physics” [44], Philip Nelson
states the problem:

“(...) we have a strong naturalness problem whenever the set of theories which
even remotely resemble our world is a tiny subset of all the acceptable theories. We
must cure the problem by slicing the latter class down to size. This entails finding
some new principle which renders most of its members unacceptable, leaving only a few
— including of course at least one of the desired theories. In this way, theorists often
permit the introduction of new structures into their theories, even when they are not

7.

strictly called for by observation. ”

For example, remember the QCD model introduced in Section We could have just
started by positing the existence of the eight gluons and not bother with local gauge sym-
metry — this principle has no direct phenomenological consequence after the appearance
of the gauge fields and the subsequent gauge symmetry breaking. However, this leaves us
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with a little too much freedom: the resulting equations still need to have the same exact
form for the theory to match observations, but there is no underlying principle to help
us understand why these are the right equations. Different versions of these equations,
with different numbers of gluons for example, might lead to universes very different from
our own, which means that we live in a very specific realization. Why this one instead
of another? Requiring that QCD be an SU(3) local gauge theory allowed us to start with
less assumptions, and automatically exclude a lot of competing theories, even if this is not
strictly needed after we have obtained the Lagrangian. It makes the theory more natural
in the sense that the appearance of exactly the right eight gluons is unavoidable once we

require invariance under the right gauge group.

However, there is at least one area of the model that suffers from a naturalness problem.
It is related to what is known as the hierarchy problem [45-47], that is, the extremely large
energy gap between the Planck and weak energy scales. Since the Standard Model is an
effective theory, it is only valid up to its ultraviolet cutoff, Ayy. Above this energy, there
needs to be a new theory in which the SM is embedded; However, as Stephen Martin
explains, the Higgs potential exhibits “a disturbing sensitivity to new physics in almost

any imaginable extension of the Standard Model” [48].

Let’s make this more concrete. The expression of the Higgs mass can be schematically
broken into two parts, corresponding to the bare mass and the radiative corrections due

to the higher-order diagrams [49]:

2 2 2
my = my o+ Komy (1.52)
At one-loop level, the radiative contribution to the Higgs boson mass from a massive

fermion has the following form [48]:

S in

Ayv
om? = = ALy +0 (mj% log ) (1.53)

mf
where A is the strength of the Yukawa coupling between the fermion and the Higgs.

Gravity, as described rather successfully by general relativity [50], is not compatible
with the Standard Model [51]. This means that Ayy is at most in the vicinity of the re-
duced Planck mass, M, ~ 10'® Geat which gravitational effects become non-negligible.
Consequently, based solely on Eq. we should a priori expect the Higgs mass to be

5In natural units, ¢ = i = 1, and therefore masses are quantified in units of energy.
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proportional to the reduced Planck mass:
mpy o< M. (1.54)

However, the observed Higgs boson mass is at the level of the weak scale, a posteriori
leading us to posit:

my o< G'/?, (1.55)

where Gr is the Fermi constant, which quantifies the electroweak scale. If equation is
the right relation, the constant of proportionality (x in Eq.[1.52)) has to be incredibly small,
in the order of (VGFMp)~! ~ 107161 Why this one, instead of another[¢p.

There are a few proposed solutions to this problem, the first of which is basically to
ignore it. In that case, we simply accept that the low- and high-energy sectors of the SM do
not decouple when computing the Higgs mass, in contrast to the rest of the model, which
is unaffected by ultraviolet parameters [52, 53]. However, a successful theory would still
need to explain why that is, or equivalently why is the G;l/ ?/Mp ratio so large [15]]. For
example, the anthropic principle states that if the ratio was anything other than something
close to 10716, it would be very unlikely for the universe to sustain life, at least in a form
that we can recognize; the equation has to be exactly this way for us to even exist and
write it down. To side-step problem of naturalness, we can posit the existence of many
different parallel universe, contained in a multiverse. Each of these universes is allowed to
have different values of fundamental constants, and by definition we happen to live in a
universe that has the right conditions for emergence of large-scale structures and complex
life [49].

Actually fixing the problem comes a hefty price: new physics has to be introduced
somewhere between the weak and the Planck scale in order to somehow tame the A%V

term. Let’s make this explicit and assume that there exists a mechanism to cancel it

out. What about the remaining O (m? log(Ayy/m f)) contribution from Equation [1.53]

Because of the mj% dependency, the biggest contribution of this form comes from the top

quark whose mass, like the Higgs, is at the level of the weak scale. The induced correction

¢In the words of Gian Giudice: “Just to get a feeling of the level of parameter tuning required, let me make a
simple analogy. Balancing on a table a pencil on its tip is a subtle art that requires patience and a steady hand. It is a
matter of fine tuning the position of the pencil such that its center of mass falls within the surface of its tip. If R is the
length of the pencil and r the radius of the tip surface, the needed accuracy is of the order of r? /R? . Let us now compare
this with the fine tuning in x. The necessary accuracy to reproduce [(VGrMp)™ 1 is equal to the accuracy needed to
balance a pencil as long as the solar system on a tip a millimeter wide! (...) This has led to a widespread belief among
particle physicists that such an apparently fantastic coincidence must have some hidden reason.” [49].
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is, roughly,

om2  m?2 A
— e L og 20V (1.56)
my mp my

With m; and my, at the weak scale ~ 102 GeV and Ayy ~ 108 GeV, a simple Fermi estimat

yields:
omy -

10 (1.57)

In other words, if we can make the O(AZ,,) term disappear, the observed mass of the Higgs
boson is approximately within an order of magnitude from what is expected from the

mass computation, which would mean that the observed relationship equation is the
right one.

What can be said about the mechanisms that could solves the A%V problem? One
solution would be to push down Ayy nearer to the weak scale; this is what happens in
extra-dimensions models, in which the characteristic energy scale of gravity is O(TeV) but
appears much larger because it is diffused in these extra dimensions, which are invisible
to the other forces [54]. There are also hypothetical models of composite Higgs [55] in which
the Higgs mass is dynamically generated by its constituents and no fine-tuning problem

arises.

Another, perhaps more elegant solution is to protect the Higgs mass from large higher-
order corrections by introducing a new symmetry. The idea is not far-fetched; for instance,
large corrections to fermion masses via self-energy diagrams involving photons are for-
bidden by the chiral symmetry of QED [52]. For now, let’s just note that the contribution
to the Higgs mass from a new heavy scalar particle S would take the form [48]:

A A
om? = T;Aav +0 (mg log mLSV) : (1.58)

Notice the sign difference relative to equation [I.53}

Auv
om2 = ——— A2+ 0 |m?log — |, 1.59
ny, 32 uv (mf 0g o ) (1.59)

As we shall see in Chapter 2, such expressions arise in the context of supersymmetric
extensions of the Standard Model.

’https://en.wikipedia.org/wiki/Fermi_problem
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1.2.2 Dark Matter

Dark Matter is a term encompassing a family of hypothetical massive particles whose
presence in the universe is hinted at by many supporting observations that show a large

amount of massive, non-luminous matter that is unaccounted for in the Standard Model.

Galactic rotation curves

One of the better known supporting evidence for this “missing” matter is found in the
study of the orbital velocity of light-emitting bodies in spiral galaxies. Indeed, there is
a relationship between the rotational speed of an object at a distance r from the galactic
center and the galaxy’s mass distribution m(r) due to Kepler’s third law:

o(r) o mi”. (1.60)

From observation of light emitted from galaxies and through the use of mass-to-luminosity
ratios, it was long thought that most of the spiral galaxies’s mass is distributed near their
center. Within this region, the total mass enclosed within an orbit grows with the volume it
encloses while outside of this massive center, the remaining mass due to luminous matter

can be neglected and the enclosed mass is approximately constant [56]. Thus:

r near the galaxy’s center,
o(r) « (1.61)
1/4/r  out of the center.

The advent of radio-wave astronomy in the second part of the 20th century allowed scien-
tists to measure these rotational curves by studying the Doppler shifts of electromagnetic
radiation emitted by stars and gas at well-defined wavelengths. The results from such
observations are at odds with the behavior prescribed by Eq. (I.61)): the measured rotation
curves show a roughly constant velocity out of the galaxy’s center as seen in Figure [1.10]
This implies that a large portion of the mass of spiral galaxies is due to non-luminous,
“dark” matter [57, 58]

Gravitational lensing and the bullet cluster

The phenomenon of gravitational lensing is without a doubt one of the most startling
implications of general relativity; it states that even though light is massless, its path is
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Figure 1.10 — Rotational curve for the NGC 2998 galaxy in Ursa Major, measured from its
hydrogen-alpha emission spectrum [59].

still affected and can be bent by gravity. One important implication is that by analyzing
data from distant light sources from the universe, one can infer the mass distribution in
between the sources and the observation point. Such techniques have been used to study
the Bullet cluster, which consists of two merging (or colliding) clusters of galaxies. As
seen in Figure the luminous matter distribution is peaked at the center of the system,
roughly at the collision point, while the mass distribution inferred from gravitational
lensing has two peaks on either sides of the collision area. These non-luminous matter
peaks are thought to be a strong hint of presence of the dark matter in the colliding clusters;
since dark matter does not interact strongly or electromagnetically, it is more or less free
to pass straight through the collision center, as opposed to luminous matter that is seen to

stay in the center of the system [60].

The Cosmic Microwave Background and the The Acpy model

Another piece of evidence in favor of dark matter comes from measurements of the
anisotropy of the cosmic microwave background (CMB). This microwave background
originates from the the early universe, at a time at which its density had decreased enough
through expansion that photons started escaping from the plasma originating from the
Big Bang — the era of last scattering. Since photons were previously confined to areas of
high density, by measuring temperature fluctuations in the CMB we obtain a map of the
baryonic structures present in the early universe. In practice, the scales of these structures
is inferred by measuring the temperature of the CMB in a multipole expansion. In a uni-
verse only containing baryonic matter, the energy at higher multipole moments tends to be

diffused, since electromagnetic interactions before the recombination of baryonic matter
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Figure 1.11 — Overlay of the mass contours inferred from graviational lensing and (a) a map
of visible light and (b) a map of x-ray spectrum radiation from the Bullet cluster, showing
that the mass distribution has peaks on either sides of the center [60].

in neutral atoms exerts too much outward pressure at small length scales. However, mea-
sures of the CMB by various satellites show clear peaks at these higher-order moments,
which indicates presence of neutral (“dark”) massive particles that allowed formation of
such structures by gravitational pull [56], as seen in Fig.

This is epitomized in the Acpy model, sometimes called the “Standard Model of cos-
mology”. This model describes very successfully the structure of the CMB by including
non-charged matter with velocity < c; hence the name of “Cold Dark Matterff} Surpris-
ingly, according to Acpm, baryonic matter accounts for about only 26.6% of all matter
in the universe, the rest being made up of cold dark matter for which science has yet to

experimentally observe a live specimen [63].

WIMP dark matter candidates

The prime candidate for particle dark matterf|is a “WIMP”, or “Weakly Interacting Massive
Particle” [66]. Naively, it may seem that the SM neutrinos would be good such candidates:

8Models allowing relativistic dark matter generally fail to correctly describe how matter clusters at
different scales in the universe.

*There are other possible ways of accounting for observations of dark matter. An obvious solution would
be that of modifying the mathematical description gravity; this is the “MOdified Newtonian Dynamics”
(MOND) solution [64]. However, such models have historically been much less experimentally successful
than the Acpy model, which assumes existence of particle dark matter .
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Figure 1.12 — (a) WMAP seven-year data [61] overlaid with various predictions showing
how the baryon and dark matter fractions, ), and Qg,,, affect the CMB anisotropy [56].
(b) Power spectrum measured from the Planck 2018 results, which are used to compute
the current values of Q, and Q,, [62].

they only interact weakly, and their masses, while still under-constrained by experiments,
are known to be non-zero. However the very small upper bound on the neutrino masses
implies that they are always relativistic and thus not viable cold dark matter candidates.
Thus, a WIMP solution to the dark matter problem implies beyond-the-Standard-Model
(BSM) physics. As we will see in Section such particles naturally arise in just the
right amount in many R-parity conserving supersymmetric extensions of the SM.

1.3 Conclusion

In this foundational chapter, we have first seen how the Standard Model arises in a sur-
prisingly simple and elegant manner from its SU(3) x SU(2) x U(1) local gauge structure.
Conceptually, it contains two sub-theories, Chromodynamics and the Electroweak model,
which have both been extensively validated by experiments. Nonetheless, we’ve also seen
that some important problems remain, and we’ve discussed in some details two of them:
the hierarchy and the dark matter problems. In the next chapter, we’ll review a well-
known framework that could be used to extend the Standard Model and solve the two
aforementioned problems: supersymmetry.
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Chapter 2
Supersymmetry

Supersymmetry (SUSY) [67-72] is an extension of the space-time symmetries that trans-
forms bosons into fermions, and vice-versa. The idea of such an operation originated in
the late 60s and early 70s independently in the Western world and in the Soviet Union [73]
but, as seen in Figure the idea really took off in the early 80s, concurrently with the
realization that this new kind of symmetry could solve the naturalness problem of the
Higgs sector [74,75], discussed in Section[1.2.1]

1000

Supersymmetfy

number of papers

500 F

Supergravity

1 1 1 1 I
72 74 76 78 80 82 84 86

Figure 2.1 — Number of published papers about supersymmetry and supergravity (a
locally-invariant version of SUSY) per year in the 70s and 80s [73].

We start with a theoretical overview in Sec. motivating the search for supersym-
metric partners of the gluon and third generation quarks, followed by a status review of

the experimental search for such particles in Sec.



2.1 Theoretical overview

Note: unless otherwise noted, this section is based on References [48,|52|76-78|]

Supersymmetry is not an actual theory, but simply the idea of a symmetry operation
relating bosons and fermions. To obtain a properly supersymmetric theory, we must
construct a Lagrangian in which this symmetry is manifest.

Analogously to the chiral multiplets introduced when discussing the electroweak
model (Section [I.1.3), particles related by a supersymmetric transformation are arranged
in supermultiplets. These must possess the following properties, among others:

1. Within a supermultiplet, particles must have the same basic properties except for
spins, which must differ by 1/2 between the fermions and the bosons;

2. When a spin-1 boson and a spin-1/2 fermion are together in a supermultiplet, both
chiral components of the fermion transform under the same gauge group as the

boson;

3. Within a supermultiplet, the number of fermionic and bosonic degrees of freedom

must be equal.

The first property has an important consequence: it effectively forbids supermultiplets
populated by SM particles only. Therefore, SUSY requires BSM physics. The second and
third properties allow us to decide how to place SM particles in supermultiplets — let’s
begin with the case of SM fermions. Since they exhibit chiral behavior, by property two
they can only form multiplets with scalar bosons. Again, since they are chiral objects, by
property three the simplest possible supermultiplet involving an SM fermion additionally
contains two scalar fields (or a single complex field) and is called a chiral supermultiplet.

A single free chiral supermultiplet consisting of a fermion, ¢, and two scalar bosons, ¢1

and ¢2, is already enough to build a basic supersymmetric theory, called the Wess-Zumino
model [69]}

Lwr =5 (T + 0up1)? + @u027). @)

A supersymmetric transformation mixes the scalar bosons and fermions:

To simplify, here we are ignoring the complications due to “auxiliary fields”, which do not correspond
to physical degrees of freedom.
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Y = ¢ +dpia +idpaa, (2.2)
d1 — 1 +iaySy, (2.3)
P2 = P2 —ay, (2.4)

where « is a spacetime-independent anti-commuting spinor that ensures that various
terms have consistent dimensionality and which parameterizes the transformation. The
Lagrangian of Eq.[2.1|gains an extra term, which fortunately disappears after applying the
Euler-Lagrange equation. Therefore, the theory is invariant under this specific supersym-

metric transformation.

Standard Model vector bosons are placed in supermultiplets with their spin-1/2 super-
partners? called gauginos, to obtain vector supermultiplets. An example of a supersymmetric

Lagrangian involving a such a supermultiplet would be

1 —
Lo = —JFj " + iAGH (DA + ng“bCAZ/\C), (2.5)
b,c

where A is the vector boson with kinetic term F,,, A is the gaugino, ¢* is an anti-
commuting spinor (again to ensure the right dimensions between the different terms) and
the a, b and ¢ indices run over all the generators of the appropriate gauge group. A
supersymmetric transformation for this supermultiplet mixes the vector bosons and the
fermions:

1. _
Al — Al - $(e+oyﬂ’ +A""5€), (2.6)
A — A+ —_(a*G €)Y, 2.7)

2V2

The € factor parametrizes the transformation. Both transformation “mix” the SM bosons

and the gauginos, and again we have a supersymmetric Lagrangian.

2The spin=3/2 case makes the theory non-renormalizable
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211 The Minimal Supersymmetric Standard Model

We’ve just seen how it’s possible to create supersymmetric Lagrangians by placing an
SM fermion in a chiral supermultiplet with two new scalar fields, and by placing an SM
boson into a vector supermultiplet with a fermionic gaugino. Moreover, the supersym-
metric Lagrangians of Equations [2.1| and [2.5| are built from the same components as the
full Standard Model (Section ; therefore, we only need to construct chiral and vector
supermultiplets involving SM particles to obtain the Minimal Supersymmetric Standard
Model, or MSSM |79, 80].

As explained in the previous section, each Standard Model fermion is put into a super-
multiplet with two scalar fields. These supersymmetric particles are named by prefixing

‘" _ 7
S

the name of their SM partner with the letter (for “scalar”), and are symbolized by a
tilde. For examples, the superpartners of the top () and bottom (b) quarks are the stops
(fr, t1) and the sbottoms (l; R, b 1), respectively. Each chiral component gets its own super-
partner, but in general the mass eigenstates will be linear combinations; these are denoted
by a numeric index ordered by mass (for example, the fr and f; can mix to form f; and f5,
with the first one being lightest).

The supersymmetric partner of an SM boson is named by appending the suffix “-ino”
to their partner’s name. Therefore, the gluon is associated to the gluino (g). The situation
is a little more complicated for the electroweak sector: the gauge bosons are associated
to the gauginos, namely, the Winos (W1,2,3) and the Bino (B); the Higgs sector has to be
enlarged to avoid gauge anomalies [81], and consist of two complex Higgs doublets and
their superpartners, the Higgsinos. As a consequence of SU(2) x U(1) symmetry breaking,
the Higgsinos and gauginos mix into charged and neutral states, the charginos ¥ and
neutralinos )??, whose indices are also mass-ordered.

In total, the MSSM adds a whopping 105 free parameters to the 18 parameters of
the Standard Model: 36 parameters expressing the mixing of supersymmetric particles
(often called “sparticles”), into mass eigenstates; seven parameters governing CP-violation
in the extended electroweak sector; 40 parameters governing CP-violation in sfermionic
interactions; and 21 masses. All the SM particles along with their respective superpartners
are shown in Figure

Supersymmetry breaking

Earlier in this chapter, we mentioned how all particles in a supermultiplet must have the
same properties save for their spin. This effectively constrains supersymmetric particles
to have the same masses as their SM partners. This is a problem, since if that were the
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Figure 2.3 — Hypothesized Supersymmetry breaking mechanisms usually involve a hidden
sector, which couples only to the supersymmetric sector of the MSSM .
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case the universe would probably be a very different place than it appears now; at the
very least, superpartners of stable SM particles would have been observed already, which
is manifestly not the case. The implication is clear: either SUSY is not realized in nature,
or it is a broken symmetry.

Since the exact breaking mechanism is unknown, the masses and the mixing parame-
ters of supersymmetric particles cannot be predicted out-of-the-box in the MSSM, which
explains why we need what seems like an absurd amount of additional free parameters.
There are a few hypothesis as to what a viable SUSY breaking mechanism might look like,
and they all reduce the number of additional parameters to less than a dozen. Most break-
ing mechanism split the MSSM into a visible sector, which includes the SM, and a hidden
sector, which is completely decoupled from the SM but not from the supersymmetric part
of the visible sector, as can be seen in Figure 2.3; these hidden-visible couplings effectively
raise the sparticle masses beyond that of their SM partners. For example, the hidden sector
might be an additional gauge sector, as in the “GMSB” model [83-85], or can be related to
gravity, such as in the minimal SuperGravity (mSUGRA) model [86-88].

The Higgs mass in the MSSM

We’ve seen in section how in the Standard Model the Higgs boson mass receives
large contributions at one-loop level proportional to the square of the ultraviolet cutoff
from massive fermions:

IAf?

A

In the MSSM, each of the associated scalars in the chiral supermultiplet containing the
fermion also contributes:
As

A”V
2 2 2
6mh,s =16 2AUV +0 (ms log . ) (2.9)

Two things are worth noting about the O(AQUV) terms of these two equations: their signs
are opposite, and they differ by a factor 2 if A; = |)\J2r | Each chiral supermultiplet will
contribute two additional diagrams beyond the top contributions, as seen in Figure
and the three O(A%W) terms will sum to zero. This procedure is not ad-hoc; it’s a direct
consequence of the new symmetry introduced in the MSSM and therefore the result holds

for all fermions and at all perturbative orders. Because of supersymmetry breaking,

3This relationship always holds in unbroken SUSY, and is also valid when SUSY is broken by a hidden
sector.
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Figure 2.5 — Gluino contribution to the Higgs mass at two-loop level [89].

the magnitude of the remaining correction is then dominated by the scalar’s mass, which
shouldn’tbe too far above the electroweak scale if the fine-tuning is to be kept at a minimum.

The highest mass fermions being the top and bottom quarks at ~ 175 GeV and ~ 4 GeV,
respectively, the stops and the sbottoms cause the largest remaining corrections to the Higgs
mass. It is also worth noting that the stop and sbottom masses themselves get important
corrections from the gluino and consequently so does the Higgs, once the computation
accounts for two-loop effects as seen in Figure Therefore, if the fine-tuning problem
is to be solved in the MSSM, these three supersymmetric particles must have masses not
too far above the electroweak scale and as a consequence would be likely to be produced
at TeV-scale colliders such as the LHC.

Itis possible to quantify the amount of fine-tuning introduced by a particular realization
of the MSSM mass parameters, by using the Barbieri-Giudice measure [90, 91]:

2
M? dm;

A= —_——
mﬁ oM?

max , (2.10)
MeMSSM

where M stands for any MSSM mass parameters. This measure probe the sensitivity of
the Higgs mass to perturbation of M. Figure shows an example of the use of this
measure in the stop—gluino mass plane, using precision computations for the sparticles
contributions to the Higgs mass; it shows that a sizable part of this phase-space can lead
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Figure 2.6 — Higgs mass fine-tuning introduced by the gluino and stop masses (M3 and
Mg3) estimated with the Barbieri-Giudice measure (Eq.[2.10) with two different values of
the SUSY breaking scale [91].

to minimally fine-tuned models even with TeV-scale masses.

The “Electroweak measure”, Agw, is an alternative way of quantifying the amount of
fine tuning which defines a minimally fine-tuned model as one where all SUSY contribu-
tions to the Higgs scalar potential V(¢) are of order m2 /2 [92-94]:

C
2
my [2

Apw = max

: : (2.11)

Here, the C terms are individual SUSY contribution terms involved in the m2/2 compu-
tation. If some terms contribute substantially more than m% /2, then the Z mass becomes
fine-tuned. The study performed in Ref.[94] attempts to probe the fine-tuning introduced
by many different realizations of SUSY breaking models using both measures. As seen in
Figure there are still many unexcluded models with low fine-tuning and which are
consistent with the currently observed bounds on the dark matter relic density.

R-parity conservation and dark matter

The lightest neutralino, ¢¥, is of particular interest because of the principle of R-parity
conservation [96]. Every particles of the MSSM has an R-parity number constructed from
its baryon and lepton numbers, B and L, and its spin S:
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R = (=1)3(B-L)+25 (2.12)

Requiring that R-parity be multiplicatively conserved at each interaction vertex effectively
forbids proton decay. In the SM, there is no renormalizable interaction that could lead
to such an event, but the extended Lagrangian of the MSSM has no such constraint; The

proton is known to be extremely stable, with a lifetime of at least 2.1 x 10%

years[10],
and so requiring that it be absolutely stable in the MSSM is likely to be at least a good
approximation. R-parity has at two very important consequences beyond proton stability,
both owing to the fact that SM particles all have an R-parity of +1 while their superpartners

have an R-parity of —1:

e Supersymmetric particles are always pair-produced if there are only SM particles in
the initial state, as is the case in particle colliders;

e Supersymmetric decay chains must end with an even number of the lightest super-
symmetric particle, or LSP.

If the neutralino is the lightest supersymmetric particle, then by the latter statement it will
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be stable. Moreover, since it is formed by mixing superpartners of massive gauge bosons,
it also has a mass; and by construction it only interacts via the weak interaction and is
electrically neutral. Therefore, if R-parity is conserved then the lightest neutralino, 9, is
a perfect WIMP dark matter candidate [97, 98|]. Indeed, a large part of phase-space of the
MSSM parameters lead to ¥V cross-sections in the early universe that are compatible with
the observed dark matter relic density.

2.2 Experimental status

With 105 free parameters beyond that of the SM, the MSSM phase-space is simply too large
to be considered in its entirety]¥, and some cleverness is needed to organize the searches and
interpret the constraints that they set. In this section, we consider two different paradigms:
the pMSSM (Section [2.2.1), and simplified models (Section [2.2.2).

2.2.1 The pMSSM

As just mentioned, the MSSM phase-space is extremely huge. Fortunately, its overwhelm-
ing majority is already ruled-out by experiment. For example, many models arising from
the MSSM lead to an excess of dark matter and/or CP-violation with respect to current
observations. Using experimental considerations such as these, it is possible to project the
105 parameter MSSM into 19 or so parameters; the resulting model is referred to as the
phenomenological MSSM, or pMSSM [99, 100]. The resulting phase-space is still enormous;
however, since all model points in the pMSSM are, by design, phenomenologically viable,
it’s possible to estimate the constraints imposed by searches by sampling from the allowed
phase-space and performing statistical tests on the resulting models to gauge how many
of them are conclusively excluded. The results can then be visualized in many different
planes, such as in Figure 2.8, which show the impact of ATLAS +/s = 8 TeV SUSY searches
in the sbottom/stop—neutralino mass plane. Comparing this with Figure we see that
the first ATLAS data-taking run has not ruled out natural supersymmetry.

Since the pMSSM takes the dark matter relic density into account, it provides a natural
framework in which to assess the impact of searches on the viability of SUSY as a solution
to the dark matter problem. In Figure the conclusion is similar as before: the first
ATLAS data-taking run has not ruled out this particular motivation.

4To give an idea of just how so, discretizing each parameter axis into two halves each would still leave us
with 2195 ~ 4 x 103! combinations to consider. Assuming you could do an hypothesis test in just a single
nanosecond, it would take more than one million years to fully cover this crude binning using a computer
with a million cores.
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2.2.2 Simplified SUSY models

The pMSSM approach outlined in the last section is very useful, but the process of sam-
pling parameters, generating datasets and performing statistical tests is quite resource-
intensive® Therefore, asimpler approach is usually employed to guide individual searches:
the simplified model paradigm [102-104]. In such models, only a few parameters of interest
are considered — usually the masses of the sparticles being searched for — and the rest are
decoupled. This allows setting limits based on specific final states, without reference to
the underlying MSSM parameters that might have produced them. In this way, the phase
space is reduced to a very manageable set of parameters (usually two or three) that can
be comprehensively covered. For example, the model in Figure has three free pa-
rameters corresponding to the gluino, stop, and neutralino masses. Since limits are better

visualized in less than three dimensions, some parameters can be removed by assuming

that some of the intervening particles are off-shell, such as in Figures [2.10b| and [2.10¢|

in which the gluino decays are modeled as three body decays, yielding the Gtt and Gbb
models; these are the main benchmark models considered in this thesis and searched for
in Chapter 5, Such models, which have two free parameters, are sometimes called “grids”

since the parameter space can be visualized in a two-dimensional plane.

Events from these models have very striking topologies, and thus contain a lot of
information that can be exploited to recognize them among the SM background. Both
models start with each gluino of the pair decaying to pairs of third-generation quarks and

a neutralino:

§ob+b+7 (Gbb), (2.13)
got+t+ 37 (Gtt). (2.14)

At this stage, the four b-quarks from a Gbb event will form jets that will contain b-
hadrons and thus can be recognized by b-tagging algorithms (Section 5.2.3)). In Gtt events,
the four top quarks overwhelmingly decay to a b-quark and a W boson, which itself can

decay to quarks or leptons:

t—>b+W, (2.15)

SFor this reason, the pMSSM sampling procedure outlined above is only performed by the collaboration
after data taking runs of several years.

66



followed by:
W-og+q or W—ol+7. (2.16)

Therefore, a fully-hadronic Gtt event will have twelve jets originating from the inter-
action, four of which are b-jets, while maximally leptonic events have four leptons and
four associated neutrinos as well as four b-jets. A large amount of missing transverse
energy, EI'™ (Section , is also expected since in both grids the two neutralinos and
the potential neutrinos deposit no energy in the detector.

The mass splitting, defined as the difference between the gluino and neutralino mass,
has a large impact on the kinematics of the final states. Schematically, we can define two

important regions in this phase-space:
e The boosted region: Mg > Mzo;
1
e The compressed region: mg ~ m 70

In the boosted region, final state particles typically have more momentum than events from
the compressed phase-space and are thus easier to distinguish from the SM background.
Figure shows the leading small-radius jet p (Section and EI's distributions in
different mass splitting regimes of the Gbb and Gtt models.

Figure compares the bounds on these models obtained by ATLAS and CMS run 2
searches. For an approximately massless neutralino, gluino masses of x 2.2 TeV are not
excluded and so natural SUSY is not ruled out by these searches.

In these models, it has been tacitly assumed that the stop and sbottom masses plays
no large part in the resulting phenomenology. Figure shows that this is a good
approximation in the Gtt model; the limits are only significantly different when the stop
is approximately mass degenerate with the gluino or the neutralino, in which case the
available kinematic phase-space is reduced.

Stop and sbottom masses are somewhat less constrained by direct searches, as seen in
Figure with the most stringent lower bounds being approximately 1.2 TeV in both

cases; natural SUSY is not ruled out by these searches either.

2.3 Conclusion

In this second and last theoretical chapter, we have learned about a family of theories
that extend the usual spacetime symmetries to include exchange of bosons and fermions,
called supersymmetry. By considering the basic Wess-Zumino model, we’'ve seen how
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Figure 2.10 — Simplified models of pair-produced gluinos decaying to (a)top quarks via
stop quarks and (b,c)top or bottom quarks and neutralinos via off-shell squarks.
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Figure 2.13 — Impact of the stop mass on the Gtt cross-section limit for the simplified model
of Figure The limits are only significantly different when the stop is approximately
mass degenerate with the gluino or the neutralino [9].

building supersymmetrical Lagrangian is quite simple, and that all Standard Model par-
ticles can be grouped with their beyond-the-standard-model superpartners into chiral or
vector supermultiplets. We’ve then discussed the MSSM model, which makes the SM
supersymmetric; in this extended theory, the hierarchy and dark matter problems that
were discussed in the previous chapter are potentially solvable. Moreover, by considering
the phenomenological MSSM (pMSSM) as well as simplified SUSY models, we’ve seen
that viable supersymmetric extensions of the SM are not yet ruled out by experiment.

With all of this in mind, it is now time to switch our focus to experimental consid-
erations, starting with a description of the current most powerful particle accelerator:
the Large Hadron Collider, or LHC, a machine that could very well lead to laboratory
observations of supersymmetric particles.
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Chapter 3

The Large Hadron Collider and the
ATLAS detector

3.1 The Large Hadron Collider

Note: unless otherwise noted, this section is based on Reference [6]].

The Large Hadron Collider (LHC) [6], is a 27 km particle accelerator situated at the Eu-
ropean Organization for Nuclear Research (CERN) along the France/Switzerland border
near Geneva. Its tunnel was bored in the 80s to house the Large Electron-Positron Collider
(LEP) [105], which finished operations in the year 2000 to allow construction of the LHC.

The LHC is a hadron collider primarily used to collide beams of protons. It has also
seen special runs of proton-lead, lead-lead, and xenon—xenon collisions; this thesis is
chiefly concerned with proton—proton (p—p) collisions. The LHC's second data taking run,
colloquially identified as “Run 2”, took place from 2015 to 2018 and collided two 6.5 TeV
proton beams for a center-of-mass energy of 13 TeV, the largest ever achieved in laboratory.

The LHC is designed to accelerate protons from an initial energy of 450 GeV. Further-
more, single protons are found within hydrogen-1 atoms, which are electrically neutral
and cannot be electromagnetically accelerated. Consequently, a few preparation stages are
needed upstream of injection into the LHC’s rings.

The adventure starts by opening the valve on a small gas bottle that feeds hydrogen-1
atoms into a duoplasmatron; this device subjects the hydrogen gas to an electrical field
strong enough to produce a plasma, allowing the electrons to be collected by a cathode
and the protons to undergo a small initial electrostatic acceleration in the direction of an
anode with a small central aperture, thereby forming a beam.

This beam is then transferred to the first proper accelerator in the chain: Linac 2 [106],
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Figure 3.1 — (a)CERN accelerator complex [114] and (b)LHC layout [115].

a linear accelerator inaugurated in 1978, which raise the protons’s energy up to 50 MeV, a
regime suitable for injection into a circular accelerator]!] The beam is then transferred to the
Proton-Synchrotron (PS) complex [107, [108], comprising the Proton-Synchrotron Booster
(PSB, 1972) and the PSitself (1959), which accelerates the protons up to 1.4 GeV and 25 GeV,
respectively. Finally the beam is circulated in the Super Proton-Synchrotron [109] (SPS,
1976), the accelerator that famously enabled the discovery of the W and Z bosons (Sec-
tion(1.1.3) in 1983 [110-113]. This last machine in the pre-LHC acceleration chain energizes
the beam to 450 GeV before handing it over to the LHC where it will be collided. The

whole accelerator chain, as well as a depiction of the LHC's ring, can be seen in Figure

3.1.1 The recipe for high energy

Let’s take a few moments and consider just how the LHC is able to achieve a record center-
of-mass energy of 13 TeV. There are two basic ingredients to this feat: radio-frequency (RF)
cavities and dipole magnets, both of which are enabled by superconducting technology.

Radio-frequency cavities

The accelerating sector of the LHC and its upstream chain are made of series of closely-
spaced hollow resonant cavities, made of niobium sputtering on copper, joined by an
insulating beam-pipe. Each cavity is subject to an electromagnetic wave to build up a

resonant electric field on the inside, producing much larger gradients than is possible with

1A new machine, Linac 4, is slated to replace Linac 2 starting from the LHC's third data-taking run.
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electrostatic or inductive acceleration. However, since the field is oscillating, the protons
have to be arranged into bunches and timed such that they enter the cavity when the field
points in their direction of motion. This requires the following relationship between the

spacing between cavities L, the proton’s velocity v and the standing wave frequency f:

(%

At a fixed frequency, an in-phase proton will tend to settle at the velocity v since any further
acceleration will make it fall out of phase and decelerate. Therefore, the beam energy is
largely dependent on the frequency of the standing wave inside the cavities [116].

The field oscillation can be exploited to minimize the longitudinal spread of a bunch
by having it enter the cavity slightly early. In such cases, protons lagging behind the
bunch center will be nearer to the cavity’s center when the field peaks and they get a
correspondingly bigger acceleration, while protons going too fast are more de-phased
than the rest of the bunch and are accelerated less.

The LHC has a total of 16 such cavities (eight per beam) housed in four separate
cryomodules, which cool the apparatus to as low as 4.5 K. They are all situated in the same
octant of the LHC ring (see Figure [3.1b).

Dipole magnets

The dipole magnets” purpose is to keep both proton beams on a circular trajectory in the
center of the LHC’s beam pipes. There is a direct relationship between the beam energy
Epeam (in GeV) and the required magnetic field B (in Teslas) to bend it around a given

radius of curvature R (in meters) [117]:

B = Epeam

= m/ Ebeam > Mproton- (32)

For a beam energy of 6.5 TeV and a radius of 2.6 kmP} the required B-field is an ex-
treme 8.33 T. This field is created by a correspondingly intense electric current of about
11.85 kA. The only viable way to operate in this regime is by employing superconducting
technology; the LHC’s dipole use niobium-tin (NbTi) coils cooled to 1.4 K by super-fluid

helium.

2An astute reader might notice that 27t X 2.6 ~ 16 km; this is because the LHC ring has many straight
sections, wherever there are no dipoles, which raise the effective radius for a total circumference of 27 km.
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Figure 3.2 — (a) Cross-section and (b) magnetic field of the LHC dipole system.

Owing to the two counter-rotating proton beams, the dipole system comprises two
beam-pipes subject to opposite magnetic fields to steer the beams in the right directions,
as can be visualized in Figure

3.1.2 The recipe for high luminosity

By analogy with the brightness of a light source being defined by the amount of outgoing
photons, the luminosity at one of the LHC’s interaction point (IP) is a controllable parameter
that defines the expected amount of outgoing particles. For two identical and symmetrical

beams, the instantaneous luminosity is

2
n
Linst = fcollm X 7:/ (33)

where fo11 is the bunch collision frequency (25 ns! at the LHC), n is the number of protons
per bunch, 6 is the transverse beam spread and ¥ is a correction factor accounting for

various higher-order effects such the bunch-crossing angle and the longitudinal bunch
length. For a physical process with cross-section o, recorded for a length of time T

T
Now=0 [ Lus(t). (3.4)
0
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The three most important ingredients required to achieve a high luminosity are a very
high collision rate, a large bunch density, and a small transverse beam spread. These first
two design goals ruled out from the outset the attractive idea of having one of the beam be
composed of anti-protons, like at the Tevatron collider at Fermilab in the USA and at the
SppS at CERN; such beams have several advantages such as allowing very precise mea-
surements of CP-violating processes [119] and allowing a simpler dipole magnet design,
but anti-protons must be produced by first colliding a proton beam with a fixed target, a
process that is not fully efficient. This makes it more difficult to obtain enough particles to
sustain a high collision rate and to raise the bunch density with a reasonable turnaround
timeP] In fact, the Tevatron operated with ~ 6 bunches/km, while the LHC is nominally
designed to have ~ 70 bunches/km, an order of magnitude more [120].

The transverse beam spread is defined by two further parameters, the transverse emit-
tance, €, and the value of the p function at the interaction point, f*. Along one of the

transverse axis:

6 = \Jep". (3.5)

The emittance is the primary beam quality parameter; it measures the spread of parti-
cles in the x—A, phase space, where x is the particle position and A, = g—;‘ is the particle
deviation from the nominal path s. It can be numerically defined as the area of the ellipse
encompassing all protons in this plane, as seen in Figure

In ideal conditions, the emittance is a conserved quantity for the entirety of the beam’s
lifetime. However, this, assumes a perfectly linear magnetic field that is perfectly known
all along the trajectory, a condition not realized in the real world. For example, mismatch
between the optics at injection lead to emittance growth, and non-linearity in the bending
and focusing magnetic fields can lead to fluctuations in Ay known as betatron oscillations,
causing the emittance to grow over time. To counteract these effects, the LHC has a trans-
verse feedback system known as the ADT, which corrects the beam orbit by recording its
deviation and applying a correcting electric field at a latter point along the trajectory [122],
as seen in Figure

Emittance growth is synonymous with a loss of beam quality, since it comes with a
corresponding drop in luminosity beyond the inevitable losses due to p—p interactions.

Since the turnaround time of the LHC is not prohibitively long, the beam is usually dumped

3A viable turnaround time was achieved at the Tevatron by the usage of a storage ring to build-up the p
beam ahead of time.
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Figure 3.3 — The emittance € is defined as the area of the ellipse encompassing all of the
beam’s constituent particles in the x-A, plane, divided by 7 [121].

after about 12 hours solely based on luminosity considerationg?

The  function value is related to the width of the emittance ellipse along the positional
axis, as visualized in Figure[3.5 The use of quadruple magnets for focusing do not reduce
the emittance, as stated earlier, but rotates the beam in the x—A, phase space. The g value
at the interaction point (IP), g*, has to be very low to obtain a high luminosity; this is
achieved at the expense of a temporarily higher spread in A,. Out of the IP, the beam is
de-focused to keep the orbit as stable as possible.

3.1.3 The LHC experiments

There are currently eight experiments installed along the LHC ring. Four of these are
situated at the interaction points (see Figure 3.1b)):

o ATLAS [4], a general-purpose detector used for this thesis, described in detail in the

next section;
e CMS [5], a general-purpose detector similar to ATLAS;
e LHCD [124]: a special-purpose detector optimized for B-meson physics;

o ALICE [125]]: a special-purpose detector optimized for heavy ion physics.

4The maximum beam lifetime is, however, much longer. For instance, due to a scheduled maintenance
stop of the PS accelerator the LHC fill no. 4947 on 2016/05/21 was kept going for 35h28m [123].
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Figure 3.5 - i is related to the width of the emittance ellipse along the positional axis:

B =W2/e[121].

79



There are also three smaller detectors installed on the beam-line near some of these

detectors and their interaction points:

o LHCf [126], installed near the ATLAS detector cavern to measure the energy spec-

trum of particles produced at very small opening angles;

e TOTEM [127], installed on the beamline near the CMS detector cavern to study the
total p—p cross-section as well as the proton structure;

e MoEDAL [128], installed near LHCb to look for magnetic monopoles;

e FASER [129], installed near ATLAS to search for long-lived exotic particles.

3.2 The ATLAS detector

Note: unless otherwise noted, this section is based on Reference [4].

The ATLAS| detector (Figure is a huge general-purpose particle detector with a
25 X 44 m cylindrical shape, installed around LHC interaction point no. 1 (IP1). It can be
decomposed in three main subsystems: the inner detector (ID, Section[3.2.2), the calorime-
ters (Section[3.2.3), and the muon spectrometer (Section [3.2.4). These subsystems produce
a staggering amount of information about each collisions, and therefore a sophisticated
data acquisition system is implemented (Section [3.2.5).

3.2.1 Standard ATLAS coordinate system

The coordinate system commonly used to describe the ATLAS detector has its origin at
the interaction point. The z axis is longitudinal to the beam, while the x and y axes point
to the center of the LHC ring and up towards the sky, respectively. The transverse plane,
x—y, is particularly useful since the initial momentum around the z axis is approximately
null. The azimuthal angle in this plane (around the z axis) is denoted by ¢.

Massive objects can be localized in the longitudinal direction by their rapidity, Y:

1 E+p,
T—Elog(E_pz). (3.6)

When the object’s mass is small compared to it’s energy,

SATLAS = A Toroidal LHC ApparatuS
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Figure 3.6 — The ATLAS detector [130].

E>m = Ex~|[p| = p.=~Ecos0, (3.7)

where 0 is the angle of the three-momentum vector with respect the z axis. In such cases,
Y can be approximated by considering the 0 angle only:

Y =~ n = —log (tan(0.50)), (3.8)

The n variable is known as the pseudo-rapidity; it is visualized in the y-z plane in Fig-
ure 3.7} Distance between objects in the detector are often quantified in 7—-¢ space by the
dimensionless AR variable:

AR = \|An2 + A2. (3.9)

3.2.2 The inner detector

The ATLAS inner detector (Figure is an array of three sub-detectors installed closest to

the beam-line; its primary usage is to provide accurate charged particle track reconstruction
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Figure 3.7 — Pseudorapidity (1) contours in the transverse-longitudinal (y-z) plane. The

n = 2.5and n = 4.9 lines define the limit of the inner detector and calorimeter acceptances,
respectively.
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Figure 3.8 - (a) Longitudinal and (b) radial cross-sections of the ATLAS inner detector [131].
Note that there is now an additional pixel layer, the IBL, installed nearest to the beam in
2014 (this figure was made in 2008).
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inthe |n| < 2.5region. The whole ID is enclosed in a solenoid providing a 2 T axial magnetic
tield and so charged particles moving away from the interaction point follow an helical
trajectory with a radius of curvature in the plane transverse to the beam proportional to
their momenta [117]]:

pcosA
B 7

oC

(3.10)

where B is the magnetic field strength, R is the radius of curvature and A is the angle of the
helical trajectory, measured from the axis normal to the beam. Consequently, to obtain a
measure of charged particle’s momenta, an accurate measure of the track’s curvature must
be obtained. The error on the curvature measurement, d¢,v can be decomposed into two
terms [117]:

6curv = ‘\/ 612115 + 612esr (311)

where 0y, is the error due to multiple scattering of the particle inside the tracker’s material,
and 0,5 is the error proportional to the finite precision €,¢qs 0f the track position’s sampling
when it crosses an active layer of the tracker. The error due to multiple scattering is roughly
proportional to the inverse of the momentum, therefore in high energy collisions the
resolution error usually dominates the multiple scattering contribution. For an idealized
tracker with many uniformly-spaced active layers, this error is estimated by:

emeas 720
~ 12
Ores L \/ N +4’ (3.12)

where L is the track’s length in the bending plane and N is the number of recorded hits

along the trajectory.

Equation implies that it’s possible to obtain a good momentum resolution by
maximizing the number of samplings, by obtaining very precise position measurements,
or by maximizing the tracker’s extent in the bending plane. The ATLAS ID implements all

three of these solutions in order to achieve state-of-the-art momentum measurements:

o A four-layer silicon pixel detector (Section3.2.2) is installed as close as possible to the
beam-line, providing up to four very-high-precision measurements and maximizing

the tracker’s extent in the inward direction;
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Figure 3.9 — Cut-out view of the ATLAS Pixel detector [133].

e A four-layer silicon strip detector (SCT, Section 3.2.2) is installed around the pixel
detector, providing a further eight samplings, which are grouped into four high-

precision measurements;

e An array of drift tubes, the transition radiation tracker (TRT, Section[3.2.2) is installed
around the SCT, providing more than 30 less-precise measurements per tracks, max-
imizing both the number of measurements and the tracker’s extent in the outward

direction.

The Pixel Detector

The pixel detector (Figure comprises four coaxial barrel-shaped layers with three disk-
shaped layers on either end. Its silicon sensors are read out in 2-D regions called pixels
(by analogy with a camera) that are defined by bump-bonds linking the silicon slab with
dedicated channels of the readout electronics. In the three disks and the three outer
barrel layers the nominal pixel sizes are of 50 and 400 ym in the bending and longitudinal
planes while the first layer (the Insertable B-Layer [132], or IBL, whose installation in 2014
is pictured in Figure has smaller 50 x 250 um pixels. However, charged particles
passing through a silicon sensor typically deposit energy in more than one pixel, and
shape analysis techniques (Section {4)) can achieve an intrinsic accuracy of 10 ym in the
bending plane and of 115 um in the longitudinal (barrels) or radial direction (disks).

The high luminosity attained in LHC collisions (Section[3.1.2) requires the pixel detector
to be exceptionally radiation-hard, and since the performance of many ATLAS analyses is
strongly dependent on track reconstruction efficiency and momentum resolution, it must
remain so for the entirety of its useful lifg®] This motivates the use of non-conventional

wafers made up of an n-type silicon bulk with p and n+ implants on either side. This

¢The whole inner detector is slated to be replaced by a new all-silicon inner tracker, the ITXk, in time for
the fourth LHC run starting around 2027.
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Figure 3.10 — Installation of the Insertable B-Layer in 2014 [134].

particular choice allows the sensors to remain operational even after type inversion of the
bulk due to radiation damage. Furthermore, the silicon is highly oxygenated to delay the
inevitable accumulation of radiation damage.

The Semi-Conducting Tracker

The semiconductor tracker, or SCT, is installed around the pixel detector and has a similar
barrel-disk geometry with four layers. It employs more conventional and widely used
silicon strip sensors, which are cheaper to produce’] Unlike pixel sensors, individual
strips only produce a measurement in a single direction; to provide hit information in two
dimensions, strip sensor modules are assembled in pairs laid out on top of each-other and
misaligned by a 40 mrad angle as can be seen in Figure Its intrinsic precision is of
17 ym in the bending plane and of 580 um in the longitudinal direction. These measures are
less precise than that of the pixel detector, but the four additional measurements at a much
lower cost than that of a pixel detector of similar volume represent a good cost-benefit
compromise.

The Transition Radiation Tracker

The inner detector is completed by an array of drift tubes know as the transition radiation
tracker, or TRT. The tube structure is defined by a 4 mm polyimide wall whose aluminum-
coated inner surface acts as a cathode, while the axial anode wire is made-up of gold-plated
tungsten; a large voltage of 1.53 kV is applied between anode and cathode. The tubes are

filled with a mixture of carbon-dioxide, oxygen, and either xenon or argon. Again, this

’While individual silicon strip sensors are cheaper to produce per unit area, the sheer volume of the SCT
makes it one of the most expensive sub-detector within ATLAS.
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Figure 3.11 — (left) Image and (right) schematic of an SCT barrel module, showing the
40 mrad angle between both sensors [4].

sub-detector has a barrel-like part made up of tubes parallel to the beam, and disk sections
with radial tubes. Charged particles intersecting a wire set off a cascade of electrons and
ions that are picked up by the anode and the cathode. By analyzing the resulting signal’s
shape, the position of the cascade’s origin between the anode and the cathode can be
estimated (with a suitable calibration) with an intrinsic accuracy of 130 ym in the bending
plane.

This sub-detector gets its name from the electromagnetic radiation produced by a
charged particle crossing a boundary between materials with different dielectric constants.
This effect is exploited to enhance the identification of electrons crossing a drift tube
boundary, since the interaction of the transition radiation with the gas within the tube will
set-off a potentially more energetic cascade than that due to the electron itself. Since the
magnitude of this effect depends on the y = E/m factor of the incident particle, by tuning
a high threshold, discrimination between electrons and, for example, charged pions can be
achieved as can be seen in Figure[3.12] This technique works best when the tubes are filled
with a xenon mixture. However, xenon is a rare gas and thus extremely costly to acquire
in significant quantities, and high occurrences of leaks lead the collaboration to fill many

sectors of the TRT with argon instead.

3.2.3 The Calorimeters

The ATLAS inner detector provides very precise estimations of charged particle’s mo-
menta, but it does not provide enough information for particle identification. Moreover,
it is not sensitive to the passage of neutral hadronic bound states; a different paradigm
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Figure 3.13 — Cut-away view of the ATLAS calorimetry system [135].
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Figure 3.14 — Section of the ATLAS electromagnetic lead /liquid-argon calorimeter, show-
ing its accordion-like geometry [136].

is needed to accurately measure the energy content of such particles, and to provide the
needed information to perform accurate particle identification. To do so, a technique
known as sampling calorimetry is employed, in which a decay chain is initiated by a
particle that passes through dense, “passive” layers; the energy of this decay chain is
then sampled in “active” layers. ATLAS employs two types of sampling calorimeters (see
Figure [3.13), according to the nature of the particle or bound state being measured: a
lead/liquid-argon electromagnetic calorimeter (Section , and a hadronic calorime-
ter comprising steel/scintillator, copper/liquid-argon, and copper-tungsten/liquid-argon
subsystems (Section [3.2.3).

Electromagnetic Calorimeter

As in the case of the inner detector subsystems, the ATLAS electromagnetic calorimeter
is arranged in a central barrel and two disk sections, providing energy measurement in
the |n| < 3.2 region. It comprises alternating layers of lead (passive material) and liquid
argon (active material) with kapton electrodes, arranged in a accordion-like geometry (as
can be seen in Figure[3.14), which allows hermetic coverage around the azimuthal ¢ angle.
The |n| < 2.5 region is more finely segmented than the outer regions, allowing precision
measurement of high-pt processes.

The energy resolution of a sampling calorimeter can be decomposed in a stochastic (o)
term due to unavoidable fluctuations in energy deposits and to the presence of passive
layers and dead material, a noise term (on) accounting for electronic and pile-up effects,

and a constant term (oc) due to non-uniformities and finite performance of energy recon-
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struction algorithms [137]:

2
o _ |[ os oN'\?
f‘\/(_g) (L) 2. (3.13)

In order to minimize the stochastic error term, a thin pre-sampling liquid argon layer
covering the || < 1.8 region is installed in front of the calorimeter and accounts for
upstream energy losses; its effect on the energy resolution can be seen in Figure The
total energy resolution of the ATLAS electromagnetic calorimeter is of about
10%/VE @ 0.3%/E & 0.4% [117].

Hadronic Calorimeter

The hadronic calorimeter is again separated into different parts: a steel/scintillator bar-
rel (known as the “Tile calorimeter”, 0 < |n| < 1.7), copper/liquid-argon end-caps (1.5
< |n| < 3.2), and copper-tungsten/liquid-argon forward calorimeters (3.1 < || < 4.9)
installed at the center of the hadronic end-cap cylinders. The steel/scintillator barrel has
an extended part that wraps around the end-caps. Together, these subsystems provide
energy measurements of hadronic cascades in the || < 4.9 region.

The density and thickness of the passive layers are motivated by the fact that some
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hadronic bound states, such as neutrons, are electrically neutral and must interact with
the medium to develop a shower that can be measured. Hadronic calorimeters typically
have worse energy resolution than electromagnetic calorimeters since hadronic cascades
are more complex entities than single incident charged particles: for instance, part of the
energy of a cascade, such as nuclear binding energy, cannot be measured; a cascade typi-
cally develops both an electromagnetic component in addition to the hadronic component,
with a ratio that varies non-linearly and stochastically as a function of the initial particle’s
energy; and the sensitivity of a hadronic calorimeter to both of these component is not
equal and also varies non-linearly as a function of energy. The resolution is limited to

o/E 2 50%/VE for non—compensatin hadronic calorimeters in general [11]].

3.24 The Muon spectrometer

The energy lost by a charged particle passing through a certain medium is estimated
by the stopping power = (—dE/dx) as a function of the medium’s atomic density and
the particle’s fy = p/m factor. In a given medium, the stopping power has, roughly,
three regimes: starting at a local maximum at low Sy, the stopping power falls with
increasing momentum to reach the minimum of ionization before rising again at high py
due to relativistic effects. As can be seen in Figure a muon passing through a dense
medium such as copper will be at its minimum ionization when its energy is in the GeV
range, which is typical of muons produced in the decay of massive particles such as
the W/Z bosons and top quarks. Most other particles are stopped in the calorimeters
and therefore almost only muons will make it through, losing a minimal amount of
energy in the process. Taking advantage of this fact, the ATLAS detector is completed
by a second tracking detector designed specifically to measure the muon momentum, the
muon spectrometer, installed around the hadronic calorimeters. It is embedded in an
array of three huge toroidal magnets (one barrel and two end-caps), which bend the muon
trajectories in the longitudinal plane.

Monitored drift tubes (MDT) cover the || < 2.7 range. The ~ 30 mm diameter alu-
minum tubes are filled with an argon/carbon-dioxide mixture and each have a gold-plated
tungsten-rhenium axial wire serving as the anode. Each tube has an intrinsic resolution
of 80 um; they are arranged in chambers in groups of three to eight, for an intrinsic res-
olution of 35 um per chamber. Additional requirement for a higher rate capacity in the
forward (2 < |n| < 2.7) region lead to the use of Cathode Strip Chambers (CSC), which are
multi-wire proportional chambers; these have a resolution of 40 ym in the bending plane

8A compensating calorimeter keeps the hadronic and electromagnetic responses ratio /1/e equal to unity
and will have a resulting better resolution.
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and of 5 mm in the transverse directions. Their basic layout is shown in Figure 3.17]

The muon spectrometer also includes two subsystems dedicated to triggering readout
of events (Section based on the presence of muons. Resistive plate chambers (RPC)
cover the central |n| < 2.4 range, while thin gap chambers (TGC) cover the endcap region.
The orientation of both of these two subsystems can be seen in Figure 3.1§]

3.2.5 The Trigger and Data Acquisition System

The LHC delivers one bunch crossing each 25 nanoseconds, corresponding to an event
rate of 40 MHz and a data rate of about 60 TB/s. Such an astronomical readout rate is
ruled out by bandwidth and storage considerations, and so a triggering system has to be
implemented to bring down it down to an acceptable level.

The ATLAS trigger and data acquisition (TDAQ) system, shown in Figure[3.19 has two
trigger levels: the level 1 (L1), implemented in hardware, identifies “Regions of Interest”
(Rol) in n—¢ spaces using limited information to bring down the event and data rates to
about 100 kHz and ~160 GB/s, respectively. The information from these Rols are then sent
on to the high-level trigger (HLT) farm, an array of computers situated near the detector
that perform more complete event analysis and bring down the rates to acceptable levels
for permanent readout: ~ 1.5 kHz and 1.5 GB/s.

We’ve discussed in Section how the instantaneous luminosity is not constant
within a given LHC fill, but will gradually drop down due to collision losses and beam
quality degradation. This is reflected in the ATLAS trigger and data rates, as seen in
Figure At the beginning of a fill, the raw rate for some triggers is often too high
for the buffering system to deal with leading to “dead time”, during which events are
indiscriminately lost. To mitigate the problem, some triggers are initially pre-scaled; a
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pre-scaled trigger will drop a fraction of its accepted events at a rate corresponding to its
pre-scale factor that gradually reduces down to zero during single fills.

Both L1- and HLT-level triggers select events based on signatures typical of physics
processes of interests for ATLAS analyses. For example, there are triggers based on sin-
gle, high-p leptons or jets, or energetic photons. Triggers based on missing transverse
momentum (E%ﬁss) are of particular interest in the context of the search for R-parity con-
serving (RPC) supersymmetry. Since in LHC collisions the transverse momentum of
incoming partons is initially approximately null, by conservation of energy the vector sum
of momenta around the beam axis should sum to approximately zero and only gains a
non-zero magnitude in the Standard Model due to neutrinos and experimental effects such
as mismeasured jets. As discussed in Section RPC SUSY cascades usually end with
a pair of WIMP-like neutralinos, for which the detector is completely transparent. Since
neutralinos are hypothesized to be much heavier than neutrinos, their presence can lead
to unusually large amounts of ET’T’iSS, a fact that can be exploited to trigger the read-out of
such events. Figure shows typical efficiency curves for different E;”iss trigger chains;
they are all close to 100% efficient for events with more than 200 GeV of Ef'"™*.
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Figure 3.20-HLT (a) trigger and (b) data rates within a single LHC fill. The luminosity drop
due to beam losses and quality degradation can clearly be seen, as well as discontinuities
corresponding to changes in trigger pre-scale factors.
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Figure 3.21 - E%iss trigger efficiency in 8 TeV data for three different trigger chains [141].

3.3 Conclusion

In this chapter, we have seen how the LHC achieves a very high instantaneous luminosity
and a record center-of-mass energy of 13 TeV, enabled by the use of superconducting
magnets and radio-frequency cavities. We’ve then moved on to discuss one of the eight
LHC detectors, namely the ATLAS detector, used for this thesis: itis composed of a tracking
detector (the inner detector) that records charged particle trajectories, enabling estimation
of momenta and reconstruction of interaction vertices; an array of electromagnetic and
hadronic calorimeters, which measures particle energies; a muon spectrometer, which
provides dedicated triggering and estimation of muon momenta; and a sophisticated
trigger and data acquisition system that reduces the data and event rates to manageable
levels.

In the next chapter, we take a little detour to explore in more depth one aspect of
track reconstruction in the ATLAS pixel detector, tracking in dense environments, where
the average distance between particles become comparable to the pixel detector sensor
resolution. In this context, we will discuss the theory of neural networks, which will be

used to carry out a search for supersymmetric particles in Chapter
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Chapter 4
Tracking In Dense Environments

The unprecedented center-of-mass (CoM) energy of collisions at the LHC lead to signifi-
cant production of high-pr objects such as jets, as seen in Figure Due to the nature
of Lorentz transformations, the decay products of highly boosted particles are very colli-
mated, which creates areas of high occupancy in the inner detector (Section[3.2.2) as can be
seen in Figure Such areas, referred to as dense environments, are especially challeng-
ing from a track reconstruction point of view. For instance, when charged particles pass
through silicon pixel sensors, multiple pixels are usually illuminated due to the incident
angle of the trajectory, charge diffusion, charge drift caused by the axial magnetic field
of the ID, or o-raydl} In dense environments, the resulting charge clusters can merge, as
visualized in Figure and the track reconstruction algorithms must implement addi-
tional machinery to recover optimal performance in such cases. This section starts with a
brief review of track reconstruction in ATLAS (Section [4.T). In Section the theory of
neural networks is briefly reviewed before describing the ATLAS pixel clustering neural
networks in Section

4,1 Track Reconstruction in ATLAS

The task of track reconstruction consists of grouping charged particle energy deposits
from the pixel, SCT and TRT subdetectors into proper trajectories from which the impact
parameters’] and angles with respect to the beamline and particle momenta (from the
curvature) can be reconstructed. The end goal is to attain a maximum recall, that is,

finding tracks accounting for all particles in an event, while also keeping the precision, or

15-rays correspond to electrons ejected from their orbits by an incident charged particle.
2The transverse and longitudinal impact parameters define the perpendicular distance of the closest point
between a track and the interaction point.
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Figure 4.1 - (a) Inclusive cross section for anti-k; R = 0.4 jets (see Section as a function
of pr in different absolute rapidity (|y|) ranges, showing non-negligible production of very
boosted (pr % 1 TeV) jets [142]. (b) Track density per unit angular area as a function of the
angular distance from the jet axis in different pr ranges [143].

(a) (b)

Figure 4.2 — (a) Resolved and (b) merged charge clusters in a pixel sensor [143]]. The particle
trajectories are represented by arrows, while energy deposits from different particles are
shown in different colors.
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Figure 4.3 — Schematic view of track reconstruction in the (a) bending and (b) longitudinal
planes [11].

the fraction of tracks really corresponding to a particle, very high. A schematic view of
track reconstruction can be seen in Figure

The ATLAS track reconstruction chain can be separated into two main stages [143].
The first stage, that of “Track Finding”, aims to have maximum recall at the expense
of potentially low precision. The second stage, that of “ambiguity solving”, aims to
restore high precision while keeping a high recall by scoring all tracks and rejecting a low
scoring subset that, in the optimal limit, consists only of fake tracks, that is, tracks not
corresponding to a particle in the event.

Track finding starts by the identification of space points. These are simply 3D coordinates
of all the recorded intersection of charge particle trajectories with ID sensor elements.
Space points from the two innermost tracking detectors, the pixel and the SCT, are then
arranged in sets of three, each defining a track seed. To minimize the amount of tracks to
be processed downstream, a certain number of criteria are imposed on the seeds, such
as pr and impact parameter requirements. A combinatorial Kalman Filter [144] (KF) is
then used to build a full set of track candidates. Starting from a seed, the KF iteratively
estimates a probability distribution over the position of space points belonging to the
track on the closest unincorporated layer, and adds matching hits to its current estimate.
Whenever there are more than a single compatible space-point to be added, additional
track candidates are created.

In the ambiguity solving stage [143]], a score is assigned to each track according to
a number of metrics, disfavoring low-pr tracks as well as tracks with low fit quality.
Notably, the ambiguity solver also penalizes tracks that share some clusters with other

tracks in order to reduce the amount of duplicates, a strategy motivated by the usually
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low probability of having intersecting trajectories. However, as previously discussed, this
assumption breaks down in dense environments where the separation between particles
is often comparable to the pixel dimensions.

In ATLAS, this problem is fixed with a neural network algorithm; before describing it
in depth in Sections the theory of neural networks is briefly reviewed in Section

4.2 Neural Networks

The method of simplifying the expression of mathematical functions using an assembling
of simpler terms is well known to physicists. For example, the k-th order Taylor expansion
of a function f(x) approximates it by using the function’s derivatives around a known
point a:

n!  dx

£ (x —a)*d"
OEDY F()le=a + O(lx = al"). (41)
n=0

The error term has two important implications: the approximation is valid only in the
local neighborhood of 4, and therefore knowledge of the function at different points in
its domain is needed to ensure good approximation everywhere; also, knowledge of a
sufficient number of derivatives of the function is necessary to keep the error small. The
latter implication can be particularly limiting: what if we only have access to input/output
pairs, and have no knowledge of the derivatives?

Neural networks [7, 145, 146] are a popular class of approximation models that can
lift this restriction by expressing the function in a generic form that assumes almost 7o
knowledge of the analytical form. The suitability of such networks is guaranteed by the
universal approximation theorem [147-149]:

Universal Approximation Theorem: Let f : R™ — R”" be a continuous function defined
on a closed and bounded subset of R, 0 be an element-wise non-polynomial non-constant
function, and € be a non-negative, non-zero real number. Then, there exists matrices W}S}( I

and W;(li)n as well as vectors bgllll and bﬁzl such that:

fx) =W o(Whx + W) + 53, (4.2)
If(x) - f(x)| <€, V. (4.3)
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Figure 4.4 — Analogy between (a) real and (b) artificial neurons: the dendrites carry an
electrical signal proportional to that received from upstream neurons, analogously to the
artificial neuron’s weighted inputs; the outgoing electrical current is a non-linear function
of the total signal carried by all the dendrites, analogously to the artificial neuron’s non-
linear activation.

In plain English: there always exists a parametrization of the model that reaches the
required precision level. The basic building block of this model is an artificial neuron,
o(X;w;x; + b), hence the name; the analogy with an anatomical neuron is shown in Fig-
ure

Although in principle any non-polynomial function could be used, common choices
for the o function (usually called an activation, again by analogy with real neurons) are the
sigmoid function, o(x) = 1/(1 + e~%¥), or the rectifying linear unit ReLU(x) = max (0, x),
both element-wise functions of the input vector x; they are shown in Figure When
a classification problem is being solved, it is customary to include a sigmoidal activation
on the output layer since it maps all real numbers to the (0, 1) interval as required for
a probability. In multi-class situations, the softmax function, a generalization of the
sigmoidf} is often used:

o(x;)

S(x)i = S o)

(4.4)

The universal approximation theorem stated above is only concerned with networks
having a single hidden layer, that is, a single intermediate level of representation between
the inputs and the outputs. However, it is possible to stack arbitrarily many hidden
layers; the resulting models are often referred to as deep networks, which can be up to

exponentially more efficient in term of information encoding than single-layer shallow

$While such output functions ensure the correct properties for probabilities, the network’s output is not
guaranteed to be a probability distribution in the Bayesian sense.
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Figure 4.5 — Example of sigmoid and ReLU activations in the (-5, 5) range.

networks [152-155]. Moreover, there is a growing body of evidence asserting that the
efficiency gain stems in part from the resulting hierarchy of features, which also enables
efficient representation of functions of lower-level (i.e., less feature-engineered) inputs?
The use of deep networks trained to construct a hierarchy of features starting from a

low-level representation is a textbook example of the deep learning paradigm [146].

4.2.1 The training procedure

We have established that neural networks provide a way to efficiently express alarge class of
functions using very simple arithmetic operations. However, the universal approximation
theorem only tells us that this is possible and does not provide a way to obtain the
required parameters®l To overcome this difficulty, first notice that the network’s equation
(Eq[4.2) is fully differentiable. Given a network whose full set of parameters we represent
by 0 = (W(l), b . WK, b(Nh)) where N}, is the number of layers in the network, a
set of input output pairs X,Y = (x1,y1),...,(xn, yn), and a differentiable Loss function
L(X,Y, 0) that quantifies the approximation error, it is possible to iteratively update the
parameters using gradient descent. The parameter update from a state 7 to the next state

T + 1 is performed using the following equation:

4The intuition is that since a shallow network cannot build a hierarchy of features, its single hidden layer
would have to be very wide to account for all possibilities if it operates only on low-level features.

SIn contrast to Taylor’s theorem, the universal approximation theorem doesn’t say anything about the
size of the remaining error, just that it can be made arbitrarily small.

102



Or+1 = 0r —1ndg, L(X, Y, O). (4.5)

The initial parameter vector, 0y, is usually randomly sampled [156]. The dg L term is
computable using recursive application of the chain rule, a procedure known as backpropa-
gation [157], and the 1 user-supplied parameter, called the learning rate, scales the updates.
Itis customary to estimate the gradient repeatedly on subsets of the datasets, usually called
mini-batches (or simply batches) rather than on the whole, and to repeat in many passes
(epochs) over the whole dataset. The resulting algorithm is known as stochastic gradient
descent (SGD), which usually converges faster and produces better parametrizations than

when computing the gradient on the whole dataset [156]7]

When the parameter set 0 is very large, the gradient dg, L has correspondingly many
dimensions and therefore has many saddle points that can slow down or stall the gradient
descent [158, 159]. To overcome this, it is customary to extend the SGD algorithm to
include a momentum term:

Or41 = 0r —nde, L + adp, L. (4.6)

Thus, the update equation now includes an exponentially decaying average of the past
gradients, scaled by the a user-supplied momentum parameter, which allow the path in
0-space to avoid getting stuckl’|

Another, more ambitious variant of SGD is the Adaptive Moment (ADAM) algo-
rithm [161]. ADAM also includes a momentum term (the first moment, m %) but also
accounts for the curvature (the second moment, m'?) of the path in parameter-space,
the intuition being that the learning rate should be lower when in the vicinity of a local
minimum to avoid overshooting it. The accumulated estimates of these moments are
computed with exponentially-decaying averages scaled by the p; and p» constants, and

are also corrected for potential bias in the early stages of training:

¢This is because the gradients computed on partial datasets have more variance, which helps avoiding
overfitting, and the network weights are updated more than once per pass over the whole dataset.

"The momentum term also influences the training dynamics in other, less obvious ways; see Refer-
ence [160].
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m" = pymY| + (1= p1)de,L, 4.7)

m® = pam®| + (1= pa)(@e, L), (4.8)
(1) @ \71/?
m my
— 0. — 4.9
6T+1 67 nl—p’{ (1_p§) 7 ( )

A few more tricks are usually employed in order to speed up the convergence of the
training procedure. For example, “standardizing” the input variables to zero mean and
unit variance remove the need for the network to learn the characteristic scale of each
variable [156]. A related, more sophisticated technique, batch normalization [162], re-scales
all mini-batches:

-E
NS St 1 ) (4.10)
Var[x]
In contrast to standardization, this procedure is usually implemented independently at
activation level in each hidden layer of the network rather than only at input level. The
neural network equation is still fully differentiable after such substitutions; thus, y and

are learned at training-time and are part of the 0 parameter vector.

While the universal approximation theorem guarantees that parametrizations exist for
a wide range of functions, there is no guarantee that the SGD algorithm or any of its
variant can find them. In fact, the aptly-named “No Free Lunch” theorem states that
all optimization algorithms have the same performance when averaged over all possible
problems [163]]. In practice however, deep networks trained with SGD or related algorithms

have historically been extremely successful in a wide range of applications [7].

There is a final caveat with respect to the training procedure: it only tries to find definite
values for the trainable 0 parameters; all parameters that are not included therein are called
hyperparameters and are user-supplied. This includes, for instance, the dimensions of the
parameter matrices in 0, and the scaling parameters 1, a, p1, p2, ... of SGD and related
algorithms. A simple solution to this conundrum is to perform a random search over all
included hyperparameters, a procedure that can be exponentially more efficient than a
grid scan over all of phase-space [164]. The resulting randomly-generated models must
be compared on a held-out dataset or with cross-validation in order to avoid introducing
bias at the model selection stage [165, 166]

104



1.2

- High Bias Low Bias
Low Variance High Variance

-~ —

0.6 0.8 1.0
| |

Prediction Error

0.4

0.2

T T T T T T T 1
0 5 10 15 20 25 30 35

Model Complexity (df)

Figure 4.6 — Bias—variance decomposition as a function of model complexity [165]. The
faint blue (red) curves show the training (test) set performance as a function of model
complexity for many different samplings, and the bold curves show the averaged values.
In this figure, the complexity is quantified by the number of degrees of freedom, but the
same behavior would be seen if model capacity were considered instead. In the training
set, both bias and variance drop significantly as a function of model complexity while in
the test set, the variance grows with complexity but the bias drops and then rises again
once the model enters the overfitting regime.

4.2.2 Generalization

The optimization procedure outlined in the previous section only ensures that the model
will perform well on the dataset it was trained on. What about the performance on unseen
data, which is the end-goal of most applications? In more precise terminology, in addition
to obtaining a good parametrization on the training set, the difference in performance
between seen and unseen data, called the generalization error, must also be minimized.
Provided the training and test sets are sampled from the same distribution, this error can
be decomposed in three components [165]:

Generalization Error = Irreducible + Bias? + Variance. (4.11)

The irreducible component, also known as the Bayes error rate, is caused by ambiguities
fundamental to the task at hand and represent the floor of the generalization error. The
relative importance of the last two terms, or the Bias—Variance trade-off, is related to the

concept of capacity, that is, the size of the function space that can be represented by a given
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model as can be seen in Figure On the bias-dominated end of the trade-off we find
low-capacity models, which can approximate a relatively small amount of functions; their
average performance is not optimal, but it does not vary much when used on unseen data.
On the variance-dominated end of the trade-off, we find high capacity models, which
can represent a large amount of functions and thus run the risk of learning statistical
fluctuations in the training dataset; therefore, their performance will tend to vary much

more when the data is changed.

In the case of neural networks, model capacity scales with the number of trainable
parameters as well as the total number of gradient updates performed in training. This
points to three different ways of controlling the bias—variance trade-off: restrict the amount
of trainable parameters, restrict the possible values that these parameters can take, or
restrict the training time. The first method runs the risk of being too restrictive since it
caps the “storage space” of the model, and the minimal amount of information needed to
solve a given problem is usually not known beforehand. The second technique attempts
to restrict solution-space in a dynamical way, for example penalizing large weight values
by modifying the loss function:

L — L+ A]0] + A2|6)2. (4.12)

The weight decay A1 2 variables are additional hyperparameters?|that penalize large weights
by an amount proportional to their absolute and squared values, respectively.

The third technique, known as early-stopping, keeps an estimate of the generalization
error during the training by holding-out a fraction of the training dataset; the training is
simply stopped when the generalization error stops improving. This deceptively simple
technique is extremely powerful and partially negates overfitting introduced in other parts
of the model, most of the time obviating the need for fine-tuning of many hyperparame-
ters [167].

While in practice, these regularization methods generally succeeds at minimizing the
amount of overfitting, there is still no free lunch; a well regularized model can still have
a large generalization error if the training data is of poor quality [168] or if it is sampled

from a significantly different distribution than the test data.

8The weight decay variables have to be hyperparameters, else the training procedure would always set
them to zero.
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4.3 Pixel Clustering Neural Networks

As previously mentionned, the problems caused by merged charge clusters in the ATLAS
pixel detector are solved by a neural network algorithm. More precisely, three different
sets of neural networks are implemented [169]], each operating on single charge clusters:

e The “number” network, a single neural network that classifies clusters as having

been produced by one, two, or three or more particles;

e The “position” networks, a set of three neural networks (one for each number class)
that estimate the positions of the intersection points in the silicon sensor. The po-
sitions are measured in a frame of reference local to the pixel sensor considered, in
which the local x and y directions correspond to the transverse and longitudinal
directions with respect to the beam line, respectively;

e The “error” networks, a set of six networks (one for each number class for each

coordinate) that estimates the uncertainty on the previous measurement.

The simulated training dataset is composed of multijet events generated using Pytxia 8.186 [170]
with the A14 set of tuned parameters [171] and the NNPDF2.3LO parton distribution func-
tion set [31]. In order to obtain a large fraction of high-pr jets and a consequently large
amount of merged clusters, a filter keeping only truth-level jets with 1.8 < pr < 2.5 TeV is
applied before handing over to a detailed GEANT4-based simulation of the ATLAS detec-
tor [172,1173].

12 (5) million clusters are retained to train (validate) each of the ten neural networks.
For the number network, the training dataset is sampled such that the fraction of 1-, 2—
and 3-or-more particle clusters are of 22%, 26%, and 52%, respectively.

Inspired by the deep learning paradigm, the input set is fairly low-level:

o A 7x7 matrix’| with entries corresponding to individual pixels (see Figure 4.2), with
the charge centroid in the middle;

e A length-7 vector of pixel dimensions in the local y direction, since a fraction of each
pixel module’s columns are read-out in the same channel, thereby increasing the
effective size of the pixels for those merged columns;

e A binary variable encoding the inner detector region (endcap or barrel);

°The end goal being estimating positions of particles in the inner detector, this is in principle a three
dimensional problem; however, the radial position is completely determined by the coordinates of the
silicon sensor’s surface, which are precisely known.
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e An integer variable representing the cylinder (barrel) or disc (endcap) number;
e Angles of incidence of the track candidate being scored;
o (Error networks only) Hit position estimates for the current cluster.

The two angles of incidence significantly improve the performance of these neural
networks, since they help recognize large clusters due to many particles from large single-
particle clusters due to high incident angles [169]. To decouple the pixel clustering neural
network training from the rest of the track reconstruction chain, the true angle of incidence
of the MC-generated particle is currently used as a proxy for the actual track-based mea-
surements. This is believed to be safe since the neural network’s performance has been
observed to be robust with respect to small perturbations of these angles [174].

The hyperparameters used are listed in Table[d.I, An optimization pass using a random
search over hyperparameter combinations [164] has shown that these relatively small,

shallow networks are a good trade-off between runtime and performance.

Hyperparameter Number Position Error
Structure (60)-25-20-(3)  (60)-40-20-(2/4/6)  (62/64/66)-15-10-(30/50/60)
Hidden activation Sigmoid Sigmoid Sigmoid
Output activation Sigmoid Identity Sigmoid
Learning rate () 0.08 0.04 0.3
weight decay (\2) 1077 1077 1076
Momentum (o) 0.4 0.3 0.7
Minibatch size 60 30 50
Loss function cross-entropy mean squared error cross-entropy

Table 4.1 - Hyperparameters used to train the three sets of neural networks. In the Structure
row, the numbers in parenthesis denote the input and output layer sizes (expressed in
number of neurons), with numbers separated by slashes corresponding to different sizes
in datasets with 1, 2 or 3 particles per cluster, respectively, while the numbers in-between
represent the hidden layer sizes.

4.3.1 Number network

The number network is trained to classify charge clusters as comprising one, two, or three
or more particles. Since it is a classification task, its performance is better visualized by
considering receiver-operating-characteristic (ROC) curves [175]. The network outputs
three probabilities for each cluster, and the only constraint is that these must sum to
unity. Therefore, there are two output degrees of freedom for each cluster and there is
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no one-to-one correspondence between any two given probability bin, in contrast to a
two-class scenario [176]. This means that the 2 X 3 = 6 ROC curves of Figure must be
considered to fully determine the performance. In these figures, we see that the number
network performs very well in recognizing single-particle clusters from multiple-particle
clusters, which is the most important case with respect to tracking performance; it has
more difficulty disambiguating the two- vs three-or-more particle cases.

In the ATLAS track reconstruction algorithm, the output probability scores for the two-
or three-or-more particle classes, P2 and P3, are turned into actual classifications via the
following decision rule:

e If Py < 60% and P3 < 20%: classify as 1-particle cluster
e If Py > 60% and P3 < 20%: classify as 2-particles cluster

e If P3 > 20%: classify as > 3-particles cluster

This rule was tuned with a grid scan over all possible combinations, attempting to
optimize the trade-off between maximizing the efficiency of reconstructing real tracks
inside jets [178]] and minimizing the production of fake tracks from shared clusters.

4.3.2 Position networks

After application of the number network, the three position-estimating networks, one
for each of the three particle multiplicity classes, implement a solution to a regression
problem; they output a 2-dimensional position value for each particle in a given cluster.
Thus, their performances are better visualized in Figure which show the distribution
of the difference between the true and estimated positions, or residuals, in test sets of five
million clusters each. In an ideal setting, the errors would be correctly described by single-
mode Gaussian distributions. However some cases follow different distributions than the
rest, such as 1-particle clusters comprising a single illuminated pixel (Figures[4.8aland[4.8b)),
leading to non-normally distributed residuals. A first estimation of the position resolution
can still be obtained by considering the full width at half-maximum (FWHM) of these
distributions, showing that the model yields about three times the intrinsic resolutions
(10 ym and 115 um in local x and y, respectively) in the most difficult case (>3-particle
clusters).
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Figure 4.7 — Pairwise receiver operating characteristic (ROC) curves for the network used
to estimate the particle multiplicity. (a) 1-particle vs 2-particles clusters. (b) 1-particle vs
> 3-particle clusters. (c) 2-particles vs 1-particle clusters. (d) 2-particles vs > 3-particle
clusters. (e) > 3-particle vs 1-particle clusters. (f) > 3-particle vs 2-particles clusters. In
these figures, curves nearer to the top-left corner represent better performances, and the
small-dashed lines correspond to a random classifier with variable bias and constitutes a
universal baseline [177].

Pr(Estimated: 3-particles | True: 2-particles

110



g 025 g 025
1S L ATLAS Simulation Preliminary ] £ [ ATLAS Simulation Preliminary .
< r b < r .
S .of PYTHIAB diet, 1.8<p™ <25TeV %= L5t thm =00t mm | S .2f PYTHIAB diet, 1.8 <p! <25TeV  —= 2S5 mam=007mm ]
g [ 1-particle clusters Barrel clusters ] o [ 1-particle clusters Barrel clusters
L . ] 2 L . ]
-  local x direction 4 =0.00mm, fwhm = 0.01 mm _| >  local y direction 4 =0.00mm, fwhm =0.07 mm |
> F ndcap clusters q = - ndcap clusters
"ﬁ 0.15— - f:o.o%nl\m,‘mnmﬂ.m mm —| g 0.15— - E don':)n:m'fwhm 0.29mm —|
C r Foy L
(o] F B he] r A
b C ] o r ]
o S H ]
5 01 N = 01~ 7
£ r ] S C ]
g f S - ]
0.05 ] 0.051- ]
n . A EPEETET PET E I - 0_ 4l
—%.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 -04 -03 -02 -01 O 01 02 03 04
Truth hit residual [mm] Truth hit residual [mm]
(a) (b)
g 05——F———TF——T———T————T— g 05—
1S [ ATLAS Simulation Preliminary N £ [ ATLAS Simulation Preliminary §
< r b < r .
8 0 2; PYTHIAS dijet, 1.8 < p '<25TeV —8— :ABLSI;:?.: fwhm = 0.03 mm _| 8 0 2; PYTHIAS dijet, 1.8 <p '<25TeV —8— :FL:%?::; fwhm = 0.14 mm _|
o N 4 5 : 4
. 2-particles clusters o [ 2-particles clusters
S L local x direction —o— 00 . fwhm = 002 mm ] ; L local y direction —e— Gt fwhm = 0.26 mm :
> F . 8 = F .
% 0.15— - :T;;Pofrl'ﬁ‘mmw.oz mm —| 2 0.15 - E"d::agoc::ewihm 0.31 mm —|
c r b @ r
[} - 4 ° - .
° C ] o r ]
—_ o
s 01 B £ 01 7
< S L ]
© r ] o
o L 1 L ]
0.05] . 0.05]- .
0 saasess . 0k R PR R R .. n
-0.04 -0.02 0 0.02 0.04 -04 -03 02 -01 O 01 02 03 04
Truth hit residual [mm] Truth hit residual [mm]
(c) (d)
g 02571 g 025
1S [ ATLAS Simulation Preliminary i € L TLAS Simulation Preliminary .
< r b < r .
S .of PYTHIABdiet, 18<p™ <25TeV o= FLitiimm, mom=ooamm | S .2 PYTHIAB diet, 1.8<p! <25TeV  —% [ ibimm, mam=0.17mm ]
o =L 4 5 : 4
: 3-particles clusters o [ 3-particles clusters
o L o Barrel clusters - | Barrel clusters 4
~ I local x direction 4 =0.00mm, fwhm =0.03mm | ; L local y direction = \=0.02mm, twhm =031 mm |
> r ndcap clusters b = r ndcap clusters 1
ﬁ 0.15— - ::o.o%nl\m,‘mnmﬂ.us mm —| g 0.15— e E:do.o': n:m,"whm:o:umm —
= r 7 (] I 7
[} r b © r .
° r ] o r ]
- [S]
5 01 7 £ 01— 7
<] ©
© r 7] o r 7
o L ] L ]
0.05 ] 0.051- ]

0.4

e
0.3
Truth hit residual [mm]

‘ ; P W
0.04 0.1 0.2

PR -
0.02
Truth hit residual [mm]

(e) (f)

Figure 4.8 — Difference between the neural network position estimation and the true hit
position in the (left) local x and (right) local y directions for true (a), (b) 1-particle, (c), (d)
2-particles and (e), (f) 3-particles clusters. All sample means have negligible uncertainties
while the full width at half minimum values have relative uncertainties of less than 5%.
The different x axis ranges are due to the differing pixel sizes of 50 ym and 400 ym (250 ym
in the IBL) in the local x and y directions, respectively [177].
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4.3.3 Error networks

The position estimation networks only furnishes a point estimate of the position of each
particle within a cluster while the ATLAS tracking algorithms needs estimates of the posi-
tion’s variance in each direction in order to perform x? fits of a particle’s trajectory. Since
these quantities are undetermined, the networks try to reconstruct a binned probability
distribution over possible residuals for each particles in a given cluster in a given direction;
point estimates of the variance are then obtained by taking the root-mean-square (rms)
of the resulting distributions. Since the position estimation only yields point estimates of
the residual distributions, which are then used to learn the full distributions, this is an
instance of semi-supervised learning. An example of the error estimation task is shown in
Figure

The error network’s performance is best visualized in the so-called pull distributions
of Figure which show the distribution of the residual divided by the estimated
error in each number/direction pair. If the residuals were perfectly Gaussian and the
error perfectly estimated, such pull distributions would always have zero mean and unit
variance, which is not always the case in practice. To improve this, the ATLAS collaboration
is considering replacing the position and error networks by Mixture Density Networks
(MDN) [179, [180], which use a mixture-of-Gaussian probability densities as a learning
objective, allowing for modeling of arbitrary distributions [151].

4.4 Conclusion

In this chapter, we’ve explored in detail a particular aspect of track reconstruction in AT-
LAS, that of accurately recognizing charge clusters in the pixel detector as being produced
by one, two or three or more particles, and of estimating the contributing particle’s posi-
tions within these clusters. This is done by three sets of neural networks, which exemplifies
the power and versatility of such machine learning models.

In the next section, we finally move on to discussing a search for supersymmetric
particles in ATLAS data in which neural networks play a central part: that of actually

labeling events as containing certain kinds of supersymmetric particles or not.
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Figure 4.9 — Example use case of the neural network used to estimate the uncertainty for
a 1-particle IBL cluster. (a) 1-particle cluster with true hit position marked by the full
square and hit position estimated by the neural network marked by the open circle. The
cluster is fed to the two neural networks that estimate the probability distribution of this
cluster’s residual in the (b) local x and (d) v directions, respectively. The neural networks
output node are directly mapped to bins of the residual distributions, and the rms of these
distributions are used as point estimates of the uncertainties. In order to compare the
performance in both directions, the residuals and rms values are divided by the pitches
(50 um and 250 um in the local x and y directions, respectively) [177].
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Figure 4.10 — Difference between the neural network position estimation and the true
hit position divided by the estimated uncertainty in the (left) local x and (right) local y
directions for true (a), (b) 1-particle, (c), (d) 2-particles and (e), (f) 3-particles clusters.
The means and standard deviations are estimated with truncated Gaussian fits, which
are represented as dashed lines. All means and standard deviations have negligible
uncertainties [177]].
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Chapter 5

Search for supersymmetry in events with
many b-jets and significant missing
transverse momentum

In this chapter, we use all the theoretical knowledge accrued so far in this thesis to
perform an actual search for hypothesized supersymmetric particles. Let’s take a moment
and briefly review the motivations for this particular search. In Chapter (I}, we’ve touched
upon two unsolved problems with the Standard Model; namely, the Higgs mass-related
naturalness problem, and dark matter. In Chapter 2| however, we’ve seen that a solution

to both problems arise in R-parity conserving supersymmetric extensions of the SM.

Now, which sparticles exactly do we want to search for? The neutralino, )Z?, is an
obvious candidate since it provides a perfect WIMP dark matter candidate. Higgs mass
considerations lead us to also pay close attention to the gluino and to third-generation
squarks. Moreover, to ease the interpretation of results, we want to limit our benchmark
models to two free parameters, and cross-section considerations, as shown in Figure
lead us to consider the gluino as our other primary target, with the sbottom and stop
quarks being considered as off-shell; these simplified models, referred to as the Gbb and
Gtt models, can be visualized in Figure

As mentioned in Section[2.2.2} events from these models lead to final states with striking
signatures in the detector. For instance, all-hadronic Gtt events will have 12 jets, four of
which originate from b-quarks, while leptonic events can have up to four lepton/neutrino
pairs. Boosted W bosons or top quarks can be reconstructed as single large-radius jets,
as seen in Figure In both grids, the two neutralinos and the potential neutrinos from
the W decays in each event are significant sources of missing transverse momentum. The
mass splitting has a significant effect on the final state kinematics; areas of the grids where

mg > mgo are characterized by more boosted particles and more EI'™, since the large
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Figure 5.1 — Cross-sections for various scenarios of SUSY particle pair production, showing
that gluino pair production is a more luminous search target than, for instance, direct
squark production [181].

splitting translates to high available kinematic energy for the decay products, and are
generally easier to search for than the compressed regions, where mz ~ m z0- For instance,
in this regime the neutralinos are produced nearly at rest and so the E;"* distribution is
more SM-like.

Details on the generated signal samples as well as Standard Model backgrounds and
the ATLAS data used in this search are presented in Section while the reconstruction
of these data into meaningful physics objects is reviewed in Section Inspired by the
neural networks discussion of Chapter [} we detail how to train such models to recognize
SUSY events from the SM bulk in Section Finally, the statistical data analysis and its
result are presented in Sections |5.5and |5.6| respectively.

5.1 Signals, backgrounds, and ATLAS data

Samples produced by Monte Carlo particle collision generators [183] are used to optimize
the search strategy and provide the result hypotheses. The generation of signal samples
proceeds in two steps. First, matrix elements for p + p — g + g events are computed
using version 2.3.3 of the MadGraph5_aMC@NLO package [184] and the NNPDF 2.3 parton
distribution function set [185]; gluino decays to top or bottom quark pairs and a neutralino
are subsequently handled by the Pythia version 8.212 program [186, 187], considering
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Figure 5.2 — Simplified models of pair-produced gluinos decaying to (a) bottom or (b) top
quarks and neutralinos via off-shell stops or sbottoms, colloquially known as the Gbb and
Gtt models, respectively.
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Figure 5.3 — The decay products of the top quark become very collimated in the laboratory
frame when its rest frame has a large Lorentz boost [182]]. In such cases, the top decay can
be reconstructed in a single large-radius jet.
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only the kinematic phase-space. The latter stage also includes modeling of soft processes
such as hadronization and the underlying even{] The two stages are matched at the scale
of a quarter of the gluino’s mass, using the CKKW-L prescription [188]. In total, nearly 300
distinct samples corresponding to different , ¥ mass pair hypothesis are generated: 152
samples with gluinos decaying to top pairs (the Gtt grid), and 144 samples where gluinos
decay to bottom quarks instead (the Gbb grid). In both cases, the gluino masses range from
1.1 TeV to 2.8 TeV, and the lower bound on the neutralino mass is 1 GeV (the ~ massless
limit). The upper bound on the neutralino mass depends on the available kinematic phase
space: mg — 2Mpyottom for the Gbb grid, and mg — 2my,,, for Gtt grid.

The most important SM background process with respect to the Gtt and Gbb signals is
the strong production of top—anti-top quark pairs with additional high-energy jets arising
from initial or final state radiation, henceforth referred to as the tt background. Matrix
elements for this process are computed by Powheg-Box v2 [189|190] with the NNPDF 3.0
PDF set; heavy-flavor hadrons are subsequently decayed by EVTGEN v1.6.0 [191] while soft
processes are handled by Pythia 8.230. Additional background sources estimated from
MC simulations come from production of single top-quarks, ¢t production associated with
vector or scalar bosons, vector boson production with additional high-energy jets, and di-
boson processes. The software versions for all MC samples is summarized in table

In events with no leptons, multijet production is a small but potentially non-negligible
background, and the MC samples for such processes usually fail to reproduce the ob-
served data in a reliable way in the kinematic phase-space pertinent for this analysis.
Consequently, the contribution from these processes are estimated with the data-driven
technique of Ref. [208], in which a template fit to the Aqbi{m (Sec. 5.2.7) distribution is
Vo< 0.1) and extrapolated to the

min

performed in a statistically-independent region (A¢
phase-space targeted by the analysis regions (A(piﬁin > 0.4).

The full 20152018 ATLAS /s = 13 TeV p—p dataset is used, for a total integrated
luminosity of 139.0 fb! after the application of beam, detector and data-quality require-
ments [209]. In particular, data-taking runs in which the IBL (Section 3.2.2) is off are not

included given the impact on b-jet identification performance.

1The underlying event describes the effects due to the proton remnants, initial and final state radiation,
as well as multiple parton interactions.
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Process Generator Tune PDF set Cross-section

+ hadronization order
Gbb/Gtt MadGraph5_aMC@NLO v2.3.3 [184] A14 [171] NNPDF2. 3 [185] NNLO;pprox+NNLL [192-200]
+ Pythia v8.212 [187]
tt Powheg-Box v2 [189,/190] Al4 NNPDF3.0 (ME) [31] NNLO-+NNLL [201]
+ Pythia v8.230 NNPDF2.3 (UE)
Single top Powheg-Box v2 Al4 NNPDF3.0 (ME) NLO [202] (t /s-channel)
+ Pythia v8.230 NNPDF2.3 (UE) NLO-+NNLL [203] (Wt)
ttWittZ MadGraph5_aMC@NLO v2.3.3 Al4 NNPDF3.0 (ME) NLO
+ Pythia v8.210 NNPDEF2.3 (UE)
4-tops MadGraph5_aMC@NLO v2.2.2 Al4 NNPDF2.3 NLO
+ Pythia v8.186 [170]
tth Powheg-Box v2 Al4 NNPDF3.0 (ME) NLO [204]
+Pythia v8.230 NNPDF2. 3 (UE)
W/Z+jets Sherpa v2.2.1[205,[206] Default NNPDF3.0 NNLO [207]
WW, WZ,ZZ Sherpa v2.2.1 Default NNPDF3.0 NLO

Table 5.1 — Software configurations used to produce various signal and background Monte
Carlo samples, detailing the generator, the set of of tuned parameters used for modeling
of soft processes, the parton distribution function set, and the order of the cross-section
used to normalize the samples. Separate references are given for this latter computation
when they differ from that of the generator.

5.2 Physics objects and reconstruction

5.2.1 Trigger

As discussed in Section the two neutralinos in each signal event, as well as poten-
tial neutrinos from the W boson decays, motivate the use of triggers based on missing
transverse momentum (E%liss). This analysis employs the lowest available unprescaled
such trigger specific to each data-taking period, which are fully efficient in the offline
EXs > 200 GeV regime.

5.2.2 Small-radius jets

The reconstruction of hadronic jets begins with three-dimensional clustering of energy
deposits measured by calorimeter cells into topological clusters (“topoclusters”), a proce-
dure that resolves the energy and the direction of single hadrons [210]. However, partons
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created in the hard scattering process will undergo hadronization and so the final state jet
comprises many hadrons; therefore, the topoclusters are subsequently used as input to the
anti-k; sequential recombination algorithm [211}[212] with a radius of R = 0.4. The energy
of the resulting jets is calibrated to account for experimental effects using a combination
of MC-based and in situ techniques [213].

5.2.3 b-jets

Because of the high b-quark multiplicities stemming from the Gbb and Gtt (viat — W +b)
signals, robust b-jet identification is required for this analysis. A number of low-level
algorithms have been implemented for this task in ATLAS [214]:

e IP3D, a log-likelihood ratio (LLR) classifier based on the transverse and longitudinal
impact parameter of tracks matched to a given jet, taking advantage of the relatively
long lifetimes of the lightest b-mesons and b-baryons, which will be present inside a
b-quark-initiated jet;

e SV1, another LLR classifier also taking advantage of the b-hadron lifetime but by

trying to recognized jets originating from a displaced interaction vertex;

o JetFitter, a Kalman Filter-based algorithm trying to reconstruct the decay chain of b-

and c-hadrons.

These algorithms are then combined with additional kinematic information using a
Boosted Decision Tree (BDT) classifier, resulting in the MV2 algorithm?l A working point
corresponding to a nominal efficiency of 77% is employed; its identification and rejection
performance can be seen in Figure

5.2.4 Large-radius jets

Given the large hypothesized mass of the gluino and the potentially large difference in
mass between the gluino and the neutralino, boosted W bosons and top quarks from
the gluino decay can subsequently create decay chains so collimated that the individual
constituents are not well resolved by the anti-kT R = 0.4 algorithm, as exemplified in
Figure

One way to deal with such objects is to go back to the topoclusters and reconstruct

another set of jets starting using a larger reconstruction radius. This analysis makes use

2Another alternate combination using neural network, the DL1 algorithm, is available but not used in
this analysis.
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Figure 5.4 — (a) light-flavor jet rejection, (b) c-jet rejection, and (c) b-jet identification
efficiency as a function of jet pr for the different ATLAS b-tagging algorithms at their
nominally 77% efficient working point [214].
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of an alternate strategy, instead using the R = 0.4 jets themselves as input to another
iteration of the anti-k; algorithm but with a radius of R = 0.8. This technique, known as jet
re-clustering, allows for easy propagation of calibrations and uncertainties from the input
jet collection [215] 216]. Such large-radius jets can properly reconstruct the W boson and

top quark masses.

5.2.5 Leptons

Electrons are reconstructed with two different algorithms with differing efficiency and
rejection factors. So-called baseline electron candidates are reconstructed using a high-
efficiency, low-rejection set of criteria using information from the tracker and the electro-
magnetic calorimeters in the pt > 20 GeV, |n| < 2.47 range; they and are used to veto
leptonic events in order to define an all-hadronic channel. Signal electrons are used to
define the leptonic channels, and are defined by a set of additional criteria on top of
the baseline identification, resulting in a lower-efficiency but higher-rejection operating
point [217]. The same paradigm is used for identification for muons [218]. No attempt is
made to reconstruct t-leptons; because of their large mass they tend to decay to hadrons,
in which case they get reconstructed as jets [11]].

Leptons useful for this analysis are qualified as being prompt, that is, they arise from
the hard scattering interaction. However, there can be other sources of lepton production,
which lead to some ambiguity and potential double-counting of energy contributions; this
problem is avoided by the implementation of an overlap removal procedure similar to that
of Ref. [9].

First, electrons arising from muon bremsstrahlung are avoided by discarding electrons
that share an inner detector track with a muon. Contributions from jets arising from
hadrons coming from prompt electron decay are avoided by removing any jet whose
axis lies within AR = \/m < 0.2 of an electron. Conversely, contributions from
electrons produced in hadronic cascades are removed by discarding electrons with E1 <
50 GeV that are within AR < 0.4 of a jet. A slightly more complex strategy is employed
for higher energy electrons, discarding them if they are within AR(pt) < min(0.4,0.04 +
10/pT) of a jet’s axis, to increase acceptance in boosted scenarios. Jets arising from muon
bremsstrahlung are avoided by removing jets with fewer than three matching ID tracks
that contain a muon within AR < 0.2 of its axis, and the remaining ambiguity from muon

created in hadronic cascades is handled in the same way as for electrons.
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5.2.6 Missing transverse energy

The missing transverse momentum is a two-vector in the R—-¢ plane, defined by the
negative of the vector sum of the transverse momenta of all physics objects described
above. To account for contributions from particles not matched to any selected objects, a
so-called “soft term” is computed with unused inner detector tracks that are matched to
the primary vertex. The magnitude of the resulting missing transverse momentum vector
is referred to as missing transverse energy, EX' [219, 220].

As mentioned earlier, this analysis is mainly concerned with the EX > 200 GeV
regime, for which the selected online Ef;*** triggers are fully efficient.

5.2.7 Kinematic variables

Beyond the direct usage of the four-momenta of the physics objects described above, a
tew event-level kinematic input variable are built from the four-vectors and are useful in

various aspects of the analysis:

® Njct, the number of small-R jets;

e Nj, the number of b-tagged small-R jets at the 77% MV2 operating point;

Nsignal

; and N lbasehne, the number of signal and baseline candidate leptons;

o 1., the effective mass, which correlates to the mass scale of sparticles produced in

the hard scattering interaction:

Njet ) N
Meff = Z p]T + Z plT + Ep™ 6.1)
j=1 I=1

. Mf, the sum of the four leading large-radius jet masses, sensitive to the presence of

boosted W bosons or top quarks;

. Aqb4j _, the minimum distance in ¢ between EX** and the leading four small-R jets,
min T

useful to recognize events with large E%ﬁss due to mismeasured jets:

4i .
A(Pﬂ{il’l = mm(|(P1 - (PE%HSSL ceey |(P4 - ¢E$NS|) (52)
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5.3 Data—Monte Carlo agreement

In order to be sure that any potential excess observed above the Standard Model is not
caused by imperfect simulations, it is crucial to verify the data and Monte Carlo agreement
after application of a set of loose criteria. In these so-called pre-selection regions, the
background cross-section is still expected to be much higher than that of the Gtt and Gbb
signals, and thus any large mismodelling not due to these models can be easily spotted
and corrected, if need be.

A common pre-selection is first performed:

E ?iss trigger

Offline E?iss > 200 GeV

[ ]
LNZ
a8
\Y%
e

Then, to ease interpretation, two different channels are defined:

e (-lepton channel:
— Nbaseline _
— AP 204
e 1-lepton channel:

_ Nlmgnal > 1

As in previous iterations of this analysis [8, 9], a data—Monte Carlo discrepancy is
observed in the 1-lepton channel, for instance in the high-m.g regime[| Consequently, a
set of normalization factors are derived in dedicated control regions for the tt and W+jets
backgrounds in the m.t—Nj.; plane, and for the single-top and Z+jets backgrounds in the
meg distribution. All > 1-lepton plots are shown with the resulting weights applied; the
distribution of these weights can be found in Appendix

Figures 5.5 to show the level of agreement for a few of the variables used in this
analysis, taking the statistical uncertainty into account; no large discrepancy is present at

pre-selection level.

3This is observed by several ATLAS analyses, and the cause is still not fully understood. One hypothesis is
that it is caused by quantum interference between different top-related processes which is not yet accounted
for in the Monte Carlo simulations.
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5.4 Neural network for event selection

Traditionally, high-energy physics searches use physically-motivated hand-crafted vari-
ables such as invariant or transverse masses, which are easily interpreted by humans.
However, which high-level variables are better suited to the task at hand is not always
obvious, and important but more subtle information may be discarded in the transition
away from the lower-level objects. Using neural networks (Section for event selection
in high energy physics is by no means a new idea [221-224], and analyses using such
methods also generally use a restricted set of hand-crafted variables; however, the recent
deep learning revolution in machine learning [7] has motivated the use of neural networks
performing event selection starting from low-level inputs such as the four-momenta of
selected objects [225, 226], potentially allowing more relevant information to be retained.
For the present analysis, a neural network is trained to recognize events from the Gtt
and Gbb signals against the Standard Model background (Table using the following

low-level input set, designed to cover all possible decay topologies of a Gtt event (see
Figure 5.2b):

e The four-momenta (pr, 1, ¢, m) of the 10 leading small-R jets, and a set of binary
variables indicating which jets are b-tagged (MV2, 77% WP);

o The four-momenta of the four leading large-R jets;
e The four-momenta of the four leading leptons (e or u);
e The E%iss vector.

The simplest way use such a network with parameterized signal grids such as Gbb and
Gttwould be to train a specific classifier for each mass point. However, in order to maximize
the training set statistics for a single training, a parameterized learning method [227] is
used instead, allowing for a more efficient use of computational resources and a potentially
more robust classifier, since adding training data is one of the most powerful ways to
reduce the generalization error [146]. To further improve the statistics, events with E?iss €
(100, 200) GeV as well as events with Nj, = 2 are also used, albeit for training only.

The goal of the parameterized learning method is to obtain a single classifier that is
optimal for every (mgz, m 70) mass hypothesis across both signal grids. To do so, the neural
network uses a further three non-discriminating inputd?, or parameters:

e A binary variable, Iy, identifying the event as coming from the Gtt or Gbb grids;

*Non-discriminating in the sense that they will be fixed at test time, thus completely removing their
discriminating power from the equation.
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e The gluino mass, M
e The neutralino mass, M 70

The first parameter allows the network to learn different strategies to recognize for
Gtt and Gbb events from the SM background, since here the two grids are taken to be
mutually exclusivef} the last two parameters allow the strategy to be modulated according
to the masses of the particles searched for. These parameters are only meaningful for
signal events; background events get their parameter values by sampling randomly from
the signal distribution, which also removes the correlation of the first parameter with the
network’s output.

The neural network does not simply output a single signal or background probability
score, but also tries to discriminate between different background classes. In total, there

are eight softmax output scores:
e Two signal probability scores, one for each signal grid: P(Gtt) and P(Gbb)

e Six background probability scores, one for each Monte Carlo-estimated background:
P(tt), P(single-top), P(tt + X), P(W + jets), P(Z + jets) and P(diboson).

To ensure that no bias is introduced by the training and hyperparameter selection

procedures, the whole dataset is split into three statistically independent subsets:
o The training set (30%), used to train all hyperparameter samplings;
e The model selection set (35%), used to pick the best hyperparameters;
o The test set (35%), used to produce the final performance estimate.

The training set comprises about 1.09M and 2.25M signal and background events, respec-
tively. The signal cross-section being much smaller than that of the background processes
precludes using the physical cross-sections for training; using unweighted events from
signal and background samples with the statistics listed above upweights the signal con-
tribution significantly for training. In the model selection and test sets, the events are
always weighted to the physical cross-sections. To select the optimal hyperparameters, a
simple random search [228] was performed on the Compute-Canada GPU cluster Béluga}

SAn uppercase M is used here to differentiate from the neural network input parameter from m, the
physical mass for a given grid point.

¢A straightforward extension of this method would consider signals with mixed gluino decay, with this
binary parameter being replaced by branching ratios to different final states.

7Since in this work the Gbb and Gtt grids are taken to be mutually exclusive, this could be reduced to a
single signal probability score.

8https://docs.computecanada.ca/wiki/B%C3%A91uga/en
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Hyperparameter Searched range Selected Value
Hidden layers 1-4 3
Hidden units 50-1000 737
Learning rate 10721071 1.30 X 107°
Batch 2°-210 128
Dropout (input) Yes or No No
Dropout (hidden) Yes or No No
BatchNorm Yes or No Yes
L1 (hidden) 0or 1077-1072 1.57%x107°
L1 (output) 0 or 1077-1072 0
L2 (hidden) 0 or 1077-1072 2.31x 1077
L2 (output) 0 or 1077~1072 0

Early-stop Cross-entropy loss or f-score Cross-entropy loss

Table 5.2 — Configuration and result of the hyperparameter optimization.

the searched range as well as the optimal configuration are listed in Table In all cases,
the ADAM algorithm (Section is used to tune the weights.

After training, first the Igt, Mgz and M 70 parameters are set to definite values corre-
sponding to a specific mass hypothesis in a specific grid, the same for all background,
signal, and data samples, which removes the discriminating power of these variables; this
allows using the neural network to construct a set of output variables amenable to simple
counting experiments in signal regions (SR), which are scrupulously kept blinded until the
very end of the analysis, in order to avoid introducing biases in the SR definitions. To fully
explore the discovery and exclusion potential of such regions, the following procedure is
followed:

1. Select a signal (Gbb or Gtt), which determines the value of Ig¢, and a mass point

(mg, myo);

2. Evaluate P(Signal|lgy, Mgz = mg,Mﬁ) = m)?(l)) for the signal sample and all back-
ground samples;

3. Tune a decision threshold on the resulting variable, subject to the following require-
ments:

e Maximize the expected statistical significance, which is the magnitude of a
statistical fluctuation (measured in standard deviations) above the background-
only hypothesis that would explain the yield that is expected under the sig-
nal+background hypothesis’;

*During optimization, the NumberCountingUtils: :BinomialExpZ formula from the RooStats library is
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e Obtain > 0.5 expected background events;

e Obtain < 30% Poisson statistical uncertainty on the tt background yield;
4. Repeat for all mass pairs in both signal grids.

This procedure yields about 300 signal regions, one per grid point. To select the best
hyperparameters, this procedure is carried-out using the model selection dataset for all
different trainings and the best model is defined as that which has the largest number of
grid points with statistical significance > 1.64, corresponding to a one-sided confidence
level (CL) of 95%. For the final performance estimate however, such a high number
of signal regions is unreasonable as the discovery potential is weakened by the Look-
Elsewhere Effect (LEE) [229], according to which the probability of observing a signal-like
statistical fluctuation of the background increases with number of counting-experiments
performed. Therefore, after obtaining all these regions on the test set with the final model,
we need to find a minimal set that can maximize the exclusion reach and the sensitivity for
both grids. This is equivalent to the set cover problem[} for which a simple solution exists:
iteratively select regions from the full set until exclusion and sensitivity stops improving.
Following this strategy, optimality is attainable with only four signal regions per grid, for
a grand total of eight; their definitions can be found in Tables 5.3|and

One signal region is assigned to each grid points of both models; the resulting coverage
is shown in Figure Although the mass splitting is not taken into account while
performing the assignment, the various signal regions end up being assigned to specific

X
As can be seen in figure the neural network is much more powerful than the

mg - m~(1) ranges.

simple cut-and-count analysis (CCA) performed in Ref. [9], even after accounting for the
luminosity difference. In fact, the neural network regions reach a signal efficiency{l| some-
times two or three times higher than that of the CCA regions, while having only one-half
to one-tenth of the corresponding background efficiency; this translates to improvements
in statistical significance by up to a factor 85 for some mass hypotheses. In such cases,
the cut-and-count analysis would need to accumulate roughly 7000x more data to attain
an equivalent performance level in single regiond}°} This increased performance also

used to compute it, while the profile likelihood fit of Section is used for the final results.

Whttps://en.wikipedia.org/wiki/Set_cover_problem

The signal (background) efficiency of a signal region is defined as the fraction of events from a signal
(background) sample that are accepted into the region.

2The statistical significance of a single region can be approximated by Z = S/VB. Therefore, scaling the
yields by a factor L only improves the significance by VL.

13To be completely fair, the previous CCA strategy was optimized for 79.9 fb™!, and the 0 £ and > 1/
channels were statistically combined. The single-region results have been recomputed with the present
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Figure 5.11 - Signal region coverage for the (a) Gbb and (b) Gtt signal grids. In both cases,
the regions are numbered in the order in which they are listed in Tables[5.3|and The
empty squares represent mass pairs for which no signal samples were produced.

simplifies the analysis by removing the need to perform a statistical combination of many
orthogonal regions.

In order to verify and correct potential mis-modeling, each SR has an associated or-
thogonal control region (CR), in which background-only fits (Section[5.5) are performed to
estimate data/MC normalization factors used to correct the normalization of the leading
background, tt. Sets of validation regions (VR), orthogonal to both the SR and CR, are also
implemented to verify the remaining mismodelling after application of the normalization
factor derived in the CR [230].

While the signal regions are defined only in terms of a decision threshold on the neural
network output, the CRs and VRs have additional requirements. For instance, thresholds
or ranges in meg and M]Z are applied in some regions to keep them kinetically close to
the SRs as the neural network output requirement is loosened, and to reduce the signal
contamination to acceptable levels (< 20(10)% in VR(CR)). To ensure that the derived tt
normalization factors are meaningful, a lower threshold on P(tt) is added to the CRs to
maximise the tt purity. In the results that follows, two kinds of validation regions are
implemented for the Gtt regions:

e VR1, which are primarily defined by intermediate cuts on the signal probability
(i.e., between the CRs and SRs) and allow to verify the level of agreement after the
application of the tt normalization factors. These regions do not have any cuts on

P(tt) in order to keep the region definition as similar as possible to that of the SRs;

luminosity to calculate the numbers shown here.
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Figure 5.12 — (a,b) Signal and (c,d) background efficiencies as well as (e,f) statistical sig-
nificance of the neural network regions divided by that of the best cut-and-count (CCA)
discovery regions of Ref [9] for each mass pair, for the Gbb and Gtt models.
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e VR2, which are defined by inverting the P(tt) in the CRs.

The Gbb SRs are usually dominated by the irreducible Z+jets background, primarily
because of Z — vv events; this background can be more efficiently suppressed in the
Gtt SRs because of the higher jet multiplicities due to four top quark decays, for instance.
Designing control regions pure enough to derive normalization factors with acceptable
uncertainties for the Z+jets background is unfeasible; fortunately, it is possible to define
additional validation regions for which the purity requirement is less crucial. This is done
by requiring lower thresholds on P(Z + jets) to enhance the fraction of this background,
allowing to check for potential mismodeling. Each Gbb SR/CR pair therefore have three
associated validation regions:

e VR1, again defined by intermediate cuts on the signal probability but with an upper
limit on the Z+jets probability;

e VR2, again defined by inverting the P (tt) in the CRs;

e VR3, defined like VR1 but with a lower limit on the Z+jets probability instead, to
check the modeling of this background.

The basic layout of the three types of regions can be seen in Figure Region defi-
nitions are listed in Tables|5.3|and [5.4| for Gbb and Gtt, respectively; expected background
yields and composition can be seen in Figures [5.14 and [5.15] The Gtt control regions
achieve 70% to 80% tt purity, while the Gbb regions achieve about 50% to 80% purity; the
Z+jets purity in the Gbb VR3 set range from 20% to 50%. One can also see in these figures

the very stringent nature of the SRs, which typically have § 1 expected background event.

While the CR and the VRs assigned to a given SR are orthogonal to each other (and to
the SR), different SR/VRs/CR triplets are not necessarily orthogonal to other triplets, and
the overlap of background events between different regions is shown in Figure[5.16|

The Data—Monte Carlo agreement after the pre-selections described in Section 5.3 for
relevant neural network output variables are shown in Figures The signal
probabilities (Figures and are generally well modeled. The P(tt) distributions
(Figures and show some disagreement at high values, which is the range that
is corrected by the tt-enriched control regions via fitted normalization factors. Such
normalization differences are considered normal even though the control regions have
negligible expected signal yields, because of the large extrapolation from the bulk of the
tt sample (X 100M events) to a small number of events in the CRs (< 100 events). The
Z+jets probabilities (Figure[5.19) show the same tendency, but there is no dedicated control
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P(Z+jets)
P(ttbar)

P(Gbb) p(Gtt)

(a) (b)
Figure 5.13 - Signal, validation and control region strategy for (a) Gbb and (b) Gtt regions.

Region | P(Gtt) log10 P(tt) meg M?

SR-Gtt-2100-1 | > 0.9998 - - -
VR1-Gtt-2100-1 | € (0.85,0.9998( - > 1800 -
VR2-Gtt-2100-1 | € (0.7, 0.85( <-0.9 > 1200 -
CR-Gtt-2100-1 | € (0.7, 0.85( >-0.9 > 1200 -
SR-Gtt-1800-1 | > 0.9997 - - -
VR1-Gtt-1800-1 | € (0.85,0.9997( - > 1600 -
VR2-Gtt-1800-1 | € (0.76, 0.85( <-1.0 > 1200 -
CR-Gtt-1800-1 | € (0.76, 0.85( >-1.0 > 1200 -
SR-Gtt-2300-1200 | > 0.9997 - - -
VR1-Gtt-2300-1200 | € (0.81,0.9997( - > 1500 -
VR2-Gtt-2300-1200 | € (0.74,0.81(  <-1.0 > 1200 -
CR-Gtt-2300-1200 | € (0.74, 0.81( >-1.0 > 1200 -
SR-Gtt-1900-1400 | > 0.9996 - - -

VR1-Gtt-1900-1400 | € (0.89, 0.9996( - > 600 < 500

VR2-Gtt-1900-1400 | € (0.87, 0.89( <-1.6 > 600 < 500

CR-Gtt-1900-1400 | € (0.87, 0.89( >-1.6 > 600 <500

Table 5.4 — Gtt region definitions.
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Figure 5.16 — Overlap of background events in the (a,c,e) Gbb and (b,d,f) Gtt regions. Each
cell quantifies the fraction of events in the signal region of the x axis that are also in the
signal region of the y axis.
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Figure 5.17 — Data/MC comparison for the P(Gbb) variables used for the Gbb regions, in
the O-lepton channel defined in Section

regions to correct these distributions; this range is instead selected by the Z+jets—enriched

validation regions and so any mismodelling due to this background can be identified.

5.5 Profile likelihood fits

The statistical analysis of results follows a two-step strategy, both implemented using the
HistFitter package v0.63 [230]. Firstly, a background-only fit is performed separately in
each control region in order to derive the p,; normalization factors; These per-region nor-
malization factors are extrapolated to their respective SRs before unblinding these regions
and quantifying any potential excess. If there is a significant excess, then a discovery can
be claimed; if none is observed, we move on to exclusion fits, performed in both the CRs
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Figure 5.18 — Data/MC comparison for the P(tt) variables used for the Gbb regions, in the
O-lepton channel defined in Section[5.3]
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Figure 5.19 — Data/MC comparison for the P(Z + jets) variables used for the Gbb regions,
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Figure 5.22 — Data/MC comparison for the P (tt) variables used for the Gtt regions, in the
O-lepton channel defined in Section[5.3]
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and the SRs simultaneously and used as input to likelihood-ratio tests aiming to probe
which parts of the Gbb and Gtt grids are excluded by the analysis.

The likelihood function used for the background-only fit is the following:

L= [Porx Cast. (5.3)
CR

The probability densities Pcr are Poisson distributions:

Pcr = Poisson(n%tﬁmgg . (5.4)

exp

The expression for the expected number of events, Neg s

isnominally taken from the Monte
Carlo background estimate:

exp _

tt other
neg = (Wheg + 1ERT)- (5.5)

The nominal expected yields can get scaled up or down depending on the effect of sys-
tematic uncertainties:

n®P — n*P(1 + x;ja; +...). (5.6)

Here, the x;a; terms encompass the effects of nuisance parameters: «; is equal to the
impact on the yield of a one-sigma fluctuation in the @; nuisance parameter. The values
for the a; parameters are set by the fit procedure and constrained by the Cgy; term:

Coyst = | [ MOOlas, ). (57)

This technique is known as profiling [231]], and allows expressing the likelihood as a
function of the parameters of interests only, the nuisance parameters settling to their most
probable values given the observed data.

As mentioned earlier, if no significant excesses are observed after the background-only
fit, an exclusion fit is performed this time taking into account the signal regions:
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L= 1_[ Psr l_[ Pcr X Coyst.- (5.8)
SR CR

Again, a profile likelihood fit is performed to remove the dependency on parameters other
than uge, the signal strength. Following the Neyman-Pearson lemma [232], likelihood

ratio tests are then performed for each mass hypothesis with the g,,;, variable [233]:

L(usig)
q[-lsig = -2 log ‘uA 2 . (59)

Here, f(ysig) is the result of a profiling fit with a fixed g, value, and [ lets Usig float as
well to fully maximize the likelihood. Results of these hypothesis tests are finally used to
produce 95% confidence level (CL) exclusion contours in the mg-m 0 plane using the CLs

prescription [234].

5.6 Results

Background-only fit results are found in Figures Figure show the result of
the fits in the control regions for the Gbb and Gtt regions, including the p,; normalization
factors, which range from 0.8 to 1.7, depending on the region. The data-Monte Carlo
agreement after application of these normalization factors in the validation regions can be
found in Figures These show no significant disagreement, which means that the y,;
scale factors are reasonable. The fit results in the signal regions are found in Figures
showing no significant deviation from the Standard Model background. The expected
and observed event yields in the signal regions are summarized in Table 5.5} the full yield
tables for all regions can be found in Appendix

Systematic uncertainties affect the analysis if they impact the expected background
yields (the normalization factors in the case of tt), or the signal yields, which are used
to compute the exclusion limits. The systematic uncertainties taken into account can
be mostly separated into two categories, experimental and theoretical; the experimental
uncertainties affect the reconstruction and identification efficiencies and the energy reso-
lutions of all the physics objects used in the analysis, while the theoretical uncertainties
affect the simulation of the various Standard Model backgrounds as well as the SUSY sig-
nals, and include variations of the renormalization and factorisation scales, parton density

functions, and the amount of QCD radiation. The leading sources of experimental system-
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atic uncertainties are due to the weights correcting the data—Monte Carlo discrepancy in
the 1-lepton channel, jet energy resolution and scale (JER/]JES), and b-tagging. Dedicated
terms accounting for the generator, radiation and parton shower theoretical uncertain-
ties are computed in all regions for the tt, single-top, and V+jets backgrounds. Dummy,
uncorrelated 50% uncertainty terms are included on the yields of all other backgrounds
except QCD to account for the lack of dedicated estimation; the QCD term has a larger,
100% uncertainty, since this background is not estimated from a dedicated sample but
with a procedure involving the rest of the Monte Carlo backgrounds. A term accounting
for luminosity uncertainty is also included in the fit. The uncertainties in the regions
SR-Gbb-2800-1400 and SR-Gbb-2300-1000 are dominated by the Z+jets theory uncertainty,
which can reach up to 70%; this is expected since the selected kinematic phase-space
(highly energetic events with many particles) in the SRs represent a very small fraction of
the whole sample and therefore are highly sensitive to variations in theory parameters.
The two other Gbb signal regions and the Gtt signal-regions are statistically limited. A
summary of of the statistical and systematic uncertainties in the various signal regions can
be found in Table while the full breakdown of the uncertainties in all regions can be
found in Appendix

As discussed in the previous section, since no excesses are seen after the background-
only fits, the data is used to set limits in the mgz-m 70 plane for both the Gbb and Gtt models.
The results of the model-dependent exclusion fits are shown in Figure In the Gbb
model, gluino masses below 2.3 TeV are excluded at 95% CL in the massless neutralino
case; the highest excluded neutralino mass is of approximately 1.7 TeV, for a 2.3 TeV gluino.
In the Gtt model, gluinos with less than 2.45 TeV of mass are excluded in the massless
neutralino case, while the highest limit on the neutralino mass is of 1.65 TeV, for a 2.1 TeV

gluino.
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Figure 5.24 — Top pannel: Number of observed events in 139 fb™! of 13 TeV ATLAS data,
shown as points, and the corresponding number of expected background events, shown
as histograms, in each of the (a) Gbb and (b) Gtt control regions. Bottom pannel: fitted tt
normalization factors in each signal regions.
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SR Gbb-2800-1400 Gbb-2300-1000 Gbb-2100-1600 Gbb-2000-1800
Observed events 1 1 0 1
Fitted background 0.8+0.7 0.8+0.8 19+138 1.7+26
tt 0.14 +0.14 0.09 +0.10 0.40 + 0.31 07+1.6
Single-top 0.21 £0.16 0.25+0.21 0.37 £ 0.26 0.03 + 0.04
tt+ X 0.00 + 0.05 0.00 + 0.04 0.09 + 0.07 0.05 + 0.08
Z+jets 03+06 03+08 08+1.7 0.6 0.6
W+ets - - 0.00%0:57 0211
Diboson = - 0.15 £ 0.09 0.14 £ 0.17
Multijet 0.08 + 0.09 0.10 £ 0.11 0.13 +0.14 0.00 + 0.08
MC-only background 0.8+0.7 0.8+0.8 1.7+1.8 1.6 £23
(@)

SR Gtt-2100-1  Gtt-1800-1 Gtt-2300-1200 Gtt-1900-1400

Observed events 0 0 1 2

Fitted background 0.5+0.5 1.1+038 0.7+0.7 08+12

t 020+025 03+04 04+05 07+1.1

Single-top 015+0.17 019+0.23 0.06 +0.08 0.01 £ 0.05

tt+ X 015+021 03+04 02+04 0.15+0.30

Z+jets 0.04+0.13 005+013 0.06 +0.23 -

Wjets - 0.21 £0.35 - -

Diboson - - -

Multijet 0.007905  0.00*5:09 0.007909 0.0079 06

MC-only background

05+04

1.1 +£0.9

0.6 £0.6

1.0+1.3

(b)

Table 5.5 — Summary of the expected and observed event counts in the (a) Gbb and (b) Gtt
signal regions. The MC-only background represents the nominally expected background
level before the profile likelihood fit, while the background-specific counts are post-fit.

153



SR Gbb-2800-1400 Gbb-2300-1000 Gbb-2100-1600 Gbb-2000-1800

Background expectation 0.76 0.75 1.91 1.75
Statistical uncertainty +0.87 +0.87 +1.38 +1.32
Systematic uncertainty +0.70 +0.79 +1.76 +1.30
(a)
SR Gtt-2100-1 Gtt-1800-1  Gtt-2300-1200  Gtt-1900-1400
Background expectation 0.54 1.07 0.74 0.84
Statistical uncertainty +0.73 +1.03 +0.86 +0.92
Systematic uncertainty +0.23 +0.41 +0.36 +0.58
(b)

Table 5.6 - Summary of the absolute statistical and systematic uncertainties on the expected
event counts in the (a) Gbb and (b) Gtt signal regions.
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Figure 5.27 — 95% CL exclusion contours in the mgz—m 70 plane for the (a) Gbb and (b) Gtt
signals.
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These results represent a substantial improvement over the previous ATLAS limits
for these models, which were based on statistical combinations of many simple cut-and-
count regions [9]. For massless neutralinos, the upper limit on the gluino mass is moved
by 100 GeV and 200 GeV for the Gbb and Gtt models, respectively; this is a significant
improvement even when taking into account the luminosity increase, considering that the
gluino pair production cross-section falls rapidly with increasing gluino mass as seen in
Figure Moreover, the neural network results allow to set world-leading limits in the
compressed mass-splitting regime, where the improvement relative to cut-based analyses
is particularly significant; in this difficult regime, the neural network moves the upper
limit on the neutralino mass by about 500 GeV and 400 GeV in the Gbb and Gtt models,

respectively.
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Conclusion

This thesis has presented the implementation of a novel deep learning-based approach to
the search for supersymmetry, using only the four-momenta of selected physics objects.
We’ve begun this journey by considering the current status of the Standard Model, an
extremely successful theory of fundamental interactions, including a few of its problems.
We’ve then turned our attention to supersymmetry, an hypothesized SM extension that
could solve many of the aforementioned problems in an elegant and consistent way. Doing
so, we’ve hopefully convinced ourselves that natural SUSY still hasn’t said its final word,
motivating the need to carry on the search with new and improved methods. We've
then discussed the LHC and the ATLAS detector, and we’ve seen the huge amount of
information that is recorded about each collisions by all the subsystems. Consequently,
a lot of work is needed to reconstruct meaningful physics objects from this raw data and
we’ve discussed one area in which I've been involved, that of track reconstruction in the
ATLAS inner detector; my contribution consisted of characterizing and optimizing a set
of neural network used to recognize and split overlapping charge clusters in the pixel
detector. In later chapters, we’ve seen how a parameterized neural network operating on
low-level inputs is able to achieve a very high sensitivity to the presence of gluinos and
neutralinos in ATLAS +/s = 13 TeV data for two different simplified models with off-shell
stops (Gtt) or sbottoms (Gbb).

No significant excess above the SM background is recorded. In the Gbb model, gluino
masses below 2.3 TeV and neutralino masses below 1.7 TeV are excluded at the 95%
confidence level, while in the Gtt model, gluino and neutralino masses of less than 2.45 TeV
and 1.65 TeV are ruled out, greatly increasing the previous limit on these two simplified
models. For some mass hypotheses, the sensitivity increase is substantial; for instance,
the (mz = 1.6 TeV, mgo = 1.245 TeV) mass point of the Gtt grid has seen its statistical
significance increase by 85X that of the previous results, after accounting for the difference
in luminosity.

The neural network algorithm implemented for this search has proved to be very effi-

cient and powerful, and can readily be applied to other scenarios in the future, particularly



in cases where many related signal models can share a common background model, which
amplifies the benefits of the parameterized learning paradigm. Possible ways of improving
future searches based on the present one include performing a shape fit on the neural net-
work output rather than doing a simple counting experiment, and using more advanced
classifiers such as recurrent neural networks (RNN), which can make it easier to use a
larger selection of input physics objects that varies between events. The exclusion results
presented in this thesis still do not decisively rule-out the natural spectrum, but will con-
tribute to put pressure on this particular style of supersymmetric theories; searches such
as this one should ideally be repeated in the future as the ATLAS detector continues to
gather more data to make a discovery or continue pushing the boundary well outside of
the low TeV range.
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Appendices

A Kinematic reweighting in the 1-lepton channel

Note: these plots, and all the work that went into deriving these weights, are due to Egor Antipov.
Many thanks!

Table 7 — Definitions of the control regions used to derive the kinematic reweighting scale-
factors. The N, requirements ensure these control regions are orthogonal to all signal
regions of the analysis, which include a N}, > 3 requirement. The Z-enriched region uses
a definition of E%iss that includes the lepton pair momentum, to simulate Z — vv events.

Criteria common to all regions: Nje; > 4, E%liss > 200 GeV

Control-region Niepton N, mtb (GeV) My (GeV)
tt-enriched =1 =2 < 350
single-top-enriched =1 =2 > 350
W-enriched =1 =0
Z-enriched = 2, opposite charge =0 € (60,120(
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Figure 30 — Result of the fit to the data/MC distribution for the (a) single-top— and (b) Z-
enriched control regions.
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CR_Gbb_2800_1400 VR1 VR2 VR3 SR
Total background expectation 26.98 12.31 7.01 10.40 0.76
Total statistical (/Nexp) +5.19 +3.51 +2.65 +3.22 +0.87

Total background systematic

+5.35 [19.85%]

+4.26 [34.63%)

+4.56 [65.10%]

+4.21 [40.48%]

+0.70 [91.20%)]

mu_ttbar_Gbb_2800_1400
alpha_QCDHundred
alpha_WZ_ckkw_syst
gamma_stat_CR_Gbb_2800_1400_cuts_bin_0
alpha_JER1

alpha_JERO

alpha_JER2

alpha_JESO

alpha_WZ_renorm_syst
alpha_WZ_fac_syst

alpha_JES1

alpha_JES6
alpha_topEW_syst_CR_Gbb_2800_1400
Lumi

alpha_JER5

alpha_WZ_gsf_syst

alpha_JER3

alpha_JER7

alpha_bTag_C

alpha_bTag L

alpha_JES5

alpha_JER4

alpha_JER6

alpha_bTag_B

alpha_JES2

alpha_bTag_extrapol_charm
alpha_diboson_syst_CR_Gbb_2800_1400
alpha_JVT

alpha_bTag_extrapol

alpha_JES4

alpha_JES3
alpha_topEW_syst_VR3_Gbb_2800_1400
alpha_ttbb_syst
gamma_stat_VR3_Gbb_2800_1400_cuts_bin_0
alpha_ttbar_syst_VR2_Gbb_2800_1400
gamma_stat_SR_Gbb_2800_1400_cuts_bin_0
alpha_st_syst_VR2_Gbb_2800_1400
alpha_st_syst_VR3_Gbb_2800_1400
alpha_ttcc_syst
alpha_topEW_syst_VR2_Gbb_2800_1400
alpha_diboson_syst_VR3_Gbb_2800_1400
alpha_ttbar_syst_VR1_Gbb_2800_1400
gamma_stat_VR2_Gbb_2800_1400_cuts_bin_0
alpha_st_syst_SR_Gbb_2800_1400
alpha_topEW_syst_SR_Gbb_2800_1400
alpha_kin_RW
gamma_stat_VR1_Gbb_2800_1400_cuts_bin_0
alpha_ttbar_syst_SR_Gbb_2800_1400
alpha_topEW_syst_VR1_Gbb_2800_1400
alpha_ttbar_syst_VR3_Gbb_2800_1400
alpha_diboson_syst_VR1_Gbb_2800_1400
alpha_st_syst_VR1_Gbb_2800_1400

+8.86 [32.8%)]
+4.90 [18.1%)]
+2.65 [9.8%]
+2.52 [9.3%)]
+1.52 [5.6%)]
+1.21 [4.5%)]
+1.11 [4.1%)]
+1.06 [3.9%]
+0.98 [3.6%)]
+0.96 [3.6%)]
+0.91 [3.4%)]
+0.63 [2.3%)]
+0.60 [2.2%]
+0.38 [1.4%)]
+0.31 [1.1%)]
+0.30 [1.1%)]
+0.30 [1.1%)]
+0.27 [1.0%)]
£0.25 [0.94%)]
+0.23 [0.85%]
+0.19 [0.70%)]
+0.17 [0.65%]
+0.16 [0.58%]
+0.14 [0.52%)]
+0.13 [0.48%]
+0.06 [0.24%)]
+0.06 [0.20%]
£0.04 [0.14%)]
+0.03 [0.10%]
+0.00 [0.02%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]

+2.36 [19.2%]
+3.26 [26.5%]
+1.30 [10.6%]
+0.00 [0.00%]
+0.66 [5.3%)]
+0.23 [1.9%)]
£0.24 [2.0%)]
+0.05 [0.37%]
£0.90 [7.3%)]
+0.27 [2.2%)]
+0.01 [0.07%]
+0.03 [0.24%)]
+0.00 [0.00%]
+0.25 [2.0%)]
+0.43 [3.5%)]
+0.36 [2.9%)]
+0.29 [2.3%)]
+0.34 [2.8%]
£0.14 [1.2%)]
+0.39 [3.1%)]
+0.01 [0.05%]
+0.44 [3.6%)]
+0.36 [2.9%)]
+0.11 [0.91%]
+0.25 [2.0%)]
+0.08 [0.67%]
+0.00 [0.00%]
+0.03 [0.23%)]
+0.23 [1.9%)]
+0.00 [0.01%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.02 [0.13%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.03 [0.26%]
+0.00 [0.00%]
+0.00 [0.00%]
+1.85 [15.1%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+1.99 [16.2%)]
+0.00 [0.00%]
+0.27 [2.2%)]
+0.00 [0.00%]
£0.09 [0.77%)]
+1.17 [9.5%)]

£1.20 [17.1%)]
+0.95 [13.6%)]
+1.81 [25.9%]
+0.00 [0.00%)]
+2.23 [31.8%]
+1.34[19.1%)]
+1.20 [17.2%)]
+0.05 [0.73%)]
+0.55 [7.9%]
+0.71 [10.2%]
+0.09 [1.3%]
+0.31 [4.4%]
+0.00 [0.00%)]
+0.15 [2.1%]
+0.54 [7.7%]
+0.14 [2.0%)]
£0.75 [10.7%]
+0.64 [9.1%)]
+0.17 [2.5%]
+0.13 [1.8%)]
+0.00 [0.00%]
+0.65 [9.2%]
+£1.47 [21.0%)]
£0.07 [0.97%]
+0.00 [0.01%)]
+0.06 [0.82%]
+0.00 [0.00%)]
+0.02 [0.30%]
£0.02 [0.34%)]
+0.01 [0.07%)]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.07 [0.95%]
+0.00 [0.00%)]
+0.94 [13.4%]
+0.00 [0.00%)]
+0.90 [12.9%)]
+0.00 [0.00%)]
+0.02 [0.35%)]
£0.22 [3.1%]
+0.00 [0.00%]
+0.00 [0.00%]
+1.12 [16.0%)]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%)]

+1.15 [11.0%]
+£2.28 [21.9%]
+£2.79 [26.8%]
+£0.00 [0.00%]
+0.66 [6.3%)]
£0.16 [1.5%]
+0.58 [5.6%)]
+0.35 [3.4%)]
+0.87 [8.4%)]
+1.08 [10.4%)]
+0.37 [3.5%)]
+0.76 [7.3%)]
+£0.00 [0.00%]
+0.25 [2.4%)]
+0.07 [0.69%]
+0.24 [2.3%)]
+£0.04 [0.42%]
+0.46 [4.4%]
+0.16 [1.6%)]
£0.21 [2.0%)]
+£0.01 [0.14%]
+0.23 [2.2%]
+£0.04 [0.36%]
+0.11 [1.0%)]
+0.14 [1.3%)]
+0.06 [0.58%]
+£0.00 [0.00%]
+0.03 [0.26%)]
+£0.02 [0.22%]
+0.01 [0.05%]
+£0.00 [0.00%]
+0.22 [2.1%)]
+0.01 [0.06%]
+1.70 [16.3%]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]
+1.18 [11.3%)]
+0.01 [0.14%]
+0.00 [0.00%]
£0.17 [1.6%]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.90 [8.7%)]
+0.00 [0.00%]
+£0.00 [0.00%]

£0.09 [11.9%)]
+0.08 [10.4%]
+0.54 [71.2%]
+0.00 [0.00%]
+0.00 [0.26%)]
£0.01 [1.4%)]
+0.05 [6.3%)]
£0.04 [5.1%)]
£0.04 [5.2%)]
+0.28 [36.2%)]
+0.05 [6.8%)]
+0.04 [4.7%)]
+0.00 [0.00%]
£0.02 [2.3%)]
£0.01 [1.9%)]
£0.01 [1.7%)]
£0.02 [3.1%)]
£0.01 [1.2%)]
£0.01 [1.2%)]
+0.03 [4.2%)]
+0.00 [0.01%)]
+0.03 [3.7%]
£0.04 [5.1%)]
£0.01 [1.9%)]
£0.01 [1.1%)]
+0.00 [0.08%]
+0.00 [0.00%]
+0.00 [0.16%)]
£0.02 [2.1%)]
+0.00 [0.02%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.33%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.31 [40.7%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.27%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.11 [13.8%]
+0.00 [0.16%]
+0.00 [0.00%]
+0.00 [0.00%]
£0.07 [9.3%)]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]

Table 16 — Breakdown of the dominant systematic uncertainties on background estimates

for region Gbb_2800_1400
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CR_Gbb_2300_1000 VR1 VR2 VR3 SR

Total background expectation 29.00 15.57 12.22 8.26 0.75
Total statistical (/Nexp) +5.39 +3.95 +3.50 +2.87 +0.87

Total background systematic +5.86 [20.21%]  +5.32[34.19%] +5.91 [48.36%] +5.43 [65.69%] +0.79 [105.18%]

mu_ttbar_Gbb_2300_1000
alpha_QCDHundred

+£10.97 [37.8%]  +3.29 [21.1%] +2.83[23.2%] +0.29 [3.5%] +0.08 [10.5%]

alpha_WZ_ckkw_syst
gamma_stat_CR_Gbb_2300_1000_cuts_bin_0

+3.48 [12.0%)]

+1.75 [11.2%)]

+2.60 [21.3%)]

+1.82[22.0%)]

+0.44 [58.7%]

[

+6.55 [22.6%]  +3.92[25.2%] =*1.57[12.8%] +0.61[7.3%] +0.10[13.1%)]
[
[

£2.60 [9.0%)]

+0.00 [0.00%]

+0.00 [0.00%]

+0.00 [0.00%]

+0.00 [0.00%]

alpha_JER1 +1.81 [6.2%)] +1.12 [7.2%] +£1.99[16.3%] +3.01[36.5%] =+0.16 [20.7%]
alpha_JERO +1.44[5.0%]  +0.55[3.5%] +1.48[12.1%] +0.45[5.4%] +0.13 [17.7%]
alpha_WZ_renorm_syst +1.41 [4.9%] +1.46 [9.4%] +0.82[6.7%] £2.48[30.0%] +0.03 [4.5%]
alpha_JER2 +1.39 [4.8%)] +0.83 [5.4%] +1.16[9.5%] +0.27[3.3%] =0.12[16.2%]
alpha_ WZ_fac_syst +1.27 [4.4%] +0.29 [1.8%] +1.06 [8.7%] +0.16 [2.0%] +0.23 [30.9%]
alpha_JES6 +0.99 [3.4%] +0.26 [1.7%] +0.06 [0.48%] =+0.50[6.1%] +0.12 [15.5%]
alpha_JESO +0.91[3.1%]  +0.34[2.2%] +0.07 [0.58%] =+0.57[7.0%] +0.11 [14.8%]
alpha_JER6 +0.86 [3.0%] +0.85 [6.5%] +1.60[13.1%] =+0.55[6.7%] +0.14[19.1%]
alpha_JES1 +0.84 [2.9%)] +0.40 [2.5%] +0.14[1.1%] +0.85[10.2%] =0.13 [16.8%]
alpha_JER3 +0.71[2.4%]  +0.67[4.3%] +0.51[4.2%] +0.27[3.3%] +0.17 [22.8%]

alpha_topEW_syst_CR_Gbb_2300_1000

+0.68 [2.4%)]

+0.00 [0.00%]

+0.00 [0.00%]

£0.00 [0.00%]

£0.00 [0.00%]

alpha_JER5 +0.59 [2.0%)] +0.87 [5.6%] +0.37[3.1%] =+0.03[0.32%] =+0.22[29.6%]
alpha_JES2 +0.51 [1.8%)] +0.33[2.1%] +0.31[2.6%] =+0.02[0.29%] +0.02 [2.5%]
alpha_JER4 £0.50 [1.7%)] £0.74 [4.8%] +1.32[10.8%] +0.40[4.9%] =+0.15[20.4%]
Lumi +0.46 [1.6%)] £0.34[2.2%] +0.26[2.1%] +0.23[2.8%]  +0.02 [2.5%]
alpha_WZ_gsf_syst +0.44 [1.5%)] £0.60 [3.8%] +0.21[1.8%] =+1.07[12.9%] =+0.01[1.3%]
alpha_bTag_L +0.40 [1.4%)] £0.35[2.3%] +0.13[1.1%] +0.14[1.7%]  +0.03 [3.7%]

alpha_bTag_C

+0.28 [0.96%]

+0.23 [1.4%]

+0.32 [2.6%)]

£0.08 [0.99%]

+0.02 [2.4%)]

alpha_JES5 £0.18 [0.62%]  +0.01[0.08%] =+0.00[0.03%] =+0.00[0.03%] =+0.00 [0.03%]
alpha_bTag B £0.17[0.58%]  +0.17[1.1%] +0.12[1.0%] +0.05[0.62%] +0.01[2.0%]
alpha_JER7 £0.17[0.57%]  +0.13[0.86%] +0.98[8.1%] +0.44[5.3%] =+0.16 [21.0%]

alpha_bTag_extrapol_charm

alpha_JVT

alpha_bTag_extrapol

alpha_JES4
alpha_JES3

alpha_st_syst_SR_Gbb_2300_1000

alpha_ttbb_syst

gamma_stat_VR1_Gbb_2300_1000_cuts_bin_0
alpha_st_syst_VR1_Gbb_2300_1000
gamma_stat_VR3_Gbb_2300_1000_cuts_bin_0
alpha_diboson_syst_VR3_Gbb_2300_1000
alpha_ttbar_syst_VR3_Gbb_2300_1000
alpha_st_syst_VR3_Gbb_2300_1000
alpha_topEW_syst_SR_Gbb_2300_1000

alpha_ttcc_syst

alpha_ttbar_syst_SR_Gbb_2300_1000
alpha_ttbar_syst_VR1_Gbb_2300_1000
alpha_topEW_syst_VR3_Gbb_2300_1000
alpha_topEW_syst_VR2_Gbb_2300_1000
gamma_stat_VR2_Gbb_2300_1000_cuts_bin_0

£0.12 [0.42%]
£0.05 [0.17%]
+0.02 [0.06%]
£0.00 [0.02%]
+0.00 [0.00%]
£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
£0.00 [0.00%]
+0.00 [0.00%]
£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
£0.00 [0.00%]
£0.00 [0.00%]
£0.00 [0.00%]
£0.00 [0.00%]
+0.00 [0.00%]

+0.10 [0.61%)]
+0.04 [0.23%)]
+0.30 [1.9%)]
+0.00 [0.01%]
+0.00 [0.00%]
+0.00 [0.00%]
£0.03 [0.21%]
+£2.06 [13.3%)]
+1.59 [10.2%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]

+0.04 [0.26%]
+0.00 [0.00%]
+1.95 [12.5%]
£0.00 [0.00%]
+0.00 [0.00%]
£0.00 [0.00%]
+0.00 [0.00%]

+0.09 [0.76%]
+0.04 [0.37%]
+0.02 [0.15%]
£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.07 [0.53%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.03 [0.26%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.36 [2.9%)]
+1.42 [11.7%]
+0.00 [0.00%]

£0.01 [0.12%]
+£0.04 [0.45%]
£0.02 [0.26%]
£0.00 [0.03%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.03 [0.31%]
£0.00 [0.00%]
+0.00 [0.00%]
+£2.74 [33.2%]
£0.12 [1.4%)]
£0.17 [2.1%)]
£0.66 [8.0%)]
+0.00 [0.00%]
£0.02 [0.26%]
+0.00 [0.00%]
£0.00 [0.00%]
£0.07 [0.85%]
£0.00 [0.00%]
£0.00 [0.00%]
+0.00 [0.00%]

£0.00 [0.37%]
£0.00 [0.18%]
+0.02 [2.3%)]
£0.00 [0.00%]
+0.00 [0.00%]
+0.13 [16.7%]
+0.01 [0.83%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]
£0.00 [0.00%]
+0.00 [0.16%]
+0.01 [0.98%]
£0.05 [6.2%)]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]
£0.00 [0.00%]
+0.33 [43.5%]

gamma_stat_SR_Gbb_2300_1000_cuts_bin_0
alpha_diboson_syst_VR2_Gbb_2300_1000
alpha_kin_RW
alpha_ttbar_syst_VR2_Gbb_2300_1000
alpha_topEW_syst_VR1_Gbb_2300_1000
alpha_st_syst_VR2_Gbb_2300_1000
alpha_diboson_syst_VR1_Gbb_2300_1000

£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
£0.00 [0.00%]
£0.00 [0.00%]

+0.00 [0.00%] +0.06 [0.51%] +0.00 [0.00%] +0.00 [0.00%]
+0.00 [0.00%] +0.00[0.00%] +0.00 [0.00%] +0.00 [0.00%]
+0.00 [0.00%] +1.68[13.7%] +0.00[0.00%] +0.00 [0.00%]
+0.37[2.4%] +0.00 [0.00%] =+0.00[0.00%] =+0.00 [0.00%]
+0.00 [0.00%] +1.54 [12.6%] =+0.00 [0.00%] +0.00 [0.00%]
+0.09 [0.61%] +0.00[0.00%] +0.00 [0.00%] +0.00 [0.00%]

[
[
[
[
[
[
[
[
[
[
+0.00 [0.00%]
[
[
[
[
[
[
[
[
[
[

Table 17 — Breakdown of the dominant systematic uncertainties on background estimates
for region Gbb_2300_1000
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CR_Gbb_2100_1600 VR1 VR2 VR3 SR

Total background expectation 48.07 810.65 33.91 17.07 1.91
Total statistical (y/Nexp) +6.93 +28.47 +5.82 +4.13 +1.38

Total background systematic +7.29 [15.16%] £329.95 [40.70%] £16.10 [47.49%] £11.18 [65.51%] £1.76 [92.11%]

mu_ttbar_Gbb_2100_1600 +9.62[20.0%]  +150.02 [18.5%] +6.62[19.5%] +2.10[12.3%] +0.11 [5.5%]
alpha_WZ_ckkw_syst +4.59 [9.5%] +75.64 [9.3%] +1.67[4.9%] £4.70[27.5%] +1.34[70.0%]
gamma_stat_CR_Gbb_2100_1600_cuts_bin_0 +3.64 [7.6%] +0.00 [0.00%]  +0.00 [0.00%] +0.00[0.00%] =+0.00 [0.00%]
alpha_QCDHundred +274[5.7%]  +44.73[5.5%] +0.09[0.27%] +0.08 [0.48%] +0.13 [6.9%]
alpha_WZ_fac_syst +2.01[4.2%]  +29.71[3.7%] +0.24[0.72%] +1.98 [11.6%] +0.71[37.2%]
alpha_JER1 +1.67[3.5%]  +7.57[0.93%] +0.84[2.5%] +5.03[29.5%] +0.11[5.9%]
alpha_JER4 +1.67 [3.5%] +3.24 [0.40%] +1.69[5.0%] £1.93[11.3%] =+0.02[1.1%]
alpha_WZ_renorm_syst +1.21 [2.5%] +26.17[3.2%]  £1.32[3.9%] +1.39[8.2%] +0.10[5.0%]
alpha_JERO +0.95 [2.0%] +44.81 [5.5%] +1.04 [3.1%] +£4.32[25.3%] =+0.35[18.4%]
alpha_JER3 £0.93[1.9%]  +39.12[4.8%] +3.73[11.0%] =2.70[15.8%] =0.11[5.9%]
alpha_JER7 +0.88[1.8%]  +0.80[0.10%]  +0.36 [1.1%] +2.71[15.9%] +0.11 [5.6%]
alpha_JER5 +0.87[1.8%]  +6.62[0.82%]  +1.16[3.4%] +1.92[11.2%] +0.02[0.97%]
alpha_JESO +0.74[1.5%]  +30.65[3.8%] +4.09[12.1%] +0.68 [4.0%] +0.18 [9.2%]
alpha_JES1 +0.56 [1.2%] +17.40 [2.1%] +2.06 [6.1%] +0.24 [1.4%] +0.13 [7.0%]
alpha_JES6 +0.42 [0.87% 44244 [5.2%]  +2.84[8.4%]  +0.25[1.5%] =0.05[2.8%]

alpha_topEW_syst_CR_Gbb_2100_1600

alpha_JER2
Lumi

alpha_WZ_qsf_syst

alpha_bTag_C

alpha_diboson_syst_CR_Gbb_2100_1600

alpha_bTag L
alpha_bTag_B

+0.38 [0.78%
+0.35[0.73%
+0.34[0.71%
+0.26 [0.54%
+0.24[0.51%
+0.18 [0.38%
+0.14 [0.28%
+0.13[0.26%

+0.00 [0.00%]
+£22.64 [2.8%]
+7.12 [0.88%]
+7.14[0.88%]
+3.95 [0.49%)]
+0.00 [0.00%]
+8.54 [1.1%)]
+3.11 [0.38%)]

+0.00 [0.00%]
+1.14 [3.4%)]
+0.26 [0.77%]
+0.49 [1.4%)]
+0.16 [0.48%]
+0.00 [0.00%]
+0.33 [0.97%]
+0.18 [0.54%]

+0.00 [0.00%)]
+2.78 [16.3%)]
+0.26 [1.5%)]
+0.32 [1.9%)]
+0.05 [0.31%)]
+0.00 [0.00%)]
+0.49 [2.9%)]
+0.11 [0.66%

+0.00 [0.00%]
+0.36 [18.9%)]
+0.04 [2.3%)]
+0.05 [2.6%)]
+0.05 [2.8%)]
+0.00 [0.00%)]
+0.06 [3.0%)]
+0.01 [0.77%)]

[ ]
alpha_bTag_extrapol_charm +0.07 [0.15% +0.21[0.03%] +0.13[0.40%] +0.05[0.31%] =+0.00 [0.20%]
alpha_JER6 +0.05 [0.10% +46.89 [5.8%] +2.60 [7.7%] £3.65[21.4%] =+0.36[19.0%]
alpha_JVT +0.04[0.00%]  +0.89[0.11%] +0.08[0.24%] +0.04[0.22%] +0.01 [0.39%]
alpha_JES5 +0.04 [0.07% +0.84 [0.10%] +0.22[0.66%] +0.01[0.09%] =+0.02[0.82%]
alpha_JES4 +0.03[0.07%]  +2.65[0.33%] +0.10[0.29%] +0.07 [0.43%] +0.00 [0.09%]
alpha_bTag_extrapol +0.02[0.05%]  +0.13[0.02%] +0.05[0.15%] +0.01[0.07%] +0.01 [0.47%]

alpha_JES2
alpha_JES3

alpha_st_syst_VR1_Gbb_2100_1600

alpha_ttbb_syst

gamma_stat_VR3_Gbb_2100_1600_cuts_bin_0
alpha_diboson_syst_VR1_Gbb_2100_1600
alpha_topEW_syst_VR1_Gbb_2100_1600
alpha_ttbar_syst_VR1_Gbb_2100_1600

alpha_ttcc_syst

alpha_st_syst_SR_Gbb_2100_1600
alpha_diboson_syst_VR2_Gbb_2100_1600
alpha_topEW_syst_VR2_Gbb_2100_1600
gamma_stat_VR2_Gbb_2100_1600_cuts_bin_0
alpha_st_syst_VR2_Gbb_2100_1600
alpha_ttbar_syst_VR2_Gbb_2100_1600
alpha_topEW_syst_SR_Gbb_2100_1600
alpha_st_syst_VR3_Gbb_2100_1600

alpha_kin_RW

alpha_ttbar_syst_SR_Gbb_2100_1600
alpha_diboson_syst_VR3_Gbb_2100_1600
alpha_diboson_syst_SR_Gbb_2100_1600
gamma_stat_SR_Gbb_2100_1600_cuts_bin_0
alpha_topEW_syst_VR3_Gbb_2100_1600
alpha_ttbar_syst_VR3_Gbb_2100_1600

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
+0.01 [0.02%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]

+0.52 [0.06%]
+0.11 [0.01%]
+33.95 [4.2%]
+£7.02[0.87%]
+0.00 [0.00%]
+4.02 [0.50%]
+11.62 [1.4%]
+282.04 [34.8%]
+5.63 [0.69%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]

+0.15 [0.46%]
+£0.00 [0.01%]
+0.00 [0.00%]
+0.12 [0.34%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+£0.05 [0.14%]
+0.00 [0.00%]
+0.11 [0.32%]
+0.76 [2.2%)]
£2.36 [7.0%]
+1.28 [3.8%)]
+12.45 [36.7%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]

+0.43 [2.5%)]
+0.00 [0.01%)]
+0.00 [0.00%)]
+0.07 [0.42%)]
+2.39 [14.0%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.46 [2.7%)]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.71 [4.1%)]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.48 [2.8%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.05 [0.30%)]
+3.95 [23.2%]

+0.03 [1.4%)]
+0.00 [0.01%]
+0.00 [0.00%)]
£0.00 [0.22%]
+0.00 [0.00%]
£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.01 [0.34%]
+0.19 [9.8%)]
£0.00 [0.00%]
+0.00 [0.00%]
£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
£0.04 [2.3%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.20 [10.4%)]
£0.00 [0.00%]
+0.07 [3.9%)]
£0.55 [28.7%]
+0.00 [0.00%]
+0.00 [0.00%]

Table 18 — Breakdown of the dominant systematic uncertainties on background estimates

for region Gbb_2100_1600

193



CR_Gbb_2000_1800 VR1 VR2 VR3 SR
Total background expectation 29.04 2123.48 119.74 12.90 1.75
Total statistical (y/Nexp) +5.39 +46.08 +10.94 +3.59 +1.32

Total background systematic

+5.44 [18.73%]

+1078.83 [50.80%] +61.78 [51.59%] +6.50 [50.39%] +1.30 [74.43%]

mu_ttbar_Gbb_2000_1800
gamma_stat_CR_Gbb_2000_1800_cuts_bin_0
alpha_WZ_ckkw_syst
alpha_QCDHundred

alpha_JERO

alpha_WZ_renorm_syst

alpha_JER1

alpha_JER7

alpha_JER2

alpha_JER3

alpha_JER4

alpha_WZ_fac_syst

alpha_JESO

alpha_JER6

alpha_JES6

alpha_WZ_qsf_syst

alpha_JER5
alpha_topEW_syst_CR_Gbb_2000_1800
alpha_bTag_C

alpha_JES2

Lumi

alpha_bTag_L

alpha_JES1

alpha_bTag_B
alpha_bTag_extrapol_charm

alpha_JVT

alpha_bTag_extrapol

alpha_JES5

alpha_JES4

alpha_JES3
alpha_st_syst_SR_Gbb_2000_1800
alpha_ttbb_syst
alpha_topEW_syst_SR_Gbb_2000_1800
alpha_ttbar_syst_VR2_Gbb_2000_1800
alpha_topEW_syst_VR1_Gbb_2000_1800
alpha_ttcc_syst
alpha_diboson_syst_VR1_Gbb_2000_1800
gamma_stat_SR_Gbb_2000_1800_cuts_bin_0
alpha_topEW_syst_VR2_Gbb_2000_1800
alpha_st_syst_VR3_Gbb_2000_1800
alpha_diboson_syst_SR_Gbb_2000_1800
alpha_ttbar_syst_VR3_Gbb_2000_1800
gamma_stat_VR3_Gbb_2000_1800_cuts_bin_0
alpha_kin_RW
alpha_diboson_syst_VR2_Gbb_2000_1800
alpha_ttbar_syst_SR_Gbb_2000_1800
alpha_st_syst_VR2_Gbb_2000_1800
alpha_ttbar_syst_VR1_Gbb_2000_1800
alpha_st_syst_VR1_Gbb_2000_1800
alpha_topEW_syst_VR3_Gbb_2000_1800

+6.19 [21.3%)]
+2.22 [7.7%]
+1.29 [4.4%)]
+0.85 [2.9%]
+0.73[2.5%]
+0.67 [2.3%]
+0.64 [2.2%]
+£0.62 [2.1%)]
+0.47 [1.6%)]
+0.46 [1.6%)]
+0.39 [1.4%)]
+0.37 [1.3%]
+0.35 [1.2%)]
+0.34 [1.2%]
+£0.32 [1.1%)]
+0.28 [0.98%]
+0.19 [0.67%)
+0.15 [0.51%)]
+0.13 [0.44%)]
+0.13 [0.44%]
+0.11 [0.39%)]
+0.04 [0.15%)]
£0.04 [0.13%]
+0.04 [0.12%)]
+0.03 [0.09%)]
+0.03 [0.09%)]
+0.01 [0.02%)]
+0.00 [0.02%)]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%)]

+452.92 [21.3%)]
£0.00 [0.00%]
+£52.25 [2.5%]
+15.32 [0.72%]
+109.81 [5.2%]
+17.55 [0.83%]
+£73.41 [3.5%]
+81.92 [3.9%]
+46.30 [2.2%]
+£157.04 [7.4%]
+199.56 [9.4%]
+18.29 [0.86%|
+43.82 [2.1%]
+£22.25 [1.0%]
+81.48 [3.8%]
+2.10 [0.10%]
+170.76 [8.0%]
+0.00 [0.00%]
+4.52 [0.21%]
+1.62 [0.08%]
+8.29 [0.39%]
+£23.74 [1.1%]
£56.08 [2.6%]
+15.40 [0.72%]
+7.58 [0.36%]
+2.25 [0.11%]
+3.29 [0.15%)]
+11.53 [0.54%|
£6.08 [0.29%]
£0.01 [0.00%]
+0.00 [0.00%]
+23.95 [1.1%]
+0.00 [0.00%]
+0.00 [0.00%]
+17.14 [0.81%]
+12.52 [0.59%]
+5.57 [0.26%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%]
£0.00 [0.00%]
+0.00 [0.00%]

+918.21 [43.2%]
+40.02 [1.9%]
+0.00 [0.00%)]

+25.88 [21.6%]
+0.00 [0.00%]
+2.90 [2.4%]
+0.59 [0.49%]
+6.42 [5.4%)]
+0.90 [0.76%]
+2.07 [1.7%]
+3.46 [2.9%)]
+1.44 [1.2%)]
+9.14 [7.6%)]
+11.33[9.5%]
+1.06 [0.89%]
+1.48 [1.2%)]
+0.24 [0.20%]
+1.28 [1.1%)]
+0.08 [0.07%]

+12.11 [10.1%]
+0.00 [0.00%]
+0.38 [0.32%]
+1.93 [1.6%)]
+0.43 [0.36%]
+1.01 [0.84%]
£6.92 [5.8%)]
+1.11 [0.93%]
+0.39 [0.33%]
+0.20 [0.17%]
+0.22 [0.19%)]
+0.58 [0.49%]
+0.26 [0.21%]
+0.08 [0.06%]
+0.00 [0.00%]
+0.96 [0.80%]
+0.00 [0.00%]

+£52.47 [43.8%]
+0.00 [0.00%]
+0.79 [0.66%]
+0.00 [0.00%]
+0.00 [0.00%]
+1.00 [0.83%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.25 [0.21%]
+0.00 [0.00%]
+£2.19 [1.8%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]

+1.38 [10.7%)]
+0.00 [0.00%)]
+0.86 [6.7%]
+0.04 [0.33%)]
+2.70 [20.9%)]
+0.02 [0.18%)]
+3.05 [23.6%)]
+1.50 [11.6%)
+2.15 [16.7%)]
£0.19 [1.5%]
+0.59 [4.6%)]
+0.38 [3.0%)]
+0.32 [2.5%)]
+2.25 [17.4%)]
£0.28 [2.2%]
+0.30 [2.3%)]
+0.33 [2.6%)]
+0.00 [0.00%)]
+0.08 [0.63%)]
+0.13 [1.0%)]
+0.21 [1.6%)]
+0.31 [2.4%)]
+0.17 [1.3%)]
+0.15 [1.2%)]
+0.07 [0.53%)]
+0.05 [0.35%)]
+0.00 [0.02%)]
+0.10 [0.79%]
+0.02 [0.12%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.01 [0.06%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.28 [2.2%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.56 [4.3%)]
+0.00 [0.00%)]
+£2.79 [21.6%)
+2.20 [17.0%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.05 [0.42%)]

£0.18 [10.2%)]
+0.00 [0.00%]
+0.06 [3.6%)]
£0.04 [2.4%)]
+0.53 [30.2%]
+0.16 [9.3%)]
+0.43 [24.4%)]
£0.18 [10.4%)]
+0.39 [22.2%]
£0.48 [27.2%]
+0.38 [21.5%)]
+0.05 [2.6%)]
+0.01 [0.75%]
£0.25 [14.2%)]
£0.25 [14.3%]
£0.07 [4.3%)]
£0.15 [8.5%)]
+0.00 [0.00%]
£0.04 [2.0%)]
+0.22 [12.7%]
+0.03 [1.7%]
£0.02 [1.1%)]
+0.02 [0.98%)]
+0.01 [0.51%]
£0.04 [2.0%)]
+0.01 [0.84%]
+0.00 [0.10%)]
+£0.00 [0.26%]
+0.00 [0.12%)]
+0.00 [0.00%]
+0.01 [0.85%]
+0.00 [0.04%)]
£0.03 [1.4%)]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.05 [3.0%)]
+0.00 [0.00%]
+0.59 [33.6%]
+0.00 [0.00%)]
+0.00 [0.00%]
£0.07 [3.9%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.36 [20.6%)]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%)]

Table 19 — Breakdown of the dominant systematic uncertainties on background estimates

for region Gbb_2000_1800
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CR_Gtt_2100_1 VR1 VR2 SR
Total background expectation 35.00 77.61 41.62 0.54
Total statistical (1/Nexp) +5.92 +8.81 +6.45 +0.73

Total background systematic

+5.92 [16.92%]

+24.41 [31.46%)]

+14.45 [34.73%)]

+0.23 [42.77%)]

mu_ttbar_Gtt_2100_1

alpha_JES6

alpha_JES1

alpha_JESO

alpha_WZ_renorm_syst
alpha_topEW_syst_CR_Gtt_2100_1
alpha_kin_RW
alpha_WZ_ckkw_syst

alpha_JER7

alpha_QCDHundred

alpha_JER2

alpha_bTag L

alpha_WZ_qsf_syst

alpha_JER1

alpha_JER6

alpha_JER4

alpha_bTag_C

Lumi

alpha_JES2

alpha_bTag B

alpha_JES5
alpha_diboson_syst_CR_Gtt_2100_1
alpha_WZ_fac_syst
alpha_bTag_extrapol_charm
alpha_JER5

alpha_bTag_extrapol

alpha_JERO

alpha_JVT

alpha_JES4

alpha_JER3

alpha_JES3

alpha_ttbb_syst
alpha_ttbar_syst_VR1_Gtt_2100_1
alpha_ttbar_syst_SR_Gtt_2100_1
alpha_st_syst_VR2_Gtt_2100_1
alpha_ttcc_syst
alpha_st_syst_SR_Gtt_2100_1
alpha_topEW_syst_SR_Gtt_2100_1
gamma_stat_SR_Gtt_2100_1_cuts_bin_0
alpha_diboson_syst_VR1_Gtt_2100_1
alpha_ttbar_syst_VR2_Gtt_2100_1
alpha_st_syst_VR1_Gtt_2100_1
alpha_topEW_syst_VR2_Gtt_2100_1
alpha_diboson_syst_VR2_Gtt_2100_1
alpha_topEW_syst_VR1_Gtt_2100_1

£6.60 [18.9%]
+1.16 [3.3%)]
+1.09 [3.1%)]
+1.00 [2.9%]
+0.96 [2.7%]
+0.89 [2.6%]
+0.73[2.1%)]
+0.59 [1.7%]
+0.58 [1.6%]
+0.55 [1.6%)]
+0.46 [1.3%)]
+0.44 [1.3%]
+0.43 [1.2%]
+0.39 [1.1%)]
+0.35 [0.99%)]
+0.34 [0.97%)]
£0.29 [0.83%]
+0.27 [0.78%)
+0.24 [0.69%)]
+0.23 [0.66%)]
+0.19 [0.53%]
+0.17 [0.49%)
+0.13 [0.36%)
+0.11 [0.32%)]
+0.08 [0.24%)]
+0.07 [0.20%)]
+0.07 [0.19%)]
+0.05 [0.13%)]
+0.05 [0.13%)]
+0.03 [0.09%]
+0.00 [0.00%)]
+0.00 [0.00%]
£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%]
£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%)]

+10.27 [13.2%]
+0.20 [0.26%)]
+1.00 [1.3%)]
+0.67 [0.87%)]
+3.61 [4.7%)]
+0.00 [0.00%)]
+1.56 [2.0%)]
+3.98 [5.1%]
+£1.22[1.6%)]
+2.11 [2.7%)]
+0.33 [0.43%)
+1.38 [1.8%)]
£1.55 [2.0%)]
+0.25 [0.32%)]
+0.61 [0.79%)]
+1.29 [1.7%)]
£1.05 [1.3%)]
+1.09 [1.4%]
+1.13 [1.5%]
+0.79 [1.0%]
+0.03 [0.04%)]
+0.00 [0.00%)]
+0.51 [0.65%)
+0.26 [0.33%)]
+0.78 [1.0%]
+0.75 [0.97%)]
+0.79 [1.0%]
+0.25 [0.32%)]
+0.04 [0.05%)]
+1.54 [2.0%)]
+0.00 [0.00%)]
+0.30 [0.39%)]

£19.91 [25.7%]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.04 [0.05%)]
+0.00 [0.00%)]
+0.00 [0.00%)]
+0.00 [0.00%]
£1.29 [1.7%)]
+0.00 [0.00%]
+7.10[9.1%]
+0.00 [0.00%)]
+0.00 [0.00%)]
+£4.71[6.1%)]

+5.21 [12.5%]
+0.63 [1.5%)]
+0.98 [2.4%)]
+0.80 [1.9%)]
+1.67 [4.0%)]
+£0.00 [0.00%]
+2.41 [5.8%)]
+2.98 [7.2%)]
+1.37 [3.3%)]
£0.79 [1.9%)]
£2.47 [5.9%)
+0.86 [2.1%)]
£0.62 [1.5%)]
+2.66 [6.4%)]
+1.66 [4.0%]
+1.32 [3.2%)]
+0.63 [1.5%)]
£0.62 [1.5%)]
+0.23 [0.55%)]
+0.47 [1.1%)]
+0.09 [0.21%)]
+£0.00 [0.00%]
+0.86 [2.1%)]
+0.14 [0.33%]
+1.26 [3.0%)]
+0.10 [0.23%)]
+3.23 [7.8%)]
+0.17 [0.40%)]
£0.02 [0.04%]
£0.92 [2.2%)]
+0.00 [0.00%]
+0.37 [0.90%)]
+0.00 [0.00%)]
+0.00 [0.00%]
+4.53 [10.9%]
£0.17 [0.42%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+10.09 [24.2%]
+0.00 [0.00%]
+3.26 [7.8%)
+0.09 [0.23%]
+0.00 [0.00%]

£0.05 [9.5%)]
£0.02 [3.4%)]
+0.01 [1.8%)]
£0.02 [4.5%)]
+0.00 [0.74%)]
+£0.00 [0.00%]
+0.05 [8.7%)]
+0.06 [10.6%)]
£0.02 [3.6%)]
£0.04 [8.0%)]
£0.05 [9.3%)]
+0.02 [4.4%)]
+0.00 [0.39%]
+0.05 [10.2%]
£0.02 [4.2%)]
£0.02 [3.5%)]
£0.02 [4.0%)]
£0.01 [1.8%)]
+0.00 [0.22%)]
£0.01 [1.2%)]
+0.00 [0.03%)]
+0.00 [0.00%]
+0.03 [5.6%)]
+0.00 [0.69%]
£0.01 [1.7%)]
£0.01 [2.0%)]
£0.04 [7.3%)]
+0.00 [0.28%)]
+0.00 [0.01%]
£0.01 [2.3%)]
+0.00 [0.00%]
+0.00 [0.77%)]
+0.00 [0.00%]
£0.10 [18.4%)]
+0.00 [0.00%]
£0.01 [1.1%)]
£0.07 [13.7%)]
£0.07 [13.7%]
£0.11 [19.8%]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]

Table 20 — Breakdown of the dominant systematic uncertainties on background estimates

for region Gtt_2100_1
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CR_Gtt_1800_1 VR1 VR2 SR
Total background expectation 31.00 107.44 28.24 1.07
Total statistical (y/Nexp) +5.57 +10.37 +5.31 +1.03

Total background systematic

+5.57 [17.97%]

+£34.76 [32.36%]

+9.35 [33.10%)]

+0.41 [38.71%]

mu_ttbar_Gtt_1800_1

alpha_JER1

alpha_JER2

alpha_JERO
alpha_topEW_syst_CR_Gtt_1800_1
alpha_JER6

alpha_QCDHundred
alpha_kin_RW

alpha_JER3

alpha_JER7

alpha_WZ_ckkw_syst

alpha_JER4

alpha_JER5

alpha_bTag_L

alpha_JESO

alpha_WZ_renorm_syst
alpha_bTag_C

Lumi

alpha_bTag B

alpha_WZ_fac_syst

alpha_JES1
alpha_bTag_extrapol_charm
alpha_JES2

alpha_WZ_qsf_syst

alpha_JES6
alpha_diboson_syst_CR_Gtt_1800_1
alpha_JES4

alpha_bTag_extrapol

alpha_JVT

alpha_JES5

alpha_JES3
alpha_st_syst_VR2_Gtt_1800_1
alpha_ttbb_syst
alpha_diboson_syst_VR1_Gtt_1800_1
alpha_ttbar_syst_SR_Gtt_1800_1
alpha_ttcc_syst
alpha_ttbar_syst_VR2_Gtt_1800_1
alpha_topEW_syst_VR2_Gtt_1800_1
gamma_stat_VR2_Gtt_1800_1_cuts_bin_0
alpha_ttbar_syst_VR1_Gtt_1800_1
gamma_stat_SR_Gtt_1800_1_cuts_bin_0
alpha_st_syst_VR1_Gtt_1800_1
alpha_diboson_syst_VR2_Gtt_1800_1
alpha_st_syst_SR_Gtt_1800_1
alpha_topEW_syst_VR1_Gtt_1800_1
alpha_topEW_syst_SR_Gtt_1800_1

+6.60 [21.3%)]
+1.66 [5.4%)]
+1.38 [4.4%)]
+1.20 [3.9%)]
+1.09 [3.5%)]
£1.00 [3.2%)]
+0.91 [2.9%)]
£0.74 [2.4%)]
+0.74 [2.4%)]
+0.73 [2.3%]
+0.66 [2.1%]
+0.54 [1.7%)]
+0.53 [1.7%]
£0.41 [1.3%)]
+0.36 [1.2%]
+0.31 [0.99%]
+0.27 [0.88%)]
+0.25 [0.81%]
+0.24 [0.76%]
+0.22 [0.72%]
£0.14 [0.44%)]
+0.13 [0.41%]
+0.12 [0.37%]
+0.11 [0.34%]
+0.08 [0.25%)]
+0.07 [0.24%]
+0.05 [0.16%]
+0.05 [0.15%]
+0.03 [0.09%]
+0.02 [0.06%]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]

£16.20 [15.1%]
£0.52 [0.48%]
+1.02[0.95%]
+0.93 [0.87%)]
+0.00 [0.00%]
+0.22[0.21%]
+2.24 [2.1%)]
+£2.78 [2.6%)]
+£1.77 [1.6%)]
£1.52 [1.4%)]
+6.68 [6.2%)]
+0.35 [0.33%]
+1.76 [1.6%)]
+1.61 [1.5%)]
+2.43 [2.3%)]
+4.50 [4.2%)]

+1.48 [1.4%)]

+1.52 [1.4%)]

+1.09 [1.0%)]

+1.59 [1.5%)]
+£2.79 [2.6%)]
+0.35 [0.32%]
+0.91 [0.84%]
+1.80 [1.7%)]
+1.89 [1.8%)]
+0.00 [0.00%]
+0.06 [0.05%]
+0.61 [0.57%]
+0.31[0.29%]
+0.02 [0.02%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.89 [0.83%]
+2.04 [1.9%)]
+0.00 [0.00%]
+0.14 [0.13%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]

£27.45 [25.6%]
+0.00 [0.00%]
+9.57 [8.9%]
+0.00 [0.00%]
+0.00 [0.00%]
+7.30 [6.8%)]
+0.00 [0.00%]

+3.74 [13.3%]
+0.59 [2.1%)]
+0.78 [2.8%)]
+0.64 [2.3%)
+£0.00 [0.00%]
+0.64 [2.3%)]
+0.74 [2.6%)]
+1.60 [5.7%)]
+0.60 [2.1%)]
£0.42 [1.5%)]
+2.09 [7.4%)]
+0.93 [3.3%)]
£0.29 [1.0%)]
+0.27 [0.95%]
+0.95 [3.4%)]
+1.42 [5.0%)]
+0.57 [2.0%)]
+0.45 [1.6%)
+0.31 [1.1%)]
£0.49 [1.7%]
+0.41 [1.4%)]
+0.14 [0.48%]
+0.36 [1.3%)]
+0.56 [2.0%)]
+0.54 [1.9%)]
+£0.00 [0.00%]
+0.12 [0.41%]
+0.05 [0.18%]
+£0.09 [0.32%]
+0.04 [0.14%)]
+£0.00 [0.00%]
+3.25 [11.5%]
+0.25 [0.87%]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.01 [0.04%]
+6.34 [22.5%]
+2.12 [7.5%)]
+1.44 [5.1%)]
+£0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]
+0.34 [1.2%)]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]

+0.10 [8.9%)]
+0.03 [2.9%)]
£0.12 [10.9%)]
+0.07 [6.6%)]
+0.00 [0.00%]
£0.05 [4.5%)]
£0.04 [4.2%)]
£0.07 [6.3%)]
+0.00 [0.17%)]
£0.01 [0.55%]
+0.03 [3.2%)]
£0.04 [4.2%)]
+0.01 [0.61%]
£0.03 [2.9%)]
£0.04 [4.1%)]
+0.14 [12.9%)]
+0.03 [2.5%)]
£0.02 [2.0%)]
£0.01 [1.4%)]
+0.05 [4.4%)]
£0.02 [2.1%)]
+0.00 [0.31%)]
+0.03 [3.0%)]
+0.06 [5.9%)]
£0.01 [1.0%)]
+0.00 [0.00%]
£0.01 [1.4%)]
£0.01 [1.0%)]
+0.00 [0.46%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
£0.01 [1.2%)]
+0.00 [0.00%]
£0.16 [15.1%)]
+0.00 [0.41%)]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.24 [22.4%]
+0.00 [0.00%]
+0.00 [0.00%]
£0.09 [8.8%)]
+0.00 [0.00%]
£0.15 [14.1%)]

Table 21 — Breakdown of the dominant systematic uncertainties on background estimates

for region Gtt_1800_1
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CR_Gtt_2300_1200 VR1 VR2 SR
Total background expectation 46.04 182.49 30.57 0.74
Total statistical (1/Nexp) +6.79 +13.51 +5.53 +0.86

Total background systematic

£6.79 [14.74%]

+68.56 [37.57%]

+13.93 [45.55%]

+0.36 [48.73%)]

mu_ttbar_Gtt_2300_1200
alpha_topEW_syst_CR_Gtt_2300_1200
alpha_QCDHundred
alpha_JER1
alpha_kin_RW
alpha_WZ_ckkw_syst
alpha_JERO
alpha_bTag L
alpha_JER4
alpha_WZ_renorm_syst
alpha_JER6

alpha_JER3

alpha_JER2

alpha_JER7
alpha_bTag B

Lumi

alpha_bTag_C
alpha_WZ_gsf_syst
alpha_JER5

alpha_JESO
alpha_WZ_fac_syst
alpha_JES5

alpha_JES2
alpha_bTag_extrapol_charm
alpha_JES6
alpha_bTag_extrapol
alpha_JVT

alpha_JES4

alpha_JES1

alpha_JES3

gamma_stat_VR2_Gtt_2300_1200_cuts_bin_0

alpha_ttbb_syst
alpha_diboson_syst_VR2_Gtt_2300_1200
alpha_st_syst_VR2_Gtt_2300_1200
alpha_ttcc_syst
alpha_st_syst_VR1_Gtt_2300_1200
alpha_diboson_syst_VR1_Gtt_2300_1200

gamma_stat_SR_Gtt_2300_1200_cuts_bin_0

alpha_st_syst_SR_Gtt_2300_1200
alpha_topEW_syst_VR2_Gtt_2300_1200
alpha_ttbar_syst_VR2_Gtt_2300_1200
alpha_topEW_syst_VR1_Gtt_2300_1200
alpha_topEW_syst_SR_Gtt_2300_1200
alpha_ttbar_syst_VR1_Gtt_2300_1200
alpha_ttbar_syst_SR_Gtt_2300_1200

£7.19 [15.6%]
+1.12 [2.4%)]
+1.06 [2.3%]
+0.73 [1.6%]
+0.64 [1.4%]
+0.56 [1.2%]
+0.50 [1.1%)]
+0.46 [1.0%]
+0.45 [0.99%)]
+0.44 [0.96%]
+0.44 [0.95%)]
+0.35 [0.77%]
£0.29 [0.63%)]
+0.29 [0.63%)]
+0.26 [0.56%)]
+0.26 [0.56%)]
£0.24 [0.52%]
+0.20 [0.44%]
+0.18 [0.39%]
£0.14 [0.31%)]
+0.11 [0.23%]
+0.10 [0.21%]
+0.09 [0.19%]
+0.07 [0.16%)]
+0.07 [0.15%]
+0.06 [0.12%]
£0.05 [0.10%)]
+0.03 [0.07%]
+0.01 [0.02%)]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
£0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
£0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%)]

+23.51 [12.9%]
+0.00 [0.00%]
+2.23 [1.2%)]
+6.43 [3.5%]
+4.38 [2.4%]
+8.03 [4.4%]
+4.03 [2.2%]
+3.24 [1.8%)]
+1.79 [0.98%]
+4.73 [2.6%]
+1.61 [0.88%)]
+3.88 [2.1%]
+1.54 [0.84%)]
+2.06 [1.1%)]
+1.17[0.64%]
+1.76 [0.96%]
£1.40 [0.77%]
+2.09 [1.1%]
+1.90 [1.0%)]
+4.08 [2.2%]
+2.30 [1.3%]
£0.15 [0.08%)]
£0.25 [0.14%)]
£0.51 [0.28%)]

+1.66 [0.91%]

[
[
[

—_———

+0.30 [0.16%]
+0.45 [0.24%]
+0.41 [0.22%]
+2.20 [1.2%]
+0.00 [0.00%]
£0.00 [0.00%)]
+1.49 [0.81%)]
+0.00 [0.00%]
£0.00 [0.00%)]
+1.46 [0.80%]
+11.39 [6.2%]
+1.89 [1.0%)]
£0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%]
£0.00 [0.00%)]
+9.61 [5.3%]
£0.00 [0.00%)]
+60.79 [33.3%]
£0.00 [0.00%)]

£3.73 [12.2%)]
+0.00 [0.00%]
£0.42 [1.4%)]
£3.69 [12.1%)]
+1.28 [4.2%)]
+1.35 [4.4%]
+2.88 [9.4%)]
+0.43 [1.4%]
+3.11 [10.2%)]
+1.14 [3.7%)]
+2.89 [9.5%)]
+3.48 [11.4%)]
+1.99 [6.5%)]
+0.24 [0.78%]
+0.21 [0.70%]
+0.33 [1.1%)]
£0.57 [1.9%)]
£0.51 [1.7%)]
+2.53 [8.3%)]
+1.01 [3.3%)]
£0.22 [0.73%)]
+0.11 [0.37%]
+0.30 [0.98%]
+0.11 [0.36%]
+0.27 [0.87%]
£0.07 [0.23%)]
+0.12[0.38%]
+0.07 [0.24%)]
+1.34 [4.4%)]
+0.00 [0.00%]
+1.83 [6.0%]
+0.12[0.39%]
£0.09 [0.30%)]
+2.38 [7.8%)]
+0.06 [0.19%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+1.39 [4.6%)]
+9.66 [31.6%]
+0.00 [0.00%]
+0.00 [0.00%]
£0.00 [0.00%]
+0.00 [0.00%]

+0.07 [10.0%)]
+0.00 [0.00%]
£0.04 [5.8%)]
£0.10 [13.5%]
+0.03 [4.7%)]
£0.10 [13.2%)]
+0.03 [4.4%)]
+0.06 [7.9%)]
£0.04 [5.4%)]
+0.01 [0.94%)]
+0.03 [3.8%)]
+0.05 [6.8%)]
£0.11 [15.1%)]
+0.03 [3.7%)]
+0.01 [1.1%)]
+0.01 [1.4%)]
£0.01 [1.7%)]
+0.00 [0.07%)]
+0.03 [3.9%)]
+0.01 [1.7%)]
+0.05 [7.0%)]
+£0.00 [0.27%)]
+0.00 [0.62%)]
+0.00 [0.19%]
+0.01 [1.0%)]
+0.00 [0.18%)]
+0.00 [0.45%)]
+0.00 [0.55%]
+0.01 [2.0%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.01 [0.75%)]
+0.00 [0.00%)]
+0.00 [0.00%]
£0.01 [1.1%)]
+0.00 [0.00%]
+0.00 [0.00%]
£0.17 [22.3%]
+0.03 [4.4%)]
+0.00 [0.00%)]
+0.00 [0.00%]
+0.00 [0.00%]
£0.12 [15.8%]
+0.00 [0.00%]
£0.19 [25.8%]

Table 22 — Breakdown of the dominant systematic uncertainties on background estimates

for region Gtt_2300_1200
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CR_Gtt_1900_1400 VR1 VR2 SR
Total background expectation 25.99 427.93 40.55 0.84
Total statistical (y/Nexp) +5.10 +20.69 +6.37 +0.92

Total background systematic

+5.11 [19.66%]

+204.03 [47.68%]

+20.27 [50.00%]

+0.58 [69.24%]

mu_ttbar_Gtt_1900_1400
gamma_stat_CR_Gtt_1900_1400_cuts_bin_0
alpha_topEW_syst_CR_Gtt_1900_1400
alpha_JER4

alpha_JER6

alpha_QCDHundred

alpha_JER1

alpha_WZ_ckkw_syst

alpha_JERO

alpha_JER3

alpha_JER2

alpha_JER5

alpha_JER7

alpha_JES1

alpha_kin_RW

alpha_WZ_fac_syst

alpha_JES4

Lumi

alpha_JES2

alpha_WZ_renorm_syst

alpha_bTag_C

alpha_bTag L

alpha_bTag_B

alpha_JES6

alpha_JVT

alpha_JESO

alpha_bTag_extrapol_charm
alpha_WZ_qsf_syst

alpha_JES5

alpha_bTag_extrapol

alpha_JES3
alpha_st_syst_SR_Gtt_1900_1400
alpha_ttbb_syst
alpha_topEW_syst_VR2_Gtt_1900_1400
alpha_topEW_syst_SR_Gtt_1900_1400
alpha_st_syst_VR1_Gtt_1900_1400
alpha_ttcc_syst
alpha_ttbar_syst_VR2_Gtt_1900_1400
alpha_diboson_syst_VR1_Gtt_1900_1400
alpha_ttbar_syst_SR_Gtt_1900_1400
alpha_st_syst_VR2_Gtt_1900_1400
alpha_diboson_syst_VR2_Gtt_1900_1400
alpha_topEW_syst_VR1_Gtt_1900_1400
gamma_stat_VR2_Gtt_1900_1400_cuts_bin_0
gamma_stat_SR_Gtt_1900_1400_cuts_bin_0
alpha_ttbar_syst_VR1_Gtt_1900_1400

+5.63 [21.7%]
+1.44 [5.5%)]
+0.83 [3.2%)]
+0.80 [3.1%)]
£0.71 [2.7%)]
£0.62 [2.4%)]
+0.54 [2.1%)]
£0.52 [2.0%)]
+0.46 [1.8%)]
£0.41 [1.6%)]
+0.36 [1.4%)]
+0.31 [1.2%)]
+0.30 [1.2%)]
+0.30 [1.1%)]
+0.28 [1.1%)]
+0.24 [0.93%]
£0.15 [0.57%]
+£0.12 [0.44%]
£0.10 [0.39%]
+0.10 [0.37%]
+0.09 [0.36%]
+0.09 [0.33%]
+0.07 [0.28%)]
+£0.03 [0.11%)]
+0.02 [0.09%]
+0.02 [0.08%]
+0.01 [0.04%]
£0.01 [0.04%]
+0.01 [0.03%]
+0.01 [0.03%]
+0.00 [0.00%]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+£0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]

+87.20 [20.4%]
+0.00 [0.00%]
+0.00 [0.00%]
+16.79 [3.9%)]
£11.17 [2.6%)]
+0.83 [0.19%)]
+£22.43 [5.2%]
£9.99 [2.3%)]
+0.36 [0.08%)]
+4.35 [1.0%)]
+28.85 [6.7%]
+19.38 [4.5%]
+14.13 [3.3%]
+£29.64 [6.9%]
+6.88 [1.6%)]
+2.39 [0.56%)]
+1.32[0.31%]
+2.52 [0.59%]
+4.54 [1.1%)]
+6.44 [1.5%)]
+1.13 [0.26%)]
+1.60 [0.37%)]
+1.28 [0.30%)]
+£7.26 [1.7%)]
+1.33 [0.31%)]
+19.29 [4.5%]
+1.94 [0.45%]
+1.88 [0.44%]
+0.10 [0.02%]
+0.56 [0.13%)]
£0.00 [0.00%]
+0.00 [0.00%]
+1.23[0.29%]
+0.00 [0.00%]
+0.00 [0.00%]
+11.53 [2.7%)]
+5.81 [1.4%)]
+0.00 [0.00%]
+1.71 [0.40%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+17.93 [4.2%)]
£0.00 [0.00%]
+0.00 [0.00%]

+£170.25 [39.8%)]

+8.69 [21.4%]
+0.00 [0.00%]
+0.00 [0.00%]
+3.05 [7.5%]
+0.43 [1.1%]
+0.05 [0.12%]
+3.86 [9.5%)]
+1.53 [3.8%)]
+2.64 [6.5%)]
£2.56 [6.3%)]
+0.39 [0.96%]
£0.93 [2.3%]
+1.62 [4.0%)]
+£3.08 [7.6%)]
+0.67 [1.6%]
+0.71 [1.8%)]
+0.23 [0.57%]
+0.19 [0.47%]
+0.90 [2.2%]
+0.26 [0.64%]
+0.16 [0.38%]
+0.40 [0.99%]
+0.16 [0.39%]
£1.55 [3.8%)]
+0.12 [0.29%)]
+2.37 [5.8%)]
+0.35 [0.86%]
+0.00 [0.00%]
+0.03 [0.08%]
+0.06 [0.15%]
+0.00 [0.00%]
+0.00 [0.00%]
£0.44 [1.1%)]
+1.45 [3.6%)
+0.00 [0.00%]
+0.00 [0.00%]
+1.34[3.3%)]
+16.96 [41.8%)]
+0.00 [0.00%]
+0.00 [0.00%]
+1.11 [2.7%)]
+0.05 [0.12%)]
+0.00 [0.00%]
+2.15 [5.3%)]
+0.00 [0.00%]
+0.00 [0.00%]

£0.17 [20.7%]
+0.00 [0.00%]
+0.00 [0.00%]
£0.11 [12.6%)]
+0.07 [7.7%]
£0.05 [5.6%)]
+0.23 [26.9%)]
+0.00 [0.00%]
+0.05 [5.8%)]
£0.09 [10.5%]
£0.13 [15.1%)]
£0.02 [2.8%)]
£0.09 [10.3%)]
£0.09 [11.2%]
+0.03 [3.0%)]
+0.00 [0.00%]
+0.00 [0.53%]
+0.00 [0.55%]
£0.02 [2.6%)]
+0.00 [0.00%]
£0.02 [2.5%)]
+0.03 [3.8%)]
+0.00 [0.08%]
+£0.00 [0.42%)]
+0.00 [0.47%)]
£0.12 [14.1%)]
£0.01 [1.4%)]
+0.00 [0.00%]
+0.00 [0.01%)]
+0.00 [0.27%)]
+0.00 [0.00%]
+0.00 [0.45%)]
£0.04 [4.3%)]
+0.00 [0.00%]
+0.08 [9.0%)]
+0.00 [0.00%]
£0.03 [3.3%)]
+0.00 [0.00%]
+0.00 [0.00%]
+0.34 [40.5%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.00 [0.00%]
+0.23 [27.3%]
+0.00 [0.00%)]

Table 23 — Breakdown of the dominant systematic uncertainties on background estimates

for region Gtt_1900_1400
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