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Every Riemann surface with genus g and n punctures admits a hyperbolic metric, if 2g −
2 + n > 0. Such a surface can be decomposed into pairs of pants whose boundaries are
geodesics. We construct a string field theory for closed bosonic strings based on this pants
decomposition. In order to do so, we derive a recursion relation satisfied by the off-shell
amplitudes, using Mirzakhani’s scheme for computing integrals over the moduli space of
bordered Riemann surfaces. The recursion relation can be turned into a string field the-
ory via the Fokker–Planck formalism. The Fokker–Planck Hamiltonian consists of kinetic
terms and three-string vertices. Unfortunately, the worldsheet BRST symmetry is not man-
ifest in the theory thus constructed. We will show that the invariance can be made manifest
by introducing auxiliary fields.
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1. Introduction
To construct a string field theory (SFT), we should specify a rule to cut worldsheets into fun-
damental building blocks, i.e., propagators and vertices. A few simple rules have been proposed
and SFTs for bosonic strings have been constructed following these rules [1–4]. Construction
of an SFT for superstrings is more complicated because of the spurious singularities [5].

The worldsheets of closed strings describing scattering amplitudes are punctured Riemann
surfaces. In mathematics, there exists a convenient way to decompose them into fundamental
building blocks. On a Riemann surface with genus g and n boundaries or punctures, one can
introduce a metric with constant negative curvature, if 2g − 2 + n > 0. Such a metric is called
a hyperbolic metric and surfaces with hyperbolic metrics are called hyperbolic surfaces. With a
hyperbolic metric, one can decompose the surface into pairs of pants with geodesic boundaries.
It may be possible to consider the pair of pants as the fundamental building block of the surface.

The hyperbolic metric was used to construct an SFT in Refs. [6–8], in which the kinetic term
of the action was taken to be the conventional one
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Fig. 1. A pants decomposition.

Fig. 2. One-loop one-point function.

so that the propagators correspond to cylinders. The theories include infinitely many vertices
besides the three-string vertex and the Feynman graphs have nothing to do with the pants de-
composition. In this paper, we would like to construct an SFT based on the pants decomposi-
tion. Namely, we will construct an SFT for closed bosonic strings regarding the pair of pants as
the three-string vertex and the cylinders with vanishing heights as the propagator, as depicted
in Fig. 1.

In such a theory, a string state will correspond to the boundary of a pair of pants. Accord-
ingly, the string field should be labeled by an element of the Hilbert space of the first quantized
strings and the length L of the boundary. The external states of the scattering amplitudes are re-
garded as the limit L → 0 of such states. The off-shell amplitudes may correspond to Riemann
surfaces that have geodesic boundaries with fixed lengths and will be expressed by integrals over
the moduli spaces of such surfaces.

Unfortunately, such an approach suffers from a problem addressed in Ref. [9] (Sect. IV.E).
The three-string vertex will be given by the correlation function of the worldsheet theory on
hyperbolic pants with the boundary lengths specified. Suppose that one calculates the one-loop
one-point function following the conventional Feynman rules. The amplitude corresponds to
the worldsheet in Fig. 2 and we should integrate over the length l and the twist angle θ . By doing
so, the fundamental domain of the modular group is covered infinitely many times, as will be
seen in Sect. 4.3. The same happens for all the other amplitudes. Therefore, the conventional
Feynman rule with the vertex and the propagator in Fig. 1 does not yield the correct amplitudes.

In order to overcome this problem, we formulate the theory using Mirzakhani’s scheme
[10,11] for computing integrals over moduli space of bordered Riemann surfaces. Mirzakhani
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derived a recursion relation for the volume of the moduli space. Applying her method to the
off-shell amplitudes of closed bosonic strings, we derive a recursion relation satisfied by these
amplitudes.

As was pointed out in Refs. [12,13], Mirzakhani’s recursion relation is related to the loop
equation of minimal string theory. On the other hand, the loop equations for minimal strings
can be described by an SFT via the Fokker–Planck formalism [14,15]. We will show that the
recursion relation of the off-shell amplitudes can be described by an SFT using the Fokker–
Planck formalism. The Fokker–Planck Hamiltonian consists of kinetic terms and three-string
vertices. One can develop perturbation theory that does not suffer from the above-mentioned
problem. Unfortunately, the worldsheet BRST symmetry is not manifest in the SFT thus con-
structed. We will show that we can make the invariance manifest by introducing auxiliary fields.

The organization of this paper is as follows. In Sect. 2, we define the off-shell amplitudes
of closed bosonic string theory based on the moduli space of bordered Riemann surfaces. In
Sect. 3, we derive recursion relations satisfied by the off-shell amplitudes. In Sect. 4, we prove
that the off-shell amplitudes defined in Sect. 2 can be derived from the Fokker–Planck formal-
ism for string fields. We show that the solution of the recursion relations in Sect. 3 satisfies
the Schwinger–Dyson equation derived from the Fokker–Planck Hamiltonian. In Sect. 5, we
modify the theory by introducing auxiliary fields and make it manifestly BRST invariant. Sec-
tion 6 is devoted to discussions and comments. In Appendix A, we present formulas for the
local coordinates on hyperbolic pants. In Appendix B, we prove the BRST identity.

2. Off-shell amplitudes
The off-shell amplitudes of the theory that we will study should correspond to hyperbolic sur-
faces that have geodesic boundaries with fixed lengths. In this section, we would like to define
such amplitudes. The formulation is a modification of the conventional ones [4,16–18].

2.1. The moduli space Mg,n,L

Let �g,n,L with L = (L1, . . . , Ln) be a genus-g hyperbolic surface with n geodesic boundaries
(labeled by an index a = 1,…, n) whose lengths are L1,…, Ln. Cutting the surface �g,n,L along
nonperipheral simple closed geodesics, we can decompose it into pairs of pants Si (i = 1,…,2g
− 2 + n). There are many choices for such decomposition and here we pick one. The hyperbolic
structure of the surface is specified by the lengths of the nonperipheral simple closed geodesics
and the way how boundaries of Si are identified. Therefore the hyperbolic structure of �g,n,L

can be parametrized by the Fenchel–Nielsen coordinates (ls; τ s) (s = 1,…, 3g − 3 + n), where ls
are the lengths of the nonperipheral boundaries of Si and τ s denote the twist parameters that
specify how boundaries of different pairs of pants are identified. The Teichmüller space Tg,n,L

corresponds to the region 0 < ls < ∞, −∞ < τ s < ∞. A volume form �g,n,L on Tg,n,L called the
Weil–Petersson volume form is given by

�g,n,L =
3g−3+n∧

s=1

[dls ∧ dτs] .

�g,n,L does not depend on the choice of the pants decomposition. The moduli space Mg,n,L is
defined as

Mg,n,L ≡ Tg,n,L/�,

3/35

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/2/023B05/7008535 by D

eutsches Elektronen Synchrotron D
ESY user on 25 M

arch 2023



PTEP 2023, 023B05 N. Ishibashi

Fig. 3. Attaching flat semi-infinite cylinders to �g,n,L.

where � denotes the mapping class group. The Fenchel–Nielsen coordinates (ls; τ s) can be used
as local coordinates on Mg,n,L. We will define the off-shell amplitudes as integrals over Mg,n,L.
The space of all inequivalent hyperbolic structures on a surface is the same as that of the com-
plex structures. Hence the definition of the off-shell amplitudes here can be regarded as the
traditional one for the case where the lengths of the external strings are specified.

2.2. b-ghost insertions
Let us consider an element �g,n,L of Mg,n,L. One can attach a flat semi-infinite cylinder to each
boundary [8] as depicted in Fig. 3 and obtain a punctured Riemann surface. The cylinder is
conformally equivalent to a disk with a puncture. Letting wa (a = 1,…,n) be a local coordinate
on the ath disk Da such that Da corresponds to the region |wa| ≤ 1, the flat metric is given as

ds2 = L2
a

(2π )2

|dwa|2
|wa|2 ,

and the ath puncture corresponds to wa = 0. By these conditions, wa is fixed up to a phase
rotation. wa can be expressed as a function wa(z) of a local coordinate z on �g,n,L. wa(z) is
holomorphic in a neighborhood of ∂Da.

In this way, from �g,n,L, we obtain a punctured Riemann surface �g, n with local coordinates
around punctures, which are specified up to phase rotations. With �g, n thus obtained, one can
associate a surface state, picking a local coordinate wa as above for each Da. Let us denote this
surface state by 〈�g,n,L|. By definition, we have

〈�g,n,L|�1〉 · · · |�n〉 =
〈

n∏
a=1

w−1
a ◦ O�a (0)

〉
�g,n

, (2)

where O�a denotes the operator corresponding to the state |�a〉 and 〈·〉�g,n
denotes the correla-

tion function on �g, n. Under a phase rotation wa → eiαawa, 〈�g,n,L| transforms as

〈�g,n,L| → 〈�g,n,L|
∏

a

eiαa

(
L(a)

0 −L̄(a)
0

)
.

The correlation function 〈�g,n,L|�1〉 · · · |�n〉 is invariant under the phase rotation, if

(L0 − L̄0)|�a〉 = 0.

In order to define the amplitudes, we need to construct a top form on the moduli space Mg,n,L

from the b-ghost. A deformation of the hyperbolic structure of a surface induces that of the
complex structure. Therefore we can construct the b-ghost insertion corresponding to a tangent
vector of Mg,n,L, following the procedure given in Refs. [4,16,18,19]. Let zi be a local coordinate
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on the pair of pants Si, such that the hyperbolic metric on Si is in the form

ds2 = eϕ|dzi|2.
Each boundary of Si is either shared by another pair of pants Sj (j �= i) or is equal to one of the
boundaries of �g,n,L. In the former case, the local coordinates zj on Sj and zi are related by

zi = Fi j (z j ), (3)

in a neighborhood of Si∩Sj = Cij. If the boundary of Si coincides with ∂Da, zi and wa are
related by

zi = fia(wa), (4)

in a neighborhood of ∂Da. The transition functions Fij, fia describe the moduli of �g,n,L.
Suppose that under an infinitesimal change of moduli, zi, wa, Fij, fia change as

zi → zi + εvi,

wa → wa,

Fi j → Fi j + δFi j,

fia → fia + δ fia.

Equations (3), (4) imply

zi + εvi = (
Fi j + δFi j

)
(z j + εv j ).

zi + εvi = ( fia + δ fia) (wa),

and we obtain

ε

(
vi − dzi

dz j
v j

)
= δFi j (z j ),

εvi = δ fia(wa),

in a neighborhood of Cij, ∂Da respectively. One can take vi to be holomorphic in neighborhoods
of boundaries of Si and smooth inside. For such vi, we define

b(v) ≡
∑

i

[∮
∂Si

dzi

2π i
vi(zi)b(zi) −

∮
∂Si

dz̄i

2π i
v̄i(z̄i)b̄(z̄i)

]
. (5)

Here the integration contours are taken so that they run along ∂Si keeping Si on the left for zi.
For our purpose, we need to make the formulas (3), (4), and (5) more explicit. Si itself is a

hyperbolic surface with three boundaries and by attaching flat semi-infinite cylinders to the
boundaries as above, we get a three-punctured sphere with local coordinates Wk (k = 1, 2, 3).
Therefore Si is conformally equivalent to C − ⋃3

k=1 Dk where Dk are the disks corresponding
to the cylinders. We choose the local coordinate zi on Si to be the complex coordinate z on
C such that the three punctures are at z = 0, 1, ∞. The explicit forms of Wk(zi) are given in
Refs. [20,21] and are presented in Appendix A. There is a freedom in choosing which of the
∂Dk corresponds to each boundary of Si, but Eq. (A3) implies that the Wk(zi) are related by
SL(2, C) transformation of zi and a phase rotation and the choice does not change the result.
If the boundary ∂Da of �g,n,L coincides with |Wk(zi)| = 1, we can take wa to be equal to Wk(zi).
Then the explicit form of Eq. (4) becomes

zi = W −1
k (wa). (6)
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Cij should coincide with |Wk(zi)| = 1 and
∣∣Wk′ (z j )

∣∣ = 1 for some k, k′ and we obtain the explicit
form of Eq. (3) as

zi = W −1
k

(
eiθi j

Wk′ (z j )

)
, (7)

where θ ij is the twist angle.
We take the Fenchel–Nielsen coordinates ls, τ s (s = 1,…, 3g − 3 + n) on Mg,n,L. Changes of

the transition functions (6) and (7) under the variation ls → ls + δls, τ s → τ s + δτ s describe
those of the hyperbolic structure of �g,n,L. If ls is the length of Cij, τs = ls

2π
θi j . For ls → ls + ε,

we can take

vi = −∂Wk(zi)
∂ls

(
∂Wk

∂zi

)−1

,

v j = −∂Wk(z j )
∂ls

(
∂Wk

∂z j

)−1

,

for k = 1, 2, 3, in neighborhoods of boundaries |Wk(zi)| = 1, |Wk(zj)| = 1 of Si, Sj respectively.
Therefore we define

b(∂ls ) ≡ b(v) = bSi (∂ls ) + bSj (∂ls ),

bSi (∂ls ) = −
∮

∂Si

dzi

2π i
∂Wk

∂ls

(
∂Wk

∂zi

)−1

b(zi) +
∮

∂Si

dz̄i

2π i
∂W̄k

∂ls

(
∂W̄k

∂ z̄i

)−1

b̄(z̄i ),

bSj (∂ls ) = −
∮

∂Sj

dz j

2π i
∂Wk

∂ls

(
∂Wk

∂z j

)−1

b(z j ) +
∮

∂Sj

dz̄ j

2π i
∂W̄k

∂ls

(
∂W̄k

∂ z̄i

)−1

b̄(z̄ j ). (8)

Here k (k = 1, 2, 3) for Wk in each term is chosen so that the relevant component of the bound-
ary corresponds to |Wk| = 1. For τ s → τ s + ε, we define

b(∂τs ) = −2π

ls

[∮
Ci j

dzi

2π i
iWk(zi )

(
∂Wk

∂zi

)−1

b(zi) +
∮

Ci j

d z̄i

2π i
iW̄k

(
∂W̄k

∂ z̄i

)−1

b̄(z̄i)

]
, (9)

where k for Wk is chosen so that Cij coincides with |Wk(zi)| = 1. The contours run along Cij so
that Sj lies to its left for zj.

In the same way, for a pair of pants Si one of whose boundaries coincides with ∂Da, we define

bSi (∂La ) = −
∮

∂Si

dzi

2π i
∂Wk

∂La

(
∂Wk

∂zi

)−1

b(zi) +
∮

∂Si

dz̄i

2π i
∂W̄k

∂La

(
∂W̄k

∂ z̄i

)−1

b̄(z̄i). (10)

2.3. Off-shell amplitudes
Now we define the connected g-loop n-point amplitude Ag, n((|�1〉, L1),…, (|�n〉, Ln)) by

Ag,n ((|�1〉, L1), . . . , (|�n〉, Ln)) = 2−δg,1δn,1

∫
Mg,n,L

(2π i)−3g+3−n〈�g,n,L|B6g−6+2n|�1〉 · · · |�n〉.

(11)

Here 〈�g,n,L|B6g−6+2n is defined so that

〈�g,n,L|B6g−6+2n|�1〉 · · · |�n〉 =
〈

B6g−6+2n

n∏
a=1

w−1
a ◦ O�a (0)

〉
�g,n
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holds for any |�a〉, with

B6g−6+2n =
3g−3+n∏

s=1

[
b(∂ls )b(∂τs )

] 3g−3+n∧
s=1

[dls ∧ dτs] . (12)

The factor 2−δg,1δn,1 is due to the fact that �1, 1, L has a Z2 symmetry. The state |�a〉 is taken to
be an element of H0 that consists of the states |�〉 satisfying

b−
0 |�〉 = (L0 − L̄0)|�〉 = 0, (13)

where b±
0 ≡ b0 ± b̄0.

B6g − 6 + 2n is defined by using the Fenchel–Nielsen coordinate ls, τ s associated with a pants
decomposition of �g,n,L. We should check if the amplitude (11) does not depend on the choice
of the pants decomposition. Suppose that we have two pants decompositions, in which �g,n,L

is decomposed into pairs of pants Si (i = 1,…, 2g − 2 + n) and S′
j ( j = 1, . . . , 2g − 2 + n).

Let zi and z′
j be the local coordinates on Si, S′

j respectively. There should be a function Gij

holomorphic on Si ∩ S′
j such that

zi = Gi j

(
z′

j

)
.

If a boundary of Si ∩ S′
j coincides with ∂Da, we have functions gia, g′

ja such that

zi = gia(wa),

z′
j = g′

ja(wa), (14)

in a neighborhood of ∂Da. Suppose that under an infinitesimal change of moduli,
zi, z′

j, wa, Gi j, gia, g′
ia change as

zi → zi + εvi,

z′
j → z′

j + εv′
j,

wa → wa,

Gi j → Gi j + δGi j,

gia → gia + δgia,

g′
ja → g′

ja + δg′
ja.

We can derive

ε

(
vi − ∂zi

∂z′
j
v′

j

)
= δGi j

(
z′

j

)
, (15)

εvi = δgia(wa),

εv′
j = δg′

ja(wa). (16)

Equation (15) implies ∮
∂ (Si∩S′

j )

dzi

2π i

(
vi − ∂zi

∂z′
j
v′

j

)
b(zi) = 0.
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If we take vi, v′
j to be holomorphic in neighborhoods of the boundaries of Si, S′

j respectively,
we get

0 =
∑
i, j

∮
∂(Si∩S′

j )

dzi

2π i

(
vi − ∂zi

∂z′
j
v′

j

)
b (zi)

=
∑

i

∮
∂Si

dzi

2π i
vi (zi) b (zi) −

∑
j

∮
∂S′

j

dz′
j

2π i
v′

j

(
z′

j

)
b

(
z′

j

)
.

Therefore the b-ghost insertion (5) satisfies

b(v) = b(v′), (17)

if v and v′ correspond to the same change of moduli.
Let (ls; τs), (l ′

t ; τ ′
t ) be the Fenchel–Nielsen coordinates associated with the two different pants

decompositions. Using Eq. (17), we may be able to express b(∂ls ), b(∂τs ) in terms of b(∂l ′
t
), b(∂τ ′

t
).

In doing so, there is one thing that one should be careful about. In defining b(∂ls ), we have
taken the coordinate on Da to be Wk(zi), if ∂Da coincides with a boundary of Si. If one of the
boundaries of S′

j coincides with ∂Da,

Wk(zi) = eiαaWk′ (z′
j )

should hold with some k′. Here αa is a real function of moduli. If we fix wa in Eq. (14) to be
Wk(zi), Eq. (16) implies

ε

∮
∂Da

dz′
j

2π i
v′

j

(
z′

j

)
b

(
z′

j

)
= −

∮
∂Da

dz′
j

2π i
δWk′

(
z′

j

) (
∂Wk′

∂z′
j

)−1

b(z′
j ) − iδαa

∮
∂Da

dwa

2π i
wab(wa).

Therefore the relations between b(∂ls ), b(∂τs ) and b(∂l ′
t
), b(∂τ ′

t
) should be

b(∂ls ) =
∑

t

[
∂l ′

t

∂ls
b(∂l ′

t
) + ∂τ ′

t

∂ls
b(∂τ ′

t
)
]

− i
n∑

a=1

∂αa

∂ls
b−(a)

0 ,

b(∂τs ) =
∑

t

[
∂l ′

t

∂τs
b(∂l ′

t
) + ∂τ ′

t

∂τs
b(∂τ ′

t
)
]

− i
n∑

a=1

∂αa

∂τs
b−(a)

0 .

Here b−(a)
0 denotes b−

0 acting on the ath Hilbert space. Substituting these into the amplitude
(11), we can see that it is independent of the pants decomposition, if |�a〉 (a = 1,…, n) satisfy
the condition (13).

By the BRST identity proved in Appendix B, we have

〈�g,n,L|B6g−6+2n

∑
a

Q(a)|�1〉 · · · |�n〉 = d
[〈�g,n,L|B6g−7+2n|�1〉 · · · |�n〉

]
, (18)

and the amplitude Ag, n((|�1〉, L1),…, (|�n〉, Ln)) is BRST invariant if one treats the boundary
contributions appropriately. By construction, Ag, n((|�1〉, L1),…, (|�n〉, Ln)) exists for 2g − 2 +
n > 0.

The amplitude (11) is not something we usually deal with in string theory. In the limit La

→ 0, Mg,n,L coincides with the moduli space Mg,n of punctured Riemann surfaces and (ls; τ s)
become the Fenchel–Nielsen coordinates on Mg,n. Therefore

lim
La→0

Ag,n ((|�1〉, L1), . . . , (|�n〉, Ln)) (19)

is equal to the on-shell amplitude when |�a〉 are taken to be on-shell physical states. In Sect. 5,
we will show that the off-shell amplitudes of the kind studied in Refs. [22–24] can also be derived
in our formalism.
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3. A recursion relation of the off-shell amplitudes
Given a propagator, one can construct the string field action that reproduces the off-shell am-
plitudes defined in the previous section order by order in the string coupling constant gs. If we
take the propagator to be the one depicted in Fig. 1, we run into the difficulty mentioned in the
introduction. In this paper, as a workaround, we construct an SFT by studying equations sat-
isfied by the off-shell amplitudes.

In order to calculate the right-hand side of Eq. (11), we need to specify the integration region
in terms of the Fenchel–Nielsen coordinates. However, no concrete description of the funda-
mental domain of the mapping class group in Tg,n,L is known in general. Mathematicians tried
to calculate the the Weil–Petersson volume Vg,n(L) of Mg,n,L defined by1

Vg,n(L) ≡ 2−δg,1δn,1

∫
Mg,n,L

�g,n,L, (20)

and encountered the same problem. Mirzakhani discovered [10,11] a way to overcome this dif-
ficulty. In this section, we would like to explain her method (for reviews, see, e.g., Refs. [7,25,26])
and apply it to the off-shell amplitudes.

3.1. Mirzakhani’s scheme
Mirzakhani’s idea is to transform an integral over Mg,n,L into the one over its covering space.
Suppose that X1 are X2 are manifolds and

π : X1 → X2

is a covering map. Let dv2 be a volume form on X2, and we define dv1 to be the pull-back, i.e.,

dv1 = π∗dv2.

For a function f on X1, one can define the push-forward π∗f by

(π∗ f )(x) =
∑

y∈π−1(x)

f (y).

Then ∫
X2

(π∗ f )dv2 =
∫

X1

f dv1 (21)

holds.
Equation (21) can be used to calculate the volume of the moduli space M1,1,0, for instance.

We take X2 to be M1,1,0 and X1 to be the following space of pairs

{(�1,1,0, γ ) |�1,1,0 ∈ M1,1,0 and γ is a simple closed geodesic on �1,1,0}.
The set of simple closed geodesics γ on �1, 1, 0 is a discrete set with infinitely many elements
and a mapping class group orbit. X1 can be described by the pair (lγ , τ γ ) where lγ is the length
of γ and τ γ is the twist parameter corresponding to it. X1 corresponds to the region

0 < lγ < ∞, 0 ≤ τγ ≤ lγ ,

with (lγ , 0) ∼ (lγ , lγ ). The projection π can be defined by

π (�1,1,0, γ ) = �1,1,0,

and for dv2 = �1, 1, 0, we have

dv1 = π∗dv2 = dlγ ∧ dτγ .

1There are two conventions for V1, 1(L) due to the presence of Z2 symmetry. Here we adopt Eq. (20) so
as to make Eq. (28) look simple.
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If one takes the function f to be a function of lγ , the value of π∗f at �1,1,0 ∈ M1,1,0 becomes∑
γ

f (lγ ),

where the sum is over the set of simple geodesics on �1, 1, 0. In Ref. [27], McShane proved that
for f (l ) = 2

1+el , ∑
γ

f (lγ ) = 1 (22)

holds. Equation (22) is called the McShane identity. For this choice of f, Eq. (21) becomes∫
M1,1,0

�1,1,0 =
∫

X2

(π∗ f )dv2 =
∫

X1

f dv1 =
∫ ∞

0
dlγ

2lγ
1 + elγ

= π2

6
, (23)

and we get the volume of M1,1,0.
Mirzakhani generalized this procedure to general (g, n), by discovering a generalization of

the McShane identity. For �g,n,L ∈ Mg,n,L, let β1,…, βn be the boundaries so that the lengths
of β1,…, βn are L1,…, Ln respectively. The generalized McShane identity derived in Ref. [10]
is

L1 =
∑

{γ ,δ}∈C1

DL1lγ lδ +
n∑

a=2

∑
γ∈Ca

(TL1Lalγ + DL1Lalγ ), (24)

where

DLL′L′′ = 2
(

log(e
L
2 + e

L′+L′′
2 ) − log(e− L

2 + e
L′+L′′

2 )
)

, (25)

TLL′L′′ = log
cosh L′′

2 + cosh L+L′
2

cosh L′′
2 + cosh L−L′

2

, (26)

C1 ≡
{

the collection of unordered pairs of nonperipheral simple closed geodesics {γ , δ}
on �g,n,L which bounds a pair of pants along with the boundary β1

}
,

Ca ≡
{

the collection of simple closed geodesics γ on �g,n,L

which bounds a pair of pants along with the boundaries β1 and βa

}
,

and lγ , lδ are the lengths of γ , δ respectively. For L, L′, L′′ > 0, DLL′L′′, TLL′L′′>0 and

DLL′L′′ = DLL′′L′,

TLL′L′′ = TL′LL′′,

DLL′L′′ + TLL′L′′ + TLL′′L′ = L. (27)

Multiplying Eq. (24) by �g,n,L and integrating it over Mg,n,L, one obtains Mirzakhani’s re-
cursion relation:

LVg,n+1(L, L) = 1
2

∫ ∞

0
dL′L′

∫ ∞

0
dL′′L′′DLL′L′′

×
(

Vg−1,n+2(L′, L′′, L) +
∑
stable

Vg1,n1 (L′, L1)Vg2,n2 (L′′, L2)

)

+
n∑

a=1

∫ ∞

0
dL′L′ (TL1LaL′ + DL1LaL′ )Vg,n(L, L\La), (28)
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which holds for 2g − 2 + n > 0. The sum
∑

stable here means the sum over g1, g2, n1, n2, L1, L2

such that2

g1 + g2 = g,

n1 + n2 = n + 2,

L1 ∪ L2 = {L1, . . . , Ln} ,

L1 ∩ L2 = φ,

2g1 − 2 + n1 > 0,

2g2 − 2 + n2 > 0. (29)

With the information V0, 3(L1, L2, L3) = 1, V1,1(L) = π2

12 + L2

48 , it is possible to calculate Vg,n(L)
for all the other g, n by the recursion relation (28).

3.2. Recursion relation of the off-shell amplitudes
A recursion relation of the off-shell amplitudes (11) is derived in the same way as Mirzakhani’s
recursion relation. Multiplying Eq. (24) by (2π i)−3g+3−n〈�g,n,L|B6g−6+2n|�1〉 · · · |�n〉 and inte-
grating it over Mg,n,L, we obtain

L1

∫
Mg,n,L

(2π i)−3g+3−n〈�g,n,L|B6g−6+2n|�1〉 · · · |�n〉

=
∫
Mg,n,L

∑
{γ ,δ}∈C1

DL1lγ lδ · (2π i)−3g+3−n〈�g,n,L|B6g−6+2n|�1〉 · · · |�n〉

+
n∑

a=2

∫
Mg,n,L

∑
γ∈Ca

(TL1Lalγ + DL1Lalγ ) · (2π i)−3g+3−n〈�g,n,L|B6g−6+2n|�1〉 · · · |�n〉. (30)

The left-hand side yields

L1Ag,n ((|�1〉, L1), . . . , (|�n〉, Ln)) .

Here we restrict ourselves to the case 2g − 2 + n > 1. We will rewrite the terms on the right-
hand side by using the formula (21). Let us first consider the integral∫

Mg,n,L

∑
γ∈Ca

(TL1Lalγ + DL1Lalγ ) · (2π i)−3g+3−n〈�g,n,L|B6g−6+2n|�1〉 · · · |�n〉. (31)

In order to unfold this integral, we take X2 to be Mg,n,L and X1 to be the space of pairs{
(�g,n,L, γ )

∣∣∣∣∣ �g,n,L ∈ Mg,n,L and γ is a simple closed geodesic on �g,n,L

that bounds a pair of pants along with the boundaries β1 and βa

}
.

The set of possible γ on �g,n,L is exactly Ca and is a mapping class group orbit. X1 can
be described by the triple (lγ , τγ , �′

g,n−1,L′ ) where τ γ is the twist parameter corresponding
to γ and �′

g,n−1,L′ is the complement of the pair of pants bounded by β1, βa, γ with L′ =
(lγ , L2, . . . , L̂a, . . . , Ln). X1 corresponds to the region

0 < lγ < ∞, 0 ≤ τγ ≤ lγ ,

with (lγ , 0, �′
g,n−1,L′ ) ∼ (lγ , lγ , �′

g,n−1,L′ ). The projection π can be defined by

π (�g,n,L, γ ) = �g,n,L,

2Here we consider L1, L2 as unordered subsets of L = {L1, · · · , Ln}.
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Fig. 4. �g,n,L and γ .

and for dv2 = �g,n,L, we have

dv1 = π∗dv2 = dlγ ∧ dτγ ∧ �′
g,n−1,L′,

where �′
g,n−1,L′ is the Weil–Petersson volume form on �′

g,n−1,L′ .
Now, if one takes

f dv1 = (TL1Lalγ + DL1Lalγ ) · (2π i)−3g+3−n〈�g,n,L|B6g−6+2n|�1〉 · · · |�n〉,
Eq. (21) becomes∫

X1

(TL1Lalγ + DL1Lalγ ) · (2π i)−3g+3−n〈�g,n,L|B6g−6+2n|�1〉 · · · |�n〉

=
∫
Mg,n,L

∑
γ∈Ca

(TL1Lalγ + DL1Lalγ ) · (2π i)−3g+3−n〈�g,n,L|B6g−6+2n|�1〉 · · · |�n〉. (32)

Therefore Eq. (31) is obtained by evaluating the left-hand side of Eq. (32).
Let us consider a pants decomposition of �g,n,L such that one pair of the pants has bound-

aries β1, βa, γ (Fig. 4). We denote this pair of pants by S1 and the adjacent one by S2.
Based on the pants decomposition we define the Fenchel–Nielsen coordinates ls, τ s (s = 1,…,
3g − 3 + n) such that (l1, τ 1) = (lγ , τ γ ). Cutting �g,n,L along γ , we get a three-holed
sphere �0,3,(L1,La,l1 ) and �′

g,n−1,L′ . �′
g,n−1,L′ inherits the pants decomposition of �g,n,L. Then

(2π i)−3g+3−n〈�g,n,L|B6g−6+2n|�1〉 · · · |�n〉 can be expressed as

(2π i)−3g+3−n〈�g,n,L|B6g−6+2n|�1〉 · · · |�n〉
= (2π i)−3g+3−ndl1 ∧ dτ1〈�g,n,L| [

bS1 (∂l1 ) + bS2 (∂l1 )
]

b(∂τ1 )B′
6g−8+2n|�1〉 · · · |�n〉, (33)

where B′
6g−8+2n denotes the 6g − 6 + 2(n − 1) form on �′

g,n−1,L′ defined through Eq. (12).
�g,n,L can be generated by gluing a pair of pants �0,3,(L1,La,l1 ) and �′

g,n−1,L′ (Fig. 5) using the
plumbing fixture relation (7). Hence the correlation function on the right-hand side of Eq. (33)
can be factorized into those on �0,3,(L1,La,l1 ) and �′

g,n−1,L′ . Let |ϕi〉 be a basis of the Hilbert space
H of the worldsheet theory of the strings and 〈ϕc

i | be the conjugate state of |ϕi〉 such that

〈ϕc
i |ϕ j〉 = δi j,

〈ϕ j|ϕc
i 〉 = (−1)nϕi δi j,∑

i

|ϕi〉〈ϕc
i | =

∑
i

|ϕc
i 〉〈ϕi|(−1)nϕi = 1.
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Fig. 5. The decomposition of �g,n,L corresponding to Eq. (34).

Here 〈ϕi| is the BPZ conjugate of |ϕi〉 and nϕi is the ghost number of |ϕi〉. Then we have

〈�g,n,L| [
bS1 (∂l1 ) + bS2 (∂l1 )

]
b(∂τ1 )B6g−6+2n|�1〉 · · · |�n〉

= −2π i
l1

εa

∑
i, j

[
〈�0,3,(L1,La,l1 )|b�0,3,(L1,La,l1 ) (∂l1 )b−(0)

0 |�1〉1|�a〉aeiθ (L0−L̄0 )|ϕi〉0

× 2−δg,1δn,2〈�′
g,n−1,L′ |B′

6g−8+2n|ϕ j〉|�2〉 · · · |̂�a〉 · · · |�n〉
+ 〈�0,3,(L1,La,l1 )|�1〉|�a〉|ϕi〉
× 2−δg,1δn,2〈�′

g,n−1,L′ |B′
6g−8+2nbS2 (∂l1 )b−

0 eiθ (L0−L̄0 )|ϕ j〉|�2〉 · · · |̂�a〉 · · · |�n〉
]

× 〈ϕc
i |ϕc

j〉(−1)nϕ j , (34)

where

εa = (−1)na(n2+···+na−1 ),

nb denotes the ghost number of |�b〉, and θ denotes the twist angle. The factor 2−δg,1δn,2 is due
to the fact that �′

g,n−1,L′ has a Z2 symmetry for g = 1, n = 2.
Substituting Eqs. (33) and (34) into Eq. (32), we can see that the second term on the right-

hand side of Eq. (30) becomes
n∑

a=2

∫
Mg,n,L

∑
γ∈Ca

(TL1Lalγ + DL1Lalγ ) · (2π i)−3g+3−n〈�g,n,L|B6g−6+2n|�1〉 · · · |�n〉

= −
n∑

a=2

∑
i, j

εa

[∫ ∞

0
dl1(TL1Lal1 + DL1Lal1 )〈�0,3,(L1,La,l1 )|b�0,3,(L1 ,La ,l1 ) (∂l1 )b−(0)

0 P(0)|�1〉1|�a〉a|ϕi〉0

× 2−δg,1δn,2

∫
Mg,n−1,L′

(2π i)−3g+4−n〈�′
g,n−1,L′ |B′

6g−8+2n|ϕ j〉|�2〉 · · · |̂�a〉 · · · |�n〉

+
∫ ∞

0
dl1(TL1Lal1 + DL1Lal1 )〈�0,3,(L1,La,l1 )|�1〉|�a〉|ϕi〉

× 2−δg,1δn,2

∫
Mg,n−1,L′

(2π i)−3g+4−n〈�′
g,n−1,L′ |B′

6g−8+2nbS2 (∂l1 )b−
0 P|ϕ j〉|�2〉 · · · |̂�a〉 · · · |�n〉

]
× 〈ϕc

i |ϕc
j 〉(−1)nϕ j , (35)
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with P = ∫ 2π

0
dθ
2π

eiθ (L0−L̄0 ).
Equation (35) implies that it will be convenient to consider the recursion relation of the am-

plitudes of the form

Ag,n ((|ϕi1〉, α1, L1), . . . , (|ϕin〉, αn, Ln))

= 2−δg,1δn,1

∫
Mg,n,L

(2π i)−3g+3−n〈�g,n,L|B6g−6+2nB1
α1

· · · Bn
αn

|ϕi1〉1 · · · |ϕin〉n. (36)

Here the indices αa (a = 1,…, n) take values ± and

Ba
αa

≡
{

1 αa = +
b−(a)

0 bSa (∂La )P(a) αa = − . (37)

Sa for bSa (∂La ) in Eq. (37) denotes the pair of pants that has a boundary corresponding to the
ath external line in a pants decomposition of �g,n,L. bSa (∂La ) depends on the choice of the pants
decomposition, because it corresponds to the variation La → La + ε with ls, τ s fixed. However,
bSa (∂La )B6g−6+2n and the amplitude in Eq. (36) is independent of the choice of Sa.

Equation (35) can be recast into
n∑

a=2

∫
Mg,n,L

∑
γ∈Ca

(TL1Lalγ + DL1Lalγ ) · (2π i)−3g+3−n〈�g,n,L|B6g−6+2nB1
α1

· · · Bn
αn

|ϕi1〉1 · · · |ϕin〉n

=
n∑

a=2

∫ ∞

0
dL(TL1LaL + DL1LaL)

×
∑
i, j,α

εa

[
〈�0,3,(L1,La,L)|B1

α1
Ba

αa
B0

−α|ϕi1〉1|ϕia〉a|ϕi〉0〈ϕc
i |ϕc

j〉(−1)nϕ j

× Ag,n−1

(
(|ϕ j〉, α, L), (|ϕi2〉, α2, L2), . . . , ̂(|ϕia〉, αa, La), . . . , (|ϕin〉, αn, Ln)

)
. (38)

We simplify the formula by introducing the following notation. The external states are labeled
by i (for |ϕi〉), α, and L. We denote these collectively by I and rewrite Eq. (38) in the following
way:

n∑
a=2

∫
Mg,n,L

∑
γ∈Ca

(TL1Lalγ + DL1Lalγ ) · (2π i)−3g+3−n〈�g,n,L|B6g−6+2nB1
α1

· · · Bn
αn

|ϕi1〉 · · · |ϕin〉

=
n∑

a=2

εa(T I1IaJ + DI1IaJ )GJIAII2···Îa···In
g,n−1 , (39)

where

T I1I2I3 ≡ TL1L2L3〈�0,3,(L1,L2,L3 )|B1
α1

B2
α2

B3
α3

|ϕi1〉1|ϕi2〉2|ϕi3〉3,

DI1I2I3 ≡ DL1L2L3〈�0,3,(L1,L2,L3 )|B1
α1

B2
α2

B3
α3

|ϕi1〉1|ϕi2〉2|ϕi3〉3,

GI1I2 ≡ 〈ϕc
i1 |ϕc

i2〉(−1)nϕi2 δ(L1 − L2)δα1,−α2,

AI1···In
g,n ≡ Ag,n ((|ϕi1〉, α1, L1), · · · , (|ϕin〉, αn, Ln)) ,

and for XI = X(i, α, L) and YI = Y(i, α, L)

XIY I =
∑

i

∑
α=±

∫ ∞

0
dLX (i, α, L)Y (i, α, L).
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Fig. 6. Examples of {γ , δ} in C1.

Fig. 7. Factorizations of the surfaces in Fig. 6.

The integral ∫
Mg,n,L

∑
{γ ,δ}∈C1

DL1lγ lδ · (2π i)−3g+3−n〈�g,n,L|B6g−6+2n|�1〉 · · · |�n〉 (40)

on the right-hand side of Eq. (30) can be dealt with in the same way. In this case, there can
be topologically distinct configurations of the pair {γ , δ} in C1 as depicted in Fig. 6. They
belong to different mapping class group orbits. For each orbit, we take X1 to be the space of
the combination (�g,n,L, γ , δ), where (γ , δ) is in the orbit, and express the contribution to Eq.
(40) by an integral over X1. The amplitudes are factorized as in Fig. 7. A formula similar to Eq.
(39) can be derived for each contribution.

Putting everything together, we can see that Eq. (30) is transformed into

L1AI1···In
g,n = 1

2
DI1J ′JGJIGJ ′I ′

[
AII ′I2···In

g−1,n+1 +
∑
stable

εI1I2

(n1 − 1)!(n2 − 1)!
AII1

g1,n1
AI ′I2

g2,n2

]

+
n∑

a=2

εa(T I1IaJ + DI1IaJ )GJIAII2···Îa···In
g,n−1 , (41)
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which holds for 2g − 2 + n > 1. Here I1, I2 are ordered sets of indices with n1 − 1, n2 − 1
elements respectively. The sum

∑
stable means the sum over g1, g2, n1, n2, I1, I2 such that

g1 + g2 = g,

n1 + n2 = n + 1,

I1 ∪ I2 = {I2, . . . , In} ,

I1 ∩ I2 = φ,

2g1 − 2 + n1 > 0,

2g2 − 2 + n2 > 0. (42)

εI1I2 = ±1 is the sign that will appear when we change the order of the product II′I2···In to
II1I ′I2, if we regard the indices as Grassmann numbers with Grassmannality of the corre-
sponding string state.

Equation (41) can be made more tractable by introducing AI1I2
0,2 . Since we define the amplitudes

for surfaces with 2g − 2 + n > 0, amplitudes for g = 0, n = 2 do not exist. We here introduce a
fictitious amplitude

AI1I2
0,2 = GI1I2,

where

GI1I2 ≡ 〈ϕi1 |ϕi2〉δ(L1 − L2)δα1,−α2,

which satisfies

GI1I2G
I2I3 = δ

I3
I1

= δi1,i3δα1,α3δ(L1 − L3).

Taking this into account, we can turn Eq. (41) into

L1AI1···In
g,n = L1GI1I2δg,0δn,2

+ 1
2

DI1J ′JGJIGJ ′I ′

[
AII ′I2···In

g−1,n+1 +
∑ ′ εI1I2

(n1 − 1)!(n2 − 1)!
AII1

g1,n1
AI ′I2

g2,n2

]

+
n∑

a=2

εaT I1IaJGJIAII2···Îa···In
g,n−1 , (43)

which holds for 2g − 2 + n > 0 or g = 0, n = 2. Here the summation
∑ ′ is over

g1, g2, n1, n2, I1, I2 such that

g1 + g2 = g,

n1 + n2 = n + 1,

I1 ∪ I2 = {I2, . . . , In} ,

I1 ∩ I2 = φ,

2g1 − 2 + n1 ≥ 0,

2g2 − 2 + n2 ≥ 0.

Let us check if Eq. (43) is valid for (g, n) = (0, 2), (0, 3), (1, 1). For g = 0, n = 2, Eq. (43)
becomes3

L1AI1I2
0,2 = L1GI1I2 . (44)

3Notice that AI
0,1 does not exist.
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The first term on the right-hand side of Eq. (43) is introduced so that AI1I2
0,2 = GI1I2 holds. For g

= 0, n = 3, we have

L1AI1I2I3
0,3 = 1

2
DI1J ′JGJIGJ ′I ′

[
(−1)|I2||I3|GII2GI ′I3 + (−1)|I3|(|I2|+|I2|)GII3GI ′I2

]
+ T I1I2JGJIGII3 + (−1)|I2||I3|T I1I3JGJIGII2

=
(

1
2

DL1L2L3 + 1
2

DL1L3L2 + TL1L2L3 + TL1L3L2

)
×〈�0,3,(L1,L2,L3 )|B1

α1
B2

α2
B3

α3
|ϕi1〉1|ϕi2〉2|ϕi3〉3,

where |I| denotes the Grassmannality of |ϕi〉. Substituting Eq. (27) into this, we obtain

L1AI1I2I3
0,3 = L1〈�0,3,(L1,L2,L3 )|B1

α1
B2

α2
B3

α3
|ϕi1〉1|ϕi2〉2|ϕi3〉3. (45)

Notice that M0,3,L is a point and Eq. (36) implies

AI1I2I3
0,3 = 〈�0,3,(L1,L2,L3 )|B1

α1
B2

α2
B3

α3
|ϕi1〉1|ϕi2〉2|ϕi3〉3, (46)

which is consistent with the above equation. For g = 1, n = 1, Eq. (43) becomes

L1AI
1,1 = 1

2
DIJ ′JGJ ′J

= −1
2

∫
dlγ DLlγ lγ

∑
j

〈�0,3,(L,L2,L3 )|B1
α(b(∂L2 ) + b(∂L3 ))b−(2)

0 P(2)|ϕi〉1|ϕ j〉2|ϕc
j〉3

∣∣∣
L2=L3=lγ

.

(47)

On the other hand, AI
1,1 can be given as

AI
1,1 = 1

2

∫
M1,1,L

〈
�1,1,L|BαB2|ϕα

i

〉
(2π i)−1

= −1
2

∫
M1,1,L

∑
j

〈
�0,3,(L,L2,L3 )|B1

α(b(∂L2 ) + b(∂L3 ))b−(2)
0

1
2π

× eiθγ (L(2)
0 −L̄(29

0 )|ϕi〉1|ϕ j〉2|ϕc
j

〉
3

∣∣∣
L2=L3=lγ

dlγ ∧ dθγ .

The integral on the last line can be unfolded by using the McShane identity and we get Eq. (47)
exactly.

3.3. The solution of the recursion relation
The recursion relation (41) is derived from the properties of the off-shell amplitudes AI1···In

g,n .
Conversely, AI1···In

g,n can be derived by solving Eq. (41).

AI1···In
g,n is the order-g2g−2+n

s contribution to the n-point amplitude. Equation (43) can be solved
order by order in gs, because the right-hand side of Eq. (43) consists of lower-order terms
compared with the AI1···In

g,n on the left-hand side. For example, the equation for g = 0, n = 3
becomes Eq. (45) and the solution is Eq. (46) because AI1I2I3

0,3 is defined for L1 > 0. Equation
(43) can be solved in the same way for general g, n. The solution is unique, because AI1···In

g,n is
defined for L1 > 0. This unique solution should coincide with the AI1···In

g,n in Eq. (36). Therefore
Eq. (43) can be used to derive the off-shell amplitudes of closed bosonic string theory.

For later convenience, let us define the generating functional of the off-shell amplitudes:

WA[J] ≡
∞∑

g=0

∞∑
n=2

g2g−2+n
s

1
n!

JIn · · · JI1A
I1···In
g,n . (48)
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JI is taken to have the same Grassmannality as that of φI. It is straightforward to show that the
recursion relation (43) is equivalent to the following identity:

L
δWA[J]

δJI
= LJI ′GI ′I + 1

2
gsDII ′I ′′

GI ′′K ′′GI ′K ′

[
δ2WA[J]
δJK ′′δJK ′

+ δWA[J]
δJK ′′

δWA[J]
δJK ′

]
+ gsT II ′I ′′

GI ′′K ′′JI ′
δWA[J]
δJK ′′

(−1)|I||I ′|. (49)

Here all the functional derivatives are left derivatives.

4. The Fokker–Planck formalism
In this section, we would like to develop the Fokker–Planck formalism for the string theory
from which we can derive the recursion relation (43) through the Schwinger–Dyson equation.

4.1. The Fokker–Planck formalism for conventional field theory
Let φ(x) be a scalar field with action S[φ]. The Euclidean correlation functions are defined by

〈φ(x1) · · ·φ(xn)〉 =
∫

[dφ]P[φ]φ(x1) · · ·φ(xn), (50)

where

P[φ] = e−S[φ]∫
[dφ]e−S[φ]

. (51)

In order to describe this quantum field theory, we consider a system governed by the following
Fokker–Planck equation:

− ∂

∂τ
P[φ, τ ] = HFPP[φ, τ ]. (52)

Here HFP is the Fokker–Planck Hamiltonian defined by

HFP = −
∫

dx
δ

δφ(x)

(
δ

δφ(x)
+ δS[φ]

δφ(x)

)
. (53)

It is possible to show that, for a solution of Eq. (52) with an appropriate initial condition,

lim
τ→∞ P[φ, τ ] = P[φ]

holds. The Fokker–Planck equation with the Fokker–Planck Hamiltonian (53) appears in the
context of stochastic quantization [28] where τ coincides with the fictitious time.

The Fokker–Planck Hamiltonian can be realized as an operator acting on a Hilbert space.
Let π̂ (x), φ̂(x) be operators satisfying the commutation relations

[π̂ (x), φ̂(y)] = δ(x − y),

[π̂ (x), π̂ (y)] = [φ̂(x), φ̂(y)] = 0,

and |0〉, 〈0| be states satisfying

π̂ (x)|0〉 = 〈0|φ̂(x) = 0,

〈0|0〉 = 1.

Then

P[φ, τ ] = 〈0|e−τĤFP
∏

x

δ(φ̂(x) − φ(x))|0〉,

with

ĤFP = −
∫

dx
(

π̂ (x) − δS
δφ(x)

[φ̂]
)

π̂ (x),
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gives a solution to Eq. (52) with initial condition P[φ, 0] = ∏
xδ(φ(x)). Assuming that this is a

good initial condition, we get

P[φ] = lim
τ→∞〈0|e−τĤFP

∏
x

δ(φ̂(x) − φ(x))|0〉. (54)

The correlation function in Eq. (50) is given by

lim
τ→∞〈0|e−τĤFP φ̂(x1) · · · φ̂(xn)|0〉.

In Ref. [14], a string field theory for the (2,3) minimal string theory using this kind of operator
formalism was proposed. The string fields are labeled by the length l of the string and we define
the operators π̂ (l ), φ̂(l ) accordingly. The Fokker–Planck Hamiltonian is given by

ĤFP = 2
∫ ∞

0
dl1

∫ ∞

0
dl2φ̂(l1)w(l2)π̂ (l1 + l2)(l1 + l2)

+
∫ ∞

0
dl1

∫ ∞

0
dl2w(l1 + l2)π̂ (l1)l1π̂ ((l2)l2

+ gs

∫ ∞

0
dl1

∫ ∞

0
dl2φ̂(l1)φ̂(l2)π̂ (l1 + l2)(l1 + l2)

+ gs

∫ ∞

0
dl1

∫ ∞

0
dl2φ̂(l1 + l2)π̂ (l1)l1π̂ ((l2)l2,

where w(l) is the disk amplitude for the (2,3) minimal string theory4. The correlation functions
of the string fields are given by

lim
τ→∞〈0|e−τĤFP φ̂(l1) · · · φ̂(ln)|0〉. (55)

One can prove that the correlation functions thus defined coincide with the loop amplitudes of
the (2,3) minimal string theory in the following way. In order for the limit (55) to exist,

lim
τ→∞ ∂τ 〈0|e−τĤFP φ̂(l1) · · · φ̂(ln)|0〉 = − lim

τ→∞〈0|e−τĤFPĤFPφ̂(l1) · · · φ̂(ln)|0〉 = 0 (56)

should hold. Equation (56) yields the Schwinger–Dyson equation satisfied by the correlation
functions of the minimal string theory. It can be shown that the loop equation of the minimal
string theory is equivalent to this Schwinger–Dyson equation. Moreover, this string field theory
can be derived from the stochastic quantization of the one-matrix model [15]. The Fokker–
Planck formalism was applied to construct string field theories for general (p, q) minimal string
theories in Refs. [29–31].

4.2. The Fokker–Planck Hamiltonian for closed bosonic strings
In Ref. [12], it was shown that Mirzakhani’s recursion relation (28) is a special case of random
matrix recursion relations. In Ref. [13], Eq. (28) is identified with a limit p → ∞ of the loop
equation of the (2,p) minimal string theory. Since (2,p) minimal string theory is a close cousin
of the (2,3) one, it is possible to develop the Fokker–Planck formalism of string field theory
corresponding to Eq. (28). The recursion relation in Eq. (41) is a (not so close) cousin of Eq.

4The correspondence between our notation and that in Ref. [14] is given by

1
gs

w(l ) + φ̂(l ) ↔ �†(l ),

π̂ (l ) ↔ �(l ).
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(28), so it is conceivable that the same approach is applicable to this equation. In this subsection,
we would like to show that this is the case.

We introduce operators φ̂I , π̂I that satisfy the commutation relations

[π̂I , φ̂
K ] = δ K

I ,

[π̂I , π̂K ] = [φ̂I , φ̂K ] = 0.

Here we define

[X I ,Y K ] ≡ X IY K − (−1)|I||K|Y KX I .

Let |0〉〉, 〈〈0| be states that satisfy

〈〈0|φ̂I = π̂I |0〉〉 = 0. (57)

We define the correlation functions of φI as

〈〈φI1 · · ·φIn〉〉 ≡ lim
τ→∞〈〈0|e−τĤ φ̂I1 · · · φ̂In |0〉〉, (58)

with the Hamiltonian

Ĥ = −Lπ̂I π̂I ′GI ′I + Lφ̂I π̂I

− 1
2

gsDII ′I ′′
GI ′′K ′′GI ′K ′ φ̂K ′′

φ̂K ′
π̂I

− gsT II ′I ′′
GI ′′K ′′ φ̂K ′′

π̂I ′ π̂I . (59)

As we will see, the right-hand side of Eq. (58) can be calculated perturbatively with respect to
gs. We define the connected correlation functions 〈〈φI1 · · ·φIn〉〉c in the usual way and they can
be expanded as

〈〈φI1 · · ·φIn〉〉c =
∞∑

g=0

g2g−2+n
s 〈〈φI1 · · ·φIn〉〉c

g.

It is possible to show that

〈〈φI1 · · ·φIn〉〉c
g = AI1···In

g,n (60)

holds.
In order to prove Eq. (60), we define the generating functional W[J] of the connected corre-

lation functions

W [J] =
∞∑

n=2

1
n!

JIn · · · JI1〈〈φI1 · · ·φIn〉〉c. (61)

such that

eW [J] = lim
τ→∞〈〈0|e−τĤ eJI φ̂

I |0〉〉.
Since the limit τ → ∞ of 〈〈0|e−τĤ φ̂I1 · · · φ̂In |0〉〉 exists, we have5

0 = lim
τ→∞ ∂τ 〈〈0|e−τĤ eJI φ̂

I |0〉〉 = − lim
τ→∞〈〈0|e−τĤ ĤeJI φ̂

I |0〉〉. (62)

Using Eq. (57), we get the following equation from Eq. (62):

0 = JI

{
L

δW [J]
δJI

− LJI ′GI ′I − 1
2

gsDII ′I ′′
GI ′′K ′′GI ′K ′

[
δ2W [J]
δJK ′′δJK ′

+ δW [J]
δJK ′′

δW [J]
δJK ′

]
− gsT II ′I ′′

GI ′′K ′′JI ′
δW [J]
δJK ′′

(−1)|I||I ′|
}

. (63)

5Equation (62) can be proved perturbatively in gs.
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It is possible to solve Eq. (63) order by order in gs and obtain 〈〈φI1 · · ·φIn〉〉c
g. For example, at

O(g0
s ), Eq. (63) implies

JIJI ′ (L + L′)
(
〈〈φI ′

φI〉〉c
0 − GI ′I

)
= 0.

Since 〈〈φI ′
φI〉〉c

0 is defined for L, L′ > 0, we obtain the unique solution

〈〈φI ′
φI〉〉c

0 = GI ′I . (64)

In general, Eq. (63) implies an equation in which (L1 + · · · + Ln)〈〈φI1 · · ·φIn〉〉c
g is expressed in

terms of lower-order correlation functions. Since 〈〈φI1 · · ·φIn〉〉c
g is defined for L1,…, Ln > 0, one

can solve the equation and the solution is unique. Hence all the coefficients of the expansion
(61) are uniquely fixed by Eq. (63). On the other hand,

W [J] = WA[J] (65)

yields a solution to Eq. (63) because WA[J] satisfies Eq. (49). Since the solution of Eq. (63)
should be unique, we obtain Eq. (60).

Equation (65) implies that W[J] satisfies Eq. (49), which can be expressed as

lim
τ→∞〈〈0|e−τĤ T̂ IeJI φ̂

I |0〉〉 = 0 (66)

in the Fokker–Planck formalism. Here

T̂ I ≡ −Lπ̂I ′GII ′ + Lφ̂I

− 1
2

gsDII ′I ′′
GI ′′K ′′GI ′K ′ φ̂K ′′

φ̂K ′

− gsT II ′I ′′
GI ′′K ′′ φ̂K ′′

π̂I ′, (67)

and we have

Ĥ = T̂ I π̂I .

Since every ket vector is expressed as a linear combination of states of the form

〈〈0|π̂ I1 · · · π̂ In,

Eq. (58) means that limτ→∞〈〈0|e−τĤ is expressed as

lim
τ→∞〈〈0|e−τĤ =

∞∑
n=0

1
n!

〈〈φI1 · · ·φIn〉〉〈〈0|π̂In · · · π̂I1 .

In the same way, we can deduce from Eqs. (62), (66) that[
lim

τ→∞〈〈0|e−τĤ
]

Ĥ = 0,[
lim

τ→∞〈〈0|e−τĤ
]
T̂ I = 0. (68)

4.3. String field action S[φI]
In the case of conventional field theory, the Fokker–Planck formalism is an alternative to the
path integral formalism. Let us discuss whether the theory that we have can be formulated using
a path integral with action S[φI]. It is possible to define the weight P[φI] following Eq. (54):

P[φI ] = e−S[φI ]∫
[dφI ]e−S[φI ]

= lim
τ→∞〈〈0|e−τĤ

∏
I

δ(φ̂I − φI )|0〉〉.

21/35

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/2/023B05/7008535 by D

eutsches Elektronen Synchrotron D
ESY user on 25 M

arch 2023



PTEP 2023, 023B05 N. Ishibashi

From Eq. (68), we obtain an equation for S[φI]:

[LGIJ + gsT IJI ′
GI ′J ′φJ ′

]
δS
δφJ

= LφI − 1
2

gsDII ′I ′′
GI ′J ′GI ′′J ′′φJ ′′

φJ ′ + gsT II ′I ′′
GI ′I ′′ . (69)

Using Eq. (27), the last term on the right-hand side of Eq. (69) is expressed as

T II ′I ′′
GI ′I ′′ = 1

2
L

∫ ∞

0
dlγ

∑
j

〈�0,3,(L,L2,L3 )|B1
α(b(∂L2 ) + b(∂L3 ))b−(2)

0 P(2)|ϕi〉1|ϕ j〉2|ϕc
j〉3

∣∣∣
L2=L3=lγ

− 1
2

∫ ∞

0
dlγ DLlγ lγ

∑
j

〈�0,3,(L,L2,L3 )|B1
α(b(∂L2 )

+ b(∂L3 ))b−(2)
0 P(2)|ϕi〉1|ϕ j〉2|ϕc

j〉3

∣∣∣
L2=L3=lγ

.

The integrand of the first term on the right-hand side coincides with that of AI
1,1, but the inte-

gration region includes infinitely many fundamental domains of the mapping class group. The
second term is equal to −LAI

1,1. Therefore the last term on the right-hand side of Eq. (69) may
be given as

L
[∞ × AI

1,1 − AI
1,1

]
,

and is divergent. Hence Eq. (69) is not well defined.
Still, Eq. (69) can be solved formally order by order in gs and we get

S[φI ] = 1
2

GIJφ
IφJ − gs

6
AII ′I ′′

0,3 GIJGI ′J ′GI ′′J ′′φJ ′′
φJ ′

φJ + gs

L
T II ′I ′′

GI ′I ′′GIJφ
J + O

(
g2

s

)
. (70)

This should be the action that yields the off-shell amplitudes with the propagator GIJ. Let us
compute the one-loop one-point function using the path integral formalism. The contribution
from the three-string vertex becomes

gs

2

∫
dlγ

∑
j

〈�0,3,(L,L2,L3 )|B1
α(b(∂L2 ) + b(∂L3 ))b−(2)

0 P(2)|ϕi〉1|ϕ j〉2|ϕc
j〉3

∣∣∣
L2=L3=lγ

,

and diverges. The contribution from the divergent term gs
L T II ′I ′′

GI ′I ′′GIJφ
J in the action cancels

this divergence and we get the correct answer gsAI
1,1. This pattern seems to continue forever.

If one computes the four-point amplitude using the three-string vertex in Eq. (70), one gets a
divergent result. The four-string vertex cancels the divergence and makes the amplitude finite.

Therefore, the Fokker–Planck formalism is necessary for a well-defined formulation of the
theory in our setup. On the other hand, the formally defined action (70) will be useful in studying
various aspects of our formulation.

4.4. SFT notation
In order to discuss various properties of the theory, it is more convenient to express the Fokker–
Planck Hamiltonian (59) in terms of the variables in the Hilbert space of strings. Let us define

|φα(L)〉 ≡
∑

i

φ̂I |ϕc
i 〉, (71)

|πα(L)〉 ≡
∑

i

|ϕi〉π̂I . (72)
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The string fields |φα(L)〉, |πα(L)〉 are taken to satisfy

|π+(L)〉, |ϕ−(L)〉 ∈ H0,

|π−(L)〉, |ϕ+(L)〉 ∈ Hc
0, (73)

where Hc
0 consists of the states |�〉 satisfying

c−
0 |�〉 = (L0 − L̄0)|�〉 = 0,

where c±
0 = c0 ± c̄0. We also impose the reality condition [4,32]

|φ+(L)〉† = 〈φ+(L)|,
|φ−(L)〉† = −〈φ−(L)|. (74)

The reality condition for |πα(L)〉 will not be so simple, as is always the case in the Fokker–Planck
formalism. Conditions (73) and (74) have been implicitly assumed in the previous subsection.

Notice that |φα(L)〉, |πα(L)〉 are Grassmann even. They satisfy the canonical commutation
relation

[|πα(L)〉1, |φα′
(L′)〉2] = δα′

α δ(L − L′)P(1)
α |R12〉, (75)

where

|R12〉 =
∑

i

|ϕi〉1|ϕc
i 〉2 =

∑
i

|ϕi〉2|ϕc
i 〉1 = |R21〉 = |R〉

is the reflector and

Pα =
{

1
2 b−

0 c−
0 P α = +

1
2 c−

0 b−
0 P α = − .

The states |0〉〉, 〈〈0| satisfy

|πα(L)〉 ∣∣0〉〉 = 〈〈0∣∣ |φα(L)〉 = 0.

In terms of these string fields, the Fokker–Planck Hamiltonian (59) is expressed as

Ĥ =
∫ ∞

0
dLL [〈R|φα(L)〉|πα(L)〉 − 〈R|πα(L)〉|π−α(L)〉]

− gs

∫
dL1dL2dL3〈TL2L3L1 |B1

−α1
B2

α2
B3

α3
|φα1 (L1)〉1|πα2 (L2)〉2|πα3 (L3)〉3

− 1
2

gs

∫
dL1dL2dL3〈DL3L1L2 |B1

−α1
B2

−α2
B3

α3
|φα1 (L1)〉1|φα2 (L2)〉2|πα3 (L3)〉3, (76)

where

〈TL2L3L1 | ≡ TL2L3L1〈�0,3,(L1,L2,L3 )|,
〈DL3L1L2 | ≡ DL3L1L2〈�0,3,(L1,L2,L3 )|,

and the sum over repeated indices α1, α2, α3 is understood. φI and π I are given by

φ̂I = 〈ϕi|φα(L)〉,
π̂I = 〈ϕc

i |πα(L)〉,
and the correlation functions of |φα(L)〉 are expressed as

〈〈|φα1 (L1)〉1 · · · |φαn (Ln)〉n〉〉c
g =

∫
Mg,n,L

1′···n′ 〈�g,n,L|B6g−6+2nB1′
α1

· · · Bn′
αn

P(1)
−α1

|R1′1〉 · · · P(n)
−αn

|Rn′n〉.

(77)
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The correlation functions can be calculated perturbatively. The Euclidean action correspond-
ing to the Fokker–Planck Hamiltonian (76) becomes

I =
∫ ∞

0
dτ

[
−

∫ ∞

0
dL〈R|πα(τ, L)〉 ∂

∂τ
|φα(τ, L)〉 + H (τ )

]
, (78)

where

H (τ ) =
∫ ∞

0
dLL [〈R|φα(τ, L)〉|πα(τ, L)〉 − 〈R|πα(τ, L)〉|π−α(τ, L)〉]

− gs

∫
dL1dL2dL3〈TL2L3L1 |B1

−α1
B2

α2
B3

α3
|φα1 (τ, L1)〉1|πα2 (τ, L2)〉2|πα3 (τ, L3)〉3

− 1
2

gs

∫
dL1dL2dL3〈DL3L1L2 |B1

−α1
B2

−α2
B3

α3
|φα1 (τ, L1)〉1|φα2 (τ, L2)〉2|πα3 (τ, L3)〉3.

|φα(τ , L)〉, |πα(τ , L)〉 satisfy the boundary conditions

lim
τ→∞ |φα(τ, L)〉 = |πα(0, L)〉 = 0.

The correlation functions are expressed as

〈〈|φα1 (L1)〉 · · · |φαn (Ln)〉〉〉 =
∫

[dπdφ]e−I |φα1 (0, L1)〉 · · · |φαn (0, Ln)〉∫
[dπdφ]e−I

, (79)

using the path integral. To develop the perturbation theory, we decompose the action as I = I0

+ gsV, and we get propagators by Wick’s theorem:

|φα(τ, L)〉1|φα′
(τ ′, L′)〉2 = e−|τ−τ ′|Lδ(L − L′)δα.−α′P(1)

−α|R12〉,

|πα(τ, L)〉1|πα′ (τ ′, L′)〉2 = 0,

|πα(τ, L)〉1|φα′
(τ ′, L′)〉2 = e−(τ−τ ′ )Lθ (τ − τ ′)δ(L − L′)δα′

α P(1)
α |R12〉.

With the propagators and the vertex, it is straightforward to compute Eq. (79). By construction,
the results are given by the integral∫

Mg,n,L

1′···n′ 〈�g,n,L|B6g−6+2nB1
α1

· · · Bn
αn

P(1)
−α1

|R1′1〉 · · · P(n)
−αn

|Rn′n〉,

unfolded by Mirzakhani’s method. The integrations can be done taking account of the contri-
butions from the boundaries of the moduli space appropriately.

5. BRST invariant formulation
With the Fokker–Planck formalism developed in the previous section, one can express the off-
shell amplitudes of the bosonic string theory. In order to describe the string theory, we need
the BRST symmetry on the worldsheet to specify which states of strings are physical. Unfor-
tunately, the Fokker–Planck Hamiltonian (76) and the action (78) are not invariant under the
BRST symmetry, although the amplitudes are. We will modify the action (78) so that the BRST
symmetry becomes manifest in our formalism.
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5.1. BRST transformation
As is proved in Appendix B, 〈�g,n,L| satisfies the BRST identity

〈�g,n,L|B6g−6+2nB1
α1

· · · Bn
αn

n∑
a=1

Q(a) = d
(〈�g,n,L|B6g−7+2nB1

α1
· · · Bn

αn

)
−

n∑
a=1

δαa,−∂La

(
〈�g,n,L|B6g−6+2nB1

α1
· · · b−(a)

0 P(a) · · · Bn
αn

)
.

(80)

Integrating this over Mg,n,L, we obtain
n∑

a=1

P(a)
−αa

Q(a)〈〈|φα1 (L1)〉1 · · · |φαn (Ln)〉n〉〉c
g

=
n∑

a=1

δαa,−〈〈|φα1 (L1)〉1 · · · b−(a)
0 P(a)∂La |φ+(La)〉a · · · |φαn (Ln)〉n〉〉c

g. (81)

Equation (81) implies that the correlation functions of |φα(L)〉 is invariant under

δε|φ+(L)〉 = εP−Q|φ+(L)〉,
δε|φ−(L)〉 = εQ|φ−(L)〉 − εb−

0 P∂L|φ+(L)〉, (82)

with a Grassmann-odd parameter ε. This can be identified with the BRST transformation of
|φα(L)〉. It is easily checked that the two-point function

〈〈|φα1 (L1)〉1|φα2 (L2)〉2〉〉c
0 = δ(L1 − L2)δα1,−α2P

(1)
−α1

|R12〉
is also BRST invariant. The transformation of |πα(L)〉 is fixed by requiring that the commuta-
tion relation (75) is invariant and we obtain

δε|π+(L)〉 = εQ|π+(L)〉 − εb−
0 P∂L|π−(L)〉,

δε|π−(L)〉 = εP−Q|π−(L)〉. (83)

The generator of the transformation is given by

Q̂ =
∫

dL
[〈R|Q|φ+(L)〉|π+(L)〉 + 〈R|Q|φ−(L)〉|π−(L)〉

− 〈R|b−
0 P∂L|φ+(L)〉|π−(L)〉] ,

which satisfies

Q̂|0〉〉 = 〈〈0|Q̂ = 0,[
lim

τ→∞〈〈0|e−τĤ
]

Q̂ = 0. (84)

5.2. The BRST variation of Ĥ
Although the correlation functions are invariant under Eq. (82), the Hamiltonian (76) is not.
The BRST variations of the correlation functions that appear on the right-hand side of Eq. (76)
yield total derivatives with respect to the length variables, but they come with the coefficients
TLL′L′′, DLL′L′′ and do not vanish upon integration.

The Hamiltonian (76) can be expressed as

Ĥ =
∫ ∞

0
dL〈R|T α(L)〉|πα(L)〉, (85)
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where

|T α(L)〉3′ = L|φα(L)〉3′ − L|π−α(L)〉3′

− gs

∫
dL1dL2〈TL2LL1 |B1

−α1
B2

α2
B3

α|φα1 (L1)〉1|πα2 (L2)〉2|R33′ 〉

− 1
2

gs

∫
dL1dL2〈DLL1L2 |B1

−α1
B2

−α2
B3

α|φα1 (L1)〉1|φα2 (L2)〉2|R33′ 〉.
|T α(L)〉 is the SFT version of T I and we have[

lim
τ→∞〈〈0|e−τĤ

]
|T α(L)〉 = 0. (86)

The BRST variation of Ĥ is given by

[Q̂, Ĥ ] =
∫ ∞

0
dL

(
〈R|Qα(L)〉|πα(L)〉 + 〈R|T α(L)〉[Q̂, |πα(L)〉]

)
,

where

|Qα(L)〉 ≡ [Q̂, |T α(L)〉].
From Eqs. (86) and (84), we obtain[

lim
τ→∞〈〈0|e−τĤ

]
|Qα(L)〉 = 0. (87)

5.3. BRST invariant formulation
Although [Q̂, Ĥ ] does not vanish, Eqs. (86) and (87) imply that it consists of “null” quantities.
Using this fact, we will make the theory manifestly invariant under the BRST transformation
by introducing auxiliary fields.

We modify the Euclidean action (78) by adding terms involving auxiliary fields
|λT

α (τ, L)〉, |λQ
α (τ, L)〉 as follows:

IBRST =
∫ ∞

0
dτ

[
−

∫ ∞

0
dL〈R|πα(τ, L)〉 ∂

∂τ
|φα(τ, L)〉 + H (τ )

+
∫ ∞

0
dL

(〈R|Qα(τ, L)〉|λQ
α (τ, L)〉 + 〈R|T α(τ, L)〉|λT

α (τ, L)〉) ]
. (88)

Here |Qα(τ, L)〉(|T α(τ, L)〉) is equal to |Qα(L)〉(|T α(L)〉) with |φα(L)〉, |πα(L)〉 replaced by clas-
sical fields |φα(τ , L)〉, |πα(τ , L)〉 respectively. |λT

α (τ, L)〉 and |λQ
α (τ, L)〉 are taken to satisfy the

boundary conditions

|λT
α (0, L)〉 = |λQ

α (0, L)〉 = 0.

IBRST is invariant under the BRST transformation

δε|φ+(τ, L)〉 = εP−Q|φ+(τ, L)〉,
δε|φ−(τ, L)〉 = εQ|φ−(τ, L)〉 − εb−

0 P∂L|φ+(τ, L)〉,
δε|π+(τ, L)〉 = εQ|π+(τ, L)〉 − εb−

0 P∂L|π−(τ, L)〉,
δε|π−(τ, L)〉 = εP−Q|π−(τ, L)〉,
δε|λQ

α (τ, L)〉 = ε
[|πα(τ, L)〉 + |λT

α (τ, L)〉] ,

δε|λT
α (τ, L)〉 = −δε|πα(τ, L)〉.

The correlation functions are defined by∫
[dπdφdλQdλT ]e−IBRST |φα1 (0, L1)〉 · · · |φαn (0, Ln)〉∫

[dπdφdλQdλT ]e−IBRST
. (89)
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We would like to show that the correlation functions in this BRST invariant theory coincide
with those given in Eq. (79). The numerator of Eq. (89) is computed as∫

[dπdφdλQdλT ]e−IBRST |φα1 (0, L1)〉 · · · |φαn (0, Ln)〉

=
∫

[dλQdλT ]
∫

[dπdφ]e−I
∞∑

n=0

1
n!

×
[
−

∫ ∞

0
dτ

∫ ∞

0
dL

(〈R|Qα(τ, L)〉|λQ
α (τ, L)〉 + 〈R|T α(τ, L)〉|λT

α (τ, L)〉)]n

× |φα1 (0, L1)〉 · · · |φαn (0, Ln)〉.
The n �= 0 terms on the right-hand side vanish because of Eqs. (86) and (87), and this becomes[

lim
τ→∞〈〈0|e−τĤ

]
|φα1 (0, L1)〉 · · · |φαn (0, Ln)〉|0〉〉

∫
[dπdφdλQdλT ]e−I .

The denominator is evaluated in the same way and we obtain∫
[dπdφdλQdλT ]e−IBRST =

∫
[dπdφdλQdλT ]e−I .

Therefore the correlation function (89) coincides with Eq. (79).
Now the theory is invariant under the BRST symmetry, and we regard the BRST invariant

quantities as physical. One type of BRST invariant observable is of the form

〈ϕ|φ+(L)〉
for |ϕ〉 satisfying

Q|ϕ〉 = 0.

As we mentioned in Sect. 2,

lim
La→0

〈ϕ1| · · · 〈ϕn|〈〈|φ+(L1)〉 · · · |φ+(Ln)〉〉〉
gives the on-shell amplitude if we take |ϕa〉 to be on-shell physical states.

Another type of BRST invariant observable would be of the form∫ ∞

0
dL〈ϕ|φ−(L)〉, (90)

with Q|ϕ〉 = 0. The amplitude∫ ∞

0
dL1 · · ·

∫ ∞

0
dLn〈ϕ1| · · · 〈ϕn|〈〈|φ−(L1)〉 · · · |φ−(Ln)〉〉〉 (91)

for these observables is in the form of an integration over the moduli space of complex struc-
tures of Riemann surfaces with boundaries. Therefore it is natural to take 〈ϕ| to be

〈ϕ| = 〈B|(c0 − c̄0),

where 〈B| is the boundary state corresponding to some D-brane configuration. For example,
taking the states |ϕa〉 to be a point-like string state with the appropriate ghost part, we obtain
off-shell amplitudes of the kind studied in Refs. [22–24]. Such amplitudes involve external leg
contributions coming from the integration region La ∼ 0. Indeed, using Eq. (A5), the contri-
bution of 〈ϕa|φ−(La)〉 for La ∼ 0 can be approximated as∫

0
dLab−

0 b(∂La )P|ϕa〉 ∼
∫

0
dLa

π2

L2
a

b+
0 b−

0 Pe−(c+ π2
La

)(L0+L̄0 )|ϕa〉

∼ b+
0 b−

0

L0 + L̄0
Pe−c(L0+L̄0 )|ϕa〉.
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This type of observable is suitable for studying mass renormalization [33,34].

6. Discussions
In this paper, we have constructed a string field theory for closed bosonic strings based on the
pants decomposition of hyperbolic surfaces. In such a setup, the Fokker–Planck formalism is
indispensable, as discussed in Sect. 4.3. We have introduced auxiliary fields to make the theory
manifestly BRST invariant. The action (88) that we obtain consists of kinetic terms and three-
string vertices.

There are many interesting points that deserve further study. The most obvious one would be
to construct an SFT for superstrings based on the same idea. It is straightforward to generalize
our formalism to the Type 0 superstring case, using the supersymmetric version of Eq. (24)
derived in Ref. [35]. We will present these results elsewhere.

The formulation that we get in Sect. 5 is invariant under the worldsheet BRST symmetry.
We should clarify the meaning of this symmetry from the point of view of string fields. In the
ordinary formulation of SFT, the worldsheet BRST symmetry is utilized to define the gauge
or BRST transformation for string fields that is nonlinear with respect to these fields. In our
case, the worldsheet BRST symmetry will not be related to the gauge or BRST symmetry of the
string fields in the usual way, because the theory is not based on a triangulation of the moduli
space. The similarity between the structure of our formalism and that of the covariantized
light-cone SFT [36] may provide a clue to this problem.

Our formalism is based on the one constructed for minimal strings. In the minimal string
case, the operator corresponding to T̂ I in Eq. (67) becomes

T̂ (l ) = −2
∫ l

0
dl ′w(l ′)φ̂(l − l ′) −

∫ ∞

0
dl ′w(l + l ′)π̂ (l ′)l ′

− gs

∫ l

0
dl ′φ̂(l ′)φ̂(l − l ′) − gs

∫ ∞

0
dl ′φ̂(l + l ′)π̂ (l ′)l ′,

and satisfies [
lim

τ→∞〈0|e−τĤFP

]
l T̂ (l ) = 0. (92)

Equation (92) is equivalent to the Virasoro constraints [37,38]. T̂ (l ) satisfies an algebra

[l1T̂ (l1), l2T̂ (l2)] = gsl1l2(l1 − l2)T̂ (l1 + l2), (93)

which serves as the integrability condition of Eq. (92). On Laplace transforming Eq. (93), we
obtain the Virasoro algebra. We are not sure if T̂ I satisfies a similar algebra. Exploring the alge-
bra of T̂ I will be crucial to understanding the structure of the theory. It may also be important
to point out that one can take the Fokker–Planck Hamiltonian to be∫ ∞

0
dL f (L)〈R|T α(L)〉|πα(L)〉,

instead of Eq. (85). Here f(L) is a function of L satisfying f(L) �= 0 for L > 0. The recursion
relation can be derived from this modified Hamiltonian. Such a Hamiltonian was constructed
in Ref. [39] in the minimal string case.
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The classical equation of motion for string fields can be derived in our formalism. It is possible
to assign the target space ghost number gt such that [4]

gt(φI ) =
{

4 − nϕc
i

α = +
2 − nϕc

i
α = − ,

gt(πI ) =
{

2 − nϕi α = +
4 − nϕi α = − .

The fields with gt = 0 can be considered as classical fields. Although the action S[φI] is not well
defined, Eq. (69) implies that the equation

LφI − 1
2

gsDII ′I ′′
GI ′J ′GI ′′J ′′φJ ′′

φJ ′ = 0

may be identified with the classical equation of motion for string fields. In the BRST invariant
formulation in Sect. 5, this equation coincides with

|T α(τ, L)〉 = 0, (94)

under the conditions

|πα(τ, L)〉 = 0,

∂τ |φα(τ, L)〉 = 0. (95)

For BRST invariance, we may also have to impose

|Qα(τ, L)〉 = 0. (96)

Indeed, Eqs. (94), (95), and (94) solve the equation of motion derived from the action (88), if
the auxiliary fields vanish.
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Appendix A. Hyperbolic metric on the three-holed sphere
Let us consider a hyperbolic pair of pants whose boundaries are geodesics. The pair of pants is
conformally equivalent to C − ⋃3

k=1 Dk where D1, D2, D3 are disks around z = 0, 1, ∞ respec-
tively. We take the length of ∂Dk to be Lk = 2πλk (k = 1, 2, 3). Around ∂Dk, a local coordinate
ρk is taken so that the metric becomes

ds2 = λ2
k

|ρk| sin2(λk log |ρk|)
|dρk|2 .

The boundary ∂Dk corresponds to

|ρk| = exp
[

π

λk

(
l̃k + 1

2

)]
,

where l̃k is an integer. ρk can be expressed as a function ρk(z) of the complex coordinate z
on C. Although ρk(z) have singularities in C − ⋃3

k=1 Dk, it is well defined around ∂Dk and the
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three-holed sphere corresponds to the region

|ρk(z)| > exp
[

π

λk

(
l̃k + 1

2

)]
.

The explicit forms of ρk(z) are given by [20,21]

ρ1(z) = e
v(λ1,λ2,λ3 )

λ1 z(1 − z)−
λ2
λ1

⎡⎣ 2F1

(
1+iλ1−iλ2+iλ3

2 , 1+iλ1−iλ2−iλ3
2 ; 1 + iλ1; z

)
2F1

(
1−iλ1+iλ2−iλ3

2 , 1−iλ1+iλ2+iλ3
2 ; 1 − iλ1; z

)
⎤⎦

1
iλ1

,

ρ2(z) = e
v(λ2,λ1,λ3 )

λ2 (1 − z)z− λ1
λ2

⎡⎣ 2F1

(
1+iλ2−iλ1+iλ3

2 , 1+iλ2−iλ1−iλ3
2 ; 1 + iλ2; 1 − z

)
2F1

(
1−iλ2+iλ1−iλ3

2 , 1−iλ2+iλ1+iλ3
2 ; 1 − iλ2; 1 − z

)
⎤⎦

1
iλ2

,

ρ3(z) = e
v(λ3,λ2,λ1 )

λ3
1
z

(
1 − 1

z

)− λ2
λ3

⎡⎣ 2F1

(
1+iλ3−iλ2+iλ1

2 , 1+iλ3−iλ2−iλ1
2 ; 1 + iλ3; 1

z

)
2F1

(
1−iλ3+iλ2−iλ1

2 , 1−iλ3+iλ2+iλ1
2 ; 1 − iλ3; 1

z

)
⎤⎦

1
iλ3

, (A1)

where

e2iv(λ1,λ2,λ3 ) = �(−iλ1)2

�(iλ1)2

γ
(

1+iλ1+iλ2+iλ3
2

)
γ

(
1+iλ1−iλ2+iλ3

2

)
γ

(
1−iλ1−iλ2+iλ3

2

)
γ

(
1−iλ1+iλ2+iλ3

2

) , (A2)

and

γ (x) = �(x)
�(1 − x)

.

Notice that

ρ2(z) = ρ1(1 − z)|λ1↔λ2
,

ρ3(z) = ρ1

(
1
z

)∣∣∣∣
λ1↔λ3

,

ρ1(z)|λ2↔λ3
= −ρ1

(
z

z − 1

)
,

ρ2(z)|λ1↔λ3
= −ρ2

(
1
z

)
,

ρ3(z)|λ1↔λ3
= −ρ3(1 − z) (A3)

hold. Attaching flat semi-infinite cylinders to the boundaries of the three-holed sphere, we get
a surface conformally equivalent to a three-punctured sphere. The local coordinates on the
cylinders are given by

Wk(z) = exp
[
− π

λk

(
l̃k + 1

2

)]
ρk(z) (A4)

up to a phase rotation and the metrics on the cylinders become

ds2 = λ2
k
|dWk|2
|Wk|2

.

Notice that Imz = 0 gives geodesics connecting the boundary components and perpendicular
to them. Therefore Wk = ±1 become the basepoints that are used to define the twist parameters
of the Fenchel–Nielsen coordinates [40].

For studying various properties of the amplitudes, it is useful to examine the limits Lk →
0, ∞ of the formula (A4). Since the behavior does not depend on k because of Eq. (A3), we
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consider the case k = 1. In the limit L1 = 2πλ1 → 0, Eq. (A2) implies

v(λ1, λ2, λ3) = nπ + cλ1 + O(λ2
1),

where

c = 2γ + 1
2

[
ψ

(
1 + iλ2 + iλ3

2

)
+ ψ

(
1 − iλ2 − iλ3

2

)
+ ψ

(
1 − iλ2 + iλ3

2

)
+ ψ

(
1 + iλ2 − iλ3

2

)]
∈ R,

and n ∈ Z. From Eqs. (A1) and (A4), we get

z ∼ e−c+ π
λ1

(l̃1+ 1
2 −n)W1.

l̃1 should be taken [20] so that l̃1 − n = −1 and we eventually obtain

z ∼ e−c− π2
L1 W1. (A5)

The limit L1 = 2πλ1 → ∞ can be obtained from the Fuchsian equation. We get

z ∼ 4W1 + O
(

1
λ1

)
. (A6)

Appendix B. BRST identity
In this appendix, we would like to prove

〈�g,n,L|B6g−6+2nB̃1
α1

· · · B̃n
αn

n∑
a=1

Q(a)

= d

[
〈�g,n,L|B6g−7+2nB̃1

α1
· · · B̃n

αn

+
n∑

a=1

〈�g,n,L|B6g−6+2nB̃1
α1

· · · b̃a
αa

· · · B̃n
αn

]
, (B1)

where

B6g−7+2n =
3g−3+n∑

t=1

⎡⎣∏
s�=t

(
b(∂ls )b(∂τs )

) ∧
s�=t

(dls ∧ dτs)

⎤⎦ [
b(∂lt )dlt + b(∂τt )dτt

]

B̃a
αa

=
{

1 αa = +
bS(∂La )b(∂θa )eiθa(L(a)

0 −L̄(a)
0 )dLa ∧ dθa αa = − ,

b̃a
αa

=
{

0 αa = +
bS(∂La )eiθa(L(a)

0 −L̄(a)
0 )dLa + b(∂θa )eiθa(L(a)

0 −L̄(a)
0 )dθa αa = − .

It is straightforward to derive Eqs. (18) and (80) from Eq. (B1).
Decomposing �g,n,L into pairs of pants, 〈�g,n,L| can be expressed in terms of 〈�0,3,L|. In order

to prove Eq. (B1), we will study some of the properties of 〈�0,3,L|. 〈�0,3,L| satisfying

〈�0,3,L|�1〉|�2〉|�3〉 = 〈
W −1

1 ◦ O�1 (0)W −1
2 ◦ O�2 (0)W −1

3 ◦ O�3 (0)
〉
C∪{∞} .

Here we take the local coordinate on C ∪ {∞} to be the z in Appendix A and Wk(z) is given in
Eq. (A4). We introduce the twist angles θa by deforming 〈�0,3,L| as

〈�0,3,L| → 〈�0,3,L|
3∏

a=1

eiθa(L(a)
0 −L̄(a)

0 ),
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so that we have

〈�0,3,L|
3∏

a=1

eiθa(L(a)
0 −L̄(a)

0 )|�1〉|�2〉|�3〉 = 〈
f1 ◦ O�1 (0) f2 ◦ O�2 (0) f3 ◦ O�3 (0)

〉
C∪{∞} , (B2)

where

fa(wa) = W −1
a (eiθawa).

Equation (B2) implies

〈�0,3,L|
3∏

a=1

eiθa(L(a)
0 −L̄(a)

0 ) =
∑

i1,i2,i3

〈
f1 ◦ Oϕi1

(0) f2 ◦ Oϕi2
(0) f3 ◦ Oϕi3

(0)
〉
C∪{∞}

〈ϕc
i3 |〈ϕc

i2 |〈ϕc
i1 |,

which can be regarded as the definition of the state 〈�0,3,L|.
Following the formula (5), we define

b(∂La ) =
3∑

a′=1

b(a′ )(∂La ),

T (∂La ) ≡
3∑

a′=1

T (a′ )(∂La ),

with

b(a′ )(∂La ) ≡ −
∮

0

dwa′

2π i
∂ fa′

∂La

∂wa′

∂z
b(wa′ ) −

∮
0

dw̄a′

2π i
∂ fa′

∂La

∂w̄a′

∂ z̄
b̄(w̄a′ ),

T (a′ )(∂La ) ≡ −
∮

0

dwa′

2π i
∂ fa′

∂La

∂wa′

∂z
T (wa′ ) −

∮
0

dw̄a′

2π i
∂ fa′

∂La

∂w̄a′

∂ z̄
T̄ (w̄a′ ).

Here T (z), T̄ (z̄) are the stress tensors of the worldsheet theory and we have{
Q, b(∂La )

} = T (∂La ), (B3)

with

Q ≡
∑

a′
Q(a′ ).

It is possible to show that, for any state |�〉,[
−

∮
0

dwa′

2π i
∂ fa′

∂La

∂wa′

∂z
T (wa′ ) −

∮
0

dw̄a′

2π i
∂ fa′

∂La

∂w̄a′

∂ z̄
T̄ (w̄a′ )

]
fa′ ◦ O� (0)

= −∂La [ fa′ ◦ O� (0)]

holds. Hence we obtain

〈�0,3,L|T (∂La )
3∏

a=1

eiθa(L(a)
0 −L̄(a)

0 ) = −
∑

i1,i2,i3

〈�0,3,L|T (∂La )
3∏

a=1

eiθa(L(a)
0 −L̄(a)

0 )|ϕi1〉|ϕi2〉|ϕi3〉〈ϕc
i3 |〈ϕc

i2 |〈ϕc
i1 |

−
∑

i1,i2,i3

∂La

〈
f1 ◦ O�1 (0) f2 ◦ O�2 (0) f3 ◦ O�3 (0)

〉
C∪{∞}

× 〈ϕc
i3 |〈ϕc

i2 |〈ϕc
i1 |

= −∂La

[
〈�0,3,L|

3∏
a=1

eiθa

(
L(a)

0 −L̄(a)
0

)]
. (B4)
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We can also define

b(∂θa ) = −i(b(a)
0 − b̄(a)

0 ),

T (∂θa ) = −i(L(a)
0 − L̄(a)

0 ),

and it is easy to prove{
Q, b(∂θa )

} = T (∂θa ),

〈�0,3,L|T (∂θa )
3∏

a=1

eiθa(L(a)
0 −L̄(a)

0 ) = −∂θa

[
〈�0,3,L|

3∏
a=1

eiθa(L(a)
0 −L̄(a)

0 )T (∂θa )

]
. (B5)

b(∂La ), T (∂La ), b(∂θa ), and T (∂θa ) satisfy the following commutation relations:

[T (∂La ), b(∂La′ )] = ∂Lab(∂La′ ) − ∂La′ b(∂La ),

[T (∂La ), b(∂θa′ )] = −∂θa′ b(∂La ),

[b(∂La ), T (∂θa′ )] = −∂θa′ b(∂La ),

[T (∂θa ), b(∂θa′ )] = 0. (B6)

Using Eqs. (B3), (B4), (B5), and (B6), it is straightforward to show

〈�0,3,L|B̃1
α1

B̃2
α2

B̃3
α3

3∑
a=1

Q(a)

= d
[
〈�0,3,L|

(
b̃1

α1
B̃2

α2
B̃3

α3
+ B̃1

α1
b̃2

α2
B̃3

α3
+ B̃1

α1
B̃2

α2
b̃3

α3

)]
, (B7)

which is Eq. (B1) for g = 0, n = 3.
Other cases can be proved by using Eq. (B7). Let us consider the next simplest case g = 1, n

= 1. The surface state 〈�1, 1, L| can be expressed as

〈�1,1,L| =
∑
i, j

123〈�0,3,(L,lγ ,lγ )|eiθγ (L(2)
0 −L̄(2)

0 )|ϕi〉2|ϕ j〉3〈ϕc
i |ϕc

j〉(−1)nϕ j

= 123〈�0,3,(L,lγ ,lγ )|eiθγ (L(2)
0 −L̄(2)

0 )|R23〉. (B8)

Using this, we obtain

〈�1,1,L|B2B̃αQ = 123〈�0,3,(L,lγ ,lγ )|B2B̃1
αQ(1)eiθγ (L(2)

0 −L̄(2)
0 )|R23〉

= 123〈�0,3,(L,l2,l3 )|(b(∂l2 ) + b(∂l3 ))b(∂θγ
)B̃1

α

×
3∑

a=1

Q(a)eiθγ (L(2)
0 −L̄(2)

0 )|R23〉
∣∣∣∣∣
l2=l3=lγ

dlγ ∧ dθγ .

(B9)

In going from the first line to the second line, we have used

(Q(2) + Q(3))|R23〉 = 0. (B10)
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Using Eq. (B7), we eventually get

〈�1,1,L|B2B̃αQ = ∂l2

[
123〈�0,3,(L,l2,l3 )|b(∂θγ

)B̃1
αeiθγ (L(2)

0 −L̄(2)
0 )|R23〉

]∣∣∣
l2=l3=lγ

dlγ ∧ dθγ

+ ∂l3

[
123〈�0,3,(L,l2,l3 )|b(∂θγ

)B̃1
αeiθγ (L(2)

0 −L̄(2)
0 )|R23〉

]∣∣∣
l2=l3=lγ

dlγ ∧ dθγ

+ ∂θγ

[
123〈�0,3,(L,l2,l3 )|(b(∂l2 ) + b(∂l3 ))B̃1

αeiθγ (L(2)
0 −L̄(2)

0 )|R23〉
]∣∣∣

l2=l3=lγ
dlγ ∧ dθγ

+ 123〈�0,3,(L,l2,l3 )|(b(∂l2 ) + b(∂l3 ))b(∂θγ
)b̃1

αeiθγ (L(2)
0 −L̄(2)

0 )|R23〉
∣∣∣
l2=l3=lγ

dlγ ∧ dθγ

= d
[
〈�1,1,L|(B1B̃α + B2b̃α )

]
. (B11)

The proof for all the other cases goes in the same way. We use induction with respect to 2g
− 2 + n. So far we have shown Eq. (B1) for 2g − 2 + n = 1. Assuming that Eq. (B1) is true for
2g − 2 + n = K > 0, let us prove Eq. (B1) for 2g − 2 + n = K + 1. 〈�g,n,L| can be expressed
by 〈�0,3,L| and surface states with 2g − 2 + n ≤ K by factorizing the surface as in Figs. 5 or 7.
Using the induction hypothesis, we obtain Eq. (B1) for 〈�g,n,L| in the same way as we did for
〈�1, 1, L|.

References
[1] M. Kaku and K. Kikkawa, Phys. Rev. D 10, 1110 (1974).
[2] E. Witten, Nucl. Phys. B 268, 253 (1986).
[3] T. Kugo and B. Zwiebach, Prog. Theor. Phys. 87, 801 (1992) [arXiv:hep-th/9201040] [Search inSP

IRE].
[4] B. Zwiebach, Nucl. Phys. B 390, 33 (1993) [arXiv:hep-th/9206084] [Search inSPIRE].
[5] C. de Lacroix, H. Erbin, S. P. Kashyap, A. Sen, and M. Verma, Int. J. Mod. Phys. A 32, 1730021

(2017) [arXiv:1703.06410 [hep-th]] [Search inSPIRE].
[6] S. F. Moosavian and R. Pius, J. High Energy Phys. 1908, 157 (2019) [arXiv:1706.07366 [hep-th]]

[Search inSPIRE].
[7] S. F. Moosavian and R. Pius, J. High Energy Phys. 1908, 177 (2019) [arXiv:1708.04977 [hep-th]]

[Search inSPIRE].
[8] K. Costello and B. Zwiebach, J. High Energy Phys. 2202, 002 (2022) [arXiv:1909.00033 [hep-th]]

[Search inSPIRE].
[9] E. D’Hoker and D. H. Phong, Rev. Mod. Phys. 60, 917 (1988).

[10] M. Mirzakhani, Invent. Math. 167, 179 (2006).
[11] M. Mirzakhani, J. Am. Math. Soc. 20, 1 (2007).
[12] B. Eynard and N. Orantin, ffhal-00149179f, (2007). [arXiv:0705.3600 [math-ph]] [Search inSPIR

E].
[13] P. Saad, S. H. Shenker, and D. Stanford, arXiv:1903.11115 [hep-th] [Search inSPIRE].
[14] N. Ishibashi and H. Kawai, Phys. Lett. B 314, 190 (1993) [arXiv:hep-th/9307045] [Search inSPIRE].
[15] A. Jevicki and J. P. Rodrigues, Nucl. Phys. B 421, 278 (1994) [arXiv:hep-th/9312118] [Search inSP

IRE].
[16] A. Sen, Fortschr. Phys. 63, 149 (2015) [arXiv:1408.0571 [hep-th]] [Search inSPIRE].
[17] T. Erler, Phys. Rept. 851, 1 (2020) [arXiv:1905.06785 [hep-th]] [Search inSPIRE].
[18] H. Erbin, String Field Theory: A Modern Introduction (Springer, Berlin, 2021), Lecture Notes in

Physics, Vol. 980, p. 1-421.
[19] J. Polchinski, String Theory Vol. 1: An Introduction to the Bosonic String (Cambridge University

Press, Cambridge, UK, 2007), Cambridge Monographs on Mathematical Physics, p. 12.
[20] L. Hadasz and Z. Jaskolski, Nucl. Phys. B 694, 493 (2004) [arXiv:hep-th/0309267] [Search inSPIR

E].
[21] A. H. Fırat, J. High Energy Phys. 2108, 035 (2021) [arXiv:2102.03936 [hep-th]] [Search inSPIRE].
[22] A. G. Cohen, G. W. Moore, P. C. Nelson, and J. Polchinski, Nucl. Phys. B 267, 143 (1986).
[23] Z. Jaskolski, Commun. Math. Phys. 139, 353 (1991).

34/35

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/2/023B05/7008535 by D

eutsches Elektronen Synchrotron D
ESY user on 25 M

arch 2023

http://dx.doi.org/10.1103/PhysRevD.10.1110
http://dx.doi.org/10.1103/PhysRevD.10.1110
http://dx.doi.org/10.1103/PhysRevD.10.1110
http://dx.doi.org/10.1016/0550-3213(86)90155-0
http://dx.doi.org/10.1016/0550-3213(86)90155-0
http://dx.doi.org/10.1016/0550-3213(86)90155-0
https://arxiv.org/abs/hep-th/9201040
https://inspirehep.net/literature?q=find%20EPRINT%20hep-th/9201040
https://arxiv.org/abs/hep-th/9206084
https://inspirehep.net/literature?q=find%20EPRINT%20hep-th/9206084
https://arxiv.org/abs/1703.06410
https://inspirehep.net/literature?q=find%20EPRINT%201703.06410
https://arxiv.org/abs/1706.07366
https://inspirehep.net/literature?q=find%20EPRINT%201706.07366
https://arxiv.org/abs/1708.04977
https://inspirehep.net/literature?q=find%20EPRINT%201708.04977
https://arxiv.org/abs/1909.00033
https://inspirehep.net/literature?q=find%20EPRINT%201909.00033
http://dx.doi.org/10.1103/RevModPhys.60.917
http://dx.doi.org/10.1103/RevModPhys.60.917
http://dx.doi.org/10.1103/RevModPhys.60.917
http://dx.doi.org/10.1007/s00222-006-0013-2
http://dx.doi.org/10.1007/s00222-006-0013-2
http://dx.doi.org/10.1007/s00222-006-0013-2
http://dx.doi.org/10.1090/S0894-0347-06-00526-1
http://dx.doi.org/10.1090/S0894-0347-06-00526-1
http://dx.doi.org/10.1090/S0894-0347-06-00526-1
https://arxiv.org/abs/0705.3600
https://inspirehep.net/literature?q=find%20EPRINT%200705.3600
https://arxiv.org/abs/1903.11115
https://inspirehep.net/literature?q=find%20EPRINT%201903.11115
https://arxiv.org/abs/hep-th/9307045
https://inspirehep.net/literature?q=find%20EPRINT%20hep-th/9307045
https://arxiv.org/abs/hep-th/9312118
https://inspirehep.net/literature?q=find%20EPRINT%20hep-th/9312118
https://arxiv.org/abs/1408.0571
https://inspirehep.net/literature?q=find%20EPRINT%201408.0571
https://arxiv.org/abs/1905.06785
https://inspirehep.net/literature?q=find%20EPRINT%201905.06785
https://arxiv.org/abs/hep-th/0309267
https://inspirehep.net/literature?q=find%20EPRINT%20hep-th/0309267
https://arxiv.org/abs/2102.03936
https://inspirehep.net/literature?q=find%20EPRINT%202102.03936
http://dx.doi.org/10.1016/0550-3213(86)90148-3
http://dx.doi.org/10.1016/0550-3213(86)90148-3
http://dx.doi.org/10.1016/0550-3213(86)90148-3
http://dx.doi.org/10.1007/BF02352499
http://dx.doi.org/10.1007/BF02352499
http://dx.doi.org/10.1007/BF02352499


PTEP 2023, 023B05 N. Ishibashi

[24] J. Bolte and F. Steiner, Nucl. Phys. B 361, 451 (1991).
[25] N. Do, in Handbook of Moduli Volume II. eds., G. Farkas and I. Morrison, P. 217–

258.[arXiv:1103.4674 [math.GT]] [Search inSPIRE].
[26] Y. Huang, IRMA Lect. Math. Theor. Phys. 27, 95 (2016) [arXiv:1509.06880 [math.GT]] [Search in

SPIRE].
[27] G. McShane, Ph.D. Thesis: A remarkable identity for lengths of curves. University of Warwick

(1991).
[28] G. Parisi and Y.-S. Wu, Sci. Sin. 24, 483 (1981).
[29] N. Ishibashi and H. Kawai, Phys. Lett. B 322, 67 (1994) [arXiv:hep-th/9312047] [Search inSPIRE].
[30] M. Ikehara, N. Ishibashi, H. Kawai, T. Mogami, R. Nakayama, and N. Sasakura, Phys. Rev. D 50,

7467 (1994) [arXiv:hep-th/9406207] [Search inSPIRE].
[31] M. Ikehara, N. Ishibashi, H. Kawai, T. Mogami, R. Nakayama, and N. Sasakura, Prog. Theor.

Phys. Suppl. 118, 241 (1995) [arXiv:hep-th/9409101] [Search inSPIRE].
[32] A. Sen, J. High Energy Phys. 1611, 014 (2016) [arXiv:1606.03455 [hep-th]] [Search inSPIRE].
[33] R. Pius, A. Rudra, and A. Sen, J. High Energy Phys. 1407, 058 (2014) [arXiv:1311.1257 [hep-th]]

[Search inSPIRE].
[34] R. Pius, A. Rudra, and A. Sen, J. High Energy Phys. 1407, 062 (2014) [arXiv:1401.7014 [hep-th]]

[Search inSPIRE].
[35] D. Stanford and E. Witten, Adv. Theor. Math. Phys. 24, 1475 (2020) [arXiv:1907.03363 [hep-th]]

[Search inSPIRE].
[36] T. Kugo, 2nd Meeting on Quantum Mechanics of Fundamental Systems (CECS), p. 10 (1987).
[37] M. Fukuma, H. Kawai, and R. Nakayama, Int. J. Mod. Phys. A 6, 1385 (1991).
[38] R. Dijkgraaf, H. L. Verlinde, and E. P. Verlinde, Nucl. Phys. B 348, 435 (1991).
[39] M. Ikehara, Prog. Theor. Phys. 93, 1141 (1995) [arXiv:hep-th/9504094] [Search inSPIRE].
[40] W. Abikoff, The Real Analytic Theory of Teichmüller Space (Springer, Berlin, 1980).

35/35

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/2/023B05/7008535 by D

eutsches Elektronen Synchrotron D
ESY user on 25 M

arch 2023

http://dx.doi.org/10.1016/0550-3213(91)90249-W
http://dx.doi.org/10.1016/0550-3213(91)90249-W
http://dx.doi.org/10.1016/0550-3213(91)90249-W
https://arxiv.org/abs/1103.4674
https://inspirehep.net/literature?q=find%20EPRINT%201103.4674
https://arxiv.org/abs/1509.06880
https://inspirehep.net/literature?q=find%20EPRINT%201509.06880
https://arxiv.org/abs/hep-th/9312047
https://inspirehep.net/literature?q=find%20EPRINT%20hep-th/9312047
https://arxiv.org/abs/hep-th/9406207
https://inspirehep.net/literature?q=find%20EPRINT%20hep-th/9406207
https://arxiv.org/abs/hep-th/9409101
https://inspirehep.net/literature?q=find%20EPRINT%20hep-th/9409101
https://arxiv.org/abs/1606.03455
https://inspirehep.net/literature?q=find%20EPRINT%201606.03455
https://arxiv.org/abs/1311.1257
https://inspirehep.net/literature?q=find%20EPRINT%201311.1257
https://arxiv.org/abs/1401.7014
https://inspirehep.net/literature?q=find%20EPRINT%201401.7014
https://arxiv.org/abs/1907.03363
https://inspirehep.net/literature?q=find%20EPRINT%201907.03363
http://dx.doi.org/10.1142/S0217751X91000733
http://dx.doi.org/10.1142/S0217751X91000733
http://dx.doi.org/10.1142/S0217751X91000733
http://dx.doi.org/10.1016/0550-3213(91)90199-8
http://dx.doi.org/10.1016/0550-3213(91)90199-8
http://dx.doi.org/10.1016/0550-3213(91)90199-8
https://arxiv.org/abs/hep-th/9504094
https://inspirehep.net/literature?q=find%20EPRINT%20hep-th/9504094

