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Abstract

In this thesis we address two of the most outstanding problems in cosmology: the singularity

problem and the late acceleration of the universe. In the first part, we address the singularity

problem that appears in the context of bouncing cosmologies, and suggest a formalism based

on the AdS/CFT correspondence to track the evolution of cosmological perturbations in the

presence of a space-like singularity that appears in a specific realization of a deformed AdS

space-time. Our construction sets the formalism for the evolution of a scalar field and

the curvature perturbations on a regularized field theory living in the boundary of this

space-time and shows that their momentum dependence is preserved, while a finite particle

production occurs. In the second part, we show two works that give a contribution to the

huge effort to unravel the nature of dark energy. In those, we focus in testing a model of

dark energy where an interaction with dark matter is allowed. This dynamical model has

impacts on the evolution of the parameters that describe our universe and we test these using

the latest cosmological observations. We use data from the Cosmic Microwave Background,

Baryon Acoustic Oscillations(BAO) and type Ia supernovae, and find good agreement with

observations, putting constraints in the cosmological parameters. We address the recently

found deviation from ΛCDM in high-redshifts found in measurements of the BAO of the

Lyman-α forest from quasars. We show that Hubble parameter and angular distance at

high-z for the interacting model have a better concordance with the ones obtained by the

BOSS collaboration than the ΛCDM model, and that adding this data set improves the

global fit of the model, although with low statistical significance.
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Abrégé

Dans cette thèse, nous adressons deux des plus grands problèmes de la cosmologie : le

problème de la singularité initiale et l’accélération tardive de l’univers. Dans la première

partie, nous faisons face au problème de la singularité initiale dans le contexte des théories

d’univers rebondissant et nous suggérons un formalisme basè sur la correspondance anti

de Sitter/théorie conforme des champs (AdS/CFT) pour suivre l’évolution des perturba-

tions cosmologiques avec la présence d’une singularité de genre espace qui apparâıt dans

une réalisation spécifique d’un espace-temps AdS déformé. Notre construction établie le

formalisme pour l’évolution d’un champ scalaire et les perturbations de courbure dans une

théorie régularisée des champs qui vie sur la frontiére de cet espace-temps et elle montre

que leur dépendance de la quantité de mouvement est préservée alors qu’une production

de particule limitée se produit. Dans la seconde partie, nous présentons deux travaux qui

contribuent aux énormes efforts pour démystifier la nature de l’énergie noire. Dans ces ar-

ticles, nous nous concentrons sur l’analyse d’un modèle d’nergie noire où une interaction

avec la matière noire est permise. Ce modèle dynamique a des impacts sur l’évolution des

paramètres qui décrivent notre univers et nous testons ceux-ci en utilisant les dernières ob-

servations cosmologiques. Nous utilisons des données provenant du fond diffus cosmologique,

des oscillations acoustiques des baryons (BAO) et de supernovas de type Ia, et nous trou-

vons un bon accord avec les observations tout en mettant des contraintes sur les paramètres

cosmologiques. Nous adressons la déviation du modèle Λ - matière noire froide (ΛCDM) à

haut décalage vers le rouge trouvée récemment dans les mesures du BAO à partir de la forêt

Lyman-α qui provient de quasars. Nous montrons que le paramètre d’Hubble et la distance

angulaire à haut décalage vers le rouge pour le modèle d’interaction concorde mieux avec les

valeurs obtenues par la collaboration BOSS en comparaison avec le modèle ΛCDM, et nous

montrons que l’addition de cet ensemble de données améliore l’ajustement global du modèle,

bien qu’avec une signification statistique faible.
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Chapter 1

Introduction

Cosmology is one of the fastest growing fields of physics. Very recently in the history of

physics it has become a precision field of science and it continues to accumulate observational

and theoretical successes. Those observations, together with the theory of general relativity

and the cosmological principle, made possible to develop the standard cosmological model

(SCM), a model that describes the geometry, evolution and composition of our universe that

is expanding from nucleosynthesis, the epoch when the nuclei of light elements were formed,

until today. Its observational pillars, the abundance of light elements, Hubble expansion and

the Cosmic Microwave Background, describe a universe that is homogeneous and isotropic

on large scales which is 13.9 billions of years old, and composed today of 4% baryonic matter,

0.01% radiation, 23% dark matter and 73% dark energy.

Recent cosmological observations confirm with great precision many of the hypothesis

of this model, but also found some exciting deviations not described by its current form.

This shows that in spite of its success, the SCM does not describe all the ingredients of our

current universe. Cosmology faces a number of outstanding theoretical and fundamental

challenges. From the Big Bang singularity, and problems with its initial condition, to the

fact that 95% of what composes our universe is unknown, the problems faced require a new

understanding of fundamental physics. From that it is clear that we need extensions to

our current cosmological paradigm that involve the inclusion of a new description or even

extensions of the physical laws we know. Of particular importance for this thesis are the

singularity problem and the nature of dark energy that leads to the accelerated expansion

of our universe. This thesis comprises a series of works that aim to address these two major

2017/06/25
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problems in cosmology.

One of the biggest problems in cosmology is the singularity problem. Singularities are a

very general feature of many cosmological models, since they are unavoidable in the context

of Einstein’s gravity with standard matter. In this context, in an expanding universe the

Penrose singularity theorem implies that initially the universe had an infinite energy density

in a very small volume, which we call the Big Bang singularity. If try to extend our classical

description to those regimes our current mathematical understanding and physical theories

break down and cannot be used. Singularities appear in many cosmological models from

the expanding SCM model to its extensions like the inflationary model [1–5], a period of

accelerated expansion in the early universe, and bouncing models [6], where a period of

contraction precedes the SCM expansion of the universe passing through a Big Bang/Big

Crunch singularity. In the attempt to avoid the appearance of an initial singularity, one

needs to either go beyond the theory of general relativity or else add matter in our universe

that does not behave according to the standard (null) energy conditions. These approaches

are somewhat ad hoc and reflect our attempt to extend our theories in the absence of a

complete and fundamental quantum theory of gravity that attempts to describe the high

energy and curvature regions of our universe.

In the absence of a quantum gravity theory to describe our universe, the singularity

problem is hard to solve. We need new tools to be able to solve this problem. There

have been many attempts in the literature to resolve the Big Bang/Big Crunch singularity,

specially in the context of bouncing cosmologies. These use different techniques to effectively

describe cosmology in the quantum regime using semi-classical techniques (see [7, 8] for

some examples). Beyond the semi-classical approximation, string theory presents a concrete

approach to quantum gravity where we can study quantum effects in cosmology. However,

string theory is an unfinished theory and initially it did not present a non-perturbative

description. In this context, the AdS/CFT correspondence [9] comes to the rescue, presenting

a non-perturbative description of string theory.

The AdS/CFT is a conjecture relates a string theory with Anti-de-Sitter (AdS) boundary

condition to quantum field theories living in the boundary of AdS and it is one of the

most important advances in theoretical physics with applications in diverse areas. This

conjecture provides an interesting avenue to solve the singularity problem since it offers the

opportunity to treat the singularity in a weakly coupled and non-gravitational field theory,

instead of in the strongly coupled, high curvature and quantum regime of gravity. There
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have been many attempts in the literature to use this tool to describe the Big Bang/Big

Crunch singularity [10–15]. We present here another attempt of that.

In cosmology, we are interested in providing a description of the evolution of the universe

that yields observables that match the cosmological observations of the structure of our

universe. The existence of a singularity in many bouncing models and the difficulty to

describe mathematically these regions impact the predictability of those models. For that

reason in our works we were interested in addressing the question of what happens to the

cosmological perturbations generated in the contracting phase and that are expected to

be the seeds for the formation of all the structures of our universe and must be described

by current observations, after they pass the singularity. Our works intend to establish a

formalism using the AdS/CFT correspondence to describe how the perturbations behave

after passing through a cosmological singularity, accessing the imprints that the singularity

might induce in the spectrum of those fluctuations as an important step for the understanding

of the predictability of bouncing models. We propose a formalism for that in Chapter 4 (based

on [16]) where we discuss fluctuations of a scalar field in a toy cosmology, a deformed AdS

space-time. This is generalized to the discussion of curvature fluctuations that are related to

observations, in Chapter 5 (based on [17]). These works are an attempt to access how good of

a tool the AdS/CFT duality is for the purpose of resolving cosmological singularities and to

give us first clues for consequences of cosmological singularities in cosmological perturbations.

So, the construction presented here is a toy model of the early universe behaviour of a

bouncing universe. The use of this construction is well motivated for many reasons. To

start, the AdS/CFT correspondence is most well known and better demonstrated in its

original context of a supergravity theory on AdS5 space-time that is dual to a N = 4 SYM

theory on the boundary, where the theories on the bulk and boundary are determined. The

correspondence is less understood in other contexts. Another motivation is that AdS space-

time is commonly used as a prototype of a bouncing universe, aiding us in the description

of a bouncing cosmology. Then, although we do not live in an AdS universe, and not in

5-dimensions, this prototype universe can help us understand if holography can be used to

study the evolution of perturbations through space-like (cosmological) singularities.

The recent improvement in observational techniques available for the measurement of

cosmological parameters shows us that the universe is composed in its majority by two

unknown components: dark matter and dark energy. The first corresponds to 23% of the
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total energy density of our universe and, because of its clustering properties, has an important

role in the formation of the large scale structure of our universe. Dark energy is one most

accepted explanantion for the apparent accelerated expansion of the late universe, discovered

by the observation of distant Type Ia Supernovae by [18,19]. Although the influence of those

components is measured gravitationally, their nature is still unknown, and this is one of the

major problems in cosmology nowadays.

The simplest idea for the component responsible for this present acceleration is the cos-

mological constant. The standard cosmological model that includes this component plus cold

dark matter. It is the ΛCDM and it is the preferred model given current observations [20].

However, the cosmological constant presents serious theoretical challenges. Since it is related

to the energy of the vacuum, the value that is measured from cosmological observations com-

ing from the current value of the Hubble parameter H0 is different than the one calculated

from field theory by many orders of magnitude. So, the cosmological constant suffers from

serious fine tuning problems, not only from the fine tuning of its renormalized value but

mainly from the radiative instabilities that leads to successive fine tunings. This, together

with the coincidence problem, that states the coincidence that the densities of dark matter

and dark energy are of the same order close to the present time even though those com-

ponents have distinct evolutions, are known as the cosmological constant problems. These

theoretical challenges give us motivation to search for alternatives explanations for the nature

of dark energy. In particular, the search for a mechanism where dark energy is a dynamical

quantity.

The dark sector can be richer than described in the ΛCDM model and a huge theoretical

effort to explain the accelerated expansion resulted in a zoo of models with different mech-

anisms. These include (for a review see [21]) models inspired by inflationary models where

a scalar field is included like quintessence, or modifications of General Relativity. Many

proposed models also invoke an interaction between the chosen dark energy component and

baryons, like the chameleon mechanism [22, 23], symmetron [24] and dilaton [25]; or with

dark matter (for a classification of models see [26]), with models where the interaction is

phenomenological [27–31] or even coming from field theory [32–35], Chaplygin gas, and many

others. This list is far from complete and some of those models overlap. This shows how

much freedom there is in the understanding of the dark universe.

Fortunately, we live in an era where an abundance of data from cosmological observa-

tions is or will be available with the exploration of the large scale structure of the universe
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(LSS) [36] and of new windows of observations like 21cm cosmology [37]. There is currently

a huge effort from the scientific community in order to measure the equation of state of dark

energy and its possible time evolution, in order to understand the properties of this compo-

nent, together with its influence on the cosmological parameters, and to possibly distinguish

between some of the theoretical explanations available. In this thesis, we present attempts of

constraining the properties of a model where dark energy interacts with dark matter to see

how well they can describe the physics of our universe. We use a phenomenological model of

this interaction with the intent of constrainig the parameters of dark energy and to compare

how well this model fits the cosmological data in comparison to the standard ΛCDM model.

In Chapter 8, based on [38], we test the effects of this model on the cosmological parameters

using the most recent cosmological data available from the Cosmic Microwave Background

(CMB), Baryon Acoustic Oscillations (BAO), Supernovaes and local measurements of the

Hubble parameter. The data sets used above comprise mainly information from the early

universe when the CMB was formed, and the very late local universe. If dark energy is dy-

namical or is coupled to dark matter, this effect would be more pronounced at earlier times,

when the influence of dark energy is already strong but not today where its behaviour is very

well measured to be close to the cosmological constant. For that, we need measurements

that give us information about the properties of dark energy at different times, or redshifts.

This investigation was made in Chapter 9, based on [39], where we used a new measurement

of very distant quasars to evaluate a change in the cosmological parameters of the interact-

ing dark energy model, and to compare this with a constant dark energy component from

ΛCDM.

This thesis is organized as follows. Chapter 2 intends to present a review of cosmology and

perturbation theory necessary for the understanding of the cosmology used in the following

sections. The work is divided in two parts, that regard the two major questions studied

in this thesis. Part I - Early Universe Cosmology, is dedicated to address the singularity

problem that arises in the early evolution of the universe. We start this part with a very

short review of the AdS/CFT correspondence, in Chapter 3, to aid the reader to understand

the concepts presented in the following chapters. Chapter 4 presents the first article on the

topic of fluctuations in a cosmology with space-like singularities. In Chapter 5 we present the

second article on this theme, where we extend the conclusions from the first to cosmological

observables.



1 Introduction 9

Part II - Late Universe Cosmology, contains the studies of the nature of dark energy.

Since this exploration is based on analysing the current cosmological observations, Chapter

6 is dedicated to a brief review the statistical methods of data analysis used in the following

chapters. In Chapter 7 we analyse the phenomenological interacting dark energy model using

the current precise cosmological observations. To study the dynamical nature of the dark

energy component, this model is tested in Chapter 8 against the latest high redshift data

available. We conclude the thesis in Chapter 9.
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Chapter 2

Review of Cosmology

2.1 Homogeneous Universe

The background model that describes the evolution, structure and expansion of our universe

is the SCM. This model is based on two theoretical pillars: Einstein’s theory of General Rela-

tivity, which describes the dynamics of the universe, and the cosmological principle, the sim-

plifying hypothesis that the universe is spatially homogeneous and isotropic on large scales;

and three observational pillars: Hubble’s law, which shows that the universe is expanding,

the abundance pf light element, that confirms the hypothesis of primordial nucleosynthesis,

and the cosmic microwave background, an isotropic black body radiation at a temperature

of 3K that permeates all the universe.

In the SCM the dynamics of the universe is described by General Relativity. When com-

bined with the cosmological principle symmetry, which means invariance under translations

(homogeneity) and under rotations (isotropy), we have a solution for Einstein’s equation,

the Friedmann-Robertson-Walker (FRW) metric with line element:

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
(2.1)

where t is the physical time and (r, θ, , ϕ) are the comoving spatial polar coordinates, a(t) is

the scale factor which parametrizes the expansion of the universe or the radius of curvature

of the space-time with curvature k, that can have the values k = (−1, 0,+1) representing

an hyperbolic, flat and spherical universe, respectively. It is also convenient to describe this

2017/06/25
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metric in conformal time η, defined by dη = dt/a(t), where the FRW metric is takes the

form of a a static Minkowski metric times a2(η), the conformal factor.

2.1.1 Kinematics

All the information that we have from observations of our universe comes from light that we

receive from the universe. One of the biggest discoveries for cosmology, the verification that

the universe is expanding by Hubble [40], was made by observing that the light emitted by

galaxies had a deviation of its wavelength to the red region of the electromagnetic spectrum,

know as redshift. The recessing velocity can be interpreted as an cosmological analogue of

the Doppler effect and can be inferred through a redshift factor,v = cz, and can be inferred

from the wavelength from the relation:

z =
λobs − λem

λem
=
a (tobs)

a (tem)
− 1 . (2.2)

where ν = cλ. If z > 0 we call it a redshift and if z < 0 we have a blueshift. With that,

Hubble could infer the recession velocities and find the empirical relation known as Hubble’s

law, v = H0 l, where l is the distance of the galaxies and H0 is the Hubble’s constant given

by today’s value of the Hubble parameter:

H(t) =
ȧ(t)

a(t)
. (2.3)

The value of H0 is measured with great precision today, but presents a tension in its values

measured by CMB, H0 = 67.7 ± 0.5 [41], and by local observations from the Hubble Space

Telescope, H0 = 73.8± 2.4 [42]. Two useful quantities related to H(t) are the Hubble time,

tH = H−1, and the Hubble radius, rH = cH−1.

Another important quantity of interest in cosmology are distances, which are important

for observational measurements of the distant objects of our universe. In particular, we

can define the angular diameter distance as DA = D/δθ, where D is a known physical

size that can come from standard rulers, and δθ is the measured angular size. It can be

related to the metric distance dm = Sk(χ) obtained from the FRW metric line element:

ds2 = dt2 − a2(t) (dχ2 + Sk(χ)dΩ2), as DA = dm(1 + z)−1. It can also be related to the

luminosity distance dL, dA = dL(1 + z)−2, where the luminosity distance can be related to

the comoving coordinate.
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2.1.2 Dynamics

The kinematic description of the universe does not allow us to determine the behaviour of

the scale factor. The dynamics if the universe is described by Einstein’s equation of general

relativity:

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (2.4)

where the left side contains information about the geometry, encoded in the Einstein tensor

Gµν , which expresses the curvature of the space-time by its components Rµν , the Ricci tensor,

and R, the Ricci scalar. The right side of the equation is related to the matter content of

the universe, described by the energy-momentum tensor Tµν . The left side can also contain

a cosmological constant term Λ.

As we saw previously, we need to also impose the cosmological principle in the SCM.

This implies that it is a good approximation to consider the universe to be filled by a perfect

fluid (Weyl’s postulate) [43]

Tµν = (ρ+ p)uµuν − pgµν , (2.5)

where ρ is the energy density of the fluid, p it is the pressure and uµ is the velocity four-vector

of the fluid. In comoving coordinates, uµ = (1, 0, 0, 0) and the energy-momentum tensor takes

the form T µν = diag (ρ, −p, −p, −p). As this fluid is homogeneous and isotropic, ρ and p are

functions only of time. If the universe was composed of a scalar field, the energy momentum

would take the form:

T µν = ∂µϕ∂
µϕ−

[
1

2
∂µϕ∂

µϕ− V (ϕ)

]
δµν , (2.6)

where uα ≡ ∂αϕ/
√
∂µϕ∂µϕ, ρ ≡ 1

2
∂µϕ∂

µϕ+V (ϕ), and p ≡ 1
2
∂µϕ∂

µϕ−V (ϕ), with ϕ,γϕ,γ >

0.

We can insert the definitions of the energy-momentum of the perfect fluid (2.5) , together

the FRW metric (2.1) into Einstein’s equation (2.4) resulting in the Friedmann equations:(
ȧ

a

)2

=
8πG

3
ρ− k

a2
(2.7)

ä

a
= −4πG

3
(ρ+ 3p) (2.8)

where here G is Newton’s constant, and ρ and p represent the total energy density and

pressure of all matter components of the universe. We can combine these equations by
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taking the time derivative of (2.7) together with (2.8), which yields the continuity equation:

ρ̇+ 3H (ρ+ p) = 0 . (2.9)

This equation expresses the covariant conservation ∆µT
µ
ν = 0, where ∆µ is the covariant

derivative. If the matter content was made of a scalar field, this conservation law yields the

Klein-Gordon equation.

The Friedmann equation and continuity equations is a dependent system of equation

that describes the dynamics of a(t), ρ(t) and p(t). However, since these equations are not

independent, to fully determine this system we need an extra equation. This equation

characterizes the fluid that is present in the universe and relates the energy density and

pressure by an equation of state ω:

p = ωρ . (2.10)

Using this equation in the dynamical system we can see how each of the different matter

components influences the evolution of the universe. We can parametrize most of the com-

ponents of the universe by a constant equation of state with ω = 0 for matter (baryonic or

dark), ω = 1/3 for radiation and ω = −1 for a cosmological constant. This leads to the

following dynamics:

ρ (t) =


ρm0 a

−3 = ρm0 (1 + z)3 , matter

ρrad0 a−4 = ρrad0 (1 + z)4 , radiation

ρΛ
0 , c.c.

⇒ a (t) =


am0 t

2/3 , matter

arad0 t1/2 , radiation

aΛ
0 e

HΛt , c.c. .

(2.11)

where HΛ =
√

8πGρΛ
0 /3 and c.c. stands for cosmological constant. Taking the second

derivative of these solutions we can see that for matter and radiation the expansion of the

universe decelerates, while for a cosmological constant it accelerates. If one had a component

with a general ω = ω(a), its evolution can be given by:

ρ = ρ0 e
−

∫
3(1+ω) da

a = ρ0 a(t)−3(1+ω) , (2.12)

where in the last equality we assumed a constant equation of state. In this way we can

describe a dark energy component, since ω < −1/3 with a varying or constant equation of

state, leads to a universe with accelerated expansion.
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We can re-write the Friedmann equations using the density parameter, a parameter that

can be related to the kinematic characteristics of the universe. As we mentioned, in the

Friedmann equation, the quantity ρ is the total density given by the sum of the energy

densities of each component in the universe. In this way, dividing both sides of the first

Friedmann equation (with Λ = 0) by H2, we have:

1 = Ωtotal −
k

a2H2
, (2.13)

where Ωtotal =
∑

i Ωi is the relative total density, and Ωi ≡ ρi/ρcrit is the density parameter

of the ith component of the universe. The quantity:

ρcrit =
3H2

8πG
, (2.14)

is the critical density. Writing the Friedmann equation in this way, we can see that the

total density parameter can be written in terms of the curvature constant: if Ωtotal > 1 ⇔
k = +1 we have a closed universe, if Ωtotal = 1 ⇔ k = 0 we have a flat universe, and

if Ωtotal < 1 ⇔ k = +1 we have an open universe. The universe today is close to flat,

with Ω0 ∼ 1 with 1% precision form measurements of the CMB by the WMAP satellite [44]

combined with constraints from Sloan Digital Sky Survey and type-Ia supernovae.

The Friedmann equation can be written in terms of the density parameter:

H2

H2
0

= Ωm,0 a
−3 + Ωrad,0 a

−4 + ΩΛ,0 , (2.15)

for an universe composed of matter (baryonic and cold dark matter), radiation (that can be

photons and massless neutrinos) and a cosmological constant, where Ωtotal = Ωm + Ωrad +

ΩΛ = 1.

2.1.3 Quick Review of the Thermal History of the Universe

In the previous sections we saw that each component of the universe leads to a different

evolution of the universe. In this way we have to know the composition of the universe at

each moment to be able to probe the history of its evolution.

From Hubble’s law we can see that the universe is expanding. Going backwards in

time, we can think that in its beginning, all the energy of the universe was contained in a
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infinitesimally small volume, with infinite density and temperature, expanding and cooling

from this point forward in time. This is why the SCM is also called the hot Big Bang model,

where the Big Bang refers to this initial infinite density state or initial singularity. From this

point on, the evolution of the universe depends on its matter content through the relations

given in (2.11).

From the evolution of the densities of each component, we have a period of radiation dom-

ination when z > zeq ∼ 104, matter domination when zeq > z > zΛ, and the current acceler-

ated expansion when dark energy dominates at z < zΛ The redshifts zeq = (ρcritΩm)/(ρ0
rad−1)

correspond to the moment when the densities of matter and radiation is the same, and

zΛ = (ΩΛ/Ωm)−1/3ω − 1 when the densities of matter and dark energy are the same, for a

constant ω < −1/3. The value of zΛ is an open problem in cosmology since dark energy’s

nature is unknown. This component cannot dominate the content of the universe too early

in its history, impacting the formation of the large scale structures of the universe, so it

started dominating at times close to today. This is known as the coincidence problem.

We describe here in a succinct way the thermal history of the universe, showing the

different periods and non-equilibrium events that gave rise to the formation of the elements

of the standard particle theory model and all the matter constituents of our universe today.

• Contraction: One of the possible models for the evolution of the universe is a universe

that has a period of contraction previous to the current expansion era. The duration

of this period is model dependent.

• Planck era: The Planck era comprises the period from the beginning of the universe

until ∼ 10−43s with temperatures of order T ∼ 1032K ∼ 1019GeV. This period is not

described by the SCM and in this period General Relativity is not valid and quantum

effects are important.

• Inflation: This model was proposed as a possible solution to the problems of the

SCM and consists of a period of accelerated expansion. If there is such a period in

the evolution of our universe, it happenned from times ranging from Plancj times to

10−32s.

• Nucleosynthesis : As the temperature of the universe cooled down and became of the

order of 108− 109K, nuclear processes began to happen and formed the light elements

that compose our universe. This happened between 1 − 500s after the Big Bang and



2 Review of Cosmology 16

forms from the already formed protons and neutrons, the hydrogen (H), deuterium

(H2), H3 and helium (He).

• Recombination and photon decoupling : The universe is dominated by radiation since

z � 104, and matter and radiation coexist in equilibrium. The light elements formed

during nucleosynthesis are ionized, with the electrons and photons scattering freely. As

the temperature cools down, these scattering become more rare and the free electrons

start to bind into H and H3. This period is called recombination and occurs from

z = 1400 when the temperature is of order of T ∼ 3800K until z ∼ 1100 when

T ∼ 3000K, when the photons decouple from the radiation-matter plasma. This instant

(which is actually a small period) is called last scattering surface and the photons that

decouple at this instant free stream until today, given us the CMB, a picture of the

universe around z = 1100.

• Matter era: After the decoupling of the photons, matter is the component that domi-

nates in the universe, from z = 10− 2. In this period the formation of the large scale

structure occurs, with the formation of galaxies, stars and all the visible structures of

our universe.

• Dark Energy era: Period of accelerated expansion in the late universe.

The SCM described in the previous sections has many problems. As we saw in this

section some new mechanisms like inflation or bouncing cosmology and the introduction of a

dark energy component appear as necessary extensions of this model in order to match the

available cosmological observations.

2.2 Inhomogenous Universe

In the previous section we studied the homogeneous and isotropic background cosmology.

However, in our current universe we observe galaxies, planets and other non-linear structures

that show that the universe is not homogeneous bellow a certain scale. After the pioneering

measurements from WMAP and Planck satellites, the detection of deviations from the back-

ground homogeneity, from small fluctuations in the temperature of the CMB that indicate

perturbations in the energy density of the universe, of order of 10−5 were measured. We
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review in this section the formalism necessary to treat these perturbation and its evolution

in the linear regime, and to study their quantum origin in the context of (semi-classical)

general relativity.

2.2.1 Cosmological Perturbations Theory in General Relativity

The growth of the initial perturbations was first described in the Newtonian limit, where

structure are formed by gravitational instability. This study is important since it gives us

an idea of the evolution of late time, super-Hubble perturbations. However, for a complete

description if the perturbations in our universe, we need a decription in the context of general

relativity and this is developed in this section (based on [45–47]). We are going to study

small linear cosmological perturbations with respect to the background.

Classifying the Perturbation Modes

We start by perturbing the metric:

gµν → g(0)
µν + δgµν , (2.16)

where |δgµν | �
∣∣∣g(0)
µν

∣∣∣, and the background metric is the flat FRW metric in conformal time

with line element ds2
0 = g

(0)
µν (η) dxµdxν = a2 (η) (dη2 − δijdxidxj).

The metric is a symmetric tensor that has 10 perturbation degrees of freedom. We can

decompose those perturbations into a irreducible set of modes: the scalar, vector and tensor

modes. This SVT decomposition is useful since at linear level, the Einstein equation for each

mode is decoupled from the others and we can treat the evolution of the scalars, vector and

tensor perturbations separately.

So, we can describe the perturbation of each component of the metric. The δg00 can be

described by one scalar function:

δg00 (η,x) = 2a2 (η)φ (η,x) . (2.17)

There are two irreducible ways of writing the non-diagonal component of the metric δg0i, as

the gradient of a scalar quantity and as a divergenceless vector:

δg0i (η,x) = 2a2 (η) (B,i + Si) , (2.18)
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where B is a scalar function and Si is a vector with S,ii = 0 so the decomposition is irreducible

and unique. The component δgij of the metric is a tensor and there are five irreducible ways

to construct a tensor:

δgij (η,x) = 2a2 (η) (2ψδij + 2E,ij + Fi, j + Fj, i + hij) (η,x) , (2.19)

where ψ (η,x) and E (η,x) are scalars that can determine a tensor in two different ways:

by being multiplied by a tensor or by taking its Laplacian. The vector, Fi (η,x), has to be

divergenceless. And finaly, hij (η,x) is a tensor that must be traceless hii = 0 and transverse

hij, i = 0, so it cannot be decomposed into scalars and vectors.

Having determined the perturbations, we can re-arrange the metric perturbations divid-

ing them into scalar, vector and tensor perturbations, with line element:

• Scalar modes: Described by 4 functions φ(x, t), ψ(x, t), B(x, t), E(x, t):

ds2 = a2 (η)
{

(1 + 2φ) dη2 + 2B,idηdx
i + [(1− 2ψ) δij − 2E,ij] dx

idxj
}
. (2.20)

• Vector modes: It contains four degrees of freedom described by 2 vectors, Si(x, t) and

Fi(x, t).

ds2 = a2 (η)
[
dη2 + 2Sidηdx

i − (δij − Fi,j − Fj,i) dxidxj
]
. (2.21)

• Tensor modes: Two tensor modes

ds2 = a2 (η)
[
dη2 − (δij − hij) dxidxj

]
. (2.22)

Gauge Transformations and Independent Variables

General relativity allows freedom in the choice of the coordinate system used. So it is

important to know how the metric changes under those changes of coordinates in order that

we can identify the modes that are physical from the ones that are a gauge artifact. For

that, given an infinitesimal coordinate transformation:

xµ → x̃µ = xµ + ξµ , (2.23)
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where the ξµ has four components: ξ0, that can generate scalar perturbations of the metric,

and ξi, that can be decomposed in a irreducible ways into ξi = ξi⊥ + ς ,i where ξi⊥ is a diver-

genceless vector that has two degrees of freedom that contribute to the vector perturbations,

and ς a scalar function. Tensors are invariant under coordinate transformations and do not

induce tensor perturbations.

The scalar and vector functions from the SVT decompositions of the metric transform

under this change of coordinates. The scalar functions transform as:

φ̃ = φ− 1

a

(
aξ0
)′
, B̃ = B + ς

′ − ξ0 , (2.24)

ψ̃ = ψ +
a′

a
ξ0 , Ẽ = E + ς . (2.25)

while the vector transform as S̃i = Si + ξ
′

⊥i and F̃i = Fi + ξ⊥i. The tensor mode hij

is invariant under gauge transformations. This shows us that the scalar and vector modes

exhibit a gauge ambiguity with the appearance of fictitious perturbation modes that have no

physical significance. One way to avoid this gauge redundancy is to adopt a gauge invariant

description where we construct gauge invariant quantities independent of ξµ, the Bardeen

variables:

Scalar modes :

Φ ≡ φ− 1

a

[
a
(
B − E ′

)]′
, Ψ ≡ ψ − a

′

a

(
B − E ′

)
. (2.26)

Vector modes :

v̄i = Si − F
′

i . (2.27)

Here we can see that the vector modes present four degrees of freedom, but only two of them

characterize physical meaningful perturbations.

We can also solve the gauge redundancy problem by choosing and fixing a gauge where

we are going to work. This amounts to impose conditions to fix the number of variables that

are redundant. From the diffeomorphism invariance of general relativity, we need gauge away

four degrees of freedom. The most used gauges in cosmology are the Newtonian, synchronous

and spatially flat gauge, and they are defined by the choices, for the scalar modes only:
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• Newtonian or longitudinal gauge: This gauge is given by the conditions:

B = 0 , E = 0 , (2.28)

that gives the following line element for the perturbations:

ds2 = a2 (η)
[
(1 + 2φ) dη2 − (1− 2ψ) δijdx

idxj
]
. (2.29)

In terms of the Bardeen variables:

Φ = φ , Ψ = ψ , (2.30)

where φ and ψ are considered to be the generalized gravitational potential, giving the

name to this gauge.

• Synchronous gauge: the synchronous gauge is the gauge where we choose the syn-

chronous coordinates where δg0µ = 0. This implies that:

φ = 0 , B = 0 . (2.31)

In this gauge there is still some arbitrarity in the 3-dimensional coordinate transforma-

tions. As the conformal temporal coordinate is fixed, we can say that in this coordinate

system all the clocks in a given Hubble radius are synchonized, inspiring the name of

this gauge.

• Spatially flat gauge (or uniform curvature gauge) [?] : This gauge is very convenient

for cosmology because it simplifies the computation of the curvature perturbations,

that are linked to the density perturbations that seeded the structures of our universe,

for reasons that will become clear in the following sections. In this gauge, we have the

condition:

Φ = B = 0 . (2.32)

Linearized Einstein’s equations

After defining the properties of the perturbations of the metric, we can now write their

equations. For that we have expand the perturbed Einstein’s equations in the linear regime
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for small perturbations: δGµν = 8πGδTµν . At this level, the scalar, vector and tensor

linearized equations are decoupled and we can study the evolution of each mode separately.

Adopting the Newtonian gauge, we have the perturbed Einstein equation for each mode:

Scalar mode: Using the scalar perturbations of the metric in Newtonian gauge (2.29)

we have,

δG0
0 = ∇2Ψ− 3H

(
Ψ
′
+HΦ

)
= 4πGa2δT 0

0 , (2.33)

δG0
i =

(
Ψ
′
+HΦ

)
,i

= 4πGa2δT 0
i , (2.34)

δGi
j =

[
Ψ
′′

+H (2 + Φ)
′
+
(

2H′ +H2
)

Φ +
1

2
∇2 (Φ−Ψ)

]
δij −

1

2
(Φ−Ψ),i,j

= −4πGa2δT ij , (2.35)

where H is the comoving Hubble parameter.

Vector modes :

δG0
i = 16πGa2δT 0

i , (2.36)

δGi
j = (v̄i,j + v̄j,i)

′
+ 2H (v̄i,j + v̄j,i) = −16πGa2δT ij(V ) , (2.37)

where δT ij(V ) is the vector part of the perturbation of the energy-momentum tensor.

Tensor modes : from the tensor perturbations of the metric (2.22),

δGi
j =

(
h
′′

ij + 2Hh′ij −∇2hij

)
= 16πGa2δT ij(T ) , (2.38)

where δT ij(T ) is the tensor part of the energy-momentum perturbations, which usually

is disregarded in cosmology.

In the absence of anisotropic stress, the space part of the perturbed energy-momentum

tensor is expected to be also diagonal, as its background counterpart. For that, from the

above equations, we need to have:

Φ = Ψ . (2.39)

This result is valid for any energy-momentum tensor with δT ij ∝ δij, i.e., when the matter

content is described by a perfect fluid without anisotropic stress.
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With that, we now need to describe the energy-momentum tensor. Here, we specialize

in the case where the matter content is given by a scalar field. All the formalism presented

here can also be described for a fluid-like energy-momentum tensor, as done in [46].

To evaluate the perturbations of the energy-momentum tensor that enter Einstein’s equa-

tions, we need to perturb the scalar field:

ϕ (η, x)→ ϕ (η) + δϕ (η, x) . (2.40)

This perturbation is also affected by a infinitesimal coordinate transformation, with the

scalar field transforming as δϕ̃ = δϕ + ϕ
′
ξ0, which adds a scalar mode. Analogous to what

was previously done, we can define a gauge invariant quantity for the scalar field:

χ ≡ δϕ+
(
B − E ′

)
ϕ
′
. (2.41)

With that, and knowing the form of the background energy-momentum tensor for the scalar

field (2.6), we can write the perturbations of the energy-momentum tensor of the scalar field

in the Newtonian gauge:

δT 0
0 = −ϕ′χ′ − a2V,ϕχ+ Φϕ

′
, (2.42)

δT 0
i = −∂i

(
ϕ
′
χ
)
, (2.43)

δT ij = −
(
ϕ
′2Φ + a2V,ϕχ− ϕ

′
χ
′
)
δij . (2.44)

We can now write the linearized perturbed Einstein’s equations for the scalar, vector and

tensor modes. We begin with the scalar modes, where the equations for each component can

be written as:

∇2Φ− 3H
(

Φ
′
+HΦ

)
= 4πG

(
ϕ
′
χ
′
+ a2V,ϕχ− Φϕ

′
)
, (2.45)

Φ
′
+HΦ = 4πGϕ

′
χ , (2.46)

Φ
′′

+ 3HΦ
′
+
(
H′ + 2H2

)
Φ = 4πG

(
ϕ
′
χ
′ − ϕ′2Φ− a2V,ϕχ

)
. (2.47)

As we can see, the scalar modes are the only ones that are coupled to the matter pertur-

bations, and for that reason are the only one relevant for the formation of structure in the

universe. This system of equation presents only two linearly independent equations.
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Using the Klein-Gordon equation for this scalar field, we can arrange the equations, and

re-write the perturbation equation as:

Φ
′′

+ 2

(
H− ϕ

′′

ϕ′

)
Φ
′ −∇2Φ + 2

(
H′ −Hϕ

′′

ϕ′

)
Φ = 0 , (2.48)

This equation for the scalar perturbations gives us the classical evolution of the cosmological

perturbations. Since there is effectively only one propagating degree of freedom, we can

define the variables:

u ≡ a

ϕ′
Φ , θ ≡ H/aϕ′ , (2.49)

and the equation for the scalar perturbations is given by:

u
′′ −∇2u−

(
θ
′′

θ

)
u = 0 . (2.50)

We can re-write this equation in momentum space as:

u
′′

k +

(
k2 − θ

′′

θ

)
uk = 0 , (2.51)

where k = akfis is the comoving momentum. This equation is analogous to the equation

of an harmonic oscillator with the term
(
−θ′′/θ

)
acting as a time-dependent effect mass

squared. The inverse of this effective mass represents the size of the comoving Hubble

radius. This scale is important since it separates two regimes of behaviour of the evolution

of the perturbation [45] the short wavelength perturbations, which are inside the Hubble

radius (k2 > m2
eff ) and that behave as harmonic oscillators in Minkowski space-time; and

the long-wavelength perturbations which are outside the Hubble radius (k2 < m2
eff ), and

are the ones that feel the expansion of the universe. The long wavelength modes have a

decaying and a growing solutions. In an expanding universe, the solution u ∼ θ is the one

that dominates. This means that the modes, after they leave the Hubble radius, are frozen

with the wavelength of the size of the Hubble radius at the time they exited it, and remain

like that until they re-enter the Hubble radius. The perturbations that we observe in the

CMB re-entered the Hubble radius in the radiation epoch and encode the physics of the

primordial mechanism that generated them, being either inflation or a bouncing cosmology.
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In order to interpret the evolution of the long wavelength perturbations in a more con-

venient way, we construct different gauge invariant variables. We can define the comoving

curvature perturbation [46,48,49]:

R ≡ Φ +
2H
8πG

1

ϕ′2

(
Φ
′
+HΦ

)
. (2.52)

It represents the gravitational potential on comoving surfaces with δφ = 0 [?]. The equation

for the perturbation in this variable is given by:

R′ =
2H
8πG

1

ϕ′2
∇2Φ . (2.53)

This variable is conserved for long wavelength perturbations, where ∇2Φ is negligible.

At this point we can see the advantage of the spatially flat gauge over the other gauges.

Using this gauge, the comoving curvature perturbation is given by:

R = H 1

ϕ′
ξ . (2.54)

and only depend on the perturbations of the scalar field and not on any perturbation of the

metric.

Although the scalar modes are the most important ones for the formation of structure in

the universe, it is important to see what happens to the vector and tensor modes.

The equations for the vector perturbations are given by:

∆v̄i = 8πGa2ϕ̇2δu⊥ i , (v̄i,j + v̄j,i)
′
+ 2H (v̄i,j + v̄j,i) = 0 . (2.55)

It is easy to see that the solution rapidly decays as the scalar factor increases, Φi ∝ a−2.

So, for these modes to be important cosmologically their initial values would have to be

very large. They do not contribute to the formation of structures, describing rotational

movements of the cosmic fluid.

The tensor modes are more interesting. Although they do not contribute to the formation

of structures, they describe the gravitational waves, with the equation:

h
′′

ij + 2Hh′ij −∇2hij = 0 . (2.56)
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Gravitational waves have two polarizations. We can expand hij in the following form:

hij =
1

a (η)

∫
d3k

(2π)3

[
µk (η) εij (k) eikx + c.c.

]
, (2.57)

where εij is the polarization tensor. Since those perturbations were defined as being trans-

verse and traceless, the polarization tensor has to be symmetric, transverse εij = εji and

traceless εij = εijk
i = 0 as well. With that, the equation has the form:

µ
′′

k +

(
k2 − a

′′

a

)
µk = 0 . (2.58)

which like the scalar case is analogous to a harmonic oscillator, but with different effective

mass, m2
gw = −a′′/a, meaning that they evolve only feeling the influence of the expansion

and not the matter content.

2.2.2 Quantum Theory of Cosmological Perturbations

One of the central problems in cosmology is the primordial perturbations that seed the

structures of the universe. All the models that try to describe the early universe, being this

inflation, bounding cosmologies or even others, aim to address this question. To understand

the generation of these primordial perturbations, we need to describe them using quantum

theory. In this section we develop the quantum theory of cosmological perturbations where

we quantize the first-order metric and matter perturbations about our expanding background

[46]. This procedure leads to particle creation, generating the primordial perturbations.

We start from the Einstein-Hilbert action, coupled minimally to a matter action:

S =
1

16πG

∫
d4x
√−g (R + 16πGLm) , (2.59)

where Lm is the matter Lagrangian density. Our goal is to expand this action to second

order, to obtain the linear equation for the perturbations, and study the quantization.

In order to do this, it is convenient to use the ADM formalism [50]. This formalism,

developed by R. Arnowitt, S. Deser and C. W. Misner, presents a Hamiltonian formalism

of General Relativity, and simplifies greatly the calculation of the second order action in a
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canonical form. We start by writing the metric in the following form:

ds2 =
(
N 2 −NiN i

)
dt2 − 2Nidxidt− gijdxidxj , (2.60)

where N is the lapse function and Ni the shift vector, and gij is the metric on the hypersur-

faces of constant time. We can re-write the Einstein-Hilbert action with this metric and for

a scalar field as the matter content,

S =
1

16πG

∫
d4x
√−g[NR(3) +N

(
KijK

ij −K2
)
− 8πGN

(
gij∂iϕ∂jϕ− 2V (ϕ)

)
+ 8πGN−1

(
ϕ̇−N i∂iϕi

)
, (2.61)

where R(3) is the Ricci scalar with respect to gij and Kij = 1
2
N−1 (∇iNj +∇jNi − ġij) is

the extrinsic curvature tensor of the constant time hypersurfaces. Varying the action with

respect to N and Ni, yields the Hamiltonian and momentum constraints.

We want to identify the quantities of this formalism with the ones from the previous

section. For this, we compare the metric (2.60) with (2.29), and find that in Newtonian

gauge:

N2 = (1 + 2Φ) , Ni = 0 , gij = a2 [δij (1− 2Ψ) + Fi,j + Fj,i + 2hij] . (2.62)

If we substitute these variables in the action (2.61), and take into account the constraints and

the background equations, we can find the second order action with this formalism (see [46]

for detailed calculations). The zeroth order expansion provides the background equations,

while the first order expansion is identically equal to zero. With that, the terms of the second

order expansion provide the second order action for the perturbations.

As mentioned above, we have only one propagating variable for each type of perturbation.

The canonical variable of this second order action that describes each of those perturbations

is given by the Mukhanov-Sasaki variables. For the scalar perturbations it is defined as:

v ≡ zR , (2.63)
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with z = 1/θ = aϕ
′
/H. And for the tensor perturbations, the canonical variable is given by:

µij ≡
√
M2

p

4
ahij . (2.64)

where hij can be decomposed into its two polarizations:hij (η,x) = h+ (η,x) ε+ij+h× (η,x) ε×ij.

In terms of these canonical gauge invariant variables, the second order quadractic action

for the scalar and tensor perturbations is:

S(2) =
1

2

∫
dηd3x

[(
v
′
)2

− v,iv,i +
z
′′

z
v2

]
+

1

2

∫
dηd3x

∑
λ=+,×

[(
µ
′

λ

)2

− µλ,iµλ,i +
a
′′

a
µ2
λ

]
.

(2.65)

where we see the time varying masses are as obtained before: − z
′′

z
and −a

′′

a
. Going to

momentum space, the equations of motion have a similar form then the found before:

v
′′

k +

(
k2 − z

′′

z

)
vk = 0 , µ

′′

k +

(
k2 − a

′′

a

)
µk = 0 . (2.66)

We can also write the Hamiltonian for this system. For this, first we define the canonical

conjugate momentum:

Πv (η,x) =
∂L(2)

∂v′
= v

′
, Πµ (η,x) =

∂L(2)

∂µ
′
λ

= µ
′

λ , (2.67)

which, by a Legendre transformation, leads to the Hamiltonian:

H =

∫
d3x

(
v
′
Πv + µ

′

λΠµ − L(2)
)

=
1

2

∫
d3x

[
Π2
v + v,iv,i −

z
′′

z
v2

]
+

1

2

∫
d3x

[
Π2
µ + µλ,iµλ,i −

a
′′

a
µ2
λ

]
. (2.68)

Quantization

With the quadratic action, we can proceed to the canonical quantization of this system. The

second order action presented before reduces to the action of a real field with an external

potential. In order to describe the procedure that can be used for both the scalar and the
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tensor modes, we introduce the generalized variable Ql (η,x) that can be identified with

either of the modes.

The action in this variable is given by:

S [Ql] =

∫
dηd3x

[(
Q
′

l

)2

−Ql,iQ
,i
l +

Z
′′

l

Zl
Q2
l

]
L
, (2.69)

with equation of motion Q
′′

l +

(
∇2 − Z

′′
l

Zl

)
Ql = 0, where Zl is equal to z for the scalar mode

and a for the gravity waves.

In the canonical quantization procedure, we promote these variable to operators Ql → Q̂l

and Πl → Π̂l, which must obey the commutation relations:[
Q̂l (η,x) , Π̂l′ (η,y)

]
= iδll′δ (x− y) , (2.70)[

Q̂l (η,x) , Q̂l′ (η,y)
]

=
[
Π̂l (η,x) , Π̂l′ (η,y)

]
= 0 . (2.71)

A general solution of the equation of motion can be written as the decomposition:

Q̂l (η,x) =

∫
d3k

(2π)3/2

[
Qk,l (η) âk,le

−ikx +Q∗k,l (η) â†k,le
ikx
]
, (2.72)

where âk,l and â†k,l are the annihilation and creation operators, respectively, acting on the

vacuum of the theory in the Fock representation. With the introduction of these operators,

the status of operators passes from the fields to them. This procedure is known as second

quantization. Those operators also obey the equal time commutation relations:[
âk,l, â

†
k′ ,l′

]
= δll′δ

(
k− k

′
)
,

[
âk,l, âk′ ,l′

]
=
[
â†k,l, â

†
k′ ,l′

]
= 0 . (2.73)

which are valid only if the modes obey the normalization relation Q
′

k,lQ
∗
k,l − Q∗

′

k,lQk,l = 2i,

that represents the Wronskian of the classical solutions. This normalization allows us to fix

the amplitude of Qk,l (η) that is compatible with Heisenberg’s uncertainty principle.

The Hamiltonian for this system can be written in terms of the annihilation and creation

operators as Ĥk = ω2
k,l (η) â†kâk, where ωk,l (η) = k2 − Z ′′l /Zl.

We need to define the Fock space where these operators act. Since the Hamiltonian is

quadractic and positive definite, there must exist the lowest energy state |0〉, where H |0〉 =
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E0 |0〉, which leads to:

âk,l |0〉 = 0 , ∀k , (2.74)

defining the vacuum state. We can act with the creation operator on the vacuum state gen-

erating the particle states. In the Heisenberg picture, the operators carry the time evolution,

and these states define the Hilbert space.

Although this quantization procedure is very similar to the one for a free field, in the

presence of an external field the invariance under space-time translations is broken and we

cannot define a unique orthonormal basis. The quantization procedure now depends on the

basis where the quantization was made and has a defined temporal direction. This effect leads

to particle creation, since the vacuum defined for a time t1 can be different from the vacuum

defined at a time t2. The vacuum of t2 can be seen as a state with particles in comparison

with the vacuum of t1. Those states can be related by a Bogoliubov transformation in which

one can calculate the number of created particles.

Power spectrum

In order to be able to compare the perturbations with observations, we need to evaluate

the power spectrum. For that, first we compute the two point correlation function for the

canonical variables:

〈0| Q̂l (η,x) , Q̂l

(
η
′
,y
)
|0〉 =

∫
d3k

(2π)3 Qk,l (η)Q∗k,l

(
η
′
)

︸ ︷︷ ︸
Gk,l(η,η′)

e−ik(x−y) , (2.75)

where Gk,l

(
η, η

′)
is the Green’s function in momentum space. The power spectrum is defined

from this equal times Green’s function

PQl (k) =
1

2π2
k3 lim

η→ηhc
Gk (η, η) =

1

2π2
k3 |Qk,l (η)|2 |η=ηhc . (2.76)

For the scalar component this is written as:

PR =
k3

2π2

∣∣∣∣vk (η)

z

∣∣∣∣2 . (2.77)

This quantity as seen by CMB observations should be approximately scale invariant. So,
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for the chosen mechanism for the evolution of the early universe, the resultant dimensionless

power spectrum for the generated cosmological perturbations must be close to scale invariant,

which is commonly parametrized as:

Ps ∝ kns−1 , (2.78)

where ns is the spectral index, with ns ∼ 1. The value of ns is determined by observations,

with its current value given by ns = 0.965± 0.006 [41].
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Part I

Early Universe Cosmology
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Chapter 3

The AdS/CFT Correspondence

The idea of holography, where the physics of a gravity theory in the bulk is encoded in

non-gravitational theory on the boundary, originates from black-hole physics [51, 52]. In

1997, Maldacena [9], motivated by the physics of D-branes, found a concrete example of the

holographic principle, the AdS/CFT correspondence. In its original form this is a corre-

spondence between a type II-B string theory on a AdS5 × S5 space-time to a N = 4 super

Yang-Mills (SYM) theory, which is conformally invariant, living in the boundary of this

space-time. Here AdS5 is the bulk space-time and refers to an Anti-de-Sitter space-time in

five dimensions, and S5 refers do the sphere in five dimensions.

The correspondence relates the bulk quantities R, the radius of the AdS space-time, and

ls, the string length, with the two dimensionless quantities in the SYM theory, the coupling

gYM and the rank of the gauge group N :

gs = g2
YM ,

(
R

ls

)4

= 4πg2
YMN . (3.1)

The regime where we understand string theory, the supergravity (SUGRA) limit, when

R > ls is given when the ’tHooft coupling is large:

g2
YMN � 1 , largeN , (3.2)

and the gravity theory is weakly coupled (and stringy effects are not important). In this

regime, the dual gauge theory is strongly coupled, which makes it very hard to describe.

An important aspect of the theory is that there is a match between the global unbroken

2017/06/25
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symmetries from both sides, namely the superconformal group SU(2, 2|4). This can be seen

since the bosonic subgroup of the N = 4 SYM, SU(2, 2)× SU(4)R ∼ SO(2, 4)× SO(6)R is

the isometry group of the AdS5 × S5 space-time .

This conjecture has proved to be one if the most important recent developments in string

theory that has applications in different domains of physics. Recently, there have been

many uses in condensed matter physics, gravitational theories, quantum chromo-dynamics,

nuclear theory, along with many other examples (for some examples see [53]). Although this

construction has the status of a conjecture, since no formal proof is available, there is strong

supporting evidence with the match of the symmetries on both sides of the theory, and the

match of the spectra of supersymmetric modes [54]. Although still in a low level of accuracy,

AdS/CFT also makes predictions that are in agreement with experiments, like for example

the viscosity of the quark-gluon plasma formed in the aftermath of collisions between heavy

atoms [55].

The low-energy limit presented above is called the weak version of the correspondence.

In the strongest version, the correspondence is valid for any value of N and all regimes of

coupling gs = g2
YM , although it is highly non-trivial to implement since in the bulk side we

now have a full quantum type IIB string theory on AdS5 × S5. This shows us that there

can be regimes of the correspondence where the ’tHooft coupling can become small, and in

this limit the finite gauge theory can be well understood, having a weakly coupled conformal

theory on the boundary, the reverse case of the one presented above. However, in this limit,

the bulk SUGRA breaks down since if the bulk curvature is of the order of the string scales,

R ∼ ls, then stringy effects become important. In this sense one can use the gauge theory

as a non-perturbative definition of the string theory with AdS boundary conditions. This

suggests an interesting avenue to address the resolution of singularities, a subject that we

explore in the following sections in the context of explaining how perturbations can evolve

through a cosmological singularity. In our case, we are allowing the ’tHooft to change, but

always keeping N large, to avoid the influence of non-planar diagrams in the weakly coupled

CFT that are not suppressed if N is small and might influence the theory.

3.1 AdS space-time

The AdS5 solution is embedded in a solution of a 10-dimensional type IIB supergravity

theory and it is the geometry where the correspondence has its better defined example. In
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this section we briefly describe the geometry of AdS space-time with Minkowski signature.

AdSd+1 space-time is the maximally symmetric solution o Einstein’s field equation with

a negative cosmological constant, Λ = −d(d− 1)/R2, where R is the AdS radius. It can be

considered to be the Lorentzian hyperbolic space given by the equation:

− Y 2
−1 − Y 2

0 + Y 2
1 + ...+ Y 2

d = −R2 . (3.3)

The topology is that of a cylinder S1×R times a sphere S2d− 1, with boundary S1×Sd−1.

We can describe AdSd+1 in different coordinate systems. In global coordinates, AdSd+1

has the metric:

ds2 = R2
[
− sec2 ρ dt2 + sec2 ρ dρ2 + tan2 dΩ2

d−1

]
, (3.4)

where 0 ≤ ρ ≤ π/2 and −∞ ≤ t ≤ ∞. In this system the topology is globally a line times a

d-dimensional disk. The boundary is the cylinder Sd−1 × R located at ρ = π/2.

We can also describe AdSd+1 in Poincaré coordinates, which cover only half the AdSd+1

space-time. In this coordinate system the metric can be written as:

ds2 =
R

z

(
dz2 +−dt2 + dx2

)
, (3.5)

where 0 ≤ z ≤ ∞. The boundary is at z = 0 and there is a horizon at z =∞.

3.2 The Mapping

The original form of the conjecture did not provided details of the mapping between the bulk

and boundary quantities. Witten [56], and Gubser, Klebanov and Polyakov [57] developed,

for the Euclidean case (see [58] for the case with Lorentzian signature), a way to relate the

states of the theories of the correspondence. Here, we show how to map a scalar field in AdS5

to CFT operators [54, 59]. This description is important since, as said above, the duality is

expected to hold dynamically, describing how a quantum gravity in AdS can be mapped into

a CFT on its boundary. This is especially important in the case of the singularity resolution

in Chapters 4 and 5, where the parameters describing both theories vary describing the

correspondence in its different regimes.

The correspondence is described schematically as a relation between the generating func-

tional of a (d + 1)-dimensional gravity theory in the bulk and the partition function of a



3 The AdS/CFT Correspondence 35

d-dimensional CFT on the boundary B of the bulk space-time:

Zbulk[ϕb] =

∫
ϕ→ϕb

Dϕe−i Sgrav [ϕ] = 〈e
∫
B d

dxϕbO(x)〉 = ZCFT [ϕb] , (3.6)

where Sbulk(ϕ) is the effective action of the bulk gravity theory, and ϕb is the near-boundary

bulk field that acts as a source term for the operator O of the CFT theory. This is the most

general version of the correspondence. A more practical and known form of this duality is

when we consider the supergravity approximation. Having this, it is possible to compute

any n-point correlation function given that we can calculate the path integral of the action

of the gravity theory 1.

The path integral in the mapping depends on the behaviour of bulk fields as they asymp-

tote to their boundary values. For that, we need to understand the dynamics of the fields in

AdSd+1
2. We will study the simple case of a free massive scalar field in Lorentzian signature

AdSd+ 1, ϕ(z, xµ) where z is the radial AdS coordinate and µ = 0, ..., d. The action of this

field in AdSd+ 1 is:

S =
1

8πG

∫
dzddx

√−g
(

1

2
gµν∂µϕ∂νϕ+m2ϕ2

)
, (3.7)

which leads to the Klein-Gordon equation:

(
�+m2

)
ϕ(z, xµ) = 0 , (3.8)

where � = (1/
√−g)∂µ

√−ggµν∂ν . Plugging in the Lorentzian AdS metric and using the

ansatz with plane wave basis ϕ(z, xµ) = ϕk(z)eikµx
µ
, and making a field redefinition φk(z) =

z
−d
2 ϕk(z), we have the equation of motion:

z2∂zφk(z) + z∂zφk(z)−
(
m2R2 +

d2

4
+ k2z2

)
φk(z) = 0 . (3.9)

Near the boundary of AdS, when z = → 0, the solution asymptotes to ϕk ∼ z∆, where

∆ (∆− d) = m2R2, which has two roots leading to the asymptotic behaviour close to the

1The n-point correlation function is given by 〈O(x0...O(xn)〉 = δ
δj(x0)

... δ
δj(xn)

W |j(x)=0, where W = lnZ

is the generating functional.
2In Euclidean signature AdS, there is a unique extension of the field to the boundary because of the

absence of normalizable modes.
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boundary:

ϕ(z, xµ) ∼ α−(xµ) z∆− + α+(xµ) z∆+ , (3.10)

with

∆± = (d/2)±
√
d2

4
+m2R2 . (3.11)

The solution with ∆+ is called normalizable and ∆− non-normalizable. Normalizability is

defined as finiteness with respect to the Klein-Gordon inner product:

(u1, u2) = i

∫
Σ

ddx
√
gf tt(u∗1∂tu2 − ∂tu∗1u2) , (3.12)

where u1 and u2 are solutions of the Klein-Gordon equation and Σ is a spacelike slice of

AdSd+1. Stability requires that the mass obeys the Breitenlohner-Freedman (BF) bound [60]:

m2 ≥ mBF = −d
2

4
, (3.13)

We can see that tachyonic masses are allowed in AdS. This means that the asymptotic

solution ϕ ∼ z∆ is normalizable when the field obeys the unitary bound ∆ ≥ (d− 2)/2.

The interpretation of these modes is the following. In order to have a well defined

quantum field theory, one needs a complete set of normalizable modes, since these are used

to build the Hilbert space in the bulk. So, these modes in the AdS/CFT correspondence

are associated to CFT operators: ϕnorm(z, x) ↔ O(x). Non-normalizable modes do not

fluctuate, so they are not part of the Hilbert space. They are understood, in the AdS/CFT

conjecture, to define the boundary values of the fields, which in turn are classical sources

that modify the boundary theory:

ϕb(x) = lim
z→0

z∆−dϕ(z, x)⇒
∫
ddxϕb(x)O(x) . (3.14)

The expectation value of this modification is what defines the generating functional of the

CFT.

These relations define the mapping between the gravity and boundary theory. The am-

biguity in the choice of these modes amounts to a choice of boundary conditions that must

be made in the Lorentzian signature correspondence. It is possible, then, to evaluate the
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path integral of (3.6):

〈e
∫
B d

dxϕbO(x)〉 = Zbulk(ϕb)→ e−Scl . (3.15)

The last relation is evaluated in the supergravity approximation, where we extremize with

respect to the field given boundary condition, obtaining the classical action. Now, any n-

point correlator can be calculated by a functional derivative of the supergravity action with

respect to the boundary field.

We only described in detail scalar fields that are dual to operators in the CFT. However,

the correspondence also applies to tensor fields. The most important duality that worth men-

tioning is the correspondence between the metric in the bulk (graviton) and the expectation

value of the energy momentum tensor in the CFT theory.
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Chapter 4

Fluctuations in a Cosmology with a

Space-Like Singularity and their

Gauge Theory Dual Description

4.1 Introduction

The AdS/CFT correspondence [9] is a most promising proposal for a non-perturbative defi-

nition of string theory. Thus, this correspondence should also have important consequences

for early universe cosmology. In fact, over the years there have been several proposals which

address the meaning of cosmological singularities in the dual field theory [10,14,61–63]. The

general idea is the following: consider an asymptotically AdS space-time which is contracting

towards a curvature singularity. According to the AdS/CFT dictionary, this may correspond

to a dual conformal field theory which lives on the boundary which is in a nontrivial unstable

state [61–63] or which has a time dependent coupling [10,14] which becomes small when the

bulk singularity is reached. While the bulk theory cannot be used to evolve further in time,

it may be possible to track the time evolution in the dual field theory in a controlled fashion.

It is then not unreasonable to assume that the dual field theory admits a continuation in

time beyond the time tB = 0 when the bulk singularity occurs.

There are several motivations for this investigation. One of the motivations comes from

cosmology. Although the inflationary scenario [1–5] is the current paradigm of early universe

cosmology and has been quite successful phenomenologically, it faces conceptual challenges.

2017/06/25
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In particular, a robust embedding of large field inflation into string theory has proven to be

difficult (see e.g. [64–68]) 1 At the same time, it has been realized that there are alternative

cosmological scenarios which are at the moment also in agreement with cosmological data.

One of these is the “matter bounce” scenario (see [6] for a recent review), a bouncing scenario

which begins with a matter-dominated phase of contraction during which the scales which we

observe today with cosmological experiments exit the Hubble radius. It was shown in [71,72]

the if fluctuations begin in their Bunch-Davies vacuum at past infinity, that the growth of

the fluctuations on super-Hubble scales converts the vacuum spectrum into a scale-invariant

one for scales exiting the Hubble radius during the matter phase of contraction. Adding

a small cosmological constant (of magnitude similar to the one observed today) leads to a

small red tilt in the spectrum [73]. The observed spectrum of curvature fluctuations is indeed

scale-invariant with a small red tilt (see [41] for the most recent data).

In the context of effective field theory and Einstein gravity, it is difficult to obtain a non-

singular bouncing cosmology. One either needs to postulate that matter violates the “Null

Energy Condition” (NEC) during the bounce, or one needs to go beyond Einstein gravity.

Examples of the former are adding ghost condensate matter [74] or Galileon matter [75,76],

an example of the latter is Horava-Lifshitz gravity in the presence of non-vanishing spatial

curvature [77]. However, it is doubtful whether any of these constructions actually can

emerge from an ultraviolet complete theory such as string theory. Hence, it would be very

interesting to investigate if the AdS/CFT correspondence leads to a consistent bouncing

cosmology 2.

Regardless of the above motivation, it is clearly interesting to investigate what happens

to classical spacelike singularities in a complete theory of gravity. In particular, does the

holographic correspondence predict a time evolution beyond this ”singularity” ? Despite a lot

1In “large field” inflation models, the field values are larger than the Planck scale during inflation. In
large field inflation models, the inflationary slow-roll trajectory is a local attractor in initial condition space,
a property not shared by small field inflation models (see [69] for a recent review). The “Weak Gravity
Conjecture” [70] constrains a number of large field inflation models, but the applicability of this conjecture
is still somewhat controversial.

2There are other approaches to string theory which indicate the possibility of obtaining non-singular
bouncing cosmologies. One example is “string gas cosmology” [78] in which the universe begins in an
emergent high temperature stringy Hagedorn phase, and in which the thermal string fluctuations in the
Hagedorn phase lead to a scale-invariant spectrum of fluctuations with a small red tilt [79, 80]. Another
example is the “S-brane bounce” of [81–83], in which an S-brane arising at an enhanced symmetry point
in the early universe leads to the violation of the NEC which makes a non-singular bouncing cosmology
possible.
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of effort, it is not clear whether any of the AdS/CFT models which contain true singularities

in the bulk admit a smooth time evolution in the dual theory. In the original model proposed

in [62,63] which was based on earlier work of [61], there were some technical problems which

indicated that the time evolution past the singularity was not under control [84], mainly

due to the back-reaction of the fluctuations on the background space-time. There have been

attempts to overcome these obstacles [85–87], but the final verdict is still out.

In the works of [10–12, 14, 15] a bulk dilaton field φ had a time dependent (or a null

coordinate dependent) boundary condition so that eφ becomes small at some time (or null

time), while Einstein frame curvatures become large in the bulk, signifying a singularity.

When the singularity is null, the dual theory appears to predict a smooth time evolution,

and because of the absence of particle production one expects that the spacetime is smooth

in the future. However for backgrounds with space-like singularities, as in [12] there is no

clear conclusion. Even though the background supergravity solution is time symmetric, the

issue relates to the effect of fluctuations. In the boundary field theory, the question becomes

that of particle production. In [12] it was argued that in the case when the boundary

theory coupling hits a zero, the time evolution of each individual momentum mode is in fact

singular. However it was not clear what happens when one considers the full field theory. In

a regulated version of the theory where the boundary coupling becomes small but does not

hit a zero, time evolution is well defined. However, the energy due to particle production

at times after the crunch would be large, and the spacetime will not bounce back to pure

AdS even at very late times. On general grounds, one might expect that a black brane is

formed [12] 3.

In this chapter, we turn to a different aspect of the kind of backgrounds with spacelike

singularities studied in [10–12] as a result of a time dependent boundary condition for the bulk

dilaton. The goal of our study is to include cosmological perturbations in this picture. This is

important for at least two reasons. Firstly, it is important to study whether the background

is stable against the addition of fluctuations. Secondly, most of the data which we would

like to explain in cosmology concerns fluctuations (inhomogeneities in the distribution of

galaxies and anisotropies in the temperature of the cosmic microwave background).

3 There are AdS cosmologies in global AdS where the coupling enters a weak coupling region slowly
where [13] argue that the time evolution is smooth. In this model, the Einstein frame curavatures are always
small, but string frame curvatures become large. Even though the dual theory predicts a smooth evolution,
the space-time beyond the crunch cannot be determined reliably, though the energetics imply that big black
holes are not formed.
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We will not explore further the important question whether there are apparently singular

AdS cosmologies which lead to a bounce to a relatively empty space. Rather, we will study

models of the same type as [10–12] which have Kasner singularitites. However we will keep

eφ finite (but small) at all times, rather than going to zero, by putting in a cutoff in time, ξ.

More specifically, instead of the exact Kasner behavior near the singularity

eφ(t) = |t|α , (4.1)

we will use

eφ(t) = |t|αθ(|t| − ξ) +
cosh2(Mξ)

cosh2(Mt)
ξαθ(ξ − |t|) . (4.2)

We do not know of exact solutions with such a cutoff dilaton : we assume that these can

be constructed. In the presence of such a finite cutoff, the boundary gauge theory is well

defined : our aim to study some aspects of this. In some sense, the spirit of our investigation

is similar to that of [88–90] and [91,92] (see also [93–96]) where signatures of a past Kasner

singularities in the dual field theory were studied.

We want to determine how the spectrum of fluctuations evolves as the system passes

through the ”singularity”. This question is independent of nature of the late time space-

time so long as there is a region of normal spacetime near the horizon, which is where the

fluctuations are measured.

This question is particularly interesting if any of these models reliably predict a bounce

since in this case connections with bouncing cosmologies studied by many cosmologists can

be made. There are classes of scenarios where, starting from vacuum perturbations at early

times in the contracting phase, a scale-invariant spectrum of fluctuations is generated before

the bounce. This occurs both in matter bounce scenarios [71, 72] for scales which exit the

Hubble radius in the matter-dominated phase of contraction, and also in Ekpyrotic models

(in the presence of entropy fluctuations) [97–102]. To obtain a connection with observations,

the spectrum after the bounce needs to be determined. It has been shown [103] that the form

of the spectrum after the bounce can depend on details of the bounce, although in many

toy models one finds that on large scales the spectrum is preserved (see e.g. the analysis

of [104–108]). A result concerning the transfer of fluctuations in an ultraviolet complete

theory is thus highly desired. However, this question is also of interest for the particular

model which is analyzed in this chapter, which in all likelihood produces a black brane.
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As is clear from previous work, the gauge theory is in a highly excited state as one

approaches the region of weak ’t Hooft coupling, possibly in a coherent state. In such

a situation, we expect that we can learn a lot from the classical limit of the Yang-Mills

theory. We therefore study the time evolution of small fluctuations around the background

across the region of weak coupling. Such small fluctuations are related, by the AdS/CFT

correspondence to bulk fluctuations. The kind of fluctuations we are interested in are those

which are given by correlation functions on a fixed radial slice on AdS, close enough to the

boundary. As we discussed, the space time in the future might contain black holes (branes).

However so long as the space-time near the boundary is smooth and normal, we can use the

AdS/CFT dictionary to translate boundary fluctuations to bulk fluctuations.

In this chapter we take a preliminary step towards computing the transfer of cosmological

fluctuations from before the beginning to after the end of the high curvature bulk regime.

We begin with a given spectrum of cosmological perturbations in the contracting phase of

the bulk, while the bulk is still weakly coupled. At the time when the bulk becomes strongly

coupled (and, correspondingly, the boundary conformal field theory becomes weakly coupled)

we map the fluctuations onto fluctuations of the gauge fields in the boundary theory. We

then evolve the fluctuations to the future in the weakly coupled region on the boundary. In

our classical approximation, it is now straightforward to find the fate of these fluctuations

at late times. The third step of our analysis is the reconstruction of bulk fluctuations from

the boundary data to the future of the bulk singularity. Note that we are interested in

fluctuations on scales of current cosmological interest. These scales are infrared modes from

the point of view of the physics which we are considering. Specifically, the wavelength of the

modes we are interested in is larger than the Hubble radius at the times between −tb and tb

when we evolve the fluctuations on the boundary.

Our main result is that the momentum dependence of classical fluctuations for momenta

much smaller than the cutoff (kξ � 1) does not change after crossing the weak ’t Hooft cou-

pling region, while their amplitudes change by O(1) factors. This means that the spectrum

of fluctuations of the dilaton field near the boundary also have this behavior. In particu-

lar, if we start out with a nearly scale invariant spectrum with a red tilt (as is the case

for models of matter bounce), the spectrum right after the “bounce” will remain the same.

While this result is shown for the bulk dilaton, we conjecture that the result we obtain will

directly apply to the evolution of the gravitational wave spectrum, the reason being that a

test scalar field in a cosmological background obeys the same equation of motion as that of
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the amplitude of a particular polarization state of gravitational waves.

This chapter is organized as follows. In Section II, we review the proposed generaliza-

tion of the AdS/CFT correspondence to a time-dependent background [10, 14]. Section III

consider a bulk scalar field and its dual in the boundary gauge theory. As it turns out, the

time-dependence of the background scalar field induces a time-dependence of the mass of the

gauge field. In Section IV we study the evolution of the gauge field given the time-dependence

of the coupling constants induced by the non-trivial scalar field in the bulk. Since we are

interested in eventually computing linear fluctuations in the bulk, we will focus on linear

perturbations of the boundary field. This leads to a dramatic simplification of the analysis.

We can work in Fourier space. Each Fourier mode obeys an ordinary differential equa-

tion which is analogous to the equation which cosmological fluctuations in a time-dependent

background obey in the context of standard General Relativistic perturbation theory. Hence,

we can use the accumulated knowledge about the evolution of cosmological fluctuations in

time-dependent backgrounds to solve for the evolution of the linear boundary gauge field per-

turbations through the time point t = 0 where the bulk theory becomes singular. Since the

boundary theory is weakly coupled near the bulk singularity, the computations done in the

context of the boundary theory remain under control. At large positive times (when the bulk

theory becomes weakly coupled) we then reconstruct the bulk scalar field using boundary-to-

bulk propagators. This is discussed in Section V where we also extract the power spectrum

of the scalar field fluctuations at late times and relate it to the initial spectrum before the

bulk singularity. We discuss and summarize our results in the final section.

4.2 Time-Dependent AdS Background and CFT Dual

The original Maldacena conjecture is a duality between a Type IIB string theory on AdS5×S5

and a conformal field theory, a supersymmetric Yang-Mills (SYM) N = 4 large N SU(N)

gauge theory, living on the boundary of AdS5 [9]. The two dimensionless quantities on the

bulk side are R/ls, where R stands for the AdS radius and ls is the string length and the

string coupling constant gs. These are related to the two dimensionless quantities in the

SYM theory, the Yang-Mills coupling gYM and the rank of the gauge group N by

R4

l4s
= 4πg2

YMN , gs = g2
YM . (4.3)
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The string coupling gs is of course given by the bulk dilaton field ϕ

gs = exp〈ϕ〉 . (4.4)

There are two particularly noteworthy aspects of this correspondence. Firstly, it relates a

gravitational theory (the bulk theory) to a non-gravitational field theory on the boundary.

From this point of view, the challenge of quantizing gravity suddenly takes on a completely

new view. Secondly, the duality is a strong coupling - weak coupling duality. The bulk

dilaton provides both a measure of the couplings in the bulk and in the boundary. However,

it is precisely when the bulk theory becomes strongly coupled that the boundary theory

becomes weakly coupled. In particular we can consider N � 1 so that bulk quantum

effects are small, but g2
YMN � 1 so that the boundary theory is weakly coupled - this would

correspond to bulk curvature scales of the order of string scale, signifiying that stringy effects

become important in the bulk. This can be achieved, e.g. by having gs = g2
YM � 1/N for

some fixed large N .

This suggests an interesting avenue to address the question of resolution of cosmological

singularities. One possible way to do this is to consider a time dependent boundary condition

of the bulk dilaton [10,14]. By the standard AdS/CFT correspondence the dual field theory

living on the boundary now has a time dependent coupling. A cosmological singularity corre-

sponds to a divergence of the gravitational coupling and thus to a region where conventional

approaches to quantizing gravity will fail. However, by the AdS/CFT correspondence the

bulk theory is dual to a non-gravitational theory on the boundary, and the bulk singularity

corresponds to a point in time when the boundary theory becomes weakly coupled. Thus,

the usual principles of field theory quantization should be applicable, and one has to deal

with a weakly coupled field theory which, however, is time dependent.

The first step is to consider the low energy limit of the bulk Type II string theory, namely

Type II supergravity, and to focus on the bosonic sector of this theory. The second step is to

allow for a time dependence in the bulk fields. The bulk fields involve the ten-dimensional

metric, the dilaton ϕ and a five form F5. The ansatz for such solutions is given by a non-

trivial metric of the form

ds2 =
R2

z2

[
dz2 + g̃µν(x

µ)dxµdxν
]

+R2dΩ2
5 , (4.5)
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where dΩ2
5 is the standard metric on a unit 5-sphere. The surface z = 0 is the boundary of

the space-time. Note that the metric on a constant z slice is a function of the coordinates

xµ only. This also holds for the dilaton field ϕ(xµ). Finally, the five form is given by

F(5) = ω5 + ?10ω5 . (4.6)

As shown in [10], these bulk fields satisfy the full ten dimensional equations of motion

provided

R̃µν =
1

2
∂µϕ∂νϕ , (4.7)

where R̃µν is the Ricci tensor of the metric g̃µν , and where the dilaton ϕ obeys the Klein-

Gordon equation

∂A
(√−ggAB∂Bϕ) = 0 . (4.8)

In the above, g is the determinant of the full metric gAB, and the indices A,B run over all

five space-time dimensions.

AdS5×S5 is of course a special case of a space-time described by the metric (4.5). In this

case, the metric g̃µν = ηµν , the Minkowski metric, and the dilaton is constant. The radial

coordinate z runs from z = 0 at the boundary to z = ±∞ at the Poincaré horizons.

Time-dependent deformations of this background were considered in [10–15]. Specifically,

we shall consider a background of the form [12] obtained by introducing a time-dependent

dilaton background and adjusting the metric of g̃µν such that the Einstein equation (4.7)

and the Klein-Gordon equation (4.8) remain satisfied. We will mainly deal with a solution

where the the boundary metric looks like that of a Friedmann universe

g̃µνdx
µdxν = −dT 2 + a2(T )δijdx

idxj , (4.9)

with T being the cosmic time and a(T ) the scale factor. The dilaton and scale factor were

taken to be

a ∼ |T |1/3 , ϕ =
2√
3

ln
|T |
R

. (4.10)

This corresponds to an early contracting phase leading to a “Big Crunch” singularity at

T = 0 followed by an expanding cosmology. In conformal time t, the four dimensional part
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of the metric is

g̃µνdx
µdxν = 2|t|

[
− dt2 + δijdx

idxj
]
, (4.11)

while the dilaton is given by

ϕ =
√

3ln
|t|
R
. (4.12)

If the singularity can be resolved by mapping the dynamics to the boundary, we will have

a stringy realization of a bouncing scenario, though one would not expect a perfect bounce.

As mentioned in the introduction we do not know yet if this indeed happens.

The dilaton profile (4.12) leads to a diverging string coupling eϕ at early and late times

: this would seem to require incorporation of bulk quantum corrections. However it turns

out that one can obtain solutions which have bounded values of the coupling eϕ at all times,

and whose behavior near the ”singularity” is identical to the above. Such a solution is given

by the metric [11]

ds2 =
R2

z2

[
dz2 + | sinh(2t)|{−dt2 +

dr2

1 + r2
+ r2dΩ2

2}
]
, (4.13)

and a dilaton

eϕ(t) = gs| tanh(t/R)|
√

3 . (4.14)

Near t = 0 the dilaton profile goes over to that in (4.12). The metric (4.13), whose four

dimensional part is a FRW metric with constant negative curvature does not, however,

become (4.11) as t → 0. The difference between the two, however, become increasingly

unimportant as t → 0 where the bulk stress tensor is dominated by the time derivative of

the dilaton rather than the spatial curvature.

A sketch of the space-time we are considering is given in Fig. 1. The vertical axis at

z = 0 is time, the horizontal axis at t = 0 represents the AdS radial coordinate. The

Poincaré horizons are at 45 degrees. While we will consider the solution (4.12) and (4.11)

it is useful to think of this as embbeded in the solution (4.14) and (4.13) with a bounded

dilaton. Then at early times the Yang Mills coupling is g2
YM = gs and we will always

consider gs � 1, N � 1 with (gsN) � 1. Thus the early time evolution is governed by the

bulk supergravity equations. The time tb is defined as the time when the ’t Hooft coupling
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of the boundary theory becomes O(1), i.e.

tb/R ∼ (gsN)−1/
√

3 . (4.15)

Thus, in the region t > −tb and t < tb the bulk gravity theory is weakly coupled. For

−tb < t < tb the bulk curvatures grow large and stringy effects becomes important, while

the boundary field theory is weakly coupled, although in the presence of a time dependent

coupling.

Note that the solutions considered above have a non-trivial boundary value of the dilaton

and a boundary metric which is conformal to flat space. However there are no subleading

normalizable pieces of these bulk fields. From the dual field theory point of view, it thus ap-

pears that we have non-trivial time dependent sources, but a trivial response. This indicates

that such cosmologies correspond to some non-trivial initial states. However the nature of

this state in terms of the gauge theory variables is not known.

There is another feature of these solutions which deserves mention. The singularity at

t = 0 extends from the boundary to the bifurcation point of the Poincare horizon at z =∞.

This means that there is in fact a singularity at any finite Poincare time which is infinitely

far from the boundary. Presumably this feature has something to do with the nature of the

initial state. However, as pointed out in [88–90], this bifurcation point singularity can be

resolved by lifting the solution to one higher dimension and embedding the solution in a

higher dimensional soliton solution.

In the following sections we are interested in evolving spectator massless bulk scalar field

(which will be in fact taken to be the dilaton itself) perturbations from the past weakly

coupled bulk region to the future weakly coupled bulk region by mapping the state onto the

boundary at time t = −tb, evolving on the boundary to positive times, and using boundary-

to-bulk reconstruction techniques to recover fluctuations in the bulk.



4 Fluctuations in a Cosmology with a Space-Like Singularity and their Gauge Theory Dual
Description 48

z
=
−∞

z
=
+∞

t = −∞

t = +∞

t = 0

t = −tb

t = +tb

t = +ξ

t = −ξ

z = 0

Fig. 4.1 Conformal diagram of the background space-time. The vertical axis at z = 0 is time
t, the horizontal direction at t = 0 represents the coordinate z. The lines at 45 degrees are the
Poincaré horizons at z = ±∞. If there were no deformation of AdS, the region drawn would
correspond to the Poincare patch of AdS. We are considering a deformed space-time in which the
bulk gravity is strongly coupled between t = −tb and t = tb, and singular at t = 0. At the same
time the boundary gauge theory becomes weakly coupled for t between −tb and tb. Hence, after
the time −tb the evolution on the boundary becomes tractable in perturbation theory. On the
future side of the bulk singularity, the boundary theory remains tractable perturbatively until the
time tb when the the bulk theory becomes weakly coupled again at the cost of the boundary theory
becoming strongly coupled. At that time we can reconstruct the bulk information (at least in the
vicinity of the boundary) from boundary data (see e.g. [109–115]). As we will see, to study the
evolution of the boundary fluctuations we need to impose a cutoff at t = ±ξ.

4.3 The Bulk Theory of a Test Scalar in a Contracting Universe

To begin with, we consider a test scalar field of mass m living in the bulk space-time (in the

following section we will take this test scalar field to be the dilaton itself). Its action takes
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the form

Sϕ = −
∫
d5x
√−g(gMN∂Mϕ∂Nϕ+m2ϕ2) . (4.16)

where gMN is the metric of the five-dimensional deformed AdS space-time

ds2
5 =

R2

z2

[
dz2 + g̃µν(x

µ)dxµdxν
]
, (4.17)

with the four dimensional part g̃µν given by (4.9). Varying the action with respect to the

scalar field yields the following equation of motion

ϕ̈+ 3Hϕ̇− a−2ϕ,ii +m2R
2

z2
ϕ− ϕ,zz +

3

z
ϕ,z = 0 , (4.18)

where H = ȧ/a is the Hubble parameter, and a dot denotes the derivative with respect to

cosmic time T .

Since we are interested in the spectrum of fluctuations in the three spatially flat coor-

dinates xi, we first of all extract the xi dependence by expanding in Fourier modes. The

resulting differential equation is a partial differential equation in T and z, and we make a

separation of variables ansatz to separate the T and z dependence. More specifically, we

write

ϕ(T, z, xi) = T (T )Z(z)X(xi) , (4.19)

where the X(xi) are the spatial Fourier modes, i.e. solutions of

∇2X + k2X = 0 , (4.20)

with solutions which are positive or negative frequency oscillations in the three vector x,

where the rescaled temporal field

T̃ (t) ≡ a(t)T (t) , (4.21)

(with t being conformal time defined via dT = adt obeys the equation

T̃ ′′ +
(
ω2a2 + k2 − a′′

a

)
T̃ = 0 , (4.22)



4 Fluctuations in a Cosmology with a Space-Like Singularity and their Gauge Theory Dual
Description 50

(a prime denoting the derivative with respect to t) and the radial function Z(z) obeys the

equation

Z,zz −
3

z
Z,z +

(
ω2 − m2R2

z2

)
Z = 0 . (4.23)

The separation constant ω plays the role of a temporal frequency. The solutions of the radial

equation are Bessel functions

Z(z) = CJz
2Jν(ωz) + CY z

2Yν(ωz) , (4.24)

with

ν =
√

4 +m2R2 . (4.25)

The temporal equation (4.22) takes on the familiar form of the coefficient function of

a comoving Fourier mode of a massive scalar field (mass given by ω2) in an expanding

background space-time which undergoes cosmological squeezing (the final term on the left

hand side of the equation). In the case ω2 = 0 it is also the equation of motion which

gravitational waves in an expanding space obey [46,47]. In particular, in the case of infrared

modes for which k2 is negligible, then close to the singularity the mass term is negligible

and the squeezing term dominates. In this chapter we will, however, not be evolving the

fluctuations in the bulk until the singularity, but only to the point in time when the bulk

theory ceases to be weakly coupled. Then, we will map them onto the boundary and evolve

them with the boundary equations near the bulk singularity.

Our main result does not depend on the initial fluctuation spectrum. As a concrete

example, however, we could e.g. take the initial spectrum to be scale invariant for modes

whose wavelength is larger than the Hubble radius. During the phase of contraction the

Hubble radius is decreasing in comoving coordinates (see Fig. 2). This is motivated by

the fact that in several models of ”bounce” cosmology (e.g. matter bounce of [71, 72] or

Ekpyrotic [97] scenarios) an initial vacuum spectrum (see e.g. [116]) on sub-Hubble scales

gets converted to a scale-invariant one once the scales exit the Hubble radius and undergo

squeezing.

We will thus take the initial power spectrum

P (k) ≡ k3|(δϕ)(k)|2 , (4.26)
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on super-Hubble scales to have index n = 0 (where we are using the convention for the index

used in the cosmology community for gravitational waves, namely P (k) ∼ kn).

η

xc

ηb+

ξ

−ξ

ηb−

|H|−1k−1

Fig. 4.2 Space-time sketch of the relevant times and length scales in our deformed AdS5. The
horizontal axis is comoving spatial coordinate (in direction perpendicular to the radial direction.
The vertical direction is conformal time. τB+ and τB− are the times when the coupling constant is
1, the times ±ξ occur when the bulk curvature reaches string scale. The vertical line represents the
wavelength of a mode which we are interested in. Note that the length is larger than the Hubble
radius at τB+ and τB−. The blue lines at 45o indicate the Hubble radius.

After discussing the bulk-to-boundary correspondence for the fluctuations we will deter-

mine the initial spectrum of perturbations of the boundary gauge fields which are induced

by the inhomogeneities of the bulk field discussed above.
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4.4 The Dual Boundary Theory

4.4.1 The Deformed Dual Boundary Theory

For a pure AdS bulk, the dual boundary theory is a N = 4 SYM theory. According to the

AdS/CFT correspondence, fields in the bulk are related to operators in the boundary theory.

For example, the bulk metric gµν is dual to the boundary energy-momentum tensor Tµν . In

this chapter we are interested in scalar field fluctuations in the bulk and their boundary

evolution. Specifically, we will take this scalar field ϕ to be the dilaton ϕ. In this case, the

bulk scalar field is dual to the trace of the square of the field strength tensor. For an exact

AdS bulk, the boundary action is simply

SYM = −1

4

∫
d4y

1

g2
YM

Tr [FµνF
µν ] , (4.27)

with

g2
YM = eϕ = gs . (4.28)

Here, we denote the boundary coordinates by y. We use a generalized AdS/CFT correspon-

dence according to which the time-dependent dilaton in the bulk leads to a time-dependent

gauge coupling of the boundary theory, i.e. (4.27) is generalized to be

SYM = −1

4

∫
d4ye−ϕ(t)Tr [FµνF

µν ] . (4.29)

The operator dual to the bulk dilaton is TrFµνF
µν at large N . This has been carefully

derived in Appendix A of [12]. Note that we are always working at large N , but the ’t Hooft

coupling g2
YMN can become small.

The bulk solutions we are interested in have, in addition, a boundary metric which is non-

trivial and time dependent. However in the slicing chosen in (4.5) and the time t chosen on

the boundary at z = 0 as in (4.11), the metric on which the gauge theory lives is conformally

flat. Since the boundary theory is the four dimensional SYM theory, the conformal factor

decouples and the non-trivial effect is that of the time dependent dilaton 4.

What was said so far applies to an unperturbed theory. In the presence of perturbations

the correspondence becomes more involved [117, 118]. Each supergravity perturbation has

4It is of course possible to choose other slicings, particularly those obtained by Penrose-Brown-Henneaux
transformations in the bulk where the non-triviality of the metric plays a role. See e.g. [11].
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two modes - one normalizable and the other not. The normalizable mode determines the ex-

pectation value of the boundary operator, the non-normalizable mode enters as the coupling

of the operator in the boundary theory.

We are interested in evolving linearized bulk fluctuations. This means we will turn on

normalizable bulk modes. Hence, we will be evolving the linear fluctuations in the gauge field

Aµ on the boundary. The initial conditions for the gauge field fluctuations on the boundary

are set by the dilaton perturbations via the linearized version of the correspondence

ϕ(y) → 1

g2
YM

〈Tr[F 2(y)]〉 , (4.30)

where the normalizable dilaton fluctuation behaves in the standard fashion as

ϕ(z, y)→ z4ϕ(y) , (4.31)

as one approaches the boundary z = 0.

The effects of linear dilaton fluctuations on the evolution of the gauge field fluctuations

would be a second order effect in the amplitude of fluctuations. Hence, at linear level in

perturbation theory there is no such coupling and the only effect of the dilaton on the gauge

field fluctuations is via the dilaton-dependence of the gauge coupling constant at background

level.

Given a spectrum of dilaton fluctuations at early times in the bulk, we will evolve them in

the bulk until bulk perturbation theory breaks down at time −tb. At that point, we compute

the boundary values of the dilaton fluctuations and use them to determine the initial values

of the gauge field fluctuations δAmu at that time.

4.4.2 Evolution of the Boundary Fluctuations Before the Singularity

As we have mentioned, the dilaton field evolves as a function of cosmic time and initially

takes a large value, and thus the Yang Mills coupling is also very large initially which implies

that the boundary theory is strongly coupled in the far past. (It is useful to think in terms

of the solutions (4.13) and (4.14) with bounded dilaton profiles). At these early times, the

dynamics of the whole space-time can be studied making use of the bulk theory since the

gravity sector is weakly coupled. As the universe contracts, the value of eϕ decreases and

the corresponding ’t Hooft coupling of the field theory becomes O(1) at the time −tb given
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by (4.15). This is the time where the gravity approximation begins to fail.

As the bulk space further contracts, the boundary theory becomes weakly coupled as

g2
YMN < 1. When t = 0 and ϕ → −∞, the bulk singularity point is reached. While it

may appear that the boundary gauge theory is now free, as shown in [12], each momentum

mode of the gauge theory displays a singular behavior. We therefore work with the modified

dilaton profile (4.2) with α =
√

3 so that this is a genuine bulk solution for |t| > ξ.

We will make a gauge choice

A0 = 0 , (4.32)

and also impose an additional constraint

∂iAi = 0 . (4.33)

The Gauss Law constraint is then automatically solved [12].

The form of the action (4.29) suggests a field redefinition (for an analysis in terms of the

original variables see Appendix A)

Aµ → Ãµ ≡ e−ϕ/2Aµ . (4.34)

This has two effects. The first is that it introduces a ”mass” term for the redefined field.

With a dilaton which depends only on time, the effective mass square is given by

M2
YM =

ϕ̈

2
− ϕ̇2

4
. (4.35)

The second effect is to bring in a factor of eϕ/2 in front of the cubic interaction term and a

factor of eϕ in front of the quartic interaction . This might suggest that as t→ 0 the nonlinear

terms become small and can be ignored. However, as shown in [12] this is incorrect. If one

substitutes a general solution of the linearized equations of motion (see below) into the action

one finds that the fields Ãµ blow up as t→ 0 in such a way that the original field Aµ becomes

O(1). Therefore, for arbitrary amplitudes the nonlinear terms cannot be ignored.

However we are interested in the time evolution of small fluctuations of the gauge field.

The nonlinear terms are then suppressed because the amplitudes are small. In the following

we will deal with the linear theory. Effects of nonlinearities will be explored in a future work.
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Then the leading terms in the equation of motion for Ãi give

−∂µ∂µÃi +M2
YMÃi = 0 . (4.36)

In the background (4.2) M2
YM becomes

M2
YM(t) =

−
α(α+2)

4t2
, if |t| > ξ

−α(α+2)
4ξ2 , if |t| < ξ .

(4.37)

Note that the coefficients in the mass term diverge as t → 0 if ξ = 0. This is why the

evolution of the fluctuations is non-trivial in spite of the fact that the boundary gauge

theory becomes weakly coupled at this time. Note that in terms of the original variables

Aµ there is no divergence. But a branch cut in the solutions remains. Working with the

rescaled variables has the advantage that the equation of motion is similar to that of a simple

quantum mechanics problem in a non-trivial potential, and we can use our knowledge about

quantum mechanical scattering problems to find good ways to solve the equation.

In linear theory, each Fourier mode will evolve independently. In fact, we are interested

in following modes which early in the contracting phase have a wavelength smaller than the

Hubble radius and then exit the Hubble radius at some point in time (i.e. the Hubble radius

decreases such that the wavelength becomes larger). Thus, we Fourier transform the gauge

field

Ãν(ξ
µ) =

∫ ∞
−∞

d3~k cA(~k)Ãk(t)ενe
i~k·~ξ , (4.38)

where εν is the polarization unit vector. The Fourier mode A~k then obeys the following

equation of motion:

¨̃Ak + (k2 +M2
YM)Ãk = 0 , (4.39)

which is a harmonic oscillator equation with time-dependent mass. Upon quantization, the

Fourier mode can be written as a combination of creation and annihilation operators, and

the time-dependence of the mass leads to squeezing of the wave function in the same way

that infrared modes of cosmological perturbations and gravitational waves are squeezed on

super-Hubble scales in a dynamical cosmological background.
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The general solution of a Fourier mode of the gauge field can be written in terms of Bessel

functions:

Ãk(t) =


(−t) 1

2

[
D−J (k)Jνg(−kt) +D−Y (k)Yνg(−kt)

]
, if t ≤ −ξ,

A exp[βt] + B exp[−βt] , if − ξ ≤ t ≤ ξ,

t
1
2

[
D+
J (k)Jνg(kt) +D+

Y (k)Yνg(kt)

]
, if t ≥ ξ ,

with the index

νg =
1 + α

2
α =
√

3 , (4.40)

and

β ≡
√
α(α + 2)

ξ2
− k2 . (4.41)

For t < ξ the solution of the above mode equation involves two coefficients D−J and D−Y which

can be determined by matching the bulk solution and the boundary operator at the surface

of −tb. We are interested in modes which start out in the vacuum state early during the

phase of contraction, i.e. in their Bunch-Davies [116] state.

On sub-Hubble scales (large values of kt) both modes are oscillating. For small values of

kt the modes have very different asymptotics. If D−Y = 0 around the moment −tb then the

asymptotic form of the solution is

Ãk(t) ∼ D−J
|t| 12

Γ1+νg

( |kt|
2

)νg
, (4.42)

i.e. it is in general a decaying mode as t→ 0. The second mode scales as

Ãk(t) ∼ −D−Y
Γνg
π
|t| 12

(
2

|kt|

)νg
, (4.43)

which is a growing mode which in fact diverges as t → 0. This is a reflection of the fact

that the mass term diverges. The physical solution will be dominated by the growing mode

unless DY vanishes. But it will not vanish in the general case. In particular, if we were

to match the solutions to a Bunch-Davies vacuum, then we would expect the magnitude of

both coefficients D−J,Y in (4.4.2) to be of the same order.



4 Fluctuations in a Cosmology with a Space-Like Singularity and their Gauge Theory Dual
Description 57

4.4.3 Determination of the Spectrum of the Boundary Fluctuations at −tb

A key step in our analysis is to extract the spectrum of the boundary gauge field from that

of the bulk dilaton. The coefficients DJ and DY are determined via (4.30) by taking the

limit of the dilaton fluctuations at the boundary. We make this identification at the time

−tb when the coupling constant vanishes. At first sight, we are faced with a puzzle: the

right-hand side of (4.30) is quadratic in the gauge field, the left-hand side is linear in the

dilaton. It is thus non-trivial to infer the gauge field fluctuations from the bulk dilaton. The

approach we will take is to look for a power law form of the gauge field Fourier modes Aµ(k)

which yields the spectrum of the bulk dilaton fluctuations we are starting with.

Recall that we are interested in perturbations on cosmological scales which are in the far

infrared and for which spatial gradient terms can be neglected. Thus, the dominant term

for the infrared modes in Tr[F 2(ξ)] is the term Ȧ2
i . Inserting the Fourier expansion of Ai(x)

yields

Ȧ2
i =

∫
d3k1d

3k2Ȧi(k1)Ȧi(k2)ei(k1+k2)xV , (4.44)

where V is the normalization volume used to define the Fourier transform.

In writing (4.44) we have ignored the nonlinear terms which are contained in Tr(F 2).

This is because we are interested in the spectrum of small fluctuations so that the nonlinear

terms are suppressed by powers of the amplitude.

We introduce new momenta

k1 =
1

2
(k + k′) ,

k2 =
1

2
(k − k′) . (4.45)

We write down the Fourier expansion of the dilaton field ϕ, and insert into (4.30) and (4.31)

to identify Fourier coefficients. This leads to

ϕ(k) =
1

4

∫
d3k′Ȧi

(
k + k′

2

)
Ȧi

(
k − k′

2

)
V 1/2 , (4.46)

where ϕ is defined in (4.31).

One way to find a consistent Ai(k) to give rise to a power law bulk spectrum ϕ(k) ∼ k−γ

is as follows. We can divide this integral into a region R1 with k′ < k and a region R2 with
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k′ > k. In the integral over region R1 we can set k′ = 0 to find the approximate result

k3Ȧ2
µ(k) ∼ k−γ , (4.47)

and hence (making use of the fact that on super-Hubble scales Ȧ ∼ HA)

Ai(k) ∼ k−
γ+3

2 . (4.48)

It is straightforward to check that this is a consistent solution for any γ > 0. Substituting

(4.48) into (4.46) we get

ϕ(k) ∼
∫
d3k′(k2 − (k′)2)−(γ+3) = k−γ

∫
d4q(1− q2)−

γ+3
2 . (4.49)

The integral over q is convergent when γ > 0. In particular, for a scale invariant spectrum

γ = 3/2.

A non-zero value of Ai would lead to nonzero values for operators involving higher powers

of the field strength. In this chapter, however, we are interested in small fluctuations. This

means that the effect of operators like TrF n are suppressed.

For cosmological scales we are interested in, the modes are outside of the Hubble radius

at the time −tb. Hence, we can use the small argument limit of the Bessel functions. We

will assume that at t = −tb both modes have the same amplitude. Let us denote the total

amplitude of A(k) (we are dropping the index i) by 2Ã (which is k-dependent). Then we

find the following values of the coefficients D−Y and D−J before the bounce

D−Y = Ã| − tb|−1/2

( | − ktb|
2

)νg
,

D−J = Ã| − tb|−1/2

( | − ktb|
2

)−νg
. (4.50)

At this point we know the equation of motion and the initial conditions for the boundary

gauge field at the time −tb when the boundary theory becomes weakly coupled and when we

begin the evolution of the fluctuations on the boundary. The evolution can be followed by

determining the coefficients A,B,D+
J ,D+

Y by standard matching of the function Ãk(t) and

its time derivative at t = ±ξ, as detailed in the next section.
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4.4.4 Evolution of Boundary Fluctuations through the Singularity

It is useful to discuss matching of solutions of the general form

Ãk(t) =


A−(k)F1(t) +B−(k)G1(t) , if t ≤ −ξ,
A exp[βt] + B exp[−βt] , if − ξ ≤ t ≤ ξ,

A+(k)F2(t) +B+(k)G2(t) , if t ≥ ξ.

Matching Ã and its time derivative across t = ±ξ then leads to

A+ =
1

∆
{cosh(2βξ)[F1(−ξ)Ġ2(ξ)− Ḟ1(−ξ)G2(ξ)]

+ sinh(2βξ)[
1

β
Ḟ1(−ξ)Ġ2(ξ)− βF1(−ξ)G2(ξ)]}A−

+
1

∆
{cosh(2βξ)[G1(−ξ)Ġ2(ξ)− Ġ1(−ξ)G2(ξ)]

+ sinh(2βξ)[
1

β
Ġ2(ξ)Ġ1(−ξ)− βG1(−ξ)G2(ξ)]}B− , (4.51)

B+ =
1

∆
{cosh(2βξ)[F2(ξ)Ḟ1(−ξ)− Ḟ2(ξ)F1(−ξ)]

+ sinh(2βξ)[− 1

β
Ḟ1(−ξ)Ḟ2(ξ) + βF1(−ξ)F2(ξ)]}A−

+
1

∆
{cosh(2βξ)[F2(ξ)Ġ1(−ξ)− Ḟ2(ξ)G1(−ξ)]

+ sinh(2βξ)[− 1

β
Ḟ2(ξ)Ġ1(−ξ) + βG1(−ξ)F2(ξ)]}B− , (4.52)

where we have defined

∆ ≡ F2(ξ)Ġ2(ξ)−G2(ξ)Ḟ2(ξ) . (4.53)

To specialize to the case of interest we need to substitute

F1(t) ≡ (−t)1/2Jνg(−kt) , F2(t) ≡ (t)1/2Jνg(kt) ,

G1(t) ≡ (−t)1/2Yνg(−kt) , G2(t) ≡ (t)1/2Yνg(kt) ,

A± = D±J , B± = D±Y . (4.54)
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Since we are always interested in wavenumbers small compared to the various time scales

tb and ξ, we can replace the Bessel functions by their small argument values for kξ � 1.

This yields

2νD+
J =

[
− cosh(2βξ) + sinh(2βξ)

(
1

4βξ
(1− 4ν2

g ) + βξ
)]
D−J

+
( 2

kξ

)2νg

[
cosh(2βξ)(2νg − 1) + sinh(2βξ)

(
βξ +

1

4βξ
(1− 2νg)

2

)]
D−Y ,

2νD+
Y =

(kξ
2

)2νg

[
cosh(2βξ)(2νg + 1)− sinh(2βξ)

(
1

4βξ
(1 + 2νg)

2 + βξ

)]
D−J

+

[
cosh(2βξ) + sinh(2βξ)

(
βξ +

1

4βξ
(1− 4ν2

g

)]
D−Y . (4.55)

We now substitute the initial conditions, (4.50) to calculate Ãk(t) at time t = tb. The result

is

Ãk(tb) =
Ã(k)

2νg

[
2 sinh(2βξ)

(
βξ +

1

4βξ
(1− 4ν2

g )

)
+

(
cosh(2βξ)(2νg + 1)− sinh(2βξ)

(
βξ +

1

4βξ
(1 + 2νg)

2
))( ξ

tb

)2νg

+

(
cosh(2βξ)(2νg − 1) + sinh(2βξ)

(
βξ +

1

4βξ
(1− 2νg)

2
))(tb

ξ

)2νg]
. (4.56)

The significant point about (4.56) is that in the kξ � 1 limit, the expression inside the square

bracket becomes independent of the momentum k. This is because β =

(
α(α+2)

4ξ2 − k2

)1/2

,

leading to βξ ≈ 1
2

√
α(α + 2). The sole momentum dependence comes from the overall factor

Ã(k) which is the amplitude at t = −tb. This means that the spectrum of Ãk is the same as

t = −tb and t = tb. The amplitude is however amplified, since for tb � ξ we get

Ãk(tb) ≈
1

4νg

[
cosh(2βξ)(2νg − 1) + sinh(2βξ)

(
βξ +

1

4βξ
(1− 2νg)

2

)](
tb
ξ

)2νg

Ãk(−tb)

∼
(
tb
ξ

)2νg

Ãk(−tb) . (4.57)

The amplification is due to squeezing of the perturbation modes while their wavelength is

larger than the Hubble result.
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This result holds for arbitrary functional form of Ã(k). In particular, when Ã(k) is a

power law and given by a scale invariant spectrum at t = −tb the spectral index does not

change at t = tb.

This is our main result. In the next section we will argue that this result in the boundary

theory implies that the spectrum of cosmological fluctuations on a constant z slice in the

bulk is also unchanged as the system goes through t = 0.

4.4.5 The General Result

From the above analysis it is now clear that the final result does not really depend on

the details of the time dependence of the boundary coupling. This conclusion agrees with

what was found when studying non-singular bulk cosmological models (see e.g. [6] for a

recent review). Consider the equation for the gauge field perturbation (4.36) with a function

M2
YM(t) which is smooth and bounded everywhere. Whenever the equation (4.39) has a

regular solution for k = 0, it is clear that Ãi and its time dervative at t = tb is related to

those at t = −tb by a Bogoliubov transformation[
Ãi(k, tb)
˙̃Ai(k, tb)

]
=

[
M11 M12

M21 M22

][
Ãi(k,−tb)
˙̃Ai(k,−tb)

]
,

where the matrix Mij depends on the potential, but not on k. Therefore if the initial

conditions are such that

Ãi(k,−tb) ∼ ˙̃Ai(k,−tb) ∼ B(k) , (4.58)

it follows that

Ãi(k, tb) ∼ ˙̃Ai(k, tb) ∼ B(k) , (4.59)

up to factors which do not depend on k. The specific power law enhancement factor in (4.57)

is a feature of the fact that the coupling constant is a power law away from the region of

small coupling.

Therefore the momentum dependence of the fields in the future is the same as that in

the past for all momenta small compared to all other scales in the problem.
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4.5 Reconstruction of the Bulk from the Boundary Data

Given the amplitude and spectrum of the gauge field fluctuations after the singularity, we

can reconstruct the late time spectrum of the bulk dilaton after the bounce. We evolve the

boundary data until the time +tb when the ’t Hooft coupling becomes unity.

As we emphasized above, the nature of the entire spacetime at positive times in the

presence of these fluctuations is not known and might contain a black brane in the bulk.

We will, however, assume that there is a region near the boundary where the curvatures are

small enough to enable us to use the AdS/CFT dictionary. In particular we will assume that

the bulk dilaton field at a point (z, ~x, t) for small enough z can be reconstructed from the

dual boundary operator O using a bulk boundary map of the form

ϕ(z, ~x, t) =

∫
dt′d3x′K(~x′, t′|z, ~x, t)O(~x′, t′) , (4.60)

where the kernel K(x′, t′|z, x, t) (where (t′, x′) are boundary coordinates and (t, x, z) are the

bulk coordinates) is non-vanishing only for points within the AdS causal wedge (see Fig. 3)

of compact support. Due to the translation symmetry of the background, we assume that

the kernel K depends only on the relative spatial separation |~x′ − ~x|.
The idea of the reconstruction is depicted in Figure 3: we consider a wedge sticking into

the bulk with base on the boundary. The wedge is centered at the time tb We need the

boundary points of the wedge to all have time coordinate t′ > ξ - otherwise the wedge will

intersect the singular part of the bulk. This will limit the distance from the boundary to

which we can reconstruct the bulk.

As we will see, we will in fact never need the explicit form of the boundary-to-bulk

propagator in order to extract the spectrum of bulk dilaton fluctuations. The only property

of this propagator which will be used is that it is non-vanishing only within the wedge shown

in Figure 3. In particular as z → 0, one recovers the correspondence (4.31).

Now we turn to the extraction of the power spectrum of the bulk field ϕ in the future of

the reconstruction time tb. Our starting point is equation (4.60) which gives the bulk field

in terms of the known boundary data. To extract the spectrum of fluctuations, we need to

take the Fourier transform of ϕ(z, x, t) in the spatial hyperplane perpendicular to the AdS
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(tb+,x,z) 

z 0 

t 

Fig. 4.3 Sketch of the reconstruction process for bulk operators in the future of the singularity.
The vertical axis is time, the horizontal axis indicates the radial coordinate z. The solid line is the
boundary.The bulk field at a point with coordinates (t+b , x, z) is given by integrating the boundary
data against the boundary-to-bulk propagator. The integration involves data in the shaded region
only. The solid curves connecting the bulk point to the boundary are null geodesics.

radial coordinate axis z:

ϕ̃(z, k, t) = V −1/2

∫
d3xϕ(z, x, t)eik·x , (4.61)

where the tilde symbol indicates the Fourier transform.

We now insert the reconstruction formula (4.60) into the above. Introducing the new

coordinates

x′ = x + y′ ,

t′ = t+ s . (4.62)
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the result becomes

ϕ̃(z, k, t) = V −1/2

∫
dsd3y′K(y′, s|z, t)e−iky′

∫
d3xeik(x+y′)O(x+ y′, t+ s) . (4.63)

The final integral simply gives the Fourier mode of the boundary operator:

ϕ̃(z, k, t) =

∫
dsd3y′K(y′, t+ s|z, t)e−iky′O(k, t+ s) . (4.64)

We are interested in values of k which are small compared to both the inverse Hubble radius

and the AdS radius. Assuming that the propagator K has support within the AdS causal

wedge (see Figure 3) of the bulk point, then for all values of the boundary coordinate y′ for

which K does not vanish we have ky′ � 1, and one has approximately

ϕ̃(z, k, t) '
∫
dsd3y′K(y′, s|z, t)O(k, t+ s) . (4.65)

The k- dependence of the bulk fluctuation is therefore completely determined by the k-

dependence of the expectation value of the operator O, which - in our framework - is in turn

determined by the k- dependence of the gauge field fluctuations Ak(t). We have seen that

the spectral index of the latter does not change when we cross the ”singularity”. The time

integral in (4.65) has an extent which is roughly of the same order as z. Therefore for z

small enough, the k dependence of ϕ̃(z, k, t) is basically given by the k-dependence of the

gauge field fluctuations. Hence, we find that the spectral index of fluctuations close enough

to the boundary does not change when matching across the “singular” region (singular in

quotation marks because we have cut off the actual singularity). On the other hand, the

amplitude of the spectrum changes by a factor F given by

F =

(
tb
ξ

)2νg

. (4.66)

In particular, the bulk spectrum on a small z slice is chosen to be scale invariant, i.e.

ϕ(k) ∼ k−3/2 the spectrum continues to be scale invariant.
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4.6 Conclusion and Discussion

In this chapter we have studied the evolution of linearized test field fluctuations in a de-

formed AdS/CFT cosmology. The deformed AdS background which is the basis of our

study is obtained by introducing a nontrivial time-dependence for the dilaton and choosing

the metric such that the bulk supergravity equations of motion are satisfied. The background

begins with a contracting phase which approaches a bulk singularity at time t = 0. As the

singularity is approached, the background becomes highly curved. At the time −tb < 0 the

gravitational theory becomes strongly coupled. However, the dual gauge theory which lives

on the boundary becomes weakly coupled. After the singularity, the bulk expands, and after

some time tb > 0 the bulk theory once again becomes weakly coupled.

Our goal is to compare the spectrum of fluctuations of the bulk field in the far past

(t < −tb) and in the far future (t > tb). Specifically, we consider fluctuations in the dilaton

field. We evolve the fluctuations in the bulk until t = −tb, map them onto the boundary

at that time, infer the spectrum of the boundary gauge field fluctuations at this time and

then evolve the boundary gauge field fluctuations forward in time, past the singularity, until

the time t = tb. At that time, we reconstruct the bulk dilaton field using boundary-to-bulk

propagators which are nonvanishing only in a ‘AdS causal wedge wedge, and compute the

spectrum of the fluctuations.

Since the boundary fluctuations blow up at the time t = 0 in spite of the fact that the

boundary theory is weakly coupled, we need to smooth out the singularity. We, therefore,

modify the dilaton between −ξ < t < ξ, where ξ is a cutoff scale and then match the

boundary fluctuations in a standard fashion.

Our main result is that the spectral index of the dilaton fluctuations near the boundary

is the same in the far past and the far future. While we do not have the tools to map out

the future space-time, we believe that our result will have important implications for pre

big-bang scenarios of cosmology.



66

Chapter 5

Holographic Curvature Perturbations

in a Cosmology with a Space-Like

Singularity

5.1 Introduction

In spite of its many successes, early universe cosmology faces a number of outstanding the-

oretical and fundamental challenges. One of the most fundamental questions that remain

to be answered in cosmology is the singularity problem. Singularities appear in many cos-

mological models and are unavoidable in some contexts like Einstein gravity with matter

fields that do not violate the null energy condition (NEC). Both Standard Big Bang cos-

mology and the inflationary universe scenario [1–5,119,120] realized in the context of scalar

field matter coupled to classical General Relativity are examples where an initial Big Bang

singularity is present (see the classic paper [121] for the proof that an initial singularity

appears in Standard Big Bang cosmology and [122] for an extension to inflationary cosmol-

ogy). Bouncing cosmologies, alternative scenarios for the evolution of the universe where

a contraction period precedes the expansion of the universe, also have singularities at the

bounce point, at least if they are realized within the realm of Einstein or dilaton gravity

coupled to matter obeying the NEC. One can avoid Big Bang/Big Crunch singularities by

postulating matter which violates the NEC (see e.g. [6, 74–76, 107, 123] for some specific

models, and [6] for a review), or by going beyond Einstein gravity (e.g. by choosing gravita-

2017/06/25
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tional Lagrangians with specifically chosen higher derivative terms [124,125], by considering

the Horava-Lifshitz gravitational action [77], or by assuming certain nonlocal gravitational

Lagrangians [126,127]). However, there are doubts as to whether these constructions can be

embedded in a consistent quantum theory of gravity [128]. A consistent understanding of

singularity resolution can presumably only be studied in such an ultraviolet complete theory,

superstring theory being the prime example.

In this context the AdS/CFT correspondence could come to use. This correspondence [9]

is a proposal for a non-perturbative treatment of string theory and states that the dynamics

of a bulk Anti-de Sitter (AdS) space-time that includes gravity is encoded in the boundary of

this space-time, where a conformal field theory (CFT) with no gravity lives. This conjecture

has been used in many different fields of physics, from black hole physics to condensed matter,

with great success (for a review e.g. [129]). It has already been proposed in the literature

that the AdS/CFT correspondence could be used to resolve cosmological singularities [61–63,

84–86], specially in the context of singular bouncing models such as the Pre-Big-Bang [130]

and Ekpyrotic [97] scenarios.

Bouncing cosmologies have recently been studied extensively as possible alternatives to

cosmological inflation for producing the fluctuations which we are currently mapping out

with observations. If the equation of state of matter in the contracting phase has w > −1/3,

where w is the ratio of pressure to energy density, then scales exit the Hubble radius during

contraction. Hence, it is possible to have a causal generation mechanism for fluctuations

in the same way as in inflationary cosmology, where scales exit the Hubble radius in an

expanding phase if the equation of state of matter obeys w < −1/3. As was pointed out

in [71, 72], if the equation of state of matter during the time interval when scales which

are measured now in cosmological observations exit the Hubble radius has the equation of

state w = 0 (i.e. a matter-dominated equation of state), then initial vacuum perturbations

originating on sub-Hubble scales acquire a scale-invariant spectrum 1, the kind of spectrum

which fits observations well 2. A scale-invariant spectrum of fluctuations can also be ob-

tained in the Pre-Big-Bang [131, 132] and in the Ekpyrotic [98–102] scenarios, making use

of entropy modes. The major problem in these analyses is that the fluctuations have to be

matched from the contracting phase to the expanding phase across a singularity (for singular

1Note that the curvature fluctuations grow on super-Hubble scales in a contracting universe [71, 72],
whereas they are constant in an expanding universe if the fluctuations are purely adiabatic.

2A slight red tilt of the spectrum emerges if the effects of a dark energy component are included [73].
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bouncing cosmologies) or in the region of high curvature (in nonsingular models in which

new physics provides a nonsingular bounce) where the physics is not under control. This is

the second place where the AdS/CFT correspondence could become useful: the boundary

theory becomes weakly coupled precisely where the bulk theory becomes strongly coupled,

and hence we can expect that the evolution of the fluctuations on the boundary will be

better behaved.

We here consider a time-dependent deformation of AdS [10–13] (see also [14, 15]) which

yields a contracting phase with increasing curvature leading to a bulk singularity at a time

which we call t = 0. The evolution for t > 0 is the mirror inverse of what happens for

t < 0. This means that the bulk is expanding with decreasing curvature. The challenge for

our work hence is to explore if the AdS/CFT correspondence can be used to determine the

cosmological perturbations in the expanding phase starting with some initial cosmological

perturbations in the contracting phase. In the case of a singular bouncing bulk cosmology

this question cannot be answered from the point of view of the bulk evolution of those

perturbations, and in a non-singular bouncing setup the evolution in the bulk cannot be

reliably computed in a perturbative approach. For example, there are ambiguities if one

wants to apply the matching condition approach [133,134] to connect early time to late time

fluctuations (see e.g. [103]). The goal of our work is to avoid these difficulties in the bulk

evolution in the strongly coupled region by mapping the dynamics onto the boundary theory

which is weakly coupled near t = 0. The AdS/CFT correspondence presents an unique

opportunity to understand the effects of a bulk singularity on cosmological observables.

Specifically, we are interested in computing the amplitude and slope of the spectrum of

cosmological perturbations after the bounce given the spectrum before the bounce.

In [16] the authors studied the evolution of matter scalar field perturbations using the

AdS/CFT correspondence in a deformed AdS5 spacetime, where a spacelike singularity is

present. This background spacetime is a time dependent background studied before in [10–13]

where the dilaton bulk field has a time dependence which as t → 0 produces a curvature

singularity. The bulk theory is weakly coupled for |t| > tb and strongly coupled for smaller

values of |t|. In the context of this background the authors studied dilaton perturbations on

a hypersurface perpendicular to the AdS radial coordinate, starting with a scale invariant

spectrum on super-Hubble scales at early times t < −tb. When bulk gravity becomes strongly

coupled at t = −tb, the perturbations were mapped to the boundary theory, a N = 4 Super

Yang-Mills (SYM) theory, and the fluctuations of the corresponding boundary fields were
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then evolved from t = −tb to t = tb. This SYM model has a time-dependent coupling

constant that goes to zero at the same time as the singularity occurs in the bulk. However,

in spite of the fact that the boundary theory becomes free at t = 0, it was found that

infinite particle production occurs between t = −tb and t = 0. Thus, it was necessary to

introduce a cutoff: the coupling constant was kept finite but small in a short period of time

|t| < ξ around the singularity, where ξ � tb. This made it possible to evolve the fluctuations

unambiguously past the time t = 0 where the bulk singularity occurs until the late time

t = tb after the singularity when the bulk theory becomes weakly coupled again. After that,

for the infrared modes that are of cosmological interest (and whose wavelength is much larger

than the Hubble radius already at the time t = −tb), the bulk scalar field perturbations were

reconstructed. It was found that the late time scalar field perturbations have a scale invariant

spectrum, showing that the spectral index does not change while passing through the region

of the highly curved (and maybe even singular) bulk. On the other hand, the amplitude of

the scalar field perturbation spectrum is amplified - a consequence of the squeezing of the

perturbation modes on super-Hubble scales in the contracting phase.

The evolution of scalar matter perturbations is interesting since it offers us a good guide

as to the evolution of gravitational waves 3. However, of more interest in cosmology is

the spectrum of the scalar metric perturbations, since those lead to the adiabatic density

perturbations responsible for structure formation in the universe. The goal of the present

chapter is to extend the analysis of [16] to the case of cosmological perturbations.

Scalar cosmological perturbations are more complicated to analyze than matter scalar

field fluctuations. They are made up of a combination of metric and matter inhomogeneities

which take different forms in different coordinate systems. In the case of purely adiabatic

perturbations 4 the information about the inhomogeneities is most conveniently encoded

in the quantity R, the curvature perturbation in comoving gauge (the gauge in which the

matter field fluctuation vanishes [48]), a quantity that remains constant in time outside the

Hubble radius [49,136–140].

According to the AdS/CFT dictionary, the metric perturbation δgµν has as its dual

3The squeezing of the amplitude of gravitational waves on super-Hubble scales is governed by the same
equation as the squeezing of matter scalar field fluctuations, whereas the scalar metric fluctuations are in
general squeezed by a different factor - see e.g. [135] for a short review, and [46] for a more comprehensive
survey of the theory of cosmological perturbations.

4For a single matter field the perturbations on super-Hubble scales are automatically adiabatic. In the
case of multiple matter fields the adiabaticity condition means that the relative energy density fluctuations
in each matter field are the same.
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operator in the CFT the expectation value of the boundary energy momentum tensor. In

order to reconstruct the curvature perturbations (which are a combination of the metric and

the matter fluctuations) in the future of the space-time singularity, one needs to know the

full evolution of the boundary operators corresponding to both the bulk matter scalar field

and the metric perturbations.

We argue in this chapter that there exists a gauge choice that can simplify this problem.

We generalize the spatially flat gauge to the 5-dimensional case. This gauge allows us to

describe the curvature perturbations as a function only of the perturbations of the scalar

field that represents the matter in our space-time. We do this by using the gauge freedom

to gauge away the metric perturbation degrees of freedom which leaves us with only the

scalar field perturbations. Because of this choice of gauge we only need to know how the

scalar field perturbations behave at late times. This allows us to perform the same analysis

as in [16], and to evolve the perturbations of a scalar field using the boundary theory in

a singular deformed AdS5 space-time. With this gauge choice, the analysis of scalar field

fluctuations is all we need to be able to reconstruct the curvature perturbations in the future

of the space-time singularity.

This chapter is organized as follows. Section II contains a summary of the dynamics

of the deformed AdS bulk space-time containing a spacelike singularity. In Section III we

discuss the cosmological perturbations in this deformed AdS5 space-time and present the

generalized spatially flat gauge. Section IV shows the main result, namely how to obtain

the curvature perturbation at late times evolving from an initial bulk perturbation using the

AdS/CFT correspondence. We find that the spectral index is not changed when comparing

the spectrum at late and early times, but that there is an increase in amplitude resulting

from the squeezing of the Fourier mode wave functions.

5.2 Bulk Dynamics

We are interested in studying cosmological backgrounds in the context of the AdS/CFT

correspondence. Some time-dependent backgrounds in string theory were studied in [10–13]

where the bulk solution can be thought as a time-dependent deformation of AdS5×S5 with a

corresponding N = 4 supersymetric Yang-Mills (SYM) theory containing a time dependent

gauge coupling constant as a dual theory.
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This background bulk solution can be described by the line element

ds2 =
`2

z2

(
dz2 + g̃abdx

adxb
)

=
`2

z2

[
dz2 +

2|t|
3`

(
−dt2 + δijdx

idxj
)]

, t ≷ 0, z ∈ (0,+∞) , (5.1)

where t is conformal time and z the AdS radial dimension, plus a dΩ2
5 term representing the

S5 factor. In the second line we are choosing a special Kasner type solution. Note that t

denotes conformal time.The dilaton profile is given by

φ(x) = φ(t) =
√

3 ln

( |t|
`

)
, ⇒ eφ(x) =

( |t|
`

)√3

, (5.2)

with ` being the AdS scale. Throughout this chapter we use conventions that Greek letters

µ, ν, . . . run over all of the five space-time indices 0, . . . 4, Latin indices from the beginning

of the alphabet a, b, . . . run over the indices 0, . . . , 3 corresponding to the four-dimensional

space-time perpendicular to the AdS radial direction, and Latin letters i, j, . . . run over the

spatial indices 1, 2, 3.

This solution can be embedded in a solution of a 10-dimensional type IIB supergravity

theory provided that the metric and the dilaton satisfy the equations of motion

∂µ

(√
−g̃g̃µν∂νφ(x)

)
= 0, Rab[g̃] =

1

2
∇aΦ∇bφ(x) . (5.3)

The bosonic sector of this embedding includes a RR 5-form flux which supports the S5 tensor

factor of the space-time. The S5 factor will not play a role in the following and we will thus

not track it further.

The element (5.1) is easily recognized to be a deformation of the line element of pure AdS

in Poicaré coordinates, where the AdS coordinate runs from z = 0 at the boundary to z =∞
at the Poincaré horizon. In pure AdS the induced metric on constant-z hypersurfaces is the

Minkowski metric. In our solution the induced metric is instead composed of two copies of

a Friedmann-Robertson-Walker (FRW) metric, as seen in (5.1), one for t < 0 describing a

collapsing geometry, and another for t > 0 describing an expanding geometry. The solution

contains a spacelike singularity, ”Big Crunch” singularity, at t = 0. It is also singular as

z → ∞ at any fixed t 6= 0. A sketch of the part of space-time covered by our coordinates
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is shown in Figure 5.1. Due to the singularities, the spacetime cannot be Cauchy-extended

beyond the Poincaré horizons which bound the coordinate chart. The string coupling is

given by gs = eφ(x) and goes to zero at the singularity. If the singularity can be resolved

by mapping the dynamics to the boundary, we will have a stringy realization of a boucing

scenario.

We are assuming the the bulk universe initially begins in an AdS vacuum at some early

moment ti and the background is given by a weakly coupled supergravity theory. At the

moment −tb, the bulk gravity becomes strongly coupled, but at the same time the boundary

gauge theory become weakly coupled. Hence, after the time −tb the evolution on the bound-

ary becomes tractable in perturbation theory. On the future side of the bulk singularity,

the boundary theory remains tractable perturbatively until the time tb when the the bulk

theory becomes weakly coupled again at the cost of the boundary theory becoming strongly

coupled. At that time we can reconstruct the bulk information (at least in the vicinity of

the boundary) from boundary data (see e.g. [109–112]).

We will take our space-time to be the hypersurface of some constant AdS radial coordinate

z. We will be interested in considering linear fluctuations of matter and scalar metric degrees

of freedom on this surface at some initial time t � −tb, and computing the corresponding

fluctuations on the same constant z surface in the future of the singularity, once the bulk

theory once again becomes weakly coupled, i.e. at t = tb.

To resolve the singularity in the background (5.1, 5.2) and study the evolution of per-

turbations to the future of t = −tb we will map the problem onto the boundary using the

AdS/CFT dictionary. We can see that the boundary of this 5 dimensional solution is con-

formally flat and has a second order pole as z → 0. So, in order to do holography we must

specify a conformal frame, i.e. we must provide a defining function Ω(x) which behaves like

O(z2) as z → 0, and which in turn selects the induced boundary metric hab(x) via

ds2
bndry := hab(x)dxadxb = lim

z→0
Ω2(x)γab(x)dxadxb , (5.4)

where γij is the metric of a maximally symmetric three-dimensional hypersurface (the metric

of Euclidean three space, of the three sphere or the three-dimensional hypersphere). The

above is an asymptotic solution in Fefferman-Graham form [141, 142] that represents the
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z
=
−∞

z
=
+∞

t = −∞

t = +∞

t = 0

t = −tb

t = +tb

t = +ξ

t = −ξ

z = 0

Fig. 5.1 Conformal diagram of the background space-time. The spacelike singularities is shown
in red. The vertical axis is time t, the horizontal direction represents the coordinate z (with the
boundary on the left side). If there were no deformation of AdS, the region drawn would correspond
to the Poincare patch of AdS. The green regions may be covered by Fefferman-Graham [141, 142]
charts with Minkowski boundary metrics.

conformal structure. There are two natural choices for Ω(x). First, if we select

ΩFRW(x) =
z

`
, (5.5)

then the boundary limit is particularly simple and the conformal boundary has metric

hab(x) = γab(x). We refer to this as the FRW frame. A second choice is

ΩM(x) =

(
3z2

2`|t|

)1/2

. (5.6)

With this choice the boundary metric is flat. We refer to this as the Minkowski frame.
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It is important to realize that ΩM(x) is singular as t → 0, and as a result the conformal

transformation implied by ΩM(x) is singular. One of our basic assumptions is that this

conformal transformation is nevertheless a symmetry of the CFT.

Let us now turn to the CFT description of our solution. In this time-dependent back-

ground, the dual boundary theory is a N = 4 SYM theory with a source. Following the usual

dictionary [143], the AdS-Neumann part of φ(x) sets the value of the Yang-Mills coupling

via

g2
YM(x) = lim

z→0
eφ(x) . (5.7)

In the Minkowski frame, this theory lives in flat space. Note that when the non-normalizable

part of φ(x) varies with time, as in our example, the SYM theory in the boundary is sourced

by a coupling that is time-dependent. So, the time dependent dilaton in the bulk corresponds

to a time-dependent Yang-Mills coupling on the boundary. This coupling goes to zero as

t→ 0 and the CFT becomes free.

5.3 Cosmological Perturbations in the Deformed AdS5

We want to compute the cosmological perturbations from the space-time described above.

In [16], we perturbed only the scalar field, namely, the dilaton. However, to fully describe

the cosmological perturbations, we need to include the perturbations of the metric. For this,

we need to perturb this deformed AdS5 metric (see e.g. [144–146] for general discussions of

cosmological fluctuations in brane world like five dimensional space-times).

Our starting point is the perturbed five-dimensional space-time metric

gMN = g
(0)
MN + δgMN , (5.8)

where the first term on the right hand side denotes the background metric which depends

only on t and z, and the second the linear fluctuations (which depend on all five space-time

coordinates).

We can make a field redefinition in order to write the background metric in the following

way:

ds2 = dz̄2 + g̃abdx̄
adx̄b , (5.9)

where z̄ = (l/z)z and x̄µ = (l/z)xµ. In some papers in the literature this is called a Gaussian
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normal coordinate system, and it is equivalent to restrict the coefficient in front of the z-part

of the metric to be unity. In the following we will drop the tilde signs on the coordinates.

After including linear fluctuations, the metric can be written, performing the usual scalar-

vector-tensor decomposition with respect to spatial rotations on the constant z spatial hy-

persurface, as (see e.g. [46, 135])

ds2 = −dz2(1+C0)+Cadx
adz+a2(t)

[
(1 + 2Φ) dt2 − 2Bidx̄

idt− (δij + hij)
]
dxidxj , (5.10)

where, as we recall, t is the conformal time, and Φ, Bi and hij are functions of all space-time

variables. The linear quantities C0 and Ca are new metric fluctuations associated with the

presence of the radial AdS direction. We can further decompose the 3−vector Bi into a

scalar and a divergenceless part and the rank-2 symmetric tensor hij into scalar, vector and

tensor parts:

Bi = ∂iB + B̂i (5.11)

hij = 2Ψδij + 2

(
∂i∂j −

1

3
δij∇2

)
E +

(
∂iÊj + ∂jÊi

)
+ 2Êij ,

where this decomposition is irreducible since the hatted quantities are divergenceless, ∂iÊi

and ∂iÊij = 0, and the tensor part is traceless, Êi
i = 0. Note that the tensor Êij corresponds

to gravitational waves, B̂i and Êj to vector perturbations, and the remaining functions

Φ,Ψ, B and E to the scalar metric perturbations. This perturbed metric and the variables

are analogous to the fluctuations in a usual 4-dimensional cosmology when restricted to

constant z slices. However, one needs to remember that the quantities calculated also depend

of the coordinate z. In the following we will neglect vector perturbations and gravitational

waves.

Together with the metric perturbations, we need to perturb the energy-momentum tensor

of the 5-dimensional bulk. The matter content in our case is the dilaton field. This can be

perturbed as follows, as in [16]

φ̄ (z,x, t) = φ (z,x, t) + δφ (z,x, t) , (5.12)

where φ represents the background dilaton field and δφ its linear perturbation.

General relativity allows for a freedom in the choice of the coordinate system. At the
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linearized level the space of coordinate transformation is five-dimensional, allowing us to

impose five gauge conditions in order to remove residual gauge degrees of freedom. As is

done in the four space-time dimensional theory of cosmological perturbations we use two of

these gauge freedoms to simplify the scalar sector of the metric. One choice is longitudinal

gauge in which one sets B = E = 0. Two gauge degrees of freedom are vector from the

point of view of the constant z hypersurfaces and can be used to reduce the number of

vector modes, and the remaining gauge degree of freedom involves the z direction and could

be used to set C0 = 0. Making these choices, the scalar cosmological fluctuations involve

the variables Φ,Ψ and δφ (plus the variables Ca which will not be important for us). An

alternative choice is to pick the spatially flat gauge (uniform curvature gauge) in which the

curvature on the constant time (and z) hypersurfaces is constant in space. In the absence

of anisotropic stress Φ and Ψ coincide, and the Einstein constraint equation related the

other two variables 5. Hence, on a fixed t and z hypersurface, the information about scalar

cosmological perturbations is encoded in terms of a single function.

Our goal will be to compute the evolution of the 3 + 1 dimensional curvature fluctuation

variable R, which in the absence of entropy fluctuations is conserved on super-Hubble scales

and thus encodes the relevant information about the scalar cosmological perturbations. It

is hence the useful variable to track on super-Hubble scales, the scales we are interested in

in this work (and also the ones which are of interest in inflationary cosmology).

We choose to work in uniform curvature gauge 6. In this gauge, the variable R is on

super-Hubble scales given by

R = −H
φ′
δφ . (5.13)

in terms of the scalar field fluctuation δφ. The coefficient relating R and δφ is given by the

comoving Hubble constant and by the background scalar field. Note that a prime indicated

the derivative with respect to conformal time.

The variance for R in this gauge is given by the variance of δφ. For each Fourier mode

5An easy way to see this is by noting that a matter perturbation δφ inevitably leads to a metric fluctuation
of scalar type.

6Note that some gauges can become singular. For example, for scalar field matter the comoving gauge
becomes singular when the scalar field comes to rest. The uniform curvature gauge may also break down in
the time interval −ξ < t < ξ. We are, however, never following the evolution of the bulk metric fluctuations
in this interval, and hence we do not have to worry about a possible breakdown of this gauge.
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we have

〈|Rk|2〉 =

(H
φ′

)2

〈|δφk|2〉 . (5.14)

5.4 Holographic Curvature Perturbation at Late Times

The goal of the section is to calculate the conserved curvature perturbation in our deformed

spacetime at late times. With the general spatially flat gauge developed above, we are able

to write the curvature perturbation in terms of the perturbations of the scalar field and its

background value. This is important in our setup, since it avoids one having to understand

how the metric perturbations evolve holographically in this singular spacetime.

In our previous work [16], we showed a prescription for obtaining the bulk perturbation

of a scalar field δφ, the dilaton in our case, at late times t > tb in the weakly coupled region

of the expanding period, given initial conditions for the perturbations of the scalar field in

the bulk in the weakly coupled contracting phase. We were interested to understand how

the presence of the singularity affects the initial scalar field perturbations. In particular,

we investigated if the power spectrum given in the bulk at past times is changed after the

singularity. We showed that the final spectrum of δφk remains scale invariant, given it was

scale invariant in the past.

We now show how to use the results of our previous work to compute the quantity that

is of interest in cosmology, the curvature perturbation. As we saw in the previous section,

then when working in the uniform spatial curvature gauge we only need the power spectrum

of the scalar field to obtain the power spectrum PR of the curvature perturbations

PR =

(H
φ′

)2

Pδφ =
1

2π2
k3

(H
φ′

)2

|δφk (z, t) |2 . (5.15)

Thus, if we have the solution of the bulk scalar field in the future of the singularity, δφk(+tb),

we are able to obtain the power spectrum of the curvature perturbation from the above

relation.

As was shown in [16], the bulk scalar field fluctuations in the future of the singulariy can

be locally reconstructed from the boundary data via [109,110]

δφ (t, x, z) =

∫
dt′d3yK (t′, y|t, x, z)O (t′, y) , (5.16)
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(tb+,x,z) 

z 0 

t 

Fig. 5.2 Sketch of the reconstruction process for bulk operators in the future of the singularity.
The vertical axis is time, the horizontal axis indicates the radial coordinate z. The solid line is the
boundary.The bulk field at a point with coordinates (t+b , x, z) is given by integrating the boundary
data against the boundary-to-bulk propagator. The integration involves data in the shaded region
only. The solid curves connecting the bulk point to the boundary are null geodesics.

where the kernel K (t′, y|t, x, z) is the bulk-to-boundary propagator (or “smearing function”).

The important property of this smearing function is that its support is confined to the “AdS

causal wedge”, i.e. to points with |δt| ≡ t′ − t < z (see Fig. 2). The exact form of the

smearing function will not be important for our analysis.This construction is similar to a

boundary value problem (see also [112–115]). This means that δφ (t, x, z) corresponds to a

local operator O (y, t′) in the CFT, with a map defined by the smearing function.

We can make a translation in the time and space coordinates: t′ = t+ s and y = x+ y′.

The smearing function is invariant under translations of the x coordinates. In pure AdS

it would also be invariant under time translations. In the case of our deformed AdS, the

kernel has an explicit time-dependence. The important point is that the kernel has support

within the AdS causal wedge. Hence, as long as we consider values of z not too far from the
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boundary, the region of support of the kernel for the time t = tb is far away from the space-

time singularity, and the kernel is hence well defined. The fact that the kernel is independent

of the three dimensional spatial coordinates x on the fixed z surface implies that the kernel

does not effect the shape of the power spectrum.

Our interest is to be able to find the spectrum of the perturbations in the future. For

that, we need to work with the Fourier transform of (5.16). This is given by:

δφk (z, t) =

∫
dsd3y′e−iky

′
K (t+ s, y′|z, t)O (k, t+ s) ,

'
∫
ds

∫
d3y′K (s+ t, y′|z, t)︸ ︷︷ ︸

M(t,s,z)

O (k, t+ s) (5.17)

where in the last line we considered only the IR limit, the one of interest for cosmological

perturbations. We can see from this equation that O (k, t+ s) has the same k-dependence

as δφk, with the amplitude smeared and calculated at a translated time.

We do not need to know the exact form of the kernel for our deformed AdS5. All we need

to assume is the existence of such a smoothing function with a causal structure similar to the

one for pure AdS (obtained in [109, 110]). The differences between the smearing functions

in pure AdS in and our deformed space-time would appear in the time-mode solutions used

in the construction of K, since here we have a FRW spacetime on the boundary instead of

Minkowski, leading to a different normalization for K(s, y′|z). The important property of

the smearing function is that it has support on the causal wedge of AdS, and selects only

data on the boundary that is space-like separated with ky′ << 1, given by the values of

y′ where the smearing function does not vanish. It is very important in our case that the

only data necessary for the reconstruction of the bulk field is local, since the presence of the

singularity makes part of the data in the past inaccessible in the future of the deformed AdS

Poincare chart. We can see that from the green regions of Figure 5.1.

We can then write the power spectrum of the uniform curvature perturbation with respect

to the boundary data. From equation (5.15), and knowing that for our bulk H = a′/a, where

a prime denotes the derivative with respect to conformal time, and where in our case

a(t) =
2

3

|t|
l
, (5.18)
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we have

PR(k, t) =
1

(2πl)2k
3|δφk (z, t) |2

=
1

(2πl)2k
3

∣∣∣∣∫ dsM(s, z)O (k, t+ s)

∣∣∣∣2 . (5.19)

Thus, the power spectrum of R has the same slope as that of the boundary operator O.

This boundary operator given in this equation is known from the AdS/CFT correspondence:

The scalar field in the bulk corresponds to the expectation value of the trace of the square

of the field strength of a conformal field theory living on the boundary:

O = 〈trF 2〉 . (5.20)

This is the same operator whose evolution was studied in our previous paper [16], and in the

following we will just briefly summarize the analysis which relates the late time spectrum of

O with the initial spectrum of δφ.

In our case, the boundary conformal field theory is a N = 4 Super Yang Mills (SYM)

theory in 3 + 1-dimensions with a Yang-Mills coupling that varies in time, inherited from

the time-dependent dilaton from the bulk. Given this theory, we can evaluate the operator,

since

Fµν = 2∂[µAν] − i [Aµ, Aν ] . (5.21)

We ignore the term with the commutator since this is subdominant in our analysis. We

adopt Coulomb gauge (∂iA
i = 0) and set A0 = 0. Then the Fourier transform of the field

strength tensor reduces to

Tr[F 2(k, t)] = 2Ȧ2
k − 2(kjAki)

2 + 2kiAkjk
jAki , (5.22)

where summation over the index k is implied. We are only interested in the infrared (IR)

modes, where k is small, so we can drop the last two term of the previous expression and

thus obtain the approximate relation

Tr[F 2(k, t)] = 2Ȧ2
k , (5.23)
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where once again summation over k is implied.

The fundamental field of this theory is the vector field Aµ, and it can be evolved in time,

given its equation of motion in the boundary. So, the field Aµ(+tb), necessary to calculate

the operator O (x, tb) can be evolved from a initial vector field through t = 0, the time when

the singularity happens. This time also corresponds to the place where the YM coupling

vanishes and the theory becomes free.

Since the gauge theory becomes free, it could have been expected that the gauge field

fluctuations pass through t = 0 without any problem. However, as discussed in [16] this is

not the case. In terms of the original Fourier space modes A(k, t) there is a branch cut in

the evolution equations, and in terms of the canonically normalized field corresponding to

A(k, t) there is in fact a divergence. This divergence corresponds to the blowup of particle

production which is expected from the point of view of the bulk theory, where the fluctuation

modes obtain infinite squeezing at t = 0. Hence, it is not surprising that at the level of

fluctuations the boundary theory at this point becomes sick and infinite particle production

occurs. This does not allow us to evolve the field passed t = 0. In order to be able to

perform the evolution, we imposed a regularization of the YM coupling, making it constant

during a period [−ξ, ξ], where ξ is smaller than tb, and matching the solutions (and their

first derivatives) in the periods t < −ξ, −ξ < t < ξ and t > ξ.

We perform this matching in the boundary theory since in the bulk, at times ξ =
√
α′,

where α′ is the string scale, the Ricci scalar reaches the string scale and the bulk supergravity

description breaks down. So, matching on the boundary can be performed at time ξ, much

closer to the singularity, where the bulk theory is already in the strong limit. Since the

theory in the boundary has no gravity, this matching is under much better control and goes

closer to the singularity than what could be done by working in the bulk if we want to make

sure that the perturbative expansion is justified.

With that, we can relate the solution of the field Aµ from early to late times past the

singularity, first re-scaling the gauge field by Ãk(t) = eφ/2Ak(t) to obtain a canonically
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normalized field 7. The analysis of [16] yielded the result

Ãk(t) = |t| 12
[
D+
J Jνg (|kt|) +D+

Y Yνg (|kt|)
]
, (5.24)

where νg = (1 +
√

3)/2, and where the mode coefficients D+
J and D+

Y are related to the ones

D−J and D−Y before the singularity by:

D+
J =

1

2νg
D−Y + 2−2νg

(
1 +

1

2νg

)
(kξ)2νg D−J , (5.25)

D+
Y = − 1

2νg
D−J + 22νg

(
1− 1

2νg

)
(kξ)−2νg D−Y . (5.26)

At late times, at time t = tb, when we map the results from the boundary to the bulk, the

gauge field is then given by:

Ãk(tb) '
(
tb
ξ

)2νg

Ã (−tb) , (5.27)

which means that the k-dependence of the field remains the same after passing through the

singularity, changing only its amplitude that is enhanced by the factor

F(t) = (tb/ξ)
2νg . (5.28)

So, given an initial condition in the gauge field Ak(−tb), we can time evolve this field until

time tb in the future of the singularity, and then calculate the operator Tr [F 2(k, t′)] and

obtain the power spectrum.

This initial value for the gauge field in the boundary theory can be inferred from the

initial scalar field in the bulk. As done in our previous work, we choose a particular scaling

of the Fourier modes of the boundary gauge field such that the operator O has the same

amplitude and scaling as what is induced from the bulk scalar field fluctuations which we

7Note that Ã diverges as t → 0. This divergence will lead to divergent particle production of charged
fields which couple in the usual way to Ã, but not to those which couple in the usual way to A. The cutoff
which we introduce to control the divergent growth of the fluctuations of Ã will also control the divergent
growth of the fluctuations of charged fields which couple to Ã.
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are starting out with. From (5.20) and (5.23) we have

m4
plδφ

in(k) =
1

2

∫ k

0

d3k′Ȧin
(
k + k′

2

)
Ȧin

(
k − k′

2

)
V 1/2 = Tr

[
F 2(−tb)

]
k

= O (k,−tb) ,
(5.29)

where V is a normalization volume introduced in the definition of the Fourier transform

(such that the Fourier modes of A have the mass dimension of a harmonic oscillator, i.e.

−1/2). This integral can be performed in two regions, R1 where k < k′, and R2 where k > k′.

In region R1 we can set k′ = 0 and get, approximately

m4
plδφ

in(k) ∼ k3Ȧ2
kV

1/2 . (5.30)

In the case when the initial bulk scalar field has a scale invariant power spectrum, δφ ∝
k−3/2, the gauge field at t = −tb, the time of matching onto the boundary in the past, has

Aink (t) = Ak(−tb) ∼ k−9/4. Assuming this scaling for the gauge Fourier modes, it can easily

be seen that Region R2 gives gives a contribution comparable to (5.30). With the initial

conditions given by (5.29) and the growth of the gauge modes given by (5.27) we can write

the boundary data in the future, encoded in the operator:

O (k, t) =
(4νg)

2

ξ4νg
t2(2νg) 1

2

∫ k

0

d3k′Ȧ

(
k + k′

2
,−tb

)
Ȧ

(
k − k′

2
,−tb

)
V 1/2 = Tr

[
F 2(−tb)

]
k
.

(5.31)

Now we have all the ingredients to obtain the power spectrum of curvature perturbations

past the singularity, given an initial bulk scalar field perturbation in the past:

PR =
k3

(2π)2

∣∣∣∣∫ dsM(s, z)Tr
[
F 2(tb)

]
k

∣∣∣∣2 ,
=

(4νg)
4

(2π)2 ξ8νg
k3 t4(2νg)

∣∣∣∣∫ dsM(s, z)
1

2

∫ k

0

d3k′Ȧ

(
k + k′

2
,−tb

)
Ȧ

(
k − k′

2
,−tb

)
V 1/2

∣∣∣∣2 .
(5.32)
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Integrating over region R1, and taking k′ = 0, we have

PR =
(4νg)

4

(2π)2 ξ8νg
k3 t4(2νg)

∣∣∣∣∫ dsM(s, z) k3Ȧ2(k,−tb)
∣∣∣∣2 ,

=
(4νg)

4

(2π)2 ξ8νg
k3 t4(2νg)

∣∣∣∣∫ dsM(s, z)m4
plδφ

in(−tb)
∣∣∣∣2 . (5.33)

For the case presented in [16] when we have a scale invariant spectrum for the bulk scalar

field in the past, with δφin ∝ k−3/2, this implies that Ȧ(k,−tb) ∝ k−9/4. Plugging this

expression into (5.33) we see that at t = tb in the future:

PR '
(4νg)

4

(2πl)2 ξ8νg
t
4(2νg)
b

[∫
dsM(s, z)

]2
m8
pl . (5.34)

The power spectrum for the curvature perturbations is scale invariant. This means that

the index of the power spectrum of the curvature flluctuations is not changed after passing

through the singularity. So, if we start in the contracting phase with a scale invariant

power spectrum of curvature fluctuations before the singularity, then the final curvature

perturbations will also be scale invariant, carrying at late times an enhancement factor in

the amplitude, related to particle production occurring on super-Hubble scales close to the

bulk singularity.

5.5 Conclusions and Discussion

We have used the AdS/CFT correspondence to propagate cosmological fluctuations from

the contracting phase to the expanding phase of a time-dependent deformation of an AdS

bulk space-time which has a curvature singularity at a time t = 0. The bulk space-time is

weakly coupled for |t| > tb, and strongly coupled for |t| < tb. Since the CFT on the boundary

becomes weakly coupled for |t| < tb, we map the bulk perturbations onto the boundary at

the transition time t = −tb, evolve the fluctuations in the conformal field theory until t = tb,

and then reconstruct the bulk perturbations.

We have shown that there is a gauge choice for the bulk space-time coordinates in which

the information about cosmological fluctuations can be encoded in terms of the dilaton

perturbations. This is the frame we use to map the inhomogeneities onto the boundary. We
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use the same choice of coordinates to reconstruct the bulk for in the future of the strongly

coupled bulk region, i.e. for t > tb.

For the background with a bulk curvature singularity, particle production in the boundary

theory diverges at t = 0. Hence, to obtain a well-defined evolution, we need to regulate the

boundary theory (and thus also the bulk theory) in some time interval |t| < ξ, where ξ � tb.

In the regulated theory, it is then possible to unambiguously compute the evolution of the

linearlized cosmological perturbations. We find that, as in the case of dilaton fluctuations

in [16], the spectral index of infrared perturbations is the same before entering and after

exiting the region of large space-time curvature. The amplitude of the spectrum, on the

other hand, changes by a factor which depends on the ratio of tb and ξ. These results agree

with what is obtained in some models of nonsingular bounces in which rather ad hoc new

physics is used to obtain the bounce (see e.g. [144–146]). What is satisfying in our approach

is that the bounce is obtained using fundamental ingredients from superstring theory.

One may ask what impact the regulation of the boundary theory in the time interval

−ξ < t < ξ has on the bulk theory. It will not correspond to a solution of the supergravity

equations. However, we do not view this as a problem since in the time interval −ξ < t < ξ

we are in the very high bulk curvature region where the supergravity action is not a good

approximation for the underlying string theory. As interesting question which we do not

address in this chapter is what additional bulk objects should appear if we want to obtain

the modified bulk theory. By mapping the physics problem we are interested in onto the

boundary we avoid having to tackle this difficult problem. In fact, the main advantage of

mapping the evolution of metric fluctuations through a high curvature bulk region onto the

boundary is that in the bulk high curvature region the boundary theory is weakly coupled

and hence the evolution of the fluctuations is under much better control.

Note that there are other ways to obtain a bouncing cosmology from superstring theory.

One recent example makes use of the T -duality symmetry in the Euclidean time direction

to obtain a so-called S-brane bounce [81–83, 147]. Another approach is in [148]. It is also

possible that as a consequence of the Hagedorn spectrum of string states [149] coupled

with the T-duality symmetry in compact spatial directions one obtains an early emergent

Hagedorn phase [78], in which case thermal fluctuations of a gas of strings would be the

source of the observed cosmological perturbations [79]. These different approaches lead to

signatures which are distinguishable (and also distinguishable from conventional inflationary

cosmology) in cosmological observations, in particular because of different predictions of the
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tilt of the gravitational wave spectrum [150–152], the running of the spectrum [153] and the

amplitude and shape of the three point function of the curvature fluctuation [154,155].
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Part II

Late Universe Cosmology
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Chapter 6

Methods of Data Analysis

In this part of the thesis we are going to study a model that explains the late evolution of our

universe, the interacting dark energy model, testing it using the most recent cosmological

observations. This chapter introduces the statistical methods used to perform the data

analysis in Chapters 7 and 8. We also describe the likelihoods of each of the probes used in

the experiments considered.

6.1 Maximum Likelihood Method

In this section we give a quick review (based on [156–159]) of the most common and used

estimation method: the maximum likelihood method that aims to obtain the most likely

parameters of a model that explains a given statistical observation.

We start by defining the likelihood as the probability density of a given data set {xi} =

{x1, x2, · · · , xN} to be explained by a set of parameters ~a:

L (xi|~a) =
N∏
i=1

f (xi|~a) , (6.1)

where each data has a conditional probability density (pdf), f (xi,~a), which defines the

probability of the measured value xi within an interval given by the uncertainty of this

measurement, to be given by the set of parameters ~a: P =
∫ x2

x1
pdf(xi|~a)dx. The likelihood

can be seen as the joint density probability of N independent measurements, given by the

product of each of them, for an independent sets of data.

2017/06/25
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The maximum likelihood method is used to estimate the parameters ~a given the mea-

surements xi, by finding the estimators of the parameter â(xi) that maximizes the likelihood.

These estimators are the parameters that present the best fit to the likelihood and are the

solution to the system:
∂L (xi|aj)

∂aj
= 0 , j = 1, ...,m . (6.2)

With this likelihood and using Bayes’ theorem, we can define:

p (aj|xi, ) =
L (xi|~a) p (aj)

p (xi)
, (6.3)

where p (aj|xi, M) is the posterior probability of the parameter, and it gives the answer we

want: the probability that the parameter ai coming from the theory can be explained by

the data xi. The density p (aj) is called prior probability and it contains the information

about our knowledge of the parameters before the experiment. This is usually known from

theory or from previous experiments, and one can choose flat priors or Gaussian priors (or

even more sophisticated choices). One needs to be very careful, since a wrong choice of prior

might lead to wrong posterior and a wrong result. p (xi) is the evidence, the pdf of the

data. The evidence is seen as the condition for imposing the normalization of the posterior

probability.

Having the posterior distribution, one can extract a lot of information about the param-

eters of the model given the data. First, we can obtain the estimator for the parameters by

maximizing the posterior:

p (aj|xi, )
∂aj

= 0 , j = 1, ...,m . (6.4)

One can also find the probability of a chosen parameter aj by integrating over the other

parameters, a procedure we call marginalizing:

p(aj) =

∫
· · ·
∫
p(aj|xi) da1, · · · daj−1 · daj+1 · · · daN . (6.5)

Another piece of useful information that we can infer for the parameters is their confidence

region, defined by: ∫
R(α)

p (aj|xi, ) dma = α , (6.6)
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where α is a number 0 < α < 1 that can be linked to the probability of the parameters to

be within that region. The most used α = 0.683, 0.954, 0.997 that correspond to the 1σ, 2σ

and 3σ confidence levels. The procedure is to find R(α) for the level of confidence chosen.

All these calculations are simplified significantly if the pdf ’s are Gaussian. In this case,

maximizing the likelihood is equivalent to the problem of minimizing the χ2, that is given by

the exponent of the exponential of the Gaussian distribution. This procedure is the known

least square method.

Not all the data are or can be approximated by a Gaussian and the use of the maximum

likelihood method becomes complicated. However, the central limit theorem assures that if

we have N events, where each one has a pdf and finite variance, then in the limit when N →
∞ (or very large), the sum tends to a Gaussian distribution. This result is very important

in cosmology not only because it simplifies the analysis but since the linear perturbations

are expected to be Gaussian. Deviations from gaussianity bring an opportunity to explore

new physics in the early and late universe.

6.2 Data Sets

In this section we describe the data and likelihood of each of the data sets used in our

analysis: CMB temperature anisotropies, BAO, type Ia Supernovae and local measurements

of H0. For the measurement of the Lyman-α forest from high-redshift quasars, although a

likelihood was provided by the BOSS collaboration, we constructed our own.

First, we will show how the primordial power spectrum generated by an early universe

mechanism for the generation of the primordial perturbations connects to the observations

done in the CMB and late universe.

6.2.1 Connecting Observations to the Primordial Perturbations

As we saw in Section 3.2, for any mechanism that generates the primordial perturbations

in the early universe (like inflation or bouncing cosmologies), we are able to compute the

curvature perturbations R and the gravity waves. These perturbations freeze out after they

leave the Hubble radius, and only evolve again after they re-enter it at later times. If we

want to measure these perturbations at late times, using CMB or the large scale structure,

we need to take into account what is the relation of R with the measured quantity, and
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the time evolution of R after the scale re-enters the Hubble radius. Given a perturbation

measured at late times Qk, we can relate that with R, in a schematic way:

Qk(τ) = TQ(k, τhc, τ)Rk(τ) , (6.7)

where τhc is the time when the perturbations crossed the horizon and Tk(k, τhc, τ) is the

function connecting both Q an R.

The large scale structure of our universe is formed when the dark matter clumps due to

gravitational instability from an initial distribution given by the primordial perturbations.

All the baryonic matter, like galaxies or gas in the universe, is going to be formed and

fall into the high density regions of the dark matter distributions, tracing this distribution

with a proportionality (that depends on the tracer and can depend on k) factor called bias.

It is important, then, to know how to calculate the power spectrum for the dark matter

fluctuations from the primordial power spectrum so we can understand the power spectrum

we measure from observations of a given tracer (galaxies, 21-cm, ...). The matter power

spectrum is defined as:

Pδ(k, t) =
4

25

(
k

aH

)4

T 2
δ (k, τ)PR(k) , (6.8)

where δ = δρ/ρ is the density contrast for dark matter. This is the quantity that the software

of data analysis, CAMB [160] and CosmoMC [161], used in the works of Chapters 7 and 8,

compute.

6.2.2 Cosmic Wave Background

The cosmological microwave background has been the main source of information for con-

straining the cosmological parameters, after the COBE, WMAP and Planck results. We

wish to use the anisotropies in the CMB to probe the cosmological parameters of our model.

These anisotropies are encoded in the photons of the CMB as a temperature fluctuation or

polarization modes. We are only interested, in this work, in the temperature anisotropies,

that can be expanded in a basis of spherical harmonics:

Θ(n̂) ≡ δT (n̂)

T0

=
∑
lm

almYlm(n̂) , (6.9)
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where n̂ is the unit vector that gives you the direction in the sky, T0 = 2.75 is the background

black body temperature of the CMB, Ylm(n̂) is the spherical harmonics with m = −l, ..., l
and the coefficients are the multipole moment and can be written as:

alm =

∫
dΩY ∗lm(n̂)Θ(n̂) . (6.10)

Given these perturbations, we want to evaluate the two point function, which is the

angular power spectrum:

CTT
l =

1

2l + 1

∑
m

〈a∗lmalm〉 . (6.11)

This quantity is the one extracted from the observations of the CMB and it is related to the

primordial power spectrum by:

CTT
l =

2

π

∫
k2dkPR(k) ∆T l(k)∆T l(k) , (6.12)

since the adiabatic scalar perturbations dominate. Here, ∆T l(k) are the transfer functions.

This general formula is valid for other modes like the E and B (and correlations between all

of these).

With that, the treatment given in [162] is that the data mX is modelled as being com-

posed of the CMB signal (sX) and a instrumental noise that is assumed to be a nearly

Gaussian distributed random field (nX): mX = sX + sX , with X being one of the modes T,

E or B. Then, the low-l full likelihood is given by:

L(Cl) = P (m|Cl) =
1

2π|M |1/2 exp

(
−1

2
mTM−1m

)
, (6.13)

where M = S + N is the full data covariance. The high-multipole likelihood has further

contributions from astrophysical foregrounds, so the noise is modeled in a more complicated

fashion described in [163].

The data used in our analysis was the low-l (2 ≤ l < 50) and high-l(50 ≤ l ≤ 2500)

multipole data from Planck 2013 TT (temperature) power spectrum [163, 164]. In order to

break the degeneracy between reionization optical depth and the primordial amplitude, we

include the WMAP low-l polarization power spectrum (2 ≤ l ≤ 32) [165].
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6.2.3 Baryon Acoustic Oscillations

The BAO are acoustic oscillations imprinted in the CMB from sound waves coming from

the primordial plasma. This imprinted spherical waves have a characteristic scale, given by

the sound horizon at recombination. This scale known to 0.2% precision from CMB power

spectrum (147.4± 0.3Mpc) [41]. BAOs are a (statistical) standard ruler. The change in the

size of this scale can measure the expansion history of the universe, and is thus a good probe

to constrain dark energy.

The early universe is permeated by many spherical acoustic waves, so the final density

distribution is a linear superposition of the small-amplitude sound waves. Thus, the BAO can

be inferred statistically through the two-point correlation function of the matter distribution

of biased tracers like galaxies.

The BAO can be measured in the radial direction (s||), where we can infer the expansion

of the universe through the Hubble parameter, and in the angular direction (s⊥), where we

can infer the angular distance:

s||(z) =
c∆z

H(z)
, s⊥(z) = DA(z) ∆θ(1 + z) . (6.14)

We can observe the preferred clustering scale set by the BAO at different redshifts to con-

strain the Hubble parameter and the angular diameter distance. This is exactly what it

is measured by the SDSS-BOSS collaboration from the Lyman-α forest from high-redshift

quasars.

Another quantity that can be inferred from the BAO measurement is the spherically-

averaged two-point statistics, which is a combination of DA and H(z):

DV (z) =

[
(1 + z)2D2

A

c z

H(z)

]1

/3 . (6.15)

This is usually used when the signal in the radial direction is small in comparison with

cosmological distortions.

The data used in the analysis of Chapter 7 combines the value of DV (z) from the SDSS

DR7 BAO measurement at z = 0.35 [166], the BOSS DR9 at z = 0.57 [167], and 6dF Galaxy

Survey at z = 0.106 [168]. The data from Lyman-α forest from high-z quasars, consists in

the pair (DA(z)/rs, DH(z)/rs) from the autocorrelation [169] and from the crosscorrelation
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with the Lyα data [170].

The value of DV from these measurements is then included in the data analysis as a

vector, and separately, the values of (DA(z)/rs, DH(z)/rs) are included as a matrix. The

likelihood is computed from the χ2 statistics:

χ2
BAO = (x− xobs)

T C−1
BAO (x− xobs) , (6.16)

where x is the theoretical prediction vector/matrix, xobs is the observed vector/matrix, and

CBAO is the covariance matrix.

6.2.4 Type Ia Supernovae and the Hubble Parameter Measurements

Type Ia Supernovae are used as standard candles, and we can hence infer their distance

from us, as we saw in Section (2.1.1). They were the objects observed when dark energy

was discovery in 1998. They are still widely used to infer the expansion of the universe

with, now, a much bigger and deeper sample. We use data from the Supernovae Cosmology

Project (SCP) Union 2.1 compilation [171], that is composed of 508 objects.

The likelihood is also evaluated by using the χ2 statistics:

χ2
Sn =

580∑
i=1

[µB(α, β, δ,MB)− µ(z,Ωm,Ωd, ω)]2

σ2
, (6.17)

where µ(z,Ωm,Ωd, ω) is the theoretical distance modulus given by [172]:

µ(z) = 5log10

[
c(1 + z)

∫ z

0

dz′

H(z′)/H0

]
+ 25− 5log10H0 . (6.18)

The distance modulus µB(α, β, δ,MB) is a parametrization:

µB(α, β, δ,MB) = mmax
B + αx1 − β c+ δ P

(
mtrue
? < mthr

?

)
, (6.19)

where mmax
B is the integrated B-band flux at maximum light and P

(
mtrue
? < mthr

?

)
is the

correlation of the mass of the host galaxy and the SnIa luminosity. This parametrization can

be fitted using three nuisance parameters, and the absolute magnitude, MB. The parameters

α, β and δ are fixed in the CosmoMC Union 2.1 module.

For the local value of H0, we use the value from the Hubble Space Telescope [42]: H0 =
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73.8± 2.4 km s−1 Mpc−1.
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Chapter 7

Testing the Interaction between Dark

Energy and Dark Matter with Planck

Data

7.1 Introduction

The incredible amount of precise astronomical data released in the past few years provided

great opportunities to answer problems in cosmology and astrophysics. Recently, the Planck

team released their first data with higher precision and new full sky measurements of the

Cosmic Microwave Background (CMB) temperature anisotropies in a wide range of multi-

poles (l < 2500) [162, 173, 174]. Such a precision allows us to test cosmological models and

determine cosmological parameters with a high accuracy.

The Planck team analysis showed that the universe is flat and in full agreement with

the ΛCDM cosmological model, especially for the high multipoles (l > 40). However, the

value of the Hubble parameter today presents about 2.5σ tension in comparison with other

low redshift probes, for example the direct measurement done by Hubble Space Telescope

(HST) [42]. If this difference is not introduced by systematics, this can point out to an

observational challenge for the standard ΛCDM model. The Planck determination of H0

assumed a theoretical ΛCDM model, which can influence its value on H0.

Theoretically the ΛCDM model itself is facing challenges, such as the cosmological con-

stant problem [175] and the coincidence problem [176]. The first problem refers to the small

2017/06/25



7 Testing the Interaction between Dark Energy and Dark Matter with Planck Data 97

observed value of the cosmological constant incompatible with the vacuum energy description

in field theory. The second problem refers to the fact that we have no natural explanation

why the energy densities of dark matter and vacuum energy are of the same order today.

These problems open the avenue for alternative models of dark energy to substitute the

cosmological constant description. For example, the use of a component with dynamically

varying equation of state parameter to describe the dark energy. However, although it can

alleviate the coincidence problem, it suffers the fine tuning problem. Thus these models are

not prevailing.

Another way to alleviate the coincidence problem, which embarrasses the standard ΛCDM

cosmology is to consider an interaction between dark energy and dark matter. Considering

that dark energy and dark matter contribute significant fractions of the contents of the

universe, it is natural, in the framework of field theory, to consider an interaction between

them. The appropriate interaction can accommodate an effective dark energy equation of

state in the phantom region at the present time. The interaction between dark energy and

dark matter will affect significantly the expansion history of the Universe and the evolution

of density perturbations, changing their growth. The possibility of the interaction between

dark sectors has been widely discussed in the literature [27, 29, 30, 177–207]. Determining

the existence of dark matter and dark energy interactions is an observational endeavor that

could provide an interesting insight into the nature of the dark sectors.

Since the physical properties of dark matter and dark energy at the present moment are

unknown, we cannot derive the precise form of the interaction from first principles. For

simplicity, most considerations of the interaction in the literature are from phenomenology.

Attempts to describe the interaction from field theory have been proposed in [32, 33, 208].

In this chapter we will concentrate on a phenomenological model of the interaction between

dark matter and dark energy, which is in a linear combination of energy densities of the

dark sectors Qc = 3H(ξ1ρc+ξ2ρd) [26,29,200], where ξ1 and ξ2 are dimensionless parameters

and assumed to be time independent for simplicity. This model was widely studied in

[28, 29, 31, 190, 205, 209, 210]. It was disclosed that the interaction between dark matter and

dark energy influences the CMB at low multipoles by the late integrated Sachs-Wolf (ISW)

effect [197, 199] and at high multipoles through gravitational lensing [31, 211]. With the

WMAP data [197, 199] together with galaxy clusters observations [205, 206] and also recent

kinetic Sunyaev-Zel’dovich effect observations [212], it was found that this phenomenological

interaction between dark energy and dark matter is viable and the coupling constant is



7 Testing the Interaction between Dark Energy and Dark Matter with Planck Data 98

positive indicating that there is energy flow from dark energy to dark matter, which is

required to alleviate the coincidence problem and to satisfy the second law of thermodynamics

[188].

It is of great interest to employ the latest high precision Planck data to further constrain

the phenomenological interaction model. This is the main motivation of the present work.

We will compare the constraint from the Planck data with previous constraints from WMAP

data [197,199]. Especially, we want to examine whether, with the interaction between dark

matter and dark energy, we can reduce the tension on the value of H0 at present. We will

combine the CMB data from Planck with other cosmological probes such as the Baryonic

Acoustic Oscillations (BAO), Supernovas and the latest constraint on the Hubble constant

[42]. We want to see how these different probes will influence the cosmological parameters

and put tight constraints on the interaction between dark sectors.

This chapter is organized as follows: in Section 7.2 we will describe the phenomenological

interaction model between dark sectors and present the linear perturbation equations. In

Section 7.3 we will explain the methods used in the analysis. Section 7.4 will present the

results of the analysis and discussions. In the last section we will summarize our results.

7.2 The phenomenological model on the interaction between dark

sectors

The formalism describing the evolution of matter and dark energy density perturbations

without [213,214] and with dark matter and dark energy interaction [200] is well established.

If dark matter and dark energy are coupled with each other, the energy-momentum tensor

T µν(λ) of each individual component λ = c, d is no longer conserved. Instead,

∇µT
µν
(λ) = Qν

(λ) , (7.1)

where Qν
(λ) is the four vector governing the energy-momentum transfer between dark com-

ponents and the subscript (λ) can refer to dark matter (c) and dark energy (d), respectively.

With interaction between dark sectors, dark matter and dark energy components are not

conserved separately, but the energy-momentum tensor of the whole dark sector is still con-

served, thus, Qν
(c) = −Qν

(d).

Assuming spatially flat Friedmann-Robertson-Walker background, from the energy con-
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servation of the full energy-momentum tensor, we can derive the equations of evolution of

the mean dark matter and dark energy densities

ρ̇c + 3Hρc =a2Q0
c =+aQ ,

ρ̇d + 3H (1 + ω) ρd =a2Q0
d =−aQ , (7.2)

where the derivatives and the Hubble parameter H are in conformal time, ρc is the energy

density for dark matter, ω = pd/ρd is the equation of state of dark energy, a is the scale

factor and Q was chosen to be the energy transfer in cosmic time coordinates. We emphasize

that the homogeneity and isotropy of the background require the spatial components of Qν
(λ)

to be zero.

We concentrate on the phenomenological interaction as a linear combination of energy

densities of dark sectors with the form of Q = 3H(ξ1ρc + ξ2ρd), which describes the energy

transfer. In the above expression of the continuity equations, if Q > 0, we have the dark

energy transfers energy to the dark matter while if it is negative, the transfer is in the opposite

direction. In studying the curvature perturbation it has been made clear that when the

interaction is proportional to the energy density of dark energy (Q = 3Hξ2ρd), we get a stable

curvature perturbation except for ω = −1; however, when the interaction is proportional

to the dark matter density (Q = 3Hξ1ρc) or total dark sectors (Q = 3Hξ(ρc + ρd)), the

curvature perturbation can only be stable when the constant dark energy equation of state

satisfies ω < −1 [29]. For the case of a time-dependent dark energy equation of state, the

stability of curvature perturbations was discussed in [186, 187]. With the interaction, the

effective background equations of state for the dark matter and dark energy change to

ωc,eff = − a
2Q0

c

3Hρc
, ωd,eff = ω − a2Q0

d

3Hρd
, (7.3)

where ω is the equation of state of dark energy. We summarize different forms of the

interaction with the effective background equation of state in Table 7.1 as done in [31], we

label our models with Roman numbers.

In order to solve the coincidence problem, we require the ratio of the energy densities of

dark matter and dark energy, r = ρc/ρd, to be a constant in the expansion history of our
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universe. This leads to a quadratic equation,

ξ1r
2 + (ξ1 + ξ2 + ω) r + ξ2 = 0. (7.4)

The solutions of this equation can lead to unphysical results, as negative energy density

of cold DM in the past or complex roots. For different phenomenological models of the

interaction between dark sectors, the conditions to obtain physical results, positive energy

densities and real roots, were summarized in [31] as shown in Table 7.1. Fig.7.1 illustrates

the behavior of r for the four interacting models. We observe that, for the interaction

proportional to the energy density of dark energy, a positive interaction can help to alleviate

the coincidence problem as there is a longer period for the energy densities of dark matter

and dark energy to be comparable. In contrast, a negative interaction can not alleviate the

coincidence problem. For the interaction proportional to the energy density of dark matter

or to the sum of both energies, the ratio r presents a scaling behavior.

Table 7.1 In this table we present the different coupling models considered with its constraints,
dark energy equation of state and the effective equation of state for both fluids.

Model Q DE EoS ωc,eff ωd,eff Constraints
I 3ξ2Hρd −1 < ω < 0 −ξ2/r ω + ξ2 ξ2 < −2ωΩc

II 3ξ2Hρd ω < −1 −ξ2/r ω + ξ2 ξ2 < −2ωΩc

III 3ξ1Hρc ω < −1 −ξ1 ω + ξ1r 0 < ξ1 < −ω/4
IV 3ξH (ρd + ρc) ω < −1 −ξ (1 + 1/r) ω + ξ (r + 1) 0 < ξ < −ω/4

From the background dynamics we see that when we introduce the phenomenological

interaction between dark sectors, it is possible to have the scaling solution of the ratio between

dark matter and dark energy, which can help to alleviate the coincidence problem. However,

in the background dynamics there appears an inevitable degeneracy between the coupling

in dark sectors and the dark energy equation of state. In general this degeneracy cannot be

broken by just investigating the dynamics of the background spacetime, except in the case

when the coupling is proportional to the dark matter density (Model III) as was discussed

in [31]. It is expected that the degeneracy between the coupling and other cosmological

parameters can be solved in the perturbed spacetime by considering the evolution of the

perturbations of dark energy and dark matter. The perturbed FRW space-time has a metric
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Fig. 7.1 (Color online). Evolution of the dark energy/dark matter energy density ratio r ≡ ρc/ρd
in a model with Q = 3H(ξ1ρc + ξ2ρd) for different coupling constants. (a) The red dashed line
corresponds to Planck bestfit Model I, with ξ2 = −0.1881 corresponding to the lowest value in the
68% C.L. as in Table 7.10. The black solid line has the same parameters but no interaction. (b)
The black solid line corresponds to a non-interacting model with w = −1.65 and Ωd = 0.78. The
red dot-dashed line describes Model II listed in the first column of Table 7.11 with ξ2 = 0.2. The
green dashed line corresponds to Planck bestfit Model III (see Table 7.12); and blue dotted line to
Planck bestfit Model IV (see Table 7.13).

given by

ds2 = a2
[
−(1 + 2ψ)dτ 2 + 2∂iBdτdx

i + (1 + 2φ)δijdx
idxj +DijEdx

idxj
]
, (7.5)

where

Dij =

(
∂i∂j −

1

3
δij∇2

)
. (7.6)

The functions ψ, B, φ and E represent the scalar metric perturbations. In the synchronous

gauge ψ = B = 0.

We will use an energy-momentum tensor of the form

T µν(τ, x, y, z) = (ρ+ P )UµUν + Pgµν , (7.7)

where ρ, P are composed by a term depending only on time plus a small perturbation that

depends on all coordinates. The four-velocity reads

Uµ = a−1(1− ψ,~v(λ)), (7.8)
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where ~v(λ) can be written as minus the gradient of a peculiar velocity potential v(λ) plus a

zero divergence vector. Only the first one contributes to scalar perturbations. In the Fourier

space, we use the convention to divide the velocity potential by an additional factor of k ≡ |~k|
so that it has the same dimension as the vector part. Thus,

θ ≡ ∇ · ~v = −∇2v = kv. (7.9)

Following [185] we write the perturbed pressure of dark energy as

δPd = c2
eδdρd + (c2

e − c2
a)

[
3H(1 + ω)vdρd

k
− a2Q0

d

vd
k

]
, (7.10)

where δ = δρ/ρ is the density contrast, c2
e is the effective sound speed of dark energy at its

rest frame, which we set to one, and c2
a is the adiabatic sound speed. As discussed in [31],

the perturbed four vector δQν
(λ) can be decomposed into

δQ0
(λ) = ±

(
−ψ
a
Q+

1

a
δQ

)
, δQp(λ) = QI

p(λ)

∣∣
t
+Q0

(λ)vt. (7.11)

Here the ± sign refers to dark matter or dark energy respectively, and δQp(λ) is the potential

of the perturbed energy-momentum transfer δQi
(λ). Q

I
p(λ)

∣∣∣
t

is the external non-gravitational

force density and vt is the average velocity of the energy transfer. In this chapter we consider

that there is no non-gravitational interaction between dark energy and dark matter, only

inertial drag effect appears due to stationary energy transfer. Thus QI
p(λ)

∣∣∣
t

and vt vanish

which implies that δQi
(λ) = 0.

In the synchronous gauge, the linear order perturbation equations for dark matter and
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dark energy read [31]

δ̇c = −(kvc +
ḣ

2
) + 3Hξ2

1

r
(δd − δc) , (7.12)

δ̇d = − (1 + ω) (kvd +
ḣ

2
) + 3H(ω − c2

e)δd + 3Hξ1r (δd − δc)

− 3H
(
c2
e − c2

a

)
[3H (1 + ω) + 3H (ξ1r + ξ2)]

vd
k
, (7.13)

v̇c = −Hvc − 3H(ξ1 +
1

r
ξ2)vc , (7.14)

v̇d = −H
(
1− 3c2

e

)
vd +

3H
1 + ω

(
1 + c2

e

)
(ξ1r + ξ2) vd +

kc2
eδd

1 + ω
, (7.15)

where h = 6φ is the synchronous gauge metric perturbation and vd is the peculiar velocity of

the dark energy. The peculiar velocity of the dark matter vc is considered to be null because

we are working in a frame comoving with the matter fluid. To solve equations (7.12, 7.13,

7.14, 7.15) we set initial conditions according to [29]. In the linear perturbation formalism,

the influence of the interaction between dark energy and dark matter on the CMB can be

calculated by modifying the CAMB code [160]. This can be done by directly including

equations (8.1, 7.12, 7.13, 7.14 and 7.15) in the code.

In [31], it was uncovered that in addition to modifying the CMB spectrum at small l, the

coupling between dark sectors can shift the acoustic peaks at large multipoles. While the

change of equation of state of dark energy can only modify the low l CMB power spectrum,

it leaves the acoustic peaks basically unchanged. This provides the possibility to break the

degeneracy between the coupling and the equation of state of dark energy in the linear

perturbation theory. Furthermore, it was observed that the abundance of dark matter can

influence the acoustic peaks in CMB, especially the first and the second ones. The degeneracy

between the abundance of the dark matter and the coupling between dark sectors can be

broken by examining the CMB spectrum at large scale, since only the coupling between dark

sectors influences the large scale CMB spectrum. Theoretically it was observed that there

are possible ways to break the degeneracy between the interaction, dark energy equation of

state and the dark matter abundance in the perturbation theory [31]. This can help to get

tight constraint on the interaction between dark energy and dark matter.

In the following we are going to extract the signature of the interaction and constraints

on other cosmological parameters by using the Planck CMB data together with other ob-
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servational data and compare with previous results obtained in [31] by employing WMAP

data.

7.3 Method on data analysis

We compute the CMB power spectrum with the modified version of CAMB code [160], in

which we have included both background and linear perturbation equations in the presence of

a coupling between dark matter and dark energy. To compare theory with observations, we

employ the Markov Chain Monte Carlo (MCMC) methodology and use the modified version

of the program CosmoMC [161, 215], by setting the statistical convergence for Gelman and

Rubin R− 1 = 0.03.

The Planck data set we use is a combination of the high-l TT likelihood, which includes

measurements up to a maximum multipole number of lmax = 2500, combined with the low-l

TT likelihood which includes measurements of l = 2 − 49 [162, 173, 174]. Together with

the Planck data, we include the polarization measurements from the nine year Wilkinson

Microwave Anisotropy Probe (WMAP) [165], the low-l (l < 32) TE, EE, BB likelihood.

In addition to the CMB data sets, we also consider Baryon Acoustic Oscillations (BAO)

measurements. We combine the results from three data sets of BAO: the 6DF at redshift

z = 0.106 [168], the DR7 at redshift z = 0.35 [166] and the DR9 at z = 0.57 [167].

Furthermore we examine the impact of the Supernova Cosmology Project (SCP) Union

2.1 compilation [171], which has 580 samples. Finally we also include the latest constraint

on the Hubble constant [42]

H0 = 73.8± 2.4 km s−1Mpc−1. (7.16)

In a recent paper [211], the authors examined the Model I of the interaction between

dark sectors listed in Table 7.1 by confronting to observational data including the new

measurements of the CMB anisotropies from the Planck satellite mission. They found that

the Model I of coupled dark energy is compatible with the Planck measurements and can

relax the tension on the Hubble constant by getting a consistent H0 as the low redshift

survey such as HST and SNIa measurements. In their analysis, they considered ranges for

the priors of different cosmological parameters listed in Table 7.2 — ξ in Table 7.2 is the

coupling constant defined in [211]. It relates to our definition ξ2 in Model I by dividing
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by 3. At the first sight, their prior of Ωch
2 was set unreasonably small (see note in Table

7.2). It is interesting to check, if we allow an increase of Ωch
2 prior, how the constraints of

cosmological parameters for Model I behave. Besides, in [211], they fixed the dark energy

equation of state to be ω = −0.999. Actually there is no reason to fix the value of ω in the

global fitting. It is more reasonable to inquire about the consequences of setting the equation

of state of dark energy to be variable. The effect of letting ω free to vary under the condition

ω > −1 was also considered in [211] with the priors from Table 7.2. Furthermore, in [211],

the authors fixed the relativistic number of degrees of freedom parameter to Neff = 3.046,

the helium abundance to Yp = 0.24, the total neutrino mass to
∑
mν = 0.06eV , and the

spectrum lensing normalization to AL = 1. If we change the setting of these priors, we want

to ask how the fitting results on the Model I change. Can Model I still be compatible with

observational data? Can the constraint on the Hubble constant be relaxed as well? These

questions are worthy of careful study.

Besides Model I of the interaction between dark sectors, in Table 7.1 we have listed other

three interaction models. It would be of great interest to carry out global fitting of these

models to the recent measurements of the CMB from the Planck satellite mission and other

complementary observational data. In order to do so, in Table 7.3 we list the ranges for

the priors of different cosmological parameters considered in our analysis. In our analysis

we will use a big bang nucleosynthesis (BBN) consistent scenario to predict the primordial

helium abundance Yp as a function of the baryon density Ωbh
2 and number of extra radiation

degrees of freedom ∆N . We will use interpolated results from the PArthENoPE code [216]

to set Yp, following [217].

Table 7.2 Initial parameters and priors used in the analysis in [211] for Model I.

Parameters Prior
Ωbh

2 [0.005, 0.1]
Ωch

2 [0.005, 0.1]1

100θ [0.5, 10]
τ [0.01, 0.8]
ns [0.9, 1.1]

log(1010As) [2.7, 4]
ξ2 = ξ/32 [−0.333, 0]
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Table 7.3 The priors for cosmological parameters considered in the analysis for different inter-
action models.

Parameters Prior
Ωbh

2 [0.005, 0.1]
Ωch

2 [0.001, 0.5]
100θ [0.5, 10]
τ [0.01, 0.8]
ns [0.9, 1.1]

log(1010As) [2.7, 4]
Model I Model II Model III Model IV

ω [−1,−0.1] [−2.5,−1] [−2.5,−1] [−2.5,−1]
ξ [−0.4, 0] [0, 0.4] [0, 0.01] [0, 0.01]

7.4 Fitting Results

We start with the Model I interacting model. We have initially performed two runs. In

the first run we do not include the coupling, ξ2 = 0, which corresponds to the ΛCDM case,

and choose the priors of cosmological parameters listed in Table 7.2. In the second run, we

follow [211] by setting the priors of different cosmological parameters as in Table 7.2, fixing

the dark energy equation of state ω = −0.999 and setting the helium abundance Yp = 0.24,

the total neutrino mass
∑
mν = 0.06eV , and the spectrum lensing normalization AL = 1.

We have let the coupling parameter ξ2 to vary freely. Performing separately an analysis with

Planck data alone, we show the result in Table 7.4.

Table 7.4 Best fit values and 68% c.l. constraints with the parameters in Table 7.2.

ΛCDM Planck Interacting Planck
Parameter Best fit 68% limits Best fit 68% limits

Ωbh
2 0.0234 0.0233+0.0003

−0.0003 0.0220 0.0220+0.0003
−0.0003

Ωch
2 0.099 > 0.099 0.044 unconstrained

H0 76.9 76.9+0.4
−0.4 73 72+2

−2

w — — — —
ξ2 — — -0.19 −0.17+0.07

−0.07

τ 0.15 0.13+0.02
−0.02 0.09 0.09+0.01

−0.01

ns 1.013 1.008+0.005
−0.005 0.961 0.957+0.007

−0.007

ln(1010As) 3.16 3.13+0.03
−0.03 3.09 3.08+0.02

−0.02

Our result for Ωch
2 obeys the prior range as indicated in Table 7.2. If we look at the
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Hubble constant value, in our fitting by obeying the prior of Ωch
2 in Table 7.2, we get higher

value of H0, which shows that there is no more tension with the Hubble Space Telescope

value. But if Ωch
2 is above this prior range, the H0 is much smaller. This gives us a hint

that decreasing Ωch
2 can lead to the effect of increasing H0.

The presence of a dark coupling is perfectly compatible with the Planck data set. Our

fitting result is consistent with that shown in Table 7.2 in [211] including the value of H0

and the coupling ξ2 (the relation between our coupling and theirs is ξ2 = ξ/3). While the

coupled dark Model I is compatible with most of the cosmological data, in Table 7.4 we see

that the Ωch
2 is unconstrained in the 1σ range although its best fitting value is still within

the set prior. This is different from the result in Table 7.2 of [211].

We enlarge the prior to be Ωch
2 = [0.001, 0.99] and perform further two runs with Planck

data alone for the ΛCDM model and the Model I of the interacting dark sectors. We show

the results in Table 7.5. As expected, raising the upper range of prior for Ωch
2 leads to the

decrease of the values of H0. This holds for both the ΛCDM and the coupling Model I. For

the ΛCDM, our fitting result is consistent with Table 7.2 in [211]. For coupling Model I, we

find that if we enlarge the prior of Ωch
2, H0 is decreased, although in Table 7.5 the fitting

value of H0 is still compatible with that of HST.

Table 7.5 Best fit values and 68% c.l. constraints with the parameters in Table 7.2, but with
Ωch

2 = [0.001, 0.99]

ΛCDM Planck Interacting Planck
Parameter Best fit 68% limits Best fit 68% limits

Ωbh
2 0.0220 0.0220+0.0003

−0.0003 0.0219 0.0220+0.0003
−0.0003

Ωch
2 0.120 0.120+0.003

−0.003 0.12 0.06+0.05
−0.03

H0 67 67+1
−1 67 71+3

−3

w — — — —
ξ2 — — -0.009 −0.145+0.08

−0.10

τ 0.08 0.09+0.01
−0.01 0.09 0.09+0.01

−0.01

ns 0.958 0.957+0.007
−0.007 0.958 0.957+0.007

−0.007

ln(1010As) 3.08 3.08+0.02
−0.03 3.09 3.08+0.02

−0.03

In the above fittings, we followed [211] to fix the equation of state of dark energy to be

ω = −0.999. In the global fitting, this condition is too strong. It is more reasonable to set

the equation of state of dark energy to be free. We choose the prior of the equation of state

of dark energy to be in the quintessence range ω = [−0.999,−0.1] and examine how this free
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parameter affects the fitting result with Planck data alone. We show our results in Table

7.6. We find that in addition to enlarging the prior of Ωch
2, setting ω to be free will further

decrease the value of H0 in the fitting. From the Planck data fitting, we see that the coupled

dark sectors Model I is not of much help to relax the tension of H0 with the Hubble Space

Telescope value.

Table 7.6 Best fit values and 68% c.l. constraints with w = [−0.999,−0.1].

ωCDM Planck Interacting Planck
Parameter Best fit 68% limits Best fit 68% limits

Ωbh
2 0.0221 0.0219+0.0003

−0.0003 0.0218 0.0219+0.0003
−0.0003

Ωch
2 0.118 0.120+0.003

−0.003 0.10 0.07+0.05
−0.02

H0 66 63+4
−2 65 67+5

−3

w -0.93 < −0.83 -0.91 < −0.85
ξ2 — — -0.08 −0.14+0.10

−0.08

τ 0.09 0.09+0.01
−0.01 0.08 0.09+0.01

−0.01

ns 0.962 0.957+0.007
−0.007 0.956 0.957+0.007

−0.007

ln(1010As) 3.08 3.09+0.02
−0.02 3.08 3.08+0.02

−0.03

In Tables 7.7 and 7.8 we further show the fitting results with Planck data alone by

fixing the helium abundance Yp to the BBN prediction and assuming massless neutrinos,

respectively. The fitting results are basically consistent with the result by fixing the helium

abundance to Yp = 0.24 and the total neutrino mass
∑
mν = 0.06eV , except that the

constraint for the coupling is much tighter.

Table 7.7 Best fit values and 68% c.l. constraints in a BBN consistency scenario.

ωCDM Planck Interacting Planck
Parameter Best fit 68% limits Best fit 68% limits

Ωbh
2 0.0220 0.0220+0.0003

−0.0003 0.0222 0.0220+0.0003
−0.0003

Ωch
2 0.119 0.120+0.003

−0.003 0.10 0.07+0.05
−0.02

H0 67 63+4
−2 67 68+5

−4

w -0.98 < −0.82 -0.89 < −0.85
ξ2 — — -0.07 −0.13+0.13

−0.05

τ 0.09 0.09+0.01
−0.01 0.09 0.09+0.01

−0.01

ns 0.960 0.960+0.007
−0.007 0.969 0.960+0.007

−0.007

ln(1010As) 3.10 3.10+0.02
−0.03 3.08 3.09+0.02

−0.03
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Table 7.8 Best fit values and 68% c.l. constraints with
∑
mν = 0eV

ωCDM Planck Interacting Planck
Parameter Best fit 68% limits Best fit 68% limits

Ωbh
2 0.02222 0.02202+0.00028

−0.00028 0.02210 0.02203+0.00028
−0.00028

Ωch
2 0.1180 0.1200+0.0027

−0.0026 0.1023 0.07124+0.04748
−0.02382

H0 66.56 63.49+4.46
−2.26 68.10 67.91+4.88

−3.52

w -0.9306 < −0.8177 -0.9480 < −0.8487
ξ2 — — -0.04789 > −0.17097
τ 0.09347 0.08904+0.01245

−0.01442 0.08597 0.08777+0.01269
−0.01399

ns 0.9675 0.9604+0.0072
−0.0073 0.9668 0.9603+0.0073

−0.0073

ln(1010As) 3.094 3.088+0.024
−0.027 3.082 3.086+0.025

−0.025

We can also turn off the CMB lensing. We show the result of fitting with Planck data

alone in Table 7.9. It is clear to see that turning off the CMB lensing will further reduce the

Hubble constant at present and put tighter constraint on the interaction.

From the above analysis, we can conclude that although the coupled dark energy model

I is fully compatible with the Planck measurements, it is not safe to argue that this model

predicts the Hubble constant with less tension compared with the Hubble Space Telescope

value.

Table 7.9 Best fit values and 68% c.l. constraints turning CMB lensing off.

ωCDM Planck Interacting Planck
Parameter Best fit 68% limits Best fit 68% limits

Ωbh
2 0.0202 0.0203+0.0003

−0.0003 0.0203 0.0203+0.0003
−0.0003

Ωch
2 0.126 0.125+0.003

−0.003 0.11 0.08+0.05
−0.02

H0 63 59+5
−3 63 64+5

−4

w -0.98 < −0.74 -0.89 < −0.81
ξ2 — — -0.061 > −0.192
τ 0.07 0.08+0.01

−0.01 0.06 0.08+0.01
−0.01

ns 0.936 0.934+0.008
−0.008 0.932 0.934+0.008

−0.008

ln(1010As) 3.06 3.06+0.02
−0.02 3.04 3.06+0.02

−0.03

Besides the interacting dark sector Model I, we would like to put constraints on other

coupled dark energy models listed in Table 7.1 from the recent measurements of the Cosmic

Microwave Background Anisotropies from the Planck satellite mission. We will also consider

the combined constraints for the general phenomenological interacting models between dark
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sectors from the Planck data plus the BAO measurements, SNIa and HST observational

data. In our analysis, we will choose our priors of different cosmological parameters as listed

in Table 7.3. We will allow the equation of state of dark energy to vary and choose the

helium abundance Yp from a BBN consistency scenario. We will take the relativistic number

of degrees of freedom Neff = 3.046, the total neutrino mass to
∑
mν = 0.06eV and the

spectrum lensing normalization to AL = 1. After running the MCMC, we list our fitting

results in Tables 7.10-7.13.

The constraints on the parameters and the best fit values for Model I are reported in

Table 7.10. The 1-D posteriors for the parameters Ωch
2, ω and ξ2 are shown at the top

row of Fig.7.2 and the main parameter degeneracies are shown in Fig.7.3. The presence of

a dark coupling is perfectly compatible with the Planck data set. The marginalized value

tells us ξ2 < 0. With the combined constraint by including other observational data, the

negative value of the coupling keeps, which shows that in this coupling model, there is a

lower value of the cold dark matter density today, since there is energy flow from dark

matter to dark energy. This direction of energy flow cannot alleviate the coincidence. As

shown in Fig.7.1, there is even shorter period for the energy densities of dark matter and dark

energy to be comparable. For the Hubble constant value, from the Planck data alone, H0 is

small in this interacting model, which is similar to that obtained in the ΛCDM case. This

interaction model between dark sectors cannot be of much help to relax the tension on the

Hubble parameter between Planck measurement and HST observation. After including other

observational data at low redshift, we find that the tension between the Hubble constant

measurements is alleviated.

Table 7.10 Cosmological parameters - Model I.

Planck Planck+BAO Planck+BAO+SNIa+H0
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

Ωbh
2 0.0221 0.0220+0.0003

−0.0003 0.0222 0.0220+0.0003
−0.0003 0.0221 0.0220+0.0002

−0.0002

Ωch
2 0.12 0.07+0.05

−0.02 0.11 0.06+0.04
−0.03 0.07 0.05+0.03

−0.03

H0 67 68+5
−3 68 69+2

−2 71 71+1
−1

w -0.97 −0.89+0.03
−0.12 -0.9934 −0.91+0.02

−0.08 -0.99 −0.94+0.02
−0.06

ξ2 -0.00 −0.13+0.13
−0.05 -0.02 −0.15+0.07

−0.09 -0.14 −0.18+0.05
−0.08

τ 0.09 0.09+0.01
−0.01 0.10 0.09+0.01

−0.01 0.09 0.09+0.01
−0.01

ns 0.960 0.960+0.007
−0.007 0.964 0.961+0.006

−0.006 0.964 0.960+0.006
−0.006

ln(1010As) 3.09 3.09+0.02
−0.03 3.11 3.09+0.02

−0.03 3.10 3.09+0.02
−0.03
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Now we present the fitting result for the coupling Model II in Table 7.11, where the

interaction between dark sectors is still proportional to the energy density of dark energy

but with equation of state of dark energy smaller than −1. From the Planck data analysis

alone, for this coupled dark energy model, using our cosmological parameters prior listed in

Table 7.3, we obtain the Hubble constant value significantly larger than that in the standard

ΛCDM case, H0 = 82.69+9.78
−11.9 km · s−1 ·Mpc−1. This is different from what we observed in

the fitting result of Model I, where the H0 is much smaller and consistent with the ΛCDM

case. The lower fitting range of the H0 in Model II is consistent with the observations in the

low redshift. We have explored the degeneracy between the Hubble value and the equation

of state of dark energy and found that smaller equation of state of dark energy leads to

higher value of the Hubble parameter. The coupling constant ξ2 is found to be positive,

which shows that there is an energy flow from dark energy to dark matter. This is required

to alleviate the coincidence problem, because with this interaction there is longer period for

the energy densities of dark matter and dark energy to be comparable, which was illustrated

in the Fig.7.1. Combined with other observational data, we show that a combined analysis

provides significant evidence for this coupled dark energy with positive non-zero value of the

coupling parameter, consistent Hubble constant and equation of state of dark energy. The

1-D posteriors for the parameters Ωch
2, ω and ξ2 are shown in the second row of Fig.7.2 and

the main parameter degeneracies are shown in Fig.7.4.

Table 7.11 Cosmological parameters - Model II.

Planck Planck+BAO Planck+BAO+SNIa+H0
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

Ωbh
2 0.0220 0.0221+0.0003

−0.0003 0.0222 0.0220+0.0003
−0.0003 0.0221 0.0220+0.0002

−0.0002

Ωch
2 0.131 0.133+0.008

−0.012 0.132 0.135+0.008
−0.011 0.143 0.134+0.007

−0.012

H0 89 83+10
−12 71 71+2

−3 70 71+1
−1

w -1.7 −1.5+0.3
−0.3 -1.17 −1.19+0.15

−0.07 -1.18 −1.19+0.08
−0.07

ξ2 0.03 0.04+0.01
−0.04 0.03 0.05+0.02

−0.04 0.08 0.05+0.01
−0.05

τ 0.09 0.09+0.01
−0.01 0.08 0.09+0.01

−0.01 0.08 0.09+0.01
−0.01

ns 0.961 0.960+0.007
−0.007 0.960 0.958+0.006

−0.007 0.962 0.959+0.006
−0.006

ln(1010As) 3.08 3.09+0.02
−0.03 3.08 3.09+0.02

−0.03 3.08 3.09+0.02
−0.03

Now we turn our discussion to the coupled dark energy Model III, where the interaction

is proportional to the energy density of dark matter. To ensure stability of the curvature

perturbation, in this model if the equation of state of dark energy is constant, it has to be
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smaller than −1 [29]. Looking at the new constraints on this coupled dark energy model

from the recent measurements of CMB from the Planck satellite mission alone in Table 7.12,

we find that the Hubble constant value is consistent with low redshift observations, but

it is much higher than that of the ΛCDM result. The coupling constant is more tightly

constrained in this coupled dark energy model than those in Models I and II, which is in

agreement with the findings in the WMAP constraints [31, 197]. The value of the coupling

parameter ξ1 is small positive, which meets the requirement to alleviate the coincidence

problem. The evolution of the ratio between energy densities of dark matter and dark

energy with this small positive coupling was shown in the Fig.7.1, which has a longer period

for the dark matter and dark energy energy densities to be comparable when ξ is positive

and has the attractor solution with the ratio between dark energy and dark matter energy

densities r ∼ constant in the past. We also consider the combined constraints from the

Planck data plus other measurements. The results are listed in Table 7.12, which shows

stronger evidence for this coupled dark energy model with small positive coupling. We plot

the 1-D posteriors for the parameters Ωch
2, ω and ξ in the third row of Fig.7.2 and show the

main parameter degeneracies in Fig.7.5.

Table 7.12 Cosmological parameters - Model III.

Planck Planck+BAO Planck+BAO+SNIa+H0
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

Ωbh
2 0.0222 0.0226+0.0004

−0.0005 0.0225 0.0224+0.0003
−0.0004 0.0223 0.0223+0.0003

−0.0004

Ωch
2 0.126 0.129+0.005

−0.009 0.125 0.125+0.003
−0.003 0.124 0.123+0.002

−0.002

H0 80 79+12
−12 76 75+3

−5 72 72+1
−1

w -1.6 −1.8+0.5
−0.3 -1.5 −1.4+0.3

−0.1 -1.30 −1.25+0.09
−0.07

ξ1 0.002 < 0.005 0.002 0.002+0.001
−0.001 0.0018 0.0014+0.0006

−0.0012

τ 0.08 0.09+0.01
−0.01 0.09 0.09+0.01

−0.01 0.08 0.09+0.01
−0.01

ns 0.958 0.956+0.008
−0.008 0.960 0.959+0.006

−0.007 0.963 0.960+0.006
−0.006

ln(1010As) 3.07 3.08+0.02
−0.03 3.095 3.08+0.02

−0.03 3.07 3.09+0.02
−0.03

Finally we present the fitting results for the coupled dark energy Model IV, where we

consider the interaction between dark energy and dark matter is proportional to the energy

density of the total dark sectors. In order to ensure the stability of the curvature perturba-

tion, for the constant equation of state of dark energy, it has to be in the phantom range.

This was disclosed in [29]. As observed in the WMAP fitting results, this type of interaction

has very similar constraints to the Model III [31,197]. Confronting the model to the Planck
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data alone and the combined observational data, we list the constraints in Table 7.13. We

show the 1-D posteriors for the parameters Ωch
2, ω and ξ in the fourth row of Fig.7.2 and

plot the main parameter degeneracies in Fig.7.6. From the Planck data alone, we again see

that for this interacting dark energy model, the Hubble constant is much higher than that

of the ΛCDM model. This is consistent with the observations from Model II and Model III.

The coupling constant is more tightly constrained in Model IV to be very small but positive,

what is needed to alleviate the coincidence problem with longer period for the dark energy

and dark matter energy densities to be comparable in the expansion of the universe as shown

in Fig.7.1. The Model IV has an attractor solution with r ∼ constant in the future. In the

joint constraints, by including other observational data, we find that the coupled dark energy

model IV is fully compatible with astronomical observations. It is a viable model.

Table 7.13 Cosmological parameters - Model IV.

Planck Planck+BAO Planck+BAO+SNIa+H0
Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

Ωbh
2 0.0205 0.0204+0.0003

−0.0003 0.0204 0.0204+0.0003
−0.0003 0.0205 0.0206+0.0002

−0.0003

Ωch
2 0.125 0.127+0.003

−0.003 0.125 0.126+0.002
−0.002 0.124 0.124+0.002

−0.002

H0 80 82+12
−10 70 75+3

−5 72 71+1
−1

w -1.6 −1.8+0.4
−0.4 -1.3 −1.5+0.2

−0.1 -1.30 −1.29+0.08
−0.07

ξ1 0.0001 < 0.0005 0.0000 < 0.0004 0.0001 < 0.0003
τ 0.09 0.08+0.01

−0.01 0.07 0.08+0.01
−0.01 0.07 0.08+0.01

−0.01

ns 0.930 0.931+0.007
−0.007 0.929 0.933+0.006

−0.006 0.934 0.937+0.006
−0.006

ln(1010As) 3.09 3.07+0.02
−0.02 3.04 3.07+0.02

−0.02 3.06 3.06+0.02
−0.02

7.5 Conclusions

In this chapter we have presented cosmological constraints on general phenomenological dark

matter-dark energy interaction models from the new CMB measurements provided by the

Planck experiment. We have found that a dark coupling interaction is compatible with

Planck data. For Model I, the coupling parameter is weakly constrained to negative values

by Planck measurements, while for the other three models the coupling constants are all

positive from Planck data constraints. The positive coupling indicating that there is energy

flow from dark energy to dark matter, as required to alleviate the coincidence problem and

to satisfy the second law of thermodynamics [188]. Thus Model II, III and IV are very
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reassuring in the light of the coincidence problem.

It was claimed that Model I gives a larger Hubble parameter compatible with the HST

value [211]. However, this heavily depends on the prior of Ωch
2, the fixed value of ω they

chose and other factors. If we enlarge the prior of Ωch
2 and allow ω to vary in the quintessence

range, the H0 constrained in Model I can be lower than the HST value and is consistent with

the value in the ΛCDM case. Thus, the coupled dark energy Model I cannot be counted to

resolve the tension between the Planck and the HST measurements of the Hubble parameter.

After examining the fitting results for the other phenomenological coupled dark energy

models, we find that the dark interaction in Models II, III and IV can give a larger Hubble

parameter. There is degeneracy between the Hubble parameter and the equation of state of

dark energy. If future data can constrain ω closer to −1 from below, the fitting result of the

Hubble parameter can be more consistent with the HST value. Thus Models II, III and IV

have the possibility to relax the tension of the Hubble parameter between the Planck and

the HST measurements.

We have also considered the combined constraints from the Planck data plus other ob-

servations. These analyzes have provided significant evidence that the phenomenological

coupled dark energy models are viable. Taking into account all data sets, it appears in the

data fittings that Model I shows the most significant departure from zero coupling, although

it does not help to alleviate the coincidence problem.

The weak point of these models is the fact that the equation of state is fixed, not depend-

ing on time. In a more realistic model, we expect it to be time dependent (or else, redshift

dependent). In order to probe such a statement we need a model grounded on cosmological

fields rather than on simple phenomenology, e.g. coupled quintessence models [218]. This is

currently under investigation.
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Fig. 7.2 The likelihood of cold dark matter abundance Ωch
2, dark energy EoS ω and couplings

ξ for the four models.
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Fig. 7.3 2-D distribution for selected parameters - Model I.
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Fig. 7.4 2-D distribution for selected parameters - Model II.
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Fig. 7.5 2-D distribution for selected parameters - Model III.
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Fig. 7.6 2-D distribution for selected parameters - Model IV.
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Chapter 8

Evidence for interacting dark energy

from BOSS

8.1 Introduction

One of the biggest challenges in cosmology and astrophysics nowadays is to understand

the nature of the two most abundant components of the Universe: dark energy and dark

matter. These are usually described as two independent components where dark matter is

responsible for most of the nonrelativistic matter in the Universe and where dark energy is

responsible for the late time acceleration of our Universe, which is described by a cosmological

constant in the Λ-cold-dark-matter (ΛCDM) model. This standard model is widely used to

describe the cosmological evolution of the Universe [174], and it fits very well the current

observational data. However, this model has some theoretical and observational challenges

(see, e.g., Ref. [219]) that open the way for alternative models of dark energy.

Recently, the Baryon Oscillation Spectroscopic Survey (BOSS) experiment of the Sloan

Digital Sky Survey (SDSS) Collaboration presented new evidence against the ΛCDM model

[169] based on the measurements of the baryon acoustic oscillations (BAO) flux-correlation

function of the Lyman-alpha (Ly-α) forest from 158, 401 quasars at high redshifts (2.1 ≤
z ≤ 3.5). Comparatively to previous experiments, they provide the line of sight and tan-

gential BAO components, and this allows one to determine the angular distance and the

Hubble distance independently. Their results indicate a deviation from ΛCDM of the Hub-

ble parameter and of angular distance at an average redshift of 2.34 (roughly 2.5σ and 2.2σ

2017/06/25
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deviations from Planck+Wilkinson Microwave Anisotropy Probe (WMAP) polarization data

and WMAP9+ACT+SPT, respectively). Assuming a ΛCDM Universe, this implies a nega-

tive energy density for the dark energy component, ρDE(z=2.34)
ρDE(0)

= −1.2 ± 0.8, which is 2.5σ

away from the expected value. We point out that BOSS is not optimized to observe quasars

at such high redshifts. However, if more data or other experiments show that this discrepancy

stands, then it would indicate that ΛCDM needs to be revised. Its simplest generalization

would consist in allowing for dynamical dark energy (see Ref. [21] for a review), but this

would not be enough to fix this discrepancy. In dynamical dark energy models, all matter

contents are individually conserved, and so, agreeing with the BOSS result for H(z = 2.34)

would require a negative energy density for dark energy [169]. This may lead one to study

very exotic forms of dark energy.

A simpler solution is to consider interacting dark energy. Indeed, dark energy could couple

to gravity, neutrinos, or dark matter since its effects have only been detected gravitationally.

Interaction with baryonic matter (or radiation) has very tight constraints from observations

[220] and must be very small or negligible. In this sense, we are interested in models in which

dark energy interacts with the dark matter component. In a field theory description of those

components, this interaction is allowed and even mandatory [33, 208]. However, the main

motivation to introduce such an interaction is to alleviate the coincidence problem, which

can be done given an appropriate interaction.

Since the nature of the dark sector is unknown, the study of these coupled dark energy

models is challenging. Many different models of this interaction have been studied in the

literature from the point of view of either interacting field theory or phenomenology (for a

classification of those models, see Ref. [26]). As an example of phenomenological study, one

can consider holographic dark energy or a quintessence field interacting with a dark matter

fluid [27–31]. There are also attempts to develop Lagrangian models where one postulates

an interaction between the scalar field, playing the role of dark energy, and a fermionic field,

playing the role of dark matter [32–35] (see, however, Ref. [221]).

Recently, there have been studies of interacting dark energy models in light of new probes

[222–225]. However, we note that there has been only little exploration of the consequences

of the results from BOSS in the literature [226–228], and these studies do not explore the

idea of interacting dark energy and dark matter. Thus, it would be interesting to see what

the phenomenological implications from BOSS for interacting dark energy are. Since this

model allows for one of the components to decay into the other, we claim that energy flow
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from dark energy to dark matter implies a smaller amount of dark matter in the past, thus

accommodating for the value of the Hubble parameter at z = 2.34 found by BOSS and still

maintaining the cosmology today close to ΛCDM. For a first test, we perform a comparison

by showing that the observational value of the Hubble parameter from quasars given by the

BOSS Collaboration, H(2.34) = 222 ± 7 km s−1 Mpc−1, is consistent with the interacting

model with a small positive coupling constant. This comparison serves to indicate that the

interaction is able to accommodate the BOSS Collaboration result. After that, we perform

a full Markov chain Monte Carlo (MCMC) analysis using the new BOSS data together with

the Planck data for the interacting model. We show that the constraints on H(z = 2.34)

and DA(z = 2.34) for the interacting model are compatible with the values obtained by the

BOSS team, showing a slightly better concordance when compared to ΛCDM.

8.2 Model

8.2.1 Theoretical setup

Given the energy conservation of the full energy-momentum tensor, we can suppose that

the fluid equations representing dark energy (DE) and dark matter (DM) are not conserved

separately. In a Friedmann-Robertson-Walker Universe, we take

ρ̇DM + 3HρDM = QDM = +Q ,

ρ̇DE + 3H (1 + ωDE) ρDE = QDE = −Q , (8.1)

and all other components follow the standard conservation equations. In the above equations,

ρDM and ρDE are the energy densities for dark matter and dark energy, respectively; ωDE =

pDE/ρDE is the equation of state (EoS) of dark energy, considered constant in this work;

and Q indicates the interaction between dark energy and dark matter. One can take the

Taylor expansion of the general interaction term Q(ρDM, ρDE), and thus, it can be represented

phenomenologically as Q ' 3H(ξ1ρDM + ξ2ρDE), where the coefficients ξ1 and ξ2 are to be

determined by observations [31, 194]. Following our definition, if Q > 0, then dark energy

decays into dark matter, and for Q < 0, the energy flow is in the opposite direction. The

first case is consistent with the requirement that the energy density for dark energy must be

of the same order as the one for dark matter for a longer period of time in order to alleviate

the coincidence problem.



8 Evidence for interacting dark energy from BOSS 121

The validity of the phenomenological interacting dark energy model was studied in Ref.

[29], where it was found that the curvature perturbations can always be stable when the

interaction is proportional to the energy density of dark energy, i.e. when ξ1 = 0 while

ξ2 6= 0, except when ω = −1, which represents a central singularity in the cosmological

perturbation equations. This is true for a constant EoS within the ranges −1 < ωDE < 0 (we

call this model I) and ωDE < −1 (we call this model II). If the interaction term is proportional

to the dark matter energy density, i.e. ξ1 6= 0 while ξ2 = 0, then the curvature perturbations

are only stable when ωDE < −1 (we call this model III). The models are summarized in

Table 8.1.

Table 8.1 Interacting dark energy models considered in this chapter.

Model Q DE EoS
I 3ξ2HρDE −1 < ω < 0
II 3ξ2HρDE ω < −1
III 3ξ1HρDM ω < −1

In this framework, the Friedmann equations can be written as

H2(z) =
8πG

3
[ρDE(z) + ρDM(z) + ρb(z)] , (8.2)

Ḣ = −4πG [ρDM(z) + ρb(z) + (1 + ωDE)ρDE(z)] , (8.3)

where we are considering a Universe composed of only dark energy, dark matter, and baryons

(ρb). We will use these equations to construct the Hubble parameter for each of the inter-

acting models and compare it with the Hubble parameter inferred from the BOSS quasar

data in the next subsection.

For models I and II, the energy densities for dark energy and dark matter behave as [30]

ρDE = (1 + z)3(1+ωDE+ξ2)ρ0
DE ,

ρDM = (1 + z)3

×
{
ξ2

[
1− (1 + z)3(ξ2+ωDE)

]
ρ0

DE

ξ2 + ωDE

+ ρ0
DM

}
, (8.4)

where the superscript 0 indicates quantities measured today. The baryonic density is given

by the standard expression, proportional to (1 + z)3. For model III, the evolution of the
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energy densities is given by [30]

ρDE = (1 + z)3(1+ωDE)

(
ρ0

DE +
ξ1ρ

0
DM

ξ1 + ωDE

)
− ξ1

ξ1 + ωDE

(1 + z)3(1−ξ1)ρ0
DM ,

ρDM = ρ0
DM(1 + z)3−3ξ1 . (8.5)

One can see from these equations that if there is an energy flow from dark energy to

dark matter (i.e., if the coupling constant is positive), then the energy density for dark

matter is always smaller than what one would expect in the standard ΛCDM model. Since

ρDM is the dominant contribution in the Friedmann equations at higher redshifts and since

observations indicate that the Universe is well explained by the ΛCDM model at low redshifts

(e.g., Ref. [174]), one can see from Eq. (8.3) that the interaction implies a smaller Hubble

parameter in the past in comparison with ΛCDM, when H0 is held fixed and for a positive

coupling constant.

Furthermore, this mildly helps alleviate the coincidence problem (the fact that we do not

understand why the energy densities of dark energy and dark matter are so close today). As it

can be seen in Ref. [229], a positive coupling constant implies that the quantity r ≡ ρDM/ρDE

decreases at a slower rate in the interacting model than in the ΛCDM model. This makes

the energy density of dark energy closer to that of dark matter in the past, giving us a better

understanding of their closer values today.

8.2.2 Hubble parameter at z = 2.34

In order to gain some intuition before performing the proper statistical analysis, let us see

whether the measured value of the Hubble parameter by the BOSS Collaboration, H(2.34) =

222 ± 7 km s−1 Mpc−1, can be accommodated by the phenomenological interacting models

introduced above. From this perspective, we compare the Hubble parameter constructed

theoretically with its observational value at z = 2.34.

In order to compute the value of the Hubble parameter from Eqs. (8.2), (8.4), and (8.5),

one needs several cosmological parameters such as H0, Ω0
DE, Ω0

DM, and Ω0
b. The standard

ΛCDM parameters found from the Planck analysis were used by the BOSS Collaboration



8 Evidence for interacting dark energy from BOSS 123

−0.05 0.00 0.05 0.10 0.15

ξ

205

210

215

220

225

230

235

240

H
(z

=
2.

34
)

Models I and II

Model III

ΛCDM

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20 0.25

ξ

205

210

215

220

225

230

235

240

H
(z

=
2.

34
)

Model I

Model II

Model III

ΛCDM

Fig. 8.1 We plot H(z = 2.34) as a function of the coupling ξ (corresponding to ξ2 for models I and
II and to ξ1 for model III). The interacting models correspond to the colored lines since they depend
on the free parameter ξ, the coupling constant. The left panel represents the Hubble parameter
calculated using the cosmological parameters from Table 8.2 and with ωDE = −1. The right panel
represents H(2.34) using the parameters found in Ref. [38] (including ωDE 6= −1; see Table X for
model I, Table XI for model II, and Table XII for model III) obtained from Planck+BAO+SnIa+H0.
The dashed gray line is the BOSS measured value of H(2.34) = 222 ± 7 km s−1 Mpc−1, and the
shaded areas represent 1σ and 2σ deviations from this average. For the sake of comparison, the
green star represents H(2.34) = 238 km s−1 Mpc−1, the value expected for ΛCDM given the
cosmological parameters in Table 8.2.

(listed in Table 8.2). We first use these parameters and the dark energy EoS set to1 ωDE = −1

to construct H(z), and we show the resulting Hubble parameter at z = 2.34 with respect

to the coupling constant ξ in the left panel of Fig. 8.1. Alternatively, in the right panel of

Fig. 8.1, we use the adjusted cosmological parameters found in Ref. [38] (including ωDE 6=
−1) from the analysis of the interacting models using Planck, BAO, type Ia supernovae

(SnIa), and H0 data. The goal of using different sets of cosmological parameters is to see

if the parameters adjusted to the interacting models yield a different prediction than the

parameters adjusted to ΛCDM.

We recall that the BOSS Collaboration measured H(2.34) = 222± 7 km s−1 Mpc−1, and

this is indicated by the dashed gray line and by the 1σ and 2σ shaded areas in Fig. 8.1. In

comparison, standard ΛCDM cosmology predicts H(2.34) ≈ 238 km s−1 Mpc−1 when using

the cosmological parameters of Table 8.2. This is represented by the green star in Fig. 8.1,

which lies outside the 2σ measurement from BOSS. In the left panel of Fig. 8.1, all the

1The interacting models are not well defined at the perturbative level if ωDE = −1, so we view ωDE = −1
as a limit in this case.
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Table 8.2 Cosmological parameters used by the BOSS Collaboration [169].

Parameter Best fit σ
h 0.706 0.032

Ω0
DMh

2 0.143 0.003
Ω0

DE 0.714 0.020
Ω0

bh
2 0.02207 0.00033

curves that correspond to interacting dark energy pass through the green star at ξ = 0. This

is because when the coupling constant vanishes there is no interaction left, and we recover

ΛCDM (since we set ωDE = −1). We also note that model I and model II correspond to

the same curve, because in the limit where ωDE = −1, they correspond to the same model

(recall Table 8.1). In the right panel, we see that allowing for ωDE different than −1 can

significantly alter the prediction for H(z = 2.34). Yet, all the curves can be in accordance

with the Hubble parameter inferred by BOSS given a nonzero coupling constant. Comparing

the left and right panels for model I, we notice that different cosmological parameters require

a different sign for the coupling constant ξ in order to match the BOSS result. This indicates

that model I may not be fully robust at explaining the observed value of H(z = 2.34) from

BOSS. For models II and III, we see that the theory can easily be within the 1σ shaded

area for a positive coupling constant in both panels. We notice that in order for the H(2.34)

theoretical value to match the BOSS measurement, the values of the coupling constant

have to be larger in the right panel where the cosmological parameters were adjusted to

Planck+BAO+SnIa+H0 data using the interacting models.

At this point, Fig. 8.1 provides us with indications that a positive coupling constant

allows one to explain in a very simple way a smaller value of the Hubble parameter in the

past, which is not possible with ΛCDM or dynamical dark energy and without requiring a

very exotic dark energy component. The fact that we obtain a positive coupling constant

for some models is interesting, since it is precisely positive values that help alleviate the

coincidence problem. Thus, this model gives a natural explanation for the energy densities

of the dark components at low redshifts and also at high redshifts since they may explain

the BOSS data.

This gives us evidence that the interacting dark energy model has the required features to

be able to explain the different cosmological evolution shown by the BOSS Collaboration at

higher redshifts. However, this difference from ΛCDM dynamics is also encoded in the
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angular distances, as inferred by the BAO measurement. We now compare the results

for these parameters by performing a global fit analysis of the interacting model with the

currently available data.

8.3 Analysis

8.3.1 Methodology

Now that we see some evidence that the interacting dark energy models can explain the

deviation from ΛCDM observed by BOSS, we perform a Bayesian statistical analysis of those

models with the Planck and BOSS Ly-α quasar data. We wish to compare the interacting

dark energy models presented here against ΛCDM and test their predictions with the addition

of the new BOSS data. In order to achieve this, we perform a global fit by running the

CosmoMC package [161], a publicly available code that performs an MCMC parameter

sampling. To include the interaction between dark energy and dark matter, we modify the

Boltzmann code CAMB [160] by adding the coupling constants ξ2 for model II and ξ1 for

model III and by adding the constant dark energy EoS to the baseline ΛCDM parameters

used by Planck [174]. From now on, we will omit model I from the analysis since this model

showed us it was not very good to explain the new BOSS data. Also, this model does not

help alleviate the coincidence problem. Model I will be explored in more detail in a follow-up

paper.

The goal of this work is to compare the results of our global fit of the cosmic distances and

expansion rates for the interacting models with the results obtained by the BOSS Collabo-

ration. We also want to derive parameter constraints using cosmic microwave background

(CMB) and BAO data, testing the sensitivity of the parameters and in the total goodness

of fit when we include the new BAO data from higher redshifts. The novelty of this work is

in the BAO data that we use. The BOSS Collaboration was the first team to measure the

BAO from the autocorrelation of the quasar Ly-α forest for higher redshifts. We use the

autocorrelation measurements from the DR11 catalog from the BOSS experiment of SDSS

which contains 158, 401 quasars in the redshift range 2.1 ≤ z ≤ 3.5 [169]. From the same

volume, cross-correlation of quasars with the Ly-α absorption forest [170] was obtained for

the same redshift range. We are able to use both sets of data, since those can be considered

as independent, given that the fluctuations in the measurements are dominated by different
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sources of systematics and not by cosmic variance. This analysis can be made by using the

baofit software provided by the BOSS Collaboration and the χ2 surfaces provided for each

one of those measurements2.

For our global fit of the interacting dark energy models, we used the Planck 2013 TT

power spectrum in both the low-` (2 ≤ ` < 50) and high-` (50 ≤ ` ≤ 2500) regimes.

Together with the Planck data, we include the polarization measurements from the nine-

year WMAP [165], the low-` (` < 32) TE, EE, and BB likelihoods. In our first analysis,

to illustrate the tension in the distance measurements between the BOSS measurement and

our global fit using Planck data, we combine the autocorrelation and cross-correlation χ2

surfaces provided by the BOSS Collaboration.

We also perform a joint analysis, where we include in the CosmoMC analysis the like-

lihood of the BOSS quasar Ly-α forest at z = 2.34. We can combine this new BAO data

set with the CMB data sets since they are completely independent. This was made in a

very conservative way by inserting the two sets of Gaussian likelihoods constructed with the

best fit values of (DA(z = 2.34)/rd, DH(z = 2.34)/rd) for the autocorrelation and cross-

correlation given in Refs. [169,170]. This appears to be a good choice, given that the study

of BAO from Ly-α is a novel field3.

We used flat priors within the Planck 2013 ranges for all the “vanilla” ΛCDM parameters

[174]. The coupling constants4 and dark energy EoS also received flat priors with ξ2 ∈ [0, 0.4[

for model II, ξ1 ∈ [0, 0.01] for model III, and ω ∈ [−2.5, −1.001] for both models. We recall

that we cannot allow for ω = −1 since this represents a singularity in the perturbation

equations. The priors are summarized in Table 8.3.

Table 8.3 Priors for the parameters of the interacting dark energy models. We recall that the
definition of the different models is summarized in Table 8.1.

Model Prior on ω Prior on ξ
II [-2.5 , -1.001] [0 , 0.4[
III [-2.5 , -1.001] [0 , 0.01]

2Available at http://github.com/deepzot/baofit/.
3Although this is a novel field, Ref. [169] claims that the results are robust according to a consistency

check using mock catalogs.
4The coupling constants are expected to be small and positive, for models II and III, from the previous

analysis of Ref. [38]. This was also indicated by the analysis in Fig. 8.1. These results motivated our choice
of priors for the interacting dark energy parameters.
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8.3.2 Results

We wish to compare the constraints in DA(z = 2.34)/rd × DH(z = 2.34)/rd found by

the BOSS Collaboration with the global fits of the interacting dark energy models. We

present these results in Fig. 8.2. The black contour curves show the combined contours

from the BOSS data for the autocorrelation and cross-correlation5, given that those data are

independent.

First, we perform the analysis using only CMB data for the ΛCDM and interacting dark

energy models. The constraints are shown by the blue contours in Fig. 8.2 for models II and

III. We show for comparison the ΛCDM best fit values (green lines), where we obtain results

compatible with Ref. [169], which confirms that ΛCDM differs from the BOSS combined

contours by at least 2σ. When we test the interacting models (blue contours), this difference

is reduced, and we can see that the contours overlap with the 2σ region of the BOSS combined

data. Model II, for which we find6 DH/rd = 8.72(8.73)0.09
0.05 and DA/rd = 11.69(11.63)± 0.08,

shows the biggest overlap with the BOSS results (1.5σ and 1.7σ for DH/rd and DA/rd,

respectively). The very elongated contours of model III imply that this conclusion is less

strong in this case.

Although we show an apparent better concordance in comparison with the marginal

overlap that ΛCDM presents for DA(z = 2.34)/rd×DH(z = 2.34)/rd, this does not represent

an improvement in the fit, since the addition of extra parameters in the model can be the

responsible for that. We can see the same type of not-statistically-significant improvement

for ωCDM and other dynamical dark energy models in Ref. [226]. If you compare the

constraints of our model II with the ones for ωCDM at z = 2.34 (see Fig. 7 of Ref. [226]),

you can see that those contours almost overlap, showing a similar concordance with the new

BOSS data.

Following that, we perform a joint analysis of the BOSS quasar Ly-α data together with

the CMB data. We wish to compare the improvement of the fit when including the new

BOSS data. Our results indicate that ΛCDM is not sensitive to the inclusion of this data set

(BOSS quasar Ly-α data), and therefore it cannot accommodate the change in the Hubble

parameter at high redshift. This shows a tension between those data sets.

The global fit of all the parameters of the interacting models reveals that the best fit values

5These contours are the same as the black contour curves that one can find in Fig. 13 of Ref. [169].
6Best fit values are presented inside brackets.
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Fig. 8.2 Plot of the 68.3% and 95.5% likelihood contours in DA(z = 2.34)/rd×DH(z = 2.34)/rd

comparing the BOSS combined (autocorrelation and cross-correlation) contour in black with the
results for the interacting models from the runs using Planck data in blue. Interacting model II is
shown in the left panel and model III in the right panel. The green lines show the best fit values
for ΛCDM.

of the six vanilla ΛCDM parameters are compatible with the ones obtained by Planck [174],

except for model I, where the values for the density of matter show they are not in agreement

with the Planck value. We use ∆χ2
eff to quantify the improvement in the maximum likelihood

of the interacting dark energy models using only Planck data in comparison to when we

combine it with the likelihood from the BOSS team quasar data. We found ∆χ2
eff to be−0.04,

−2.88, and −1.85, for models I, II and III, respectively. Although these improvements are

not statistically significant, they indicate that the interacting models, and especially model

II, are mildly favored by the data. Another test that also shows that the improvement

between the runs is not statistically significant is the reduced χ2, computed for all models.

This test takes into account that the interacting dark energy models have two extra degrees

of freedom, in comparison with the ΛCDM model. The difference in the reduced χ2 between

the interacting models and ΛCDM is not significant; e.g., model II presents the biggest

“improvement” of the order of 10−5. However, one needs to be very careful when using an

improvement diagnostic like ∆χ2
eff since the best fit values in CosmoMC may not be fully
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trustworthy and since this result could come from statistics overfitting the noisy data [230].

Fig. 8.3 Contour plot of the EoS for dark energy (ω) vs the coupling constant between dark energy
and dark matter (ξ). In purple, we present the interacting model II, and in gray, we present the
interacting model III fitted to the Planck data. The cosmological constant Λ of ΛCDM corresponds
to ω = −1, and it is depicted by the dashed black horizontal line.

In the MCMC analysis of the interacting models, we also obtained the adjusted values of

the coupling constants. As was shown in Ref. [38], using only the Planck data is not sufficient

to fully constrain the coupling constants. We note that we obtain the same result here, even

with the inclusion of the BOSS quasar data: we find ξ2 < 0.045 (0.048) for model II and

ξ1 < 0.0016 (0.0015) for model III. The upper bound on the coupling constant for model II

is close to the ones predicted in Sec. II-B (see Fig. 8.1). Indeed, the corresponding Hubble

parameters that result from the MCMC analysis are H(2.34) = 232(231)± 2 km/s/Mpc for

model II and H(2.34) = 234(234)2
3 km/s/Mpc for model III, a little bit more than 1σ away

from the BOSS result7, resulting in a reduced tension compared to ΛCDM. This indicates

that the interacting models are good candidates to explain the observed deviation from

ΛCDM from high-z BAO probes. The upper bound on the coupling constant for model III is

7We would like to stress that H(z) is a model-dependent quantity, while DH/rd is not. It is in this
context that we compare our results with BOSS. However, since we find that the fitted values for rd are
approximately equal to what one expects in ΛCDM (given the use of the Planck data), we can still compare
the Hubble parameter values for the interacting models with the BOSS result.
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much smaller than expected from Fig. 8.1. Still, it represents an improvement over ΛCDM in

explaining the BOSS results as seen from Fig. 8.2, although to a smaller extent than model

II.

The upper bounds found for the coupling constants are compatible with small positive

values. Although we cannot exclude the possibility that the coupling constants are zero with

the data set used, we can see from the constraints obtained for the EoS of dark energy that

our models are not consistent with ΛCDM. The EoS for dark energy obtained in the MCMC

analysis are the following: considering only Planck data, ω = −1.51(−1.55)+0.32
−0.30 for model

II and ω = −1.75(−1.668)+0.46
−0.29 for model III. We can also see the constraints in the ω × ξ

plot, presented in Fig. 8.3. The dashed black horizontal line represents the value of the dark

energy EoS for ΛCDM, ω = −1. These contours show a small preference for ω < −1 rather

than ω = −1 given the priors, ω = [−2.5 , −1.001], with model II showing a slightly tighter

constraint than the prior range. This result should be interpreted carefully since our prior is

very close to −1 (but it is not including −1), and there can be boundary effects that might

not be taken into account. Also, we have a large degeneracy between ω and ξ.

A more detailed analysis will be presented in a follow-up paper where we will combine

this analysis with different cosmological probes, aiming at fully constraining the coupling

constant of the interacting models.

8.4 Conclusions

In this chapter, we explored the consequences of interacting dark energy in light of the recent

results by the BOSS experiment. The BOSS data indicate that the Hubble parameter at

z = 2.34 is smaller than what one would expect from the standard ΛCDM model, something

that cannot be explained by simple dynamical dark energy models such as quintessence. Our

results suggest that interacting dark energy can naturally explain the BOSS data without

introducing exotic forms of dark energy., although further studies are necessary.

We tested three different phenomenological models of interacting dark energy. First, we

computed the theoretical value of the Hubble parameter at z = 2.34 for different sets of

cosmological parameters. Models II and III showed they were in good agreement with the

observations for a small positive coupling constant. Furthermore, such a positive coupling

constant can help alleviate the coincidence problem. Model I was omitted from the analysis

since it did not contribute to reducing the tension with the BOSS data, and also, in general,
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it does not help relieve the coincidence problem.

We then performed a global fit of those models given the Planck 2013 and BOSS quasar

Ly-α data. This showed that models II and III present a bigger overlap with the BOSS

Collaboration results than what ΛCDM achieves. However, this improvement and also the

improvement in the χ2 when we made the joint analysis with CMB and BOSS likelihoods do

not seem to justify the inclusion of extra parameters in the model as done by the interacting

models. In this analysis, we can also see from the EoS obtained that those models are

marginally different than ΛCDM. Yet, the results still suggest that the interacting dark

energy models presented in this chapter can be used to explain the deviations from ΛCDM

found in high-z BAO, and they represent a simpler solution than invoking exotic dark energy

models.

In order to further constrain interacting dark energy models, one could refine the analysis

done in this work by using more data sets and by combining the BOSS data with other

observations. A more detailed analysis of the global fit of those models with the inclusion

of BOSS data is the topic of a follow-up paper that is currently in preparation. We also

need improvements in the BAO data at high redshifts. For models that allow the Hubble

parameter to change with time such as interacting dark energy and other dynamical dark

energy models (e.g., see Ref. [226]), we can see that the inclusion of the BAO data set changes

considerably the results, indicating that this new data set is robust. However, with the use

of only high-redshift BAO data, we are still not able to statistically differentiate between

models of dark energy. New large scale structure surveys, like the JPAS telescope [36],

will be able to reproduce and improve the BAO measurements at high redshifts since this

instrument is supposed to be optimized to measure quasars at high redshifts compared to

previous experiments [231]. Other large scale structure new windows of observation, like the

21 cm emission line from neutral hydrogen, will also contribute in the future for constraining

dark energy [232]. Interacting dark energy models might also help alleviate the tension

between other large-scale structure data sets and Planck such as, for example, cosmic shear

probes from CFHTLenS [233,234].
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Chapter 9

Conclusion

This thesis presented works developed with the aim of solving some of the most outstanding

problems in cosmology: the singularity problem and the dark energy mystery. We ap-

proached these problems by introducing novel theoretical frameworks, new models and by

using cosmological observations.

The first problem we studied was the singularity problem, that plagues many of the

bouncing models of the universe. Since our mathematical descriptions break down near the

singularity, we do not know how to treat the evolution of perturbations when a singularity

is present. This makes it hard to make precise predictions and to compare these with

current observations. In the absence of a quantum theory of gravity, this problem is very

challenging. We propose the use of a new tool that provides a non-perturbative description

of string theory, the AdS/CFT correspondence, in order to resolve the singularity and evolve

the perturbations in its presence.

In our first work we develop the formalism for the evolution of perturbations of a test

scalar field in an AdS space-time that contains a space-like singularity. In the regions close

to the singularity, we evolve the perturbations in the weakly coupled boundary field theory

with a regularized coupling. We find that the momentum dependence of the perturbations

after they cross the singularity remains unchanged. However, particle production occurs.

In our second work, we use this formalism to treat the curvature perturbation, which is

the gauge invariant quantity that is related to the perturbations of density responsible for

the formation of the large scale structure. This procedure is simplified by the choice of a

convenient gauge, and the results for the curvature perturbations are similar to the ones for

2017/06/25
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a test scalar field.

Those works provide an initial framework for the research program of using the AdS/CFT

correspondence to treat perturbations in a singular bouncing cosmology. This framework was

already applied to different space-times, e.g. [235].

The second problem we discuss in this thesis is the nature of dark energy. Dark energy

is proposed as a possible mechanism to explain the current accelerated expansion of the

universe, but the properties of this component are still unknown. For that reason, there

are in the literature a huge number of models that invoke different mechanisms devoted to

explaining this period of accelerated expansion. An equally huge effort has been made by

observational cosmologists in order to measure the properties of dark energy in the hopes of

pinpointing the nature of the dark energy component. In the two works presented here we

explore one of these models, the interacting dark energy/dark matter model, and test how

well we can determine its parameters given the most recent and precise cosmological data

available.

The interacting dark energy model imposes a phenomenological interaction between dark

energy and dark matter, introducing two extra parameters to the standard ΛCDM model. In

our work we find constraints on the two extra parameters, the coupling and the equation of

state of dark energy, together with the 6 baseline ΛCDM parameters using data from CMB

experiments (Planck and WMAP), BAO, type Ia supernovaes, and local measurements of

H0, for the first paper; and we add the new high redshift data from the Lyα emission from

quasars from the BOSS (SDSS) collaboration, in the second paper.

In the first work, we can see that the interacting dark energy model presents a good

agreement with observations, especially when we combine all the data sets. We change

the priors adopted and conditions for neutrinos for each run to see how this impacts the

cosmological parameters. We obtained a positive coupling constant for most of the tested

models, which helps alleviate the coincidence problem. Although there is a degeneracy

between the equation of state of dark energy and the Hubble parameter, in our analysis

Models II, III and IV presented a possibility to relax the tension of the Hubble parameter

between the Planck and the HST measurements.

If dark energy is a dynamical variable and not a cosmological constant, data from different

redshifts is where the time dependence of dark energy will be manifest. However, such

data is still not available, since higher-z objects are fainter and harder to see. The BOSS

collaboration presented the first measurement of the Hubble parameter and the angular
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distance for higher redshifts, z = 2.34. In this measurement they found a deviation from

the ΛCDM prediction. Our second work aimed to see if the interacting dark energy model

could be an alternate explanation for this measurement, since it has a dynamical dark energy

component. We found that our models have values of H(z − 2.34) and DA(z = 2.34) closer

to the ones found by the BOSS team. Our model also presents a good fit to this new data

set.

In general, the interacting DE models are a alternative to pure dark energy, since they

yield a good agreement with cosmological data. However, as in all models in the literature,

it does not present a better fit than ΛCDM with a good statistical significance, especially

one that justifies the inclusion of two extra parameters. More observations are necessary to

test this and all the other models of dark energy. We are living in a particularly good period

for this study, since the large scale structure data from current and future experiments will

revolutionize this search, measuring the properties of dark energy at the percent level. I am

involved in two of those future probes, the Javalambre-Physics of the Accelerated Universe

Astrophysical Survey [36] and the BINGO telescope [37].
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Appendix A

Analysis in Terms of the Original

Variables

The kinetic energy term of the gauge fields on the boundary is not of canonical form. This

was the motivation for rescaling the gauge field. The rescaling factor, however, diverges at

t = 0. Hence, we might worry that the divergence of the rescaled gauge field Ãµ which we

found is a result of this rescaling, and that the evolution in terms of the original variables

Aµ might be better behaved.

In fact, the equation of motion for the fluctuation of the original variable is

(
−∂2

t +

√
3

t
∂t + ∂i∂

i
)
Aj = 0 , (A.1)

which has Fourier mode solutions

Aj(kt) = tνg
(
c+Jνg(kt) + c−Yνg(kt)

)
. (A.2)

The first mode goes to zero at t = 0 whereas the second mode approaches a finite value.

Hence, there is indeed no divergence in the solutions. However, the first mode has a branch

cut at t = 0. Hence, matching conditions are still required in order to evolve the solutions

from negative to positive values of t.

In the spirit of the AdS/CFT correspondence it would be nice not to have to impose any

cutoffs in the matching calculation. This could have been expected since the gauge theory

becomes free at t = 0. Indeed, there is a matching of the two modes at t = 0 for which there

2017/06/25
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is no particle production at all (in terms of the rescaled variables this matching corresponds

to having the derivative of Ãmu match to its inverse between t = ξ and t = −ξ). This

matching, however, does not correspond to what is done in standard quantum mechanics

problems and it misses the particle production which is expected on physical grounds.

Hence, it appears that a matching prescription is needed. An explicit calculation shows

if the matching prescription is taken to be the same as the one we used for the rescaled

variables, that then the matching calculation calculation in terms of the original variables

leads to the same result as that obtained using the rescaled field.



137

References

[1] Alan H. Guth. The Inflationary Universe: A Possible Solution to the Horizon and
Flatness Problems. Phys. Rev., D23:347–356, 1981.

[2] R. Brout, F. Englert, and E. Gunzig. The Creation of the Universe as a Quantum
Phenomenon. Annals Phys., 115:78, 1978.

[3] Alexei A. Starobinsky. A New Type of Isotropic Cosmological Models Without Singu-
larity. Phys. Lett., B91:99–102, 1980.

[4] K. Sato. First Order Phase Transition of a Vacuum and Expansion of the Universe.
Mon. Not. Roy. Astron. Soc., 195:467–479, 1981.

[5] L. Z. Fang. Entropy Generation in the Early Universe by Dissipative Processes Near
the Higgs’ Phase Transitions. Phys. Lett., B95:154–156, 1980.

[6] Robert H. Brandenberger. The Matter Bounce Alternative to Inflationary Cosmology.
2012.

[7] Steffen Gielen and Neil Turok. Quantum propagation across cosmological singularities.
2016.

[8] Sebastian F. Bramberger, Thomas Hertog, Jean-Luc Lehners, and Yannick Vreys.
Quantum Transitions Through Cosmological Singularities. 2017.

[9] Juan Martin Maldacena. The Large N limit of superconformal field theories and
supergravity. Int. J. Theor. Phys., 38:1113–1133, 1999. [Adv. Theor. Math.
Phys.2,231(1998)].

[10] Sumit R. Das, Jeremy Michelson, K. Narayan, and Sandip P. Trivedi. Time dependent
cosmologies and their duals. Phys. Rev., D74:026002, 2006.

[11] Adel Awad, Sumit R. Das, K. Narayan, and Sandip P. Trivedi. Gauge theory du-
als of cosmological backgrounds and their energy momentum tensors. Phys. Rev.,
D77:046008, 2008.



References 138

[12] Adel Awad, Sumit R. Das, Suresh Nampuri, K. Narayan, and Sandip P. Trivedi. Gauge
Theories with Time Dependent Couplings and their Cosmological Duals. Phys. Rev.,
D79:046004, 2009.

[13] Adel Awad, Sumit R. Das, Archisman Ghosh, Jae-Hyuk Oh, and Sandip P. Trivedi.
Slowly Varying Dilaton Cosmologies and their Field Theory Duals. Phys. Rev.,
D80:126011, 2009.

[14] Chong-Sun Chu and Pei-Ming Ho. Time-dependent AdS/CFT duality and null singu-
larity. JHEP, 04:013, 2006.

[15] Chong-Sun Chu and Pei-Ming Ho. Time-dependent AdS/CFT duality. II. Holographic
reconstruction of bulk metric and possible resolution of singularity. JHEP, 02:058,
2008.

[16] Robert H. Brandenberger, Elisa G. M. Ferreira, Ian A. Morrison, Yi-Fu Cai, Sumit R.
Das, and Yi Wang. Fluctuations in a cosmology with a spacelike singularity and their
gauge theory dual description. Phys. Rev., D94(8):083508, 2016.

[17] Elisa G. M. Ferreira and Robert Brandenberger. Holographic Curvature Perturbations
in a Cosmology with a Space-Like Singularity. JCAP, 1607(07):030, 2016.

[18] S. Perlmutter et al. Measurements of Omega and Lambda from 42 high redshift su-
pernovae. Astrophys. J., 517:565–586, 1999.

[19] Adam G. Riess et al. Observational evidence from supernovae for an accelerating
universe and a cosmological constant. Astron. J., 116:1009–1038, 1998.

[20] Lauren Anderson et al. The clustering of galaxies in the SDSS-III Baryon Oscillation
Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11
Galaxy samples. Mon. Not. Roy. Astron. Soc., 441(1):24–62, 2014.

[21] Edmund J. Copeland, M. Sami, and Shinji Tsujikawa. Dynamics of dark energy. Int.
J. Mod. Phys., D15:1753–1936, 2006.

[22] Justin Khoury and Amanda Weltman. Chameleon fields: Awaiting surprises for tests
of gravity in space. Phys. Rev. Lett., 93:171104, 2004.

[23] Justin Khoury and Amanda Weltman. Chameleon cosmology. Phys. Rev., D69:044026,
2004.

[24] Kurt Hinterbichler, Justin Khoury, Aaron Levy, and Andrew Matas. Symmetron Cos-
mology. Phys. Rev., D84:103521, 2011.



References 139

[25] Philippe Brax, Carsten van de Bruck, Anne-Christine Davis, Baojiu Li, and Douglas J.
Shaw. Nonlinear Structure Formation with the Environmentally Dependent Dilaton.
Phys. Rev., D83:104026, 2011.

[26] Kazuya Koyama, Roy Maartens, and Yong-Seon Song. Velocities as a probe of dark
sector interactions. JCAP, 0910:017, 2009.

[27] Luca Amendola. Coupled quintessence. Phys. Rev., D62:043511, 2000.

[28] Bin Wang, Yun-gui Gong, and Elcio Abdalla. Transition of the dark energy equation
of state in an interacting holographic dark energy model. Phys. Lett., B624:141–146,
2005.

[29] Jian-Hua He, Bin Wang, and Elcio Abdalla. Stability of the curvature perturbation in
dark sectors’ mutual interacting models. Phys. Lett., B671:139–145, 2009.

[30] Jian-Hua He and Bin Wang. Effects of the interaction between dark energy and dark
matter on cosmological parameters. JCAP, 0806:010, 2008.

[31] Jian-Hua He, Bin Wang, and Elcio Abdalla. Testing the interaction between dark
energy and dark matter via latest observations. Phys. Rev., D83:063515, 2011.

[32] A. B. Pavan, Elisa G. M. Ferreira, S. Micheletti, J. C. C. de Souza, and E. Abdalla.
Exact cosmological solutions of models with an interacting dark sector. Phys. Rev.,
D86:103521, 2012.

[33] Sandro Micheletti, Elcio Abdalla, and Bin Wang. A Field Theory Model for Dark
Matter and Dark Energy in Interaction. Phys. Rev., D79:123506, 2009.

[34] Elcio Abdalla, L. L. Graef, and Bin Wang. A Model for Dark Energy decay. Phys.
Lett., B726:786–790, 2013.

[35] Andr A. Costa, Lucas C. Olivari, and E. Abdalla. Quintessence with Yukawa Interac-
tion. Phys. Rev., D92(10):103501, 2015.

[36] N. Benitez et al. J-PAS: The Javalambre-Physics of the Accelerated Universe Astro-
physical Survey. 2014.

[37] Richard Battye et al. Update on the BINGO 21cm intensity mapping experiment.
2016.

[38] Andr A. Costa, Xiao-Dong Xu, Bin Wang, Elisa G. M. Ferreira, and E. Abdalla.
Testing the Interaction between Dark Energy and Dark Matter with Planck Data.
Phys. Rev., D89(10):103531, 2014.



References 140

[39] Elisa G. M. Ferreira and Robert Brandenberger. The Trans-Planckian Problem in the
Healthy Extension of Horava-Lifshitz Gravity. Phys. Rev., D86:043514, 2012.

[40] Edwin Hubble. A relation between distance and radial velocity among extra-galactic
nebulae. Proc. Nat. Acad. Sci., 15:168–173, 1929.

[41] P. A. R. Ade et al. Planck 2015 results. XIII. Cosmological parameters. Astron.
Astrophys., 594:A13, 2016.

[42] Adam G. Riess, Lucas Macri, Stefano Casertano, Hubert Lampeitl, Henry C. Ferguson,
et al. A 3Space Telescope and Wide Field Camera 3. Astrophys.J., 730:119, 2011.

[43] Hubert Goenner. Weyl’s contributions to cosmology, pages 105–137. Birkhäuser Basel,
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