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Abstract

In this thesis we address two of the most outstanding problems in cosmology: the singularity
problem and the late acceleration of the universe. In the first part, we address the singularity
problem that appears in the context of bouncing cosmologies, and suggest a formalism based
on the AdS/CFT correspondence to track the evolution of cosmological perturbations in the
presence of a space-like singularity that appears in a specific realization of a deformed AdS
space-time. Our construction sets the formalism for the evolution of a scalar field and
the curvature perturbations on a regularized field theory living in the boundary of this
space-time and shows that their momentum dependence is preserved, while a finite particle
production occurs. In the second part, we show two works that give a contribution to the
huge effort to unravel the nature of dark energy. In those, we focus in testing a model of
dark energy where an interaction with dark matter is allowed. This dynamical model has
impacts on the evolution of the parameters that describe our universe and we test these using
the latest cosmological observations. We use data from the Cosmic Microwave Background,
Baryon Acoustic Oscillations(BAO) and type la supernovae, and find good agreement with
observations, putting constraints in the cosmological parameters. We address the recently
found deviation from ACDM in high-redshifts found in measurements of the BAO of the
Lyman-« forest from quasars. We show that Hubble parameter and angular distance at
high-z for the interacting model have a better concordance with the ones obtained by the
BOSS collaboration than the ACDM model, and that adding this data set improves the
global fit of the model, although with low statistical significance.
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Abrégé

Dans cette these, nous adressons deux des plus grands problemes de la cosmologie : le
probleme de la singularité initiale et I'accélération tardive de I'univers. Dans la premiere
partie, nous faisons face au probleme de la singularité initiale dans le contexte des théories
d’univers rebondissant et nous suggérons un formalisme base sur la correspondance anti
de Sitter/théorie conforme des champs (AdS/CFT) pour suivre I’évolution des perturba-
tions cosmologiques avec la présence d'une singularité de genre espace qui apparait dans
une réalisation spécifique d'un espace-temps AdS déformé. Notre construction établie le
formalisme pour I’évolution d’un champ scalaire et les perturbations de courbure dans une
théorie régularisée des champs qui vie sur la frontiére de cet espace-temps et elle montre
que leur dépendance de la quantité de mouvement est préservée alors qu’une production
de particule limitée se produit. Dans la seconde partie, nous présentons deux travaux qui
contribuent aux énormes efforts pour démystifier la nature de 1’énergie noire. Dans ces ar-
ticles, nous nous concentrons sur l'analyse d’un modele d’nergie noire ou une interaction
avec la matiere noire est permise. Ce modele dynamique a des impacts sur 1’évolution des
parametres qui décrivent notre univers et nous testons ceux-ci en utilisant les dernieres ob-
servations cosmologiques. Nous utilisons des données provenant du fond diffus cosmologique,
des oscillations acoustiques des baryons (BAO) et de supernovas de type la, et nous trou-
vons un bon accord avec les observations tout en mettant des contraintes sur les parametres
cosmologiques. Nous adressons la déviation du modele A - matiére noire froide (ACDM) a
haut décalage vers le rouge trouvée récemment dans les mesures du BAO a partir de la forét
Lyman-a qui provient de quasars. Nous montrons que le parametre d’Hubble et la distance
angulaire a haut décalage vers le rouge pour le modele d’interaction concorde mieux avec les
valeurs obtenues par la collaboration BOSS en comparaison avec le modele ACDM, et nous
montrons que ’addition de cet ensemble de données améliore I’ajustement global du modele,

bien qu’avec une signification statistique faible.
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Chapter 1
Introduction

Cosmology is one of the fastest growing fields of physics. Very recently in the history of
physics it has become a precision field of science and it continues to accumulate observational
and theoretical successes. Those observations, together with the theory of general relativity
and the cosmological principle, made possible to develop the standard cosmological model
(SCM), a model that describes the geometry, evolution and composition of our universe that
is expanding from nucleosynthesis, the epoch when the nuclei of light elements were formed,
until today. Its observational pillars, the abundance of light elements, Hubble expansion and
the Cosmic Microwave Background, describe a universe that is homogeneous and isotropic
on large scales which is 13.9 billions of years old, and composed today of 4% baryonic matter,
0.01% radiation, 23% dark matter and 73% dark energy.

Recent cosmological observations confirm with great precision many of the hypothesis
of this model, but also found some exciting deviations not described by its current form.
This shows that in spite of its success, the SCM does not describe all the ingredients of our
current universe. Cosmology faces a number of outstanding theoretical and fundamental
challenges. From the Big Bang singularity, and problems with its initial condition, to the
fact that 95% of what composes our universe is unknown, the problems faced require a new
understanding of fundamental physics. From that it is clear that we need extensions to
our current cosmological paradigm that involve the inclusion of a new description or even
extensions of the physical laws we know. Of particular importance for this thesis are the
singularity problem and the nature of dark energy that leads to the accelerated expansion

of our universe. This thesis comprises a series of works that aim to address these two major

2017/06/25
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problems in cosmology.

One of the biggest problems in cosmology is the singularity problem. Singularities are a
very general feature of many cosmological models, since they are unavoidable in the context
of Einstein’s gravity with standard matter. In this context, in an expanding universe the
Penrose singularity theorem implies that initially the universe had an infinite energy density
in a very small volume, which we call the Big Bang singularity. If try to extend our classical
description to those regimes our current mathematical understanding and physical theories
break down and cannot be used. Singularities appear in many cosmological models from
the expanding SCM model to its extensions like the inflationary model [1-5], a period of
accelerated expansion in the early universe, and bouncing models [6], where a period of
contraction precedes the SCM expansion of the universe passing through a Big Bang/Big
Crunch singularity. In the attempt to avoid the appearance of an initial singularity, one
needs to either go beyond the theory of general relativity or else add matter in our universe
that does not behave according to the standard (null) energy conditions. These approaches
are somewhat ad hoc and reflect our attempt to extend our theories in the absence of a
complete and fundamental quantum theory of gravity that attempts to describe the high
energy and curvature regions of our universe.

In the absence of a quantum gravity theory to describe our universe, the singularity
problem is hard to solve. We need new tools to be able to solve this problem. There
have been many attempts in the literature to resolve the Big Bang/Big Crunch singularity,
specially in the context of bouncing cosmologies. These use different techniques to effectively
describe cosmology in the quantum regime using semi-classical techniques (see [7,[8] for
some examples). Beyond the semi-classical approximation, string theory presents a concrete
approach to quantum gravity where we can study quantum effects in cosmology. However,
string theory is an unfinished theory and initially it did not present a non-perturbative
description. In this context, the AdS/CFT correspondence [9] comes to the rescue, presenting
a non-perturbative description of string theory.

The AdS/CFT is a conjecture relates a string theory with Anti-de-Sitter (AdS) boundary
condition to quantum field theories living in the boundary of AdS and it is one of the
most important advances in theoretical physics with applications in diverse areas. This
conjecture provides an interesting avenue to solve the singularity problem since it offers the
opportunity to treat the singularity in a weakly coupled and non-gravitational field theory,

instead of in the strongly coupled, high curvature and quantum regime of gravity. There
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have been many attempts in the literature to use this tool to describe the Big Bang/Big
Crunch singularity [10H15]. We present here another attempt of that.

In cosmology, we are interested in providing a description of the evolution of the universe
that yields observables that match the cosmological observations of the structure of our
universe. The existence of a singularity in many bouncing models and the difficulty to
describe mathematically these regions impact the predictability of those models. For that
reason in our works we were interested in addressing the question of what happens to the
cosmological perturbations generated in the contracting phase and that are expected to
be the seeds for the formation of all the structures of our universe and must be described
by current observations, after they pass the singularity. Our works intend to establish a
formalism using the AdS/CFT correspondence to describe how the perturbations behave
after passing through a cosmological singularity, accessing the imprints that the singularity
might induce in the spectrum of those fluctuations as an important step for the understanding
of the predictability of bouncing models. We propose a formalism for that in Chapter 4 (based
on [16]) where we discuss fluctuations of a scalar field in a toy cosmology, a deformed AdS
space-time. This is generalized to the discussion of curvature fluctuations that are related to
observations, in Chapter 5 (based on [17]). These works are an attempt to access how good of
a tool the AdS/CFT duality is for the purpose of resolving cosmological singularities and to
give us first clues for consequences of cosmological singularities in cosmological perturbations.
So, the construction presented here is a toy model of the early universe behaviour of a
bouncing universe. The use of this construction is well motivated for many reasons. To
start, the AdS/CFT correspondence is most well known and better demonstrated in its
original context of a supergravity theory on AdSs space-time that is dual to a N =4 SYM
theory on the boundary, where the theories on the bulk and boundary are determined. The
correspondence is less understood in other contexts. Another motivation is that AdS space-
time is commonly used as a prototype of a bouncing universe, aiding us in the description
of a bouncing cosmology. Then, although we do not live in an AdS universe, and not in
5-dimensions, this prototype universe can help us understand if holography can be used to

study the evolution of perturbations through space-like (cosmological) singularities.

The recent improvement in observational techniques available for the measurement of
cosmological parameters shows us that the universe is composed in its majority by two

unknown components: dark matter and dark energy. The first corresponds to 23% of the
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total energy density of our universe and, because of its clustering properties, has an important
role in the formation of the large scale structure of our universe. Dark energy is one most
accepted explanantion for the apparent accelerated expansion of the late universe, discovered
by the observation of distant Type Ia Supernovae by [18,19]. Although the influence of those
components is measured gravitationally, their nature is still unknown, and this is one of the
major problems in cosmology nowadays.

The simplest idea for the component responsible for this present acceleration is the cos-
mological constant. The standard cosmological model that includes this component plus cold
dark matter. It is the ACDM and it is the preferred model given current observations [20].
However, the cosmological constant presents serious theoretical challenges. Since it is related
to the energy of the vacuum, the value that is measured from cosmological observations com-
ing from the current value of the Hubble parameter Hj is different than the one calculated
from field theory by many orders of magnitude. So, the cosmological constant suffers from
serious fine tuning problems, not only from the fine tuning of its renormalized value but
mainly from the radiative instabilities that leads to successive fine tunings. This, together
with the coincidence problem, that states the coincidence that the densities of dark matter
and dark energy are of the same order close to the present time even though those com-
ponents have distinct evolutions, are known as the cosmological constant problems. These
theoretical challenges give us motivation to search for alternatives explanations for the nature
of dark energy. In particular, the search for a mechanism where dark energy is a dynamical
quantity.

The dark sector can be richer than described in the ACDM model and a huge theoretical
effort to explain the accelerated expansion resulted in a zoo of models with different mech-
anisms. These include (for a review see [21]) models inspired by inflationary models where
a scalar field is included like quintessence, or modifications of General Relativity. Many
proposed models also invoke an interaction between the chosen dark energy component and
baryons, like the chameleon mechanism [22}23], symmetron [24] and dilaton [25]; or with
dark matter (for a classification of models see [26]), with models where the interaction is
phenomenological [27H31] or even coming from field theory [32-35], Chaplygin gas, and many
others. This list is far from complete and some of those models overlap. This shows how
much freedom there is in the understanding of the dark universe.

Fortunately, we live in an era where an abundance of data from cosmological observa-

tions is or will be available with the exploration of the large scale structure of the universe
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(LSS) [36] and of new windows of observations like 21cm cosmology [37]. There is currently
a huge effort from the scientific community in order to measure the equation of state of dark
energy and its possible time evolution, in order to understand the properties of this compo-
nent, together with its influence on the cosmological parameters, and to possibly distinguish
between some of the theoretical explanations available. In this thesis, we present attempts of
constraining the properties of a model where dark energy interacts with dark matter to see
how well they can describe the physics of our universe. We use a phenomenological model of
this interaction with the intent of constrainig the parameters of dark energy and to compare
how well this model fits the cosmological data in comparison to the standard ACDM model.
In Chapter 8, based on [38], we test the effects of this model on the cosmological parameters
using the most recent cosmological data available from the Cosmic Microwave Background
(CMB), Baryon Acoustic Oscillations (BAO), Supernovaes and local measurements of the
Hubble parameter. The data sets used above comprise mainly information from the early
universe when the CMB was formed, and the very late local universe. If dark energy is dy-
namical or is coupled to dark matter, this effect would be more pronounced at earlier times,
when the influence of dark energy is already strong but not today where its behaviour is very
well measured to be close to the cosmological constant. For that, we need measurements
that give us information about the properties of dark energy at different times, or redshifts.
This investigation was made in Chapter 9, based on [39], where we used a new measurement
of very distant quasars to evaluate a change in the cosmological parameters of the interact-

ing dark energy model, and to compare this with a constant dark energy component from

ACDM.

This thesis is organized as follows. Chapter 2 intends to present a review of cosmology and
perturbation theory necessary for the understanding of the cosmology used in the following
sections. The work is divided in two parts, that regard the two major questions studied
in this thesis. Part I - Early Universe Cosmology, is dedicated to address the singularity
problem that arises in the early evolution of the universe. We start this part with a very
short review of the AdS/CFT correspondence, in Chapter 3, to aid the reader to understand
the concepts presented in the following chapters. Chapter 4 presents the first article on the
topic of fluctuations in a cosmology with space-like singularities. In Chapter 5 we present the
second article on this theme, where we extend the conclusions from the first to cosmological

observables.
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Part II - Late Universe Cosmology, contains the studies of the nature of dark energy.
Since this exploration is based on analysing the current cosmological observations, Chapter
6 is dedicated to a brief review the statistical methods of data analysis used in the following
chapters. In Chapter 7 we analyse the phenomenological interacting dark energy model using
the current precise cosmological observations. To study the dynamical nature of the dark
energy component, this model is tested in Chapter 8 against the latest high redshift data
available. We conclude the thesis in Chapter 9.
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Chapter 2

Review of Cosmology

2.1 Homogeneous Universe

The background model that describes the evolution, structure and expansion of our universe
is the SCM. This model is based on two theoretical pillars: Einstein’s theory of General Rela-
tivity, which describes the dynamics of the universe, and the cosmological principle, the sim-
plifying hypothesis that the universe is spatially homogeneous and isotropic on large scales;
and three observational pillars: Hubble’s law, which shows that the universe is expanding,
the abundance pf light element, that confirms the hypothesis of primordial nucleosynthesis,
and the cosmic microwave background, an isotropic black body radiation at a temperature
of 3K that permeates all the universe.

In the SCM the dynamics of the universe is described by General Relativity. When com-
bined with the cosmological principle symmetry, which means invariance under translations
(homogeneity) and under rotations (isotropy), we have a solution for Einstein’s equation,
the Friedmann-Robertson-Walker (FRW) metric with line element:

2

1 — kr?

ds® = dt* — a*(t) + 7% (df? + sin® 0dyp?) (2.1)
where ¢ is the physical time and (r, 0, , ¢) are the comoving spatial polar coordinates, a(t) is
the scale factor which parametrizes the expansion of the universe or the radius of curvature
of the space-time with curvature k, that can have the values k = (—1,0,+1) representing

an hyperbolic, flat and spherical universe, respectively. It is also convenient to describe this

2017/06/25
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metric in conformal time 7, defined by dn = dt/a(t), where the FRW metric is takes the

form of a a static Minkowski metric times a?(n), the conformal factor.

2.1.1 Kinematics

All the information that we have from observations of our universe comes from light that we
receive from the universe. One of the biggest discoveries for cosmology, the verification that
the universe is expanding by Hubble [40], was made by observing that the light emitted by
galaxies had a deviation of its wavelength to the red region of the electromagnetic spectrum,
know as redshift. The recessing velocity can be interpreted as an cosmological analogue of
the Doppler effect and can be inferred through a redshift factor,v = ¢z, and can be inferred
from the wavelength from the relation:

Aobs — A t
o obs em _ a'( Obs) 1. (22)

/\em a (tem)

where v = cA. If z > 0 we call it a redshift and if z < 0 we have a blueshift. With that,
Hubble could infer the recession velocities and find the empirical relation known as Hubble’s
law, v = Hyl, where [ is the distance of the galaxies and Hj is the Hubble’s constant given

by today’s value of the Hubble parameter:
1(t
H(t) = @ . (2.3)

The value of Hy is measured with great precision today, but presents a tension in its values
measured by CMB, Hy = 67.7 + 0.5 [41], and by local observations from the Hubble Space
Telescope, Hy = 73.8 + 2.4 [42]. Two useful quantities related to H(t) are the Hubble time,
tg = H™', and the Hubble radius, rg = cH .

Another important quantity of interest in cosmology are distances, which are important
for observational measurements of the distant objects of our universe. In particular, we
can define the angular diameter distance as Dy = D/d0, where D is a known physical
size that can come from standard rulers, and 06 is the measured angular size. It can be
related to the metric distance d,, = Sk(x) obtained from the FRW metric line element:
ds? = dt* — a*(t) (dx* + Si(x)dQ?), as Da = d,,(1 + 2)7!. It can also be related to the
luminosity distance dy, d4 = dp(1 + z)72, where the luminosity distance can be related to

the comoving coordinate.
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2.1.2 Dynamics

The kinematic description of the universe does not allow us to determine the behaviour of
the scale factor. The dynamics if the universe is described by Einstein’s equation of general
relativity:
1
G =Ry — §g“VR =8rGT,,, (2.4)

where the left side contains information about the geometry, encoded in the Einstein tensor
G, which expresses the curvature of the space-time by its components R,,,, the Ricci tensor,
and R, the Ricci scalar. The right side of the equation is related to the matter content of
the universe, described by the energy-momentum tensor 7},,. The left side can also contain
a cosmological constant term A.

As we saw previously, we need to also impose the cosmological principle in the SCM.
This implies that it is a good approximation to consider the universe to be filled by a perfect
fluid (Weyl’s postulate) [43]

T = (p+ p) uptty — pYpuv, (2.5)

where p is the energy density of the fluid, p it is the pressure and v, is the velocity four-vector
of the fluid. In comoving coordinates, u, = (1,0, 0,0) and the energy-momentum tensor takes
the form T! = diag (p, —p, —p, —p). As this fluid is homogeneous and isotropic, p and p are
functions only of time. If the universe was composed of a scalar field, the energy momentum
would take the form:

v

Tt = Bupdo — | 50u0d¥o — V ()| 3. (2.6

where u® = 0%/ /8,00, p = 20,00"0+V (p), and p = £0,00"0 =V (), with 7, >
0.

We can insert the definitions of the energy-momentum of the perfect fluid , together
the FRW metric into Einstein’s equation ([2.4)) resulting in the Friedmann equations:

() _ &Gk 27

a 3 a?
a ArG
Z o= 2 3 2.8
- 5 (P +3p) (2.8)
where here G is Newton’s constant, and p and p represent the total energy density and

pressure of all matter components of the universe. We can combine these equations by
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taking the time derivative of (2.7]) together with ({2.8]), which yields the continuity equation:
p+3H (p+p)=0. (2.9)

This equation expresses the covariant conservation A,T# = 0, where A, is the covariant
derivative. If the matter content was made of a scalar field, this conservation law yields the
Klein-Gordon equation.

The Friedmann equation and continuity equations is a dependent system of equation
that describes the dynamics of a(t), p(t) and p(t). However, since these equations are not
independent, to fully determine this system we need an extra equation. This equation
characterizes the fluid that is present in the universe and relates the energy density and
pressure by an equation of state w:

p=uwp. (2.10)

Using this equation in the dynamical system we can see how each of the different matter
components influences the evolution of the universe. We can parametrize most of the com-
ponents of the universe by a constant equation of state with w = 0 for matter (baryonic or
dark), w = 1/3 for radiation and w = —1 for a cosmological constant. This leads to the

following dynamics:

prra® = pi(1+2)%,  matter af't?? | matter
p(t) =9 phda= = pid(1 4 2)*, radiation = a(t) = ap®t/?, radiation  (2.11)

A A Hat
age’At,

£y c.c. c.c..

where Hy = /87Gp)/3 and c.c. stands for cosmological constant. Taking the second
derivative of these solutions we can see that for matter and radiation the expansion of the
universe decelerates, while for a cosmological constant it accelerates. If one had a component

with a general w = w(a), its evolution can be given by:
_ w)da _3(14w
p=pye I BIHDLE = po ()30 (2.12)

where in the last equality we assumed a constant equation of state. In this way we can
describe a dark energy component, since w < —1/3 with a varying or constant equation of

state, leads to a universe with accelerated expansion.
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We can re-write the Friedmann equations using the density parameter, a parameter that
can be related to the kinematic characteristics of the universe. As we mentioned, in the
Friedmann equation, the quantity p is the total density given by the sum of the energy
densities of each component in the universe. In this way, dividing both sides of the first

Friedmann equation (with A = 0) by H?, we have:

k

1= Qtm‘al -
a?H?’

(2.13)

where Qo1 = > _,; {; is the relative total density, and €; = p;/perit is the density parameter

of the i** component of the universe. The quantity:

3H?

crit — ) 2.14
Perit S ( )

is the critical density. Writing the Friedmann equation in this way, we can see that the
total density parameter can be written in terms of the curvature constant: if Q1 > 1 <
k = +1 we have a closed universe, if sy = 1 < k = 0 we have a flat universe, and
if Yyt < 1 < k = +1 we have an open universe. The universe today is close to flat,
with Qy ~ 1 with 1% precision form measurements of the CMB by the WMAP satellite [44]
combined with constraints from Sloan Digital Sky Survey and type-Ia supernovae.

The Friedmann equation can be written in terms of the density parameter:

H2

m = ng CL_3 + Qrad,O CL_4 + QAQ s (215)
0

for an universe composed of matter (baryonic and cold dark matter), radiation (that can be
photons and massless neutrinos) and a cosmological constant, where Qo101 = Q + Qpaa +
Q) = 1.

2.1.3 Quick Review of the Thermal History of the Universe

In the previous sections we saw that each component of the universe leads to a different
evolution of the universe. In this way we have to know the composition of the universe at
each moment to be able to probe the history of its evolution.

From Hubble’s law we can see that the universe is expanding. Going backwards in

time, we can think that in its beginning, all the energy of the universe was contained in a
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infinitesimally small volume, with infinite density and temperature, expanding and cooling
from this point forward in time. This is why the SCM is also called the hot Big Bang model,
where the Big Bang refers to this initial infinite density state or initial singularity. From this
point on, the evolution of the universe depends on its matter content through the relations
given in ([2.11)).

From the evolution of the densities of each component, we have a period of radiation dom-
ination when z > z,, ~ 10*, matter domination when z,, > z > z,, and the current acceler-
ated expansion when dark energy dominates at z < z, The redshifts z.; = (peritQm)/(Pg—1)
correspond to the moment when the densities of matter and radiation is the same, and
zn = (Qn/ Qm)fl/ % _ 1 when the densities of matter and dark energy are the same, for a
constant w < —1/3. The value of z, is an open problem in cosmology since dark energy’s
nature is unknown. This component cannot dominate the content of the universe too early
in its history, impacting the formation of the large scale structures of the universe, so it
started dominating at times close to today. This is known as the coincidence problem.

We describe here in a succinct way the thermal history of the universe, showing the
different periods and non-equilibrium events that gave rise to the formation of the elements

of the standard particle theory model and all the matter constituents of our universe today.

e Contraction: One of the possible models for the evolution of the universe is a universe
that has a period of contraction previous to the current expansion era. The duration

of this period is model dependent.

e Planck era: The Planck era comprises the period from the beginning of the universe
until ~ 107*3s with temperatures of order T ~ 1032K ~ 10'*GeV. This period is not
described by the SCM and in this period General Relativity is not valid and quantum

effects are important.

e Inflation: This model was proposed as a possible solution to the problems of the
SCM and consists of a period of accelerated expansion. If there is such a period in

the evolution of our universe, it happenned from times ranging from Plancj times to
1073%s.

e Nucleosynthesis: As the temperature of the universe cooled down and became of the
order of 10® — 10°K, nuclear processes began to happen and formed the light elements

that compose our universe. This happened between 1 — 500s after the Big Bang and
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forms from the already formed protons and neutrons, the hydrogen (H), deuterium

(H?), H?® and helium (He).

e Recombination and photon decoupling: The universe is dominated by radiation since
z > 10*, and matter and radiation coexist in equilibrium. The light elements formed
during nucleosynthesis are ionized, with the electrons and photons scattering freely. As
the temperature cools down, these scattering become more rare and the free electrons
start to bind into H and H?. This period is called recombination and occurs from
z = 1400 when the temperature is of order of T" ~ 3800K until z ~ 1100 when
T ~ 3000K, when the photons decouple from the radiation-matter plasma. This instant
(which is actually a small period) is called last scattering surface and the photons that
decouple at this instant free stream until today, given us the CMB, a picture of the

universe around z = 1100.

o Matter era: After the decoupling of the photons, matter is the component that domi-
nates in the universe, from z = 10 — 2. In this period the formation of the large scale
structure occurs, with the formation of galaxies, stars and all the visible structures of

our universe.

e Dark Energy era: Period of accelerated expansion in the late universe.

The SCM described in the previous sections has many problems. As we saw in this
section some new mechanisms like inflation or bouncing cosmology and the introduction of a
dark energy component appear as necessary extensions of this model in order to match the

available cosmological observations.

2.2 Inhomogenous Universe

In the previous section we studied the homogeneous and isotropic background cosmology.
However, in our current universe we observe galaxies, planets and other non-linear structures
that show that the universe is not homogeneous bellow a certain scale. After the pioneering
measurements from WMAP and Planck satellites, the detection of deviations from the back-
ground homogeneity, from small fluctuations in the temperature of the CMB that indicate

perturbations in the energy density of the universe, of order of 107° were measured. We
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review in this section the formalism necessary to treat these perturbation and its evolution
in the linear regime, and to study their quantum origin in the context of (semi-classical)

general relativity.

2.2.1 Cosmological Perturbations Theory in General Relativity

The growth of the initial perturbations was first described in the Newtonian limit, where
structure are formed by gravitational instability. This study is important since it gives us
an idea of the evolution of late time, super-Hubble perturbations. However, for a complete
description if the perturbations in our universe, we need a decription in the context of general
relativity and this is developed in this section (based on [45-47]). We are going to study

small linear cosmological perturbations with respect to the background.

Classifying the Perturbation Modes

We start by perturbing the metric:
G = 95 + G (2.16)

where [0g,,| < ‘ gfﬁ)‘, and the background metric is the flat FRW metric in conformal time
with line element ds? = ng) (n) dztdz” = a* (n) (dn* — 6;;dx"da?).

The metric is a symmetric tensor that has 10 perturbation degrees of freedom. We can
decompose those perturbations into a irreducible set of modes: the scalar, vector and tensor
modes. This SVT decomposition is useful since at linear level, the Einstein equation for each
mode is decoupled from the others and we can treat the evolution of the scalars, vector and
tensor perturbations separately.

So, we can describe the perturbation of each component of the metric. The dgyy can be

described by one scalar function:

dgoo (1, %) = 2a° (n) ¢ (n,x) . (2.17)

There are two irreducible ways of writing the non-diagonal component of the metric dgo;, as

the gradient of a scalar quantity and as a divergenceless vector:

dg0i (1,x) = 2a* (1) (B, + Si) . (2.18)
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where B is a scalar function and S; is a vector with S;* = 0 so the decomposition is irreducible
and unique. The component dg;; of the metric is a tensor and there are five irreducible ways

to construct a tensor:
6gi; (n,x) = 2a® (n) (206;; + 2E 5 + F j + Fj.i + hij) (n,%x) (2.19)

where ¥ (n,x) and E (n,x) are scalars that can determine a tensor in two different ways:
by being multiplied by a tensor or by taking its Laplacian. The vector, F; (n,x), has to be
divergenceless. And finaly, h;; (1, %) is a tensor that must be traceless h! = 0 and transverse
h;z = 0, so it cannot be decomposed into scalars and vectors.

Having determined the perturbations, we can re-arrange the metric perturbations divid-

ing them into scalar, vector and tensor perturbations, with line element:

e Scalar modes: Described by 4 functions ¢(x, 1), ¥(x,t), B(x,t), E(x,1):

ds* = a® (n) {(1 + 2¢) dn* + 2Bdndz’ + [(1 — 2¢) 6;; — 2E 5] da’da’ } . (2.20)

e Vector modes: It contains four degrees of freedom described by 2 vectors, S;(x,t) and
Fi(x,1).
ds* = a® (n) [dn* + 2Sidnda’ — (6;; — Fij — Fy;) da'da’] . (2.21)

e Tensor modes: Two tensor modes

ds* = a® () [dn® — (65 — hij) dz'da’] . (2.22)

Gauge Transformations and Independent Variables

General relativity allows freedom in the choice of the coordinate system used. So it is
important to know how the metric changes under those changes of coordinates in order that
we can identify the modes that are physical from the ones that are a gauge artifact. For

that, given an infinitesimal coordinate transformation:

at — =t (2.23)
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where the £* has four components: £°, that can generate scalar perturbations of the metric,
and &', that can be decomposed in a irreducible ways into £ = &' + ¢ where &/ is a diver-
genceless vector that has two degrees of freedom that contribute to the vector perturbations,
and ¢ a scalar function. Tensors are invariant under coordinate transformations and do not
induce tensor perturbations.

The scalar and vector functions from the SVT decompositions of the metric transform

under this change of coordinates. The scalar functions transform as:

(/gzgzﬁ—%(afo),, B=B+¢ —¢°, (2.24)
¢=w+%£°, E=E+cs. (2.25)

while the vector transform as 5'2- = S, + f’g and E = F; + &15. The tensor mode hy;
is invariant under gauge transformations. This shows us that the scalar and vector modes
exhibit a gauge ambiguity with the appearance of fictitious perturbation modes that have no
physical significance. One way to avoid this gauge redundancy is to adopt a gauge invariant
description where we construct gauge invariant quantities independent of £, the Bardeen

variables:

Scalar modes:
cbap—a[a(B—E’ﬂ , @zw—%(B—E’). (2.26)

Vector modes:
(2.27)

Here we can see that the vector modes present four degrees of freedom, but only two of them
characterize physical meaningful perturbations.

We can also solve the gauge redundancy problem by choosing and fixing a gauge where
we are going to work. This amounts to impose conditions to fix the number of variables that
are redundant. From the diffeomorphism invariance of general relativity, we need gauge away
four degrees of freedom. The most used gauges in cosmology are the Newtonian, synchronous

and spatially flat gauge, and they are defined by the choices, for the scalar modes only:
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e Newtonian or longitudinal gauge: This gauge is given by the conditions:
B =0, E=0, (2.28)
that gives the following line element for the perturbations:
ds* = a® (n) [(1 4 2¢) dn* — (1 — 2¢) §;da’da’] . (2.29)
In terms of the Bardeen variables:
b =9, U =1, (2.30)

where ¢ and 1 are considered to be the generalized gravitational potential, giving the

name to this gauge.

e Synchronous gauge: the synchronous gauge is the gauge where we choose the syn-

chronous coordinates where dgo, = 0. This implies that:
p=0, B=0. (2.31)

In this gauge there is still some arbitrarity in the 3-dimensional coordinate transforma-
tions. As the conformal temporal coordinate is fixed, we can say that in this coordinate
system all the clocks in a given Hubble radius are synchonized, inspiring the name of

this gauge.

e Spatially flat gauge (or uniform curvature gauge) [?]: This gauge is very convenient
for cosmology because it simplifies the computation of the curvature perturbations,
that are linked to the density perturbations that seeded the structures of our universe,
for reasons that will become clear in the following sections. In this gauge, we have the
condition:

®=B=0. (2.32)

Linearized Einstein’s equations

After defining the properties of the perturbations of the metric, we can now write their

equations. For that we have expand the perturbed Einstein’s equations in the linear regime
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for small perturbations: 0G,, = 87GdT),,. At this level, the scalar, vector and tensor
linearized equations are decoupled and we can study the evolution of each mode separately.

Adopting the Newtonian gauge, we have the perturbed Einstein equation for each mode:

Scalar mode: Using the scalar perturbations of the metric in Newtonian gauge (2.29))

we have,
5G0 = VU - 3H (\IJ + ch) — 47 Ga25TY (2.33)
560 = (\If + ’H<I>) = 47Ga®STY, (2.34)

. ” 4 / 1 ; 1 2
G = {\If +H(2+ D) +(2’H +H2)®+5V2(¢—‘P) 05 =5 (@ =)

J
= —47rGa25Tji , (2.35)
where H is the comoving Hubble parameter.
Vector modes:
§GY = 167Ga*STY (2.36)
G = (Tyj + 0j3) + 2H (i + 05) = —167Ga® Tl , (2.37)
where 5T;(V) is the vector part of the perturbation of the energy-momentum tensor.

Tensor modes: from the tensor perturbations of the metric (2.22)),
5G = (hij + 2Hh;, — v%ij) — 167Ga® Tl ), (2.38)

where 5T;(T) is the tensor part of the energy-momentum perturbations, which usually

is disregarded in cosmology.

In the absence of anisotropic stress, the space part of the perturbed energy-momentum
tensor is expected to be also diagonal, as its background counterpart. For that, from the
above equations, we need to have:

d=10. (2.39)

This result is valid for any energy-momentum tensor with 6T; x 5;, i.e., when the matter

content is described by a perfect fluid without anisotropic stress.
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With that, we now need to describe the energy-momentum tensor. Here, we specialize
in the case where the matter content is given by a scalar field. All the formalism presented
here can also be described for a fluid-like energy-momentum tensor, as done in [46].

To evaluate the perturbations of the energy-momentum tensor that enter Einstein’s equa-

tions, we need to perturb the scalar field:

¢ (n, x) = ¢ (n) +0p(n, x) . (2.40)

This perturbation is also affected by a infinitesimal coordinate transformation, with the
scalar field transforming as 0@ = d¢ + ¢ €2, which adds a scalar mode. Analogous to what

was previously done, we can define a gauge invariant quantity for the scalar field:
X =60+ (B . E) o (2.41)

With that, and knowing the form of the background energy-momentum tensor for the scalar
field (2.6]), we can write the perturbations of the energy-momentum tensor of the scalar field

in the Newtonian gauge:

§TY = —o'x — a’V,x + oy | (2.42)
0T} = 0, (<p'><) , (2.43)
0T} = — <90/2<I> +a*V,x — go/x/> 5% (2.44)

We can now write the linearized perturbed Einstein’s equations for the scalar, vector and
tensor modes. We begin with the scalar modes, where the equations for each component can

be written as:

V20 — 3K (cp’ v ch) ype (go’x’ +a’Vox — q)go’) , (2.45)
d +HP=4rG ¢ x, (2.46)
o' 1 3HD + (’H + 27—[2> ® — 4nC (golx/ _ 20— a2V7<px> . (2.47)

As we can see, the scalar modes are the only ones that are coupled to the matter pertur-
bations, and for that reason are the only one relevant for the formation of structure in the

universe. This system of equation presents only two linearly independent equations.
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Using the Klein-Gordon equation for this scalar field, we can arrange the equations, and

re-write the perturbation equation as:

<I>”+2(7—[—('0—,)<I>'—V2<I>+2(H/—”H(’i,)<1>:0, (2.48)
¥ ¥

This equation for the scalar perturbations gives us the classical evolution of the cosmological
perturbations. Since there is effectively only one propagating degree of freedom, we can

define the variables:

u =

‘o, 0="M/ap (2.49)
¥

and the equation for the scalar perturbations is given by:

1 0”
u — Viu— <?> u=0. (2.50)

We can re-write this equation in momentum space as:

"

" 0
Uy + (k2 — ?) ux =0, (2.51)

where k = aky;, is the comoving momentum. This equation is analogous to the equation
of an harmonic oscillator with the term (—9” /9) acting as a time-dependent effect mass
squared. The inverse of this effective mass represents the size of the comoving Hubble
radius. This scale is important since it separates two regimes of behaviour of the evolution
of the perturbation [45] the short wavelength perturbations, which are inside the Hubble
radius (k* > mZ;,) and that behave as harmonic oscillators in Minkowski space-time; and
the long-wavelength perturbations which are outside the Hubble radius (k* < m?;;), and
are the ones that feel the expansion of the universe. The long wavelength modes have a
decaying and a growing solutions. In an expanding universe, the solution v ~ 6 is the one
that dominates. This means that the modes, after they leave the Hubble radius, are frozen
with the wavelength of the size of the Hubble radius at the time they exited it, and remain
like that until they re-enter the Hubble radius. The perturbations that we observe in the
CMB re-entered the Hubble radius in the radiation epoch and encode the physics of the

primordial mechanism that generated them, being either inflation or a bouncing cosmology.
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In order to interpret the evolution of the long wavelength perturbations in a more con-
venient way, we construct different gauge invariant variables. We can define the comoving

curvature perturbation [46,148,49]:

2H 1
87G 2

R=0+ (@' +mo) . (2.52)
It represents the gravitational potential on comoving surfaces with d¢ = 0 [?]. The equation

for the perturbation in this variable is given by:

I

== 2.
S7G 2 (2.53)

This variable is conserved for long wavelength perturbations, where V2® is negligible.
At this point we can see the advantage of the spatially flat gauge over the other gauges.

Using this gauge, the comoving curvature perturbation is given by:
1
2

and only depend on the perturbations of the scalar field and not on any perturbation of the

metric.

Although the scalar modes are the most important ones for the formation of structure in
the universe, it is important to see what happens to the vector and tensor modes.

The equations for the vector perturbations are given by:
A’l_JZ‘ = 87TGCL2@2(5UJ_Z' N (@i,j + @j,i), + 2H (@i,j + @j,i> =0. (255)
It is easy to see that the solution rapidly decays as the scalar factor increases, ®; oc a=2.
So, for these modes to be important cosmologically their initial values would have to be
very large. They do not contribute to the formation of structures, describing rotational
movements of the cosmic fluid.

The tensor modes are more interesting. Although they do not contribute to the formation

of structures, they describe the gravitational waves, with the equation:

hi; + 2Hhy; — V2hi; = 0. (2.56)
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Gravitational waves have two polarizations. We can expand h;; in the following form:

hy = —— / e () €3y () €% 4 c.c.] (2.57)
ij = k(n)e;(k)e c.c.|, )
I a(m ) @nyp P

where ¢;; is the polarization tensor. Since those perturbations were defined as being trans-
verse and traceless, the polarization tensor has to be symmetric, transverse €;; = €;; and

traceless €; = e;;k' = 0 as well. With that, the equation has the form:

" CL”
which like the scalar case is analogous to a harmonic oscillator, but with different effective
mass, mf]w = —d" /a, meaning that they evolve only feeling the influence of the expansion

and not the matter content.

2.2.2 Quantum Theory of Cosmological Perturbations

One of the central problems in cosmology is the primordial perturbations that seed the
structures of the universe. All the models that try to describe the early universe, being this
inflation, bounding cosmologies or even others, aim to address this question. To understand
the generation of these primordial perturbations, we need to describe them using quantum
theory. In this section we develop the quantum theory of cosmological perturbations where
we quantize the first-order metric and matter perturbations about our expanding background
[46]. This procedure leads to particle creation, generating the primordial perturbations.

We start from the Einstein-Hilbert action, coupled minimally to a matter action:

S =

1 4
e /d z/—g (R+167GL,,) , (2.59)

where £, is the matter Lagrangian density. Our goal is to expand this action to second
order, to obtain the linear equation for the perturbations, and study the quantization.

In order to do this, it is convenient to use the ADM formalism [50]. This formalism,
developed by R. Arnowitt, S. Deser and C. W. Misner, presents a Hamiltonian formalism

of General Relativity, and simplifies greatly the calculation of the second order action in a
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canonical form. We start by writing the metric in the following form:
ds* = (N? = NJN) dt? — 2Nida'dt — g;da’da? (2.60)

where A is the lapse function and N; the shift vector, and g;; is the metric on the hypersur-
faces of constant time. We can re-write the Einstein-Hilbert action with this metric and for

a scalar field as the matter content,

S = ﬁ d*z/—gINR® + N (K K" — K?) — 87GN (g70,00;0 — 2V ()
+ 8GN (¢ — N'Dipy) (2.61)

where R®) is the Ricci scalar with respect to g;; and K;; = IN71 (V,N; + V,;N; — g;;) is
the extrinsic curvature tensor of the constant time hypersurfaces. Varying the action with
respect to N and N, yields the Hamiltonian and momentum constraints.

We want to identify the quantities of this formalism with the ones from the previous
section. For this, we compare the metric with , and find that in Newtonian

gauge:

If we substitute these variables in the action (2.61)), and take into account the constraints and
the background equations, we can find the second order action with this formalism (see [46]
for detailed calculations). The zeroth order expansion provides the background equations,
while the first order expansion is identically equal to zero. With that, the terms of the second
order expansion provide the second order action for the perturbations.

As mentioned above, we have only one propagating variable for each type of perturbation.
The canonical variable of this second order action that describes each of those perturbations

is given by the Mukhanov-Sasaki variables. For the scalar perturbations it is defined as:

v=2zR, (2.63)



2 Review of Cosmology 27

with 2z = 1/ = ay /H. And for the tensor perturbations, the canonical variable is given by:

My

X
ij*
In terms of these canonical gauge invariant variables, the second order quadractic action

where h;; can be decomposed into its two polarizations:hg; (7, X) = hy (1, %) €4+ hy (7,%) €

for the scalar and tensor perturbations is:

1"

1 A Z// 1 N\ 2 a
S@ = §/d77d3x {(v) —v,v,; + ?v2] +5 /dnd?’x > {(M) — [t + Z/li

A=+, X

(2.65)

" "
4

where we see the time varying masses are as obtained before: —Z- and —%-. Going to

momentum space, the equations of motion have a similar form then the found before:

" ZN " CLU
vk—i-(kQ—;)vk:O, uk+<k2—;>uk20. (2.66)

We can also write the Hamiltonian for this system. For this, first we define the canonical
conjugate momentum:
oL ore

Hv (777X) - W =v, H,u (777X) =7 = My, (267)

which, by a Legendre transformation, leads to the Hamiltonian:

H= /dgx (v/HU + ,u:\Hu - £(2)>

1" 1

1 z 1 a
=3 /d31} {ng + v, — ?02} + 5/6133; [Hi + it — Z”i . (2.68)

Quantization

With the quadratic action, we can proceed to the canonical quantization of this system. The
second order action presented before reduces to the action of a real field with an external

potential. In order to describe the procedure that can be used for both the scalar and the
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tensor modes, we introduce the generalized variable @; (n,x) that can be identified with
either of the modes.

The action in this variable is given by:

N2 . ZN
S[Qi] = / dnd®z {(QJ — QuiQj + 7l A (2.69)
! L
with equation of motion Q;l + (V2 — ZZ—ll) @ = 0, where Z; is equal to z for the scalar mode

and a for the gravity waves.
In the canonical quantization procedure, we promote these variable to operators ); — Ql

and II;, — f[l, which must obey the commutation relations:

Q%) Tl (n,y)] = 08 (x =), (2.70)
Q0. Qy (1,y)] = [T () 11y (,3)] =0 (2.71)

A general solution of the equation of motion can be written as the decomposition:
Qi (n,x) = / (Qf% [Qk,l (n) dncge™™ + Qx, (1) dL,zeikx} ; (2.72)

where ay; and &ch,l are the annihilation and creation operators, respectively, acting on the
vacuum of the theory in the Fock representation. With the introduction of these operators,
the status of operators passes from the fields to them. This procedure is known as second

quantization. Those operators also obey the equal time commutation relations:
[ak,l, AL,Z/] — 6, (k_ k') o e i) = [aLl,&LJ,} —0. (2.73)

which are valid only if the modes obey the normalization relation Q;{JQI*(J — Q;;:le’l = 21,
that represents the Wronskian of the classical solutions. This normalization allows us to fix
the amplitude of Qy; (1) that is compatible with Heisenberg’s uncertainty principle.

The Hamiltonian for this system can be written in terms of the annihilation and creation
operators as Hy = wi, (1) afax, where wi (n) = k* — Z,' /2.

We need to define the Fock space where these operators act. Since the Hamiltonian is

quadractic and positive definite, there must exist the lowest energy state |0), where H |0) =
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Ey |0), which leads to:
ax,; 10) =0, vk, (2.74)

defining the vacuum state. We can act with the creation operator on the vacuum state gen-
erating the particle states. In the Heisenberg picture, the operators carry the time evolution,
and these states define the Hilbert space.

Although this quantization procedure is very similar to the one for a free field, in the
presence of an external field the invariance under space-time translations is broken and we
cannot define a unique orthonormal basis. The quantization procedure now depends on the
basis where the quantization was made and has a defined temporal direction. This effect leads
to particle creation, since the vacuum defined for a time ¢; can be different from the vacuum
defined at a time ¢5. The vacuum of ¢, can be seen as a state with particles in comparison
with the vacuum of ¢;. Those states can be related by a Bogoliubov transformation in which

one can calculate the number of created particles.

Power spectrum

In order to be able to compare the perturbations with observations, we need to evaluate
the power spectrum. For that, first we compute the two point correlation function for the

canonical variables:

01Qunx). @ (1) 10) = [ (jw’j Qut (n) Qicy (n') ™™ (2.75)

J/

Gt (nm')

where Gy (77, n/) is the Green’s function in momentum space. The power spectrum is defined

from this equal times Green’s function

1. |
Po, (k) = 55k lim Gac (n.0) = 5 5k* |Quct (DI by - (2.76)

m N—Nhe

For the scalar component this is written as:

k?)

Pr=9m

""‘7(’7)’2 . (2.77)

This quantity as seen by CMB observations should be approximately scale invariant. So,
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for the chosen mechanism for the evolution of the early universe, the resultant dimensionless
power spectrum for the generated cosmological perturbations must be close to scale invariant,

which is commonly parametrized as:
P, o k™t (2.78)

where ng is the spectral index, with ng ~ 1. The value of n, is determined by observations,
with its current value given by n, = 0.965 4+ 0.006 [41].
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Part 1

Early Universe Cosmology
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Chapter 3

The AdS/CFT Correspondence

The idea of holography, where the physics of a gravity theory in the bulk is encoded in
non-gravitational theory on the boundary, originates from black-hole physics [51,/52]. In
1997, Maldacena [9], motivated by the physics of D-branes, found a concrete example of the
holographic principle, the AdS/CFT correspondence. In its original form this is a corre-
spondence between a type II-B string theory on a AdSs x S° space-time to a N = 4 super
Yang-Mills (SYM) theory, which is conformally invariant, living in the boundary of this
space-time. Here AdSs is the bulk space-time and refers to an Anti-de-Sitter space-time in
five dimensions, and S® refers do the sphere in five dimensions.

The correspondence relates the bulk quantities R, the radius of the AdS space-time, and
l, the string length, with the two dimensionless quantities in the SYM theory, the coupling
gy m and the rank of the gauge group N:

R\
gs = 9}2/M7 <l_> = 47"912/MN- (3-1)

The regime where we understand string theory, the supergravity (SUGRA) limit, when
R > [, is given when the tHooft coupling is large:

GulN>1, large N, (3.2)

and the gravity theory is weakly coupled (and stringy effects are not important). In this
regime, the dual gauge theory is strongly coupled, which makes it very hard to describe.

An important aspect of the theory is that there is a match between the global unbroken

2017/06/25
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symmetries from both sides, namely the superconformal group SU(2,2[4). This can be seen
since the bosonic subgroup of the N' =4 SYM, SU(2,2) x SU(4)r ~ SO(2,4) x SO(6)r is
the isometry group of the AdSs x S® space-time .

This conjecture has proved to be one if the most important recent developments in string
theory that has applications in different domains of physics. Recently, there have been
many uses in condensed matter physics, gravitational theories, quantum chromo-dynamics,
nuclear theory, along with many other examples (for some examples see [53]). Although this
construction has the status of a conjecture, since no formal proof is available, there is strong
supporting evidence with the match of the symmetries on both sides of the theory, and the
match of the spectra of supersymmetric modes [54]. Although still in a low level of accuracy,
AdS/CFT also makes predictions that are in agreement with experiments, like for example
the viscosity of the quark-gluon plasma formed in the aftermath of collisions between heavy
atoms [55].

The low-energy limit presented above is called the weak version of the correspondence.
In the strongest version, the correspondence is valid for any value of N and all regimes of
coupling g; = g%, although it is highly non-trivial to implement since in the bulk side we
now have a full quantum type IIB string theory on AdSs x S°. This shows us that there
can be regimes of the correspondence where the 'tHooft coupling can become small, and in
this limit the finite gauge theory can be well understood, having a weakly coupled conformal
theory on the boundary, the reverse case of the one presented above. However, in this limit,
the bulk SUGRA breaks down since if the bulk curvature is of the order of the string scales,
R ~ [, then stringy effects become important. In this sense one can use the gauge theory
as a non-perturbative definition of the string theory with AdS boundary conditions. This
suggests an interesting avenue to address the resolution of singularities, a subject that we
explore in the following sections in the context of explaining how perturbations can evolve
through a cosmological singularity. In our case, we are allowing the 'tHooft to change, but
always keeping N large, to avoid the influence of non-planar diagrams in the weakly coupled

CFT that are not suppressed if NV is small and might influence the theory.

3.1 AdS space-time

The AdSs solution is embedded in a solution of a 10-dimensional type IIB supergravity

theory and it is the geometry where the correspondence has its better defined example. In
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this section we briefly describe the geometry of AdS space-time with Minkowski signature.
AdS4y1 space-time is the maximally symmetric solution o Einstein’s field equation with
a negative cosmological constant, A = —d(d — 1)/R?, where R is the AdS radius. It can be

considered to be the Lorentzian hyperbolic space given by the equation:
YA - Y+ Y+ Y= R (3.3)

The topology is that of a cylinder S' x R times a sphere S2d — 1, with boundary S x S%1.
We can describe AdS;+ 1 in different coordinate systems. In global coordinates, AdS;+ 1

has the metric:
ds* = R? [— sec? pdt* + sec? pdp?® + tan? dQZ_J : (3.4)

where 0 < p < 7/2 and —oo <t < c0. In this system the topology is globally a line times a
d-dimensional disk. The boundary is the cylinder S¢~! x R located at p = 7/2.
We can also describe AdS,y; in Poincaré coordinates, which cover only half the AdS,,

space-time. In this coordinate system the metric can be written as:

ds* = " (d2® + —dt* + da?) | (3.5)

z

where 0 < z < co. The boundary is at z = 0 and there is a horizon at z = cc.

3.2 The Mapping

The original form of the conjecture did not provided details of the mapping between the bulk
and boundary quantities. Witten [56], and Gubser, Klebanov and Polyakov [57] developed,
for the Euclidean case (see [58] for the case with Lorentzian signature), a way to relate the
states of the theories of the correspondence. Here, we show how to map a scalar field in AdS5
to CFT operators [54,59]. This description is important since, as said above, the duality is
expected to hold dynamically, describing how a quantum gravity in AdS can be mapped into
a CFT on its boundary. This is especially important in the case of the singularity resolution
in Chapters 4 and 5, where the parameters describing both theories vary describing the
correspondence in its different regimes.

The correspondence is described schematically as a relation between the generating func-

tional of a (d 4+ 1)-dimensional gravity theory in the bulk and the partition function of a
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d-dimensional CF'T on the boundary B of the bulk space-time:
Zbulk[@b] _ / ngoefngmv[%"] — <ef5ddzsﬁb0(m)> = ZCFT[SOb]a (36)
P—Ph

where Spuk () is the effective action of the bulk gravity theory, and ¢, is the near-boundary
bulk field that acts as a source term for the operator O of the CF'T theory. This is the most
general version of the correspondence. A more practical and known form of this duality is
when we consider the supergravity approximation. Having this, it is possible to compute
any n-point correlation function given that we can calculate the path integral of the action
of the gravity theory [1]

The path integral in the mapping depends on the behaviour of bulk fields as they asymp-
tote to their boundary values. For that, we need to understand the dynamics of the fields in
Ade+1E|. We will study the simple case of a free massive scalar field in Lorentzian signature
AdSd + 1, ¢(z,z#") where z is the radial AdS coordinate and u = 0, ...,d. The action of this
field in AdSd + 1 is:

1 1
S = el dzdz\/—g (ﬁg’“’@,ﬁp@y@ + m2902) , (3.7)

which leads to the Klein-Gordon equation:
(O+m?) ¢(z,2") =0, (3.8)

where O = (1/v/—9)0,/—99""0,. Plugging in the Lorentzian AdS metric and using the
ansatz with plane wave basis (2, 2#) = i (2)e?*®" | and making a field redefinition ¢y (2) =

272 pu(2), we have the equation of motion:

220,01 (2) + 20,04(2) — <m2R2 + dZQ + k:222) or(z) =0. (3.9)

A

Near the boundary of AdS, when z = — 0, the solution asymptotes to ¢ ~ z=, where

A (A —d) = m*R?, which has two roots leading to the asymptotic behaviour close to the

!The n-point correlation function is given by (O(zg...0(z,)) = %...%W\j(z)zo, where W =1nZ
is the generating functional.
2In Euclidean signature AdS, there is a unique extension of the field to the boundary because of the

absence of normalizable modes.



3 The AdS/CFT Correspondence 36

boundary:
o(z,2") ~ a_(z") 25 + o (o) 28 (3.10)

Ay = (d)2) £ \/df +m2R2. (3.11)

The solution with A, is called normalizable and A_ non-normalizable. Normalizability is

with

defined as finiteness with respect to the Klein-Gordon inner product:

(ur,ug) = z/ Az /g f" (ujOpus — Opuius) (3.12)
5

where u; and us are solutions of the Klein-Gordon equation and ¥ is a spacelike slice of
AdSgy1. Stability requires that the mass obeys the Breitenlohner-Freedman (BF) bound [60]:

m? > mpp = T (3.13)

We can see that tachyonic masses are allowed in AdS. This means that the asymptotic
solution ¢ ~ z* is normalizable when the field obeys the unitary bound A > (d — 2)/2.
The interpretation of these modes is the following. In order to have a well defined
quantum field theory, one needs a complete set of normalizable modes, since these are used
to build the Hilbert space in the bulk. So, these modes in the AdS/CFT correspondence
are associated to CFT operators: @norm(z,2) <> O(x). Non-normalizable modes do not
fluctuate, so they are not part of the Hilbert space. They are understood, in the AdS/CFT
conjecture, to define the boundary values of the fields, which in turn are classical sources

that modify the boundary theory:

op(x) = lim 22 7%p(2,2) = /ddxgpb(x)(’)(a:) . (3.14)

z—0

The expectation value of this modification is what defines the generating functional of the
CFT.

These relations define the mapping between the gravity and boundary theory. The am-
biguity in the choice of these modes amounts to a choice of boundary conditions that must

be made in the Lorentzian signature correspondence. It is possible, then, to evaluate the
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path integral of (3.6):
(el d'vee0@y — 7, 1 (pp) — e 5, (3.15)

The last relation is evaluated in the supergravity approximation, where we extremize with
respect to the field given boundary condition, obtaining the classical action. Now, any n-
point correlator can be calculated by a functional derivative of the supergravity action with
respect to the boundary field.

We only described in detail scalar fields that are dual to operators in the CFT. However,
the correspondence also applies to tensor fields. The most important duality that worth men-
tioning is the correspondence between the metric in the bulk (graviton) and the expectation

value of the energy momentum tensor in the CFT theory.
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Chapter 4

Fluctuations in a Cosmology with a
Space-Like Singularity and their
Gauge Theory Dual Description

4.1 Introduction

The AdS/CFT correspondence [9] is a most promising proposal for a non-perturbative defi-
nition of string theory. Thus, this correspondence should also have important consequences
for early universe cosmology. In fact, over the years there have been several proposals which
address the meaning of cosmological singularities in the dual field theory [10,/14,61-63]. The
general idea is the following: consider an asymptotically AdS space-time which is contracting
towards a curvature singularity. According to the AdS/CFT dictionary, this may correspond
to a dual conformal field theory which lives on the boundary which is in a nontrivial unstable
state [61-63] or which has a time dependent coupling [10,/14] which becomes small when the
bulk singularity is reached. While the bulk theory cannot be used to evolve further in time,
it may be possible to track the time evolution in the dual field theory in a controlled fashion.
It is then not unreasonable to assume that the dual field theory admits a continuation in
time beyond the time g = 0 when the bulk singularity occurs.

There are several motivations for this investigation. One of the motivations comes from
cosmology. Although the inflationary scenario |1H5] is the current paradigm of early universe

cosmology and has been quite successful phenomenologically, it faces conceptual challenges.

2017/06/25
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In particular, a robust embedding of large field inflation into string theory has proven to be
difficult (see e.g. [64168]) [] At the same time, it has been realized that there are alternative
cosmological scenarios which are at the moment also in agreement with cosmological data.
One of these is the “matter bounce” scenario (see [6] for a recent review), a bouncing scenario
which begins with a matter-dominated phase of contraction during which the scales which we
observe today with cosmological experiments exit the Hubble radius. It was shown in [71,72]
the if fluctuations begin in their Bunch-Davies vacuum at past infinity, that the growth of
the fluctuations on super-Hubble scales converts the vacuum spectrum into a scale-invariant
one for scales exiting the Hubble radius during the matter phase of contraction. Adding
a small cosmological constant (of magnitude similar to the one observed today) leads to a
small red tilt in the spectrum [73]. The observed spectrum of curvature fluctuations is indeed
scale-invariant with a small red tilt (see [41] for the most recent data).

In the context of effective field theory and Einstein gravity, it is difficult to obtain a non-
singular bouncing cosmology. One either needs to postulate that matter violates the “Null
Energy Condition” (NEC) during the bounce, or one needs to go beyond Einstein gravity.
Examples of the former are adding ghost condensate matter [74] or Galileon matter [75}76],
an example of the latter is Horava-Lifshitz gravity in the presence of non-vanishing spatial
curvature |77]. However, it is doubtful whether any of these constructions actually can
emerge from an ultraviolet complete theory such as string theory. Hence, it would be very
interesting to investigate if the AdS/CFT correspondence leads to a consistent bouncing
cosmology [|

Regardless of the above motivation, it is clearly interesting to investigate what happens
to classical spacelike singularities in a complete theory of gravity. In particular, does the

holographic correspondence predict a time evolution beyond this ”singularity” 7 Despite a lot

In “large field” inflation models, the field values are larger than the Planck scale during inflation. In
large field inflation models, the inflationary slow-roll trajectory is a local attractor in initial condition space,
a property not shared by small field inflation models (see [69] for a recent review). The “Weak Gravity
Conjecture” [70] constrains a number of large field inflation models, but the applicability of this conjecture
is still somewhat controversial.

2There are other approaches to string theory which indicate the possibility of obtaining non-singular
bouncing cosmologies. One example is “string gas cosmology” [78] in which the universe begins in an
emergent high temperature stringy Hagedorn phase, and in which the thermal string fluctuations in the
Hagedorn phase lead to a scale-invariant spectrum of fluctuations with a small red tilt |79,[80]. Another
example is the “S-brane bounce” of [81H83], in which an S-brane arising at an enhanced symmetry point
in the early universe leads to the violation of the NEC which makes a non-singular bouncing cosmology
possible.
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of effort, it is not clear whether any of the AdS/CFT models which contain true singularities
in the bulk admit a smooth time evolution in the dual theory. In the original model proposed
in [62,/63] which was based on earlier work of [61], there were some technical problems which
indicated that the time evolution past the singularity was not under control [84], mainly
due to the back-reaction of the fluctuations on the background space-time. There have been
attempts to overcome these obstacles [85-87], but the final verdict is still out.

In the works of [10-12,/14,/15] a bulk dilaton field ¢ had a time dependent (or a null
coordinate dependent) boundary condition so that e? becomes small at some time (or null
time), while Einstein frame curvatures become large in the bulk, signifying a singularity.
When the singularity is null, the dual theory appears to predict a smooth time evolution,
and because of the absence of particle production one expects that the spacetime is smooth
in the future. However for backgrounds with space-like singularities, as in [12] there is no
clear conclusion. Even though the background supergravity solution is time symmetric, the
issue relates to the effect of fluctuations. In the boundary field theory, the question becomes
that of particle production. In [12] it was argued that in the case when the boundary
theory coupling hits a zero, the time evolution of each individual momentum mode is in fact
singular. However it was not clear what happens when one considers the full field theory. In
a regulated version of the theory where the boundary coupling becomes small but does not
hit a zero, time evolution is well defined. However, the energy due to particle production
at times after the crunch would be large, and the spacetime will not bounce back to pure
AdS even at very late times. On general grounds, one might expect that a black brane is
formed [12] [}

In this chapter, we turn to a different aspect of the kind of backgrounds with spacelike
singularities studied in [10-12] as a result of a time dependent boundary condition for the bulk
dilaton. The goal of our study is to include cosmological perturbations in this picture. This is
important for at least two reasons. Firstly, it is important to study whether the background
is stable against the addition of fluctuations. Secondly, most of the data which we would
like to explain in cosmology concerns fluctuations (inhomogeneities in the distribution of

galaxies and anisotropies in the temperature of the cosmic microwave background).

3 There are AdS cosmologies in global AdS where the coupling enters a weak coupling region slowly
where [13] argue that the time evolution is smooth. In this model, the Einstein frame curavatures are always
small, but string frame curvatures become large. Even though the dual theory predicts a smooth evolution,
the space-time beyond the crunch cannot be determined reliably, though the energetics imply that big black
holes are not formed.
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We will not explore further the important question whether there are apparently singular
AdS cosmologies which lead to a bounce to a relatively empty space. Rather, we will study
models of the same type as |10-H12] which have Kasner singularitites. However we will keep
e? finite (but small) at all times, rather than going to zero, by putting in a cutoff in time, &.

More specifically, instead of the exact Kasner behavior near the singularity

() = il (@)
we will use
() = 01 = ©) + S (e — ). (12)

We do not know of exact solutions with such a cutoff dilaton : we assume that these can
be constructed. In the presence of such a finite cutoff, the boundary gauge theory is well
defined : our aim to study some aspects of this. In some sense, the spirit of our investigation
is similar to that of [88-90] and [91,92] (see also [93-96]) where signatures of a past Kasner
singularities in the dual field theory were studied.

We want to determine how the spectrum of fluctuations evolves as the system passes
through the ”singularity”. This question is independent of nature of the late time space-
time so long as there is a region of normal spacetime near the horizon, which is where the
fluctuations are measured.

This question is particularly interesting if any of these models reliably predict a bounce
since in this case connections with bouncing cosmologies studied by many cosmologists can
be made. There are classes of scenarios where, starting from vacuum perturbations at early
times in the contracting phase, a scale-invariant spectrum of fluctuations is generated before
the bounce. This occurs both in matter bounce scenarios [71,72] for scales which exit the
Hubble radius in the matter-dominated phase of contraction, and also in Ekpyrotic models
(in the presence of entropy fluctuations) [97+102]. To obtain a connection with observations,
the spectrum after the bounce needs to be determined. It has been shown [103] that the form
of the spectrum after the bounce can depend on details of the bounce, although in many
toy models one finds that on large scales the spectrum is preserved (see e.g. the analysis
of [104-108]). A result concerning the transfer of fluctuations in an ultraviolet complete
theory is thus highly desired. However, this question is also of interest for the particular

model which is analyzed in this chapter, which in all likelihood produces a black brane.
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As is clear from previous work, the gauge theory is in a highly excited state as one
approaches the region of weak 't Hooft coupling, possibly in a coherent state. In such
a situation, we expect that we can learn a lot from the classical limit of the Yang-Mills
theory. We therefore study the time evolution of small fluctuations around the background
across the region of weak coupling. Such small fluctuations are related, by the AdS/CFT
correspondence to bulk fluctuations. The kind of fluctuations we are interested in are those
which are given by correlation functions on a fixed radial slice on AdS, close enough to the
boundary. As we discussed, the space time in the future might contain black holes (branes).
However so long as the space-time near the boundary is smooth and normal, we can use the
AdS/CFT dictionary to translate boundary fluctuations to bulk fluctuations.

In this chapter we take a preliminary step towards computing the transfer of cosmological
fluctuations from before the beginning to after the end of the high curvature bulk regime.
We begin with a given spectrum of cosmological perturbations in the contracting phase of
the bulk, while the bulk is still weakly coupled. At the time when the bulk becomes strongly
coupled (and, correspondingly, the boundary conformal field theory becomes weakly coupled)
we map the fluctuations onto fluctuations of the gauge fields in the boundary theory. We
then evolve the fluctuations to the future in the weakly coupled region on the boundary. In
our classical approximation, it is now straightforward to find the fate of these fluctuations
at late times. The third step of our analysis is the reconstruction of bulk fluctuations from
the boundary data to the future of the bulk singularity. Note that we are interested in
fluctuations on scales of current cosmological interest. These scales are infrared modes from
the point of view of the physics which we are considering. Specifically, the wavelength of the
modes we are interested in is larger than the Hubble radius at the times between —t, and {,
when we evolve the fluctuations on the boundary.

Our main result is that the momentum dependence of classical fluctuations for momenta
much smaller than the cutoff (k¢ < 1) does not change after crossing the weak 't Hooft cou-
pling region, while their amplitudes change by O(1) factors. This means that the spectrum
of fluctuations of the dilaton field near the boundary also have this behavior. In particu-
lar, if we start out with a nearly scale invariant spectrum with a red tilt (as is the case
for models of matter bounce), the spectrum right after the “bounce” will remain the same.
While this result is shown for the bulk dilaton, we conjecture that the result we obtain will
directly apply to the evolution of the gravitational wave spectrum, the reason being that a

test scalar field in a cosmological background obeys the same equation of motion as that of
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the amplitude of a particular polarization state of gravitational waves.

This chapter is organized as follows. In Section II, we review the proposed generaliza-
tion of the AdS/CFT correspondence to a time-dependent background [10}/14]. Section III
consider a bulk scalar field and its dual in the boundary gauge theory. As it turns out, the
time-dependence of the background scalar field induces a time-dependence of the mass of the
gauge field. In Section IV we study the evolution of the gauge field given the time-dependence
of the coupling constants induced by the non-trivial scalar field in the bulk. Since we are
interested in eventually computing linear fluctuations in the bulk, we will focus on linear
perturbations of the boundary field. This leads to a dramatic simplification of the analysis.
We can work in Fourier space. Each Fourier mode obeys an ordinary differential equa-
tion which is analogous to the equation which cosmological fluctuations in a time-dependent
background obey in the context of standard General Relativistic perturbation theory. Hence,
we can use the accumulated knowledge about the evolution of cosmological fluctuations in
time-dependent backgrounds to solve for the evolution of the linear boundary gauge field per-
turbations through the time point ¢ = 0 where the bulk theory becomes singular. Since the
boundary theory is weakly coupled near the bulk singularity, the computations done in the
context of the boundary theory remain under control. At large positive times (when the bulk
theory becomes weakly coupled) we then reconstruct the bulk scalar field using boundary-to-
bulk propagators. This is discussed in Section V where we also extract the power spectrum
of the scalar field fluctuations at late times and relate it to the initial spectrum before the

bulk singularity. We discuss and summarize our results in the final section.

4.2 Time-Dependent AdS Background and CFT Dual

The original Maldacena conjecture is a duality between a Type IIB string theory on AdS5x .Ss
and a conformal field theory, a supersymmetric Yang-Mills (SYM) N = 4 large N SU(N)
gauge theory, living on the boundary of AdS; |9]. The two dimensionless quantities on the
bulk side are R/, where R stands for the AdS radius and [, is the string length and the
string coupling constant gs. These are related to the two dimensionless quantities in the

SYM theory, the Yang-Mills coupling gy s and the rank of the gauge group N by

l_4 = 47Tg}2/MN7 gs = g}Q/M' (43)
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The string coupling g, is of course given by the bulk dilaton field ¢

gs = exp(p) . (4.4)

There are two particularly noteworthy aspects of this correspondence. Firstly, it relates a
gravitational theory (the bulk theory) to a non-gravitational field theory on the boundary.
From this point of view, the challenge of quantizing gravity suddenly takes on a completely
new view. Secondly, the duality is a strong coupling - weak coupling duality. The bulk
dilaton provides both a measure of the couplings in the bulk and in the boundary. However,
it is precisely when the bulk theory becomes strongly coupled that the boundary theory
becomes weakly coupled. In particular we can consider N > 1 so that bulk quantum
effects are small, but g% ,,N < 1 so that the boundary theory is weakly coupled - this would
correspond to bulk curvature scales of the order of string scale, signifiying that stringy effects
become important in the bulk. This can be achieved, e.g. by having g, = ¢%,, < 1/N for
some fixed large N.

This suggests an interesting avenue to address the question of resolution of cosmological
singularities. One possible way to do this is to consider a time dependent boundary condition
of the bulk dilaton [10,/14]. By the standard AdS/CFT correspondence the dual field theory
living on the boundary now has a time dependent coupling. A cosmological singularity corre-
sponds to a divergence of the gravitational coupling and thus to a region where conventional
approaches to quantizing gravity will fail. However, by the AdS/CFT correspondence the
bulk theory is dual to a non-gravitational theory on the boundary, and the bulk singularity
corresponds to a point in time when the boundary theory becomes weakly coupled. Thus,
the usual principles of field theory quantization should be applicable, and one has to deal
with a weakly coupled field theory which, however, is time dependent.

The first step is to consider the low energy limit of the bulk Type II string theory, namely
Type II supergravity, and to focus on the bosonic sector of this theory. The second step is to
allow for a time dependence in the bulk fields. The bulk fields involve the ten-dimensional
metric, the dilaton ¢ and a five form F5. The ansatz for such solutions is given by a non-

trivial metric of the form

R2 = ’ 14
ds* = = [d2” + Gy (a")datdz”] + R*dQ3 (4.5)
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where dQ? is the standard metric on a unit 5-sphere. The surface z = 0 is the boundary of
the space-time. Note that the metric on a constant z slice is a function of the coordinates

a* only. This also holds for the dilaton field ¢(2*). Finally, the five form is given by
F(5) = Wy + *1oWs . (46)

As shown in [10], these bulk fields satisfy the full ten dimensional equations of motion
provided

~ 1

R;w - 5 ,u90811907 (47)

where Ruu is the Ricci tensor of the metric g,,, and where the dilaton ¢ obeys the Klein-

Gordon equation

9a(v=99"P0pp) = 0. (4.8)

In the above, g is the determinant of the full metric g4p, and the indices A, B run over all
five space-time dimensions.

AdSs5 x S5 is of course a special case of a space-time described by the metric . In this
case, the metric g,, = 7., the Minkowski metric, and the dilaton is constant. The radial
coordinate z runs from z = 0 at the boundary to z = +o00 at the Poincaré horizons.

Time-dependent deformations of this background were considered in [10-15]. Specifically,
we shall consider a background of the form [12] obtained by introducing a time-dependent
dilaton background and adjusting the metric of g,, such that the Einstein equation (4.7)
and the Klein-Gordon equation remain satisfied. We will mainly deal with a solution

where the the boundary metric looks like that of a Friedmann universe
Gudatde’ = —dT* + a*(T)d;dx’da’ | (4.9)

with 7" being the cosmic time and a(T") the scale factor. The dilaton and scale factor were
taken to be

2 T
a ~ ’T’l/?’ , @ = ﬁln% .

This corresponds to an early contracting phase leading to a “Big Crunch” singularity at

(4.10)

T = 0 followed by an expanding cosmology. In conformal time ¢, the four dimensional part
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of the metric is
Gudztda” = 20t|[ — dt* + §;da’da’], (4.11)

while the dilaton is given by

@ = \/gln% . (4.12)
If the singularity can be resolved by mapping the dynamics to the boundary, we will have
a stringy realization of a bouncing scenario, though one would not expect a perfect bounce.
As mentioned in the introduction we do not know yet if this indeed happens.

The dilaton profile leads to a diverging string coupling e® at early and late times
. this would seem to require incorporation of bulk quantum corrections. However it turns
out that one can obtain solutions which have bounded values of the coupling e¥ at all times,
and whose behavior near the "singularity” is identical to the above. Such a solution is given
by the metric [11]

ds* = L [d=" + | sinh(2t)|{—dt* + i +r%d03}) (4.13)
22 1+ 72 2 .
and a dilaton
™ = g,|tanh(t/R)|V?. (4.14)

Near t = 0 the dilaton profile goes over to that in (4.12). The metric (4.13]), whose four
dimensional part is a FRW metric with constant negative curvature does not, however,
become as t — 0. The difference between the two, however, become increasingly
unimportant as t — 0 where the bulk stress tensor is dominated by the time derivative of
the dilaton rather than the spatial curvature.

A sketch of the space-time we are considering is given in Fig. 1. The vertical axis at
z = 0 is time, the horizontal axis at ¢ = 0 represents the AdS radial coordinate. The
Poincaré horizons are at 45 degrees. While we will consider the solution and
it is useful to think of this as embbeded in the solution and with a bounded
dilaton. Then at early times the Yang Mills coupling is ¢%,, = g, and we will always
consider g < 1, N > 1 with (gsN) > 1. Thus the early time evolution is governed by the
bulk supergravity equations. The time ¢, is defined as the time when the 't Hooft coupling
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of the boundary theory becomes O(1), i.e.
o/ R ~ (guN) 5. (4.15)

Thus, in the region t > —t, and t < ¢, the bulk gravity theory is weakly coupled. For
—t, < t < t, the bulk curvatures grow large and stringy effects becomes important, while
the boundary field theory is weakly coupled, although in the presence of a time dependent
coupling.

Note that the solutions considered above have a non-trivial boundary value of the dilaton
and a boundary metric which is conformal to flat space. However there are no subleading
normalizable pieces of these bulk fields. From the dual field theory point of view, it thus ap-
pears that we have non-trivial time dependent sources, but a trivial response. This indicates
that such cosmologies correspond to some non-trivial initial states. However the nature of
this state in terms of the gauge theory variables is not known.

There is another feature of these solutions which deserves mention. The singularity at
t = 0 extends from the boundary to the bifurcation point of the Poincare horizon at z = co.
This means that there is in fact a singularity at any finite Poincare time which is infinitely
far from the boundary. Presumably this feature has something to do with the nature of the
initial state. However, as pointed out in [88-90], this bifurcation point singularity can be
resolved by lifting the solution to one higher dimension and embedding the solution in a
higher dimensional soliton solution.

In the following sections we are interested in evolving spectator massless bulk scalar field
(which will be in fact taken to be the dilaton itself) perturbations from the past weakly
coupled bulk region to the future weakly coupled bulk region by mapping the state onto the
boundary at time t = —t;, evolving on the boundary to positive times, and using boundary-

to-bulk reconstruction techniques to recover fluctuations in the bulk.
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Fig. 4.1 Conformal diagram of the background space-time. The vertical axis at z = 0 is time
t, the horizontal direction at ¢ = 0 represents the coordinate z. The lines at 45 degrees are the
Poincaré horizons at z = 4oo. If there were no deformation of AdS, the region drawn would
correspond to the Poincare patch of AdS. We are considering a deformed space-time in which the
bulk gravity is strongly coupled between t = —t; and t = tp, and singular at t = 0. At the same
time the boundary gauge theory becomes weakly coupled for ¢ between —t; and t;,. Hence, after
the time —t; the evolution on the boundary becomes tractable in perturbation theory. On the
future side of the bulk singularity, the boundary theory remains tractable perturbatively until the
time t; when the the bulk theory becomes weakly coupled again at the cost of the boundary theory
becoming strongly coupled. At that time we can reconstruct the bulk information (at least in the
vicinity of the boundary) from boundary data (see e.g. [L09-115]). As we will see, to study the
evolution of the boundary fluctuations we need to impose a cutoff at ¢t = +£.

4.3 The Bulk Theory of a Test Scalar in a Contracting Universe

To begin with, we consider a test scalar field of mass m living in the bulk space-time (in the

following section we will take this test scalar field to be the dilaton itself). Its action takes
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the form
S, = —/d‘r’x\/—g(gMN@MgoaNgo—l—mZ(pQ) . (4.16)

where ¢gM¥ is the metric of the five-dimensional deformed AdS space-time
R2
ds? = — [d2” + Gy (a#)datdz"] (4.17)
z

with the four dimensional part g, given by (4.9). Varying the action with respect to the
scalar field yields the following equation of motion

2

) . R 3
PH3Hp—aput+m’ o @t . =0, (4.18)

where H = a/a is the Hubble parameter, and a dot denotes the derivative with respect to
cosmic time 7.

Since we are interested in the spectrum of fluctuations in the three spatially flat coor-
dinates %, we first of all extract the z' dependence by expanding in Fourier modes. The
resulting differential equation is a partial differential equation in 7" and z, and we make a
separation of variables ansatz to separate the T and z dependence. More specifically, we

write

p(T,z,2") = T(T)Z(2)X ('), (4.19)

where the X (z¢) are the spatial Fourier modes, i.e. solutions of
VX + kX =0, (4.20)

with solutions which are positive or negative frequency oscillations in the three vector x,

where the rescaled temporal field
Tt) = al®)T(t), (4.21)

(with ¢ being conformal time defined via d1" = adt obeys the equation

T+ (wa® + k* — ¢ )T =0, (4.22)

a
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(a prime denoting the derivative with respect to ¢) and the radial function Z(z) obeys the

equation
3 m2R?
ZZZ——Z’z—i—(uﬂ— 5
z z

)Z = 0. (4.23)

)

The separation constant w plays the role of a temporal frequency. The solutions of the radial

equation are Bessel functions
Z(z) = C2% ), (wz) + Oy %Y, (w2) (4.24)

with

v =+vV4+m2R?. (4.25)

The temporal equation takes on the familiar form of the coefficient function of
a comoving Fourier mode of a massive scalar field (mass given by w?) in an expanding
background space-time which undergoes cosmological squeezing (the final term on the left
hand side of the equation). In the case w? = 0 it is also the equation of motion which
gravitational waves in an expanding space obey [46{47]. In particular, in the case of infrared
modes for which k2 is negligible, then close to the singularity the mass term is negligible
and the squeezing term dominates. In this chapter we will, however, not be evolving the
fluctuations in the bulk until the singularity, but only to the point in time when the bulk
theory ceases to be weakly coupled. Then, we will map them onto the boundary and evolve
them with the boundary equations near the bulk singularity.

Our main result does not depend on the initial fluctuation spectrum. As a concrete
example, however, we could e.g. take the initial spectrum to be scale invariant for modes
whose wavelength is larger than the Hubble radius. During the phase of contraction the
Hubble radius is decreasing in comoving coordinates (see Fig. 2). This is motivated by
the fact that in several models of "bounce” cosmology (e.g. matter bounce of [71[72] or
Ekpyrotic [97] scenarios) an initial vacuum spectrum (see e.g. [116]) on sub-Hubble scales
gets converted to a scale-invariant one once the scales exit the Hubble radius and undergo
squeezing.

We will thus take the initial power spectrum

P(k) = k|00 (k)" (4.26)
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on super-Hubble scales to have index n = 0 (where we are using the convention for the index

used in the cosmology community for gravitational waves, namely P(k) ~ k™).

Mot fremmmmemremememeneneneee

Y

.

[

KH

Fig. 4.2 Space-time sketch of the relevant times and length scales in our deformed AdS5. The
horizontal axis is comoving spatial coordinate (in direction perpendicular to the radial direction.
The vertical direction is conformal time. 74 and 7p_ are the times when the coupling constant is
1, the times +& occur when the bulk curvature reaches string scale. The vertical line represents the
wavelength of a mode which we are interested in. Note that the length is larger than the Hubble
radius at 7p4 and 7p_. The blue lines at 45° indicate the Hubble radius.

After discussing the bulk-to-boundary correspondence for the fluctuations we will deter-
mine the initial spectrum of perturbations of the boundary gauge fields which are induced

by the inhomogeneities of the bulk field discussed above.
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4.4 The Dual Boundary Theory

4.4.1 The Deformed Dual Boundary Theory

For a pure AdS bulk, the dual boundary theory is a N' =4 SYM theory. According to the
AdS/CFT correspondence, fields in the bulk are related to operators in the boundary theory.
For example, the bulk metric g, is dual to the boundary energy-momentum tensor 7),,. In
this chapter we are interested in scalar field fluctuations in the bulk and their boundary
evolution. Specifically, we will take this scalar field ¢ to be the dilaton ¢. In this case, the
bulk scalar field is dual to the trace of the square of the field strength tensor. For an exact

AdS bulk, the boundary action is simply

1 1 )
Svu = / dy—TY [F, F™] (4.27)
IyMm
with
Gom = ¢ = gs. (4.28)

Here, we denote the boundary coordinates by y. We use a generalized AdS/CFT correspon-
dence according to which the time-dependent dilaton in the bulk leads to a time-dependent
gauge coupling of the boundary theory, i.e. (4.27)) is generalized to be

Sym = —% / d*ye # Ty [F,, F™] . (4.29)
The operator dual to the bulk dilaton is TrF),, F'* at large N. This has been carefully
derived in Appendix A of [12]. Note that we are always working at large N, but the 't Hooft
coupling g% ,,N can become small.

The bulk solutions we are interested in have, in addition, a boundary metric which is non-
trivial and time dependent. However in the slicing chosen in and the time ¢ chosen on
the boundary at z = 0 as in (4.11)), the metric on which the gauge theory lives is conformally
flat. Since the boundary theory is the four dimensional SYM theory, the conformal factor
decouples and the non-trivial effect is that of the time dependent dilaton |7_f]

What was said so far applies to an unperturbed theory. In the presence of perturbations

the correspondence becomes more involved [117,/118]. Each supergravity perturbation has

41t is of course possible to choose other slicings, particularly those obtained by Penrose-Brown-Henneaux
transformations in the bulk where the non-triviality of the metric plays a role. See e.g. [11].
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two modes - one normalizable and the other not. The normalizable mode determines the ex-
pectation value of the boundary operator, the non-normalizable mode enters as the coupling
of the operator in the boundary theory.

We are interested in evolving linearized bulk fluctuations. This means we will turn on
normalizable bulk modes. Hence, we will be evolving the linear fluctuations in the gauge field
A, on the boundary. The initial conditions for the gauge field fluctuations on the boundary

are set by the dilaton perturbations via the linearized version of the correspondence

oly) = ﬁm[mm (4.30)

where the normalizable dilaton fluctuation behaves in the standard fashion as

p(z,y) = 2o(y), (4.31)

as one approaches the boundary z = 0.

The effects of linear dilaton fluctuations on the evolution of the gauge field fluctuations
would be a second order effect in the amplitude of fluctuations. Hence, at linear level in
perturbation theory there is no such coupling and the only effect of the dilaton on the gauge
field fluctuations is via the dilaton-dependence of the gauge coupling constant at background
level.

Given a spectrum of dilaton fluctuations at early times in the bulk, we will evolve them in
the bulk until bulk perturbation theory breaks down at time —t,. At that point, we compute
the boundary values of the dilaton fluctuations and use them to determine the initial values

of the gauge field fluctuations 6 A,,, at that time.

4.4.2 Evolution of the Boundary Fluctuations Before the Singularity

As we have mentioned, the dilaton field evolves as a function of cosmic time and initially
takes a large value, and thus the Yang Mills coupling is also very large initially which implies
that the boundary theory is strongly coupled in the far past. (It is useful to think in terms
of the solutions and with bounded dilaton profiles). At these early times, the
dynamics of the whole space-time can be studied making use of the bulk theory since the
gravity sector is weakly coupled. As the universe contracts, the value of e decreases and

the corresponding 't Hooft coupling of the field theory becomes O(1) at the time —t;, given
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by . This is the time where the gravity approximation begins to fail.

As the bulk space further contracts, the boundary theory becomes weakly coupled as
g3yN < 1. When t = 0 and ¢ — —oo, the bulk singularity point is reached. While it
may appear that the boundary gauge theory is now free, as shown in |12], each momentum
mode of the gauge theory displays a singular behavior. We therefore work with the modified
dilaton profile 1' with o = v/3 so that this is a genuine bulk solution for |¢| > &.

We will make a gauge choice

Ay =0, (4.32)

and also impose an additional constraint
0'A; =0. (4.33)

The Gauss Law constraint is then automatically solved [12].
The form of the action (4.29) suggests a field redefinition (for an analysis in terms of the

original variables see Appendix A)
A, — A, =e¥?A,. (4.34)

This has two effects. The first is that it introduces a "mass” term for the redefined field.

With a dilaton which depends only on time, the effective mass square is given by

22
M2, =2 %. (4.35)
The second effect is to bring in a factor of e#/? in front of the cubic interaction term and a
factor of ¥ in front of the quartic interaction . This might suggest that as t — 0 the nonlinear
terms become small and can be ignored. However, as shown in |12] this is incorrect. If one
substitutes a general solution of the linearized equations of motion (see below) into the action
one finds that the fields flu blow up as ¢ — 0 in such a way that the original field A, becomes
O(1). Therefore, for arbitrary amplitudes the nonlinear terms cannot be ignored.

However we are interested in the time evolution of small fluctuations of the gauge field.
The nonlinear terms are then suppressed because the amplitudes are small. In the following

we will deal with the linear theory. Effects of nonlinearities will be explored in a future work.



4 Fluctuations in a Cosmology with a Space-Like Singularity and their Gauge Theory Dual
Description 55

Then the leading terms in the equation of motion for A; give
—0, 0" A + M2y A = 0. (4.36)

In the background (4.2) M,, becomes

—olatd) if [t] > ¢
M2, (t) = e 4.37
var(t) | afet2) 1] < ¢ (4.37)
4&'2 b .

Note that the coefficients in the mass term diverge as t — 0 if & = 0. This is why the
evolution of the fluctuations is non-trivial in spite of the fact that the boundary gauge
theory becomes weakly coupled at this time. Note that in terms of the original variables
A, there is no divergence. But a branch cut in the solutions remains. Working with the
rescaled variables has the advantage that the equation of motion is similar to that of a simple
quantum mechanics problem in a non-trivial potential, and we can use our knowledge about
quantum mechanical scattering problems to find good ways to solve the equation.

In linear theory, each Fourier mode will evolve independently. In fact, we are interested
in following modes which early in the contracting phase have a wavelength smaller than the
Hubble radius and then exit the Hubble radius at some point in time (i.e. the Hubble radius
decreases such that the wavelength becomes larger). Thus, we Fourier transform the gauge
field

A (&) = / B ca(F)Ap(t)e e e (4.38)
where ¢, is the polarization unit vector. The Fourier mode Aj then obeys the following

equation of motion:
A+ (4 M)A = 0, (4.39)

which is a harmonic oscillator equation with time-dependent mass. Upon quantization, the
Fourier mode can be written as a combination of creation and annihilation operators, and
the time-dependence of the mass leads to squeezing of the wave function in the same way
that infrared modes of cosmological perturbations and gravitational waves are squeezed on

super-Hubble scales in a dynamical cosmological background.
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The general solution of a Fourier mode of the gauge field can be written in terms of Bessel

functions:
((—t)% [D}(kz)Jyg(—kt) +D;(l<;)Yl,g(—k:t)} . if t< =€,
A(t) = § A exp|Bt] + B exp|—p] , if —e<t<g
t3 {Dj(k)Jug(k;t) +D;(k;)yyg(kt)] , if t>¢,
with the index
yg_lgo‘ a=3, (4.40)

and

55\/W—k2. (4.41)

For t < & the solution of the above mode equation involves two coefficients D and Dy, which
can be determined by matching the bulk solution and the boundary operator at the surface
of —t,. We are interested in modes which start out in the vacuum state early during the
phase of contraction, i.e. in their Bunch-Davies [116] state.

On sub-Hubble scales (large values of kt) both modes are oscillating. For small values of
kt the modes have very different asymptotics. If Dy, = 0 around the moment —¢; then the

asymptotic form of the solution is

. TERA
At ~ o (B (1.42)

i.e. it is in general a decaying mode as ¢ — 0. The second mode scales as

At ~ =D (2 (4.43)

g Yor kt| ) '
which is a growing mode which in fact diverges as ¢ — 0. This is a reflection of the fact
that the mass term diverges. The physical solution will be dominated by the growing mode
unless Dy vanishes. But it will not vanish in the general case. In particular, if we were

to match the solutions to a Bunch-Davies vacuum, then we would expect the magnitude of
both coefficients D7 in 1' to be of the same order.
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4.4.3 Determination of the Spectrum of the Boundary Fluctuations at —{,

A key step in our analysis is to extract the spectrum of the boundary gauge field from that
of the bulk dilaton. The coefficients D; and Dy are determined via by taking the
limit of the dilaton fluctuations at the boundary. We make this identification at the time
—t, when the coupling constant vanishes. At first sight, we are faced with a puzzle: the
right-hand side of is quadratic in the gauge field, the left-hand side is linear in the
dilaton. It is thus non-trivial to infer the gauge field fluctuations from the bulk dilaton. The
approach we will take is to look for a power law form of the gauge field Fourier modes A, (k)
which yields the spectrum of the bulk dilaton fluctuations we are starting with.

Recall that we are interested in perturbations on cosmological scales which are in the far
infrared and for which spatial gradient terms can be neglected. Thus, the dominant term
for the infrared modes in Tr[F2(€)] is the term A2, Inserting the Fourier expansion of A;(z)
yields

A2 = / Bl d ko A; (ky) A; (ky)elFrtka)zy (4.44)

where V' is the normalization volume used to define the Fourier transform.

In writing we have ignored the nonlinear terms which are contained in Tr(F?).
This is because we are interested in the spectrum of small fluctuations so that the nonlinear
terms are suppressed by powers of the amplitude.

We introduce new momenta
1 /
]{71 == §(k + k ) 5
1
ke = S(k—k). (4.45)

We write down the Fourier expansion of the dilaton field ¢, and insert into (4.30]) and (4.31])

to identify Fourier coefficients. This leads to

1 . AN — k!
(k) = Z/dsk’Ai (k;k ) A; (k 2k ) vz, (4.46)

where ¢ is defined in (4.31]).

One way to find a consistent A;(k) to give rise to a power law bulk spectrum (k) ~ k=7

is as follows. We can divide this integral into a region R; with k¥’ < k and a region Ry with
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k" > k. In the integral over region R; we can set k' = 0 to find the approximate result
342 -
kAL (k) ~ K77, (4.47)

and hence (making use of the fact that on super-Hubble scales A ~ HA)

_a+3

Ailk) ~ k7T (4.48)

It is straightforward to check that this is a consistent solution for any v > 0. Substituting

(4.48) into (4.46) we get

k3

o)~ [ @0 - WPy =k [ dig - ) (4.49)

The integral over ¢ is convergent when v > 0. In particular, for a scale invariant spectrum
v =3/2.

A non-zero value of A; would lead to nonzero values for operators involving higher powers
of the field strength. In this chapter, however, we are interested in small fluctuations. This
means that the effect of operators like TrF™ are suppressed.

For cosmological scales we are interested in, the modes are outside of the Hubble radius
at the time —t,. Hence, we can use the small argument limit of the Bessel functions. We
will assume that at £ = —¢;, both modes have the same amplitude. Let us denote the total
amplitude of A(k) (we are dropping the index i) by 2A (which is k-dependent). Then we

find the following values of the coefficients Dy, and D7 before the bounce

~ — Kty \"*

. —kty|\ 7
D; = Al—t|V? ('2—“> : (4.50)
At this point we know the equation of motion and the initial conditions for the boundary
gauge field at the time —t;, when the boundary theory becomes weakly coupled and when we
begin the evolution of the fluctuations on the boundary. The evolution can be followed by
determining the coefficients A, B, D}, D> by standard matching of the function flk(t) and

its time derivative at ¢ = ¢, as detailed in the next section.
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4.4.4 Evolution of Boundary Fluctuations through the Singularity

It is useful to discuss matching of solutions of the general form

A_(k)Fi(t) + B-(k)G1(1) if ¢t <-—¢,
Ap(t) = { A exp|Bt] + B exp[—ft], if —e<t<g,
A () Fy(t) + Bo(k)Ga(t),  if t> €.

Matching A and its time derivative across ¢ = ¢ then leads to

Ay = A {eoshBOIR(-EC(E) — Fi(~)Ga(o)
+ sinh(286) [ FA(-€)Cale) ~ B (=GO} A-
+5 {cosh(286) (G1(~€)Ch(€) — G (~E)GalE)]
+ Sinh(286) [Ga(§)Ca(~6) — GG B

Be = K {eoshBOIFOF(-6) — Fe)Fi(~¢)
1 sinh(zﬁg)[—%Fl(—f)Fz(f) + B (=) Fa(E)]}A-
13 {cosh(280) [ ()G (~€) — F(€)Ga(~€)]

+ b8~ 5 F(O)C (=) + AG(~§) RO} B-.

where we have defined
A = Fy(§)Ga(€) — Ga(§ F(€).
To specialize to the case of interest we need to substitute
EFi(t) = (—t)Y2 0, (—kt), By(t) = ()2, (kt),

Gi(t) = (—=1)'V2Y,, (—kt), Ga(t) = (t)V%Y,, (kt),
AL =D%, By = Di.

(4.51)

(4.52)

(4.53)

(4.54)
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Since we are always interested in wavenumbers small compared to the various time scales
t, and &, we can replace the Bessel functions by their small argument values for k¢ < 1.
This yields

2D} = {— cosh(26¢€) + sinh(2ﬁ§)< (1—42) + 55)] D,

4B¢
+ (k%)?”g {Cosh(Qﬁf)(Zyg — 1) + sinh(23¢) (55 - M( 2yg)2)1py ,
2Dy = (%)2”9 lcosh(25§)(2vg + 1) — sinh(23¢) < 4; 5( + 2v,)% + ﬁg)]D
+ [Cosh(255) + sinh(24¢) (ﬁg + ﬁ(l —4v )} Dy . (4.55)

We now substitute the initial conditions, (4.50) to calculate Ag(t) at time ¢ = t,. The result

is

Ap(ty) = ’i(ylz) lz sinh(26¢) (Bg - M(l — 4y ))
+ <cosh(25§)(2ug + 1) — sinh(28¢) (B¢ + M(l + 21/9)2)) (f—b)%
+ (Cosh(Qﬂf)@Vg 1) + sinh(266) (8¢ + M< zug)2)) (%’)2} - (4.56)

The significant point about (4.56) is that in the k¢ < 1 limit, the expression inside the square

1/2
bracket becomes independent of the momentum k. This is because [ = <% — k2> ,

leading to ¢ ~ 5+/a(a + 2). The sole momentum dependence comes from the overall factor
A(k) which is the amplitude at ¢ = —t,. This means that the spectrum of Ay, is the same as
t = —tp and t = t;,. The amplitude is however amplified, since for ¢, > & we get

Aty ~ %Vg[cosh(Qﬁ{)(ng—1)+sinh(26§)(5§+m( 2%)2)}(2—”)2%&(—@)

~ (2—")2%&(—@) : (4.57)

The amplification is due to squeezing of the perturbation modes while their wavelength is
larger than the Hubble result.
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This result holds for arbitrary functional form of A(k). In particular, when A(k) is a
power law and given by a scale invariant spectrum at ¢ = —t; the spectral index does not
change at t = t,.

This is our main result. In the next section we will argue that this result in the boundary
theory implies that the spectrum of cosmological fluctuations on a constant z slice in the

bulk is also unchanged as the system goes through ¢ = 0.

4.4.5 The General Result

From the above analysis it is now clear that the final result does not really depend on
the details of the time dependence of the boundary coupling. This conclusion agrees with
what was found when studying non-singular bulk cosmological models (see e.g. |6] for a
recent review). Consider the equation for the gauge field perturbation (4.36]) with a function
MZ,,(t) which is smooth and bounded everywhere. Whenever the equation has a
regular solution for k = 0, it is clear that A; and its time dervative at ¢ = ¢, is related to

those at t = —t;, by a Bogoliubov transformation

Ailk,ty) | [ M M
Al(k7tb)

where the matrix M;; depends on the potential, but not on k. Therefore if the initial
conditions are such that .
A;(k, —ty) ~ Ay(k, —t) ~ B(k), (4.58)
it follows that
Ai(k,ty) ~ Ay(k, t) ~ B(E), (4.59)
up to factors which do not depend on k. The specific power law enhancement factor in (4.57))
is a feature of the fact that the coupling constant is a power law away from the region of
small coupling.
Therefore the momentum dependence of the fields in the future is the same as that in

the past for all momenta small compared to all other scales in the problem.
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4.5 Reconstruction of the Bulk from the Boundary Data

Given the amplitude and spectrum of the gauge field fluctuations after the singularity, we
can reconstruct the late time spectrum of the bulk dilaton after the bounce. We evolve the
boundary data until the time +¢, when the 't Hooft coupling becomes unity.

As we emphasized above, the nature of the entire spacetime at positive times in the
presence of these fluctuations is not known and might contain a black brane in the bulk.
We will, however, assume that there is a region near the boundary where the curvatures are
small enough to enable us to use the AdS/CFT dictionary. In particular we will assume that
the bulk dilaton field at a point (z,Z,t) for small enough z can be reconstructed from the

dual boundary operator O using a bulk boundary map of the form
o(z,7,t) = /dt’de’K(f’, 'z, 7, )0, 1), (4.60)

where the kernel K (2/,t'|z, x,t) (where (t',2’) are boundary coordinates and (¢, z, z) are the
bulk coordinates) is non-vanishing only for points within the AdS causal wedge (see Fig. 3)
of compact support. Due to the translation symmetry of the background, we assume that
the kernel K depends only on the relative spatial separation | — Z|.

The idea of the reconstruction is depicted in Figure 3: we consider a wedge sticking into
the bulk with base on the boundary. The wedge is centered at the time ¢, We need the
boundary points of the wedge to all have time coordinate ¢’ > £ - otherwise the wedge will
intersect the singular part of the bulk. This will limit the distance from the boundary to
which we can reconstruct the bulk.

As we will see, we will in fact never need the explicit form of the boundary-to-bulk
propagator in order to extract the spectrum of bulk dilaton fluctuations. The only property
of this propagator which will be used is that it is non-vanishing only within the wedge shown
in Figure 3. In particular as z — 0, one recovers the correspondence (4.31)).

Now we turn to the extraction of the power spectrum of the bulk field ¢ in the future of
the reconstruction time t,. Our starting point is equation (4.60) which gives the bulk field
in terms of the known boundary data. To extract the spectrum of fluctuations, we need to

take the Fourier transform of ¢(z,z,t) in the spatial hyperplane perpendicular to the AdS
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(tyo%,2) W

A

y4 0

Fig. 4.3 Sketch of the reconstruction process for bulk operators in the future of the singularity.
The vertical axis is time, the horizontal axis indicates the radial coordinate z. The solid line is the
boundary.The bulk field at a point with coordinates (t:, x, z) is given by integrating the boundary
data against the boundary-to-bulk propagator. The integration involves data in the shaded region
only. The solid curves connecting the bulk point to the boundary are null geodesics.

radial coordinate axis z:
oz, k,t) = Vl/Q/d%ap(z,x,t)eik"”, (4.61)

where the tilde symbol indicates the Fourier transform.
We now insert the reconstruction formula (4.60) into the above. Introducing the new

coordinates

x = x+y,
' = t+s. (4.62)
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the result becomes
oz, k,t) = V1/2/dsd3y’K(y’,s|z,t)eikyl/dgxeik(x+y/)(9(a:‘+y’,t+s). (4.63)
The final integral simply gives the Fourier mode of the boundary operator:
oz, k,t) = /dsd3y’K(y’,t + 5|z, )™Y' Ok, t + 5) . (4.64)

We are interested in values of k£ which are small compared to both the inverse Hubble radius
and the AdS radius. Assuming that the propagator K has support within the AdS causal
wedge (see Figure 3) of the bulk point, then for all values of the boundary coordinate y’ for

which K does not vanish we have ky’ < 1, and one has approximately
o(2,k,t) ~ /dsd?’y’K(y',s]z,t)(’)(k,th s). (4.65)

The k- dependence of the bulk fluctuation is therefore completely determined by the k-
dependence of the expectation value of the operator O, which - in our framework - is in turn
determined by the k- dependence of the gauge field fluctuations Ax(t). We have seen that
the spectral index of the latter does not change when we cross the ”"singularity”. The time
integral in has an extent which is roughly of the same order as z. Therefore for z
small enough, the k dependence of @(z,k,t) is basically given by the k-dependence of the
gauge field fluctuations. Hence, we find that the spectral index of fluctuations close enough
to the boundary does not change when matching across the “singular” region (singular in
quotation marks because we have cut off the actual singularity). On the other hand, the

amplitude of the spectrum changes by a factor F given by

F_ (%)2”9 . (4.66)

In particular, the bulk spectrum on a small z slice is chosen to be scale invariant, i.e.

@(k) ~ k73/2 the spectrum continues to be scale invariant.
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4.6 Conclusion and Discussion

In this chapter we have studied the evolution of linearized test field fluctuations in a de-
formed AdS/CFT cosmology. The deformed AdS background which is the basis of our
study is obtained by introducing a nontrivial time-dependence for the dilaton and choosing
the metric such that the bulk supergravity equations of motion are satisfied. The background
begins with a contracting phase which approaches a bulk singularity at time ¢ = 0. As the
singularity is approached, the background becomes highly curved. At the time —t, < 0 the
gravitational theory becomes strongly coupled. However, the dual gauge theory which lives
on the boundary becomes weakly coupled. After the singularity, the bulk expands, and after
some time ¢, > 0 the bulk theory once again becomes weakly coupled.

Our goal is to compare the spectrum of fluctuations of the bulk field in the far past
(t < —tp) and in the far future (¢ > t;). Specifically, we consider fluctuations in the dilaton
field. We evolve the fluctuations in the bulk until ¢ = —t;, map them onto the boundary
at that time, infer the spectrum of the boundary gauge field fluctuations at this time and
then evolve the boundary gauge field fluctuations forward in time, past the singularity, until
the time t = t,. At that time, we reconstruct the bulk dilaton field using boundary-to-bulk
propagators which are nonvanishing only in a ‘AdS causal wedge wedge, and compute the
spectrum of the fluctuations.

Since the boundary fluctuations blow up at the time ¢ = 0 in spite of the fact that the
boundary theory is weakly coupled, we need to smooth out the singularity. We, therefore,
modify the dilaton between —¢ < t < &, where £ is a cutoff scale and then match the
boundary fluctuations in a standard fashion.

Our main result is that the spectral index of the dilaton fluctuations near the boundary
is the same in the far past and the far future. While we do not have the tools to map out
the future space-time, we believe that our result will have important implications for pre

big-bang scenarios of cosmology.
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Chapter 5

Holographic Curvature Perturbations
in a Cosmology with a Space-Like

Singularity

5.1 Introduction

In spite of its many successes, early universe cosmology faces a number of outstanding the-
oretical and fundamental challenges. One of the most fundamental questions that remain
to be answered in cosmology is the singularity problem. Singularities appear in many cos-
mological models and are unavoidable in some contexts like Einstein gravity with matter
fields that do not violate the null energy condition (NEC). Both Standard Big Bang cos-
mology and the inflationary universe scenario [1-5,119,120] realized in the context of scalar
field matter coupled to classical General Relativity are examples where an initial Big Bang
singularity is present (see the classic paper [121] for the proof that an initial singularity
appears in Standard Big Bang cosmology and [122] for an extension to inflationary cosmol-
ogy). Bouncing cosmologies, alternative scenarios for the evolution of the universe where
a contraction period precedes the expansion of the universe, also have singularities at the
bounce point, at least if they are realized within the realm of Einstein or dilaton gravity
coupled to matter obeying the NEC. One can avoid Big Bang/Big Crunch singularities by
postulating matter which violates the NEC (see e.g. [6,/74-76,/107,/123] for some specific

models, and [6] for a review), or by going beyond Einstein gravity (e.g. by choosing gravita-

2017/06/25
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tional Lagrangians with specifically chosen higher derivative terms [124}]125], by considering
the Horava-Lifshitz gravitational action [77], or by assuming certain nonlocal gravitational
Lagrangians [126,127]). However, there are doubts as to whether these constructions can be
embedded in a consistent quantum theory of gravity [128]|. A consistent understanding of
singularity resolution can presumably only be studied in such an ultraviolet complete theory,
superstring theory being the prime example.

In this context the AdS/CFT correspondence could come to use. This correspondence [9)
is a proposal for a non-perturbative treatment of string theory and states that the dynamics
of a bulk Anti-de Sitter (AdS) space-time that includes gravity is encoded in the boundary of
this space-time, where a conformal field theory (CFT) with no gravity lives. This conjecture
has been used in many different fields of physics, from black hole physics to condensed matter,
with great success (for a review e.g. [129]). It has already been proposed in the literature
that the AdS/CFT correspondence could be used to resolve cosmological singularities |[61-63),
84-86], specially in the context of singular bouncing models such as the Pre-Big-Bang [130]
and Ekpyrotic [97] scenarios.

Bouncing cosmologies have recently been studied extensively as possible alternatives to
cosmological inflation for producing the fluctuations which we are currently mapping out
with observations. If the equation of state of matter in the contracting phase has w > —1/3,
where w is the ratio of pressure to energy density, then scales exit the Hubble radius during
contraction. Hence, it is possible to have a causal generation mechanism for fluctuations
in the same way as in inflationary cosmology, where scales exit the Hubble radius in an
expanding phase if the equation of state of matter obeys w < —1/3. As was pointed out
in |71,/72], if the equation of state of matter during the time interval when scales which
are measured now in cosmological observations exit the Hubble radius has the equation of
state w = 0 (i.e. a matter-dominated equation of state), then initial vacuum perturbations
originating on sub-Hubble scales acquire a scale-invariant spectrum E], the kind of spectrum
which fits observations well P| A scale-invariant spectrum of fluctuations can also be ob-
tained in the Pre-Big-Bang [131,[132] and in the Ekpyrotic |[98-102] scenarios, making use
of entropy modes. The major problem in these analyses is that the fluctuations have to be

matched from the contracting phase to the expanding phase across a singularity (for singular

!Note that the curvature fluctuations grow on super-Hubble scales in a contracting universe [71}/72],
whereas they are constant in an expanding universe if the fluctuations are purely adiabatic.
2A slight red tilt of the spectrum emerges if the effects of a dark energy component are included |73].
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bouncing cosmologies) or in the region of high curvature (in nonsingular models in which
new physics provides a nonsingular bounce) where the physics is not under control. This is
the second place where the AdS/CFT correspondence could become useful: the boundary
theory becomes weakly coupled precisely where the bulk theory becomes strongly coupled,
and hence we can expect that the evolution of the fluctuations on the boundary will be
better behaved.

We here consider a time-dependent deformation of AdS [10/13] (see also [14}/15]) which
yields a contracting phase with increasing curvature leading to a bulk singularity at a time
which we call ¢ = 0. The evolution for ¢ > 0 is the mirror inverse of what happens for
t < 0. This means that the bulk is expanding with decreasing curvature. The challenge for
our work hence is to explore if the AdS/CFT correspondence can be used to determine the
cosmological perturbations in the expanding phase starting with some initial cosmological
perturbations in the contracting phase. In the case of a singular bouncing bulk cosmology
this question cannot be answered from the point of view of the bulk evolution of those
perturbations, and in a non-singular bouncing setup the evolution in the bulk cannot be
reliably computed in a perturbative approach. For example, there are ambiguities if one
wants to apply the matching condition approach [133}|134] to connect early time to late time
fluctuations (see e.g. [103]). The goal of our work is to avoid these difficulties in the bulk
evolution in the strongly coupled region by mapping the dynamics onto the boundary theory
which is weakly coupled near ¢t = 0. The AdS/CFT correspondence presents an unique
opportunity to understand the effects of a bulk singularity on cosmological observables.
Specifically, we are interested in computing the amplitude and slope of the spectrum of
cosmological perturbations after the bounce given the spectrum before the bounce.

In [16] the authors studied the evolution of matter scalar field perturbations using the
AdS/CFT correspondence in a deformed AdSs spacetime, where a spacelike singularity is
present. This background spacetime is a time dependent background studied before in [10-13]
where the dilaton bulk field has a time dependence which as ¢ — 0 produces a curvature
singularity. The bulk theory is weakly coupled for |t| > ¢, and strongly coupled for smaller
values of [t|. In the context of this background the authors studied dilaton perturbations on
a hypersurface perpendicular to the AdS radial coordinate, starting with a scale invariant
spectrum on super-Hubble scales at early times ¢ < —t;,. When bulk gravity becomes strongly
coupled at ¢t = —t, the perturbations were mapped to the boundary theory, a N’ = 4 Super
Yang-Mills (SYM) theory, and the fluctuations of the corresponding boundary fields were
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then evolved from ¢t = —t, to t = t,. This SYM model has a time-dependent coupling
constant that goes to zero at the same time as the singularity occurs in the bulk. However,
in spite of the fact that the boundary theory becomes free at ¢ = 0, it was found that
infinite particle production occurs between ¢ = —t;, and ¢ = 0. Thus, it was necessary to
introduce a cutoff: the coupling constant was kept finite but small in a short period of time
|t| < & around the singularity, where £ < t,. This made it possible to evolve the fluctuations
unambiguously past the time ¢t = 0 where the bulk singularity occurs until the late time
t = t;, after the singularity when the bulk theory becomes weakly coupled again. After that,
for the infrared modes that are of cosmological interest (and whose wavelength is much larger
than the Hubble radius already at the time t = —t,,), the bulk scalar field perturbations were
reconstructed. It was found that the late time scalar field perturbations have a scale invariant
spectrum, showing that the spectral index does not change while passing through the region
of the highly curved (and maybe even singular) bulk. On the other hand, the amplitude of
the scalar field perturbation spectrum is amplified - a consequence of the squeezing of the
perturbation modes on super-Hubble scales in the contracting phase.

The evolution of scalar matter perturbations is interesting since it offers us a good guide
as to the evolution of gravitational waves | However, of more interest in cosmology is
the spectrum of the scalar metric perturbations, since those lead to the adiabatic density
perturbations responsible for structure formation in the universe. The goal of the present
chapter is to extend the analysis of [16] to the case of cosmological perturbations.

Scalar cosmological perturbations are more complicated to analyze than matter scalar
field fluctuations. They are made up of a combination of metric and matter inhomogeneities
which take different forms in different coordinate systems. In the case of purely adiabatic
perturbations [f] the information about the inhomogeneities is most conveniently encoded
in the quantity R, the curvature perturbation in comoving gauge (the gauge in which the
matter field fluctuation vanishes [48]), a quantity that remains constant in time outside the
Hubble radius [49,{136H140].

According to the AdS/CFT dictionary, the metric perturbation dg,, has as its dual

3The squeezing of the amplitude of gravitational waves on super-Hubble scales is governed by the same
equation as the squeezing of matter scalar field fluctuations, whereas the scalar metric fluctuations are in
general squeezed by a different factor - see e.g. [135] for a short review, and [46] for a more comprehensive
survey of the theory of cosmological perturbations.

4For a single matter field the perturbations on super-Hubble scales are automatically adiabatic. In the
case of multiple matter fields the adiabaticity condition means that the relative energy density fluctuations
in each matter field are the same.



5 Holographic Curvature Perturbations in a Cosmology with a Space-Like Singularity 70

operator in the CF'T the expectation value of the boundary energy momentum tensor. In
order to reconstruct the curvature perturbations (which are a combination of the metric and
the matter fluctuations) in the future of the space-time singularity, one needs to know the
full evolution of the boundary operators corresponding to both the bulk matter scalar field
and the metric perturbations.

We argue in this chapter that there exists a gauge choice that can simplify this problem.
We generalize the spatially flat gauge to the 5-dimensional case. This gauge allows us to
describe the curvature perturbations as a function only of the perturbations of the scalar
field that represents the matter in our space-time. We do this by using the gauge freedom
to gauge away the metric perturbation degrees of freedom which leaves us with only the
scalar field perturbations. Because of this choice of gauge we only need to know how the
scalar field perturbations behave at late times. This allows us to perform the same analysis
as in [16], and to evolve the perturbations of a scalar field using the boundary theory in
a singular deformed AdS; space-time. With this gauge choice, the analysis of scalar field
fluctuations is all we need to be able to reconstruct the curvature perturbations in the future
of the space-time singularity.

This chapter is organized as follows. Section II contains a summary of the dynamics
of the deformed AdS bulk space-time containing a spacelike singularity. In Section III we
discuss the cosmological perturbations in this deformed AdS; space-time and present the
generalized spatially flat gauge. Section IV shows the main result, namely how to obtain
the curvature perturbation at late times evolving from an initial bulk perturbation using the
AdS/CFT correspondence. We find that the spectral index is not changed when comparing
the spectrum at late and early times, but that there is an increase in amplitude resulting

from the squeezing of the Fourier mode wave functions.

5.2 Bulk Dynamics

We are interested in studying cosmological backgrounds in the context of the AdS/CFT
correspondence. Some time-dependent backgrounds in string theory were studied in [10-13]
where the bulk solution can be thought as a time-dependent deformation of AdSs x S° with a
corresponding N = 4 supersymetric Yang-Mills (SYM) theory containing a time dependent

gauge coupling constant as a dual theory.
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This background bulk solution can be described by the line element

ds* = = (d2*+ Gapda"dz")

5, 2[t] 2 5 deided S

= = |dz +§(—dt +0yda'da’) |, t20, z € (0,400), (5.1)
where ¢ is conformal time and z the AdS radial dimension, plus a d2? term representing the
S5 factor. In the second line we are choosing a special Kasner type solution. Note that ¢

denotes conformal time.The dilaton profile is given by

o(x) = 6(t) = V3 1n (@) L o) = (@)W (5.2)

with ¢ being the AdS scale. Throughout this chapter we use conventions that Greek letters
1, v, ... run over all of the five space-time indices 0, .. .4, Latin indices from the beginning
of the alphabet a,b,... run over the indices 0, ..., 3 corresponding to the four-dimensional
space-time perpendicular to the AdS radial direction, and Latin letters 7, 7, ... run over the
spatial indices 1,2, 3.

This solution can be embedded in a solution of a 10-dimensional type IIB supergravity

theory provided that the metric and the dilaton satisfy the equations of motion

0, (V38" 0,6(r)) = 0. Rulg] = 5V.0Vio(x). (5.3)

The bosonic sector of this embedding includes a RR 5-form flux which supports the S° tensor
factor of the space-time. The S° factor will not play a role in the following and we will thus
not track it further.

The element is easily recognized to be a deformation of the line element of pure AdS
in Poicaré coordinates, where the AdS coordinate runs from z = 0 at the boundary to z = oo
at the Poincaré horizon. In pure AdS the induced metric on constant-z hypersurfaces is the
Minkowski metric. In our solution the induced metric is instead composed of two copies of
a Friedmann-Robertson-Walker (FRW) metric, as seen in (5.1]), one for ¢t < 0 describing a
collapsing geometry, and another for ¢ > 0 describing an expanding geometry. The solution
contains a spacelike singularity, ”Big Crunch” singularity, at ¢ = 0. It is also singular as

z — oo at any fixed t # 0. A sketch of the part of space-time covered by our coordinates
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is shown in Figure [5.1} Due to the singularities, the spacetime cannot be Cauchy-extended
beyond the Poincaré horizons which bound the coordinate chart. The string coupling is
given by g, = e?® and goes to zero at the singularity. If the singularity can be resolved
by mapping the dynamics to the boundary, we will have a stringy realization of a boucing
scenario.

We are assuming the the bulk universe initially begins in an AdS vacuum at some early
moment t; and the background is given by a weakly coupled supergravity theory. At the
moment —t,, the bulk gravity becomes strongly coupled, but at the same time the boundary
gauge theory become weakly coupled. Hence, after the time —t, the evolution on the bound-
ary becomes tractable in perturbation theory. On the future side of the bulk singularity,
the boundary theory remains tractable perturbatively until the time ¢, when the the bulk
theory becomes weakly coupled again at the cost of the boundary theory becoming strongly
coupled. At that time we can reconstruct the bulk information (at least in the vicinity of
the boundary) from boundary data (see e.g. [109-112]).

We will take our space-time to be the hypersurface of some constant AdS radial coordinate
z. We will be interested in considering linear fluctuations of matter and scalar metric degrees
of freedom on this surface at some initial time ¢ < —t;, and computing the corresponding
fluctuations on the same constant z surface in the future of the singularity, once the bulk
theory once again becomes weakly coupled, i.e. at t = ;.

To resolve the singularity in the background and study the evolution of per-
turbations to the future of ¢t = —t, we will map the problem onto the boundary using the
AdS/CFT dictionary. We can see that the boundary of this 5 dimensional solution is con-
formally flat and has a second order pole as z — 0. So, in order to do holography we must
specify a conformal frame, i.e. we must provide a defining function Q(z) which behaves like

O(2?) as z — 0, and which in turn selects the induced boundary metric hq(z) via
ASppary = hay(x)dzdax’ = hII(l] Q% (2)Yap () dzda® (5.4)
Z—

where +;; is the metric of a maximally symmetric three-dimensional hypersurface (the metric
of Euclidean three space, of the three sphere or the three-dimensional hypersphere). The

above is an asymptotic solution in Fefferman-Graham form [141}|142] that represents the
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Fig. 5.1 Conformal diagram of the background space-time. The spacelike singularities is shown
in red. The vertical axis is time ¢, the horizontal direction represents the coordinate z (with the
boundary on the left side). If there were no deformation of AdS, the region drawn would correspond
to the Poincare patch of AdS. The green regions may be covered by Fefferman-Graham [141,|142]
charts with Minkowski boundary metrics.

conformal structure. There are two natural choices for (x). First, if we select

(5.5)

z
QFRW(OU) = Z’

then the boundary limit is particularly simple and the conformal boundary has metric

hap(z) = Yap(z). We refer to this as the FRW frame. A second choice is

() = (236_|t|)/ . (5.6)

With this choice the boundary metric is flat. We refer to this as the Minkowski frame.
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It is important to realize that Qy(x) is singular as ¢ — 0, and as a result the conformal
transformation implied by €Qj/(x) is singular. One of our basic assumptions is that this
conformal transformation is nevertheless a symmetry of the CFT.

Let us now turn to the CFT description of our solution. In this time-dependent back-
ground, the dual boundary theory is a N' = 4 SYM theory with a source. Following the usual
dictionary [143], the AdS-Neumann part of ¢(z) sets the value of the Yang-Mills coupling
via

gy (1) = iim e?@ (5.7)

-0
In the Minkowski frame, this theory lives in flat space. Note that when the non-normalizable
part of ¢(z) varies with time, as in our example, the SYM theory in the boundary is sourced
by a coupling that is time-dependent. So, the time dependent dilaton in the bulk corresponds
to a time-dependent Yang-Mills coupling on the boundary. This coupling goes to zero as
t — 0 and the CFT becomes free.

5.3 Cosmological Perturbations in the Deformed AdS;

We want to compute the cosmological perturbations from the space-time described above.
In [16], we perturbed only the scalar field, namely, the dilaton. However, to fully describe
the cosmological perturbations, we need to include the perturbations of the metric. For this,
we need to perturb this deformed AdS; metric (see e.g. [144H146] for general discussions of
cosmological fluctuations in brane world like five dimensional space-times).

Our starting point is the perturbed five-dimensional space-time metric

guN = GSPy + Ogun (5.8)

where the first term on the right hand side denotes the background metric which depends
only on t and z, and the second the linear fluctuations (which depend on all five space-time
coordinates).
We can make a field redefinition in order to write the background metric in the following
way:
ds* = dz* + Gupdz®dz’ (5.9)

where Z = (I/z)z and z* = (I/z)z". In some papers in the literature this is called a Gaussian
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normal coordinate system, and it is equivalent to restrict the coefficient in front of the z-part

of the metric to be unity. In the following we will drop the tilde signs on the coordinates.
After including linear fluctuations, the metric can be written, performing the usual scalar-

vector-tensor decomposition with respect to spatial rotations on the constant z spatial hy-

persurface, as (see e.g. [46,|135])
ds® = —dz*(14-Co)+ Codadz+a*(t) [(1 + 2®) dt* — 2B;dz'dt — (8,5 + hyj)] da'da’ | (5.10)

where, as we recall, ¢ is the conformal time, and ®, B; and h;; are functions of all space-time
variables. The linear quantities Cy and C, are new metric fluctuations associated with the
presence of the radial AdS direction. We can further decompose the 3—vector B; into a
scalar and a divergenceless part and the rank-2 symmetric tensor h;; into scalar, vector and

tensor parts:

B; = 0,B+ B (5.11)
1 . . )
hiy = 206, +2 <al-aj - gaijw) E+ (aiEj + ajEi) + 28,

where this decomposition is irreducible since the hatted quantities are divergenceless, O'E,
and 8iEij = 0, and the tensor part is traceless, Ef = 0. Note that the tensor Eij corresponds
to gravitational waves, B; and E’j to vector perturbations, and the remaining functions
® U, B and E to the scalar metric perturbations. This perturbed metric and the variables
are analogous to the fluctuations in a usual 4-dimensional cosmology when restricted to
constant z slices. However, one needs to remember that the quantities calculated also depend
of the coordinate z. In the following we will neglect vector perturbations and gravitational
waves.

Together with the metric perturbations, we need to perturb the energy-momentum tensor
of the 5-dimensional bulk. The matter content in our case is the dilaton field. This can be

perturbed as follows, as in [16]

¢(Z7X7t) = ¢(’Z7 X7t) +(5¢ (Z7X7 t) Y (5'12)

where ¢ represents the background dilaton field and d¢ its linear perturbation.

General relativity allows for a freedom in the choice of the coordinate system. At the
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linearized level the space of coordinate transformation is five-dimensional, allowing us to
impose five gauge conditions in order to remove residual gauge degrees of freedom. As is
done in the four space-time dimensional theory of cosmological perturbations we use two of
these gauge freedoms to simplify the scalar sector of the metric. One choice is longitudinal
gauge in which one sets B = E = 0. Two gauge degrees of freedom are vector from the
point of view of the constant z hypersurfaces and can be used to reduce the number of
vector modes, and the remaining gauge degree of freedom involves the z direction and could
be used to set Cy = 0. Making these choices, the scalar cosmological fluctuations involve
the variables ®, W and d¢ (plus the variables C, which will not be important for us). An
alternative choice is to pick the spatially flat gauge (uniform curvature gauge) in which the
curvature on the constant time (and z) hypersurfaces is constant in space. In the absence
of anisotropic stress ® and ¥ coincide, and the Einstein constraint equation related the
other two variables ﬂ Hence, on a fixed t and z hypersurface, the information about scalar
cosmological perturbations is encoded in terms of a single function.

Our goal will be to compute the evolution of the 3+ 1 dimensional curvature fluctuation
variable R, which in the absence of entropy fluctuations is conserved on super-Hubble scales
and thus encodes the relevant information about the scalar cosmological perturbations. It
is hence the useful variable to track on super-Hubble scales, the scales we are interested in
in this work (and also the ones which are of interest in inflationary cosmology).

We choose to work in uniform curvature gauge [} In this gauge, the variable R is on

super-Hubble scales given by

H
R = ——06. 5.13
P (5.13)

in terms of the scalar field fluctuation d¢. The coefficient relating R and d¢ is given by the
comoving Hubble constant and by the background scalar field. Note that a prime indicated
the derivative with respect to conformal time.

The variance for R in this gauge is given by the variance of d¢. For each Fourier mode

5 An easy way to see this is by noting that a matter perturbation d¢ inevitably leads to a metric fluctuation
of scalar type.

6Note that some gauges can become singular. For example, for scalar field matter the comoving gauge
becomes singular when the scalar field comes to rest. The uniform curvature gauge may also break down in
the time interval —¢ < t < £. We are, however, never following the evolution of the bulk metric fluctuations
in this interval, and hence we do not have to worry about a possible breakdown of this gauge.
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we have

(Ral?) = (g) (1662 (5.14)

5.4 Holographic Curvature Perturbation at Late Times

The goal of the section is to calculate the conserved curvature perturbation in our deformed
spacetime at late times. With the general spatially flat gauge developed above, we are able
to write the curvature perturbation in terms of the perturbations of the scalar field and its
background value. This is important in our setup, since it avoids one having to understand
how the metric perturbations evolve holographically in this singular spacetime.

In our previous work [16], we showed a prescription for obtaining the bulk perturbation
of a scalar field d¢, the dilaton in our case, at late times ¢t > t; in the weakly coupled region
of the expanding period, given initial conditions for the perturbations of the scalar field in
the bulk in the weakly coupled contracting phase. We were interested to understand how
the presence of the singularity affects the initial scalar field perturbations. In particular,
we investigated if the power spectrum given in the bulk at past times is changed after the
singularity. We showed that the final spectrum of ¢, remains scale invariant, given it was
scale invariant in the past.

We now show how to use the results of our previous work to compute the quantity that
is of interest in cosmology, the curvature perturbation. As we saw in the previous section,
then when working in the uniform spatial curvature gauge we only need the power spectrum

of the scalar field to obtain the power spectrum Pr of the curvature perturbations

H\? 1, (H\ )
Thus, if we have the solution of the bulk scalar field in the future of the singularity, d¢x(+tp),
we are able to obtain the power spectrum of the curvature perturbation from the above
relation.

As was shown in [16], the bulk scalar field fluctuations in the future of the singulariy can

be locally reconstructed from the boundary data via [109}|110]

0 (t,x,2) = /dt’d?’yK (', ylt,x,2) O (t',y) , (5.16)
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(tyo%,2) W

A

y4 0

Fig. 5.2 Sketch of the reconstruction process for bulk operators in the future of the singularity.
The vertical axis is time, the horizontal axis indicates the radial coordinate z. The solid line is the
boundary.The bulk field at a point with coordinates (t;f, x, z) is given by integrating the boundary
data against the boundary-to-bulk propagator. The integration involves data in the shaded region
only. The solid curves connecting the bulk point to the boundary are null geodesics.

where the kernel K (¢, y|t, z, z) is the bulk-to-boundary propagator (or “smearing function”).
The important property of this smearing function is that its support is confined to the “AdS
causal wedge”, i.e. to points with |[0t] = t' —t < 2z (see Fig. 2). The exact form of the
smearing function will not be important for our analysis.This construction is similar to a
boundary value problem (see also [112-115]). This means that d¢ (¢, z, z) corresponds to a
local operator O (y,t’) in the CFT, with a map defined by the smearing function.

We can make a translation in the time and space coordinates: ¢ =t + s and y = x + ¥/.
The smearing function is invariant under translations of the z coordinates. In pure AdS
it would also be invariant under time translations. In the case of our deformed AdS, the
kernel has an explicit time-dependence. The important point is that the kernel has support

within the AdS causal wedge. Hence, as long as we consider values of z not too far from the
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boundary, the region of support of the kernel for the time t = t;, is far away from the space-
time singularity, and the kernel is hence well defined. The fact that the kernel is independent
of the three dimensional spatial coordinates x on the fixed z surface implies that the kernel
does not effect the shape of the power spectrum.

Our interest is to be able to find the spectrum of the perturbations in the future. For
that, we need to work with the Fourier transform of (5.16). This is given by:

Sy (2,1) = / dsd*y'e ™ K (t +5,y'|2,1) O (k,t + 5) ,

12

/ds/d?’y’K (s+t,y|z,t) O (k,t+s) (5.17)

~
M(t,s,z)

where in the last line we considered only the IR limit, the one of interest for cosmological
perturbations. We can see from this equation that O (k,t + s) has the same k-dependence
as 0¢y, with the amplitude smeared and calculated at a translated time.

We do not need to know the exact form of the kernel for our deformed AdSs. All we need
to assume is the existence of such a smoothing function with a causal structure similar to the
one for pure AdS (obtained in [109,]110]). The differences between the smearing functions
in pure AdS in and our deformed space-time would appear in the time-mode solutions used
in the construction of K, since here we have a FRW spacetime on the boundary instead of
Minkowski, leading to a different normalization for K(s,y'|z). The important property of
the smearing function is that it has support on the causal wedge of AdS, and selects only
data on the boundary that is space-like separated with ky’ << 1, given by the values of
y’ where the smearing function does not vanish. It is very important in our case that the
only data necessary for the reconstruction of the bulk field is local, since the presence of the
singularity makes part of the data in the past inaccessible in the future of the deformed AdS
Poincare chart. We can see that from the green regions of Figure 5.1}

We can then write the power spectrum of the uniform curvature perturbation with respect
to the boundary data. From equation ({5.15]), and knowing that for our bulk H = a’/a, where
a prime denotes the derivative with respect to conformal time, and where in our case

_ 2t

a(t) (5.18)
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we have

1

(2ml)?
— 1 5 k3
(2ml)

Pr(k,t) = K6y (2,1) |2

2

/dsM(s,z)(’)(k:,t—{—s) : (5.19)

Thus, the power spectrum of R has the same slope as that of the boundary operator O.
This boundary operator given in this equation is known from the AdS/CFT correspondence:
The scalar field in the bulk corresponds to the expectation value of the trace of the square

of the field strength of a conformal field theory living on the boundary:
O = (trF?). (5.20)

This is the same operator whose evolution was studied in our previous paper [16], and in the
following we will just briefly summarize the analysis which relates the late time spectrum of
O with the initial spectrum of d¢.

In our case, the boundary conformal field theory is a N’ = 4 Super Yang Mills (SYM)
theory in 3 + 1-dimensions with a Yang-Mills coupling that varies in time, inherited from
the time-dependent dilaton from the bulk. Given this theory, we can evaluate the operator,

since

F

I

y = 20,4, —i]AL A (5.21)

We ignore the term with the commutator since this is subdominant in our analysis. We
adopt Coulomb gauge (9;A* = 0) and set Ay = 0. Then the Fourier transform of the field

strength tensor reduces to
Te[F?(k,t)] = 247 — 2(k;A,)? + 2k; Ay, k7 A (5.22)

where summation over the index k is implied. We are only interested in the infrared (IR)
modes, where k is small, so we can drop the last two term of the previous expression and

thus obtain the approximate relation

Te[F%(k,t)] = 242, (5.23)
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where once again summation over k is implied.

The fundamental field of this theory is the vector field A,, and it can be evolved in time,
given its equation of motion in the boundary. So, the field A, (+%;), necessary to calculate
the operator O (z,t,) can be evolved from a initial vector field through ¢t = 0, the time when
the singularity happens. This time also corresponds to the place where the YM coupling
vanishes and the theory becomes free.

Since the gauge theory becomes free, it could have been expected that the gauge field
fluctuations pass through ¢ = 0 without any problem. However, as discussed in [16] this is
not the case. In terms of the original Fourier space modes A(k,t) there is a branch cut in
the evolution equations, and in terms of the canonically normalized field corresponding to
A(k,t) there is in fact a divergence. This divergence corresponds to the blowup of particle
production which is expected from the point of view of the bulk theory, where the fluctuation
modes obtain infinite squeezing at ¢ = 0. Hence, it is not surprising that at the level of
fluctuations the boundary theory at this point becomes sick and infinite particle production
occurs. This does not allow us to evolve the field passed ¢ = 0. In order to be able to
perform the evolution, we imposed a regularization of the YM coupling, making it constant
during a period [—¢, €], where ¢ is smaller than ¢,, and matching the solutions (and their
first derivatives) in the periods t < —¢, = <t < { and t > &.

We perform this matching in the boundary theory since in the bulk, at times & = Vo/,
where o is the string scale, the Ricci scalar reaches the string scale and the bulk supergravity
description breaks down. So, matching on the boundary can be performed at time &, much
closer to the singularity, where the bulk theory is already in the strong limit. Since the
theory in the boundary has no gravity, this matching is under much better control and goes
closer to the singularity than what could be done by working in the bulk if we want to make
sure that the perturbative expansion is justified.

With that, we can relate the solution of the field A, from early to late times past the
singularity, first re-scaling the gauge field by Ag(t) = e?/2A,(t) to obtain a canonically
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normalized field [] The analysis of [16] yielded the result

A(t) = [t [Dy T, (1kt]) + DyYs, (1kt])] (5.24)

where v, = (1 +1/3)/2, and where the mode coefficients D} and Dy are related to the ones
D7 and Dy before the singularity by:

1 1
Df = ——D5+2% [1+ — ) (k&)* D> 5.25
F= gDy + 2 (15 ) (™ Dy (5.25)

1 1
Df=—— D742 (1 - — ) (k) Dg . 5.26
§ =505 + 2% (1- 5 ) (k7 Dy (5.26)

At late times, at time ¢ = t,, when we map the results from the boundary to the bulk, the
gauge field is then given by:

_ 2\ 29
At = () A-n), (5.27)
which means that the k-dependence of the field remains the same after passing through the

singularity, changing only its amplitude that is enhanced by the factor
F(t) = (0/6)™ . (5.28)

So, given an initial condition in the gauge field Ax(—t,), we can time evolve this field until
time ¢, in the future of the singularity, and then calculate the operator Tr [F?(k,t')] and
obtain the power spectrum.

This initial value for the gauge field in the boundary theory can be inferred from the
initial scalar field in the bulk. As done in our previous work, we choose a particular scaling
of the Fourier modes of the boundary gauge field such that the operator O has the same

amplitude and scaling as what is induced from the bulk scalar field fluctuations which we

"Note that A diverges as t — 0. This divergence will lead to divergent particle production of charged
fields which couple in the usual way to A, but not to those which couple in the usual way to A. The cutoff
which we introduce to control the divergent growth of the fluctuations of A will also control the divergent
growth of the fluctuations of charged fields which couple to A.
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are starting out with. From (5.20) and (/5.23]) we have

: 1 [k A k+EN . (k=K
m;‘,l5¢m(k‘) = 5/ dgk'Am< J; )Am (T) VY2 = Tr [Fz(—tb)]k = O (k,—t) ,
0
(5.29)
where V' is a normalization volume introduced in the definition of the Fourier transform
(such that the Fourier modes of A have the mass dimension of a harmonic oscillator, i.e.
—1/2). This integral can be performed in two regions, R; where k < k', and Ry where k > k'

In region R; we can set k' = 0 and get, approximately
my,6¢™" (k) ~ KAV (5.30)

In the case when the initial bulk scalar field has a scale invariant power spectrum, d¢ o
k—3/2 the gauge field at t = —t;, the time of matching onto the boundary in the past, has
Ain(t) = Ap(—ty) ~ k=4, Assuming this scaling for the gauge Fourier modes, it can easily
be seen that Region Rs gives gives a contribution comparable to (5.30). With the initial
conditions given by and the growth of the gauge modes given by we can write

the boundary data in the future, encoded in the operator:

(4v4)% 5oy 1 [F (kK (k=K
54—;(/’9752(2 g>§ 0 Pk A 5 A5 V2 =Tr [F*(—t)],
(5.31)

Now we have all the ingredients to obtain the power spectrum of curvature perturbations

O (k,t) =

past the singularity, given an initial bulk scalar field perturbation in the past:

2

k?;
(2m)*

/dsM(SvZ)Tr [FQ(tb)}k

1 k X / . _ L/
/dsM(s,z)§/ d*k' A (k—gk >—tb) A (k 5 i ,—tb) vz
0

Pr =

)

4
_ (2(4;2928 13 $42ve)
T Vg
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Integrating over region R;, and taking k' = 0, we have

4 2
(4vy) 13 $4(2vg)

9

/dsM(s, 2) K3A% (k, —t)

4 2
(4vy) 13 $4(2vg)

o (5.33)

/dsM(s, 2)mi, 6™ (—ty)

For the case presented in [16] when we have a scale invariant spectrum for the bulk scalar
field in the past, with 6¢™ oc k=32, this implies that A(k, —t,) oc k=% Plugging this

expression into (5.33|) we see that at t = t;, in the future:

4

R (2(73;% té(ZVg) [/ dsM (s, z)fmf,l : (5.34)
The power spectrum for the curvature perturbations is scale invariant. This means that
the index of the power spectrum of the curvature flluctuations is not changed after passing
through the singularity. So, if we start in the contracting phase with a scale invariant
power spectrum of curvature fluctuations before the singularity, then the final curvature
perturbations will also be scale invariant, carrying at late times an enhancement factor in
the amplitude, related to particle production occurring on super-Hubble scales close to the

bulk singularity.

5.5 Conclusions and Discussion

We have used the AdS/CFT correspondence to propagate cosmological fluctuations from
the contracting phase to the expanding phase of a time-dependent deformation of an AdS
bulk space-time which has a curvature singularity at a time ¢ = 0. The bulk space-time is
weakly coupled for |¢t| > t;,, and strongly coupled for |t| < t,. Since the CFT on the boundary
becomes weakly coupled for |t| < t,, we map the bulk perturbations onto the boundary at
the transition time t = —t,, evolve the fluctuations in the conformal field theory until ¢ = t,,
and then reconstruct the bulk perturbations.

We have shown that there is a gauge choice for the bulk space-time coordinates in which
the information about cosmological fluctuations can be encoded in terms of the dilaton

perturbations. This is the frame we use to map the inhomogeneities onto the boundary. We
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use the same choice of coordinates to reconstruct the bulk for in the future of the strongly
coupled bulk region, i.e. for t > t,.

For the background with a bulk curvature singularity, particle production in the boundary
theory diverges at ¢ = 0. Hence, to obtain a well-defined evolution, we need to regulate the
boundary theory (and thus also the bulk theory) in some time interval |t| < &, where £ < ty.
In the regulated theory, it is then possible to unambiguously compute the evolution of the
linearlized cosmological perturbations. We find that, as in the case of dilaton fluctuations
in |16], the spectral index of infrared perturbations is the same before entering and after
exiting the region of large space-time curvature. The amplitude of the spectrum, on the
other hand, changes by a factor which depends on the ratio of ¢, and £. These results agree
with what is obtained in some models of nonsingular bounces in which rather ad hoc new
physics is used to obtain the bounce (see e.g. [144-146]). What is satisfying in our approach
is that the bounce is obtained using fundamental ingredients from superstring theory.

One may ask what impact the regulation of the boundary theory in the time interval
—& <t < & has on the bulk theory. It will not correspond to a solution of the supergravity
equations. However, we do not view this as a problem since in the time interval —§ <t < &
we are in the very high bulk curvature region where the supergravity action is not a good
approximation for the underlying string theory. As interesting question which we do not
address in this chapter is what additional bulk objects should appear if we want to obtain
the modified bulk theory. By mapping the physics problem we are interested in onto the
boundary we avoid having to tackle this difficult problem. In fact, the main advantage of
mapping the evolution of metric fluctuations through a high curvature bulk region onto the
boundary is that in the bulk high curvature region the boundary theory is weakly coupled
and hence the evolution of the fluctuations is under much better control.

Note that there are other ways to obtain a bouncing cosmology from superstring theory.
One recent example makes use of the T-duality symmetry in the Euclidean time direction
to obtain a so-called S-brane bounce [81-83,/147]. Another approach is in |148]. It is also
possible that as a consequence of the Hagedorn spectrum of string states [149] coupled
with the T-duality symmetry in compact spatial directions one obtains an early emergent
Hagedorn phase [78|, in which case thermal fluctuations of a gas of strings would be the
source of the observed cosmological perturbations |79]. These different approaches lead to
signatures which are distinguishable (and also distinguishable from conventional inflationary

cosmology) in cosmological observations, in particular because of different predictions of the
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tilt of the gravitational wave spectrum [150-152], the running of the spectrum [153] and the

amplitude and shape of the three point function of the curvature fluctuation [154,/155].
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Part 11

Late Universe Cosmology
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Chapter 6

Methods of Data Analysis

In this part of the thesis we are going to study a model that explains the late evolution of our
universe, the interacting dark energy model, testing it using the most recent cosmological
observations. This chapter introduces the statistical methods used to perform the data
analysis in Chapters 7 and 8. We also describe the likelihoods of each of the probes used in

the experiments considered.

6.1 Maximum Likelihood Method

In this section we give a quick review (based on [156-159]) of the most common and used
estimation method: the maximum likelihood method that aims to obtain the most likely
parameters of a model that explains a given statistical observation.

We start by defining the likelihood as the probability density of a given data set {x;} =

{1, 29, -+ ,xn} to be explained by a set of parameters a:
N
L (zila) =[] f (wila) , (6.1)
i=1

where each data has a conditional probability density (pdf), f(x;,d), which defines the
probability of the measured value z; within an interval given by the uncertainty of this
measurement, to be given by the set of parameters a: P = fff pdf (x;|@)dz. The likelihood
can be seen as the joint density probability of N independent measurements, given by the

product of each of them, for an independent sets of data.

2017/06/25
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The maximum likelihood method is used to estimate the parameters @ given the mea-
surements z;, by finding the estimators of the parameter a(z;) that maximizes the likelihood.
These estimators are the parameters that present the best fit to the likelihood and are the

solution to the system:
OL (wi|a;)
ﬁaj

With this likelihood and using Bayes’ theorem, we can define:

L (z;]d@) p(ay)
p(w;)

=0, j=1,...m. (6.2)

p(ajlzi,) = , (6.3)
where p (a;|x;, M) is the posterior probability of the parameter, and it gives the answer we
want: the probability that the parameter a; coming from the theory can be explained by
the data x;. The density p(a;) is called prior probability and it contains the information
about our knowledge of the parameters before the experiment. This is usually known from
theory or from previous experiments, and one can choose flat priors or Gaussian priors (or
even more sophisticated choices). One needs to be very careful, since a wrong choice of prior
might lead to wrong posterior and a wrong result. p(x;) is the evidence, the pdf of the
data. The evidence is seen as the condition for imposing the normalization of the posterior
probability.

Having the posterior distribution, one can extract a lot of information about the param-
eters of the model given the data. First, we can obtain the estimator for the parameters by

maximizing the posterior:

p (Clj|$i, )

=0 =1,...,m. 6.4
aa] Y j ) 7m ( )

One can also find the probability of a chosen parameter a; by integrating over the other

parameters, a procedure we call marginalizing:

pla;) = / - / play|) das, - day_, - dags, - day (6.5)

Another piece of useful information that we can infer for the parameters is their confidence

region, defined by:
/ p(ajlz;,)dma =a, (6.6)
R(a)
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where a is a number 0 < o < 1 that can be linked to the probability of the parameters to
be within that region. The most used a = 0.683, 0.954, 0.997 that correspond to the 1o, 20
and 30 confidence levels. The procedure is to find R(«) for the level of confidence chosen.

All these calculations are simplified significantly if the pdf’s are Gaussian. In this case,
maximizing the likelihood is equivalent to the problem of minimizing the x?, that is given by
the exponent of the exponential of the Gaussian distribution. This procedure is the known
least square method.

Not all the data are or can be approximated by a Gaussian and the use of the maximum
likelihood method becomes complicated. However, the central limit theorem assures that if
we have N events, where each one has a pdf and finite variance, then in the limit when N —
oo (or very large), the sum tends to a Gaussian distribution. This result is very important
in cosmology not only because it simplifies the analysis but since the linear perturbations
are expected to be Gaussian. Deviations from gaussianity bring an opportunity to explore

new physics in the early and late universe.

6.2 Data Sets

In this section we describe the data and likelihood of each of the data sets used in our
analysis: CMB temperature anisotropies, BAO, type la Supernovae and local measurements
of Hy. For the measurement of the Lyman-« forest from high-redshift quasars, although a
likelihood was provided by the BOSS collaboration, we constructed our own.

First, we will show how the primordial power spectrum generated by an early universe
mechanism for the generation of the primordial perturbations connects to the observations

done in the CMB and late universe.

6.2.1 Connecting Observations to the Primordial Perturbations

As we saw in Section 3.2, for any mechanism that generates the primordial perturbations
in the early universe (like inflation or bouncing cosmologies), we are able to compute the
curvature perturbations R and the gravity waves. These perturbations freeze out after they
leave the Hubble radius, and only evolve again after they re-enter it at later times. If we
want to measure these perturbations at late times, using CMB or the large scale structure,

we need to take into account what is the relation of R with the measured quantity, and
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the time evolution of R after the scale re-enters the Hubble radius. Given a perturbation

measured at late times i, we can relate that with R, in a schematic way:
Qk(T) = TQ(k> The 7—) Rk(T) ) (67)

where 75, is the time when the perturbations crossed the horizon and Ty (k, 7., 7) is the
function connecting both @ an R.

The large scale structure of our universe is formed when the dark matter clumps due to
gravitational instability from an initial distribution given by the primordial perturbations.
All the baryonic matter, like galaxies or gas in the universe, is going to be formed and
fall into the high density regions of the dark matter distributions, tracing this distribution
with a proportionality (that depends on the tracer and can depend on k) factor called bias.
It is important, then, to know how to calculate the power spectrum for the dark matter
fluctuations from the primordial power spectrum so we can understand the power spectrum
we measure from observations of a given tracer (galaxies, 21-cm, ...). The matter power

spectrum is defined as:

40 kN,
Pit) = 55 () T2 PR(R), (65)
where 6 = dp/p is the density contrast for dark matter. This is the quantity that the software
of data analysis, CAMB [160] and CosmoMC [161], used in the works of Chapters 7 and 8,

compute.

6.2.2 Cosmic Wave Background

The cosmological microwave background has been the main source of information for con-
straining the cosmological parameters, after the COBE, WMAP and Planck results. We
wish to use the anisotropies in the CMB to probe the cosmological parameters of our model.
These anisotropies are encoded in the photons of the CMB as a temperature fluctuation or
polarization modes. We are only interested, in this work, in the temperature anisotropies,

that can be expanded in a basis of spherical harmonics:

o) = L = 5™, ¥in (i) (69)
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where 7 is the unit vector that gives you the direction in the sky, T = 2.75 is the background
black body temperature of the CMB, Y},,(n) is the spherical harmonics with m = —1[,...;1

and the coefficients are the multipole moment and can be written as:
- / dOY; ()O(7) (6.10)

Given these perturbations, we want to evaluate the two point function, which is the

angular power spectrum:

1
TT § : *

This quantity is the one extracted from the observations of the CMB and it is related to the

primordial power spectrum by:

clt = % / k*dk Pr (k) Aqy(k)Aqy(k), (6.12)

since the adiabatic scalar perturbations dominate. Here, Ap;(k) are the transfer functions.
This general formula is valid for other modes like the E and B (and correlations between all
of these).

With that, the treatment given in |162] is that the data mX is modelled as being com-
posed of the CMB signal (s*) and a instrumental noise that is assumed to be a nearly
Gaussian distributed random field (n*): m* = s¥ +s*, with X being one of the modes T,
E or B. Then, the low-/ full likelihood is given by:

1 1 oy
L(C)) =P (m|C) = SERVIRE exp (—im M m) : (6.13)
where M = S 4+ N is the full data covariance. The high-multipole likelihood has further
contributions from astrophysical foregrounds, so the noise is modeled in a more complicated
fashion described in [163].

The data used in our analysis was the low-/ (2 < I < 50) and high-/(50 < I < 2500)
multipole data from Planck 2013 TT (temperature) power spectrum [163,(164]. In order to
break the degeneracy between reionization optical depth and the primordial amplitude, we
include the WMAP low-/ polarization power spectrum (2 <[ < 32) [165].
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6.2.3 Baryon Acoustic Oscillations

The BAO are acoustic oscillations imprinted in the CMB from sound waves coming from
the primordial plasma. This imprinted spherical waves have a characteristic scale, given by
the sound horizon at recombination. This scale known to 0.2% precision from CMB power
spectrum (147.4 +0.3Mpc) [41]. BAOs are a (statistical) standard ruler. The change in the
size of this scale can measure the expansion history of the universe, and is thus a good probe
to constrain dark energy.

The early universe is permeated by many spherical acoustic waves, so the final density
distribution is a linear superposition of the small-amplitude sound waves. Thus, the BAO can
be inferred statistically through the two-point correlation function of the matter distribution
of biased tracers like galaxies.

The BAO can be measured in the radial direction (s)), where we can infer the expansion
of the universe through the Hubble parameter, and in the angular direction (s, ), where we

can infer the angular distance:

cAz

s(z) = e s1(2) = Da(2) AO(1 + 2). (6.14)

We can observe the preferred clustering scale set by the BAO at different redshifts to con-
strain the Hubble parameter and the angular diameter distance. This is exactly what it
is measured by the SDSS-BOSS collaboration from the Lyman-« forest from high-redshift
quasars.

Another quantity that can be inferred from the BAO measurement is the spherically-

averaged two-point statistics, which is a combination of D4 and H(z):

H<Z>] /3. (6.15)

This is usually used when the signal in the radial direction is small in comparison with

Dy(z) = [(1 +2)’D%

cosmological distortions.

The data used in the analysis of Chapter 7 combines the value of Dy (z) from the SDSS
DR7 BAO measurement at z = 0.35 [166], the BOSS DR9 at z = 0.57 [167], and 6dF Galaxy
Survey at z = 0.106 [168]. The data from Lyman-« forest from high-z quasars, consists in

the pair (Da(2)/rs, Du(2)/rs) from the autocorrelation [169] and from the crosscorrelation
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with the Lya data [170].
The value of Dy from these measurements is then included in the data analysis as a
vector, and separately, the values of (D4(2)/rs, Du(z)/rs) are included as a matrix. The

likelihood is computed from the y? statistics:
XBao = (x = Xobs)T Crio (X = Xobs) (6.16)

where x is the theoretical prediction vector /matrix, X, is the observed vector /matrix, and

CBao is the covariance matrix.

6.2.4 Type Ia Supernovae and the Hubble Parameter Measurements

Type la Supernovae are used as standard candles, and we can hence infer their distance
from us, as we saw in Section . They were the objects observed when dark energy
was discovery in 1998. They are still widely used to infer the expansion of the universe
with, now, a much bigger and deeper sample. We use data from the Supernovae Cosmology
Project (SCP) Union 2.1 compilation [171], that is composed of 508 objects.

The likelihood is also evaluated by using the 2 statistics:

i=1
where p(z, Qp, Q4,w) is the theoretical distance modulus given by [172]:
W
1(z) = 5logio [e(1 + z)/o W] + 25 — blogioHy - (6.18)
The distance modulus pp(a, §,d, Mp) is a parametrization:
pp(a, 8,6, M) = mp™ + axy — Be+ 0 P (mle <mr) | (6.19)

where m3* is the integrated B-band flux at maximum light and P (mi’"“e < mi’”’) is the

correlation of the mass of the host galaxy and the Snla luminosity. This parametrization can
be fitted using three nuisance parameters, and the absolute magnitude, Mpg. The parameters

«, B and 0 are fixed in the CosmoMC Union 2.1 module.
For the local value of Hy, we use the value from the Hubble Space Telescope [42]: H, =



6 Methods of Data Analysis

95

73.8 £2.4kms " Mpc L.
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Chapter 7

Testing the Interaction between Dark
Energy and Dark Matter with Planck
Data

7.1 Introduction

The incredible amount of precise astronomical data released in the past few years provided
great opportunities to answer problems in cosmology and astrophysics. Recently, the Planck
team released their first data with higher precision and new full sky measurements of the
Cosmic Microwave Background (CMB) temperature anisotropies in a wide range of multi-
poles (I < 2500) [162,|173,/174]. Such a precision allows us to test cosmological models and
determine cosmological parameters with a high accuracy.

The Planck team analysis showed that the universe is flat and in full agreement with
the ACDM cosmological model, especially for the high multipoles (I > 40). However, the
value of the Hubble parameter today presents about 2.5¢ tension in comparison with other
low redshift probes, for example the direct measurement done by Hubble Space Telescope
(HST) [42]. If this difference is not introduced by systematics, this can point out to an
observational challenge for the standard ACDM model. The Planck determination of H
assumed a theoretical ACDM model, which can influence its value on Hy.

Theoretically the ACDM model itself is facing challenges, such as the cosmological con-

stant problem [175] and the coincidence problem [176]. The first problem refers to the small

2017/06/25
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observed value of the cosmological constant incompatible with the vacuum energy description
in field theory. The second problem refers to the fact that we have no natural explanation
why the energy densities of dark matter and vacuum energy are of the same order today.
These problems open the avenue for alternative models of dark energy to substitute the
cosmological constant description. For example, the use of a component with dynamically
varying equation of state parameter to describe the dark energy. However, although it can
alleviate the coincidence problem, it suffers the fine tuning problem. Thus these models are
not prevailing.

Another way to alleviate the coincidence problem, which embarrasses the standard ACDM
cosmology is to consider an interaction between dark energy and dark matter. Considering
that dark energy and dark matter contribute significant fractions of the contents of the
universe, it is natural, in the framework of field theory, to consider an interaction between
them. The appropriate interaction can accommodate an effective dark energy equation of
state in the phantom region at the present time. The interaction between dark energy and
dark matter will affect significantly the expansion history of the Universe and the evolution
of density perturbations, changing their growth. The possibility of the interaction between
dark sectors has been widely discussed in the literature [27,29}30,/177-207]. Determining
the existence of dark matter and dark energy interactions is an observational endeavor that
could provide an interesting insight into the nature of the dark sectors.

Since the physical properties of dark matter and dark energy at the present moment are
unknown, we cannot derive the precise form of the interaction from first principles. For
simplicity, most considerations of the interaction in the literature are from phenomenology.
Attempts to describe the interaction from field theory have been proposed in [32}/33}208].
In this chapter we will concentrate on a phenomenological model of the interaction between
dark matter and dark energy, which is in a linear combination of energy densities of the
dark sectors Q. = 3H (19 + &2pa) [26,29,200], where & and & are dimensionless parameters
and assumed to be time independent for simplicity. This model was widely studied in
[28,29,|31}190,,205,209,[210]. It was disclosed that the interaction between dark matter and
dark energy influences the CMB at low multipoles by the late integrated Sachs-Wolf (ISW)
effect [197,/199] and at high multipoles through gravitational lensing [31,211]. With the
WMAP data |197,199] together with galaxy clusters observations [205,206] and also recent
kinetic Sunyaev-Zel'dovich effect observations [212], it was found that this phenomenological

interaction between dark energy and dark matter is viable and the coupling constant is



7 Testing the Interaction between Dark Energy and Dark Matter with Planck Data 98

positive indicating that there is energy flow from dark energy to dark matter, which is
required to alleviate the coincidence problem and to satisfy the second law of thermodynamics
[188].

It is of great interest to employ the latest high precision Planck data to further constrain
the phenomenological interaction model. This is the main motivation of the present work.
We will compare the constraint from the Planck data with previous constraints from WMAP
data [197,199]. Especially, we want to examine whether, with the interaction between dark
matter and dark energy, we can reduce the tension on the value of Hy at present. We will
combine the CMB data from Planck with other cosmological probes such as the Baryonic
Acoustic Oscillations (BAO), Supernovas and the latest constraint on the Hubble constant
[42]. We want to see how these different probes will influence the cosmological parameters
and put tight constraints on the interaction between dark sectors.

This chapter is organized as follows: in Section [7.2] we will describe the phenomenological
interaction model between dark sectors and present the linear perturbation equations. In
Section [7.3] we will explain the methods used in the analysis. Section [7.4] will present the

results of the analysis and discussions. In the last section we will summarize our results.

7.2 The phenomenological model on the interaction between dark

sectors

The formalism describing the evolution of matter and dark energy density perturbations
without [213214] and with dark matter and dark energy interaction [200] is well established.
If dark matter and dark energy are coupled with each other, the energy-momentum tensor

T (’j\l; of each individual component A\ = ¢, d is no longer conserved. Instead,

VI = Q) (7.1)

where Q‘(’/\) is the four vector governing the energy-momentum transfer between dark com-
ponents and the subscript (\) can refer to dark matter (¢) and dark energy (d), respectively.
With interaction between dark sectors, dark matter and dark energy components are not

conserved separately, but the energy-momentum tensor of the whole dark sector is still con-

served, thus, Q’(’C) = —Q’(’d).

Assuming spatially flat Friedmann-Robertson-Walker background, from the energy con-
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servation of the full energy-momentum tensor, we can derive the equations of evolution of

the mean dark matter and dark energy densities

pe+ 3Hpe :a2Q2 =+a@),
pa+ 3H (1 4+ w) pg =a*QY =—aQ, (7.2)

where the derivatives and the Hubble parameter H are in conformal time, p. is the energy
density for dark matter, w = py/pq is the equation of state of dark energy, a is the scale
factor and () was chosen to be the energy transfer in cosmic time coordinates. We emphasize
that the homogeneity and isotropy of the background require the spatial components of Q’(’ N
to be zero.

We concentrate on the phenomenological interaction as a linear combination of energy
densities of dark sectors with the form of Q@ = 3H (&1p. + £2p4), which describes the energy
transfer. In the above expression of the continuity equations, if () > 0, we have the dark
energy transfers energy to the dark matter while if it is negative, the transfer is in the opposite
direction. In studying the curvature perturbation it has been made clear that when the
interaction is proportional to the energy density of dark energy (Q = 3H&2p,), we get a stable
curvature perturbation except for w = —1; however, when the interaction is proportional
to the dark matter density (Q = 3HE p.) or total dark sectors (QQ = 3HE(pe + pa)), the
curvature perturbation can only be stable when the constant dark energy equation of state
satisfies w < —1 [29]. For the case of a time-dependent dark energy equation of state, the
stability of curvature perturbations was discussed in [186}/187]. With the interaction, the

effective background equations of state for the dark matter and dark energy change to

a*Q? a*QY
) Wd.e =W — )
3Hp. deld 3Hpa

Weeff = — (73)
where w is the equation of state of dark energy. We summarize different forms of the
interaction with the effective background equation of state in Table as done in [31], we
label our models with Roman numbers.

In order to solve the coincidence problem, we require the ratio of the energy densities of

dark matter and dark energy, r = p./p4, to be a constant in the expansion history of our



7 Testing the Interaction between Dark Energy and Dark Matter with Planck Data 100

universe. This leads to a quadratic equation,
ari+ (@ +e+w)r+& =0 (7.4)

The solutions of this equation can lead to unphysical results, as negative energy density
of cold DM in the past or complex roots. For different phenomenological models of the
interaction between dark sectors, the conditions to obtain physical results, positive energy
densities and real roots, were summarized in [31] as shown in Table [7.1] Fig[7.]] illustrates
the behavior of r for the four interacting models. We observe that, for the interaction
proportional to the energy density of dark energy, a positive interaction can help to alleviate
the coincidence problem as there is a longer period for the energy densities of dark matter
and dark energy to be comparable. In contrast, a negative interaction can not alleviate the
coincidence problem. For the interaction proportional to the energy density of dark matter

or to the sum of both energies, the ratio r presents a scaling behavior.

Table 7.1 In this table we present the different coupling models considered with its constraints,
dark energy equation of state and the effective equation of state for both fluids.

Model Q DE EoS Weeff Wdeff Constraints
I 3 H py —1l<w<0 =&/ w ~+ & &y < =208,
11 3¢ H py w< —1 —&/r w+ & & < —2wS).
I11 3¢ Hp, w< —1 —& w+&r 0<& < —w/4
IV 3H(pa+p) w<—-1 —E0+1)r) w+&(r+1) 0<&<-—w/4

From the background dynamics we see that when we introduce the phenomenological
interaction between dark sectors, it is possible to have the scaling solution of the ratio between
dark matter and dark energy, which can help to alleviate the coincidence problem. However,
in the background dynamics there appears an inevitable degeneracy between the coupling
in dark sectors and the dark energy equation of state. In general this degeneracy cannot be
broken by just investigating the dynamics of the background spacetime, except in the case
when the coupling is proportional to the dark matter density (Model III) as was discussed
in [31]. It is expected that the degeneracy between the coupling and other cosmological
parameters can be solved in the perturbed spacetime by considering the evolution of the

perturbations of dark energy and dark matter. The perturbed FRW space-time has a metric
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101

0.1

Fig. 7.1 (Color online). Evolution of the dark energy/dark matter energy density ratio r = p./pq
in a model with Q = 3H(&1pc + &2p4) for different coupling constants. (a) The red dashed line
corresponds to Planck bestfit Model I, with & = —0.1881 corresponding to the lowest value in the
68% C.L. as in Table The black solid line has the same parameters but no interaction. (b)
The black solid line corresponds to a non-interacting model with w = —1.65 and Q43 = 0.78. The
red dot-dashed line describes Model II listed in the first column of Table with £ = 0.2. The
green dashed line corresponds to Planck bestfit Model III (see Table ; and blue dotted line to
Planck bestfit Model IV (see Table [7.13).

given by
ds* = a® [—(1 + 2¢)dr* 4 20;Bdrdx’ + (1 + 2¢)0;;da’da’ + D;;Edx’da’] (7.5)
where )
D;j = <az-aj - géijvz‘) : (7.6)

The functions ¥, B, ¢ and FE represent the scalar metric perturbations. In the synchronous
gauge v = B = 0.

We will use an energy-momentum tensor of the form
™ (1, x,y,2) = (p+ P)U*U” + Pg"”, (7.7)

where p, P are composed by a term depending only on time plus a small perturbation that

depends on all coordinates. The four-velocity reads

U* = (I—1<1 - w,l_)b\)), (78)
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where () can be written as minus the gradient of a peculiar velocity potential v(y) plus a
zero divergence vector. Only the first one contributes to scalar perturbations. In the Fourier
space, we use the convention to divide the velocity potential by an additional factor of k& = \l; \

so that it has the same dimension as the vector part. Thus,

0=V 7=V =ko. (7.9)

Following [185] we write the perturbed pressure of dark energy as

SH(1 +w)vapa
k

6Py = 264pq + (¢ — c2) [ aZQg% : (7.10)
where § = dp/p is the density contrast, ¢? is the effective sound speed of dark energy at its
rest frame, which we set to one, and ¢? is the adiabatic sound speed. As discussed in [31],

the perturbed four vector 5Q’(’)\) can be decomposed into

Y 1
IQ) = £ (_EQ + 5562 ; 0Qpn) = Qi’()‘)‘t + Qe (7.11)
Here the == sign refers to dark matter or dark energy respectively, and 0@,y is the potential

is the external non-gravitational

of the perturbed energy-momentum transfer 5@1(' N Q; W,
force density and v, is the average velocity of the energy transfer. In this chapter we consider
that there is no non-gravitational interaction between dark energy and dark matter, only
inertial drag effect appears due to stationary energy transfer. Thus Q;Ig(A) t and v; vanish
which implies that (5@% n =0

In the synchronous gauge, the linear order perturbation equations for dark matter and
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dark energy read [31]

: h 1
0e = —(kv, + 5) + 37{52; (0q — 6c) (7.12)
: h
0g =— (1 4+ w) (kvg + 5) + 3H(w — )64 + 3HET (04 — )
—3H (2 — &) [BH (1 + w) + 3K (&7 + &) % (7.13)
1
Ve = —Hv, — 3H(§ + ;52)%, (7.14)
. 3H k24,
Vg = —H (1 — 30623) Vg + H—w (1 + Cz) (517' + fg) Vg + 1+ w 5 (715)

where h = 6¢ is the synchronous gauge metric perturbation and v, is the peculiar velocity of
the dark energy. The peculiar velocity of the dark matter v, is considered to be null because
we are working in a frame comoving with the matter fluid. To solve equations , ,
[7.14] we set initial conditions according to [29]. In the linear perturbation formalism,
the influence of the interaction between dark energy and dark matter on the CMB can be
calculated by modifying the CAMB code [160]. This can be done by directly including
equations (8.1} [7.12] [7.13] [7.14 and [7.15) in the code.

In [31], it was uncovered that in addition to modifying the CMB spectrum at small [, the

coupling between dark sectors can shift the acoustic peaks at large multipoles. While the
change of equation of state of dark energy can only modify the low [ CMB power spectrum,
it leaves the acoustic peaks basically unchanged. This provides the possibility to break the
degeneracy between the coupling and the equation of state of dark energy in the linear
perturbation theory. Furthermore, it was observed that the abundance of dark matter can
influence the acoustic peaks in CMB, especially the first and the second ones. The degeneracy
between the abundance of the dark matter and the coupling between dark sectors can be
broken by examining the CMB spectrum at large scale, since only the coupling between dark
sectors influences the large scale CMB spectrum. Theoretically it was observed that there
are possible ways to break the degeneracy between the interaction, dark energy equation of
state and the dark matter abundance in the perturbation theory [31]. This can help to get
tight constraint on the interaction between dark energy and dark matter.

In the following we are going to extract the signature of the interaction and constraints

on other cosmological parameters by using the Planck CMB data together with other ob-
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servational data and compare with previous results obtained in [31] by employing WMAP
data.

7.3 Method on data analysis

We compute the CMB power spectrum with the modified version of CAMB code [160], in
which we have included both background and linear perturbation equations in the presence of
a coupling between dark matter and dark energy. To compare theory with observations, we
employ the Markov Chain Monte Carlo (MCMC) methodology and use the modified version
of the program CosmoMC [161},215], by setting the statistical convergence for Gelman and
Rubin R — 1 = 0.03.

The Planck data set we use is a combination of the high-I TT likelihood, which includes
measurements up to a maximum multipole number of [,,,, = 2500, combined with the low-[
TT likelihood which includes measurements of [ = 2 — 49 [162,/173,/174]. Together with
the Planck data, we include the polarization measurements from the nine year Wilkinson
Microwave Anisotropy Probe (WMAP) [165], the low-/ (I < 32) TE, EE, BB likelihood.

In addition to the CMB data sets, we also consider Baryon Acoustic Oscillations (BAO)
measurements. We combine the results from three data sets of BAO: the 6DF at redshift
z =0.106 [168], the DR7 at redshift z = 0.35 |[166] and the DR9 at z = 0.57 [167].

Furthermore we examine the impact of the Supernova Cosmology Project (SCP) Union
2.1 compilation [171], which has 580 samples. Finally we also include the latest constraint
on the Hubble constant [42]

Hy="73.8+24kms 'Mpc . (7.16)

In a recent paper [211], the authors examined the Model T of the interaction between
dark sectors listed in Table by confronting to observational data including the new
measurements of the CMB anisotropies from the Planck satellite mission. They found that
the Model I of coupled dark energy is compatible with the Planck measurements and can
relax the tension on the Hubble constant by getting a consistent Hy as the low redshift
survey such as HST and SNIa measurements. In their analysis, they considered ranges for
the priors of different cosmological parameters listed in Table — & in Table is the
coupling constant defined in [211]. It relates to our definition & in Model I by dividing
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by 3. At the first sight, their prior of Q.h? was set unreasonably small (see note in Table
7.2). Tt is interesting to check, if we allow an increase of Q.h? prior, how the constraints of
cosmological parameters for Model I behave. Besides, in [211], they fixed the dark energy
equation of state to be w = —0.999. Actually there is no reason to fix the value of w in the
global fitting. It is more reasonable to inquire about the consequences of setting the equation
of state of dark energy to be variable. The effect of letting w free to vary under the condition
w > —1 was also considered in [211] with the priors from Table Furthermore, in [211],
the authors fixed the relativistic number of degrees of freedom parameter to N ;s = 3.046,
the helium abundance to Y, = 0.24, the total neutrino mass to Y m, = 0.06eV, and the
spectrum lensing normalization to Ay, = 1. If we change the setting of these priors, we want
to ask how the fitting results on the Model I change. Can Model I still be compatible with
observational data? Can the constraint on the Hubble constant be relaxed as well? These
questions are worthy of careful study.

Besides Model I of the interaction between dark sectors, in Table we have listed other
three interaction models. It would be of great interest to carry out global fitting of these
models to the recent measurements of the CMB from the Planck satellite mission and other
complementary observational data. In order to do so, in Table we list the ranges for
the priors of different cosmological parameters considered in our analysis. In our analysis
we will use a big bang nucleosynthesis (BBN) consistent scenario to predict the primordial
helium abundance Y, as a function of the baryon density Q,h? and number of extra radiation
degrees of freedom AN. We will use interpolated results from the PArthENoPE code [216]
to set Y, following [217].

Table 7.2 Initial parameters and priors used in the analysis in [211] for Model I.

Parameters Prior
Oph? [0.005,0.1]
Q.h? [0.005,0.1]]]
10060 (0.5, 10]

T [0.01,0.8]
s [0.9,1.1]

log(101°A,) [2.7,4]
&=¢/F  [-0.333,0]
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Table 7.3 The priors for cosmological parameters considered in the analysis for different inter-
action models.

Parameters Prior
Quh? [0.005,0.1]
Q.h? [0.001, 0.5]
1006 [0.5,10]

T [0.01,0.8]
N [0.9,1.1]
log(10' Ay) [2.7,4]

Model 1 Model I Model III  Model IV
w [—1,-0.1] [-2.5,—-1] [-25,—1] [-2.5,—1]
13 [—0.4,0] |[0,0.4] |[0,0.01] | 0,0.01]

7.4 Fitting Results

We start with the Model I interacting model. We have initially performed two runs. In
the first run we do not include the coupling, & = 0, which corresponds to the ACDM case,
and choose the priors of cosmological parameters listed in Table [7.2 In the second run, we
follow [211] by setting the priors of different cosmological parameters as in Table , fixing
the dark energy equation of state w = —0.999 and setting the helium abundance Y, = 0.24,
the total neutrino mass »_ m, = 0.06eV, and the spectrum lensing normalization A; = 1.
We have let the coupling parameter & to vary freely. Performing separately an analysis with
Planck data alone, we show the result in Table [7.4]

Table 7.4 Best fit values and 68% c.l. constraints with the parameters in Table

ACDM Planck Interacting Planck

Parameter Best fit 68% limits  Best fit ~ 68% limits
Quh? 0.0234  0.02337000%%0.0220  0.02207 55505
O.h? 0.099 > 0.099 0.044  unconstrained

H, 76.9 76.9104 73 7273

w _ - _ =

£ - — -0.19 —0.1770:0°

T 0.15 0.13%5:03 0.09 0.0910:01

N, 1013 1.008%09% 0961  0.95709%7
In(10°4,) 316  3.1370% 3090 308700

Our result for .h? obeys the prior range as indicated in Table [7.2] If we look at the
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Hubble constant value, in our fitting by obeying the prior of Q.h? in Table we get higher
value of Hj, which shows that there is no more tension with the Hubble Space Telescope
value. But if Q.h? is above this prior range, the Hy is much smaller. This gives us a hint
that decreasing .h? can lead to the effect of increasing H.

The presence of a dark coupling is perfectly compatible with the Planck data set. Our
fitting result is consistent with that shown in Table in [211] including the value of Hy
and the coupling & (the relation between our coupling and theirs is & = £/3). While the
coupled dark Model I is compatible with most of the cosmological data, in Table [7.4] we see
that the Q.h? is unconstrained in the 1o range although its best fitting value is still within
the set prior. This is different from the result in Table [7.2) of |211].

We enlarge the prior to be Q.h? = [0.001,0.99] and perform further two runs with Planck
data alone for the ACDM model and the Model I of the interacting dark sectors. We show
the results in Table[7.5] As expected, raising the upper range of prior for Q.h? leads to the
decrease of the values of Hy. This holds for both the ACDM and the coupling Model I. For
the ACDM, our fitting result is consistent with Table in [211]. For coupling Model I, we
find that if we enlarge the prior of Q.h%, H, is decreased, although in Table the fitting
value of Hj is still compatible with that of HST.

Table 7.5 Best fit values and 68% c.l. constraints with the parameters in Table but with
Q.h? =10.001,0.99]

ACDM Planck Interacting Planck
Parameter Best fit 68% limits Best fit  68% limits
Q,h? 0.0220  0.0220739%0% 0.0219  0.02207 0000

Q.h? 0.120  0.120%99%  0.12 0.0679:%3
H, 67 67+ 67 71+
w o - o -
‘, o - 0.009  —0.1457098
T 0.08 0.0919:91 0.09 0.0970:01
n 0.958  0.957+5007  0.958  0.957+0%0

In(1004,)  3.08 3.08+002 3.09 3.081005

In the above fittings, we followed [211] to fix the equation of state of dark energy to be
w = —0.999. In the global fitting, this condition is too strong. It is more reasonable to set
the equation of state of dark energy to be free. We choose the prior of the equation of state

of dark energy to be in the quintessence range w = [—0.999, —0.1] and examine how this free
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parameter affects the fitting result with Planck data alone. We show our results in Table
[7.6l We find that in addition to enlarging the prior of .h?, setting w to be free will further
decrease the value of Hy in the fitting. From the Planck data fitting, we see that the coupled

dark sectors Model I is not of much help to relax the tension of Hy with the Hubble Space
Telescope value.

Table 7.6 Best fit values and 68% c.l. constraints with w = [—0.999, —0.1].
wCDM Planck

Interacting Planck

Parameter Best fit 68% limits Best fit 68% limits
Q2 0.0221  0.021973%0%% 0.0218  0.02197050%
O h? 0.118  0.120799% (.10 0.07+5:93
H, 66 6375 65 6713
w -0.93 < —0.83 -0.91 < —0.85
& - — -0.08  —0.147089
T 0.09 0.0919:91 0.08 0.0975:%1
n 0.962  0.957%0000  0.956  0.95700%
In(10194,)  3.08 3.097902 3.08 3.087003

In Tables and we further show the fitting results with Planck data alone by
fixing the helium abundance Y, to the BBN prediction and assuming massless neutrinos,
respectively. The fitting results are basically consistent with the result by fixing the helium
abundance to Y, = 0.24 and the total neutrino mass Y m, = 0.06eV, except that the
constraint for the coupling is much tighter.

Table 7.7 Best fit values and 68% c.l. constraints in a BBN consistency scenario.

wCDM Planck

Interacting Planck

Parameter Best fit 68% limits Best fit 68% limits
Quh? 0.0220  0.022073%0050.0222  0.02207 55003
Qch? 0.119  0.1207999  0.10 0.0770:05

H, 67 6313 67 6813

w -0.98 < —0.82 -0.89 < —0.85

& - — -0.07  —0.1310%

T 0.09 0.0970:01 0.09 0.0975:%1

N, 0.960  0.960%0507  0.969  0.960%3:9%7
In(10°4,)  3.10 3.10190 3.08 3.097003
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Table 7.8 Best fit values and 68% c.l. constraints with »_ m, = 0eV

wCDM Planck

Interacting Planck

Parameter Best fit 68% limits Best fit 68% limits
Q,h%  0.02222 0.02202t08;§0828§§ 0.02210 0.02203t§;§§§§§
Q.h? 0.1180  0.1200%39920  0.1023  0.0712410:03748

H, 66.56 63.4975:58 68.10 67.91155
w -0.9306 < —0.8177  -0.9480 < —0.8487
&2 — — -0.04789 > —0.17097
T 0.09347 0.089047391245  0.08597  0.08777 00125
ng 0.9675  0.960470057  0.9668  0.96030 007
In(10'°4,)  3.094  3.0887) 05t 3.082 3.08610:058

We can also turn off the CMB lensing. We show the result of fitting with Planck data
alone in Table It is clear to see that turning off the CMB lensing will further reduce the

Hubble constant at present and put tighter constraint on the interaction.

From the above analysis, we can conclude that although the coupled dark energy model

I is fully compatible with the Planck measurements, it is not safe to argue that this model

predicts the Hubble constant with less tension compared with the Hubble Space Telescope

value.

Table 7.9 Best fit values and 68% c.l. constraints turning CMB lensing off.

wCDM Planck

Interacting Planck

Parameter Best fit 68% limits Best fit 68% limits
Q,h? 0.0202 0.0203i§;§§§§ 0.0203 0.0203t08;(§3588§
Q.h? 0.126  0.125%5003 0.11 0.08%009

H, 63 5913 63 6473

w -0.98 < —0.74 -0.89 < —0.81

& — — 0.061 > —0.192
T 0.07 0.0875:01 0.06 0.0870:01

ng 0.936  0.9347000%  0.932  0.934705%8

In(1004,)  3.06 3.061002 3.04 3.061005

Besides the interacting dark sector Model I, we would like to put constraints on other

coupled dark energy models listed in Table from the recent measurements of the Cosmic
Microwave Background Anisotropies from the Planck satellite mission. We will also consider

the combined constraints for the general phenomenological interacting models between dark



7 Testing the Interaction between Dark Energy and Dark Matter with Planck Data 110

sectors from the Planck data plus the BAO measurements, SNIa and HST observational
data. In our analysis, we will choose our priors of different cosmological parameters as listed
in Table We will allow the equation of state of dark energy to vary and choose the
helium abundance Y, from a BBN consistency scenario. We will take the relativistic number
of degrees of freedom N.;; = 3.046, the total neutrino mass to ) m, = 0.06eV" and the
spectrum lensing normalization to Ay, = 1. After running the MCMC, we list our fitting
results in Tables

The constraints on the parameters and the best fit values for Model I are reported in
Table [7.10, The 1-D posteriors for the parameters Q.h%, w and & are shown at the top
row of Fig[7.2] and the main parameter degeneracies are shown in Fig[7.3] The presence of
a dark coupling is perfectly compatible with the Planck data set. The marginalized value
tells us & < 0. With the combined constraint by including other observational data, the
negative value of the coupling keeps, which shows that in this coupling model, there is a
lower value of the cold dark matter density today, since there is energy flow from dark
matter to dark energy. This direction of energy flow cannot alleviate the coincidence. As
shown in Fig[7.1] there is even shorter period for the energy densities of dark matter and dark
energy to be comparable. For the Hubble constant value, from the Planck data alone, Hj is
small in this interacting model, which is similar to that obtained in the ACDM case. This
interaction model between dark sectors cannot be of much help to relax the tension on the
Hubble parameter between Planck measurement and HST observation. After including other
observational data at low redshift, we find that the tension between the Hubble constant

measurements is alleviated.

Table 7.10 Cosmological parameters - Model 1.

Planck Planck+BAO Planck+BAO+SNIa+HO0
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits
Q,h? 0.0221  0.022079000%0.0222  0.0220799993 " 0.0221  0.022075:3002

Q.h? 0.12 0.07+30 0.11 0.067005 0.07 0.051008
H, 67 6812 63 6972 71 71+
w 097 —0.8970% 09934 —0.917092  _0.99 —0.9410:02
& -0.00  —0.13*0% 002 0157097 -0.14 —0.1815:02
T 0.09 0.0975:91 0.10 0.0975:51 0.09 0.0970:01
ns 0.960  0.9607997  0.964  0.961+3%0¢  0.964 0.96075-008

In(1004,)  3.09 3.091002 3.11 3.091002 3.10 3.091008
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Now we present the fitting result for the coupling Model II in Table [7.11} where the
interaction between dark sectors is still proportional to the energy density of dark energy
but with equation of state of dark energy smaller than —1. From the Planck data analysis
alone, for this coupled dark energy model, using our cosmological parameters prior listed in
Table|7.3, we obtain the Hubble constant value significantly larger than that in the standard
ACDM case, Hy = 82.6971)s km -s™* - Mpc~!. This is different from what we observed in
the fitting result of Model I, where the Hj is much smaller and consistent with the ACDM
case. The lower fitting range of the Hy in Model II is consistent with the observations in the
low redshift. We have explored the degeneracy between the Hubble value and the equation
of state of dark energy and found that smaller equation of state of dark energy leads to
higher value of the Hubble parameter. The coupling constant & is found to be positive,
which shows that there is an energy flow from dark energy to dark matter. This is required
to alleviate the coincidence problem, because with this interaction there is longer period for
the energy densities of dark matter and dark energy to be comparable, which was illustrated
in the Fig[7.1] Combined with other observational data, we show that a combined analysis
provides significant evidence for this coupled dark energy with positive non-zero value of the
coupling parameter, consistent Hubble constant and equation of state of dark energy. The
1-D posteriors for the parameters .h?, w and & are shown in the second row of Fig. and
the main parameter degeneracies are shown in Figl7.4]

Table 7.11 Cosmological parameters - Model II.

Planck Planck+BAO Planck+BAO+SNIa+HO0
Parameter Best fit  68% limits  Best fit  68% limits  Best fit 68% limits
Qyh? 0.0220 0.0221790003  0.0222  0.0220750005  0.0221  0.022070 0005

Q.h? 0.131  0.1337599% 0132 0.135799%  0.143 0.13470:507
Hy 89 83719 71 7172 70 7171
w 1.7 ~1.5%93 117 =190 118 ~1.197598
& 0.03 0.040:51 0.03 0.057002 0.08 0.051008
T 0.09 0.097501 0.08 0.091001 0.08 0.097001
N 0.961  0.960%0%7 0960  0.958%39%  0.962 0.95970-0%6
In(10°4,)  3.08 3.0970 08 3.08 3.09100s 3.08 3.091003

Now we turn our discussion to the coupled dark energy Model III, where the interaction
is proportional to the energy density of dark matter. To ensure stability of the curvature

perturbation, in this model if the equation of state of dark energy is constant, it has to be
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smaller than —1 [29]. Looking at the new constraints on this coupled dark energy model
from the recent measurements of CMB from the Planck satellite mission alone in Table[7.12]
we find that the Hubble constant value is consistent with low redshift observations, but
it is much higher than that of the ACDM result. The coupling constant is more tightly
constrained in this coupled dark energy model than those in Models I and II, which is in
agreement with the findings in the WMAP constraints [31,|197]. The value of the coupling
parameter & is small positive, which meets the requirement to alleviate the coincidence
problem. The evolution of the ratio between energy densities of dark matter and dark
energy with this small positive coupling was shown in the Fig[7.1], which has a longer period
for the dark matter and dark energy energy densities to be comparable when & is positive
and has the attractor solution with the ratio between dark energy and dark matter energy
densities r ~ constant in the past. We also consider the combined constraints from the
Planck data plus other measurements. The results are listed in Table [7.12] which shows
stronger evidence for this coupled dark energy model with small positive coupling. We plot
the 1-D posteriors for the parameters Q.h2, w and ¢ in the third row of Fig and show the
main parameter degeneracies in Fig[7.5

Table 7.12 Cosmological parameters - Model III.

Planck Planck+BAO Planck+-BAO-+SNIa+HO0
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits
Q,h? 0.0222 0.022670000F0.0225 0.0224730003 0.0223  0.02237900%

Q.h? 0.126  0.129799% 0125  0.1257999  0.124 0.12370:002
H, 80 7913 76 7573 72 7211
w -1.6 -1.8%93 -1.5 —1.4793 -1.30 —1.2510:09
& 0.002 < 0.005 0.002  0.00239%91  0.0018  0.001473:990
T 0.08 0.0975:01 0.09 0.0979:91 0.08 0.09709;
ns 0.958  0.956109%  0.960  0.95970:90¢  0.963 0.96070-0%
In(10'°4,)  3.07 3.0870:02 3.095 3.0870:02 3.07 3.0970:02

Finally we present the fitting results for the coupled dark energy Model 1V, where we
consider the interaction between dark energy and dark matter is proportional to the energy
density of the total dark sectors. In order to ensure the stability of the curvature perturba-
tion, for the constant equation of state of dark energy, it has to be in the phantom range.
This was disclosed in [29]. As observed in the WMAP fitting results, this type of interaction
has very similar constraints to the Model III |31,197]. Confronting the model to the Planck



7 Testing the Interaction between Dark Energy and Dark Matter with Planck Data 113

data alone and the combined observational data, we list the constraints in Table [7.13] We
show the 1-D posteriors for the parameters .h%, w and ¢ in the fourth row of Figl7.2] and
plot the main parameter degeneracies in Fig[7.60] From the Planck data alone, we again see
that for this interacting dark energy model, the Hubble constant is much higher than that
of the ACDM model. This is consistent with the observations from Model IT and Model III.
The coupling constant is more tightly constrained in Model IV to be very small but positive,
what is needed to alleviate the coincidence problem with longer period for the dark energy
and dark matter energy densities to be comparable in the expansion of the universe as shown
in Fig[7.1] The Model IV has an attractor solution with r ~ constant in the future. In the
joint constraints, by including other observational data, we find that the coupled dark energy

model IV is fully compatible with astronomical observations. It is a viable model.

Table 7.13 Cosmological parameters - Model IV.

Planck Planck+BAO Planck+BAO+SNIa+HO0
Parameter Best fit 68% limits Best fit  68% limits  Best fit 68% limits
Q,h? 0.0205 0.0204F3000370.0204 0.0204F33093 " 0.0205  0.020670002

Q.h? 0.125  0.127759%%  0.125  0.126%35%  0.124 0.12479:903
Hy 80 82712 70 7573 72 7171
w -1.6 ~1.8754 -1.3 ~1.5552  -1.30 —1.2970:08
& 0.0001  <0.0005  0.0000  <0.0004  0.0001 < 0.0003
T 0.09 0.089:91 0.07 0.0870:51 0.07 0.087001
oy 0.930  0.931759%7  0.929  0.933%35%¢  0.934 0.93750 000
In(10°A,)  3.09 3.07100s 3.04 3.07100s 3.06 3.061005

7.5 Conclusions

In this chapter we have presented cosmological constraints on general phenomenological dark
matter-dark energy interaction models from the new CMB measurements provided by the
Planck experiment. We have found that a dark coupling interaction is compatible with
Planck data. For Model I, the coupling parameter is weakly constrained to negative values
by Planck measurements, while for the other three models the coupling constants are all
positive from Planck data constraints. The positive coupling indicating that there is energy
flow from dark energy to dark matter, as required to alleviate the coincidence problem and

to satisfy the second law of thermodynamics [188]. Thus Model II, IIT and IV are very
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reassuring in the light of the coincidence problem.

It was claimed that Model I gives a larger Hubble parameter compatible with the HST
value [211]. However, this heavily depends on the prior of Q.h?  the fixed value of w they
chose and other factors. If we enlarge the prior of Q.h? and allow w to vary in the quintessence
range, the Hy constrained in Model I can be lower than the HST value and is consistent with
the value in the ACDM case. Thus, the coupled dark energy Model I cannot be counted to
resolve the tension between the Planck and the HST measurements of the Hubble parameter.

After examining the fitting results for the other phenomenological coupled dark energy
models, we find that the dark interaction in Models II, IIT and IV can give a larger Hubble
parameter. There is degeneracy between the Hubble parameter and the equation of state of
dark energy. If future data can constrain w closer to —1 from below, the fitting result of the
Hubble parameter can be more consistent with the HST value. Thus Models II, IIT and IV
have the possibility to relax the tension of the Hubble parameter between the Planck and
the HST measurements.

We have also considered the combined constraints from the Planck data plus other ob-
servations. These analyzes have provided significant evidence that the phenomenological
coupled dark energy models are viable. Taking into account all data sets, it appears in the
data fittings that Model I shows the most significant departure from zero coupling, although
it does not help to alleviate the coincidence problem.

The weak point of these models is the fact that the equation of state is fixed, not depend-
ing on time. In a more realistic model, we expect it to be time dependent (or else, redshift
dependent). In order to probe such a statement we need a model grounded on cosmological
fields rather than on simple phenomenology, e.g. coupled quintessence models [218]. This is

currently under investigation.
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Fig. 7.2 The likelihood of cold dark matter abundance Q.h?, dark energy EoS w and couplings
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Chapter 8

Evidence for interacting dark energy

from BOSS

8.1 Introduction

One of the biggest challenges in cosmology and astrophysics nowadays is to understand
the nature of the two most abundant components of the Universe: dark energy and dark
matter. These are usually described as two independent components where dark matter is
responsible for most of the nonrelativistic matter in the Universe and where dark energy is
responsible for the late time acceleration of our Universe, which is described by a cosmological
constant in the A-cold-dark-matter (ACDM) model. This standard model is widely used to
describe the cosmological evolution of the Universe [174], and it fits very well the current
observational data. However, this model has some theoretical and observational challenges
(see, e.g., Ref. [219]) that open the way for alternative models of dark energy.

Recently, the Baryon Oscillation Spectroscopic Survey (BOSS) experiment of the Sloan
Digital Sky Survey (SDSS) Collaboration presented new evidence against the ACDM model
[169] based on the measurements of the baryon acoustic oscillations (BAO) flux-correlation
function of the Lyman-alpha (Ly-«) forest from 158,401 quasars at high redshifts (2.1 <
z < 3.5). Comparatively to previous experiments, they provide the line of sight and tan-
gential BAO components, and this allows one to determine the angular distance and the
Hubble distance independently. Their results indicate a deviation from ACDM of the Hub-

ble parameter and of angular distance at an average redshift of 2.34 (roughly 2.5¢ and 2.2¢

2017/06/25
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deviations from Planck+Wilkinson Microwave Anisotropy Probe (WMAP) polarization data
and WMAP9+ACT+SPT, respectively). Assuming a ACDM Universe, this implies a nega-
tive energy density for the dark energy component, %:((2)534) = —1.2 & 0.8, which is 2.50
away from the expected value. We point out that BOSS is not optimized to observe quasars
at such high redshifts. However, if more data or other experiments show that this discrepancy
stands, then it would indicate that ACDM needs to be revised. Its simplest generalization
would consist in allowing for dynamical dark energy (see Ref. [21] for a review), but this
would not be enough to fix this discrepancy. In dynamical dark energy models, all matter
contents are individually conserved, and so, agreeing with the BOSS result for H(z = 2.34)
would require a negative energy density for dark energy [169]. This may lead one to study
very exotic forms of dark energy.

A simpler solution is to consider interacting dark energy. Indeed, dark energy could couple
to gravity, neutrinos, or dark matter since its effects have only been detected gravitationally.
Interaction with baryonic matter (or radiation) has very tight constraints from observations
[220] and must be very small or negligible. In this sense, we are interested in models in which
dark energy interacts with the dark matter component. In a field theory description of those
components, this interaction is allowed and even mandatory [33,208]. However, the main
motivation to introduce such an interaction is to alleviate the coincidence problem, which
can be done given an appropriate interaction.

Since the nature of the dark sector is unknown, the study of these coupled dark energy
models is challenging. Many different models of this interaction have been studied in the
literature from the point of view of either interacting field theory or phenomenology (for a
classification of those models, see Ref. [26]). As an example of phenomenological study, one
can consider holographic dark energy or a quintessence field interacting with a dark matter
fluid [27H31]. There are also attempts to develop Lagrangian models where one postulates
an interaction between the scalar field, playing the role of dark energy, and a fermionic field,
playing the role of dark matter [32-35] (see, however, Ref. [221]).

Recently, there have been studies of interacting dark energy models in light of new probes
[222]-225]. However, we note that there has been only little exploration of the consequences
of the results from BOSS in the literature [226-228|, and these studies do not explore the
idea of interacting dark energy and dark matter. Thus, it would be interesting to see what
the phenomenological implications from BOSS for interacting dark energy are. Since this

model allows for one of the components to decay into the other, we claim that energy flow
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from dark energy to dark matter implies a smaller amount of dark matter in the past, thus
accommodating for the value of the Hubble parameter at z = 2.34 found by BOSS and still
maintaining the cosmology today close to ACDM. For a first test, we perform a comparison
by showing that the observational value of the Hubble parameter from quasars given by the
BOSS Collaboration, H(2.34) = 222 4+ 7 km s~! Mpc™!, is consistent with the interacting
model with a small positive coupling constant. This comparison serves to indicate that the
interaction is able to accommodate the BOSS Collaboration result. After that, we perform
a full Markov chain Monte Carlo (MCMC) analysis using the new BOSS data together with
the Planck data for the interacting model. We show that the constraints on H(z = 2.34)
and Dy (z = 2.34) for the interacting model are compatible with the values obtained by the
BOSS team, showing a slightly better concordance when compared to ACDM.

8.2 Model

8.2.1 Theoretical setup

Given the energy conservation of the full energy-momentum tensor, we can suppose that
the fluid equations representing dark energy (DE) and dark matter (DM) are not conserved

separately. In a Friedmann-Robertson-Walker Universe, we take

pom + 3Hppm = Qpm = +Q,
poe + 3H (1 + wpg) ppor = Qpe = —Q, (8.1)

and all other components follow the standard conservation equations. In the above equations,
ppm and ppg are the energy densities for dark matter and dark energy, respectively; wpg =
ppe/ppE is the equation of state (EoS) of dark energy, considered constant in this work;
and () indicates the interaction between dark energy and dark matter. One can take the
Taylor expansion of the general interaction term Q(ppw, ppE), and thus, it can be represented
phenomenologically as @ ~ 3H (&1ppv + &2ppE), where the coefficients & and & are to be
determined by observations [31}/194]. Following our definition, if ) > 0, then dark energy
decays into dark matter, and for () < 0, the energy flow is in the opposite direction. The
first case is consistent with the requirement that the energy density for dark energy must be
of the same order as the one for dark matter for a longer period of time in order to alleviate

the coincidence problem.
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The validity of the phenomenological interacting dark energy model was studied in Ref.
[29], where it was found that the curvature perturbations can always be stable when the
interaction is proportional to the energy density of dark energy, i.e. when & = 0 while
& # 0, except when w = —1, which represents a central singularity in the cosmological
perturbation equations. This is true for a constant EoS within the ranges —1 < wpg < 0 (we
call this model I) and wpg < —1 (we call this model IT). If the interaction term is proportional
to the dark matter energy density, i.e. £ # 0 while & = 0, then the curvature perturbations
are only stable when wpg < —1 (we call this model III). The models are summarized in
Table Rl

Table 8.1 Interacting dark energy models considered in this chapter.

Model Q DE EoS
I 3 Hppp —1<w<0
1I 3€2HPDE w<—1
I1I 3&1 H ppm w< —1

In this framework, the Friedmann equations can be written as

12(2) = 2 [poe(z) + powa(2) + (2)] (52

H = —47G [ppm(z) + pu(2) + (1 + wpr) poe(2)] | (8.3)

where we are considering a Universe composed of only dark energy, dark matter, and baryons
(pp). We will use these equations to construct the Hubble parameter for each of the inter-
acting models and compare it with the Hubble parameter inferred from the BOSS quasar
data in the next subsection.

For models I and II, the energy densities for dark energy and dark matter behave as [30]

poE = (14 z)?(Fevete)
pom = (14 2)°
X{@p—uwa@Wmﬂ%E

§2 + wpE

+ pODM} ) (84)

where the superscript 0 indicates quantities measured today. The baryonic density is given

by the standard expression, proportional to (1 + 2)3. For model III, the evolution of the
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energy densities is given by [30]

§1PODM

— 1 4oz 3(1+wDE) 0 +

PDE ( ) PDE —51 ¥ woE
&1

&+ wDE( ) Py

pom = ppp(1+2)° 7% (8.5)

One can see from these equations that if there is an energy flow from dark energy to
dark matter (i.e., if the coupling constant is positive), then the energy density for dark
matter is always smaller than what one would expect in the standard ACDM model. Since
ppum is the dominant contribution in the Friedmann equations at higher redshifts and since
observations indicate that the Universe is well explained by the ACDM model at low redshifts
(e.g., Ref. [174]), one can see from Eq. that the interaction implies a smaller Hubble
parameter in the past in comparison with ACDM, when Hj is held fixed and for a positive
coupling constant.

Furthermore, this mildly helps alleviate the coincidence problem (the fact that we do not
understand why the energy densities of dark energy and dark matter are so close today). As it
can be seen in Ref. [229], a positive coupling constant implies that the quantity » = ppm/ppE
decreases at a slower rate in the interacting model than in the ACDM model. This makes
the energy density of dark energy closer to that of dark matter in the past, giving us a better

understanding of their closer values today.

8.2.2 Hubble parameter at z = 2.34

In order to gain some intuition before performing the proper statistical analysis, let us see
whether the measured value of the Hubble parameter by the BOSS Collaboration, H(2.34) =
222 4+ 7 km s™! Mpc™!, can be accommodated by the phenomenological interacting models
introduced above. From this perspective, we compare the Hubble parameter constructed
theoretically with its observational value at z = 2.34.

In order to compute the value of the Hubble parameter from Eqs. , , and ,
one needs several cosmological parameters such as Hy, Q%p, Q% and QY. The standard

ACDM parameters found from the Planck analysis were used by the BOSS Collaboration
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Fig. 8.1 We plot H(z = 2.34) as a function of the coupling £ (corresponding to &2 for models I and
IT and to & for model III). The interacting models correspond to the colored lines since they depend
on the free parameter £, the coupling constant. The left panel represents the Hubble parameter
calculated using the cosmological parameters from Table and with wpg = —1. The right panel
represents H(2.34) using the parameters found in Ref. (including wpg # —1; see Table X for
model I, Table XTI for model IT, and Table XII for model IIT) obtained from Planck+BAO+Snla+Hj.
The dashed gray line is the BOSS measured value of H(2.34) = 222 + 7 km s~! Mpc™?, and the
shaded areas represent 1o and 20 deviations from this average. For the sake of comparison, the
green star represents H(2.34) = 238 km s~! Mpc~!, the value expected for ACDM given the
cosmological parameters in Table [8.2]

(listed in Table. We first use these parameters and the dark energy EoS set tdﬂ wpg = —1
to construct H(z), and we show the resulting Hubble parameter at z = 2.34 with respect
to the coupling constant £ in the left panel of Fig. Alternatively, in the right panel of
Fig. 8.1 we use the adjusted cosmological parameters found in Ref. (including wpg #
—1) from the analysis of the interacting models using Planck, BAO, type la supernovae
(Snla), and H, data. The goal of using different sets of cosmological parameters is to see
if the parameters adjusted to the interacting models yield a different prediction than the
parameters adjusted to ACDM.

We recall that the BOSS Collaboration measured H(2.34) = 22247 km s~ Mpc™!, and
this is indicated by the dashed gray line and by the 1o and 20 shaded areas in Fig. .1} In
comparison, standard ACDM cosmology predicts H(2.34) ~ 238 km s~! Mpc™! when using
the cosmological parameters of Table This is represented by the green star in Fig. [8.1]
which lies outside the 20 measurement from BOSS. In the left panel of Fig. 8.1} all the

'The interacting models are not well defined at the perturbative level if wpg = —1, so we view wpg = —1
as a limit in this case.
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Table 8.2 Cosmological parameters used by the BOSS Collaboration [169).

Parameter Best fit o
h 0.706 0.032
0% 12 0.143 0.003
0% 0.714 0.020

QVh? 0.02207 0.00033

curves that correspond to interacting dark energy pass through the green star at £ = 0. This
is because when the coupling constant vanishes there is no interaction left, and we recover
ACDM (since we set wpg = —1). We also note that model I and model II correspond to
the same curve, because in the limit where wpg = —1, they correspond to the same model
(recall Table . In the right panel, we see that allowing for wpg different than —1 can
significantly alter the prediction for H(z = 2.34). Yet, all the curves can be in accordance
with the Hubble parameter inferred by BOSS given a nonzero coupling constant. Comparing
the left and right panels for model I, we notice that different cosmological parameters require
a different sign for the coupling constant ¢ in order to match the BOSS result. This indicates
that model I may not be fully robust at explaining the observed value of H(z = 2.34) from
BOSS. For models II and III, we see that the theory can easily be within the 1o shaded
area for a positive coupling constant in both panels. We notice that in order for the H(2.34)
theoretical value to match the BOSS measurement, the values of the coupling constant
have to be larger in the right panel where the cosmological parameters were adjusted to
Planck+BAO+Snla+H, data using the interacting models.

At this point, Fig. provides us with indications that a positive coupling constant
allows one to explain in a very simple way a smaller value of the Hubble parameter in the
past, which is not possible with ACDM or dynamical dark energy and without requiring a
very exotic dark energy component. The fact that we obtain a positive coupling constant
for some models is interesting, since it is precisely positive values that help alleviate the
coincidence problem. Thus, this model gives a natural explanation for the energy densities
of the dark components at low redshifts and also at high redshifts since they may explain
the BOSS data.

This gives us evidence that the interacting dark energy model has the required features to
be able to explain the different cosmological evolution shown by the BOSS Collaboration at

higher redshifts. However, this difference from ACDM dynamics is also encoded in the
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angular distances, as inferred by the BAO measurement. We now compare the results
for these parameters by performing a global fit analysis of the interacting model with the

currently available data.

8.3 Analysis

8.3.1 Methodology

Now that we see some evidence that the interacting dark energy models can explain the
deviation from ACDM observed by BOSS, we perform a Bayesian statistical analysis of those
models with the Planck and BOSS Ly-a quasar data. We wish to compare the interacting
dark energy models presented here against ACDM and test their predictions with the addition
of the new BOSS data. In order to achieve this, we perform a global fit by running the
CosmoMC package [161], a publicly available code that performs an MCMC parameter
sampling. To include the interaction between dark energy and dark matter, we modify the
Boltzmann code CAMB [160] by adding the coupling constants & for model IT and & for
model IIT and by adding the constant dark energy EoS to the baseline ACDM parameters
used by Planck [174]. From now on, we will omit model I from the analysis since this model
showed us it was not very good to explain the new BOSS data. Also, this model does not
help alleviate the coincidence problem. Model I will be explored in more detail in a follow-up
paper.

The goal of this work is to compare the results of our global fit of the cosmic distances and
expansion rates for the interacting models with the results obtained by the BOSS Collabo-
ration. We also want to derive parameter constraints using cosmic microwave background
(CMB) and BAO data, testing the sensitivity of the parameters and in the total goodness
of fit when we include the new BAO data from higher redshifts. The novelty of this work is
in the BAO data that we use. The BOSS Collaboration was the first team to measure the
BAO from the autocorrelation of the quasar Ly-a forest for higher redshifts. We use the
autocorrelation measurements from the DR11 catalog from the BOSS experiment of SDSS
which contains 158,401 quasars in the redshift range 2.1 < z < 3.5 [169]. From the same
volume, cross-correlation of quasars with the Ly-a absorption forest [170] was obtained for
the same redshift range. We are able to use both sets of data, since those can be considered

as independent, given that the fluctuations in the measurements are dominated by different
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sources of systematics and not by cosmic variance. This analysis can be made by using the
baofit software provided by the BOSS Collaboration and the x? surfaces provided for each
one of those measurements?|

For our global fit of the interacting dark energy models, we used the Planck 2013 7T
power spectrum in both the low-¢ (2 < ¢ < 50) and high-¢ (50 < ¢ < 2500) regimes.
Together with the Planck data, we include the polarization measurements from the nine-
year WMAP [165], the low-¢ (¢ < 32) TFE, EE, and BB likelihoods. In our first analysis,
to illustrate the tension in the distance measurements between the BOSS measurement and
our global fit using Planck data, we combine the autocorrelation and cross-correlation y?
surfaces provided by the BOSS Collaboration.

We also perform a joint analysis, where we include in the CosmoMC analysis the like-
lihood of the BOSS quasar Ly-a forest at z = 2.34. We can combine this new BAO data
set with the CMB data sets since they are completely independent. This was made in a
very conservative way by inserting the two sets of Gaussian likelihoods constructed with the
best fit values of (Da(z = 2.34)/rq, Dy(z = 2.34)/rq) for the autocorrelation and cross-
correlation given in Refs. |[169,/170]. This appears to be a good choice, given that the study
of BAO from Ly-« is a novel ﬁeldE|.

We used flat priors within the Planck 2013 ranges for all the “vanilla” ACDM parameters
[174]. The coupling constantsﬁ and dark energy EoS also received flat priors with & € [0, 0.4]
for model 11, & € [0, 0.01] for model III, and w € [—2.5, —1.001] for both models. We recall
that we cannot allow for w = —1 since this represents a singularity in the perturbation

equations. The priors are summarized in Table |8.3

Table 8.3 Priors for the parameters of the interacting dark energy models. We recall that the
definition of the different models is summarized in Table R.1]
Model  Prior on w  Prior on &
IT [-2.5, -1.001] [0, 0.4]
111 [-2.5,-1.001] [0, 0.01]

2 Available at http://github.com/deepzot/baofit/.

3Although this is a novel field, Ref. [169] claims that the results are robust according to a consistency
check using mock catalogs.

4The coupling constants are expected to be small and positive, for models II and III, from the previous
analysis of Ref. [38]. This was also indicated by the analysis in Fig.[3.1] These results motivated our choice
of priors for the interacting dark energy parameters.
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8.3.2 Results

We wish to compare the constraints in Dy(z = 2.34)/rq X Dg(z = 2.34)/rq found by
the BOSS Collaboration with the global fits of the interacting dark energy models. We
present these results in Fig. 8.2 The black contour curves show the combined contours
from the BOSS data for the autocorrelation and cross-correlation’] given that those data are
independent.

First, we perform the analysis using only CMB data for the ACDM and interacting dark
energy models. The constraints are shown by the blue contours in Fig. for models IT and
ITI. We show for comparison the ACDM best fit values (green lines), where we obtain results
compatible with Ref. [169], which confirms that ACDM differs from the BOSS combined
contours by at least 20. When we test the interacting models (blue contours), this difference
is reduced, and we can see that the contours overlap with the 20 region of the BOSS combined
data. Model 11, for which we findf| Dy /rq = 8.72(8.73)5:92 and Dy /rq = 11.69(11.63) & 0.08,
shows the biggest overlap with the BOSS results (1.50 and 1.70 for Dy /rq and Dy /rq,
respectively). The very elongated contours of model III imply that this conclusion is less
strong in this case.

Although we show an apparent better concordance in comparison with the marginal
overlap that ACDM presents for Dy (z = 2.34)/rq X Dy (z = 2.34) /rq4, this does not represent
an improvement in the fit, since the addition of extra parameters in the model can be the
responsible for that. We can see the same type of not-statistically-significant improvement
for wCDM and other dynamical dark energy models in Ref. [226]. If you compare the
constraints of our model II with the ones for wCDM at z = 2.34 (see Fig. 7 of Ref. [2206]),
you can see that those contours almost overlap, showing a similar concordance with the new
BOSS data.

Following that, we perform a joint analysis of the BOSS quasar Ly-a data together with
the CMB data. We wish to compare the improvement of the fit when including the new
BOSS data. Our results indicate that ACDM is not sensitive to the inclusion of this data set
(BOSS quasar Ly-a data), and therefore it cannot accommodate the change in the Hubble
parameter at high redshift. This shows a tension between those data sets.

The global fit of all the parameters of the interacting models reveals that the best fit values

>These contours are the same as the black contour curves that one can find in Fig. 13 of Ref. [169)].
6Best fit values are presented inside brackets.
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Fig. 8.2 Plot of the 68.3% and 95.5% likelihood contours in Da(z = 2.34)/rq x Dg(z = 2.34) /rq
comparing the BOSS combined (autocorrelation and cross-correlation) contour in black with the
results for the interacting models from the runs using Planck data in blue. Interacting model II is
shown in the left panel and model III in the right panel. The green lines show the best fit values
for ACDM.

of the six vanilla ACDM parameters are compatible with the ones obtained by Planck |174],
except for model I, where the values for the density of matter show they are not in agreement
with the Planck value. We use Ax% to quantify the improvement in the maximum likelihood
of the interacting dark energy models using only Planck data in comparison to when we
combine it with the likelihood from the BOSS team quasar data. We found Ax?; to be —0.04,
—2.88, and —1.85, for models I, II and III, respectively. Although these improvements are
not statistically significant, they indicate that the interacting models, and especially model
I, are mildly favored by the data. Another test that also shows that the improvement
between the runs is not statistically significant is the reduced x?2, computed for all models.
This test takes into account that the interacting dark energy models have two extra degrees
of freedom, in comparison with the ACDM model. The difference in the reduced x? between
the interacting models and ACDM is not significant; e.g., model II presents the biggest
“improvement” of the order of 107°. However, one needs to be very careful when using an

improvement diagnostic like Ax%; since the best fit values in CosmoMC may not be fully
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trustworthy and since this result could come from statistics overfitting the noisy data [230].
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Fig. 8.3 Contour plot of the EoS for dark energy (w) vs the coupling constant between dark energy
and dark matter (£). In purple, we present the interacting model II, and in gray, we present the
interacting model III fitted to the Planck data. The cosmological constant A of ACDM corresponds
to w = —1, and it is depicted by the dashed black horizontal line.

In the MCMC analysis of the interacting models, we also obtained the adjusted values of
the coupling constants. As was shown in Ref. |38], using only the Planck data is not sufficient
to fully constrain the coupling constants. We note that we obtain the same result here, even
with the inclusion of the BOSS quasar data: we find & < 0.045(0.048) for model II and
& < 0.0016 (0.0015) for model III. The upper bound on the coupling constant for model II
is close to the ones predicted in Sec. II-B (see Fig. . Indeed, the corresponding Hubble
parameters that result from the MCMC analysis are H(2.34) = 232(231) £ 2km/s/Mpc for
model IT and H(2.34) = 234(234)3 km/s/Mpc for model III, a little bit more than 1o away
from the BOSS 1resul‘c|2|7 resulting in a reduced tension compared to ACDM. This indicates
that the interacting models are good candidates to explain the observed deviation from

ACDM from high-z BAO probes. The upper bound on the coupling constant for model III is

"We would like to stress that H(z) is a model-dependent quantity, while Dy /rq is not. It is in this
context that we compare our results with BOSS. However, since we find that the fitted values for rq are
approximately equal to what one expects in ACDM (given the use of the Planck data), we can still compare
the Hubble parameter values for the interacting models with the BOSS result.
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much smaller than expected from Fig.[8.1] Still, it represents an improvement over ACDM in
explaining the BOSS results as seen from Fig. although to a smaller extent than model
II.

The upper bounds found for the coupling constants are compatible with small positive
values. Although we cannot exclude the possibility that the coupling constants are zero with
the data set used, we can see from the constraints obtained for the EoS of dark energy that
our models are not consistent with ACDM. The EoS for dark energy obtained in the MCMC
analysis are the following: considering only Planck data, w = —1.51(—1.55)"032 for model
IT and w = —1.75(—1.668)7055 for model III. We can also see the constraints in the w x &
plot, presented in Fig.[8.3] The dashed black horizontal line represents the value of the dark
energy EoS for ACDM, w = —1. These contours show a small preference for w < —1 rather
than w = —1 given the priors, w = [—2.5, —1.001], with model IT showing a slightly tighter
constraint than the prior range. This result should be interpreted carefully since our prior is
very close to —1 (but it is not including —1), and there can be boundary effects that might
not be taken into account. Also, we have a large degeneracy between w and &.

A more detailed analysis will be presented in a follow-up paper where we will combine
this analysis with different cosmological probes, aiming at fully constraining the coupling

constant of the interacting models.

8.4 Conclusions

In this chapter, we explored the consequences of interacting dark energy in light of the recent
results by the BOSS experiment. The BOSS data indicate that the Hubble parameter at
z = 2.34 is smaller than what one would expect from the standard ACDM model, something
that cannot be explained by simple dynamical dark energy models such as quintessence. Our
results suggest that interacting dark energy can naturally explain the BOSS data without
introducing exotic forms of dark energy., although further studies are necessary.

We tested three different phenomenological models of interacting dark energy. First, we
computed the theoretical value of the Hubble parameter at z = 2.34 for different sets of
cosmological parameters. Models II and III showed they were in good agreement with the
observations for a small positive coupling constant. Furthermore, such a positive coupling
constant can help alleviate the coincidence problem. Model I was omitted from the analysis

since it did not contribute to reducing the tension with the BOSS data, and also, in general,
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it does not help relieve the coincidence problem.

We then performed a global fit of those models given the Planck 2013 and BOSS quasar
Ly-a data. This showed that models II and III present a bigger overlap with the BOSS
Collaboration results than what ACDM achieves. However, this improvement and also the
improvement in the x? when we made the joint analysis with CMB and BOSS likelihoods do
not seem to justify the inclusion of extra parameters in the model as done by the interacting
models. In this analysis, we can also see from the EoS obtained that those models are
marginally different than ACDM. Yet, the results still suggest that the interacting dark
energy models presented in this chapter can be used to explain the deviations from ACDM
found in high-z BAO, and they represent a simpler solution than invoking exotic dark energy
models.

In order to further constrain interacting dark energy models, one could refine the analysis
done in this work by using more data sets and by combining the BOSS data with other
observations. A more detailed analysis of the global fit of those models with the inclusion
of BOSS data is the topic of a follow-up paper that is currently in preparation. We also
need improvements in the BAO data at high redshifts. For models that allow the Hubble
parameter to change with time such as interacting dark energy and other dynamical dark
energy models (e.g., see Ref. [226]), we can see that the inclusion of the BAO data set changes
considerably the results, indicating that this new data set is robust. However, with the use
of only high-redshift BAO data, we are still not able to statistically differentiate between
models of dark energy. New large scale structure surveys, like the JPAS telescope [36],
will be able to reproduce and improve the BAO measurements at high redshifts since this
instrument is supposed to be optimized to measure quasars at high redshifts compared to
previous experiments [231]. Other large scale structure new windows of observation, like the
21 c¢m emission line from neutral hydrogen, will also contribute in the future for constraining
dark energy [232]. Interacting dark energy models might also help alleviate the tension
between other large-scale structure data sets and Planck such as, for example, cosmic shear
probes from CFHTLenS [233,234].
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Chapter 9
Conclusion

This thesis presented works developed with the aim of solving some of the most outstanding
problems in cosmology: the singularity problem and the dark energy mystery. We ap-
proached these problems by introducing novel theoretical frameworks, new models and by
using cosmological observations.

The first problem we studied was the singularity problem, that plagues many of the
bouncing models of the universe. Since our mathematical descriptions break down near the
singularity, we do not know how to treat the evolution of perturbations when a singularity
is present. This makes it hard to make precise predictions and to compare these with
current observations. In the absence of a quantum theory of gravity, this problem is very
challenging. We propose the use of a new tool that provides a non-perturbative description
of string theory, the AdS/CFT correspondence, in order to resolve the singularity and evolve
the perturbations in its presence.

In our first work we develop the formalism for the evolution of perturbations of a test
scalar field in an AdS space-time that contains a space-like singularity. In the regions close
to the singularity, we evolve the perturbations in the weakly coupled boundary field theory
with a regularized coupling. We find that the momentum dependence of the perturbations
after they cross the singularity remains unchanged. However, particle production occurs.

In our second work, we use this formalism to treat the curvature perturbation, which is
the gauge invariant quantity that is related to the perturbations of density responsible for
the formation of the large scale structure. This procedure is simplified by the choice of a

convenient gauge, and the results for the curvature perturbations are similar to the ones for

2017/06/25
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a test scalar field.

Those works provide an initial framework for the research program of using the AdS/CFT
correspondence to treat perturbations in a singular bouncing cosmology. This framework was
already applied to different space-times, e.g. [235].

The second problem we discuss in this thesis is the nature of dark energy. Dark energy
is proposed as a possible mechanism to explain the current accelerated expansion of the
universe, but the properties of this component are still unknown. For that reason, there
are in the literature a huge number of models that invoke different mechanisms devoted to
explaining this period of accelerated expansion. An equally huge effort has been made by
observational cosmologists in order to measure the properties of dark energy in the hopes of
pinpointing the nature of the dark energy component. In the two works presented here we
explore one of these models, the interacting dark energy/dark matter model, and test how
well we can determine its parameters given the most recent and precise cosmological data
available.

The interacting dark energy model imposes a phenomenological interaction between dark
energy and dark matter, introducing two extra parameters to the standard ACDM model. In
our work we find constraints on the two extra parameters, the coupling and the equation of
state of dark energy, together with the 6 baseline ACDM parameters using data from CMB
experiments (Planck and WMAP), BAO, type Ia supernovaes, and local measurements of
Hy, for the first paper; and we add the new high redshift data from the Lya emission from
quasars from the BOSS (SDSS) collaboration, in the second paper.

In the first work, we can see that the interacting dark energy model presents a good
agreement with observations, especially when we combine all the data sets. We change
the priors adopted and conditions for neutrinos for each run to see how this impacts the
cosmological parameters. We obtained a positive coupling constant for most of the tested
models, which helps alleviate the coincidence problem. Although there is a degeneracy
between the equation of state of dark energy and the Hubble parameter, in our analysis
Models II, ITI and IV presented a possibility to relax the tension of the Hubble parameter
between the Planck and the HST measurements.

If dark energy is a dynamical variable and not a cosmological constant, data from different
redshifts is where the time dependence of dark energy will be manifest. However, such
data is still not available, since higher-z objects are fainter and harder to see. The BOSS

collaboration presented the first measurement of the Hubble parameter and the angular
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distance for higher redshifts, z = 2.34. In this measurement they found a deviation from
the ACDM prediction. Our second work aimed to see if the interacting dark energy model
could be an alternate explanation for this measurement, since it has a dynamical dark energy
component. We found that our models have values of H(z —2.34) and D4(z = 2.34) closer
to the ones found by the BOSS team. Our model also presents a good fit to this new data
set.

In general, the interacting DE models are a alternative to pure dark energy, since they
yield a good agreement with cosmological data. However, as in all models in the literature,
it does not present a better fit than ACDM with a good statistical significance, especially
one that justifies the inclusion of two extra parameters. More observations are necessary to
test this and all the other models of dark energy. We are living in a particularly good period
for this study, since the large scale structure data from current and future experiments will
revolutionize this search, measuring the properties of dark energy at the percent level. I am
involved in two of those future probes, the Javalambre-Physics of the Accelerated Universe
Astrophysical Survey [36] and the BINGO telescope [37].
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Appendix A

Analysis in Terms of the Original

Variables

The kinetic energy term of the gauge fields on the boundary is not of canonical form. This
was the motivation for rescaling the gauge field. The rescaling factor, however, diverges at
t = 0. Hence, we might worry that the divergence of the rescaled gauge field fl# which we
found is a result of this rescaling, and that the evolution in terms of the original variables
A, might be better behaved.

In fact, the equation of motion for the fluctuation of the original variable is

V3

(—07 + —0+ 9,0 A; = 0, (A1)
which has Fourier mode solutions
Aj(kt) = 7 (cy J,, (kt) + c_Y,, (k1)) . (A.2)

The first mode goes to zero at t = 0 whereas the second mode approaches a finite value.
Hence, there is indeed no divergence in the solutions. However, the first mode has a branch
cut at t = 0. Hence, matching conditions are still required in order to evolve the solutions
from negative to positive values of t.

In the spirit of the AdS/CFT correspondence it would be nice not to have to impose any
cutoffs in the matching calculation. This could have been expected since the gauge theory

becomes free at t = 0. Indeed, there is a matching of the two modes at ¢t = 0 for which there

2017/06/25
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is no particle production at all (in terms of the rescaled variables this matching corresponds
to having the derivative of A,,, match to its inverse between ¢ = & and t = —¢). This
matching, however, does not correspond to what is done in standard quantum mechanics
problems and it misses the particle production which is expected on physical grounds.
Hence, it appears that a matching prescription is needed. An explicit calculation shows
if the matching prescription is taken to be the same as the one we used for the rescaled
variables, that then the matching calculation calculation in terms of the original variables

leads to the same result as that obtained using the rescaled field.
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