

α -radioactivity in odd-A superheavy nuclei (SHN) for $Z = 118-120$

Sukhnandan Kaur^a, Shubham Bharmoria^b, and Harjeet Kaur^{b*}

^aDepartment of Physics, Hindu College, Amritsar 143 001, India. and

^bDepartment of Physics, Guru Nanak Dev University, Amritsar 143005, India

1. Introduction

SHN research, both theoretical and experimental, have emerged as one of the main topics of nuclear physics research in recent years [1]. The SHN are highly unstable and can break via various decays viz. α -decay, spontaneous fission, cluster decay, etc. The decay statistics show that α emission is the predominant decay mode for SHN [2].

This study investigates the α -decay half-lives of unknown odd-A SHN for $Z = 118 - 120$. The calculations are carried out for the preformation probability (P_α) of α particle inside α -emitter for $Z = 103 - 117$ nuclei using a microscopic phenomenological approach incorporating the energy density functional (EDF) of the Skyrme force within the WKB approximation. P_α for unsynthesized SHN are estimated using the $N_P N_N \cdot I$ -scheme, which then are used to estimate their α -decay half-lives. Moreover, the calculated half-lives are also compared with other theoretical models such as the universal decay law (UDL), and generalized liquid drop model(GLDM).

2. Theoretical framework

Alpha-decay half-life of an α -radioactive nucleus can be calculated as:

$$T_{1/2} = \frac{\ln 2}{P_\alpha \left(\frac{1}{2} \int_0^{\pi/2} \nu(\theta) P(\theta) \sin \theta d\theta \right)}. \quad (1)$$

Here, “ θ ” is the orientation angle of the emitted α particle to the symmetric axis of the deformed daughter nucleus. The penetrability ($P(\theta)$) and the assault frequency $\nu(\theta)$ of

the α particle are given as:

$$P(\theta) = \exp \left(-\frac{2}{\hbar} \int_{a'(\theta)}^{b'(\theta)} \sqrt{2\mu(V(r, \theta) - Q_\alpha)} dr \right) \quad (2)$$

$$\nu(\theta) \sim \frac{(G + \frac{3}{2})\hbar}{1.2\pi\mu R_p(\theta)^2} \quad (3)$$

Here, G is the global quantum number, Q_α is the α -disintegration energy, $a'(\theta)$ & $b'(\theta)$ are classical turning points. μ is the reduced mass of α -particle and the daughter nucleus, also $R_{d,p}(\theta) = R_0 \left(1 + \beta_2^{d,p} Y_{20}(\theta) + \beta_4^{d,p} Y_{40}(\theta) \right)$ fm where $R_0 = 1.18 A_{d,p}^{1/3}$. The total two-body interaction potential is given as $V(r, \theta) = V_C(r, \theta) + V_N(r, \theta) + \frac{\hbar^2}{2\mu r^2} (l + \frac{1}{2})^2$. l is the orbital angular momentum. To incorporate $V_N(r, \theta)$ in eq.(2), we have utilized the EDF of the Skyrme force to consider the interaction of the point-like α particle with the nucleons of the core of decaying nucleus [3] :

$$V_N(r, \theta) = \alpha \rho_N(r, \theta) + \beta (\rho_n^{5/3}(r, \theta) + \rho_p^{5/3}(r, \theta)) + \gamma \rho_N \epsilon(r, \theta) (\rho_N^2(r, \theta) + 2\rho_n(r, \theta) \rho_p(r, \theta)) + \delta \frac{\rho_N'(r, \theta)}{r} + \eta \rho_N''(r, \theta) \quad (4)$$

$\rho_{n,p,N}$ are the density profiles of nucleons ($\rho_N = \rho_n + \rho_p$), and $V_C(r, \theta)$ is given as :

$$V_C(r, \theta) = \frac{Z_d Z_\alpha e^2}{r} \left(1 + \frac{3R_0^2}{5r^2} \beta_2^d Y_{20}(\theta) + \frac{3R_0^4}{9r^4} \beta_4^d Y_{40}(\theta) \right)$$

3. Results and Discussion

Utilizing Q_α and experimental $T_{1/2}$ -values from [4] in eq. 1, the P_α 's are calculated for odd-A SHN. The obtained P_α 's are subjected to $N_P N_N \cdot I$ -scheme, leading to a linear equation written as:

$$\log_{10} P_\alpha = a \frac{N_P N_N}{N_0 + Z_0} \cdot I + b \quad \text{where} \quad N_P = Z - Z_0, N_N = N - N_0 \quad \text{are valance protons}$$

*Electronic address: harjeet.phy@gndu.ac.in

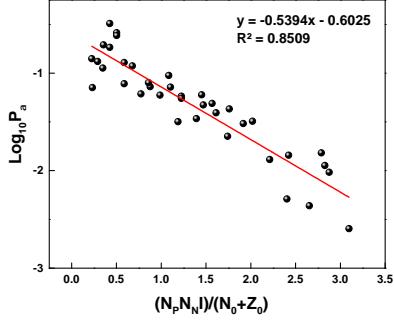


FIG. 1: $\log_{10} P_\alpha$ values for odd- A SHN are plotted w.r.t. $\frac{N_p N_N}{N_0 + Z_0} \cdot I$ and a linear fit is demonstrated here as well.

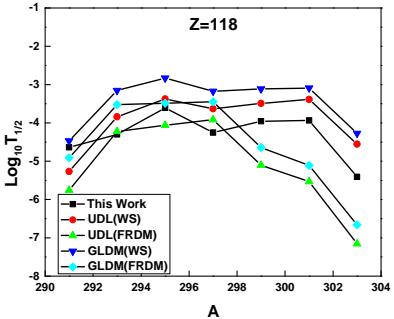


FIG. 2: Comparison of calculated α -decay half-lives ($\log_{10} T_{1/2}$ (sec)) with other theoretical findings for $Z = 118$.

and neutrons, respectively and I is the isospin of parent nuclei. Using the $N_p N_N \cdot I$ -scheme, a straight line fit with $R^2 \sim 0.8509$ is obtained, as shown in Fig. 1. The fitted equation described in fig. 1 is then used to calculate P_α values for unknown SHN with $Z = 118 - 120$. Incorporating these P_α values into eq. 1, the α -decay half-lives ($T_{1/2}$ (sec)) for unknown odd- A nuclei are determined. Theoretical half-life predictions indicate that the alpha-decay half-life timescales for these nuclei fall within the microsecond range, making them experimentally detectable.

In figs. 2 and 3 we have compared the log-

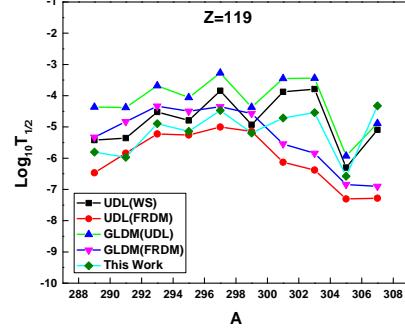


FIG. 3: Comparison of calculated α -decay half-lives ($\log_{10} T_{1/2}$ (sec)) with other theoretical findings for $Z = 118$ and 119.

arithmic values of calculated α decay half-lives (seconds) of $Z=118$, 119, and 120 with the UDL formula and GLDM with Q_α from Weizsäcker-Skyrme (WS) and the finite range droplet model (FRDM) [5].

Using proposed methodology the α decay half-lives of unknown odd- A SHN are successfully predicted. This work provides a valuable framework for scientists focused on synthesizing new SHN and island of stability.

References

- [1] D. Guan and J. Pei, Phys. Lett. B 851, 138578 (2024).
- [2] J. Dvorak et al., Phys. Rev. Lett. 100, 132503 (2008).
- [3] E. Shin et al., Phys. Rev. C **94**, 024320 (2016).
- [4] <https://www.nndc.bnl.gov/nudat2/>.
- [5] Tian Liang Zhao et al., Phys. Rev. C **98**, 064307 (2018).