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Abstract

Ensuring the delivery of high quality beams from the accelerators to their assigned

experiments is one of the primary tasks of CERN. At the Proton Synchrotron (PS)

and Super Proton Synchrotron (SPS), fixed-target beams commonly undergo bunch

rotations by means of phase jump (henceforth just phase jump) before extraction, which

adjusts the beam’s longitudinal profile or energy distribution to be suitable for the

experiment it is used for. As this is one of the last manipulations performed to adjust

the longitudinal qualities of the beam before it reaches the experiment, an optimal

phase jump is particularly important. However, there are currently no tools to aid in

finding optimal phase jump settings, and experts have to determine them manually

in live operation. Therefore, numerical algorithms to optimize phase jump settings

automatically are developed in this thesis.

Initially, the SPS SFTPRO beam cycle is targeted, where a homogeneous energy distri-

bution of the beam is desired. By combining simulations of longitudinal beam dynamics

using BLonD and longitudinal phase space tomography, a detailed reconstruction of the

dynamics is achieved based on measured beam profiles. This reconstruction is performed

for various phase jump settings, providing a full overview over the consequences of each

setting and determining one providing an optimal energy distribution.

Then, the PS BigTOFEAST cycle is targeted, where two bunches (TOF and EAST)

must be extracted at different energies and times. Two phase jumps are studied, with

the first one used to extract TOF and the second used to counter-rotate EAST after it

is perturbed by the first jump. Numerical simulations tailored to this problem are again

developed, tested and finally used to train an optimizer utilizing Bayesian optimization.

This optimizer successfully determines physically sensible phase jump settings for

both jumps, predicting major improvements if these optimal settings are implemented

operationally. Additionally, it predicts that if the bunch intensities increase, highly

different optimal phase jump settings can be found, which nevertheless retain close to

the original bunch quality.
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Zusammenfassung

Eine der Hauptaufgaben des CERN ist es, die Lieferung von qualitativ hochwer-

tigen Strahlen von den Beschleunigern zu den ihnen zugewiesenen Experimenten

sicherzustellen. Am
”
Proton Synchrotron“ (PS) und am

”
Super Proton Synchrotron“

(SPS) werden fixed-target Strahlen üblicherweise vor der Extraktion mittels Phasen-

sprung
”
gedreht“. Dadurch wird das longitudinale Profil oder die Energieverteilung des

Strahls für das Experiment, für welches der Strahl verwendet wird, angepasst. Da dies

eine der letzten Manipulationen ist, die durchgeführt werden, um die longitudinalen

Eigenschaften des Strahls anzupassen, ist ein optimaler Phasensprung besonders wichtig.

Daher werden in dieser Arbeit numerische Algorithmen zur automatischen Optimierung

der Phasensprungeinstellungen entwickelt.

Zunächst wird der SPS SFTPRO-Cycle betrachtet, bei dem eine homogene Energiev-

erteilung des Strahls angestrebt wird. Aufbauend auf Simulationen der longitudinalen

Strahlendynamik mit BLonD, longitudinaler Phasenraumtomographie und Messungen

des Strahlenverhaltens wird eine detaillierte Rekonstruktion der Teilchenverteilung

des Strahls realisiert. Diese Rekonstruktion wird für verschiedene Einstellungen des

Phasensprungs durchgeführt, sodass ein vollständiger Überblick über die Konsequenzen

jeder Einstellung entsteht und eine optimale Energieverteilung ermittelt werden kann.

Schließlich wird der PS BigTOFEAST Cycle betrachtet, bei dem zwei “Bunches“ (TOF

und EAST) bei unterschiedlichen Energien und Zeiten extrahiert werden müssen. Es

werden zwei Phasensprünge studiert, wobei der erste zur Extraktion von TOF und

der zweite zur Gegen-Rotation der EAST Bunch genutzt wird, nachdem sie durch

den ersten Sprung gestört wurde. Auch für dieses Problem werden maßgeschneiderte

numerische Simulationen entwickelt, getestet und schließlich verwendet, um einen

Optimierer zu trainieren, der Bayes’sche Optimierung verwendet. Dieser Optimierer

bestimmt erfolgreich physikalisch sinnvolle Phasensprungeinstellungen für beide Sprünge,

und prognostiziert erhebliche Verbesserungen, wenn diese bestimmten Einstellungen

im Beschleunigerbetrieb umgesetzt werden. Außerdem wird vorhergesagt, dass bei

einer Erhöhung der Strahlenintensität die optimalen Phasensprungeinstellungen stark

variieren, aber dennoch die ursprüngliche Bunch-Qualität beibehalten.
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1. Introduction

1. Introduction

CERN (Organisation européene pour la recherche nucléaire, formerly Conseil Européen

pour la Recherche Nucléaire) is an international scientific organisation, comprising 23

member states. It operates the world’s largest particle physics laboratory for collab-

orative research into high-energy particle physics, as well as nuclear physics. One of

its significant recent discoveries is the observation of a particle compatible with the

Higgs Boson, which confirmed the predictions of the standard model [1, 2]. This was

accomplished by accelerating protons to near the speed of light in CERN’s injector chain,

consisting of one linear and three circular accelerators. These protons are successively

accelerated to increasing energies in the injectors, until they finally collide in the Large

Hadron Collider (LHC), the world’s largest particle collider. The data from these

collisions is then collected for a multitude of particle physics experiments, performing

research on the fundamentals of matter.

However, all machines in the injector chain also deliver particle beams to their own

experiments. The objectives of these experiments range from analysing neutron-nucleus

interactions (n TOF [3, 4]), over verifying particle decay statistics (NA62 [5]), to

searching for possible dark matter candidates (NA64 [6]). Therefore, the optimal

functioning of the entire accelerator complex is a primary objective of CERN [7], as

only then the majority of these experiments can be carried out and produce statistically

significant results.

1.1. CERN Accelerator Complex

The four injectors of CERN’s accelerator complex accelerate various particles, with

protons being the focus of this thesis. In the proton case, negative hydrogen ions are

first accelerated through the LINAC4 up to 160 MeV, a linear accelerator responsible

for increasing particle velocity to a significant fraction of the speed of light. Afterwards,

protons are extracted from H− ions by stripping their electrons, and the beam consisting

of approximately 1013 protons is accelerated through a series of three synchrotrons,

i.e. circular accelerators: the PS Booster (PSB), the Proton Synchrotron (PS) and

the Super Proton Synchrotron (SPS), before arriving at the LHC with an energy of
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1.2. Beam Quality Improvements for Slow Extraction

450 GeV. However, a high quality beam is required not only at the LHC, but also at

the other accelerators for delivery to their own experiments. This is the focus of this

thesis, with delivery to the experiments at the East Area of the PS [8] and the North

Area of the SPS [9] being considered herein.

Concretely, for the proton fixed-target experiments in the East and North Areas, the

PS accelerates the protons from 2.8 GeV to approximately 24 GeV, while the SPS

accelerates from 14 GeV to 400 GeV. After either acceleration, the protons are shot at

stationary targets.

Besides protons, heavy ions are also being accelerated at CERN, with the ALICE

detector at the LHC being dedicated to analysing their collisions. For example, lead

ions are collided at ALICE to reproduce conditions similar to those shortly after the

Big Bang [10]. There are also other, smaller experiments such as ISOLDE, which use

protons from CERN’s accelerators to create a variety of particles for study [11].

1.2. Beam Quality Improvements for Slow Extraction

To guarantee high quality experimental data and safe accelerator operation for North

and East Area beams, extraction of a high number of protons with minimal particle

losses is desired. This necessitates an optimal distribution of the particles in the longitu-

dinal plane with respect to the beam’s direction of travel, just before particle extraction.

This, in turn, is achieved by various manipulations of the beam’s particle distribution.

The manipulation this thesis focuses on is a bunch rotation by means of phase jump,

explained in detail in Chapter 2.

In the past, most beam manipulations were optimized by hand: one would devise a

method or idea to improve beam quality, and then test the quality of the beam while

continuously adjusting the settings until it was optimal. This approach has two main

issues:

1. Optimizing by hand can only cover a low amount of possible settings. Therefore, it

is possible that the optimizer will only find a local optimum, rather than a global

2



1.2. Beam Quality Improvements for Slow Extraction

Figure 1.1.1: The CERN accelerator complex as of 2022, with the main proton beam
starting at LINAC4, going through the PS Booster, the PS and the SPS,
colliding in the LHC.
Source: [12]

one. Additionally, in a system with many settings to optimize, certain interactions

might be overlooked, increasing the difficulty of even finding an optimum.

2. During these adjustments, the beam quality might be perturbed, and volatile.

Therefore, time to optimize is limited and costly, which amplifies the problems

stated above.

While this manual adjustment is invaluable to obtain a fundamental understanding of

the problem, once it is obtained, theoretical models and simulations become necessary

tools to fine-tune settings without consuming significant machine and personnel time.

One can then test the predictions of the simulation by live measurements, improve the

model and simulations, and repeat this process until the model is sufficiently accurate.

This allows one to discard certain ideas quickly based on the model alone, which is

3



1.2. Beam Quality Improvements for Slow Extraction

becoming more important as major projects such as the current High-Luminosity LHC

[13] and the planned Future Circular Collider [14] shift manpower away from operation.

Nevertheless, limited amounts of machine time remain crucial to iterate on and fully

verify these models.

Such an iterative process is done in this thesis for the PS and SPS, with the aim

of improving the longitudinal quality of the beam, focusing on settings necessary for

optimal particle extraction to the nTOF, and East as well as North Area experiments.

To this end, CERN’s BLonD code is used for simulations of longitudinal beam dynamics

throughout this work [15, 16].

4



2. Fundamentals of Longitudinal Beam Dynamics

2. Fundamentals of Longitudinal Beam Dynamics

This chapter studies the dynamics of synchrotron motion in the longitudinal plane,

i.e. how a particle bunch inside a circular accelerator behaves as it is accelerated, or

“stored”, i.e. kept at a fixed energy inside the accelerator ring. After elaborating on

the basics of longitudinal beam dynamics, bunch rotations by means of phase jump

are discussed as a tool for optimizing the particle beam’s time and energy distributions

before extraction. Then, collective effects are covered, as they can affect the beam

as well as phase jump quality significantly and therefore need to be considered in

simulations for accurate predictions of real systems. Finally, beam feedback loops are

covered to round-off the theoretical overview of beam dynamics and set the groundwork

for optimizations performed at the SPS in Chapter 3 and the PS in Chapter 4.

2.1. Particle Motion in a Synchrotron

A synchrotron is a circular particle accelerator which increases the energy of charged

particles while confining them to a constant circular orbit through the use of electro-

magnetic fields (see Fig. (2.1.1)). Electric fields E⃗ , generated by radio-frequency (RF)

cavities, are used for acceleration. Magnetic fields B⃗, generated by dipole, quadrupole

and higher order magnets, are used to maintain the particles on a circular and stable

orbit, preventing them from diverging transversally [17]. Note that, by convention, ac-

celeration will henceforth only refer to an increase in the particle momentum’s absolute

value, i.e. its energy, and not to the change of the momentum vector’s direction.

Starting with the fundamentals, the motion of particles with charge q and velocity v⃗ is

governed by the Lorentz force

F⃗ = q(E⃗ + v⃗ × B⃗). (2.1.1)

Therefore, the acceleration over a given path C⃗(t), with start and end times ts and te

respectively, amounts to an energy gain given by the line integral:

δEaccel =

∫
C⃗(t)

F⃗ · d⃗s = q

∫
C⃗(t)

E⃗ · d⃗s+ q

∫
C⃗(t)

(v⃗ × B⃗) · d⃗s = q

∫
C⃗(t)

E⃗ · d⃗s, (2.1.2)

5



2.1. Particle Motion in a Synchrotron

Figure 2.1.1: Simplified schematic of a circular accelerator. Note that sections with an
RF cavity are straight and employ electric fields for particle acceleration,
while sections with magnets are mainly used to keep the particle on a
circular orbit with magnetic fields.

where the magnetic contribution vanishes due to the magnetic field not providing any

work:

q

∫
C⃗(t)

(v⃗ × B⃗) · d⃗s = q

∫ te

ts

(v⃗ × B⃗) · dC⃗(t)
dt

dt = q

∫ te

ts

(v⃗ × B⃗) · v⃗ dt = 0.

The centripetal force keeping the particles in orbit is, in turn, generated by the magnetic

field. Assuming a perfectly circular synchrotron of radius ρ with magnetic fields

perpendicular to the particle’s velocity, and particles with mass m, B = |B⃗| must

therefore fulfil

FCentripetal =
mv2

ρ
= qvB = FLorentz.

This results in the condition

Bρ =
p

q
, (2.1.3)

with p = mv being the absolute value of the particle’s momentum. Note that this

6



2.2. Acceleration and Energy Gain

condition also holds in the relativistic case of p = γmv.

Equation (2.1.3) shows that, as a particle accelerates and gains momentum, the mag-

netic field has to increase to keep it on a constant circular orbit. Therefore, a desired

acceleration due to the RF cavities determines the necessary magnetic field over time.

In practice, the opposite is usually the case: a maximum magnetic field strength due to

technical limitations sets a limit on the particle’s momentum and energy.

However, a synchrotron is never perfectly circular, as the magnets can not be placed at

every point of the accelerator ring, and straight sections are necessary for the installation

of equipment such as RF cavities. Nonetheless, these straight sections are assumed to

contain negligible magnetic fields, and similarly, electric fields in curved sections are

assumed to vanish. Therefore, Eq. (2.1.3) still holds for particles traversing through

bending magnets with the bending radius ρ. Assuming all bending magnets to have the

same ρ and neglecting errors due to magnet imperfections or misalignment, a bending

radius ρ can hence be defined for the entire synchrotron. However, this bending radius

is usually significantly smaller than the geometrical radius.

2.2. Acceleration and Energy Gain

While Eq. (2.1.3) imposes conditions based on the magnetic field, Eq. (2.1.2) describes

how the particle gains energy and why RF cavities with time varying electric fields are

necessary. Taking the path C⃗(t) to be the full accelerator ring, meaning the integral

runs over a closed loop, C⃗(ts) = C⃗(te) := s⃗, one obtains the energy gain per turn of the

particle

(δE)turn = q

∮ C⃗(te)

C⃗(ts)
E⃗ · d⃗s. (2.2.1)

The closed-loop integral of a time-independent electric field vanishes according to

Maxwell’s equations. Therefore, time-varying fields are required to accelerate particles

in circular accelerators, and are provided in practice by RF systems. These generate a

sinusoidal electric field, oscillating at an angular frequency ωrf, which usually lies in the

radio-frequency range, hence the name. Assuming the RF system is placed at a fixed

7



2.2. Acceleration and Energy Gain

position in the ring, the provided electric field will be

⃗E(t) = E⃗0 sin(ωrft+ χrf), (2.2.2)

with the amplitude E⃗0 and a phase offset χrf.

Consider a single RF cavity along a completely straight section with length lrf parallel

to the z-axis. Particles travelling with a velocity v, which is approximately constant in

standard operation as the acceleration is small, δEturn/E ≪ 1, will gain an energy per

turn of

(δE)turn
t=z/v
= q

∫ lrf

0

E0 sin(ωrf
z

v
+ χrf) dz.

The cavities in the SPS are Travelling Wave cavities [18], and can be adjusted such

that the phase velocity of the RF waveform matches the particle speed. This means

the particle experiences a constant phase

φ̂rf(tarr) = ωrftarr + χrf (2.2.3)

of the electric field as it passes through the cavity, with φ̂rf(tarr) only depending on the

time tarr the particle arrives at the entrance of the cavity. Therefore, the above integral

reduces to

(δE)turn = qE0
∫ lrf

0

sin(φ̂rf(t)) dz = qE0lrf sin(φ̂rf(tarr))

= qVrf sin(φ̂rf(tarr)),

(2.2.4)

where Vrf = E0lrf is the RF cavity voltage.

This cannot be done for Standing Wave cavities, such as the ones used in the PS.

However, for a large circumference C, i.e. lrf ≪ C, the above equation approximately

holds [19, Eq. (2.12)]. As this approximation is valid for the PS, Eq. (2.2.4) is assumed

to hold for both the PS and SPS, and therefore throughout this thesis.

Note that for particles to gain the same energy turn after turn, sin(φ̂rf(tarr)) has to

assume the same value at each turn. Therefore, if a particle during revolution turn n

8



2.3. Longitudinal Equations of Motion

arrives at t
(n)
arr , and then in the next turn n+ 1 at t

(n+1)
arr , the following has to hold:

sin(φ̂rf(t
(n)
arr )) = sin(φ̂rf(t

(n+1)
arr )) = sin(φ̂rf(t

(n)
arr + T (n)

rev ))

=⇒ sin(ω
(n)
rf t(n)arr + χrf) = sin(ω

(n)
rf t(n)arr + χrf + ω

(n)
rf T (n)

rev )

=⇒ ω
(n)
rf T (n)

rev = 2πh

=⇒ ω
(n)
rf = hω(n)

rev .

(2.2.5)

Here, h ∈ N is called the harmonic number, determining the ratio between RF and

revolution frequencies.

So for a given revolution time T
(n)
rev = 2π/ω

(n)
rev or frequency ω

(n)
rev at turn n, the RF

frequency ω
(n)
rf has to be exactly an integer multiple of ω

(n)
rev , and be adjusted to fulfil

this condition turn by turn.

In practice, technological limitations on the magnets’ ramp rate Ḃ(t) set a maxi-

mum momentum gain per turn ṗ(t) through Eq. (2.1.3). Therefore, a maximum

energy gain per turn is also imposed, as Ė(t) = βcṗ(t). Based on this limita-

tion, a target (δE)turn is chosen, which is realized by installing RF cavities with a

matching voltage Vrf, programmed phase φ̂rf and frequency ωrf to accelerate the particles.

However, the problem becomes more complex when considering not one, but on the

order of 1013 particles that compose an accelerator beam. Such a beam usually consists

of multiple particle bunches, meaning groups of particles that are separated spacially.

To fully describe the beam dynamics, one studies the dynamics of each bunch, i.e. the

change of the particle distribution within the bunch over time. What drives these

dynamics is the fact that most particles do not arrive exactly at the target time tarr,

causing oscillations of the distribution.

2.3. Longitudinal Equations of Motion

Now consider a particle bunch, as demonstrated in Fig. (2.3.1). The particles obey

the equations outlined previously and are centred around a reference particle. This

reference particle follows a design energy program, meaning it has precisely the desired

target energy values E
(n)
0 at every revolution turn n. This directly determines all

relevant quantities of the particle trajectory, i.e. a design momentum p
(n)
0 , relativistic

9



2.3. Longitudinal Equations of Motion

velocity β
(n)
0 = v

(n)
0 /c and therefore angular frequency ω

(n)
rev,0 = β

(n)
0 c/ρ, alongside the

period of revolution T
(n)
rev,0 = 2π/ω

(n)
rev,0. It also determines the necessary magnetic field

B
(n)
0 via Eq. (2.1.3).

If the voltage of the RF system is fixed in advance, the energy program also defines the

phase φ̂rf(t
(n)
arr,0) necessary at the reference particle’s arrival. Namely, Eq. (2.2.4) implies

E
(n+1)
0 − E

(n)
0 := (δE)

(n)
0 = qVrf sin(φ̂rf(t

(n)
arr,0)),

thus the so-called synchronous phase φ
(n)
0 is given by

ω
(n)
rf t

(n)
arr,0 + χrf = φ̂rf(t

(n)
arr,0) =: φ

(n)
0 = arcsin

(
(δE)

(n)
0

qVrf

)
, (2.3.1)

while ω
(n)
rf is determined via Eq. (2.2.5).

However, any particle with a slightly different arrival time relative to the reference

particle will see a different phase and therefore move on a different trajectory. Let the

difference in arrival time between an arbitrary particle t(n) and the reference particle

t
(n)
0 =

∑n
i=1 T

(i)
rev,0 at revolution turn n be

∆t(n) := t(n) − t
(n)
0 .

The difference in energy can be defined similarly as

∆E(n) := E(n) − E
(n)
0 .

As seen in Fig. (2.3.1), these coordinates define a phase space, which fully characterises

the longitudinal dynamics of the particle bunch, as will be elaborated on below.

To calculate the dynamics of the aforementioned coordinates, ∆E is studied first. To

determine its dynamics, the phase at the arrival time of an arbitrary particle must be

10



2.3. Longitudinal Equations of Motion

Figure 2.3.1: The phase space of a typical SPS bunch. Particles are coloured in blue.
The time difference is shown on the x-axis, while the y-axis displays the
energy difference. Note that the ∆t coordinate on the x-axis is shifted
such that the 0 lies on the left. The red envelope defines the separatrix,
which will be discussed in Sec. 2.4.

considered:

φ(t(n)) =

∫ t(n)

0

ωrf(τ) dτ + χ
(n)
rf

=
n∑

i=1

ω
(i)
rf T

(i)
rev,0 + ω

(n)
rf (t(n) − t

(n)
0 ) + χ

(n)
rf

=
n∑

i=1

ω
(i)
rf T

(i)
rev,0 + ω

(n)
rf ∆t(n) + χ

(n)
rf ,

where ωrf(τ) only changes after every turn due to the discretized energy gain, and

ω
(i)
rf T

(i)
rev,0 is a multiple of 2π for every turn i due to Eq. (2.2.5). Therefore, the energy

after an additional turn is

E(n+1) = E(n) + δE(n) = E(n) + qVrf sin(φ(t
(n)))

= E(n) + qVrf sin(ω
(n)
rf ∆t(n) + χ

(n)
rf ).

Then the energy difference between the arbitrary and reference particle is

11



2.3. Longitudinal Equations of Motion

∆E(n+1) = E(n+1) − E
(n+1)
0

= (E(n) + δE(n))− (E
(n)
0 + δE

(n)
0 )

= ∆E(n) + qVrf sin(ω
(n)
rf ∆t(n) + χ

(n)
rf )− δE

(n)
0 .

(2.3.2)

On the other hand, the time difference ∆t(n) depends purely on the difference in

revolution periods between the particles, implying

∆t(n+1) = ∆t(n) + T (n+1)
rev − T

(n+1)
rev,0 = ∆t(n) + T

(n+1)
rev,0


1 +

ω
(n+1)
rev − ω

(n+1)
rev,0

ω
(n+1)
rev,0

−1

− 1

 .

(2.3.3)

The so-called frequency slippage ωrev−ωrev,0 =: ∆ωrev in the numerator can be quantified

by a machine parameter η(δ), determined by the configuration of magnets (“magnetic

lattice”) installed in the synchrotron. It defines how a difference in momentum relative

to the reference particle δ = ∆p/p0 = ∆E/(β2
0E0) affects the particle orbit. Specifically,

it quantifies how a particle with higher momentum is faster, but must also traverse a

circular orbit of larger radius. Mathematically:

∆ωrev

ωrev,0

=: −δη(δ) = −δ(η0 + η1δ + η2δ
2 +O(δ3)). (2.3.4)

For a small frequency slippage, ∆ωrev/ωrev,0 ≪ 1, or equivalently, a well centred bunch

around the reference particle, ∆E/E0 ≪ 1, taking only the first order in above equation

is a valid approximation, yielding

∆t(n+1) ≈ ∆t(n) + T
(n+1)
rev,0


1− η

(n+1)
0

∆E(n+1)

(β
(n+1)
0 )2E

(n+1)
0

−1

− 1


∆E
E0

≪1

≈ ∆t(n) +

 T
(n+1)
rev,0 η

(n+1)
0

(β
(n+1)
0 )2E

(n+1)
0

∆E(n+1).

(2.3.5)

These two Equations (2.3.2) and (2.3.5) define a dynamic map between turn n and

n + 1, fully describing the dynamics in longitudinal phase space. They show how a

particle with a higher energy will, depending on the sign of η0, arrive later or earlier

during the next revolution turn. This difference in arrival time ∆t will then change

12



2.3. Longitudinal Equations of Motion

the difference in energy ∆E in the next turn, and so on. Under the right conditions,

this phase space dynamic creates a stable oscillation around the reference (also called

synchronous) particle. This means a higher ∆t reduces ∆E, which in turn reduces ∆t,

etc. (see Section 2.4).

The equations are also simple to implement numerically, where the kick (Eq. (2.3.2))

and then the drift (Eq. (2.3.5)) is applied to every simulated particle’s coordinates,

yielding the coordinates for the next turn. This is repeated, yielding the particle

dynamics for the desired number of turns.

If multiple RF stations are to be considered, in theory the equations need to be applied

for each RF station. So if there are two stations, one would have to calculate the

change in coordinates due to the first station ∆E(n)(1) and ∆t(n)(1), and then due to

the second, ∆E(n)(2) = ∆E(n+1) and ∆t(n)(2) = ∆t(n+1). These changes would depend

on the system parameters ωrev,0(t), η0(t),..., which change over time and are different

for the arrival times at the first and second RF stations. However, the approximation

of a centred bunch ∆E/E0 ≪ 1 made in deriving Eq. (2.3.5), in most cases also

corresponds to slow acceleration, δE0/E0 ≪ 1. For slow acceleration, the small change

of the variables ωrev,0, η0,... between the two RF stations is negligible. This allows to

approximate the kicks due to the RF stations by a sum of kicks, all based on the

parameters of the previous turn, which also summarizes the drifts similarly:

∆E(n+1) ≈ ∆E(n) +

Nrf∑
k=1

qVrf,k sin(ω
(n)
rf,k∆t(n) + χ

(n)
rf,k)− δE

(n)
0 , (2.3.6)

∆t(n+1) ≈ ∆t(n) +

 T
(n+1)
rev,0 η

(n+1)
0

(β
(n+1)
0 )2E

(n+1)
0

∆E(n+1), (2.3.7)

where k numbers all Nrf RF stations with their own voltages Vrf,k, angular frequencies

ωrf,k and phase offsets χrf,k.

Finally, by the same argument of slow acceleration and therefore only small changes

turn by turn, transforming these discrete equations into continuous ones is a valid ap-

proximation. Assuming that variables over a revolution turn only change infinitesimally,
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2.4. System Hamiltonian

∆E(n+1) −∆E(n)

T
(n+1)
rev,0

≈
d(∆E)

dt
=: ∆̇E(t) and analogously for ∆̇t, yields:

∆̇E(t) =
q

Trev,0(t)

Nrf∑
k=1

Vrf,k sin(ωrf(t)∆t+ χrf,k(t))−
δE0(t)

Trev,0(t)
, (2.3.8)

∆̇t(t) =

 η0(t)

(β0(t))2E0(t)

∆E(t), (2.3.9)

where all variables previously dependent on the turn number n now depend on the

time t.

2.4. System Hamiltonian

The equations of motion describe a Hamiltonian system with the conjugate variables

(∆t,∆E). For an example of its behaviour under small excitations, see Appendix A.

More generally, the full system Hamiltonian is given by integrating the continuous

equations (2.3.8), (2.3.9):

H(∆t,∆E) =

∫
d(∆t)

dt
d(∆E)−

∫
d(∆E)

dt
d(∆t)

=
η0

2(β0)2E0

∆E2 +
q

Trev,0

Nrf∑
k=1

Vrf,k

ωrf,k

cos(ωrf,k∆t+ χrf,k) +
δE0

Trev,0

∆t+ CH ,

(2.4.1)

where CH is an integration constant, usually defined to set the minimum of the RF

potential

Urf(∆t) :=
q

Trev,0

Nrf∑
k=1

Vrf,k

ωrf,k

cos(ωrf,k∆t+ χrf,k) +
δE0

Trev,0

∆t+ CH (2.4.2)

to 0, min
∆t

{Urf(∆t)} = 0.

As this system is described by a Hamiltonian, two main consequences for the synchrotron

motion follow:

1. The Liouville theorem holds, hence the volume enclosed by particle trajectories is

constant.

14



2.4. System Hamiltonian

2. Due to the Hamiltonian being independent of the system time, dH
dt

= ∂H
∂t

= 0, it

is itself a constant of motion, H(∆t,∆E) = const.

Using the second fact, an equation for the particle trajectories can be derived. Eq. (2.4.1)

implies

∆E(∆t) = ±

√
2(β0)2E0

η0
(H(∆t,∆E)− Urf(∆t)),

and since H(∆t,∆E) = const = H(∆tA, 0) = Urf(∆tA),

∆E(∆t) = ±

√
2(β0)2E0

η0
(Urf(∆tA)− Urf(∆t)), (2.4.3)

with ∆tA being the ∆t-amplitude of the phase space oscillation associated with

the considered trajectory. Various trajectories and potentials for different values of

acceleration are displayed in Fig. (2.4.1a) and Fig. (2.4.1b). Note that the x coordinate

used in these figures is the particle phase φ(∆t) = ωrf∆t + χrf, which relates the

particles’ arrival time offset ∆t to the RF phase.

Evaluating this equation for the stable trajectory with the maximal time ampli-

tude ∆tmax
A yields the separatrix, which encloses all stable trajectories. ∆tmax

A

is defined by the position of the RF potential’s smallest local maximum,

min{Urf(∆τ) |∆τ maximizes Urf} = U(∆tmax
A ). By definition, any particles go-

ing beyond this maximal ∆tmax
A have enough energy to leave the potential well, hence

they no longer perform bounded, stable motion. Due to the first consequence mentioned

above, the total area containing stable trajectories is constant. Therefore, to have

a stable bunch of particles, they need to initially lie within the area defined by the

separatrix. The separatrix, in turn, is defined by the system parameters in Eq. (2.4.3),

evaluated at ∆tmax
A , therefore allowing one to predict the trajectories based on the

chosen system parameters.

This area enclosed by the separatrix is called the RF bucket. Due to Liouville’s theorem,

particles “caught in the RF bucket”, i.e. the ones within this area, move on stable

trajectories, never leaving the bucket. Note that, in the special case of no acceleration,

the bucket’s ∆t width is maximal, corresponding exactly to one RF period. Therefore,
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2.4. System Hamiltonian

the maximal bucket width is given by

Trf =
1

frf
. (2.4.4)

In conclusion, given the Hamiltonian in Eq. (2.4.1), as well as the equations of motion

(2.3.8) and (2.3.9), the dynamics of a particle in longitudinal phase space can be calcu-

lated. This enables the determination of the necessary accelerator and RF parameters

to capture a certain bunch of particles in a given bucket, or vice versa, to see how a

certain bunch of particles behaves with given accelerator parameters.

(a) The non-accelerating case. The minimum of the potential occurs at the syn-
chronous phase φ0, while the maxima yield the φ amplitude of the largest stable
orbit and thereby ∆tmax

A for the separatrix.
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(b) The accelerating case. The area enclosed by the separatrix has shrunk due to
deformations in the RF potential, displacing the maxima.

Figure 2.4.1: Two plots of the RF potential (top graph) and corresponding phase space
trajectories (bottom graph) for a non-accelerating and an accelerating
system.
Top graph: RF potential Urf(φ) dependent on the RF phase
φ(∆t) = ωrf∆t+ χrf.
Bottom graph: the associated phase space trajectories. The trajectories
enclosed by the separatrix (red line) are stable, closed orbits, while the
trajectories outside are unstable and particles there are eventually lost.
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2.5. Time and Energy Distributions

Given an initial distribution of Np particles with the same charge q in phase space,

i.e. Np sets of coordinates (∆ti,∆Ei), the distribution’s evolution with time can now be

determined with the tools of the previous section. In most cases, one is then interested

in the projection of this phase space distribution. Projecting in either the ∆t or ∆E

coordinate gives the time and energy distributions P (∆t), N(∆E), seen in Fig. (2.5.1).

Figure 2.5.1: Phase space distributions of a bunch and their projections P (∆t) and
N(∆E), at two different times.
On the left, the time distribution, or bunch profile, P (∆t) is wide, extend-
ing over almost the full bucket marked by the red separatrix. Meanwhile,
the energy distribution N(∆E) is peaked.
On the right, exactly the opposite case can be seen: the energy distribution
N(∆E) is mostly flat, while the bunch profile P (∆t) is peaked in time.

Specifically, the time distribution P (∆t) is called the beam or bunch profile, depending

on whether the whole beam or a single bunch is observed. This profile can be

directly measured by observing the current flowing through a point of the beam

pipe. On the other hand, the energy distribution is not commonly measured

at CERN, and the infrastructure to do such measurements requires resources not

available at time of writing. Therefore, numerical tools are instead used to reconstruct it.

Being able to reconstruct the energy distribution is important, as it plays a significant
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role in the extraction method used for beams sent to the East [20] and North Area [21]:

during the so-called slow extraction, particles with similar energies are extracted at the

same time. Therefore, if one desires a constant particle stream with as little variation

in number of particles extracted per second as possible, an energy distribution with a

minimal slope is optimal.

Concretely, a small slope in the energy distribution can be compensated for by

changing the extracted ∆E interval’s size throughout the extraction process, as

seen schematically in Fig. (2.5.2). However, this adjustment can only be performed

gradually, and sharp peaks in the energy distribution will result in suboptimal slow

extraction. Therefore, a wide energy distribution N(∆E) with a minimal and mostly

smooth gradient N ′(∆E) is desired.

Creating such a flat energy distribution with which the beam can be efficiently extracted

is the main goal of this thesis, and is achieved by optimizing the manipulations performed

on the beam’s particle distributions.

(a) Energy distribution for an extraction
with low N ′(∆E). The interval sizes
vary gradually over time, hence slow
extraction is easier to perform.

(b) Extraction with high N ′(∆E). Here,
the interval sizes vary rapidly over
time, meaning slow extraction would
be performed suboptimally.

Figure 2.5.2: Schematic examples of slow extraction for a flatter (a) and more peaked
(b) energy distribution. The intervals between 2 striped red lines represent
10 % of the total number of particles, illustrating how the ∆E interval size
during slow extraction varies for a constant number of extracted particles.

19



2.6. RF Manipulations and Phase Jumps

2.6. RF Manipulations and Phase Jumps

Various methods for manipulating the bunch distribution exist, e.g. [22], but this thesis

will concentrate on the technique of a bunch rotation by phase jump. This technique

sets the RF phase to the unstable phase

φu := φ0 − π

to stretch out the bunch and create either an energy distribution that is as flat and

homogeneous as possible, or a sharply peaked profile. This is done in three steps:

1. First, the RF phase is set to the unstable phase, i.e. the phase at the separatrix’

edge. For example, see the points marked in red in Figures (2.4.1a), (2.4.1b). The

particle distribution will then be stretched out along the separatrix for a time τj,

creating a distribution that is wider in phase space.

2. Afterwards, the RF is set back to the stable phase until the time τr. During this

time, the bunch will move along the particle trajectories in the RF bucket and

therefore rotate in phase space.

3. Finally, the RF is turned off at time τr, ideally when the energy distribution is

flattest. This “freezes” the energy distribution, as (2.3.6) implies ∆E(n+1) = ∆E(n)

for no RF voltage and acceleration, i.e. Vrf = 0, δE = 0. Afterwards, the slow

extraction of the bunch begins, extracting particles to the experiments over

multiple seconds. Alternatively, if the phase jump in not performed to optimize

(slow) extraction, Vrf > 0 may be maintained to perform further manipulations,

such as a second phase jump, when the bunch reaches the desired shape in phase

space.

Schematically, the process is shown in Figure (2.6.1).

As ∆t and ∆E both grow exponentially for angles close to the unstable phase, the

choice of τj must be done very finely, i.e. turn by turn. Meanwhile, the rotation

back at the stable phase happens on the timescale of a synchrotron oscillation period

Ts = 2π/Ωs, i.e. on the order of 102 turns, meaning this choice can be done less

precisely. (See Appendix A for details on the concept of synchrotron oscillations and

the synchrotron frequency Ωs).
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The goal now is to find the parameter set Spj = (τj, τr), which yields the desired

profile and energy distribution. For example, when a flat energy distribution is

needed, a parameter set avoiding the formation of tails (i.e. the beginning of bunch

“filamentation”) as seen in Fig. (2.6.1d), will be preferred.

An additional complication are also collective effects, which will be covered in the next

section. These are effects arising from particle interactions between themselves and the

environment, and add an additional term to the equations of motion (2.3.6, 2.3.7). For

phase jumps specifically, taking into account collective effects means that the unstable

phase will not be exactly at φu = φ0 − π, but at a slightly different position due to the

RF potential maxima moving. Therefore, the jump amplitude φj, with φu := φ0 − φj,

is also a free parameter, and the parameter set to be optimized is Spj = (τj, τr, φj).

Hence, optimizing a phase jump to improve the quality of the beam is equivalent to

optimizing this parameter set, based on the desired profile and energy distribution of

the the beam.
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(a) Particle bunch at the unstable phase,
i.e. the unstable fixed point of the
Hamiltonian equations of motion.

(b) Particle bunch being stretched out at
the unstable fixed point for time τj .

(c) The RF phase is set back onto the sta-
ble phase, putting the bunch in the
middle of the bucket.

(d) The bunch being rotated in the bucket
due to its shape and the equations of
motion, until τr, when the energy dis-
tribution is flattest.

Figure 2.6.1: The phase space representation of a particle bunch during all three stages
of a phase jump: The jump to the unstable phase (a) and the bunch being
stretched out (b), the jump back to the synchronous phase φ0 (c), and
the corresponding rotation (d) as time advances.
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2.7. Collective Effects

The electromagnetic interaction between the particles themselves, as well as with their

environment, is also part of longitudinal beam dynamics and adds a term ∆Eind = qVind

to Eq. (2.3.6). Vind represents the induced voltage and quantifies the additional energy

gain or loss due to the interaction, meaning that the full longitudinal equations of

motion become:

∆E(n+1) = ∆E(n) +

Nrf∑
k=1

qVrf,k sin(ω
n
rf,k∆t(n) + χ

(n)
rf,k)− δE

(n)
0 + qV

(n)
ind , (2.7.1)

∆t(n+1) = ∆t(n) +

 T
(n+1)
rev,0 η

(n+1)
0

(β
(n+1)
0 )2E

(n+1)
0

∆E(n+1), (2.7.2)

which produce a new Hamiltonian and RF Potential:

H(∆t,∆E) =
η0

2(β0)2E0

∆E2 + Urf(∆t), (2.7.3)

Urf(∆t) =
q

Trev,0

Nrf∑
k=1

Vrf,k

ωrf,k

cos(ωrf,k∆t+ χrf,k) +
δE0

Trev,0

∆t− q

Trev,0

∫
Vind(∆t)d(∆t) +CH .

(2.7.4)

This addition is significant at high intensities, affecting all aspects of beam dynamics by

changing the shape of the RF potential and the position of its extrema. Importantly,

this means that the previously defined synchronous phase φ0 = arcsin(δE0/(qVrf)) no

longer yields the stable phase. This also means that a phase jump by π no longer yields

the unstable phase, which alongside other consequences of collective effects, contributes

to errors in the phase jump.

To calculate these effects numerically, consider the longitudinal force that a witness

particle experiences due to a source particle, as both traverse a section of the accelerator,

such as an RF cavity.

Assume the particles’ relative positions r⃗ − r⃗ ′ = (x− x′,y − y′,z − z′) =: (∆x,∆y,∆z)

remain approximately constant while they traverse the section. Then, one can calculate

the total energy change ∆Ep := qVp(r⃗ − r⃗ ′) and corresponding voltage Vp the witness

particle experiences after its passage: ∆Ep is given as the integral over the witnessed
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Lorentz force Fz [23, Chapter 1]

qVp(r⃗ − r⃗ ′) = ∆Ep =

∫
section

Fz(r⃗ − r⃗ ′, s) ds =: −qq′w(r⃗ − r⃗ ′), (2.7.5)

with s being the particles’ longitudinal centre of mass position in the section, q and q′

being the witness and source particle charges, and r⃗ − r⃗ ′ the distance between witness

and source particle.

Given this so-called wake function w(r⃗− r⃗ ′), also referred to as the Green’s function, the

convolution with a general charge distribution ρq produces the total induced voltage:

Vind(r⃗) =

∫
R3

w(r⃗ − r⃗ ′)ρq(r⃗
′) d3r⃗ ′. (2.7.6)

The beam in the accelerator extends significantly further in the longitudinal rather

than the transversal directions (see Fig. (2.7.1)), meaning ∆x,∆y ≪ ∆z. Therefore,

the wake function can be Taylor expanded to first order around ∆x,∆y = 0. As the

RF cavity is usually transversally symmetric, meaning w(x,y.z) = w(−x,− y,z), the

first order term of the expansion vanishes, only leaving the part independent of ∆x,∆y:

w(r⃗ − r⃗ ′) ≈ w(z − z′) [24].

Using ∆x,∆y ≪ ∆z , the integration over R3 can be approximated as a line integral

over z, yielding a simplified equation where the integration is now carried out over the

one dimensional line density λ(z) [24]:

Vind(z) =

∫
R
w(z − z′)λ(z′)dz′. (2.7.7)

The line density λ1 of a single bunch is usually either approximated as a Gaussian

distribution, or the so-called continuous binomial distribution [25]:

λ(z) =
Np

M

(
1− 4

(
z − z0
vτl

)2
)µ

=
Np

M

(
1− 4

(
∆t

τl

)2
)µ

, (2.7.8)

with Np being the number of particles in the bunch, M a normalization, ∆t = (z−z0)/v

the time difference relative to the synchronous particle and τl the full bunch length,

i.e. the ∆t-interval in which all particles of the bunch lie. Meanwhile, µ defines the
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Figure 2.7.1: Schematic cavity where a witness particle (red) and electromagnetic source
(blue) travel through. The source particle affects the trajectory of the
witness as both travel through the cavity.
Source: adapted from [24]

.

sharpness of the bunch tails: µ = 1 defines a parabolic bunch with no tails, while for

µ → ∞ the distribution converges to a Gaussian distribution with infinitely long tails.

While in this section a Gaussian bunch density is assumed for simplicity, real particle

bunches are more accurately represented by Eq. (2.7.8), and this distribution will be

used in Chapters 3 and 4. An example is given in Fig (2.7.2), with bunch parameters

commonly occurring in the SPS.

To now calculate w, and thereby Vind, one usually determines the system’s response in

frequency domain experimentally. This so-called impedance, i.e. the Fourier transform

of w, is then:

Z(ω) := F [w(z)] =
1

c

∫
R
w(z)e

−iωz
c dz.

The corresponding inverse transform is:

w(z) := F−1[Z(ω)] =
1

2π

∫
R
Z(ω)e

iωz
c dω.
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2.7. Collective Effects

Figure 2.7.2: Binomial line densities λ for different µ, with a bunch length of τl = 2 ns
commonly occurring at the SPS. In blue, the bunch with µ = 1 is parabolic,
with the line density dropping off to 0 quickly and without tails, while for
µ = 5 the edges are smoother and the bunch becomes more similar to a
Gaussian.

Therefore,

Vind(z) =

∫
R

1

2π

∫
R
Z(ω)eiω

z−z′

c λ(z′) dω dz′

=
1

2π

∫
R
Z(ω)eiω

z
c

∫
R
λ(z′)e−iω z′

c dz′ dω

= F−1[Z · cF [λ]]

= F−1[Z(ω) · cλ̂(ω)],

(2.7.9)

where λ̂(ω) is the Fourier transform of the line density, called the beam spectrum.

Note that the line density describes the beam across all space. In the case of circular

machines, the beam passes by the same section of the accelerator at every turn, building

up the induced voltage turn by turn. To take into account these multi-turn effects, one

can approximate λ(z) as periodic, with a period of the accelerator circumference:

λ(z) =
∞∑

n=−∞

λb(z − nC),

where λb is the line density of the beam during one turn and C is the ring circumference.
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2.7. Collective Effects

Figure 2.7.3: Schematic bunch and beam spectra, i.e. the Fourier transformed line
densities of the bunch and beam. The bunch spectrum (red) envelops the
beam spectrum (blue), which is a series of δ-peaks. How collective effects
affect the beam is quantified by the beam spectrum, multiplied with the
accelerator impedance Z(ω).
Source: adapted from [24]

.

This can also be written as

λ(z) = [λb ∗
∞∑

n=−∞

δ(nC)](z),

where ∗ denotes the convolution. As

F [
∞∑

n=−∞

δ(z − nC)] =
2πc

C

∞∑
n=−∞

δ(z − n
2πc

C
)

[26, p. 245-248], the Fourier transform then simply becomes

λ̂(ω) = λ̂b(ω)
∞∑

n=−∞

ω0δ(ω − nω0), (2.7.10)

with

ω0 =
2πc

C
. (2.7.11)

Essentially, the beam spectrum is a series of delta peaks enveloped by the bunch

spectrum, as shown in Fig. (2.7.3).
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2.8. Beam Feedback Loops

Therefore, by determining the impedance of the accelerator’s components beforehand,

as well as measuring the line density during a revolution turn by measuring the

bunch profiles, the induced voltage is fully determined. To perform these calculations

numerically, models of the impedance have been developed both for the PS [27] and

SPS [28], and will be used throughout this thesis.

However, the error of these calculations and therefore the accuracy of the simulations

depends on exactly how the (discrete) fast Fourier transform (FFT) is performed and

how finely the data is discretized. To obtain accurate results for this thesis, a study of

numerical errors and noise is performed in Appendix B.

2.8. Beam Feedback Loops

To ensure proper acceleration of the beam without losses, the particle’s trajectories

need to be kept within the RF bucket, i.e. the separatrix. Beam feedback loops are

the tools used for this purpose. Concretely, the loops adjust the frequency of the RF

system to force the beam’s phase and radial position back to their desired values (see

illustrations in Fig. (2.8.1)), after they are offset due to phenomena such as collective

effects or misalignments of the installed magnets. This allowing stable acceleration

despite commonly present operational imperfections.

There are three main feedback loop systems used in CERN’s particle accelerators: the

phase loop, the radial loop and the synchronization loop.

The former acts on very short timescales, on the order of revolution turns, to align the

RF phase to the instantaneous synchronous phase, i.e. the actual phase of the beam φb.

This ensures that particles are not lost from the RF bucket.

The latter two are mutually exclusive, and act on larger timescales, usually on the

order of 100− 1000 revolution turns. Both are used to keep the beam’s radial position

at the desired value, e.g. in the middle of the beam pipe. This ensures the beam is not

lost due to aperture limitations, i.e. due to particles colliding with the edges of the

beam pipe, while minimally affecting the phase loop because these two loops work at

significantly different timescales.
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2.8. Beam Feedback Loops

As stated, the phase loop acts on the timescale of revolution turns and is used to

adjust the RF phase φ
(n+1)
rf = ω

(n+1)
rf ∆t(n+1) + χ

(n+1)
rf at turn n+ 1 by adjusting the RF

frequency f
(n+1)
rf . This adjustment is based on the phase deviation ∆φ(n) = φ

(n)
b − φ

(n)
rf

between actual beam phase φ
(n)
b and RF phase φ

(n)
rf at turn n. The function of the phase

loop is illustrated schematically in Figure (2.8.1a). Concretely, the adjusted frequency

is f
(n+2)
rf = f

(n+1)
rf +∆f

(n)
rf,PL, with

∆f
(n)
rf,PL = −GPLFPL(∆φ(n),∆φ(n−1), . . . ), (2.8.1)

where GPL is the phase loop gain. It is normally chosen such that the RF phase is set

to the beam phase within 1-10 revolution turns after a sudden deviation.

Additionally, the function FPL is a filter applied to the measured phase deviation, usually

chosen such that, in the frequency domain, it filters out low frequency components

of F [∆φ], i.e. the components causing long-term phase shifts. This ensures that the

phase loop does not try to counteract phenomena such as the synchronous phase

shift due to collective effects, described in the previous section. As these phenomena

change the equilibrium of the system, they would constantly re-establish themselves,

which the phase loop would try to continuously counteract. This would cause a

permanent and self-amplifying feedback loop, driving the RF frequency frf to deviate

from the design frequency frf,0 enough for Eq. (2.2.5) not to hold, and the beam to be lost.

Even in correct operation however, frf will experience a slight offset from the design

frequency over time due to the phase loop’s frequency change ∆frf,PL. To ensure

beam stability, this long-term drift must be corrected. This is the task of the radial

or synchronization loop, which are used for the same purpose, but in different conditions.

The synchronization loop works by adjusting the measured RF frequency frf to the

design frequency frf,0, usually calculated from the design energy E0 and measured

magnetic field B via Eq. (2.1.3)

frf,0(B,E0) = hωrev,0 = h
β0c

ρ
= h

qBc2

E0

.
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2.8. Beam Feedback Loops

(a) A bunch whose average phase
φb = ωrf∆t+ χrf is offset from the
centre of the bucket φrf by an offset
∆φ. This offset will be detected by
the phase loop, and corrected in 1-10
revolution turns.

(b) A bunch whose average radial position
∆R is offset from the target position,
which corresponds to an offset in aver-
age ∆E from the centre of the bucket.
This offset will be detected by the ra-
dial loop, and corrected in 100-1000
revolution turns.

Figure 2.8.1: Schematic illustrations of the longitudinal phase space for use cases of
the phase loop (a) and radial loop (b). The synchronization loop acts
analogously to the radial loop.

Therefore, based on the frequency offset δf
(n)
rf = f

(n)
rf − f

(n)
rf,0 from the design frequency,

the synchronization loop adjusts the actual RF frequency f
(n+2)
rf = f

(n+1)
rf + ∆f

(n)
rf, SL

similarly to the phase loop:

∆f
(n)
rf, SL = GSLFSL(δf

(n)
rf , δf

(n−1)
rf , . . . ). (2.8.2)

The gain GSL is set such that the synchronization loop acts on timescales of 100− 1000

turns. The function FSL also filters out high-frequency components of the offset

F [δf
(n)
rf ], such as the frequency changes of the fast-acting phase loop. This ensures that

these loops do not counteract each other, while slowly adjusting frf back to frf,0.

However, a problem arises during the so-called transition crossing, where the slippage

factor η(t) changes sign. When η(t) ≈ 0, a small frequency offset causes large

momentum offsets due to Eq. (2.3.3): ∆p = −∆ωrev/(ηωrev,0p0). Therefore, small

measurement errors, e.g. errors in the measured magnetic field B, have a large impact:

30



2.8. Beam Feedback Loops

They cause the calculated design frequency frf,0(B) to be offset from the actual,

physically optimal frequency, which induces a large momentum offset [29]. This impact

is large enough that near transition, the beam will be lost to aperture limitations even

due to expected measurement errors occurring in normal operation. Hence, if the

beam being accelerated crosses transition, the accelerator used to do this should use a

different beam feedback loop to re-establish the design frequency during acceleration.

The radial loop is commonly used for this purpose, as the radial offset ∆R of the beam

from the middle of the beam pipe is related to the frequency offset by [19, Eq. (2.86)]

∆R

ρ
=

γ2
0

γ2
tr − γ2

0

δfrf
frf,0

, (2.8.3)

where γ2
t =

γ2
0

η0γ2
0−1

is the Lorentz factor at transition.

Therefore, the radial loop acts based on the measured radial offset ∆R(n) to bring frf

back to frf,0, as illustrated in Fig. (2.8.1b). It is particularly sensitive at transition,

where γ0 ≈ γt, and a small frequency offset δfrf will immediately result in a large radial

offset ∆R. As before, the frequency adjustment is performed as follows:

∆f
(n)
rf, RL = GRLFRL(∆R(n),∆R(n−1), . . . ). (2.8.4)

And analogously to the synchronization loop, the radial loop acts on timescales of

100− 1000 turns, with FRL filtering out high-frequency components in F [∆R], as to

not counteract the phase loop.
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3. Optimizations of fixed-target beams at the SPS

3. Optimizations of fixed-target beams at the SPS

This chapter applies the knowledge from the previous chapter to optimize the phase

jump currently used in the SPS Fixed Target Proton (SFTPRO) beam cycle. Here, a

cycle is the sequence consisting of particle injection into the accelerator, the acceleration

of these particles, their extraction, and finally the preparation for the next injection.

The SFTPRO cycle is used for beams exploited by the North Area experiments, where

a flat energy distribution improves the process of slow extraction [21], which in turn

improves experimental data quality.

After presenting further details on the cycle and slow extraction, beam profiles for

settings at and around the current operational phase jump settings Sc
pj = (τ cj , τ

c
r , ϕ

c
j)

are measured. These are then used to numerically reconstruct the corresponding energy

distributions. Afterwards, an algorithm is developed and used to quantify the quality

of the reconstructed distributions, which allows direct comparison between the results

of various sets of settings Spj. After the errors of this methodology are evaluated,

the algorithm is used to define optimal settings So
pj. These are tested in operation by

comparing numerically reconstructed distributions to those inferred from measuring

the particles extracted at slow extraction, allowing a final conclusion.

3.1. General Information

The Machine Development (MD) beam cycle used for measurements mimics the

SFTPRO cycle currently in operation. It takes two injections from the PS, where

the second injection follows 1.2 seconds after the initial one. After this, the beam is

accelerated from 14 GeV to 400 GeV over the course of 3 seconds. The phase jump is

performed immediately after reaching the desired energy at the so-called “flat top” at

4.26 s, where no more acceleration takes place and the energy remains constant.

After the phase jump, the protons are debunched by shutting the RF off fully,

i.e. Vrf = 0. This means that the protons spread out longitudinally across the length

of the beam pipe, after which slow extraction begins and the beam is sent to the

North Area. Note that the debunching process has negligible impact on the energy
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3.1. General Information

distribution, i.e. the energy distribution at the end of the phase jump is assumed to be

equal to the one at the start of slow extraction.

As elaborated on in Sections 2.5 and 2.6, the phase jump itself is performed to widen

the energy distribution N(∆E) and reduce its slope dN(∆E)/d(∆E). This makes

extracting a constant number of particles per turn easier, improving experimental results.

Figure (3.1.1) depicts the beam momentum’s evolution, i.e. the programmed momentum

p0
p0c ≫ mc2

≈ E/c, starting from the first injection in the SFTPRO cycle. Given this

program, the beam intensity, and the accelerators structural parameters, all relevant

parameters for beam dynamics at the flat top are calculated in Table (3.1.1).

Figure 3.1.1: STFPRO momentum program, determining the beam’s momentum for
the entire duration of the STFPRO cycle. Acceleration begins at 1250 ms
cycle time, then the flat top of constant momentum is reached at 4260 ms,
after which the phase jump occurs, followed by slow extraction.
Taken on 21.06.2023.
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3.2. Current and Examined Settings

MD Cycle Flat Top Parameters

Parameter Value

Reference energy E0 400 GeV

Relativistic beta β0 0.9999973

Reference momentum p0 400 GeV/c

Intensity I 4.5 · 109 protons per bunch

Circumference C 6911.5 m

Bending radius ρ 741.3 m

Slippage parameter η0 0.00185

Revolution time Trev 23.0545 µs

Synchrotron period Ts ≈ 200 · Trev

Harmonic number h 4620

Bucket length Trf 4.9902 ns

Total 200 MHz voltage Vrf,200 6.974 MeV

Total 800 MHz voltage Vrf,800 0.6974 MeV

Table 3.1.1: MD cycle parameters used for measurements at the flat top, 4260 ms after
injection. These parameters, except for Ts, are accurate to within at least
six significant figures, and therefore more accurate than shown, hence no
error is displayed.

3.2. Current and Examined Settings

Before the numerical optimizations presented herein, the optimal settings for the phase

jump were determined manually while setting up the SPS for operation at the beginning

of each year. Though the energy distribution cannot currently be measured directly

due to the infrastructure necessary not being available, the shape of the beam profile is

directly correlated to the shape of the energy distribution, as can be seen in Fig. (2.5.1):

for a bunch after the phase jump, a strongly peaked profile corresponds to a flat energy

distribution. Therefore, to optimize the phase jump, the settings yielding the highest

profile peak for 2023 were manually determined to be the following:

The system of RF cavities is temporarily set to the unstable phase by a phase

jump of ϕc
j = π. This is maintained for τ cj = 26 turns, after which the RF remains

turned on for 80 turns until τ cr = 106 turns. Thus, the operational settings are
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3.2. Current and Examined Settings

Sc
pj = (τ cj = 26, τ cr = 106, ϕc

j = π).

Theoretically however, a peaked profile does not have to correspond to the energy

distribution with the largest width or the lowest gradient. Additionally, since the bunch

rotates in longitudinal phase space (so called quadrupolar oscillations), there are multiple

times at which the profile is peaked, as visible in Fig. (3.2.1). Concretely, the profile is

peaked around half-integers of the synchrotron period Ts i.e. at τr ≈ 1
2
· Ts, Ts,

3
2
· Ts, ....

Physically, this is when the stretched out bunch has rotated by 180 degrees in phase

space, meaning that it has rotated from one peaked state to the next. However, which

of these profile peaks yields an optimal energy distribution is not immediately evident.

Therefore, additional analysis is necessary to choose τr, but also τj, optimally.

Figure 3.2.1: Profile peak intensities during a bunch rotation by phase jump for different
τr for the MD cycle outlined in Table (3.1.1). The operational values for
the phase jump start time τ cj and rotation duration τ cr are shown in orange
and purple, respectively.

For this analysis, beam profiles were acquired for a duration of 450 turns after reaching

the flat top, with phase jump durations of τj ∈ {20, 22, 24, 26, 28, 30} turns. The profiles

were used to reconstruct the energy distributions for three intervals of τr ∈ J0.5, J1, J1.5.

Here, J0.5 = [75, 140] turns, J1 = [200, 250] turns and J1.5 = [295, 345] turns correspond

to the three peaks at τr ≈ 1
2
· Ts, Ts,

3
2
· Ts. To perform these measurements, the beam
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3.3. Reconstruction and Analysis of Energy Distributions

was not extracted after τr, and instead sent to the beam dump after the observed

450 turns. This was done as RF needed to remain turned on to obtain the full

measurements, while slow extraction necessitates Vrf = 0 after τr, i.e. when particle

extraction begins.

Meanwhile, the phase jump amplitude ϕj remained at ϕc
j = π, as an offset in phase

jump amplitude would result in an asymmetric bunch, amplifying undesired peaks

in the energy distribution. This was confirmed by studying BLonD simulations for

ϕj ∈ [0.8π, π]. Therefore, ϕj = π will be used hereafter, and phase jump settings will

be denoted as Spj = (τj, τr, ϕj = π) = (τj, τr), omitting ϕj.

3.3. Reconstruction and Analysis of Energy Distributions

The energy distributions were reconstructed from the measured profiles by use of

longitudinal phase space tomography (see Appendix C), with tracking data supplied by

BLonD simulations. This use of BLonD made it possible to take into account the phase

jump itself, as well as beam feedback loops and collective effects via the corresponding

feedback and impedance models.

Concretely, using the measured profiles and tracking data, reconstructions were

performed over Trec = 75 revolution turns. All 6 separate reconstructions were then

combined to span the full 450 turns for each measurement. Trec ≈ 3
8
· Ts was chosen

to be low compared to Ts ≈ 200 turns, as the non-equilibrium dynamics during the

phase jump result in significant errors if tomography is performed over a larger time span.

The BLonD simulations producing tracking data were initialized with a homogeneous

particle distribution, and included the phase jump for all values of τj. They were

performed with 1 bunch periodically repeated throughout the accelerator ring,

simulating a full ring of h = 4620 bunches. The physical parameters used for the

simulation are outlined in Table (3.1.1). Numerical parameters were determined in

line with the noise analysis in Table (B.2.1), using Np = 7 · 105 macroparticles and

Nsb = 2000 slices per bucket to compromise between obtaining sufficiently accurate

results and low computer memory requirements. For further details, see Appendix B.
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3.3. Reconstruction and Analysis of Energy Distributions

As the resulting energy distributions are never perfectly flat, and a certain slope in the

distribution can be accounted for during slow extraction, an algorithm to evaluate a

distribution’s quality based on quantifiable criteria is used. The algorithm is specifically

designed to analyse distributions with shapes near the ones expected during the bunch

rotation, i.e. shapes which range from approximately rectangular to Gaussian. For this

purpose, the algorithm performs the following steps.

1. First, the reconstructed energy distribution N(∆E) is filtered based on a maxi-

mum gradient threshold, only selecting points below this threshold, and above a

minimum value of the distribution itself. All other points are filtered out, creating

a filtered distribution Ñ(∆E). This filters noise at points where the distribution

is approximately 0, and models the fact that a small enough gradient can be

accounted for in operation.

2. Second, the filtered distribution Ñ(∆E) is evaluated based on two figures of merit:

width and height. The width is defined as d = ∆Emax−∆Emin, where ∆Emax and

∆Emin are the ∆E values at the right and left edges of Ñ(∆E) respectively. The

height is defined similarly as a difference between minimal and maximal values of

the distribution, h = Ñ(∆E)max − Ñ(∆E)min. An example of this evaluation is

shown in Fig. (3.3.1).

3. Finally, the distributions are compared based on their height and width values. For

this purpose, a quality function is defined based on a weighted sum of normalized

figures of merit,

Q(d,h, gd,gh) = d̄gd + h̄gh, (3.3.1)

where gd > 0 and gh < 0, weighing height negatively and width positively.

d̄ = d0/d0,max with d0 = (d− dmin), and h̄ = h0/h0,max with h0 = (h− hmin) are

normalized such that h̄, d̄ ∈ [0, 1] by subtracting the minimal value of h or d in

the set of all distributions which are being evaluated, and then dividing by the

maximal calculated value. As such, Q is a relative quantity, only valid to compare

between distributions as long as the total set of evaluated distributions stays the

same. The distribution for which Q is maximal is then chosen as the optimal

distribution of each set, where separate sets of distributions are considered for

each value of τj and each τr-interval outlined in Section 3.2.
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3.3. Reconstruction and Analysis of Energy Distributions

Concretely, the minimal distribution value chosen for this analysis was 0.2% of the

total number of macroparticles, as this filtered numerical noise from the tomographic

reconstructions effectively. The gradient threshold was 0.95%/(108 eV), chosen to

be approximately 1.5 times the gradient threshold needed to accurately evaluate the

energy distribution at Sc
pj. The weights were gd = 0.75 and gh = −0.5, valuing width

over height. This was done, as h is partially parametrized by the gradient, which

already influences the evaluation through the maximum gradient threshold.

Finally, note that the reconstructed energy distribution N(∆E) is a probability density,

and therefore normalized such that

M∑
i=1

N(∆Ei) = 1, (3.3.2)

where M is the amount of discrete ∆E values the distribution is evaluated at.

Figure 3.3.1: Example of an energy distribution evaluation near the current phase jump
setup Sc

pj.
The light blue line is the reconstructed distribution, while the purple dots
indicate the filtered distribution Ñ(∆E).
The height h and width d are marked with red and green arrows, respec-
tively. Their values, alongside the average gradient of Ñ(∆E), are listed
at the top left.
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3.4. Reconstruction Accuracy

3.4. Reconstruction Accuracy

Before using this analysis method on measured data, the errors occurring due to the

tomographic reconstruction should be mentioned. They are significant, as tomography

is performed while the system is out of equilibrium after the phase jump. Figure (3.4.1)

shows the average, normalized difference between measured profiles P (X[i]) and recon-

structed ones P (X[i])

ϵ =
1

max
1≤i≤L

{P (X[i])}
1

L

L∑
i=1

|∆P (X[i])|,

where ∆P (X[i]) = P (X[i])−P (X[i]) is the profile difference and X[i] are the L discrete

∆t bins the profile is measured and evaluated at (for further detail, see Appendix C).

Figure 3.4.1: Tomographic error ϵ for different values of τj and τr. The different colours
represent different values of τj , while τr is used as the x-axis. The error is
acceptable overall, but particularly large for τr ∈ [110,125].

The errors at τr ∈ [110,125] stand out, with errors above 5% and the maximum error of

7.75% appearing in that interval. Outside this range, the tomographic error lies below

5%, with no significant dependence on τj. Overall, ϵ also trends down as τj increases,

due to the bunch slowly filamenting (e.g. Fig. (2.6.1d)) and returning to equilibrium

as time passes. Analysing the error in more detail, Fig. (3.4.2) shows the deviation

between measured and reconstructed profiles for τr ∈ [110,125].
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3.4. Reconstruction Accuracy

(a) τr = 115 turns. The reconstruction
has minimal errors, with a notable
deviation at the peak’s edges.

(b) τr = 120 turns. The reconstruction
remains mostly accurate, with devi-
ations at the peak’s middle and the
edges.

(c) τr = 125 turns. The reconstruction
struggles to follow the rapid change of
the measured profile, which increases
already present errors.

Figure 3.4.2: Measured (blue) and reconstructed (orange) profiles for τr = 115, 120, 125
turns at τj = 28 turns, where the error is maximal.

The reconstruction has difficulties following the rapid change from a peaked to a flatter

profile, and adjusts to the change only slowly, causing the high error at lower rotation

times. For higher values of τr, this error is less pronounced due to the transition

from peaked to flat profile being slower, caused by the tails of the bunch being more

pronounced as filamentation increases.

Additionally, the reconstructed profiles all have bumps at approximately ∆t = 2 ns

and ∆t = 3 ns, when the measured profiles drop off to almost 0. This trend appears

among most reconstructions, meaning the reconstructions tend to exaggerate profile
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3.5. Results

edge peaks. This trend of exaggerated profile edge peaks ripples through to the energy

distributions shown in the following sections, causing notable deviations with respect

to the observed, actual energy distributions of the beam.

Summarizing, the error lies below 5% for τr /∈ [110,125], which shows a decent, but

faulty reconstruction due to the nonequilibrium dynamics after the phase jump, with

possible exaggeration of the profile edge peaks. The profiles at τr ∈ [110,125] should

however be viewed with additional scrutiny, as the error becomes significantly larger:

the reconstructed profile lags behind the measured one, which can reflect a similar delay

in the reconstructed energy distributions.

3.5. Results

To obtain an overview over the effects of both scanned parameters τj and τr, they

are first evaluated separately by studying how the figures of merit h and d change.

Concluding this analysis, an optimal parameter set So
pj = (τ oj , τ

o
r ) is suggested based on

those findings, and evaluated by comparing the reconstructed energy distributions at

Sc
pj and So

pj.

3.5.1. Rotation Duration τj

To gain an initial understanding of the effect changing τr has, Fig. (3.5.1) shows

distributions determined to be optimal via the algorithm outlined in Section 3.3. In the

figure, τr is evaluated in the intervals J0.5 = [75, 140] turns, J1 = [200, 250] turns and

J1.5 = [295, 345] turns. Meanwhile, the current value of τj = 26 turns is fixed for all

three distributions.
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3.5. Results

(a) Optimal distribution for τr ∈ J0.5. It
is the widest, but has significant spikes
at the edges.

(b) Optimal distribution for τr ∈ J1. It is
less wide than in (a), but has no edge
spikes.

(c) Optimal distribution for τr ∈ J1.5. The
distribution starts to become noisy and
chaotic in the middle.

Figure 3.5.1: Tomographically reconstructed distributions, determined to be optimal
via the algorithm in Section 3.3, for τr in the intervals J0.5 = [75, 140], J1 =
[200, 250] and J1.5 = [295, 345]. τj = 26 turns is fixed.

As one can see, the distribution for τr ∈ J0.5, i.e. for τr ≈ 0.5 · Ts, is widest and has

the smallest average gradient. However, it also has significant spikes at the energy

distribution edges, which would cause difficulties during slow extraction: the spikes

would cause a rapid change in energy distribution, making the adjustments discussed in

Section 2.5 difficult. Nonetheless, these spikes might be exaggerated compared to the

actual distribution, being produced as reconstruction artefacts discussed in Section 3.4.

Therefore, these settings remain promising.

As τr increases to around Ts, the distribution becomes less wide and higher, which is

reflected in an increased average gradient. Overall, this is a worse result according to
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3.5. Results

the defined figures of merit h and d. However, the peaks at the edges also vanish. This

might make it preferable over the distribution in Fig. (3.5.1a), if the peaks there are

real and not an artefact of the reconstruction.

For τr ∈ J1.5, the distribution takes on a more erratic shape, as the bunch filaments

and the resulting tails in phase space contribute noticeably to the distribution’s shape.

The spikes at the middle of the distribution are most likely due to these tails, while

the spikes on the edges are most likely artefacts, as one would not expect them to be

steeper than in Fig. (3.5.1a).

Figure 3.5.2: Widths d(τr) and heights h(τr) of the beam’s energy distribution at
extraction for varying values of τr and fixed τj = 26. The optimal
distributions in the intervals J0.5, J1, J1.5 are marked with black diamonds.

However, these are hand-picked examples and a more general view is needed to find a

global optimum. To obtain this general overview, the heights h(τr) and widths d(τr)

of each distribution can be evaluated and displayed as functions of τr. This is done

in Fig. (3.5.2), which confirms earlier observations: the widths trend down while the

heights trend up as τr increases, and the distributions with maximal width d and

minimal height h lie at τr ∈ J0.5. Concretely, the optimal and widest distribution

appears at τr = 120 turns, and was already shown in Fig. (3.5.1a).

43



3.5. Results

3.5.2. Phase Jump Duration τj

The analysis from the previous subsection can now be extended to a scan of τj to

observe its effects on the figures of merit. The results of this scan are shown in

Fig. (3.5.3) for τj = 20, 26, 30 turns. Increased widths and reduced heights are visible

with increasing τj, most strongly present in the τr ∈ J1 interval.

For τj = 30 turns, the maximal width in the τr ∈ J1 interval at τr = 245 turns even

exceeds the maximal width in the τr ∈ J0.5 interval at τr = 120 turns. However,

similarly to the examples before, the height at τr = 245 turns is significantly higher

than at τr = 120 turns, and therefore the choice of τr = 120 turns is still preferable.

Overall, increasing τj to 30 turns is preferable for any value of τr. At the preferred

value of τj = 30 turns, τr = 120 turns appears optimal in terms of d and h. Therefore,

the optimal settings based on this analysis are So
pj = (τ oj = 30, τ or = 120).
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(a) Figures of merit for fixed τj = 20 turns.

(b) Figures of merit for fixed τj = 26 turns.

(c) Figures of merit for fixed τj = 30 turns.

Figure 3.5.3: Widths d(τr) and heights h(τr) of the beam’s energy distribution at
extraction for fixed τj = 20, 26, 30 turns and varying τr, with optimal
distributions being marked with black diamonds for each τr interval. The
distributions tend to have lower widths and larger heights with increasing
τj.
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3.5.3. Current and Suggested Settings

Figure (3.5.4) compares the reconstructions at the determined optimal settings So
pj =

(30, 120) with the reconstruction at Spj = (26, 105), closest to the current operational

settings at time of writing, Sc
pj = (26, 106).

(a) Distribution at close to current set-
tings Spj = (26, 105).

(b) Distribution at suggested settings
So
pj = (30, 120).

Figure 3.5.4: Comparison between the energy distribution at Spj = (26, 105), closest to
the current operational settings Sc

pj = (26, 106), and the suggested settings
So
pj = (30, 120). The distribution at So

pj is significantly wider than the one
at Spj = (26, 105), making So

pj a preferable set of settings for optimal slow
extraction.

The width do at So
pj increases by 27% over the width dc at Spj = (26,105). However,

the height ho also increases by 21% over hc. But this increase in height is compensated

for by the increase in width, as the average gradient at So
pj is lower. Therefore, S

o
pj is

easier to adjust to at slow extraction. Overall, the distribution at So
pj = (30, 120) is

hence preferable over the one at Spj = (26, 105), especially if the edge spikes are just

artifacts of the reconstruction.

3.6. Operational Implementation

The suggested settings So
pj = (30,120) were deployed on the operational STFPRO cycle

with an intensity of I ≈ 4.76 · 109 ppb on 28.07.2023. Unlike in the MD cycle used

for measurements, slow extraction was now performed, and the energy distributions

inferred from the extraction process for both Sc
pj and So

pj. These inferred energy

distributions were obtained by convolving the measured intensity from beam current

transformers with the momentum adjustments done during slow extraction, using an
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algorithm developed by F. M. Velotti [30].

Implementing the suggested settings So
pj had a positive impact on the energy distribution,

as shown by the example in Fig. (3.6.1). Taking an average over 12 measurements,

each acquired between 7:00-7:03 and 9:25-9:28 UTC, the height increased slightly from

hc = 0.529% to ho = 0.539%. Meanwhile, the width increased by 7.3%, going from

dc = 6.87 · 108 eV to do = 7.38 · 108 eV. This decreased the average gradient from

0.366%/(108 eV) to 0.307%/(108 eV), therefore yielding a 16% drop. Note that, to

reduce noise for this evaluation, the inferred data was smoothed by taking a running

average over 3 data points, amounting to 1.5% of the total data points.

Figure 3.6.1: Energy distributions inferred from measurements of particles extracted
during slow extraction for Sc

pj = (26,106) (blue, dashed) and So
pj =

(30,120) (orange, solid). The change from Sc
pj to So

pj produces a minor,
but noticeable improvement in the distributions’ width.
Data was collected on the 28.07.2023 at 07:02:45 and 09:26:02 UTC
respectively.

Though implementing So
pj improved the energy distribution at extraction, there is a

significant deviation between expectation and observation: the predicted 27% increase

in width only amounted to 7.3% in reality. To determine the cause of this, Figures

(3.6.2a) and (3.6.2b) show a comparison between the reconstructed and inferred

distributions.

In both cases, the reconstruction captures the middle part of the inferred distribution
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well, however the spikes at its edges appear to be artefacts, as hypothesized previously.

These spikes cause the edges, which are smooth in both measured cases, to be highly

misrepresented. Therefore, the widths of the reconstructed distributions do not match

reality, leading to the described deviation.

(a) Distributions at Sc
pj = (26, 106) (inferred) and

Spj = (26, 105) (reconstructed). Measured data taken
at 07:02:45 UTC.

(b) Distributions at So
pj = (30, 120). Measured data taken

at 09:26:02 UTC.

Figure 3.6.2: Comparison between reconstructed (red, dashed) and inferred (blue, solid)
energy distributions before and after the implemented changes. While
the distributions match around ∆E = 0 MeV, a discrepancy between
reconstructed and measured distributions is visible at their edges.
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However, the general trend the reconstructed distributions show is accurate: the

distribution becomes wider, slightly higher, and has a significant drop in average

gradient due to the implemented changes. Despite the peaks being artefacts, the

reconstructions can therefore still be used to aid in optimizing phase jump settings, as

they capture the general beam dynamics during and after the phase jump well, and are

able to predict how the distribution will behave as phase jump settings change.

3.7. Summary

The optimization of the phase jump in the SPS was successful, as the proposed setting

improved the energy spread of the SFTPRO beam, and therefore became the new

operational setting. Despite impactful errors of 1-8% in the tomographic reconstructions

needed to obtain the energy distributions, the analysis allowed a change in operational

settings which yielded a 7.3% increase in distribution width, while also significantly

decreasing the average distribution gradient. Due to these errors however, the

reconstructions systematically overestimate peaks at the distribution edges, and are not

a reliable predictor of the exact shape of the energy distribution at extraction. Nonethe-

less, they model the general beam dynamics accurately, and can be used in the future to

optimize the phase jump settings in the following years for the SFTPRO, or other cycles.

Based on this analysis, further study of the behaviour of the energy distributions at

higher intensities is interesting, considering the ECN3 project, which aims to increase

fixed target beam intensity [31]. Additionally, further fine-tuning of the tomography

and BlonD tracking codes could be done to reduce the error of this analysis and increase

its reliability. However, more complicated optimizations, including e.g. multiple phase

jumps, necessitate tools other than tomography. These tools become necessary, as

tomography can only be performed accurately and with reasonable runtime on short

timeframes. Therefore, implementation of more complex optimization techniques not

relying mainly on tomography is recommended to further increase the quality of slow

extraction. One such technique is developed for the PS BigTOFEAST cycle in Chapter 4,

and could be extended to the SPS SFTPRO in the future.
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4. Optimizations of fixed-target beams at the PS

In the PS, more radical beam and RF manipulations are possible due to additional

flexibility of the RF systems when compared to the SPS. This additional flexibility is,

in part, a result of having to accommodating lower energy beams, with its maximal

energies in the PS reaching approximately 24 GeV. The exploitation of this more

flexible RF system allows delivery of beams to various destinations, such as the

East Area and the n TOF experiment. However, these destinations require different

extraction techniques, which sometimes are performed in the same beam cycle, as

different bunches target different experiments. This, in turn, entails more complex RF

manipulations, producing more complex cycles and than in the SPS, and requiring

more sophisticated optimization techniques.

Here, such a cycle, where the beam consists of two bunches extracted in two different

ways, is investigated: the bunch with higher intensity is the neutron Time-of-Flight

bunch (TOF), which is sent to the corresponding n TOF experiment. The TOF

bunch is also called “parasitic” [32], as this cycle is based on one which originally only

contained the second, less intense bunch, called EAST, and sent to the East Area

experiments. This parasitic TOF bunch was introduced to increase the total particle

flux arriving at the n TOF experiment while maintaining beam delivery to the East

Area. Operationally, a higher intensity parasitic TOF bunch is therefore desired, as a

higher flux to n TOF in this parasitic scenario leads to less machine time needing to be

dedicated to beam cycles only containing the TOF bunch. This freed up time then

allows for additional flexibility in how beam is delivered to other experiments, reducing

the likelihood of bottlenecks. However, while dedicated TOF cycles can reach bunch

intensities of > 800 · 1010 protons, the parasitic TOF bunch intensity has only recently

been pushed from 250 · 1010 to 350 · 1010 protons. Due to this desire to increase the

parasitic TOF bunch intensity, this cycle with a parasitic TOF is called BigTOFEAST

in operation.

While the EAST bunch in the BigTOFEAST cycle is extracted by means of slow

extraction [20], fast extraction is used for the TOF bunch [33]. This means that

the requirements for both bunches at extractions are different, even though they are
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accelerated in the same cycle. Nonetheless, a bunch rotation by phase jump is performed

for both before extraction. Therefore, in contrast with the SPS SFTPRO cycle, not one,

but three phase jumps with different requirements have to be completed successively

to properly extract both bunches. This chapter will focus on the optimization of the

initial two phase jumps to limit the complexity of the problem. Nevertheless, the

numerical optimization of these two phase jumps necessitates accurate PS impedance

and feedback loop models, alongside a sophisticated optimizer, with the latter two

being developed in this chapter.

First, the details of the BigTOFEAST cycle and initial beam quality concerns moti-

vating this study are outlined. Afterwards, the current model of the PS beam phase

and radial feedback loop controls for fixed-target beams is presented, as the feedback

loops have a significant influence on the beam dynamics and quality in this cycle. To

optimize the phase jump settings, three core components are then developed:

First, the feedback loop models are used to create a simulation, reproducing of

BigTOFEAST beam’s behaviour as accurately as possible. Then, a loss function

is conceived based on key metrics, which defines a single figure of merit for quantifying

phase jump quality in this cycle. Thirdly, an optimizer based on Gaussian processes is

developed. This Gaussian Process Optimizer (GPO) uses the aforementioned simula-

tions and loss function to scan the parameter space of phase jump settings efficiently,

allowing automated and effective discovery of the optimal settings.

The output of the GPO is then verified by applying it to a simplified problem, after

which the GPO is used to predict optimal settings for the BigTOFEAST cycle. To

quantify this result, the beam behaviour and quality using these settings is analysed.

Lastly, the GPO is used to probe bunch behaviour at higher intensities, establishing

how intensity increases affect the bunch quality and particle transmission during the

studied time frame.

4.1. BigTOFEAST Cycle Details

As shown in Fig. (4.1.1), the BigTOFEAST cycle accelerates particles from 2.8 GeV/c

to 24 GeV/c (the second and final flat top), with an intermediate energy plateau at

20.3 GeV/c (the first flat top). The exact cycle parameters are listed in Table (4.1.1).
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The first flat top between 725 and 730 ms cycle time (time after first injection) is

used to extract the TOF bunch, which is more intense than the EAST bunch by

an order of magnitude. The TOF bunch must be extracted with a comparatively

low bunch length of lT ≈ 28 ns and a short front tail [32], avoiding tails such as

the one in Fig. (2.6.1d). Meanwhile, the EAST bunch is extracted with an energy

of 24 GeV at the second flat top starting from 885 ms cycle time, and requires a

flat energy distribution similar to the ones produced in Chapter 3, as it is slow extracted.

Figure 4.1.1: BigTOFEAST cycle momentum program in 2023. The first and second
momentum plateaus (first and second flat top), used for TOF and EAST
bunch extractions respectively, are labelled. This chapter will focus on
the TOF extraction at the first flat top.

The process of extracting both bunches is complex, as both require a bunch rotation

by phase jump prior to being extracted. In this process, the EAST bunch is affected

by the first phase jump, used to extract the TOF bunch. The effects of this phase

jump on the EAST bunch must be counteracted by a second phase jump after the TOF

bunch is extracted. Then, the EAST bunch can be accelerated past the first flat top

and finally be extracted by a third phase jump, tailored to widen and flatten its energy

distributing at the second flat top. However, the EAST bunch’s quality is significantly

degraded after TOF extraction and subsequent counter phase jump, as seen in the

right plot of Fig. (4.1.2): the EAST bunch starts to perform minor dipolar, and strong

quadrupolar oscillations after TOF extraction. The dipolar oscillations are visible

as oscillations in the mean ∆t of the bunch, while the variation in particle density

indicates quadrupolar oscillations. In phase space, these quadrupolar oscillations

correspond to a stretched out, elliptical bunch rotating: a peaked profile becomes a
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PS BigTOFEAST 1. Flat Top Parameters
Parameter Value

Reference energy E0 20.32 GeV
Relativistic beta β0 0.9989355

Reference momentum p0 20.32 GeV/c
Circumference C 628.3 m
Bending radius ρ 70.079 m

Slippage parameter η0 0.023286
Revolution time Trev 2.098 µs
Harmonic number h 8
Bucket length Trf 262.26 ns

Synchrotron Period Ts approx4 ms ≈ 1900 · Trev

Total 10 MHz voltage Vrf,10 200 keV
Intensities [IT , IE] [355 · 1010, 28 · 1010] protons

TOF bunch extraction time Tex 729 ms

Table 4.1.1: 2023 BigTOFEAST cycle parameters at the first flat top, at 725 ms cycle
time. These parameters, except for Ts, are accurate to within at least six
significant figures, and therefore more accurate than shown, hence no error
is displayed.

wide one, which again becomes peaked after a time, and so on. Even after the counter

phase jump, residual dipole and quadrupole oscillations are visible, reducing beam

quality later at EAST extraction.

The degradation of the EAST bunch’s quality occurs due to the first phase jump being

tailored to extract TOF at a minimum bunch length with a short front tail of the bunch.

During this initial phase jump, EAST bunch quality is a secondary priority. The second

phase jump is then used to counter the degradation EAST experiences, however even a

perfect second phase jump cannot compensate the first, suboptimal phase jump fully.

This is due to the following factors, which complicate this process:

1. During the initial phase jump, the TOF bunch induces a voltage affecting the

EAST bunch through long range wakefields. However, these collective effects are

not present in the second phase jump, as TOF is already extracted at that time.

Therefore, the EAST bunch experiences different forces during the two phase

jumps, complicating corrections.

2. The extraction of the TOF bunch causes a discontinuity in the measurement of

the beam’s phase, which causes the middle of the RF bucket to be kicked away
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Figure 4.1.2: Measured waterfalls of the TOF and EAST bunches during TOF extraction
at the first flat top. The x-axis shows the longitudinal position of the
bunch’s particles as the bunch evolves with time, shown on the y-axis.
The colour signifies particle density, with blue signifying a low, white a
medium and red a high density. Note that the axes and colour scales are
different for both waterfalls, as bunch parameters differ significantly.

from the centre of the remaining EAST bunch by the beam phase feedback loop.

This unintended RF phase kick induces bunch oscillations, whose negative effects

on beam quality are amplified by the bunch rotating at this time due to the first

phase jump.

3. The longitudinal beam dynamics during the phase jump are inherently nonlinear,

as the particle bunch is far from the centre of the bucket. Therefore, the second

phase jump used to counter-rotate EAST cannot do so perfectly, even under ideal

conditions.

The goal of this chapter is to account for these complicating factors and optimize

the settings of the two phase jumps, occurring at the first flat top. Table (4.1.2)
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summarizes the parameter set Sm
PS. The “m” in this notation stands for “measured”, as

this is the parameter set used to take the measurement in Fig. (4.1.2), and determined

purely by empirical optimization. The start times τs,i, i ∈ 1, 2 are the cycle times

when the phase jump begins, while the phase jump durations τj,i are how long it is

maintained before jumping back to the stable phase. Also note that the first phase

jump is not symmetric: the amplitude ϕ↑,1 by which the phase is shifted when jumping

to the unstable phase is different from the amplitude ϕ↓,1 that is used to jump back

to the stable phase afterwards. This is done to optimize the front tail of the TOF

bunch and offset the effects of the aforementioned sources of quality degradation: the

asymmetry in the phase jump created by the TOF extraction is compensated for by the

beam not being at exactly the unstable phase during the phase jump, and not exactly

at the synchronous phase afterwards.

PS BigTOFEAST Phase Jump (PJ) Parameters
Parameter Value

1. PJ start time τs,1 726.1 ms
1. PJ duration τj,1 0.465 ms
2. PJ start time τs,2 729.4 ms
2. PJ duration τj,2 0.4 ms

1. PJ forward amplitude ϕ↑,1 152◦

1. PJ backward amplitude ϕ↓,1 176◦

2. PJ forward amplitude ϕ↑,2 180◦

2. PJ backward amplitude ϕ↓,2 180◦

Table 4.1.2: Settings Sm
PS for the first and second phase jumps occuring at the first

flat top of BigTOFEAST cycle. The values were taken in November 2023,
before any optimization.

However, initial simulations show that both the voltage induced by the TOF bunch and

the kick performed by the beam phase feedback loop have a visible, but minor effect on

the quality of the EAST bunch. Neither effect can be identified as the main cause of

the EAST bunch degradation, as simulations with and without these sources of error

are highly similar. Instead, their interplay, the prioritization of TOF, and the fact that

a bunch rotation by phase jump is not perfectly reversible due to nonlinear dynamics

cause this degradation. Essentially, the longitudinal beam dynamics themselves and

the initial focus on an optimal TOF bunch make it difficult to perform an optimal

counter-rotation to the first rotation by phase jump.

55



4.2. PS Beam Feedback Loops

Therefore, the already developed PS impedance model [27] is used and a model of the

PS feedback loops is developed to accurate simulate these dynamics. These then serve

as a tool to find optimal phase jump settings for the initial two phase jumps, optimizing

both TOF and EAST bunch quality in parallel.

4.2. PS Beam Feedback Loops

While the PS impedance model was already developed beforehand, a model of the

beam phase and radial feedback loops was created in the course of this thesis. This

section aims to summarize that work, further detailed in [34], as a detailed model of

the feedback loops is necessary for accurate simulations and to understand the beam’s

behaviour during the BigTOFEAST cycle.

Both the phase and radial loops are active in the BigTOFEAST cycle to stabilize the

beam. As elaborated on in Section 2.8, both loops work by measuring the phase or

radial offset, filtering it, and then inducing a frequency change proportional to the

filtered measurement.

4.2.1. Phase Loop

The beam phase φb is measured by capturing the phase signal with a wideband pickup

and then extracting its ωrf component by downsampling. Numerically, this is modelled

by calculating the beam phase via

φb := arg
(
λ̂(ω = ωrf)

)
= arg (F [λ(τ)](ω = ωrf)) = arg

(∫
R
λ(τ)eiωrfτ dτ

)
, (4.2.1)

i.e. the phase of the beam spectrum λ̂(ωrf) at the RF frequency. In first order of

a thin line density or beam profile λ(τ), meaning if λ(τ) > 0 only for τ ∈ [τa, τb]

with τb − τa ≪ 1
ωrf
, this is equivalent to the profile’s centre of mass. Concretely, in

approximation to first order,

φb = arg(λ̂(ωrf)) ≈ ωrf

∫
R τλ(τ)dτ∫
R λ(τ)dτ

,
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giving an intuitive understanding of the beam phase as the phase corresponding to the

beam’s longitudinal centre of mass.

Note that Equation (4.2.1) explains the discontinuity of the beam phase measurement

during TOF extraction, seen at the EAST bunch in Fig. (4.1.2): the beam profile has a

discontinuity as the TOF bunch is extracted, causing a discontinuity in its Fourier

transform and therefore in the measured beam phase. Speaking in more concrete,

physical terms, the synchronous phase shift due to collective effects is different for both

bunches due to their different shapes and intensities. This means that the synchronous

phase of the TOF bunch φT
b , which dominates the beam phase measurement due to

TOF being 10 times more intense, is different than that of the East bunch φE
b . This

causes the discontinuity in φb, as it jumps from φb ≈ φT
b to φb = φE

b during TOF

extraction.

Given the measured beam phase φb, the RF phase φrf and their difference

∆φ(n) = φ
(n)
b − φ

(n)
rf at turn n, the frequency adjustment induced by the phase loop is

then calculated via

∆f
(n)
rf,PL = −GPL∆φ

(n)
f

= −GPL

[
gb(∆φ(n) −∆φ(n−1)) + ga∆φ

(n−1)
f

]
,

(4.2.2)

with ga, gb being adjustable filter parameters. The filter applied to calculate ∆φ
(n)
f is

therefore a high-pass filter, which filters DC phase changes, e.g. phenomena like the

synchronous phase shift, where the synchronous phase itself changes by an approximately

constant value. If these phenomena were not filtered, the loop would try to counteract

them but fail, as the phase shift would constantly re-establish itself. Therefore, the loop

would induce a constant RF frequency change, leading to complete beam loss. The

filter’s frequency response is demonstrated in Fig. (4.2.1).

4.2.2. Radial Loop

The radial offset ∆R is measured by using a collection of beam position monitors

(BPM), which measure the current induced in the beam pipe by the beam’s passage.

Sets of BPMs are placed radially around various longitudinal positions in the beam
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Figure 4.2.1: Frequency response of the phase loop filter for filter parameters used
throughout this thesis. The filter removes low-frequency components of the
signal, ensuring the phase loop does not correct for constant synchronous
phase shifts.

pipe, allowing accurate beam position measurement through averaging the BPMs

readouts [29].

Numerically, the average radial offset is determined through the beam’s average ∆E.

Based on [19, Eq. (2.86)], the relation is

∆R =
1

β2
0E0γ2

t

∆E.

This is used, as no transversal beam dynamics are simulated in BLonD, meaning that

there is no way to directly determine the (transversal) radial offset.

With this ∆R(n) during turn n, the applied filter to calculate the frequency correction is

∆f
(n)
rf,RL = GRL∆R

(n)
f

= GRL

[
(1− α)∆R(n) + α∆R

(n−1)
f

]
.

(4.2.3)

∆Rf is the filtered radial offset, and α is again a parameter of the radial loop filter,

determining its exact behaviour as a low-pass. As shown in Fig. (4.2.2), it filters

58



4.3. Optimizer Creation

Figure 4.2.2: Frequency response of the radial loop filter for the settings used throughout
this thesis. The filter removes high frequency components, ensuring that
the radial loop does not interfere with the phase loop.

high frequency components as to not interfere with the phase loop. However, the

phase loop operates most prominently at the synchrotron frequency, which is the

natural frequency of the particle’s, and therefore beam’s, phase oscillation. Hence, one

must note that in reality, the synchrotron frequency for the BigTOFEAST cycle is

Ωs/2π = 1/Ts ≈ 250 Hz, which is not filtered by the radial loop filter in Fig. (4.2.2).

This is a known problem in the feedback loop controls of the PS, and to be remedied in

the future.

Nonetheless, with both of these models, the gain parameters could be determined by

comparing measurement and simulation [34]. They are

GPL = (9.4± 0.2) kHz GRL = (1.03± 0.07) kHz/mm.

This finalizes the beam phase and radial feedback loop models and allows their use in

simulation to optimize the cycle’s phase jumps.

4.3. Optimizer Creation

To perform the optimization of the phase jumps of the two phase jumps performed at

the first flat top of the BigTOFEAST cycle, three components are developed. First, the
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quantities determining bunch quality, and hence the quality of the optimization, are

defined. These are then used to define a loss function, allowing efficient search of the

optimal parameters in the parameter space spanned by possible values for the phase

jump settings in Table (4.1.2). This loss function is finally used to create a Gaussian

Process Optimizer (GPO) (see Appendix D for mathematical details), which scans the

parameter space and suggests new, improved settings for both phase jumps.

4.3.1. Quantifying Phase Jump Quality

As described in Section 4.4, the bunch length of the TOF bunch towards the end of the

simulation is captured accurately, while the EAST quadrupole oscillation amplitudes

constitute an upper limit for the actual oscillations in the machine. This allows the

TOF bunch length before extraction and EAST quadrupole oscillation amplitudes to

be used as two meaningful metrics of phase jump quality. An additional key metric for

the n TOF experiment is the TOF front tail length, where a short tail is beneficial. In

detail:

1. A short front tail length gT is strongly desired for the TOF bunch. Specifically, the

value of gT is determined by calculating the length of the ∆t-interval containing

the first 2.5% of particles of the TOF bunch. The measured value of gT = 3.8 ns

provides a reference to define a unitless and normalised metric for tail shortness

ΓT = gT
3.8 ns

, with smaller ΓT indicating shorter tails and therefore better bunch

quality.

2. A short TOF bunch length lT at extraction is also desired for the TOF bunch.

Here, lT = 28 ns was achieved in measurement, however slight variations of the

bunch length are always present operationally. Therefore, this metric is used

to simply keep the bunch length within (28 ± 2) ns by setting the associated

parameter to

QT (lT ) =


lT
1 ns

− 30, if lT > 30 ns

0, if lT ∈ [26, 30] ns

26− lT
1 ns

if lT < 26 ns.

3. The amplitude of quadrupole oscillations AE of the EAST bunch can be used

as a metric for how much the bunch is perturbed after both phase jumps. It
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can again be normalised by the amplitude AE = 28 ns observed in measurement,

yielding QE = AE

28 ns
. Higher QE indicates stronger oscillations and a bigger bunch

perturbation, which again implies worse phase jump settings.

However, note that ΓT , QT and QE would be 0 if there was no beam. Therefore,

without further precautions, the optimal phase jump settings would be those where all

the particles are lost and none extracted. To prevent this, the particle losses of the

TOF LT =
NL,T

NT
and EAST LE =

NL,E

NE
bunches are considered. Here NL, T/E are the

number of particles lost for the TOF and EAST bunches respectively, i.e. the particles

that move outside the RF bucket anytime the RF is not set to the unstable phase for

the phase jumps. Meanwhile, NT/E is the total amount of particles the TOF and EAST

bunches started the simulation with.

However, most losses do not occur directly in the simulated timeframe, but during the

re-acceleration of the EAST bunch, which is not simulated due to runtime constraints.

To account for these losses at acceleration from the first to the second flat top, the

calculation of losses in the last 1000 turns of the simulation considers an accelerating

bucket, with an acceleration of δE = 25 keV/turn. This corresponds to the average

acceleration during the steepest section of the energy/momentum ramp from first to

second flat top.

Similarly to the quality metrics, LT and LE are normalized to a reference value of 0.07,

and higher values indicate higher losses and worse phase jump settings.

Taking into account all five metrics, the loss function is finally defined as

L = w1QT + w2ΓT + w3QE + w4LT + w5LE, (4.3.1)

where wi are weights quantifying the importance of each metric. Larger values indicate

worse bunch quality for all five metrics making up the loss function, hence the optimal

and target value of L is 0. Note that this is a very simple, linear loss function, which

could be further improved by modifying or adding terms to emphasize certain metrics

or smoothen L, simplifying the process of finding a minimum for the GPO.
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Here, this simple loss function is chosen for an initial analysis and proof of concept of

the GPO, and the weights are used to determine the importance of each metric. They

are chosen to be:

w1 = 10 w2 = 1 w3 = 1

w4 = 2 w5 = 0.5.
(4.3.2)

The high w1 ensures that the TOF bunch length stays within lT ∈ [26, 30] ns. TOF

losses are also avoided as much as possible, even over EAST losses, as TOF is an order

of magnitude more intense. An additional consequence of this choice is that ΓT and QE

are weighted equally: the main metrics of quality for the TOF and EAST bunch are

considered to be equally important as a baseline for further study. This setup results in

a loss of L = 0.231 for the simulation with the reference values in Table (4.1.2), shown

in Section 4.4.

4.3.2. Creating the Optimizer

The GPO uses Gaussian processes to estimate the previously defined loss function

L with a minimal number of evaluations (see Appendix D for mathematical de-

tails). Evaluation of L entails the simulation of both phase jumps, analogous to

the simulations carried out in Section 4.4, hence the number of evaluations must

be minimal to ensure runtimes on the order of days. For this, the simulation is simplified.

The main simplification is the reduction of time given to the feedback loops to

establish equilibrium between themselves before the phase jumps begin: In Section 4.4,

60000 turns are used, while for the GPO only 1000 turns are used to reduce the

runtime by an order of magnitude. This is the most efficient simplification, since

the error incurred is minor relative to the runtime gain, as determined in Subsection 4.4.2.

A further simplification is the reduction of the parameter space. Of the parameters

outlined in Table (4.1.2), only the first six are considered. The amplitudes of the

second phase jump are fixed to ϕ↑,2 = ϕ↓,2 = 180◦, as the EAST bunch does not require

an asymmetric energy distribution. Hence, it should not require an asymmetric phase
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jump, unless the asymmetries induced by the first jump’s ϕ↑,1 are not corrected for by

the return amplitude ϕ↓,1).

All the other six parameters are allowed to vary, resulting in the parameter set

SPS = (τs,1, τj,1, τs,2, τj,2, ϕ↑,1, ϕ↓,1). To further limit the parameter space however, they

are only allowed to vary in small intervals around the initial values. Concretely, the

parameter intervals defining the size of the six dimensional parameter space are listed

in Table (4.3.1).

Time Parameter Interval in ms Interval in turns, relative to Table (4.1.2)

τs,1 [725.68, 726.52] [−200, 200]

τj,1 [0.423, 0.507] [−20, 20]

τs,2 [729.07, 729.70] [−156, 144]

τj,2 [0.296, 0.628] [−50, 109]

Amplitude Parameter Interval

ϕ↑,1 [140◦, 180◦]

ϕ↓,1 [ϕ↑,1 − 30◦, ϕ↑,1 + 30◦]

Table 4.3.1: Parameter space of the Gaussian Process Optimizer (GPO), which is
constrained to improve GPO performance. The intervals specifying turn
values refer to how many revolution turns that parameter may deviate
from the reference value in Table (4.1.2).

The GPO is initialized with a Matérn kernel (see Appendix D, Eq. (D.3.1)), using

length scales equal to half of the parameter-space-interval length of the corresponding

parameter. The GPO then functions as outlined in Figure (4.3.1):

1. The GPO suggests ten different sets of parameters SPS. The first ten parameter

sets the optimizer analyses when it is initialized are manually chosen to contain

the reference parameter set, alongside physically interesting cases, such as a

symmetric first phase jump, or extreme values at the edges of the parameter space.

In successive iterations, the GPO determines the ten most promising sets based

on prior results.

2. Simulations are performed of the ten suggested SPS in parallel, modelling the

dynamics of the TOF and EAST bunch.
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3. The bunch quality for both bunches is evaluated and the loss calculated. This

result is used to adjust the GPO, more specifically the hyperparameters of the

Gaussian process kernel, and suggest new SPS.

Figure 4.3.1: Schematic functionality of the GPO.

This iterative procedure ensures that the GPO continuously improves, successively

increasing its probability of finding a minimum of L. To increase the likelihood of this

minimum being the global one, the GPO chooses the suggested parameter sets based on

one of three so-called acquisition functions, chosen randomly for each iteration. Hence,

by using this optimizer to evaluate only promising sets of parameters, the exploration

of the 6-dimensional parameter space is expected to be performed significantly faster

compared to brute force methods, such as a grid search.

4.4. Optimizer Verification

Before utilizing the GPO, the validity of the simulations it uses, its runtime and finally

the validity of the GPO itself needs to be tested. First, the parameters chosen for

the underlying simulations and the resulting accuracy are shown, with simulations

reproducing measurements accurately. After this is confirmed, concerns about the

runtime of the GPO are analysed and a simplification to resolve them is devised. The

consequences of this simplification are discussed, after which the operation of the GPO

itself can finally be verified. This is done by testing the GPO in a theoretically predictable

scenario without collective effects and relaxed TOF bunch quality requirements. The

results of this GPO run are then compared with predictions, and final conclusions are

drawn on the validity of GPO.
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4.4.1. Simulation Accuracy

To test the simulations underlying the GPO, a comparison between simulations and

measurements of the BigTOFEAST cycle between 726 ms and 735 ms cycle time, taken

on the 10.11.2023, is performed and shown in Figures (4.4.1), (4.4.2) and (4.4.3). These

BLonD simulations are performed with 106 macroparticles and a cutoff frequency

of fmax = 80 MHz, following Tab. (B.2.2). This ensures that each simulation can

be performed in a reasonable timeframe of 1-2 hours while including the impedance

contributions from the main 10 and 20 MHz cavities. These settings will be used for all

simulations going forward. The simulations also include the feedback models described

in Section 4.2, and the impedances as determined in [27].

Figure 4.4.1: Measured and simulated waterfall of the TOF bunch profile before extrac-
tion, between 726 ms and 728 ms cycle time.

Figure (4.4.1) compares the measured waterfall of the TOF bunch to the simulated one.

Here, the simulation captures the dynamics accurately and both waterfalls look almost

identical.
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Figure 4.4.2: Measured and simulated waterfall of the EAST bunch profile during
TOF extraction, between 726 ms and 728 ms cycle time. The simulation
reproduces details of the measured bunch evolution accurately.

Figure (4.4.2) shows the EAST bunch under the same conditions. Here, a deviation is

visible at 728 ms cycle time, where the phase glitch at extraction is corrected for. This

is done as an attempt to improve beam quality, however, as stated in Section 4.1, it

does not affect the evolution of the bunch majorly. Nonetheless, the waterfalls match

well, and even the visible “hairs” of the bunch, produced by filamentation and the

quadrupole oscillations, are reproduced accurately in the simulation.

The correction itself is done by shifting the measured beam phase manually at

extraction. The shifted beam phase is calculated as φ̃b = φb − (φb − φEAST) = φEAST,

i.e. by subtracting the difference between the full beam phase, and the phase of only

the EAST bunch φEAST. This corresponds to the difference between measured beam

phase immediately before and after extraction, and the correction almost fully removes

the phase glitch.

Overall, the bunch lengths of both bunches are captured with an average relative
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error between measurement and simulation lower than 14%. Figure (4.4.3) shows the

evolution of the bunch lengths and the absolute errors. Especially during the time when

the bunches are shortest, the error is smaller: the error at TOF extraction is 5.4% or

approximately 1.5 ns, and the average error of the EAST bunch length is 13.7% , or

8.3 ns. Therefore, the TOF bunch length is captured accurately in simulation, while

the EAST bunch length is slightly overestimated towards the second half of the cycle.

Nevertheless, even smaller features, such as the small plateau where the EAST bunch

length stays approximately constant around 730 ms cycle time, are captured accurately.

The deviations between measurement and simulation are most likely caused by the

interplay of the beam with the feedback loops: in the simulation, this dynamical system

where the phase and radial loop are both acting and adjusting the RF frequency in

opposite directions does not have enough time to reach equilibrium. Namely, at the

beginning of a simulation, the beam is slightly offset from equilibrium values due to it

not being perfectly matched to the RF bucket, alongside collective effects. The loops’

reaction to any offset of the beam phase from the equilibrium values is a dampened

oscillation in the induced frequency offset. This means both the beam’s phase and

radial positions oscillate, with the oscillation requiring time to dampen out.

In the simulation shown, the loops are only given 1000 turns to equilibrate. However,

the timescale of this dampening is on the order of 125 ms, i.e. approximately 60000 turns.

This is very costly to perform in simulation, but is given in measurement due to the

observation starting at 725 ms cycle time.
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(a) Evolution of the TOF bunch length
for 2 ms before extraction at 728 ms
cycle time.

(b) Evolution of the EAST bunch length
between 726 and 735 ms cycle time.

Figure 4.4.3: Bunch lengths of the TOF (left) and EAST (right) bunch determined in
measurement and simulation. The absolute difference between measure-
ment and simulation is marked in red, showing that the bunch lengths
are reproduced accurately at TOF Extraction for the TOF bunch, and
slightly overestimated at the end of the simulation for the EAST bunch.
Please note the different scales of both axes.

In conclusion, the simulations have non-negligible deviations to measurements, but

capture even finer details accurately. Especially the TOF bunch length near extraction

is captured accurately, despite two phase jumps being performed in the observed time-

frame. This allows the simulations to produce meaningful statements for one of the key

bunch quality metrics of the TOF bunch. Additionally, the more chaotic dynamics of

the EAST bunch are reproduced accurately, as shown by e.g. the matching “hairs” in

both simulated and measured waterfalls.

Meanwhile, the residual quadrupole oscillations of the EAST bunch are slightly overes-

timated. Therefore, evaluating these quadrupole oscillations in the simulation may not

yield the actual values in the machine, but the resulting values can still be used to set

upper limits on the oscillation amplitude. This upper limit provides a meaningful figure

of merit for evaluating the phase jumps’ effect on the quality of the EAST bunch after

TOF extraction, as it measures how strongly the EAST bunch is perturbed. Overall,

this simulation is an effective tool to judge the quality of the two phase jumps for

different settings, but further accuracy could be gained by increasing the number of

equilibrium turns in the simulation.
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4.4.2. Error due to Deviation from Loop Equilibrium

Although the number of equilibrium turns is an important parameter as seen above,

increasing the number of equilibrium turns from 1000 to 60000 would increase the

runtime of the simulations from 1-2 hours to 1-2 days. This is unacceptable, especially

considering that the GPO will require at least on the order of 101 iterations. This

is manageable when each iteration requires 1-2 hours, but not 1-2 days, as each

optimization would take on the order of a month. Therefore, reducing the number of

equilibrium turns is necessary.

To study the effect of this simplification, 11 simulations are performed with 60000 and

1000 equilibrium turns, respectively. They show that reducing the equilibrium turns

introduces only minor errors for all metrics, aside from the TOF tail length gT .

More specifically, the 11 simulations are performed with random parameter sets SPS.

The metrics outlined in Subsection 4.3.1 are then evaluated for each simulation, after

which the deviation between the simulation with 60000 equilibrium turns, and the one

with 1000 turns, is calculated. Table (4.4.1) lists these determined average, absolute

errors.

TOF tail length error ϵg 2 ns

TOF bunch length error ϵl 0.4 ns

EAST oscillation amplitude error ϵA 2.09 ns

TOF losses error ϵLT
0

EAST losses error ϵLE
0.01

Table 4.4.1: Average errors in the metrics used, incurred from reducing the number of
equilibrium turns in the simulation from 60000 turns to 1000. The error is
minor for all metrics aside from the TOF tail length.

Relative to the reference values listed in Subsection 4.3.1, the errors of the TOF bunch

length and EAST oscillation amplitude are 1.4 % and 7.4 % respectively. These are

minor errors when compared to the runtime savings of an order of magnitude gained

from the simplification.

Meanwhile, the error in the EAST losses relative to the reference value is 14.2 %, but
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considering the low intensity of the EAST bunch, the absolute value of ±1 % losses is

small enough where such an increase in particles lost would not significantly impact the

beam cycle or machine operation.

The error in the TOF losses is 0, as none of the simulations had any losses incurred

for the TOF bunch. This is simply due to the fact that the parameter space is small,

and most parameters sets do not result in TOF losses. Therefore, if a parameter set

incurring TOF losses is investigated, an additional simulation with 60000 equilibrium

turns should be performed to verify the result.

Similarly, the error in the TOF tail length necessitates the verification of this metric:

relative to the reference value, the error is above 50 %. Therefore, while increasing

the number of equilibrium turns of the simulations used by the GPO would be too

costly in runtime, all final parameter sets suggested by the GPO can still be verified to

reduce this error. Verification is done by performing additional simulations with 60000

equilibrium turns and calculating the bunch quality metrics based on them, rather than

using simulations with only 1000 equilibrium turns for the final evaluation.

4.4.3. Optimizer Verification

To finally verify the GPO’s results themselves, it is tested in a scenario without collective

effects and relaxed TOF quality requirements for a total of 50 iterations. Namely, the

weights in Eq. (4.3.2) are changed to

w1 = 1 w2 = 0 w3 = 5

w4 = 2 w5 = 5,
(4.4.1)

with w1 = 1 and w2 = 0 meaning that the TOF bunch length is deprioritized and the

TOF front tail length completely ignored for loss calculations. Meanwhile, the EAST

quadrupole oscillation amplitude and losses are prioritized. Essentially, the EAST

bunch is given priority over the TOF bunch in the optimization, while removing the

additional complications stemming from collective effects.

With these changes, the optimization of the EAST bunch is expected to be the

optimizer’s priority. The optimization will also being easier for the GPO due to TOF

not impacting EAST through collective effects, meaning a simplified shape of the loss
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function. Therefore, a well performing optimizer is expected to reduce the EAST

bunch’s quadrupole oscillations and losses to a negligible level, while only slightly

impacting the TOF bunch.

In this setup, the GPO yields the parameter set

Sv
PS =


τs,1 = 726.0986 ms, τj,1 = 0.4322 ms,

τs,2 = 729.5520 ms, τj,2 = 0.3797 ms,

ϕ↑,1 = 140.55◦, ϕ↓,1 = 161.59◦

 , (4.4.2)

with “v” standing for “verification”. This verification parameter set Sv
PS results in the

metrics shown in Table (4.4.2) when used in a simulation with 60000 equilibrium turns.

Phase Jump Metrics
Metric Sm

PS Sv
PS

lT [ns] 27.84 29.40
gT [ns] 3.54 3.54
AE [ns] 51.67 14.92
LT [%] 0 0
LE [%] 7 0.3

Table 4.4.2: Bunch quality metrics produced by the reference settings Sm
PS, compared to

settings Sv
PS, produced without accounting for collective effects and with

relaxed conditions on the TOF bunch. A significant reduction in EAST
losses LE and quadrupole oscillation amplitude AE is visible, without
significant degradation in the other metrics, as expected.

The table shows a significant reduction of the EAST quadrupole oscillation amplitude

AE and losses LE, while increasing the TOF bunch length lT and not changing the tail

length gT . This is the result expected, and the success of the overall optimization can

be verified in Fig. (4.4.4): The TOF bunch is slightly longer at extraction but does

not undergo any major changes. Meanwhile, the EAST bunch quadrupole oscillations

are clearly dampened and the outgoing “hairs” are less populated. Essentially, the

evolution of both bunches appears to be similar to the one observed with Sm
PS, but

the counter-rotation by the second phase jump is more impactful, which leads to

improvements in EAST bunch quality. However, the EAST bunch still performs

quadrupolar oscillations, even though in this simplified their elimination was the main
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priority. Surprisingly, the TOF front tail length also does not degrade, although it was

not a targeted metric in this simplified setup. This indicates that the simple, linear loss

function has unexpected consequences, which should be investigated in the future.

More explicitly, the comparison between Sm
PS from Table (4.1.2) and the newly

produced Sv
PS shows that the phase jump asymmetry remains similar, however the

initial phase jump is less drastic due to the reduction of ϕ↑,1 from 152◦ to 140.55◦.

The second phase jump’s start time is then significantly delayed from τs,2 = 729.4 ms

to τs,2 = 729.5502 ms, corresponding to a delay of 113 turns. These changes to

both phase jumps reduce the initial EAST bunch quality degradation and ensure an

impactful counter-rotation with the second phase jump. However, the large phase jump

asymmetry is again surprising, as this indicates the TOF front tail length is optimized

for, when it should not be in this simplified setup.

Overall, the GPO produces the expected results and successfully predicts significant

improvements in EAST bunch quality with minor TOF quality degradation when ne-

glecting collective effects and deprioritizing TOF. However, questions about unintended

consequences of the simple, linear loss function of the GPO remain, as it appears to

optimize the TOF front tail length through an asymmetric first phase jump, although

this should not be a target metric in this simplified setup. Hence, the GPO can produce

settings yielding significant improvements, but further adjustments to the loss function

are recommended to remove unexpected behaviour. Additionally, to fully prove the

GPO’s accuracy, direct measurements are necessary in the future.
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Figure 4.4.4: Waterfall of the TOF and EAST bunches at the optimal settings Sv
PS

produced by the GPO in a scenario with relaxed TOF bunch quality
requirements and no collective effects.
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4.5. Results

With the GPO verified, all requirements stated in Subsection 4.3.1 are imposed, and the

full impedance model is included to recreate the operational dynamics as accurately as

possible. The bunch quality created with the resulting parameter set is then compared

to the quality produced with the reference parameters in Tab. (4.1.2), allowing final

conclusions about the worth of the GPO and possible improvements.

As a second use-case, the GPO is run with increased beam intensity while keeping

all other conditions the same, which is done to study the intensity limitations of the

BigTOFEAST cycle in the PS.

In all cases, the GPO is run with the simulation settings stated in Subsection 4.4.1

and 1000 equilibrium turns, simulating the dynamics between 726 ms and 735 ms

cycle time. This timeframe includes both the phase jump for TOF extraction and the

subsequent phase jump for counter-rotation, but does not include the re-acceleration or

extraction of the EAST bunch. The GPO performs a given number of iterations, with

each iteration consisting of 10 simulations for different parameter sets SPS.

4.5.1. Optimization of BigTOFEAST Phase Jump Parameters

As the first application of the GPO to an operational cycle, an optimal parameter set

So
PS (“o” for “optimized”) with minimal loss L is determined for the PS BigTOFEAST

cycle, taking into account both PS feedback loops and impedance models. To evaluate

the impact of this optimization, the loss L of the simulation performed with So
PS,

suggested by the GPO, is compared to a simulation with the reference parameters Sm
PS.

Initially, to verify proper functioning of the GPO when including collective effects, its

convergence is studied. Using the GPO as outlined in the beginning of this section, and

with 50 iterations, the minimal loss of each iteration should converge to a loss plateau

after a certain iteration. Figure (4.5.1) shows the convergence properties of the GPO,

plotting minimal loss against iteration number and a linear fit of this data.

Though the data does not have a linear dependency, the loss slightly trends

down with the iteration number, with the slope of the linear fit m indicating

74



4.5. Results

Figure 4.5.1: Evolution of the loss L calculated by the GPO as a function of the iteration
number for 50 iterations. The GPO’s L drops until approximately iteration
30, after which it appears to plateau.

that the loss drops by m = −0.0004 every iteration. However, as m is small and

m = 0 is within the error bounds of the fit, this trend is minor. Nonetheless, the

loss visibly trends down until 30 iterations, after which no further reduction of

loss is achieved: the optimizer reaches convergence after this point. Therefore,

a small quantity of iterations performed already yields results close to the best

achievable results, with an increase in iterations only yielding minor to no improvements.

Overall, this performance indicates the GPO is most time-efficient at a low number of

iterations, but can be used for longer periods of time to obtain truly optimal results at

significant costs in runtime.
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At iteration 26, the optimal parameter set

So
PS =


τs,1 = 726.0147 ms, τj,1 = 0.4532 ms,

τs,2 = 729.372 ms, τj,2 = 0.4112 ms,

ϕ↑,1 = 157.20◦, ϕ↓,1 = 150.97◦

 (4.5.1)

is attained, with an incurred loss of L = 0.111. Compared to the original parameter set

Sm
PS in Table (4.1.2), notable changes are a significantly reduced phase jump asymmetry

ϕ↑,1 − ϕ↓,1 = −6.23◦ and a much earlier initial phase jump at τs,1 = 726.0147 ms, as

well as an increase in second phase jump start time τs,2.

Essentially, the initial phase jump appears to require more significant changes to

become less disruptive for the EAST bunch when compared to the settings under

relaxed conditions in Eq. (4.4.2). The second phase jump is adjusted similarly, with an

increased τs,2 despite the reduced τs,1 showing that the delay between first and second

phase jump grows much larger in this setup as well.

To reduce error, the simulation is rerun and evaluated with 60000 equilibrium turns

for both So
PS and Sm

PS. The resulting bunch quality metrics in Table (4.5.1) indicate

a successful optimization. Although the loss for So
PS has risen from Lo = 0.111 to

Lo = 0.125 when simulating with 60000, rather than 1000 equilibrium turns, it still

constitutes an improvement over the original parameter set’s loss of Lm = 0.231. This

increase in Lo is mainly due to the inaccuracy of the TOF tail length acquisition when

performing simulations with 1000 equilibrium turns, as mentioned in Subsection 4.4.2.

Phase Jump Metrics
Metric Sm

PS So
PS

L 0.231 0.125
lT [ns] 27.84 27.72
gT [ns] 3.54 3.91
AE [ns] 51.67 18.49
LT [%] 0 0
LE [%] 7 0.4

Table 4.5.1: Bunch quality metrics for simulations performed with the reference and
optimized settings Sm

PS and So
PS, respectively. AE and LE are significantly

decreased, however the TOF front tail length gT also increases notably.
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The most significant difference between the resulting metrics is the significant reduction

in EAST losses LE and oscillation amplitude AE for So
PS, at the cost of an increase in

TOF tail length gT over Sm
PS. Notably, So

PS produces an AE that even surpasses the

best measured value of AE,meas ≈ 28 ns. Nonetheless, considering the errors between

simulation and measurement shown in Section 4.4, this result still needs to be verified

by measurements of the cycle with So
PS.

Studying the significant difference in metrics between Sm
PS and So

PS in more detail,

the EAST bunch evolution for both cases is depicted in Figures (4.5.2) and (4.5.3).

They indicate that the bunch behaves similarly in both cases, with the bunch in the

optimized case suffering similar, but damped negative effects.

Figure 4.5.2: Evolution of the EAST bunch lengths produced by simulations with the
reference parameters set Sm

PS (blue) and the optimized one So
PS (orange).

The quadrupole oscillation amplitude AE is significantly dampened for
So
PS.

Here, this is due to the significantly reduced phase jump asymmetry, resulting in a

much smaller excursion of the EAST bunch’s centre of mass and reduced quadrupole

oscillations. This is mainly visible at 728 ms in Fig. (4.5.3), where the bunch in the

optimized case does not perform as strong of an excursion to the left. Compared

to the relaxed conditions in Subsection 4.4.3, the reintroduced TOF bunch quality

requirements force the initial phase jump to be more disruptive for EAST with
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ϕ↑,1 = 157.20◦ being larger than before, which is compensated for with the reduced

phase jump asymmetry present in So
PS.

The smaller EAST bunch perturbation at 728 ms then allows for a cleaner second

phase jump to counter-rotate the bunch, as is visible around 729.4 ms in Fig. (4.5.3).

The improvement in the second phase jump’s quality, similarly to Subsection 4.4.3,

then produces a significant reduction in the amplitude AE of the residual quadrupole

oscillations, portrayed in Fig. (4.5.2). It also results in minimal losses, as the

significantly less populated “hairs” of particles far from the centre of the bunch indicate

that fewer particles lie close to the separatrix, while more are captured in the centre of

the bucket.

Figure 4.5.3: Waterfalls of the EAST bunch produced by simulations with the reference
parameters set Sm

PS (left) and the optimized one So
PS (right). The EAST

bunch quality degradation is visibly reduced for So
PS.
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However, these EAST bunch quality improvements come at the cost of the TOF

front tail length, as the reduced phase jump asymmetry and changes to the start

time τs,1 also impact TOF. Figure 4.5.4 shows that in the optimized case, the TOF

bunch is extracted later than optimal, while also being more symmetric than for

Sm
PS. This leads to the increase of the front tail length gT shown in Table 4.5.1.

Nonetheless, the bunch length remains below the target of 28 ns, fulfilling the

imposed and primary target for TOF. If the increase in the secondary target

of TOF tail length proves problematic in operation, the GPO’s weights can also

be adjusted to find a solution with shorter gT , at cost to the other bunch quality metrics.

Figure 4.5.4: Waterfalls of the TOF bunch produced by simulations with the reference
parameters set Sm

PS (left) and the optimized one So
PS (right). The bunch

appears to be extracted later than optimal for So
PS.

Overall, the GPO yields a parameter set So
PS, which improves the EAST bunch quality

significantly at the cost of an elongation of the TOF tail length. Therefore, it shows
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promise in being able to aid with finding an optimal parameter set during e.g. beam

commissioning, possibly yielding significantly better results than the manually deter-

mined parameter set Sm
PS. The runtime of approximately a day to produce these results

further suggests the GPO’s use in beam commissioning or when needing to set up the

phase jumps after a change in cycle or machine parameters. However, these are still

theoretical results, and the errors demonstrated in Section 4.4 mean that improvements

shown here will not necessarily translate to exactly the same kind of improvements in

the actual cycle.

4.5.2. Intensity Limitations

In view of making the PS more flexible, studying the behaviour of the PS BigTOFEAST

cycle at higher intensities is relevant. As stated in Section 4.1, increasing particle flux

delivered to the n TOF experiment with the parasitic TOF bunch in the BigTOFEAST

cycle would free up time for other beam cycles in the PS by reducing the amount of

dedicated TOF beam cycles necessary. Hence, determining the intensity limitations

under which acceptable radiation safety and bunch quality can still be maintained,

while producing optimal TOF and EAST bunches; is particularly important from an

operational point of view.

As the intensity in the simulations used by the GPO is easily adjustable, this task

becomes simple to perform with the developed optimizer: to evaluate intensity

limitations, the GPO is used to find the optimal parameters for a given intensity with

a maximal TOF bunch length of 30 ns, while a focus is laid on minimal losses. TOF

tail length and EAST oscillation amplitude are also still optimized, however losses take

precedence, as they are the most important parameter for accelerator operation and

safety.

To accomplish this, the weights defined in Eq. (4.3.2) are changed to

w1 = 50 w2 = 1 w3 = 1

w4 = 10 w5 = 10.
(4.5.2)

This heavily penalizes the GPO for going above the maximal TOF bunch length and
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for any incurred losses, while reducing the relative importance of the TOF tail length

and EAST quadrupole oscillation amplitude.

Performing a total of four optimizations, with 30 iterations each, and for TOF bunch

intensities of IT ∈ {350, 500, 650, 800} · 1010 protons, produces the Tables (4.5.2) and

(4.5.3). Note that the intensity of the EAST bunch is fixed to IT/10 for each optimization.

IT [1010 protons] ϕ1,↑ ϕ1,↓ τs,1 [ms] τj,1 [ms] τs,2 [ms] τj,2 [ms]

350 144.12◦ 130,42◦ 726.029 0.451 729.355 0.329
500 148.90◦ 164.06◦ 726.149 0.428 729.699 0.361
650 154.48◦ 152.08◦ 726.094 0.432 729.378 0.401
800 148.92◦ 136.56◦ 726.117 0.428 729.502 0.451

Table 4.5.2: Settings determined to be optimal for minimizing particle losses while
maintaining TOF bunch lengths lT < 30 ns, for four different bunch
intensities. The EAST bunch intensity is always set to a tenth of the TOF
bunch intensity, IE = IT/10.

IT [1010 protons] lT [ns] gT [ns] AE [ns] LE [%] L · 100
350 28.29 4.20 24.28 0.12 2.9822
500 28.73 3.41 30.07 0.19 3.1064
650 28.29 3.80 22.05 0.28 3.0445
800 29.40 4.33 22.27 0.08 2.8500

Table 4.5.3: Bunch quality metrics from simulations performed for different intensities
with the optimized settings in Tab. (4.5.2). TOF losses LT remain at 0 %
for all settings.

In detail, Table (4.5.2) shows that the optimal settings for different intensities vary

strongly: a change in intensity changes the behaviour of the loss function L significantly,

shifting the locations of the minima. Therefore, the GPO predicts that an increase

in intensity will degrade bunch quality metrics at settings optimized for the original

intensity. However, optimal settings for the new intensity may be found, for which the

bunch quality barely degrades, as seen in Table (4.5.3).

The table shows the bunch quality metrics for all four parameter sets, and the loss L

remains approximately the same for all intensities, only shifting slightly due to slightly

different ways each optimization run scans the parameter space. For all four cases,

the GPO manages to find settings with negligible EAST losses LE < 0.3 % (TOF

losses remain at LT = 0 % for all settings), while maintaining a bunch length close to
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28 ns. Only gT and AE fluctuate for different intensities, where the GPO finds different

tradeoffs, either reducing TOF front tail length in return for an increase in EAST

quadrupole oscillation amplitude or vice versa. This happens due to these two metrics

being highly deprioritized with the chosen weights (see Eq. (4.5.2)).

In conclusion, the GPO predicts that an intensity increase will not result in significant

degradation of the bunch quality due to the first two phase jumps before extraction.

Therefore, this section of the BigTOFEAST cycle should pose no bottleneck for intensity

increases. This is highly significant operationally, as increasing the parasitic TOF bunch

intensity to the same intensity used for the TOF bunch in dedicated beam cycle would

allow all dedicated cycles to be replaced by the parasitic ones, i.e. BigTOFEAST.

This would significantly increase particle flux to the East Area, while also increasing

the overall efficiency of the PS, and therefore the entire injector complex measurably.

However, an increase in intensity will impact other sections of the cycle, with additional

bunch degradation expected, especially during transition crossing, where η0 switches sign.

This will result in different bunch shapes at the start of the first flat top, i.e. different

initial conditions for the simulations used herein. This change will likely impact the

bunch quality metrics considered negatively, hence a higher intensity will result in

worse bunch quality nonetheless. However, the GPO itself would likely still be able to

find settings yielding degraded, although optimal quality metrics under these worsened

initial conditions, as this would only necessitate a minor change in the initial conditions

of the simulations used by the GPO.

4.6. Summary

Overall, the GPO proves to be a sensible tool when scrutinized theoretically: It

produces the expected outcomes in simplified scenarios and physically sensible

results under more complicated conditions. It also converges within approximately

30 iterations, meaning an optimization requires approximately 1.5 days of runtime

using cluster computing services such as CERN’s HTCondor [35]. However, further

developments of the underlying loss function L are necessary to guarantee ideal GPO

operations, and measurements are required to fully verify the GPO’s results,
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Using optimized phase jump settings for the operational BigTOFEAST cycle, a

significant reduction in EAST bunch quadrupole oscillation amplitude AE and losses

LE is predicted by the GPO at the cost of minor TOF tail length gT increase: gT

increases by 10 %, while the EAST quadrupole oscillation amplitude AE and losses LE

drop to 36 % and 6 % of their original values, respectively.

If these predictions are verified in operation, the GPO would therefore allow for major

beam quality improvements for BigTOFEAST. The GPO would also be a powerful

tool for further fine-tuning of the cycle if quality requirements are changed, and could

be further developed for use in other operational cycles, such as the SFTPRO in

Chapter 3.

Additionally, an increasing intensity is expected to significantly shift the optimal

settings for the BigTOFEAST cycle, necessitating adjustment of the phase jump

settings. Nonetheless, the GPO predicts that new, optimal settings producing similar

quality results with negligible losses for both TOF and EAST can be found, as long as

both bunches are brought to the first flap top without significant additional degradation

due to the intensity increase. Otherwise, further adjustments will be necessary.

Both of these predictions will be tested during the initial startup of the PS in 2024. The

results of these tests will be incorporated in the GPO development, with a focus laid

on integration into operational use, if successful. On the other hand, if the predictions

are proved incorrect, these results will be used to refine both the simulations and the

optimization algorithm used by the GPO.
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5. Conclusion and Outlook

Overall, both optimizations at the PS and SPS are performed successfully. At the SPS,

the optimizations performed on the SFTPRO cycle with the help of measurements and

tomographic reconstructions are able to produce a 7.3 % increase in energy distribution

width. While this methodology produces good results, they are not as impactful as

predicted, showing that the methodology does not reproduce the measured energy

distributions fully accurately. Rather, the method captures the general trend of the

energy distribution’s evolution during a phase jump. The results could be further

improved by e.g. using this method in conjunction with empty bucket channelling [36]

or updating and reassessing the transfer function of used measurement equipment.

Additionally, better integration of BLonD into the longitudinal tomography code could

be developed to speed up the optimization process.

For the PS, the development of the GPO is also a success. The simulations used

for optimization reproduce measurements in fine detail, and the GPO is able to

provide physically sensible theoretical improvements to the BigTOFEAST cycle. In

current operation, the GPO predicts that the degradation of the EAST bunch can be

significantly reduced, lowering EAST losses to approximately 6 % of the nominal value.

Additionally, EAST quadrupole oscillations could be reduced to 36 % of the nominal

value, while having a relatively minor negative impact on the TOF bunch, raising front

tail length by 10 %.

Additionally, the GPO predicts that the extraction process is not a major bottleneck

when considering intensity increases, as optimal settings minimizing particle losses

can be found for intensities up to 800 · 1010 protons for TOF and 80 · 1010 protons for

EAST. This is highly significant operationally, as this would allow replacement of

dedicated TOF beam cycles with parasitic BigTOFEAST cycles, measurably increasing

flexibility and efficiency of the PS. However, these settings vary strongly for different

intensities, necessitating significant adjustments of the phase jump settings for each

chosen intensity. Given that initial bunch conditions at the first flat top will also

change for different intensities, both operational adjustments and re-runs of the GPO

will likely be necessary in all cases when optimizing extraction. However, the current

results predict that this should be possible without significant beam degradation at
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extraction.

To continue development of the GPO, the testing of its suggested, optimized settings

on the operational cycle is the immediate next step. If this test proves the accuracy of

the GPO’s predictions, then the models developed by the GPO could be further refined

and be used as operational tools, streamlining the process of manually adjusting phase

jump settings. Additionally, if simulations accurately reflecting the dynamics in the

SPS are integrated into the GPO, it could also be used to refine the SPS phase jump

settings. Then, both methodologies from Chapters 3 and 4 could be compared against

each other.

If the test shows that the GPO is inaccurate, further work in detailing the PS beam

feedback loops and impedance model will be necessary to increase the accuracy of

underlying simulations. In either case, further adjustments of the optimization process

of the GPO, such as more detailed development of the loss function or refinements of

the trade-off between exploration and exploitation during the optimization could also

improve its performance.
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A. Small Oscillations in Longitudinal Phase Space

Appendix

A. Small Oscillations in Longitudinal Phase Space

To gain an intuitive understanding of the dynamics described in Sections 2.3 and 2.4,

analysing how the system behaves under a small excitation is instructive. To simplify,

the arrival time difference ∆t is transformed to the RF phase φ(∆t) = ωrf∆t+ χrf, and

acceleration δE0 is assumed to be constant and small, implying ωrf, Trev,0, χrf ≈ const..

Further setting Nrf = 1, equations (2.3.8), (2.3.9) become:

∆̇E(t) =
q

Trev,0

Vrf(sin(φ(t))− sin(φ0)). (A.1.1)

φ̇(t) =

(
ωrfη0

(β0)2E0

)
∆E(t), (A.1.2)

Note that the synchronous phase φ0 satisfies, by its definition in the previous section,

sin(φ0) = δE0/qVrf.

Taking the second time derivative of φ, the equations of motion reduce to

φ̈(t) =
ωrfη0

(β0)2E0

qVrf

Trev,0

(sin(φ(t))− sin(φ0)). (A.1.3)

Now assuming a small amplitude deviation of the RF phase from the synchronous

one, φ(t) ≈ φ0 + ∆φ(t) with ∆φ ≪ 1, the sine can be expanded in the small angle

approximation:

∆̈φ(t) ≈ ωrfη0
(β0)2E0

qVrf

Trev,0

cos(φ0)∆φ(t)

:= −Ω2
s∆φ(t),

(A.1.4)

with the synchrotron frequency

Ωs =

√
ωrf

(β0)2E0

qVrf

Trev,0

(−η0 cos(φ0)).

This is the equation of a harmonic oscillator with an oscillation frequency of Ωs.

Therefore, as long as the stability condition η0 cos(φ0) ≤ 0 is fulfilled, the solution is
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φ(t) = φ0 + A cos(Ωst+ θ), (A.1.5)

with the oscillation amplitude A = max {φ(t)}−φ0 and a phase offset θ. Differentiating

Eq. (A.1.5) and inserting into Eq. (A.1.2) yields the solution for ∆E(t), which also

becomes a sinusoidal oscillation with the same frequency Ωs.

This means that the particle coordinates follow elliptical orbits in phase space if starting

close to the synchronous phase, as can be seen in Fig. (A.1.1). Most importantly, the

phase and energy amplitudes both stay constant. Consequently, a particle bunch which

is initially centred around the reference particle (e.g. Fig. (2.3.1)) will remain centred

this way, i.e. it will remain stable.

The aforementioned stability condition meanwhile implies that for η0 > 0 (meaning

accelerator operation above transition crossing), the synchronous phase must fulfil

φ0 ∈ [π
2
, 3π

2
](mod 2π). This is the case for the beams considered in this thesis. Especially

in the case of no acceleration δE0 ≡ 0 =⇒ φ0 = π according to Eq. (2.3.1), where the

result of the arcsin principal branch has to be shifted by π to lie in the range [π
2
, 3π

2
].

Figure A.1.1: Longitudinal phase space diagram, showing orbits of the particle co-
ordinates (φ,∆E) in the case of no acceleration. Orbits close to the
synchronous phase φ0 are elliptical and closed, forming stable trajectories.
As they come closer to the separatrices they deform, and after passing
the separatrices, they become open and unstable.
Source: adapted from [37].
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B. The BLonD Library and Benchmarks

This chapter elaborates on the numerical tools used in optimizing the quality of

beams. First, focus is laid on the structure of the BLonD library, which is used

to simulate longitudinal particle dynamics in accelerators [15, 16]. Drawing upon

the theoretical knowledge of Chapter 2, reference values for all necessary numerical

simulation parameters are then determined to be able to run the simulations with

minimal error.

B.1. The BLonD Code

The BLonD code is structured in building blocks, which allow the user to construct

a longitudinal beam dynamics simulation to the desired level of accuracy and neglect

or include certain aspects, such as collective effects. There are three core building

blocks implemented as classes, feeding information into a tracker class, which applies

the longitudinal equations of motion. As can be seen in Fig. (B.1.1), the three core

blocks are:

1. The ring: contains machine parameters such as circumference C, bending radius

ρ and slippage parameter η. Also receives information about the desired energy

program E
(n)
0 , i.e. what energy the reference particle has at each turn. Thereby

also defines magnetic field, revolution time, etc., at each turn.

2. The beam: contains the (∆t,∆E) phase space coordinates of each particle at

the current turn and is able to calculate beam statistics, such as average bunch

length, based on that information.

3. The RF station: contains RF station parameters such as voltage V
(n)
rf and RF

frequency ω
(n)
rf for each turn. Therefore also defines the synchronous phase φ

(n)
0

and conversion from time to phase coordinates, φ(∆t) = ωrf∆t+ χrf.

Based on the information provided by the ring and RF station, the “Ring and RF

tracker” then applies the equations of motion (Eq. (2.3.6), (2.3.7)) to the coordinates

saved in the beam class, updating them turn by turn. Note that the parameters of the

reference particle are already saved in the ring class for every turn at the start of the

simulation.
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Figure B.1.1: Core structure of the BLonD code. The three main classes are passed to
the Ring and RF Tracker, which performs the particle tracking turn by
turn.

For more complex simulations, e.g. ones including collective effects, auxiliary building

blocks can be used. The most commonly used ones, shown in Fig. (B.1.2), are:

1. The profile: this class calculates the line density λ. Specifically, it creates a

histogram of λ by slicing a given ∆t interval into Nslice equally spaced slices and

counting how many particles are in each slice. This enables the calculation of the

beam spectrum via fast Fourier transform (FFT), where each slice is an FFT bin.

2. The induced voltage: Given the profile’s slicing of the considered ∆t interval and

beam spectrum, this class is responsible for calculating the total induced voltage

Vind and applying the corresponding kick to the particles in the beam. For this,

it must also be provided information about the machine impedance by way of

impedance models, e.g. [27],[28].

3. Various classes for data acquisition: as the name suggests, these take desired

information, plotting or saving it directly to disk, as the user desires.
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Figure B.1.2: Structure of auxiliary blocks of the BLonD code, allowing e.g. inclusion of
collective effects. Blue arrows represent the dependencies of the depicted
building blocks on each other. Orange arrows depict that all the data
produced in the respective blocks may be stored and visualized.

B.2. Error and Noise

B.2.1. Theoretical Considerations

A major problem for beam dynamics simulations are the particle numbers: as each

particle is tracked individually and a beam usually contains on the order of 1012 − 1013

particles, the runtime and memory necessary to simulate all particles would be enormous.

To alleviate this, a certain number Np of so called macroparticles to be tracked is chosen,

which simply represent multiple real particles. For example, if a simulation with 1013

protons uses 106 macroparticles, each macroparticle represents 107 particles and has a

charge of q = 107 · e, with e being the elementary charge. These macroparticles are then

used in the simulation instead, reducing computational complexity but introducing error.

Additional error is also introduced by tracking a certain fraction of buckets Nb of the

total beam to reduce computational complexity, e.g. only Nb = 2000 out of h = 4620

total buckets in the SPS. Similarly, further error is caused by discretizing the beam

into Ns = NbNsb slices in the profile class, which directly specifies a number of slices

per bucket, Nsb. These two error sources solely impact the FFT for calculating the

induced voltage, and are therefore only relevant for collective effects. However, due
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B.2. Error and Noise

to the sensitivity of the phase jump to the initial particle distribution, these can still

affect the studied dynamics significantly.

To gain benchmark values for Nb, Nsb, one can observe the FFT’s frequency resolution

∆f =
1

Nsample∆Tdata

=
1

Tdata

, (B.2.1)

and maximal resolved frequency [38]

fmax = Nsample∆f =
1

∆Tdata

. (B.2.2)

Here Tdata = Nsample∆Tdata and ∆Tdata are the timeframe spanned by the FFT data in

the time domain and the corresponding time resolution, respectively.

In the case of the FFT of a beam profile, Nsample is the amount of slices of the beam

profile, Nsample = Ns = NbNsb. Additionally, the amount of buckets sliced is directly

given by Tdata = NbTrf, assuming Trf to be a constant or an average bucket width of the

given accelerator during the simulated timeframe.

As discussed in Section 2.7, ω0 in Eq. (2.7.11) defines a natural frequency resolution

of the beam spectrum. Therefore, to fully resolve it, the FFT benchmark frequency

resolution ∆f must correspond to ω0:

∆f =
ω0

2π
=

c

C

=⇒ Tdata =
C

c
= Trev,0.

Therefore, to resolve all details of the beam spectrum, one must simulate all buckets of

the accelerator,

Tdata := NbTrf = Trev,0

=⇒ Nb =
Trev,0

Trf

= h.
(B.2.3)

Meanwhile, the impedance models used for the simulation have a maximal frequency up

to which they are defined [27], [28]. So for a given maximal frequency fmax, one obtains
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fmax =
1

∆Tdata

=
Ns

Tdata

=
NbNsb

NbTrf

=⇒ Nsb = fmaxTrf

(B.2.4)

Establishing a benchmark for the amount of macroparticles to use is more difficult, but

can be done by considering the numerical noise generated by discretization of the line

density within the profile class. Assuming a Bi-gaussian line density for the bunches,

the signal-to-noise ratio SNR(f) between the bunch spectrum and the spectrum of the

noise at a given frequency is [25]

SNR(f) =
√

Npb

(
2

π

)µ+2 Γ(µ+ 3
2
)

(τlf)µ+1
.

Here, Npb are the macroparticles per bunch, Γ is the gamma function, τl is the full

bunch length, meaning the length of the ∆t interval which contains all particles of

the bunch, and µ is a parameter classifying the bunch shape. µ = 1 means the bunch

follows a parabolic distribution, while it becomes Gaussian as µ → ∞.

Rearranging therefore yields a benchmark number of macroparticles Npb per bunch,

depending on the SNR:

Npb(f) =

[(π
2

)µ+2 (τlf)
µ+1

Γ(µ+ 3
2
)
SNR(f)

]2
.

If at least SNR = 1 is desired, the benchmark number of particles per bunch for a given

maximal frequency fmax becomes

Npb =

[(π
2

)µ+2 (τlfmax)
µ+1

Γ(µ+ 3
2
)

]2
. (B.2.5)

Summarizing all three results of Equations (B.2.3), (B.2.4) and (B.2.5), the main

relevant parameter for error and noise is the maximum resolved frequency fmax of the

beam spectrum and impedance. Therefore, these equations present a trade-off between

numerical error, mainly affecting the calculation of collective effects, and runtime due

to the increased number of particles and profile slices. If one desires to only resolve

low-frequency contributions to the collective effects, e.g. ones due to the kickers and
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main cavities of an accelerator, a low runtime can be maintained. However, if one

takes into account all impedance contributions, the runtime will either significantly

increase, or additional error will have to be introduced by lowering the number of slices

or macroparticles.

B.2.2. Practical Applications for the PS and SPS

Applying Equations (B.2.3), (B.2.4) and (B.2.5) to both beam cycles covered in this

thesis, the concrete benchmarks are as follows:

The SPS SFTPRO cycle has bunches with a length of τl ≈ 1.7 ns and µ ≈ 3.5 just

before the phase jump and extraction based on measurements in 06.2023. The major

impedance contributions lie at fmax = 200 MHz due to the RF cavities. These main

200 MHz cavities contribute up to fmax = 1.4 GHz, with contributions from additional

components ranging up to fmax = 3 GHz. The corresponding benchmark values of

Nb, Nsb and Npb are shown in Table (B.2.1).

SPS Benchmark Values

Value fmax = 200 MHz fmax = 1.4 GHz fmax = 3 GHz

Nb 4620 4620 4620

Nsb 1 7 15

Npb 1 600 580’000

Table B.2.1: Numerical benchmark values for the SPS SFTPRO cycle near extraction
with τl ≈ 1.7 ns and µ ≈ 3.5, with Trf ≈ 5 ns.

In the PS, the BigTOFEAST cycle has 2 bunches, with the TOF bunch having a

significantly higher µ than the EAST bunch. Therefore, the average TOF and EAST

bunch length of τl ≈ 80 ns seen in the PS BigTOFEAST cycle, and the TOF bunch’s

µ ≈ 2,5 will be considered for the benchmarking. The major impedance contributions

lie at f = 3.8 MHz and f = 20 MHz due to the main 10 MHz and 20 MHz cavities.

Additional contributions lie at 40,80 and 200 MHz due to further RF cavities. The

benchmark values for three main limits of fmax = 25 MHz, fmax = 80 MHz and

fmax = 200 MHz are shown in Table (B.2.2).
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PS Benchmark Values

Value fmax = 25 MHz fmax = 80 MHz fmax = 200 MHz

Nb 8 8 8

Nsb 7 21 52

Np 207 711’000 434’000’000

Table B.2.2: Numerical benchmark values for the PS BigTOFEAST cycle, during the
first flat top with τl ≈ 80 ns, µ ≈ 2.5, and Trf ≈ 262.25 ns.
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C. Longitudinal Phase Space Tomography

Longitudinal phase space tomography is used, like all tomographic techniques, to

reconstruct a D dimensional space from multiple (D − 1) dimensional projections of

that space. In this specific case, the D = 2 dimensional longitudinal phase space is

reconstructed by measurements of the time projection, i.e. the profile P (∆t) at different

times t [39, Ch.1]. This is possible due to the synchrotron motion the particles perform

in phase space (see Fig. (2.5.1)), meaning that the measured time projections sample

the phase space distribution at different “angles” for different times t.

C.1. Basic Principle

The following explanation leans heavily on [39]. For further details and the concrete

implementation of the longitudinal phase space tomography code used in this thesis,

both [39] and [40] are therefore heavily recommended.

To perform longitudinal phase space tomography, henceforth just tomography, two sets

of data are necessary:

1. Measured profiles Pj(∆t), j = 1, 2, ..., K, where Pj is measured at time tj, with

tj < tj+1. The measurement is usually discretized, i.e. the profile Pj(Xl) is only

measured at discrete ∆t values, forming ∆t bins X1, . . . , XL (see Fig. (C.2.1)).

2. The evolution of a simulated phase space distribution. This is given via particle

coordinates ∆ti,j and ∆Ei,j for times tj, where i = 1, 2, . . . , Np numbers the

particles and j the time. Therefore, the measured profile Pj corresponds to the

profile of the simulated distribution at time tj with particle coordinates ∆ti,j and

∆Ei,j.

For the simulation performed to obtain these particle coordinates, the initial

distribution is chosen to be homogeneous in the area enclosed by the separatrix, as

seen in Fig. (C.1.1). For this, ∆ti,1 values are evenly distributed in the ∆t-interval

where P1(∆t) > 0 has been measured. The separatrix is then computed via

Eq. (2.4.3), defining ∆E-intervals in which particles are again homogeneously
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placed. The evolution of these coordinates is then computed numerically to obtain

∆ti,j and ∆Ei,j for all tj.

Figure C.1.1: A bucket filled with a homogeneous distribution of particles, used as
an initial distribution for the particle tracking simulations necessary for
tomography. The edges are not filled due to the measured profile having
decayed to 0 before reaching that area.

Given these two initial data sets, the main tomography algorithm iteratively assigns

each particle a weight gi ≥ 0 with which it contributes to the reconstructed phase space.

These weights are optimized such that measured and reconstructed profiles differ as

little as possible. Each algorithm iteration is divided into three steps:

C.2. Back Projection

In the first step, the measured profiles are used to adjust the particle weights. For this,

the simulated particle coordinates are discretized into bins to match the discretized

measurement data, creating a profile histogram Pj(X[i]), as seen in Fig. (C.2.1). This

yields L ∆t bins X1, ..., XL, with X[i] denoting the bin particle i is in.
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C.2. Back Projection

Figure C.2.1: The top plot shows the simulated, continuous profile P (∆t). It is dis-
cretized by dividing the x-axis into 5 ∆t bins X1, ..., X5 of length 10−9 s,
with the bin midpoints marked in blue and edges marked with grey lines.
The corresponding, discretized profile P (Xl) is shown in the bottom plot,
and is used in the main tomography algorithm.

Then, each particle’s weight is adjusted according to

gi = gi +
K∑
j=1

∆Pj(X[i]). (C.2.1)

Here, ∆Pj(X[i]) = Pj(X[i]) − Pj(X[i]) is the difference between the measured and

reconstructed profiles for each particle i at time tj . Initially, gi = 0 ∀i and ∆P1(X[i]) =

P1(X[i]) ∀i. Fig. (C.2.2) shows an example of how particle weights are updated for

Np = 2 particles and K = 5 identical profile differences ∆P1,...,∆P5.
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C.3. Projection

Figure C.2.2: The top plot shows the discretized profile difference ∆Pj(Xl), which is
assumed to be identical for K = 5 input and simulated profiles.
The bottom plot displays the weights of two particles updated based on
their coordinates and ∆Pj(Xl). The marker size indicates the weight of
the corresponding particle, with it growing or falling proportionally to
the profile difference ∆Pj(Xl) in the particle’s bin for time tj.
Source: modified from [39].

C.3. Projection

Given the particle weights gi, a weighted projection is performed as a second step to

obtain the reconstructed profile. To this end, the weights of all particles in a bin Xl

are summed, and the resulting profile normalized to match the normalization of the

measured profiles. Concretely, each iteration is performed by calculating
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Pj(Xl) =
∑
i∈Il

gi, with Il = {i |X[i] = Xl; i = 1, 2, ..., Np}, (C.3.1)

for each simulated profile Pj and then multiplying Pj by a normalization factor defined

by the normalization chosen for the measured profiles Pj.

C.4. Difference

Finally, the difference at iteration j

∆P̃j(Xl) = Pj(Xl)− Pj(Xl) (C.4.1)

is calculated. Additionally, to improve convergence, ∆P̃j(Xl) is multiplied by a weighing

factor based on the number of particles Np(Xl) in the bin Xl to obtain the final difference

∆Pj(Xl):

∆Pj(Xl) = ∆P̃j(Xl)
max
1≤l≤L

{Np(Xl)}

Np(Xl)
. (C.4.2)

This ensures that the reconstructed profiles converge quickly, even for bins with few

particles, e.g. at the tails of profiles. The total weight in those tail bins is smaller

than for bins with many particles, so even a small difference in weight should affect a

significant change, which this weighing ensures.

C.5. Energy Distribution Reconstruction

This process is now performed for the desired number of iterations or until the algorithm

converges below a desired difference. The resulting weights can then be used to recreate

the energy distribution N(Yl) similarly to Eq. (C.3.1)

N(Yl) =
∑
i∈Il

gi, with Il = {i |Y [i] = Yl; i = 1, 2, ..., Np},

where Yl is the l-th energy bin, gained by discretizing the ∆E-axis of the simulated

phase space.
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D. Gaussian Processes

This appendix essentially is a short summary of [41], containing the minimum knowledge

necessary to gain an overview over what Gaussian processes are and how they are used

in this thesis. For full details on Gaussian processes and their application beyond their

usage in this thesis, the reader is highly encouraged to read through [41].

D.1. Motivation and Definitions

A difficult to evaluate, possibly non-differentiable function f : Rn → R is given, which

needs to be optimized, i.e. a global extremum found, in the fewest possible evaluations.

Since the gradient and the function itself is unknown, the function values are assumed

to be randomly distributed, following a normal distribution at each point xi ∈ Rn:

f(xi) ∼ N (µi,σ
2
i ) with µi being the mean and σ2

i the variance of f at xi. Formally:

A Gaussian process is a collection of random variables (e.g. f(xi) at each xi), any

finite of which have a joint Gaussian distribution.

This joint Gaussian distribution the Gaussian process induces is specified fully by the

mean m and covariance k functions, defining the distribution at each point:

m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))],
(D.1.1)

and one writes

f(x) ∼ GP(m(x), k(x,x′)). (D.1.2)

Given the assumption of f(xi) being normally distributed at each xi, an evaluation of

f at a specific point x∗ allows an update of the distributions f(xi) by updating the

covariances. Simply speaking: If the value of f(x∗) is exactly known at x∗, then the

variance of f(xi) in the neighbourhood around x∗ will be significantly reduced.

This updating of the distribution f(xi) via the covariance function k(x,x′) means that

a Gaussian process “learns” and becomes more accurate as more points are evaluated.
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D.2. Updating the Function Distributions

It also allows single function evaluations at x to make a significant impact on the

surrounding distributions of f around x, even though f might not be differentiable.

How much the neighbourhood of x is impacted depends on the covariance function

k, also called kernel. These updates affecting not just f(x), but all distributions in

a neighbourhood, reduce the amount of evaluations needed to optimize f . However,

this comes at the cost of not being fully accurate, as the model is a statistical model.

Figure (D.1.1) shows this learning process.

(a) Gaussian process with only 1 observed
point.

(b) Gaussian process after 6 observed
points.

Figure D.1.1: The mean m(x) (dotted green line) and variance k(x,x) (green shading) of
a target function distribution f(x) for different numbers of observations.
On the left, only 1 point has been observed, i.e. f has only been evaluated
there. On the right, 5 more points have been observed, updating the
variance in their neighbourhoods and yielding a better approximation of
the target function f .

D.2. Updating the Function Distributions

Given a new point the function is evaluated at, the updating of function

distributions is possible because of Bayes’ Rule: Given a set of M points

X∗ = {x∗,i|i = 1, 2,...,M} the function has been evaluated at and the corresponding

function values y∗ = (y∗,1, ..., y∗,M) ∈ RM at those points, the update is performed as

follows: looking at the conditional distribution (f |x,y∗,X∗), i.e. how f is distributed at

the point x, given that f has assumes the values y∗ at X∗, one can prove:
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f∗ := (f |x,y∗,X∗) ∼ N (E[f∗], cov(f∗)), (D.2.1)

with

m∗(x) := E[f∗(x)] = m(x) +K(X∗,x) ·K(X∗,X∗) · (y∗ −m(X))

k∗(x,x
′) := cov[f∗](x,x

′) = k(x, x′)−K(X∗, x)
T ·K(X∗,X∗)

−1 ·K(X∗,x).
(D.2.2)

Here, m(X) = (m(x1),m(x2),...), and K(X,Z) is the covariance matrix between all

points xi ∈ X ⊂ Rn and zj ∈ Z ⊂ Rn:

K(X,Z) =


k(x1,z1) k(x1, z2) k(x1, z3) ...

k(x2,z1) k(x2,z2) k(x2, z3) ...

... ... ... ...

 .

Therefore, new function evaluations adjust the mean and kernel of the Gaussian process,

allowing it to “learn” as the function is evaluated at additional points. The goal is for

the mean m(x) to eventually resemble the target function f near the desired optimum.

However, m itself does not influence the learning of the Gaussian process significantly.

Instead, as shown in Eq. (D.2.2), the main cause of adjustments to both m and k is

the covariance matrix K, and therefore the kernel k itself.

D.3. Process Kernels (Covariance Functions)

Given that the kernel k defines the way the Gaussian process “learns”, it is worth

studying in more detail. In fact, it defines assumptions about the type of function f

the Gaussian process is estimating, and should be adjusted based on the problem to be

solved.

First, k must fulfil the following properties to be a well-defined covariance function:

k(xi, xj) ≥ 0 ∀i, j (Positive semidefinite)

k(xi, xj) = k(xj, xi) ∀i, j (Symmetry)
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To speak of continuity and differentiability of a Gaussian process, i.e. of the continuity

and differentiability of the distributions f(x) at each point, these terms need to be

defined for general stochastic processes.

Mean Square Continuity: Consider a sequence of points (xk)k∈N with x∞ defined

such that lim
k→∞

|xk − x∞| = 0. Then a stochastic process f(x) is continuous in mean

square at x∞ if lim
k→∞

E[|f(xk)− f(x∞)|2] = 0.

This definition also implicitly defines a limit in mean square : The stochastic

process f(x) tends towards its limit L at x∞ in mean square, i.e. lim
x→x∞

f(x) = L iff

lim
k→∞

E[|f(xk)− L|2] = 0.

Mean Square Differentiability: Therefore, the partial derivative of a stochastic

process can also be defined in a standard manner. The partial derivative of f(x) in the

i-th direction, with ei being the corresponding unit vector, is

∂f(x)

∂xi

:= lim
h→0

f(x+ hei)− f(x)

h
,

and it is well-defined as long as the mean square limit on the right exists.

Given these definitions, one can prove the following statements:

If k and k′ are kernels, then:

k̃ = k + k′ and k̄ = k · k′ are both kernels (1)

f (mean square) continous at x∗ ⇐⇒ k(x, x′) continous at x = x′ = x∗ (2)

∂f(x)

∂xi

=
∂2k(x, x′)

∂xi∂x′
i

(3)

(1) means that one can combine different kernels to define the desired assumptions about

the function f studied. (2) and (3) state how the choice of kernel affects the studied

function: A continuous kernel will produce continuous functions, a twice differentiable
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one will produce differentiable functions, and so on. Therefore, one should choose the

kernel based on the physical process being modelled. Examples of commonly used

kernels are:

1. The square exponential:

kSE(r) = S2
f exp(−

1

2
(rT ·M2

l · r)),

with r = x− x′, Sf being the signal strength and Ml defining the characteristic

length scales for the different variables in r ∈ Rn, e.g. Ml = diag[( 1
l1
, 1
l2
, ..., 1

ln
)].

This kernel is smooth, hence the Gaussian process will assume that the function

searched for is also smooth. Most physical processes in a high-dimensional

parameter spaces are not fully smooth, however. Hence, a kernel that is twice or

quadruply differentiable in x and x′ might therefore be of use:

2. The Matérn Kernel:

kM(r, ν) = S2
f

[
21−ν

Γ(ν)

(√
2νMl · r

)ν
Kν

(√
2νMl · r

)]
, (D.3.1)

with Γ being the gamma function, and Kν the modified Bessel function of the

second kind. This kernel is very rough for low ν and easy to evaluate for half integer

ν: At ν = 1
2
, the searched for function has no guarantee to be differentiable. At

ν = 3
2
it is at least once differentiable, for ν = 5

2
twice differentiable, etc. Therefore,

physically ν = 3
2
and ν = 5

2
are usually interesting.

D.4. Hyperparameter Optimization

In the examples of the previous sections, the matrix Ml of length scales has been defined.

These length scales define how strongly the covariance varies as the corresponding

parameters vary. For example, if ri = (a,b,c) ∈ R3, set Ml = diag[( 1
la
, 1
lb
, 1
lc
))]. Then if

la = 10 and lb = 1, variations in a will result in significantly smaller changes to the

covariance k in the neighbourhood of ri, than those same variations in b.

The length scales are examples of hyperparameters: parameters of the kernel itself.

For the kernel to find the correct function modelling a selected physical process, these
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hyperparameters should be set correctly. However, the optimal hyperparameters are not

always known. Nonetheless, they can be dynamically adjusted during the optimization

carried out with the Gaussian process by studying the marginal likelihood p(y|X,θ).

This is the likelihood that M observed values RM ∋ y∗ = f(x∗,i) at M points x∗,i ∈ X∗

will be modelled correctly by the Gaussian process with the current kernel, whose

hyperparameters are described in the hyperparameter vector θ = (θ1, θ2, . . . ). The

logarithm of the marginal likelihood is calculated as

ln[p(y∗|X∗,θ)] = −1

2
yT∗ ·K(X∗, X∗; θ)

−1 · y∗ −
1

2
det(K(X∗, X∗; θ))−

n

2
ln(2π).

Here, K(X,Z; θ) is simply a more detailed notation for the previously defined covariance

matrix K(X,Z), noting that K might depend on the hyperparameters themselves. In

the equation, the first term determines how well the actual data y is fitted with the

current kernel hyperparameters, and the second one penalizes the complexity of the

model via det(K). The third term is simply a normalization.

Minimizing the logarithm of the marginal likelihood with respect to θ yields

∂

∂θj
ln(p(y∗|X∗,θ) =

1

2
tr

(
(α(X∗; θ) · α(X∗; θ)

T −K(X∗,X∗; θ)
−1)

∂K(X∗,X∗; θ)

∂θj

)
,

with α(X; θ) = K(X,X; θ)−1 · y∗. This can now be used to find values of θj which set

the above derivative to 0, therefore maximizing the marginal likelihood and optimizing

the kernel to fit observed data.
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