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Every Riemann surface with genus g and n punctures admits a hyperbolic metric, if 2g —
2 4+ n > 0. Such a surface can be decomposed into pairs of pants whose boundaries are
geodesics. We construct a string field theory for closed bosonic strings based on this pants
decomposition. In order to do so, we derive a recursion relation satisfied by the off-shell
amplitudes, using Mirzakhani’s scheme for computing integrals over the moduli space of
bordered Riemann surfaces. The recursion relation can be turned into a string field the-
ory via the Fokker—Planck formalism. The Fokker—Planck Hamiltonian consists of kinetic
terms and three-string vertices. Unfortunately, the worldsheet BRST symmetry is not man-
ifest in the theory thus constructed. We will show that the invariance can be made manifest
by introducing auxiliary fields.

Subject Index B28

1. Introduction

To construct a string field theory (SFT), we should specify a rule to cut worldsheets into fun-
damental building blocks, i.e., propagators and vertices. A few simple rules have been proposed
and SFTs for bosonic strings have been constructed following these rules [1-4]. Construction
of an SFT for superstrings is more complicated because of the spurious singularities [5].

The worldsheets of closed strings describing scattering amplitudes are punctured Riemann
surfaces. In mathematics, there exists a convenient way to decompose them into fundamental
building blocks. On a Riemann surface with genus g and » boundaries or punctures, one can
introduce a metric with constant negative curvature, if 2g¢ — 2 + n > 0. Such a metric is called
a hyperbolic metric and surfaces with hyperbolic metrics are called hyperbolic surfaces. With a
hyperbolic metric, one can decompose the surface into pairs of pants with geodesic boundaries.
It may be possible to consider the pair of pants as the fundamental building block of the surface.

The hyperbolic metric was used to construct an SFT in Refs. [6-8], in which the kinetic term
of the action was taken to be the conventional one
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Fig. 1. A pants decomposition.
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Fig. 2. One-loop one-point function.

so that the propagators correspond to cylinders. The theories include infinitely many vertices
besides the three-string vertex and the Feynman graphs have nothing to do with the pants de-
composition. In this paper, we would like to construct an SFT based on the pants decomposi-
tion. Namely, we will construct an SFT for closed bosonic strings regarding the pair of pants as
the three-string vertex and the cylinders with vanishing heights as the propagator, as depicted
in Fig. 1.

In such a theory, a string state will correspond to the boundary of a pair of pants. Accord-
ingly, the string field should be labeled by an element of the Hilbert space of the first quantized
strings and the length L of the boundary. The external states of the scattering amplitudes are re-
garded as the limit L — 0 of such states. The off-shell amplitudes may correspond to Riemann
surfaces that have geodesic boundaries with fixed lengths and will be expressed by integrals over
the moduli spaces of such surfaces.

Unfortunately, such an approach suffers from a problem addressed in Ref. [9] (Sect. IV.E).
The three-string vertex will be given by the correlation function of the worldsheet theory on
hyperbolic pants with the boundary lengths specified. Suppose that one calculates the one-loop
one-point function following the conventional Feynman rules. The amplitude corresponds to
the worldsheet in Fig. 2 and we should integrate over the length / and the twist angle 6. By doing
s0, the fundamental domain of the modular group is covered infinitely many times, as will be
seen in Sect. 4.3. The same happens for all the other amplitudes. Therefore, the conventional
Feynman rule with the vertex and the propagator in Fig. 1 does not yield the correct amplitudes.

In order to overcome this problem, we formulate the theory using Mirzakhani’s scheme
[10,11] for computing integrals over moduli space of bordered Riemann surfaces. Mirzakhani
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derived a recursion relation for the volume of the moduli space. Applying her method to the
off-shell amplitudes of closed bosonic strings, we derive a recursion relation satisfied by these
amplitudes.

As was pointed out in Refs. [12,13], Mirzakhani’s recursion relation is related to the loop
equation of minimal string theory. On the other hand, the loop equations for minimal strings
can be described by an SFT via the Fokker—Planck formalism [14,15]. We will show that the
recursion relation of the off-shell amplitudes can be described by an SFT using the Fokker—
Planck formalism. The Fokker—Planck Hamiltonian consists of kinetic terms and three-string
vertices. One can develop perturbation theory that does not suffer from the above-mentioned
problem. Unfortunately, the worldsheet BRST symmetry is not manifest in the SFT thus con-
structed. We will show that we can make the invariance manifest by introducing auxiliary fields.

The organization of this paper is as follows. In Sect. 2, we define the off-shell amplitudes
of closed bosonic string theory based on the moduli space of bordered Riemann surfaces. In
Sect. 3, we derive recursion relations satisfied by the off-shell amplitudes. In Sect. 4, we prove
that the off-shell amplitudes defined in Sect. 2 can be derived from the Fokker—Planck formal-
ism for string fields. We show that the solution of the recursion relations in Sect. 3 satisfies
the Schwinger—Dyson equation derived from the Fokker—Planck Hamiltonian. In Sect. 5, we
modify the theory by introducing auxiliary fields and make it manifestly BRST invariant. Sec-
tion 6 is devoted to discussions and comments. In Appendix A, we present formulas for the
local coordinates on hyperbolic pants. In Appendix B, we prove the BRST identity.

2. Off-shell amplitudes

The off-shell amplitudes of the theory that we will study should correspond to hyperbolic sur-
faces that have geodesic boundaries with fixed lengths. In this section, we would like to define
such amplitudes. The formulation is a modification of the conventional ones [4,16-18].

2.1.  The moduli space Mg, 1,

Let ¥, , 1 with L = (L4, ..., L,) be a genus-g hyperbolic surface with n geodesic boundaries
(labeled by an index a = 1,..., n) whose lengths are L,..., L,. Cutting the surface X, , 1, along
nonperipheral simple closed geodesics, we can decompose it into pairs of pants S; (i =1,...,2¢
— 2 + n). There are many choices for such decomposition and here we pick one. The hyperbolic
structure of the surface is specified by the lengths of the nonperipheral simple closed geodesics
and the way how boundaries of S; are identified. Therefore the hyperbolic structure of X, , 1.
can be parametrized by the Fenchel-Nielsen coordinates (/;; 74) (s = 1,..., 3g — 3 + n), where /;
are the lengths of the nonperipheral boundaries of S; and t, denote the twist parameters that
specify how boundaries of different pairs of pants are identified. The Teichmiiller space 7 1,
corresponds to the region 0 < /; < 00, —00 < 74 < 00. A volume form €, ,, 1, on 7, 1. called the
Weil-Petersson volume form is given by

3g—3+n

Qear =\ ldlrdzr)].

s=1

Q, 1. does not depend on the choice of the pants decomposition. The moduli space Mg, 1, is
defined as

Mg,n,L = 7},n,L/F,
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Fig. 3. Attaching flat semi-infinite cylinders to %, , 1.

where I denotes the mapping class group. The Fenchel-Nielsen coordinates (/;; 75) can be used
as local coordinates on My, 1.. We will define the off-shell amplitudes as integrals over M, , 1..
The space of all inequivalent hyperbolic structures on a surface is the same as that of the com-
plex structures. Hence the definition of the off-shell amplitudes here can be regarded as the
traditional one for the case where the lengths of the external strings are specified.

2.2.  b-ghost insertions
Let us consider an element X, , 1, of M, 1.. One can attach a flat semi-infinite cylinder to each
boundary [8] as depicted in Fig. 3 and obtain a punctured Riemann surface. The cylinder is
conformally equivalent to a disk with a puncture. Letting w, (¢ = 1,...,n) be a local coordinate
on the ath disk D, such that D, corresponds to the region |w,| < 1, the flat metric is given as

E L2 |dw,|?

Q) wal*”

and the ath puncture corresponds to w, = 0. By these conditions, w, is fixed up to a phase
rotation. w, can be expressed as a function w,(z) of a local coordinate z on X, 1. w.(2) is
holomorphic in a neighborhood of 3aD,.

In this way, from X, , ., we obtain a punctured Riemann surface X, , with local coordinates
around punctures, which are specified up to phase rotations. With X, , thus obtained, one can
associate a surface state, picking a local coordinate w, as above for each D,. Let us denote this
surface state by (2,4, 1|. By definition, we have

(Zgnr|Wi) - |W,) = <]_[ w,'o Ow,l(0)> , 2)
a=1

Zg,n
where Oy, denotes the operator corresponding to the state |V,) and ()2, denotes the correla-
tion function on ¥, ,. Under a phase rotation w, — ¢®w,, (X,, 1| transforms as

; L(“)ii(ﬂ)
(Zenrl = (Sgnl He’“"( o)

a

The correlation function (X, , 1|W1) - - - [¥,) 1s invariant under the phase rotation, if
(Lo — Lo)|¥,) =0.

In order to define the amplitudes, we need to construct a top form on the moduli space My, 1,
from the b-ghost. A deformation of the hyperbolic structure of a surface induces that of the
complex structure. Therefore we can construct the h-ghost insertion corresponding to a tangent
vector of Mg, 1, following the procedure given in Refs. [4,16,18,19]. Let z; be a local coordinate
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on the pair of pants S;, such that the hyperbolic metric on S; is in the form
ds> = % |dz|*.

Each boundary of S; is either shared by another pair of pants S; (j # i) or is equal to one of the
boundaries of X, , .. In the former case, the local coordinates z; on S; and z; are related by

zZi = Fij(Zj), (3)
in a neighborhood of S;NS; = C;;. If the boundary of S; coincides with dD,, z; and w, are
related by

zi = fia(Wa), “
in a neighborhood of 9D,. The transition functions Fj;, fj, describe the moduli of X, ..
Suppose that under an infinitesimal change of moduli, z;, w,, Fy, fi, change as
zZi —> zi t &vi,
Wy —> Wy,
Fj — Fj+ §F;,
Jia = Jia + 8 fia-
Equations (3), (4) imply
zi+evi= (F;j+8F;) (z; + &v)).
zi +evi = (fia + 8 fia) (Wa),

and we obtain

dZ,'
e\vi— v ) =8k,

J
evi = 8 fiau(wy),

in a neighborhood of Cj;, D, respectively. One can take v; to be holomorphic in neighborhoods
of boundaries of S; and smooth inside. For such v;, we define

dz; dz; _ _ - _
=3 [?gs S — ¢ %w(zob(zi)] . (s)

Here the integration contours are taken so that they run along 9.S; keeping S; on the left for z;.

For our purpose, we need to make the formulas (3), (4), and (5) more explicit. S; itself is a
hyperbolic surface with three boundaries and by attaching flat semi-infinite cylinders to the
boundaries as above, we get a three-punctured sphere with local coordinates Wy (k =1, 2, 3).
Therefore S; is conformally equivalent to C — Uizl Dj where Dy are the disks corresponding
to the cylinders. We choose the local coordinate z; on S; to be the complex coordinate z on
C such that the three punctures are at z = 0, 1, co. The explicit forms of Wj(z;) are given in
Refs. [20,21] and are presented in Appendix A. There is a freedom in choosing which of the
d Dy corresponds to each boundary of §;, but Eq. (A3) implies that the W;(z;) are related by
SL(2, C) transformation of z; and a phase rotation and the choice does not change the result.
If the boundary 9D, of %, 1, coincides with | W} (z;)| = 1, we can take w, to be equal to Wj(z;).
Then the explicit form of Eq. (4) becomes

Zi = Wk_l(wa)- (6)
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C;; should coincide with | W(z;)| = 1 and |Wk/ (z j)‘ = 1 for some k, k" and we obtain the explicit
form of Eq. (3) as

4 et
=W (Wk/(zj)) | @

where 6;; is the twist angle.

We take the Fenchel-Nielsen coordinates /y, 7, (s = 1,..., 3¢ — 3 + n) on Mg, .. Changes of
the transition functions (6) and (7) under the variation /; — [ + 8/, Ty, — 7, + 61, describe
those of the hyperbolic structure of X, , 1. If /; is the length of Cj;, 7, = 21—;91- j. Forly — i + ¢,

b — aWk(Zi) aWk -1
o al, 9z ’

IWi(z)) (oW \ !
8ls 8Zj ’

we can take

Vi =

for k =1, 2, 3, in neighborhoods of boundaries | Wi (z;)| = 1, |Wi(zj)| = 1 of S;, S; respectively.
Therefore we define

b(9;,) = b(v) = bs,(3;,) + bs,(31,),
—1

1 _ - -
boay = - ¢ sEE () e+ § S I () b
d d

s, 2mwi 9l 0z; s, 2mwi 0l 0z;
- = = -1
dz; oW (oW \ ! dz; Wi (Wi - _
bs.(0;)) = — = —= b(z; =/ —_— b(z)). 8
S/( I'V) fgsj 2 E)IS ( 8Zj ) (Z]) + isj 2i Bls 82, (Zj) ( )

Here k (k =1, 2, 3) for W}, in each term is chosen so that the relevant component of the bound-
ary corresponds to | Wy | = 1. For t;, — 1, + ¢, we define

2 dz; VAN Az - (oW -

b == [ s (D) b+ g S (S2) Be|. O
ls C;) T aZ,' Cij 27 aZ,‘

where k for W) is chosen so that C;; coincides with | Wy(z;)| = 1. The contours run along C;; so

that S; lies to its left for z;.

In the same way, for a pair of pants S; one of whose boundaries coincides with 3D, we define

-1

dz; oWy ([ OW - dz; aWk aWk T/=
bs(or)=—¢ L T2 b & T76) b, 10
5:(0r.,) jési 20 9L, ( 9z, ) (Z)+7£S, amior, \ a5 ) PG (10)

2.3.  Off-shell amplitudes
Now we define the connected g-loop n-point amplitude 4y ,((|¥1), L1),..., (I¥,), L,)) by

Agn ((191), L), o, (19), Ly)) = 270101 / (27i) (S 11 Bog—642a| 1) - - - [W,).
MgJLL

(11

Here (X, 1.|Bsg—6+24 1s defined so that

n
<Eg,n,L|BGg—6+2n|‘ljl> e |an> = <B6g—6+2n 1_[ Wc:l o O\Dﬂ (O)>
)

a=1
gn
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holds for any |W¥,), with

3g—3+n 3g—3+n

Begoim= || [p@)b(0:)] N\ [dlAdz]. (12)

s=1 s=1

The factor 27%1%1 is due to the fact that ¥, | ; has a Z, symmetry. The state |W,) is taken to
be an element of H, that consists of the states | W) satisfying

by |W) = (Lo — Lo)|W) =0, (13)

where b3 = b = by.

Bgg — 6+ 20 1s defined by using the Fenchel-Nielsen coordinate /i, 7, associated with a pants
decomposition of X, 1. We should check if the amplitude (11) does not depend on the choice
of the pants decomposition. Suppose that we have two pants decompositions, in which X, , 1.
is decomposed into pairs of pants S;(i = 1,...,2¢ =2+ n)and S (j=1,...,2¢—2+n).
Let z; and Z; be the local coordinates on S;, S'; respectively. There should be a function Gy
holomorphic on S; N S} such that

Zi = G,’j (Z/J) .

If a boundary of S; N S} coincides with 9.D,, we have functions g, g’ja such that

zi = ZiaWa),

2 = &), (14)

in a neighborhood of 9D,. Suppose that under an infinitesimal change of moduli,
Zi z_//., Wa, Gij, 8ia> &, change as
zi —> zj t &v;,

Z.

/ /
iz —i—svj,

Wa = Wa,

Gij = Gij +8Gyy,
Zia = gia + 8&ia

&ia = &at 38

We can derive

0z ’ /
¢ (v,- _ gvj) = 5G;; <zj) , (15)
j
evi = 8gia(Wa),
eV = 8¢, (wa). (16)

d i 0 iy
i). —Z v,-——Z/vj b(z;) = 0.
A(SiNS") 27 82.1-

7135

Equation (15) implies
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If we take v;, v/j to be holomorphic in neighborhoods of the boundaries of .S;, S;- respectively,

we get
dz; az;
0= Z%(Sms') 2mi ( i B_Z;VJ) bGz)
dz; /
_Zy§ _Zvl(z,)b(z,)—Zf v ()6 (%)

Therefore the h-ghost insertion (5) satisfies
b(v) = b(¥), (17)

if vand v’ correspond to the same change of moduli.

Let (I; 1), ({/; /) be the Fenchel-Nielsen coordinates associated with the two different pants
decompositions. Using Eq. (17), we may be able to express b(9;, ), b(9-,) in terms of b(dy), b(d;/).
In doing so, there is one thing that one should be careful about. In defining 5(9;,), we have
taken the coordinate on D, to be Wy(z;), if 3D, coincides with a boundary of S;. If one of the
boundaries of S’I coincides with 0D,

Wi(zi) = ¢“ Wi (2))
should hold with some &’. Here «, is a real function of moduli. If we fix w, in Eq. (14) to be
Wi(z:), Eq. (16) implies

/ -1
of, o)) =, e 2) () -, Bt

Therefore the relations between b(a;,), b(9.,) and b(9y), b(d,;) should be

b(a&)=2[ (@) + fb(a,,)] Zao‘”b @,

ol o
b(d,.) = L (3 —fba, —2by .
(3x,) Z[a (3 + b )] ;a
Here ba(“) denotes b, acting on the ath Hilbert space. Substituting these into the amplitude
(11), we can see that it is independent of the pants decomposition, if |¥,) (¢ = 1,..., n) satisfy
the condition (13).
By the BRST identity proved in Appendix B, we have
(ZenLlBog—es2n y_ QW)+ [W,) = d [(Zgm | Bog-r420|W1) - [W,)] (18)

a
and the amplitude 4, ,((|¥1), L1),..., (|W,), L,)) is BRST invariant if one treats the boundary
contributions appropriately. By construction, 4, ,((|¥1), L1),..., (|W,), L,)) exists for 2g — 2 +
n > 0.
The amplitude (11) is not something we usually deal with in string theory. In the limit L,
— 0, M, .1, coincides with the moduli space M, ,, of punctured Riemann surfaces and (/; )
become the Fenchel-Nielsen coordinates on M, ,. Therefore

LliElOAg’n ((N’l)» Ll)’ AR (N’n)» Ln)) (19)

is equal to the on-shell amplitude when |W,) are taken to be on-shell physical states. In Sect. 5,
we will show that the off-shell amplitudes of the kind studied in Refs. [22-24] can also be derived
in our formalism.
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3. A recursion relation of the off-shell amplitudes

Given a propagator, one can construct the string field action that reproduces the off-shell am-
plitudes defined in the previous section order by order in the string coupling constant g. If we
take the propagator to be the one depicted in Fig. 1, we run into the difficulty mentioned in the
introduction. In this paper, as a workaround, we construct an SFT by studying equations sat-
isfied by the off-shell amplitudes.

In order to calculate the right-hand side of Eq. (11), we need to specify the integration region
in terms of the Fenchel-Nielsen coordinates. However, no concrete description of the funda-
mental domain of the mapping class group in 7, 1, is known in general. Mathematicians tried
to calculate the the Weil-Petersson volume V(L) of My, 1 defined by!

Ven(L) = 27%1%n1 / Qg nLs (20)
Men
and encountered the same problem. Mirzakhani discovered [10,11] a way to overcome this dif-
ficulty. In this section, we would like to explain her method (for reviews, see, e.g., Refs. [7,25,26])
and apply it to the off-shell amplitudes.

3.1. Mirzakhani’s scheme
Mirzakhani’s idea is to transform an integral over M, , 1, into the one over its covering space.
Suppose that X are X, are manifolds and

T:X1—> X5

is a covering map. Let dv, be a volume form on X3, and we define dv; to be the pull-back, i.e.,
dvi = 7*dv,.

For a function f on X7, one can define the push-forward = .f by

N = Y fO).

yer~1(x)
Then

; (e f)dvy = | fdw 21)

X1
holds.
Equation (21) can be used to calculate the volume of the moduli space M ; o, for instance.
We take X, to be M 1o and X to be the following space of pairs

{(Z1.1.0,¥)1Z1.1.0 € Mj1 and y is a simple closed geodesic on X 1,0}.

The set of simple closed geodesics y on X ;o is a discrete set with infinitely many elements
and a mapping class group orbit. X7 can be described by the pair (/,, 7,,) where /, is the length
of y and 7, is the twist parameter corresponding to it. X; corresponds to the region

0<l, <00, 01, </,
with (7,,, 0) ~ (/,, [,). The projection 7 can be defined by
(2110, ¥) = Z1.1.05
and for dv, = Q4 1,0, we have

dvi = n*dv, =dl, ndr,.

There are two conventions for V7 (L) due to the presence of Z, symmetry. Here we adopt Eq. (20) so
as to make Eq. (28) look simple.
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If one takes the function f to be a function of /,, the value of 7, f'at £ 19 € M 1o becomes
> ),
Y

where the sum is over the set of simple geodesics on X 1 ¢. In Ref. [27], McShane proved that
_ 2
for f(l) - ma

Y [ =1 (22)
14

holds. Equation (22) is called the McShane identity. For this choice of £, Eq. (21) becomes

2
2/ o (23)

[o¢]
Ql,l,O = (7T f)dVZ = fd\/l = / dl —r = —_,
/Ml.l,o X> : X 0 "1 + el 6
and we get the volume of M .

Mirzakhani generalized this procedure to general (g, n), by discovering a generalization of
the McShane identity. For ¥, 1, € Mg, 1, let B1,..., B, be the boundaries so that the lengths
of Bi,..., By are Ly,..., L, respectively. The generalized McShane identity derived in Ref. [10]
is

L = Z Dleyza + Z Z(TLILHI}/ + DLlLaly ), (24)
{v.8le? a=2 ye¥%,
where
Druwr =2 (logle + ) — log(e™f + ), (25)

" !
cosh &~ + cosh L&

" 7R
cosh LT + cosh %

Trpr =log (26)

@ — the collection of unordered pairs of nonperipheral simple closed geodesics {y, §}
" lon Y41 Which bounds a pair of pants along with the boundary g; '
¥ — the collection of simple closed geodesics y on X, 1.
“ ™| which bounds a pair of pants along with the boundaries g; and g, |’

and /,, [5 are the lengths of y, & respectively. For L, L', L" > 0, Dy pr, Trp >0 and
Drrrr =Drrr,
Tovr =T,
Dror+ Topr + Ty = L. (27)

Multiplying Eq. (24) by €, , 1. and integrating it over M, , 1., one obtains Mirzakhani’s re-
cursion relation:

e S
LVgni1 (L, L) = 5/ dL/L// dL"L"Dyypr
0 0

X (Vg—1,n+2(L/7 L”, L) + Z Vg1,n1 (L/, Ll)ng,nz(LN’ LZ))

stable

+y f dL'L (Tp, 1,00+ Dryor) Ven(L LALy), (28)
a=1 0
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which holds for 2g — 2 4+ n > 0. The sum ) e here means the sum over g, g2, 11, n2, Ly, Lo
such that?

&1 t& =8
n+n=n+2,
LiUL,={Ly,...,L,},
LiNnL, =9,

2g> —2+mny; > 0. (29)
With the information Vo 3(Ly, Lo, L3) =1, V1 1(L) = Ty 4L—2, it is possible to calculate V(L)

2
for all the other g, n by the recursion relation (28).

3.2.  Recursion relation of the off-shell amplitudes

A recursion relation of the off-shell amplitudes (11) is derived in the same way as Mirzakhani’s
recursion relation. Multiplying Eq. (24) by (2771) =3¢+ ~"(%, , LI Beg—6+2:/¥1) - - - |¥,,) and inte-
grating it over Mg, 1, we obtain

L f Qi) (S | BoggsanW1) -+« [ W)
Mg.n.L

N / Y Dry, - Qi) P TS 1 Beg 612 W) - - W)
MgJLL {V,S}ECKI

+ 3 / > (Tiir, +Drir) - Qi) #5378y L Bog—6420|W1) -+ [ W) (30)
a=2 M

“il yeg,

The left-hand side yields
LiAgy ((1W1), L), ..., (1Wn), Ly)).

Here we restrict ourselves to the case 2g — 2 + n > 1. We will rewrite the terms on the right-
hand side by using the formula (21). Let us first consider the integral

J o T, D) @iy B Bl ). D

gnL ye%

In order to unfold this integral, we take X» to be Mg, 1, and X; to be the space of pairs

YenL € Mg, and y is a simple closed geodesic on X, 1,

2 9 . . . .
[( gnls V) that bounds a pair of pants along with the boundaries 8; and S,

The set of possible y on X,4,7, is exactly 4, and is a mapping class group orbit. X; can
be described by the triple (/,, 7, E;WI’L,) where 7, is the twist parameter corresponding
to y and E!g,,\n—l,L’ is the complement of the pair of pants bounded by 8, B4, ¥ with L' =
(l,, Ly, ..., Ly, ..., L,). X;corresponds to the region

0</l, <00, 0<1, </,
with (7,0, 2,y 1,) ~ (ly. Iy, X, 1,)- The projection 7 can be defined by

H(Eg,n,L’ )/) = Eg,n,L7

2Here we consider L;, L, as unordered subsets of L = {L,, - - , L,}.
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Zg,n,L

Fig. 4. %, 1 and y.

and for dvy = Q,,, 1., we have
i * _ /
dvi =n*dvy =dl, Ndt, A Q115

where Q;, 411, 1s the Weil-Petersson volume form on E;, ERTE
Now, if one takes

fdvi = (T, +Dryr,,) - Qi) 6778, LI Bog-g2a| 1) - - W),
Eq. (21) becomes

(Trizat, + Dryry,) - Qi) 7By 1 Bog—g1201W1) - - - | Wy)

X
= [ T+ Duin) - Qi) S B V) 1) (D)
ML veb,
Therefore Eq. (31) is obtained by evaluating the left-hand side of Eq. (32).

Let us consider a pants decomposition of X4, 1, such that one pair of the pants has bound-
aries 81, Ba, ¥ (Fig. 4). We denote this pair of pants by S; and the adjacent one by S>.
Based on the pants decomposition we define the Fenchel-Nielsen coordinates /, t,(s = 1,...,
3¢ — 3 + n) such that (/, 1) = (/,, t,). Cutting X,,1, along y, we get a three-holed
sphere Xo3,(z,,,0) and X, .. T, inherits the pants decomposition of X, .. Then
(2 i) 3832y L Bog—6120|W1) - - - |¥,,) can be expressed as

Qi) (S 1| Bog—120|¥1) - -+ [ W)
= (27Ti)_3g+3_nd11 ANdT (Eg,n,L| [b51 (811) + bsz(all )] b(afl )B/ﬁg,g+2n|\pl> W), (33)
where B,

6g—8+2n denotes the 6g — 6 4+ 2(n — 1) form on Eé,n—l,L’ defined through Eq. (12).

¥4 n1 can be generated by gluing a pair of pants X3, r,.) and E;,n—l,u (Fig. 5) using the
plumbing fixture relation (7). Hence the correlation function on the right-hand side of Eq. (33)
can be factorized into those on X3 (z,,7,.1,) and E};n_l,L,. Let |@;) be a basis of the Hilbert space
‘H of the worldsheet theory of the strings and (¢{| be the conjugate state of |¢;) such that

(pile)) = 8ij,
(@jlef) = (=1)"5y,
Y leieil =Y lefgil (=1 = 1.
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20’37(L1 ;La’l’)’)

A

Fig. 5. The decomposition of X, 1, corresponding to Eq. (34).

Here (¢,| is the BPZ conjugate of |¢;) and n,, is the ghost number of |¢;). Then we have
(Zg,n,L| [bSl(all) + sz(all )] b(arl )BGg—6+2n|\I’1> e [ Wy)

2mi -0 i0(Lo—L
- _Tsa Z |:<EO,3,(L1,L4,11)|b20.3.<L17La./1>(all )bo( )N’l)l |lpa)aele(L0 L0)|§0i>0
ij
X 2_5&15”‘2<E;r,n—1,L’|B/6g—8+211|(p.f>|\p2> te |llja> T |\Iln>

+ (20,3, (L1, Lo i) Y1) [Wa) [@2)

X 2_62)15’,,2<Eé,l’l—l,L/|B/6g—8+2an2(811 )baele(LO_LO)l(p]>|\Ij2> e |llja> T |\Ill’l>]

x (i lef)(=1)"1, (34)
where
g, = (_l)nu(nz+~~+nu71)’

=192 i3 due

ny, denotes the ghost number of |W,), and 6 denotes the twist angle. The factor 27°
to the fact that Eé,n—l,u has a Z, symmetry forg=1,n=2.

Substituting Egs. (33) and (34) into Eq. (32), we can see that the second term on the right-
hand side of Eq. (30) becomes

n
> / > Tz, +Drir) - Qi) (S0 Beg 612 W1) -+ W)
M

a=2 gnl yeg,

n 00
= Z Z €a |:/ diy (TLlLull + DLlLu/l )<2013v(Llea»ll)leO,l(Ll.Lu,ll)(all )bE(O)P(0)|\yl)1|"I}a)a|(pi)0
0

a=2 i,j

x 27 %12 / Qi) R Bl gl @) [ W2) - (W) - W)
M

gn—1,1/

o0
+ / dl (T + Do 203,020, Y1) 1Wa) @)
0

% 278;1‘16,,2 fM (27Ti)73g+47n<2;v,n—1,u|B/6g—8+2nb52 (all )bap|¢j>|\y2) R |\/y:) Ce |\Ijn):|

gn—1,L/

X (@l (=)™, (35)
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with P = [;7 42 i6(Lo-Lo),
Equation (35) implies that it will be convenient to consider the recursion relation of the am-
plitudes of the form

Ag,n ((|§0i|>’ ar, L), ..., (|(Pi,,)7 an, Ly))

— 276@8",1 / (27Tl')73g+37n<2g,n,L|B6g—6+2nB;1 .. ‘BZH|¢1'1>1 Ce |(Pi,,>n- (36)
Mg,n.L

Here the indices «, (¢ = 1,..., n) take values + and

1 o, =+
B! = . 37
ay [ba(a)bsu(aLa)P(a) 0, = — (37)

S, for b, (9r,) in Eq. (37) denotes the pair of pants that has a boundary corresponding to the
ath external line in a pants decomposition of %, 1. bs,(dr,) depends on the choice of the pants
decomposition, because it corresponds to the variation L, — L, + ¢ with [, 7, fixed. However,
bs,(91,)Beg—6+2, and the amplitude in Eq. (36) is independent of the choice of S,,.

Equation (35) can be recast into

n
> / > (T, +Drira) - Qi) 37"y 11 Bog—6120BL, - Bl 19i)1 -+~ 104, )
M
a=2

gnL Ve(fa
n 00
= Z/ dL(Trr,. +Drir,r)
a=2 0
) B! B B® 10i) 119 )al@i)o(@f |96y (—1)"
X €a [ (20.3.(L1.L,.1)| By, By, B~ o 10i 1191, ) al@ido (5 1907) (— 1)
i,j,o

X Ag,n—l <(|(pj>’ o, L)v (|¢i2>’ a7, L2)7 s (|(pl},>a Ug, La)? SRR (lwl},)’ U, Ln)) . (38)

We simplify the formula by introducing the following notation. The external states are labeled
by i (for |¢;)), @, and L. We denote these collectively by 7 and rewrite Eq. (38) in the following
way:

n
> / > (T, +Drir) - Qi) ¢3Sy, L Bog—6120Bl, -+ By 19i) -+ i)
M
a=2

gnL ye‘é’“
n .
L1, 0L1,J IL--1,-1,
=Y eo(T"" 4 DMl )G ALl ot (39)
a=2

where
Thhl — TL1L2L3<20,3,(L1,L2,L3)|Bz£1Bingml(pilh|(p[2>2|(pi3>3’
D"l =Dy 1,1, (D03.11,1a.10) | By, Ba, Ba 103 11901, 2191)3,
Gr = (@) |9 ) (=12 8(Ly = L2)8a; —a»
Al = A ((n)s o, L), -+ (193,), o, L))

and for X; = X(i,«, L) and Y = Y(i, «, L)

xy'=3">%" /OOO dLX(i,e, L)Y (i, L).

i a=%
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Fig. 6. Examples of {y, 8} in 4.

Fig. 7. Factorizations of the surfaces in Fig. 6.

The integral

[ Y Du @iy S Bl ) ) (40)
Mg.n.L {V’B}E%)I

on the right-hand side of Eq. (30) can be dealt with in the same way. In this case, there can
be topologically distinct configurations of the pair {y, §} in %] as depicted in Fig. 6. They
belong to different mapping class group orbits. For each orbit, we take X to be the space of
the combination (X, 1, y, §), where (y, 6) is in the orbit, and express the contribution to Eq.
(40) by an integral over X7. The amplitudes are factorized as in Fig. 7. A formula similar to Eq.
(39) can be derived for each contribution.

Putting everything together, we can see that Eq. (30) is transformed into

1 ) / E1,T. 4
LIAII.--I,, — _DIIJJGJ[GJ/]/ [A1112-~~1,, + Z 142 AIII AIIZ }
gn g—1,n+l1 1\ _ 1\ gLm gn
2 2 (i — Dl(m — 1)
n A
+ Y el(TH 4 DMy Gyp Al et (41)
a=2
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which holds for 2g — 2 4+ n > 1. Here 7, 7, are ordered sets of indices with n; — 1, n, — 1
elements respectively. The sum ) gl means the sum over gy, g2, 11, 12, Z1, Z, such that

&1+8 =8
nm+n=n+l,
UL ={hL,..., 1},
IiNI = ¢,
2g1 - 2 + ny > Oa
2¢> —2+ny > 0. (42)
e7,7, = £1 is the sign that will appear when we change the order of the product I7'l,---I, to
IT,I'T,, if we regard the indices as Grassmann numbers with Grassmannality of the corre-
sponding string state.
Equation (41) can be made more tractable by introducing Aé‘éz. Since we define the amplitudes

for surfaces with 2g — 2 4+ n > 0, amplitudes for g = 0, n = 2 do not exist. We here introduce a
fictitious amplitude

AL = G,
where
G = (@i 191)8(L1 — L2)8uy,—as
which satisfies
GG =8," = 8,80y, (L1 — L3).
Taking this into account, we can turn Eq. (41) into
LA} = LiG"58408,,

L 17y II'h-1, / 0,1, IT, 4I'T
+ 3D GG | AL+ ) T Dion — Dy e m A

+ Zn:eaT’llf'JGJIAéf;:f""I", (43)
which holds for 2g _”—22 +n > 0or g=0,n =2 Here the summation ) ' is over
g1, &, N1, ma, I, I such that

s t& =g
nm+n=n+l,
LU, =1{L,..., 1},
iNI, = ¢,

2¢1 —2+n >0,

2g, —2+ny; > 0.

Let us check if Eq. (43) is valid for (g, n) = (0, 2), (0, 3), (1, 1). For g =0, n = 2, Eq. (43)

becomes?

LA} = LiGh". (44)

*Notice that A4{ | does not exist.
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The first term on the right-hand side of Eq. (43) is introduced so that Aé‘f = G2 holds. For g
=0, n =3, we have

L1A61§213 — lDI]J/JGJ]GJ'I' |:(_1)|12||13|G112G1’13 + (_1)\13\(\12\+|12|)G113GI'Iz]
' 2
+ TlllzJGJ[GII3 + (_1)|12||I3|T1113JGJIG112

1 1
= (EDL1L2L3 + EDL1L3L2 + TL1L2L3 + TL1L3L2>

><(20,3,(L1,L2,L3)|Bi1BizBiJfﬂil)l|<ﬂiz)2|<ﬂi3)3,
where |I| denotes the Grassmannality of |¢;). Substituting Eq. (27) into this, we obtain

LiA¢%" = Li(203.1.10.10)| By, Ba, By 10i )1 191,21 01,)3. (43)
Notice that M 3 1, 1s a point and Eq. (36) implies
ANTE = (D031 L2.15)| By, Boy Bay i1 190)21 1) 3 (46)
which is consistent with the above equation. For g =1, n = 1, Eq. (43) becomes

1 !
LA}, = ED’”GH

1 B c
~ 2 / AP, ZJ: (Zo.3(1.2.0)| By (b01:) + DOz, )by )P(2)|¢i)1|¢j)2|¢j)3 Ly=Ly=l,
(47)
On the other hand, 4] | can be given as
1 P
A{,l = 5/ (Z11,LIBuBole?) (2mi) !
M].].L

1 1
== ¥ B (b(d b(dr.,))by P —
2/M1,1,L2j:< 0.3,(L.L>,L3) | By (b(dL,) + b(3L,))b, ’

. @ 709
% (LY —L

N Aol €
lgi)1 |</)J>2|</)j>3 L2:L3:1le” Adb,.
The integral on the last line can be unfolded by using the McShane identity and we get Eq. (47)

exactly.

3.3.  The solution of the recursion relation
The recursion relation (41) is derived from the properties of the off-shell amplitudes Ag,;"".
Conversely, A7 can be derived by solving Eq. (41).
Ag;,' In s the order-ggg_zﬂ contribution to the n-point amplitude. Equation (43) can be solved
order by order in g, because the right-hand side of Eq. (43) consists of lower-order terms
compared with the Ag,{;l“l" on the left-hand side. For example, the equation for g = 0, n = 3
becomes Eq. (45) and the solution is Eq. (46) because Aé‘gk is defined for L; > 0. Equation
(43) can be solved in the same way for general g, n. The solution is unique, because Ag;,'"” is
defined for L; > 0. This unique solution should coincide with the Ag,'q' I+ in Eq. (36). Therefore
Eq. (43) can be used to derive the off-shell amplitudes of closed bosonic string theory.

For later convenience, let us define the generating functional of the off-shell amplitudes:

[cole o]
1
Walll= 33 &y Jy Ay (48)
g=0 n=2 ’
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Jris taken to have the same Grassmannality as that of ¢’. It is straightforward to show that the
recursion relation (43) is equivalent to the following identity:

SW4lJ] PP R SEWyJ]  SWyJ] 8WA[J]
L — LIy G'T + —g D" Gy G
5J; 1t e KK ST 8Tk 8Tk
1y SW J !
T Gy A yynin, (49)
5k

Here all the functional derivatives are left derivatives.

4. The Fokker—Planck formalism

In this section, we would like to develop the Fokker—Planck formalism for the string theory
from which we can derive the recursion relation (43) through the Schwinger—Dyson equation.

4.1. The Fokker—Planck formalism for conventional field theory
Let ¢(x) be a scalar field with action S[¢]. The Euclidean correlation functions are defined by

(@x0) - $)) = f [ASIPI1H(x1) - - $(x). (50)
where
o—S9]
Plp] = Tidgle S0 (51)

In order to describe this quantum field theory, we consider a system governed by the following
Fokker—Planck equation:

d
—ap[d), t] = HrpP[9, T]. (52)
Here Hyp is the Fokker—Planck Hamiltonian defined by
5 8 5S[¢]>
Hpgp = — | dx + . 53
== [ vy (5 * 30 &Y

It is possible to show that, for a solution of Eq. (52) with an appropriate initial condition,

lim P[¢, T] = P[¢]
holds. The Fokker—Planck equation with the Fokker—Planck Hamiltonian (53) appears in the
context of stochastic quantization [28] where T coincides with the fictitious time.

The Fokker-Planck Hamiltonian can be realized as an operator acting on a Hilbert space.
Let 7 (x), ¢(x) be operators satisfying the commutation relations

[#(x). §(1)] = 8(x — p).
[#(x). #()] = [$(x). p(»)] = 0,
and |0), (0| be states satisfying
#(x)|0) = (0] (x) = 0,
010y = 1.
Then
Plp. 7] = (0l TT8((x) — $(x))]0),
with ’
fiip = — [ dx <ﬁ(x) - %(Sx)[«ﬁ]) 7).
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gives a solution to Eq. (52) with initial condition P[¢, 0] = [[+8(¢(x)). Assuming that this is a
good initial condition, we get

Plg] = lim (0le™"* TT5(d(x) — $(x))[0). (54)

The correlation function in Eq. (50) is given by
tim (0e™ " G(x1) - $(xi)[0).

In Ref. [14], a string field theory for the (2,3) minimal string theory using this kind of operator
formalism was proposed. The string fields are labeled by the length / of the string and we define
the operators 7 (/), $(/) accordingly. The Fokker—Planck Hamiltonian is given by

fp =2 fo m /0 bl + b)Y + )
+/ di; / dbw(l + b)R (DL A ()
0 0
g fo di, /O dbdUNG()R (I + b + 1)

e f di, / dbd(l + bR (IDhA ()b,
0 0

where w(/) is the disk amplitude for the (2,3) minimal string theory*. The correlation functions
of the string fields are given by

tim (0l $(1) - $(0,)10)- (55)

One can prove that the correlation functions thus defined coincide with the loop amplitudes of
the (2,3) minimal string theory in the following way. In order for the limit (55) to exist,

lim 3:(0le™ G (11) - $(1)I0) = — lim (Ol Hrp(h) -~ $(1)I0) =0 (56)

should hold. Equation (56) yields the Schwinger—Dyson equation satisfied by the correlation
functions of the minimal string theory. It can be shown that the loop equation of the minimal
string theory is equivalent to this Schwinger—Dyson equation. Moreover, this string field theory
can be derived from the stochastic quantization of the one-matrix model [15]. The Fokker—
Planck formalism was applied to construct string field theories for general (p, ¢) minimal string
theories in Refs. [29-31].

4.2. The Fokker—Planck Hamiltonian for closed bosonic strings

In Ref. [12], it was shown that Mirzakhani’s recursion relation (28) is a special case of random
matrix recursion relations. In Ref. [13], Eq. (28) is identified with a limit p — oo of the loop
equation of the (2,p) minimal string theory. Since (2,p) minimal string theory is a close cousin
of the (2,3) one, it is possible to develop the Fokker—Planck formalism of string field theory
corresponding to Eq. (28). The recursion relation in Eq. (41) is a (not so close) cousin of Eq.

4The correspondence between our notation and that in Ref. [14] is given by
1 . .
—w(l) 4+ ¢(I) < V'(]),
8&s

#(1) < w(l).
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(28), so itis conceivable that the same approach is applicable to this equation. In this subsection,
we would like to show that this is the case.
We introduce operators ¢31 , 717 that satisfy the commutation relations

[ﬁlv qu] == CSIK,
[, 2k] = [¢". 5] = 0.
Here we define
(X1, YK = xTyK — (—1)1IKlyKx !,
Let |0)), ((0] be states that satisfy

(01" = 7710)) = 0. (57)
We define the correlation functions of ¢! as
(@ - ¢") = Tim (O]~ - §10)), (58)

with the Hamiltonian
H= —Lamyp G + L(ﬁlﬁ[

1 , N A
nr K" 7K' A
— §gSD Grr Grg ¢~ ¢~ 7r

— & T G d® 7p 7y (59)
As we will see, the right-hand side of Eq. (58) can be calculated perturbatively with respect to

gs. We define the connected correlation functions ((¢” - - - ¢™))¢ in the usual way and they can
be expanded as

(oM oo™ =Y g2 M)
g=0

It is possible to show that

(" @M = A" (60)
holds.
In order to prove Eq. (60), we define the generating functional W[J] of the connected corre-
lation functions

1
WlJ] = Z ;Jlﬂ Ty (@1 gl o)
n=2 :

such that

"Y1 = 1im ((0le~"H %' |0)).
T—>00

Since the limit T — oo of ((0le~™ ¢ ... ¢I|0)) exists, we have’
0= lim 8, ((0e""2e9"10)) = — Tim ((0]e""2 A9 |0Y). (62)

Using Eq. (57), we get the following equation from Eq. (62):

SWIJ] ool SWI]  SWIT W]
O:J L _LJ/G __SD G// //G//
’{ 5J; ! 2% UK | ST ST 8Tk
SWJ ,
= g T Gty S i | (63)
8Jkr

SEquation (62) can be proved perturbatively in g;.
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It is possible to solve Eq. (63) order by order in g; and obtain ((¢" - '¢1”))§- For example, at
0(g?), Eq. (63) implies

IIr(L+ L) ({9775 — &) = 0.

Since (¢! ¢!))§ is defined for L, L’ > 0, we obtain the unique solution

(9" 9" = G". (64)
In general, Eq. (63) implies an equation in which (L; + - - - + L,)({¢” - - - ¢In))§ is expressed in
terms of lower-order correlation functions. Since ((¢” - - - ¢™)) gisdefined for Ly,..., L, > 0, one

can solve the equation and the solution is unique. Hence all the coefficients of the expansion
(61) are uniquely fixed by Eq. (63). On the other hand,

WJl = WalJ] (65)

yields a solution to Eq. (63) because W ,[J] satisfies Eq. (49). Since the solution of Eq. (63)
should be unique, we obtain Eq. (60).
Equation (65) implies that W[J] satisfies Eq. (49), which can be expressed as

lim ((0le~ "2 7179 10)) = 0 (66)

T—>00

in the Fokker—Planck formalism. Here

T'=—Lay G + L'

1 1y ~ (/Y !
I K" 7K
— EgSD Grx Grg ¢~ ¢

— & T"" Gryd® 7y, (67)
and we have
H="T"%,.

Since every ket vector is expressed as a linear combination of states of the form

Eq. (58) means that limfﬁoo((0|e_”9 is expressed as

o0

. ; I ..
fim ((Ole™™ =3 —{(@" - ") (017, -7,

T—>00 0
In the same way, we can deduce from Egs. (62), (66) that
[hm4wwﬂﬁ]ﬁeza

T—>00

pmuww*ﬂi4=& (68)

4.3. String field action S[¢']

In the case of conventional field theory, the Fokker—Planck formalism is an alternative to the

path integral formalism. Let us discuss whether the theory that we have can be formulated using

a path integral with action S[¢’]. It is possible to define the weight P[¢’] following Eq. (54):
o—S19]

P8 = Fiagme o = im (01" 17[8(«;3’ —¢1)10)).
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From Eq. (68), we obtain an equation for S[¢’]:

, 68
[LGIJ +gsT1J[ GI’J’d)J —
5¢
1 1y " ’ 1y
= L' — 30" Gy Gryd” ¢7 + T Grr (69)

Using Eq. (27), the last term on the right-hand side of Eq. (69) is expressed as

3
Ly=Ls=l,

- 1 o _ :

T Gy = 5L / dl, Y (D311 10| By(B(3L,) + b(D1,))by P P2 @)1 19)2105)

0 -
J

1

- 5/ dl,Dry 1, > (D031 10,1y B (B(IL,)
0 -
J

+ 5@,y P P2lgi)110))2105)3

Ly=Ls=l,

The integrand of the first term on the right-hand side coincides with that of A/ 1> but the inte-
gration region includes infinitely many fundamental domains of the mapping class group. The
second term is equal to —LA] 1 Therefore the last term on the right-hand side of Eq. (69) may
be given as

Lloox A4}, — 4] ,].
and is divergent. Hence Eq. (69) is not well defined.
Still, Eq. (69) can be solved formally order by order in g; and we get

1 !y " ! 1y
S[¢’] = §G1J¢I¢J - %A{){; G1sGryGrpd” o7 ¢7 + ‘%T’” GrrGre’ +0(g2). (70)

This should be the action that yields the off-shell amplitudes with the propagator G". Let us
compute the one-loop one-point function using the path integral formalism. The contribution
from the three-string vertex becomes

8 -2 ¢
ES / dl, ; (20,3,(1.15,10)| By (b(3L,) + b(aLs))bo( )P(2)|¢i>1|¢j>2|¢j>3 Lepst,’

and diverges. The contribution from the divergent term £ 77/ 'I" Gy Gry¢p’ in the action cancels
this divergence and we get the correct answer g;A41 - This pattern seems to continue forever.
If one computes the four-point amplitude using the three-string vertex in Eq. (70), one gets a
divergent result. The four-string vertex cancels the divergence and makes the amplitude finite.

Therefore, the Fokker—Planck formalism is necessary for a well-defined formulation of the

theory in our setup. On the other hand, the formally defined action (70) will be useful in studying
various aspects of our formulation.

4.4. SFT notation

In order to discuss various properties of the theory, it is more convenient to express the Fokker—
Planck Hamiltonian (59) in terms of the variables in the Hilbert space of strings. Let us define

6“(L) = > ¢lef), (71)
ma(L) = Y lgiAr. (72)
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The string fields |¢%(L)), |7 (L)) are taken to satisfy

[74(L)), 19~ (L)) € Ho,

I7-(L)), l¢™ (L)) € Hy, (73)
where H{ consists of the states | W) satisfying

¢ 1W) = (Lo — Lo)|¥) =0,

where c(ﬂf = ¢ £ ¢o. We also impose the reality condition [4,32]

(L)' = (@T (LI,

™ (L) = —(¢~(L)]. (74)

The reality condition for |, (L)) will not be so simple, as is always the case in the Fokker—Planck
formalism. Conditions (73) and (74) have been implicitly assumed in the previous subsection.

Notice that |¢p%(L)), |74(L)) are Grassmann even. They satisfy the canonical commutation
relation

[I7a (L)1, [9% (L'))2] = 82 8(L — L')PV|Ry), (75)
where

[Riz) = loihilefa =Y lgialefh = [Ra) = |R)

is the reflector and

p_ bGP a=+
* %cabaP a=—
The states |0)), ((0] satisfy
7o (L)) |0)) = ((0] [¢*(L)) = 0.

In terms of these string fields, the Fokker—Planck Hamiltonian (59) is expressed as

H= fo dLL[(R|¢*(L))|me(L)) — (Rlme (L)) |7_o(L))]
_gS/dledeL3<TL2L3L1|Bl_mB§2B23|¢al(Ll)>l|7Ta2(L2)>2|7Ta3(L3)>3

1
- Egs/dleLZle(DLgLILlel_alB2_a2B23|¢a1(L1)>1|¢a2(L2)>2|7Ta3(L3)>39 (76)
where
(Trorsn | = Trn,n, (X031, 1. 15)

(Dryr,1,] = Drynyny (203,10 10.15) |
and the sum over repeated indices o, a2, a3 is understood. ¢! and 7 are given by
¢ = (pil¢*(L)),
r = (@i 17ma (L)),

and the correlation functions of |¢p%(L)) are expressed as

T L)1 - - 16" (L)) = f Ve (Zgn il Beg-6420By, -+ By PL|1Rin) -+ P | Ry
Mg‘n,L

(77)
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The correlation functions can be calculated perturbatively. The Euclidean action correspond-
ing to the Fokker-Planck Hamiltonian (76) becomes

= f i [— / LRI (r, L) 16z, L)) +H(r>} , (78)
0 0 ot
where

H(r) = /0 dLL[(RI§*(z. L))|ma(r. L)) — (Rima(r. L))|7_o(z. L)}]
& f dLAdLydLs(Tr,p 1, 1By BB 16° (2. L)) | (2. L))ol (7. L3))3

1
- Egs/dleLZdL3<DL3L1L2|Bl_ale_azBi3|¢a1(7» Ll (z, L2))2]mwey (T, L3))3.
|p*(t, L)), |mq(t, L)) satisfy the boundary conditions
lim |¢p%(z, L)) = |me(0, L)) = 0.

The correlation functions are expressed as

[ldmdgle 19 (0, Ly)) - - - |¢*(0, L,))
[ldrdgle! ’

using the path integral. To develop the perturbation theory, we decompose the action as I = I
+ gV, and we get propagators by Wick’s theorem:

((1¢“ (L1)) - - - ¢ (Ln)))) = (79)

(o4 [V —|t—7/|L / (1)
lp%(z, L))hl¢p* (v, L)) =e¢ 8(L — L')og.—a P-4 R12),
/o
|7TC{(T7 L))llﬂa/(f P L ))2 = 0,

|76 (2, )11 (z/, L'))2 = e T Lg(x — v)8(L — L)% PV|Ryy).

With the propagators and the vertex, it is straightforward to compute Eq. (79). By construction,
the results are given by the integral

1
/ Vet (S L Bog—c+20BL, -+ B P [R11) -+ PU) | Ryp),
Mgm.ll

unfolded by Mirzakhani’s method. The integrations can be done taking account of the contri-
butions from the boundaries of the moduli space appropriately.

5. BRST invariant formulation

With the Fokker—Planck formalism developed in the previous section, one can express the off-
shell amplitudes of the bosonic string theory. In order to describe the string theory, we need
the BRST symmetry on the worldsheet to specify which states of strings are physical. Unfor-
tunately, the Fokker—Planck Hamiltonian (76) and the action (78) are not invariant under the
BRST symmetry, although the amplitudes are. We will modify the action (78) so that the BRST
symmetry becomes manifest in our formalism.
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5.1.  BRST transformation
As is proved in Appendix B, (Eg,n 1| satisfies the BRST identity

( g.n, L|B6g 6+2n 051 o Z Q(a) = gn L|B6g 7+2an1 : Bn )

_Zs%_aLM( (St Bes-ciBl - b, PO - B).

(80)
Integrating this over M, , 1,, we obtain
Z P Q16 (L)1 -+ 1% (L))
=3 8o, —({1™ (L)1 -+ by “"P D0y, 1" (L)) -+ 1™ (L)) (81)

Equation (81) implies that the correlation functions of |¢%(L)) is invariant under
SelpT (L)) = eP-Ql¢p™ (L)),
8elp™ (L)) = €0l (L)) — eby PoLlp™ (L)), (82)

with a Grassmann-odd parameter €. This can be identified with the BRST transformation of
|¢p%(L)). It is easily checked that the two-point function

(1™ (LN ¢ (L2)2))§ = 8(L1 = L2)8a, oo PL) | R12)

is also BRST invariant. The transformation of |r,(L)) is fixed by requiring that the commuta-
tion relation (75) is invariant and we obtain

8elm (L)) = €Qlmy (L)) — eby PdL|m_(L)),
Slm_(L)) = eP_Ql_(L)). (83)
The generator of the transformation is given by
- / dL[(RIQI¢™ (L) 7, (L)) + (RIQI¢~ (L) (L))

— (RIby PoLl¢* (L)) |m-(L)],

which satisfies

010)) = ({0]Q = 0,
[fim (0] 0 =0 &

5.2. The BRST variation of H
Although the correlation functions are invariant under Eq. (82), the Hamiltonian (76) is not.
The BRST variations of the correlation functions that appear on the right-hand side of Eq. (76)
yield total derivatives with respect to the length variables, but they come with the coefficients
Trr17, Drprr and do not vanish upon integration.

The Hamiltonian (76) can be expressed as

= / dL(RIT*(L))|7a(L)). (85)
0

25/35

€202 YoJe|\ GZ Uo Jasn AS3Q U00IYoUAS usuoipe|g seyasineq Aq 6£6800./S09€20/2/€20z/e191e/da)d/woo dnoolwepeoe//:sdyy woly pspeojumoq



PTEP 2023, 023B05 N. Ishibashi

where
| T*(L))y = LI¢“(L))3y — Llm_o(L))3

g / dLydLy(Trorr, 1By B B0 (L)1 17 (L2))2l R

- %gs / dLidLy(Dyp,1,|B", B>, Bolo™ (L)) (L2))2| Raz).
|7%(L)) is the SFT version of 77 and we have
[Tli)ngo (0]e= } IT(L)) = 0. (86)
The BRST variation of H is given by

0. ] = /0 CaL ((RIQ“(L)Ia L) + (RIT*(LIQ, I (L))
where
1Q*(L) = [0, IT*(L))].
From Eqgs. (86) and (84), we obtain
[ lim ((0le™# | 1@*(L)) =0. (87)

5.3.  BRST invariant formulation
Although [0, H] does not vanish, Egs. (86) and (87) imply that it consists of “null” quantities.
Using this fact, we will make the theory manifestly invariant under the BRST transformation
by introducing auxiliary fields.

We modify the Euclidean action (78) by adding terms involving auxiliary fields
AT (z, L)), |AS(z, L)) as follows:

oo o 8
IgrsT = / dt [—/ dL(R|me(t, L)>8—|¢a(f, L))+ H(t)
0 0 T

- /0 dL(<R|Q°‘(r,L)>|A3(r,L)>+<R|T“(r,L)>|xZ(r,L>>)]. (88)

Here |Q*(z, L))(|T%(z, L)))isequal to |Q*(L))(|T*(L))) with |¢p*(L)), |, (L)) replaced by clas-
sical fields |¢*(t, L)), | (z, L)) respectively. A (z, L)) and [A2(z, L)) are taken to satisfy the
boundary conditions

[ (0. L)) = [23(0, L)) = 0.
Igrst 1s invariant under the BRST transformation
Sclg™(z, L)) = eP-_Ql¢p™(z, L)),
8cl¢p™(z, L)) = €Qlg™(z, L)) — eby PaLld™ (z, L)),
8elm4(t, L)) = €0l (v, L)) — eby Pag|m_(x. L)),
Selm—_(r, L)) = €P_Qln_(7, L)),
Selrg(x, L)) = € [Ime(z, L)) + 2] (z, L)],
Selry (v, L)) = —8c|ma(z, L)).
The correlation functions are defined by

JldrdpdrdrTJe |91 (0, Ly)) - - - 1¢*(0, L))
[[dmdpdr2diT e~ tsrst ’

(89)
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We would like to show that the correlation functions in this BRST invariant theory coincide
with those given in Eq. (79). The numerator of Eq. (89) is computed as

/ [drddrdrT1e 7|91 (0, L)) - - - |¢* (0, L,))

_ / [d12dnT] / [dnd¢>]e"z_;$

x [—/ dr/ dL ((R1Q"(z, L))|A2(x, L)) + (RIT*(z, L))|2] (=, L)))}
0 0

x (¢ (0, Ly)) - - - |¢* (0, Ly)).
The n # 0 terms on the right-hand side vanish because of Eqgs. (86) and (87), and this becomes

[ im (0167 ] 1670, 20+ 190, L)}10) [ddgdr®arTle”.
T—>00
The denominator is evaluated in the same way and we obtain

/ [drdpdr2drT e Brst = / [drdpdr2d)T1e .

Therefore the correlation function (89) coincides with Eq. (79).
Now the theory is invariant under the BRST symmetry, and we regard the BRST invariant
quantities as physical. One type of BRST invariant observable is of the form

{plo™ (L))
for |¢) satisfying

Ole) = 0.

As we mentioned in Sect. 2,

Jlim (on] - - {@nl (16T (L) -+ 1T (L))

gives the on-shell amplitude if we take |¢,) to be on-shell physical states.
Another type of BRST invariant observable would be of the form

| i@, 90)
with Qlg) = 0. The amplitude

/0 dL1-~/O dLy(@1] - {@al ((1¢7 (L1)) -+ - 1@~ (Ln)))) C2))

for these observables is in the form of an integration over the moduli space of complex struc-
tures of Riemann surfaces with boundaries. Therefore it is natural to take (¢| to be

(ol = (Bl(co — co),
where (B| is the boundary state corresponding to some D-brane configuration. For example,
taking the states |¢,) to be a point-like string state with the appropriate ghost part, we obtain
off-shell amplitudes of the kind studied in Refs. [22-24]. Such amplitudes involve external leg
contributions coming from the integration region L, ~ 0. Indeed, using Eq. (AS5), the contri-
bution of (¢,|¢~(L,)) for L, ~ 0 can be approximated as

2 2 _
deabab(aL(,)P|¢a> ~ /dLa%baLbaPe(”La)(L”L(’)I(pa)
0 0 a

biby -
0 0_ Pe—(?(L0+L0) |(pa> .
Lo+ Lo
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This type of observable is suitable for studying mass renormalization [33,34].

6. Discussions

In this paper, we have constructed a string field theory for closed bosonic strings based on the
pants decomposition of hyperbolic surfaces. In such a setup, the Fokker—Planck formalism is
indispensable, as discussed in Sect. 4.3. We have introduced auxiliary fields to make the theory
manifestly BRST invariant. The action (88) that we obtain consists of kinetic terms and three-
string vertices.

There are many interesting points that deserve further study. The most obvious one would be
to construct an SFT for superstrings based on the same idea. It is straightforward to generalize
our formalism to the Type 0 superstring case, using the supersymmetric version of Eq. (24)
derived in Ref. [35]. We will present these results elsewhere.

The formulation that we get in Sect. 5 is invariant under the worldsheet BRST symmetry.
We should clarify the meaning of this symmetry from the point of view of string fields. In the
ordinary formulation of SFT, the worldsheet BRST symmetry is utilized to define the gauge
or BRST transformation for string fields that is nonlinear with respect to these fields. In our
case, the worldsheet BRST symmetry will not be related to the gauge or BRST symmetry of the
string fields in the usual way, because the theory is not based on a triangulation of the moduli
space. The similarity between the structure of our formalism and that of the covariantized
light-cone SFT [36] may provide a clue to this problem.

Our formalism is based on the one constructed for minimal strings. In the minimal string
case, the operator corresponding to 77 in Eq. (67) becomes

/ 00
T() = —2/ dl'w(Hg(l —1') — / dl'w(l + aHl’
0 0
/ R R 00 .
— g [ drawda -1 - g [ arda+nra.

0 0

and satisfies
[hm <0|e*ff’FP] 17(1) = 0. (92)

Equation (92) is equivalent to the Virasoro constraints [37,38]. 7'(/) satisfies an algebra

(LT (h), hT(h)] = ghilb(h — b)T (I + b), 93)

which serves as the integrability condition of Eq. (92). On Laplace transforming Eq. (93), we
obtain the Virasoro algebra. We are not sure if 7 satisfies a similar algebra. Exploring the alge-
bra of 77 will be crucial to understanding the structure of the theory. It may also be important
to point out that one can take the Fokker—Planck Hamiltonian to be

| aLAORIT i L),
instead of Eq. (85). Here f(L) is a function of L satisfying f(L) # 0 for L > 0. The recursion

relation can be derived from this modified Hamiltonian. Such a Hamiltonian was constructed
in Ref. [39] in the minimal string case.
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The classical equation of motion for string fields can be derived in our formalism. It is possible
to assign the target space ghost number g' such that [4]

4—ny,e o=+
gt(¢’)=[2 T
2—n, o=+
gt(7T1)=[4 A
— Ny 0= —

The fields with g' = 0 can be considered as classical fields. Although the action S[¢’] is not well
defined, Eq. (69) implies that the equation

1 1y " !
Le" = 580" Gry Gry¢” 9" =0

may be identified with the classical equation of motion for string fields. In the BRST invariant
formulation in Sect. 5, this equation coincides with

|T%(z, L)) =0, (94)
under the conditions

7o (7, L)) =0,

dz1¢%(z, L)) = 0. (95)
For BRST invariance, we may also have to impose

|Q%(z, L)) = 0. (96)

Indeed, Egs. (94), (95), and (94) solve the equation of motion derived from the action (88), if
the auxiliary fields vanish.
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Appendix A. Hyperbolic metric on the three-holed sphere

Let us consider a hyperbolic pair of pants whose boundaries are geodesics. The pair of pants is
conformally equivalent to C — U;i:] D, where Dy, D, D3 are disks around z = 0, 1, oo respec-
tively. We take the length of 0D, to be L, =2 A, (k =1, 2, 3). Around 9Dy, a local coordinate

o 1s taken so that the metric becomes
2 )‘i 2
ds” = ) |d/0k| .
| pic| sin” (A log | px|)
The boundary 9D, corresponds to

ol = exp | = (7 +
= X _— —_
Pk p e k ) s

where 7, is an integer. py can be expressed as a function py(z) of the complex coordinate z
on C. Although p.(z) have singularities in C — U,i:l Dy, it is well defined around 0D and the
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three-holed sphere corresponds to the region

)] > exp[ (zk + ;)]

The explicit forms of p(z) are given by [20,21]

O Aan) X ZE <1+Z)L] l)\2+l}u3 1+l}\.1 21}»2 il . 1_{_1)\4 > m
V(A1 A0.43 _ X
pE) =c 1 z(l—z)7A — ,
2};‘] (1 l)\.]+l)\.2 l)\,:; 1— Z)L1+2l)n2+lk3; 1 _ l)\,], Z>
1
o) <1+Mz l)»1+l)»3 1+ik, 21)»1 iA3 . 1+l)\.2 l—Z) iy
OIS R} A )
Z)=e 2 (l—2)z = ’
p2(2) ( )z 2Fl (1 u\z+m m; 1— ik2+2ikl+ik3; 1 — id: 1 —z)
1
G3.29.4) | 1 _%2 » R <1+1A3 zkz—&-zkl 14ik3 2112 ir . 1+l)\3 1) ey
v(A3.09,41 3 37
/03(2) =¢ - <1 — —) — )L o 1 , (Al)
\'TE) | (g i 1)
where
1+»\1+m2+m3> <1+ix1—ixz+,')\3)
2
PLERE ['(—iry) y( 4 2 (A2)
[(iry)? (1 i — zA2+z,\3>y<1—m1+ixz+ix3)’
2
and
I'(x)
X)= ——.
Y=oy
Notice that
02(2) = p1(1 = 25, 1, »
1
p3(2) = pi (—) ,
2/l ons
z
,01(2)|A2<—>A3 = —p1 (Z — 1) ;
1
IOZ(Z)l)Lle)G = _,02 (_) )
z
P3(2) 30y = —p3(1 = 2) (A3)

hold. Attaching flat semi-infinite cylinders to the boundaries of the three-holed sphere, we get
a surface conformally equivalent to a three-punctured sphere. The local coordinates on the
cylinders are given by

1
wie =exp |- (4 3) ] o (A%
up to a phase rotation and the metrics on the cylinders become
2 2 |d Wk|2
Wil

Notice that Imz = 0 gives geodesics connecting the boundary components and perpendicular
to them. Therefore W), = £1 become the basepoints that are used to define the twist parameters
of the Fenchel-Nielsen coordinates [40].

For studying various properties of the amplitudes, it is useful to examine the limits L, —
0, co of the formula (A4). Since the behavior does not depend on k because of Eq. (A3), we
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consider the case k£ = 1. In the limit L; = 271 — 0, Eq. (A2) implies
v(h1, A2, A3) = 1 + chy + OO,

1 1+ iky + i3 1 — iy — ik
=2y 4 = L e ST TS
= v () e ()

1 —id +iA 14+i —iA
+w(—; 3>+w<—; 3)}6[&

and n € Z. From Egs. (A1) and (A4), we get

z ~ e_c+ﬁ(1~1+%_n) Wl .

where

I; should be taken [20] so that Il —n=—1and we eventually obtain
x2
z~e THW. (A5)

The limit L; = 2w A — oo can be obtained from the Fuchsian equation. We get

1

Z~4WI+0<K_). (A6)
1

Appendix B. BRST identity

In this appendix, we would like to prove

n

(Eg,n,L|B6g76+2nB’i(1 e an Z Q(a)

a=1

=d |:<Eg,n,L|B6g7+2nB;[1 ce BZ,,

n
=+ 2:<Eg,n,L|Bég—6-i—2né(§,1 toe bf.’,a to BZ,C| s (Bl)
a=1
where
3g—3+n
Boeriza= 3 | [T(@b@)) N\ (@l A dry) | [b(@)dl + b(3r )]
t=1 SF#L SF#EL

~ 1 oy =+
BC! = i0 (L(a)ii(a)) 9

“ bg(aLa)b(aga)el im0 0 dLa AN d@a oy = —
= 0 a, =+
by, = i0,(LY—L) i0,(LY— L) :

=\ bs(ar,)e ™ B -EOAL, + b(3g, )% W 1de,  a, = —

It is straightforward to derive Egs. (18) and (80) from Eq. (B1).
Decomposing %, , 1, into pairs of pants, (X, 1| can be expressed in terms of (X 3 |. In order
to prove Eq. (B1), we will study some of the properties of (¥¢31|. (X031 satisfying

(Zo,3,LIW1) W) [W3) = (W1 0 O, ()W, 0 Oy, (0)W; ! 0 Oy, (0))

CU{oo} *
Here we take the local coordinate on C U {oo} to be the z in Appendix A and Wj(z) is given in
Eq. (A4). We introduce the twist angles 6, by deforming (X 3 1| as

3
o (L@ _[@
(Sl = (Soswl [ [ —h0,

a=1
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so that we have

3
(Zoanl [ e 5011 [02) [ W3) = (fi 0 Og, (0)f2 0 O, (0).f3 0 O (0)) oy (BD)

a=1

where
Fuwa) = W (@Pw,).

Equation (B2) implies

3
; (@ _ 7 . .
(Soal [T 5 = 37 (/10 0,, (0020 0, (0)f3 0 0y, (0)) (il 116

= CU{o0}
a=1 iy,i2,13
which can be regarded as the definition of the state (X3 L]

Following the formula (5), we define

3
b(dr,) =Y b0y,

a=1
3

T(,) =) Ty,

a=1
with
, dwy 3 fy Owy AWy 0 fy OWy - _
b(a)a E—% a a ab ; _% a b ),
z,) D oL, oz V)= P i, oz )
, dwg 3 fy Owy AWy 3 foy OWy - _
T(a)a E—% a a aT ) _% a a aT ).
z,) D SaiaL, oz L) = P oiar, gz L)

Here T (z), T'(Z) are the stress tensors of the worldsheet theory and we have

{0, b(dr,)} = T(3r,), (B3)
with

0=> 0.

It is possible to show that, for any state | V),

dwe 3 fiy dwg dViw 3 fy g - _
- T(wy) — T(7a) | fu 0 Ou(0
[ ?gzm' oL, 9z | () fgzm oL, 9z L7 )]f ° Ou(0)

= _8La [fa’ o O\IJ(O)]

holds. Hence we obtain

3 3
. (@) _7(a) : (@) _ 7(a)
(Sl T@L) [ [0 0 ==Y (SoanlT@L) [ [ ™50 "0 lgi) gn) o) (05 | {og 5|

a=1 i,0,03 a=1

— > 1, (/10 0, (0) /2 0 O, (0) f3 0 Ouy(0) oy

i1,02,03
x (o5 (o5, | (@5, |

3 7 (a
= -0, |:<ZO,3,L| I1 G )):| - (B4)

a=1
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We can also define

b(dg,) = —i(b — By,
T (3,) = —i(Ly" — L"),

and it is easy to prove

{0.b(35,)} = T(35,),

3 3
. (a)_7() . (@) __7(a)
(Zo3.LIT(0,) [ [0~ = —a, |:(EO,3,L| [Je" " )T(aeu)i| : (B3)

a=1 a=1

b(dr,), T(dr,), b(9y,), and T'(9y,) satisfy the following commutation relations:

[T(d,), b(dr,)] = 9r,b(dr,) — dr,b(dr,),

[T(3L,), b(36,)] = —3g,b(3L,),

[6(dL,), T'(0s,)] = —04,b(L,),

[7(9,), b(9g,)] = 0. (B6)

Using Eqgs. (B3), (B4), (B5), and (B6), it is straightforward to show
3
Bl B2 B3 a
<2(),3’L|B0[IBOQBM3 Z Q( )
a=1

(2 o0 e & o] T [ o s I %}

—d [<zo,3,L| (/31 BB +BRE +B B )] : (B7)

which is Eq. (B1) forg=0,n = 3.
Other cases can be proved by using Eq. (B7). Let us consider the next simplest case g =1, n
= 1. The surface state (X ; r| can be expressed as

070 o _
(Zi1Ll= Z 123(Z03.(2.,.0,) 1€ 0 F0 | @i)al @) 3 (gf 1) (= 1)
ij
N 20
= 123(20,3.(L.1, 1)l L0 T Ryg). (B3)

Using this, we obtain

N N o (7O _F®
(Z1.1,21B2Ba 0 = 123(20.3,(1.1,.1,)| B2 By QD e Lo =10 )| Rys)

= 123(Z0,3, (1.1, 1) | (B(31,) + b(3y,))b(3p, ) B,
3

x 37 0@ L) Ry dl, A do,.
a=1 h=h=1,
(B9)
In going from the first line to the second line, we have used
(0% + 0)|Ry3) = 0. (B10)
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Using Eq. (B7), we eventually get

N O 20
(Z1.1.L1B2BoQ = 0y, [123(20,3,(L,/2,/3)|b(39y)Béeley(LO L )|R23)]

2=3=

dl, A db,

“ o @ T
+ 0 [123(20,3,(L,12,13)|b(39y)Bie'QV(LO Lo )les)]

. dl, A db,

2=3=

S0 0 (75O
+ 9, [123(20,3,(L,12,13)|(b(312) + b(3y)) By e o ~ho )|R23)] | dly A do,
2=3=1y
S D7)
+ 123(Z0,3...)|(B(3) + b(31)b(3p, Dboe™ "0 TH ) Ras) |l A B,
2=13=ly,
= d [(S11.L1(B1 By + Boba)| . (BI1)

The proof for all the other cases goes in the same way. We use induction with respect to 2g
— 2 + n. So far we have shown Eq. (B1) for 2g — 2 + n = 1. Assuming that Eq. (B1) is true for

2g —

24+ n=K=>0,let us prove Eq. (Bl) for 2¢ — 2 + n= K + 1. (¥4, 1| can be expressed

by (2o 31| and surface states with 2g — 2 4+ n < K by factorizing the surface as in Figs. 5 or 7.
Using the induction hypothesis, we obtain Eq. (B1) for (X, | in the same way as we did for

(X1, 2l
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