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We review recent results that apply a reduced phase space quantization of loop quantum
cosmology (LQC) for a spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW)
universe filled with reference fields and an inflaton field in a Starobinsky inflationary
potential. All three models that we consider are two-fluid models and they differ by their
choice of global clock which are chosen to be either Gaussian dust, Brown-Kuchaf dust
or a massless Klein-Gordon scalar field. Although two-fluid models are more complicated
than models involving the inflaton only, it turns out that some of the technical hurdles
in conventional quantum cosmological models can be bypassed in these models. Using
the effective dynamics resulting from the reduced phase space quantization we discuss
some phenomenological implications of these models including the resolution of the big
bang singularity via a quantum bounce and in addition address the question whether
different choices of clocks can leave an imprint on the inflationary dynamics.

Keywords: Loop quantum cosmology, reduced phase space quantization, effective tech-
niques.

1. Introduction

Within the last decade in the framework of loop quantum gravity new models have
been introduced that apply the technique of reduced phase space quantization to
construct the physical Hilbert space and thus the physical sector of the theory.'®
This requires to construct Dirac observables at the classical level and derive their
corresponding algebra. For this purpose all models have in common that they couple
some kind of additional matter to gravity. In the context of the relational formal-
ism, introduced in Refs. 10, 11 and further developed and applied in Refs. 12-17,
these additional degrees of freedom are used as reference matter to construct Dirac
observables and their corresponding dynamics. The latter is encoded in a so called
physical Hamiltonian that becomes a non-vanishing Hamiltonian operator in the
physical Hilbert space involved either in a Schrédinger-like or Heisenberg-like equa-
tions. For the reason that these reference fields are dynamically coupled to general
relativity an interesting question in this context is how a given choice of reference
fields influences the physical properties of the model. In full loop quantum gravity
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these dynamical equations have a complicated structure and an analysis for individ-
ual models as well as a comparison between different models is a non-trivial task.
Therefore, the work in Ref. 18 focus on a simplified setting in the framework of loop
quantum cosmology where techniques are already available to analyze such ques-
tions. The relational formalism has been applied in the context of loop quantum
cosmology for instance in Refs. 18-33. The main difference to former models in loop
quantum cosmology with reference matter, often also called clocks in cosmology, is
that the work in Ref. 18 considers two-fluid models because the clock is coupled in
addition to an inflaton. One of the main questions that one is interested in is how
the inflationary scenario is affected by the presence of the additional clock degree
of freedom and how the imprint of the clock compares for different models. Such
questions will be investigated using effective techniques that in LQC have in former
work mainly be applied to one-fluid models.

1.1. Dust and scalar field clock models in loop quantum cosmology

All three models in the analysis in Ref. 18 are based on models in general relativity
coupled to an inflaton field and an additional coupling of 8 and 7 respectively
additional dust and scalar fields respectively yielding to a system with second class
constraints. After the reduction with respect to the second class constraints one
ends up with first class systems with four additional reference fields, that can be
used as reference matter for the Hamiltonian and spatial diffeomorphism constraint.
The details about the Brown-Kuchai dust model can be found in Ref. 34 and its
quantization using LQG techniques has been performed in Ref. 1. For the classical
Gaussian dust model we refer the reader to Ref. 35 and its LQG implementation
has been discussed in Ref. 36. The four scalar field model in Refs. 5, 6 can be
understood as a modification of the model in Ref. 37, that, as shown in Ref. 5
cannot be quantized in the framework of LQG. For flat FLRW spacetimes where the
spatial diffeomorphism constraint vanishes identically, the corresponding symmetry
reduced models involve one temporal reference field, the clock, only. A reduced
phase space quantization for all three symmetry reduced models has been derived
in Ref. 18. There it is shown that in all three models the quantum dynamics is
encoded in a Schrodinger-like equation in the physical Hilbert space. The explicit
form of the physical Hamiltonian differs for the dust and scalar field models where
the latter involves a square root. Although the model involve an inflaton with a
generic potential due to the fact that clock is coupled additionally and one does not
use the inflaton as the clock, as it has for instance be done in the APS-model in
Ref. 21, all models possess physical Hamiltonians that are time-independent. This
is of advantage for the construction of the physical inner product of the individual
models. In this review we will focus on the effective dynamics of these models that
were used in Ref. 18 to investigate the above mentioned questions. The quantum
dynamics is formulated in the volume representation in Ref. 18 and thus the set
of elementary variables in the dynamical equations are Oy, Oy, Oy, Or,,, where Oy
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denotes the Dirac observable of quantity f. As shown in Ref. 18 the effective physical
Hamiltonians of the dust and scalar field model take the form

2
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where A = VA = ,/4\/5777612) denotes the polymerization parameter. Taking into
account that the elementary Dirac observables satisfy the following standard Pois-
son brackets {Op, Oy} = 4Gy and {O,, O, } = 1 with v denoting the Immirzi
parameter and where all remaining Poisson brackets vanish, the system of equations
of motion for the Dirac observables in the individual models has been been derived
in Ref. 18 and they provide the basis for the results discussed in the next section.
Note that although in the case of flat FLRW spacetimes the physical Hamiltonian
of the Brown-Kuchai model and the Gaussian dust model agree, these model are
still not identical because within the Brown-Kuchatf model the dust energy density
can be chosen to be either positive or negative and the effect of these two different
choices has also been analyzed in Ref. 18.

2. The effect of choosing different clocks on inflation

Similar to the one-fluid models that are obtained via Dirac quantization as for
instance the APS-model in Ref. 21, the effective dynamics in the scalar field and
dust models can be rewritten in terms of a modified Friedmann equations of the

form
0% 871G o
O = =—-0 (1 P) (3)
90y 3 77 Pimax
with ppax = m. The maximal density ppax is the same as in Refs. 21-23 but

here O, does not only depend on the inflaton but also on the clock energy density.
Furthermore, the temporal coordinate with respect to which the Hubble parameter
is determined is given by either the dust and scalar field clock respectively.

In order to analyze how a given choice of clock might affect inflation in Ref. 18
a Starobinsky potential

3m?

167G
was considered. The choice of initial conditions, set at the bounce, was guided by
former results in LQC models®® and chosen to be O, = 7/2\ and Oy, = 103
in Planck units. Fixing further values for O, , O, determines Hg{ KW, dust ™ from
which one can obtain O ,ciocc. Therefore in Ref. 18 the initial values are parametrized
by (Ow O petock ) In the case of the dust models a choice of initial conditions given
by Oy, = —1.45, O petocx = 1078 yields to a quantum model with a pre-inflationary

2
U= (1 e “’T“O«») with m = 2.44 x 10~ (4)
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phase, often being present in LQC models after the bounce, and an inflationary
phase where the number of inflationary e-foldings for the latter is 63.1. For a similar
choice of initial conditions the one-fluid models without an additional clock degree
of freedom yield 63.9 inflationary e-foldings, see Ref. 38. This shows that for these
choice of initial conditions the dust clock plays only a subdominant role for inflation.
This is exactly what one expects from a good clock because such a clock should not
have a dominant imprint on the dynamics of the model. A similar analysis for the
scalar field model leads to 63.8 inflationary e-foldings being closer to the value
obtained in the one-fluid models and showing that the effect of the scalar field clock
is weaker compared to the dust clock. However, this is also expected from the fact
that the energy density of the scalar field comes with a higher inverse power of the
scale factor than the dust contribution and thus decaying faster in the evolution.
In a further investigation to better understand the influence of the clock energy
density on inflation in Ref. 18 for the same set of initial conditions for the inflaton
a varying dust energy density ranging from 108 up to 10~* was considered. The
results show that the number of inflationary e-foldings decrease with increasing
dust energy density. The explanation given in Ref. 18 is that this results from the
fact that O,
decreases due to a larger Hubble friction when the dust energy density is increased.

the value of scalar field’s Dirac observable at the onset of inflation,

For an initial dust energy of O,coac = 1.38 X 10=* in Planck units one reaches an
upper bound for this set of initial conditions where inflation no longer occurs. The
same analysis for the scalar field clock shows that also in this model the number of
inflationary e-foldings decreases with higher clock energy density but the effect is
less strong here. One sees a significant effect only if O c10ec > 0.001 in Planck units.
As far as the number of pre-inflationary e-foldings is concerned the results from
Ref. 18 demonstrate that the increase of the clock energy density has the opposite
effect, namely that the number of pre-inflationary e-foldings increase.

3. Conclusions

As a first step towards an investigation how choices of different reference fields affect
the physical properties of models the work in Ref. 18 considers different symmetry
reduced reference matter models choosing either dust or a massless scalar field as the
clock in addition to gravity and the inflaton leading to two-fluid LQC models. For
the choice of a Starobinsky potential the fingerprint of the clock on the inflationary
dynamics was analyzed in the framework of effective techniques. The analysis shows
that initial conditions can be chosen such that the clock has no significant effect on
the dynamics. Both models with dust and the scalar field clock respectively show
a qualitatively similar behavior and can serve as good clocks. Some difference in
the two models are found such as that the model with the scalar field clock has a
larger number of inflationary e-foldings compared to the dust model. Furthermore,
the scalar field model serves in larger parameter space as a good clock since it is
less sensitive to the initial conditions of the clock energy density. Going beyond
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the first steps investigated in Ref. 18 and reviewed here requires a more detailed
understanding on the physical solutions in these models at the level of the quantum

theory. For this purpose the already existing numerical techniques

23,39 peed to be

generalized to the two-fluid case. Next to the question of singularity resolution at
the level of the physical Hilbert space, such kind of generalization will be important
because it will also allow to test the validity of effective techniques for two-fluid
models.

References

1.

2.

10.

11.
12.

13.

14.

15.

16.

17.

18.

K. Giesel and T. Thiemann, Algebraic quantum gravity (AQG). IV. Reduced phase
space quantisation of loop quantum gravity, Class. Quant. Grav. 27, p. 175009 (2010).
M. Domagala, K. Giesel, W. Kaminski and J. Lewandowski, Gravity quantized: Loop
Quantum Gravity with a Scalar Field, Phys. Rev. D82, p. 104038 (2010).

V. Husain and T. Pawlowski, Dust reference frame in quantum cosmology, Class.
Quant. Grav. 28, p. 225014 (2011).

V. Husain and T. Pawlowski, Time and a physical Hamiltonian for quantum gravity,
Phys. Rev. Lett. 108, p. 141301 (2012).

K. Giesel and A. Vetter, Reduced loop quantization with four Klein—Gordon scalar
fields as reference matter, Class. Quant. Grav. 36, p. 145002 (2019).

K. Giesel and A. Oelmann, Comparison Between Dirac and Reduced Quantization
in LQG-Models with Klein-Gordon Scalar Fields, Acta Phys. Polon. Supp. 10, 339
(2017).

M. Ali, S. M. Hassan and V. Husain, Universe as an oscillator, Phys. Rev. D98, p.
086002 (2018).

M. Han and H. Liu, Effective Dynamics from Coherent State Path Integral of Full
Loop Quantum Gravity, Phys. Rev. D101, p. 046003 (2020).

M. Han and H. Liu, Improved (f-Scheme) Effective Dynamics of Full Loop Quantum
Gravity (2019).

C. Rovelli, What Is Observable in Classical and Quantum Gravity?, Class. Quant.
Grav. 8, 297 (1991).

C. Rovelli, Partial observables, Phys. Rev. D65, p. 124013 (2002).

A. S. Vytheeswaran, Gauge unfixing in second class constrained systems, Annals Phys.
236, 297 (1994).

B. Dittrich, Partial and complete observables for Hamiltonian constrained systems,
Gen. Rel. Grav. 39, 1891 (2007).

B. Dittrich, Partial and complete observables for canonical general relativity, Class.
Quant. Grav. 23, 6155 (2006).

T. Thiemann, Reduced phase space quantization and Dirac observables, Class. Quant.
Grav. 23, 1163 (2006).

J. Pons, D. Salisbury and K. Sundermeyer, Revisiting observables in generally
covariant theories in the light of gauge fixing methods, Phys. Rev. D 80, p. 084015
(2009).

J. Pons, D. Salisbury and K. Sundermeyer, Observables in classical canonical gravity:
Folklore demystified, J. Phys. Conf. Ser. 222, p. 012018 (2010).

K. Giesel, B.-F. Li and P. Singh, Towards a reduced phase space quantization in
loop quantum cosmology with an inflationary potential, Phys. Rev. D 102, p. 126024
(2020).



The Sixteenth Marcel Grossmann Meeting Downloaded from www.worl dscientific.com

by GERMAN ELECTRON SYNCHROTRON @ HAMBURG on 01/30/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

4233

D. Kaup and A. Vitello, Solvable quantum cosmological model and the importance of
quantizing in a special canonical frame, Phys. Rev. D 9, 1648 (1974).

W. Blyth and C. Isham, Quantization of a Friedmann Universe Filled with a Scalar
Field, Phys. Rev. D 11, 768 (1975).

A. Ashtekar, T. Pawlowski and P. Singh, Quantum Nature of the Big Bang, Phys.
Rev. Lett. 96, p. 141301 (2006).

A. Ashtekar, T. Pawlowski and P. Singh, Quantum Nature of the Big Bang: An Ana-
lytical and Numerical Investigation. I., Phys. Rev. D73, p. 124038 (2006).

A. Ashtekar, T. Pawlowski and P. Singh, Quantum Nature of the Big Bang: Improved
dynamics, Phys. Rev. D74, p. 084003 (2006).

A. Ashtekar, A. Corichi and P. Singh, Robustness of key features of loop quantum
cosmology, Phys. Rev. D77, p. 024046 (2010).

A. Ashtekar, T. Pawlowski, P. Singh and K. Vandersloot, Loop quantum cosmology
of k=1 FRW models, Phys. Rev. D 75, p. 024035 (2007).

K. Vandersloot, Loop quantum cosmology and the k = - 1 RW model, Phys. Rev. D
75, p. 023523 (2007).

E. Bentivegna and T. Pawlowski, Anti-deSitter universe dynamics in LQC, Phys. Rev.
D 77, p. 124025 (2008).

W. Kaminski and T. Pawlowski, The LQC evolution operator of FRW universe with
positive cosmological constant, Phys. Rev. D 81, p. 024014 (2010).

T. Pawlowski and A. Ashtekar, Positive cosmological constant in loop quantum cos-
mology, Phys. Rev. D 85, p. 064001 (2012).

T. Pawlowski, R. Pierini and E. Wilson-Ewing, Loop quantum cosmology of a
radiation-dominated flat FLRW universe, Phys. Rev. D 90, p. 123538 (2014).

J. Mielczarek and W. Piechocki, Observables for FRW model with cosmological con-
stant in the framework of loop cosmology, Phys. Rev. D 82, p. 043529 (2010).

F. Amemiya and T. Koike, Gauge-invariant construction of quantum cosmology, Phys.
Rev. D 80, p. 103507 (2009).

S. Gryb and K. P. Thébault, Bouncing Unitary Cosmology I: Mini-Superspace General
Solution, Class. Quant. Grav. 36, p. 035009 (2019).

J. D. Brown and K. V. Kuchar, Dust as a standard of space and time in canonical
quantum gravity, Phys. Rev. D51, 5600 (1995).

K. V. Kuchar and C. G. Torre, Gaussian reference fluid and interpretation of quantum
geometrodynamics, Phys. Rev. D43, 419 (1991).

K. Giesel and T. Thiemann, Scalar Material Reference Systems and Loop Quantum
Gravity, Class. Quant. Grav. 32, p. 135015 (2015).

K. V. Kuchar and C. G. Torre, The Harmonic gauge in canonical gravity, Phys. Rev.
D 44, 3116 (1991).

B.-F. Li, P. Singh and A. Wang, Genericness of pre-inflationary dynamics and prob-
ability of the desired slow-roll inflation in modified loop quantum cosmologies, Phys.
Rev. D100, p. 063513 (2019).

P. Diener, B. Gupt and P. Singh, Numerical simulations of a loop quantum cosmos:
Robustness of the quantum bounce and the validity of effective dynamics, Class.
Quant. Grav. 31, p. 105015 (2014).



	9789811269776_0361



