
P
o
S
(
R
e
g
i
o
2
0
2
0
)
0
1
8

New approach toN= 2 supersymmetric
Ruijsenaars–Schneider model

Nikolay Kozyrev,a,∗ Sergey Krivonosa and Olaf Lechtenfeldb

aBogoliubov Laboratory of Theoretical Physics, JINR
Joliot-Curie 6, 141980 Dubna, Russia

bInstitut für Theoretische Physik and Riemann Center for Geometry and Physics,
Leibniz Universität Hannover
Appelstrasse 2, 30167 Hannover, Germany
E-mail: nkozyrev@theor.jinr.ru, krivonos@theor.jinr.ru,

olaf.lechtenfeld@itp.uni-hannover.de

We present a very simple form of the supercharges and the Hamiltonian ofN= 2 supersymmetric
extension of n-particle Ruijsenaars–Schneidermodels for three cases of the interaction: 1/(xi−x j ),
1/tan(xi − x j ), 1/tanh(xi − x j ). The long “fermionic tails” of the supercharges and Hamiltonian
rolled up in the simple rational functions depending on fermionic bilinears.

RDP online workshop "Recent Advances in Mathematical Physics" - Regio2020,
5-6 December 2020
online

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:nkozyrev@theor.jinr.ru
mailto:krivonos@theor.jinr.ru
mailto:olaf.lechtenfeld@itp.uni-hannover.de
https://pos.sissa.it/


P
o
S
(
R
e
g
i
o
2
0
2
0
)
0
1
8

1. Introduction

TheRuijsenaars-Schneidermodels [1] were introduced by S.N.M.Ruijsenaars andH. Schneider
who were trying to find a model which could properly describe scattering of relativistic instantons.
They studied the model with general pair-wise shift-invariant interactions and found that if the
Hamiltonian is a part of d = 2 Poincaré algebra, the interaction is given by the Weierstrass elliptic
function. They also noted that the resulting system is integrable and in particular limit can be
reduced to the known Calogero-Moser model [2, 3]. The eigenfunctions of this system were found
in [4] and are related to the Macdonald polynomials [5].

A number of attempts were made to construct a supersymmetric version of this system, all
concentrated on N = 2 supersymmetry. In [6], a version of the model was constructed which
featured many of its desirable properties, such as integrability, relativistic symmetry, existence of
non-relativistic limit which leads toN = 2 supersymmetric Calogero models [7, 8]. This, however,
came at the price of very complicated Dirac brackets and conjugation rules for the fermions. Also,
of all possible interactions only the trigonometric 1/ sin(xi − x j ) interaction was studied.

In another proposal, A. Galajinsky [9] used relatively simple supercharges, at most cubic in the
fermions, with simple brackets, and limited consideration to a restricted set of possible interactions.
Within this approach it was found that N = 2 supersymmetry is possible to achieve for at most
three interacting particles. Third construction [10] was focused on the same set of functions as
the attempt [9] and relied heavily on modification of brackets of the fermions with themselves and
momenta to reproduce the interaction. The conjugation rules of the fermions, unlike [6], were
standard. As an unforeseen result, it was found that superalgebra actually closes for any interaction,
given by an arbitrary antisymmetric function.

The version of the model we wish to describe in this article involves the fermions with standard
Dirac brackets and conjugation rules but the supercharges with specifically prescribed nonlinear
dependence on the fermions. As a result, it is possible to close the N = 2, d = 1 Poincare
superalgebra for only a limited set of interactions, all of which belong to the domain of integrability.

This paper is organized as follows. At first, we provide a very brief introduction to the bosonic
Ruijsenaars-Schneider model and provide some results of paper [10] for later comparison. Second,
we introduce the new supercharges that contain a rational function of the fermionic variables and
derive the necessary condition that allows to properly close theN = 2, d = 1 Poincaré superalgebra.
The details of solution of this equation are given in the Appendix A. Then we relate the obtained
supercharges to those found in [10]. The details of this calculation are given in the Appendix B.

2. General construction

The Ruijsenaars–Schneider models are integrable many-body systems in one dimension which
are described by the equations of motion [1]

ẍi = 2
n∑
j,i

ẋi ẋ jW (xi−x j ) , (2.1)
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where the function W is one of the following functions1

W (x) ∈
{
1/x, 1/ sin(x), 1/ sinh(x), 1/ tan(x), 1/ tanh(x)

}
. (2.2)

Equation of motion (2.1) can be reproduced by the Hamiltonian

H = 1
2

n∑
i

e2θi
n∏

j (,i)

f (xi−x j ) , (2.3)

called in [1] “light cone Hamiltonian”. Here, the rapidities θi and the coordinates x j obey standard
Poisson brackets, {

xi, θ j
}
= δi j and

{
xi, x j

}
=
{
θi, θ j

}
= 0 . (2.4)

The functions W in (2.1) and f in (2.3) are related (in this order):

f (z) ∈
{

1
z ,

1
sinh(z) ,

1
sin(z) ,

1
tanh( z2 ) ,

1
tan( z2 )

}
⇔

W (z) ∈
{

1
z ,

1
tanh(z) ,

1
tan(z) ,

1
sinh(z) ,

1
sin(z)

}
. (2.5)

We prefer the following re-interpretation of the Ruijsenaars–Schneider systems. Let us cast the
Hamiltonian (2.3) into a free form by redefining momenta,2

pi = eθi
n∏

j (,i)

√
f (xi−x j ) ⇒ H = 1

2

n∑
i=1

p2
i . (2.6)

This redefinition (θi → pi) clearly changes the Poisson brackets to
{
xi, pj

}
= δi jpj and

{
pi, pj

}
=

(
1 − δi j

)
pipjW (xi−x j ) . (2.7)

Onemay check that the Hamiltonian H (2.6) and brackets (2.7) result in the equations of motion
(2.1). Indeed, from (2.6) and (2.7) we have

ẋi ≡ {xi, H } = p2
i ⇒ ẍi ≡ { ẋi, H } = 2

n∑
j (,i)

p2
i p2

jW (xi−x j ) = 2
n∑

j (,i)

ẋi ẋ jW (xi−x j ), (2.8)

as it should be.
TheN= 2 supersymmetric extension of the Ruijsenaars–Schneider models is equivalent to the

existence of supercharges Q and Q forming an N= 2 Poincaré superalgebra
{
Q,Q

}
= −2iH and {Q,Q} =

{
Q,Q

}
= 0 (2.9)

together with the HamiltonianH whose bosonic sector coincides with the Hamiltonian H (2.6).
To construct such supercharges the 2 n phase-space variables xi and pj , obeying the brackets

(2.7), have been extended in [10] by 2 n fermions ξi and ξ̄ j =
(
ξ j

)†
, subject to the standard brackets

{
ξi, ξ j

}
=
{
ξ̄i, ξ̄ j

}
= 0 ,

{
ξi, ξ̄ j

}
= −i δi j and

{
pi, ξ j

}
=
{
pi, ξ̄ j

}
= 0 . (2.10)

1 We will not consider the elliptic variant in this paper.
2 This form of the Hamiltonians and Poisson brackets is explicitly written in [9] but may be older.
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The supercharges Q,Q and the Hamiltonian H obeying the N=2 superalgebra (2.9) were
constructed in [10] as

Q =

n∑
i

pi exp
{
−

i
2

n∑
j

ξ j ξ̄ jW (xi−x j )
}
ξi , Q =

n∑
i

pi exp
{ i

2

n∑
j

ξ j ξ̄ jW (xi−x j )
}
ξ̄i ,

H = 1
2

n∑
i=1

p2
i + i

n∑
i, j

pipje−
i
2
∑

k ξk ξ̄k (W (xi−xk )−W (x j−xk ))ξi ξ̄ jW (xi−x j )

+ 1
2

n∑
i, j

p2
i ξi ξ̄iξ j ξ̄ jW

′(xi−x j ). (2.11)

One should stress that the supercharges and the Hamiltonian H (2.11) obey superalgebra (2.9)
for arbitrary odd potentialW (x), without restriction (2.2) to have an integrable bosonic Hamiltonian.

3. Alternative N=2 supersymmetric Ruijsenaars-Schneider model

Trying to devise alternative ways to construct N=2 supersymmetric Ruijsenaars-Schneider
model, one can consider the variables with following simple Dirac brackets (2.7), (2.10)

{xi, pj } = δi jpj, {pi, pj } = W (xi − x j )pipj, {ξi, ξ̄ j } = −iδi j (3.1)

(omitted brackets are equal to zero) and focus on modifying the structure of the supercharges. For
example, one can consider supercharges written as power series in the matrix

Πi j =
i
2

W (xi − x j )
(
ξi ξ̄ j − ξ j ξ̄i

)
,

(
Πi j

)†
= Πi j, Πi j = Πji,

Q =
∑
i, j

piξ j
(
δi j + a1Πi j + a2

∑
k

ΠikΠk j + a3
∑
k,m

ΠikΠkmΠmj + . . .
)
. (3.2)

To check whether such an assumption is useful, one can try to satisfy N=2, d = 1 super Poincaré
condition

{
Q,Q

}
= 0 for systems with small number (2,3 or 4) of particles and simplest interaction

W (x) = 1/x. Then one quickly arrives at the conclusion that, indeed,
{
Q,Q

}
= 0 can be achieved

if one sets a1 = a2 = . . . = 1. Such supercharges can be rather compactly written as

Q =
n∑

i, j=1
pi

(
1

1 − Π

)
i j

ξ j, Q =
n∑

i, j=1
pi

(
1

1 − Π

)
i j

ξ̄ j . (3.3)

Intriguing feature of this representation is that, unlike the previously considered supercharges (2.11),
they do not form N=2 Poincaré superalgebra (2.9) for an arbitrary interaction W (x). Considering
only integrable interactions, one finds that

{
Q,Q

}
= 0 is satisfied also for W (x) = 1/ tan(x) and

W (x) = 1/ tanh(x), but not for W (x) = 1/ sin(x) and W (x) = 1/ sinh(x). Such a strong condition
is not typical for N=2 supersymmetric mechanics.

To find out the exact condition theW (x) function should satisfy, one should study the expansion
of

{
Q,Q

}
bracket as a power series in the fermions. The terms of second and fourth power in the

fermions cancel automatically due to choice of coefficients in the power series. However, the 6th
power cancels only if a cubic equation is satisfied:

E[ik]( jl) = Wi jWikWil −Wi jWilWjk +WikWilWjk −WilWjkWjl −Wi jWikWkl +

+Wi jWilWkl +Wi jWjkWkl −WikWjkWkl +WilWjkWkl −Wi jWjlWkl = 0.

3
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Here, to make notation shorter, we introduced Wi j = W (xi − x j ). Careful analysis shows that
this equation is actually equivalent to the quadratic one. Indeed, solving together E[ik]( jl) = 0 and
E[jk](il) = 0 with respect to Wik and Wil, one finds that

Wik =
Wi jWjk+WjkWj l−WjkWkl+Wj lWkl

Wi j+Wjk
, Wil =

Wi jWj l+WjkWj l−WjkWkl+Wj lWkl

Wi j+Wj l
,

or WikWi j +WikWjk +WjiWjk = WjkWjl +Wk jWkl +WjlWkl . (3.4)

One can observe that each side of last equation is symmetric with respect to permutation of
arguments, and the left hand side depends on xi, x j , xk only, while the right hand side does not
depend on xi but depends on xl. This could happen if and only if both sides are equal to the same
constant. Thus we find the main condition that function W (x) should satisfy

W (xi − x j )W (xi − xk ) +W (x j − xi)W (x j − xk ) +W (xk − xi)W (xk − x j ) = c = const. (3.5)

One can note that the only significant values of c are c = −1, 0, 1, as the solutions with another
values of c can be obtained by rescaling of W . The only nontrivial solutions to equation (3.5) are3

W (x) =




1
x , c = 0

1
tan x , c = −1

1
tanh x , c = 1

. (3.6)

Let us again stress that it is a rather nontrivial fact that N=2 supersymmetry with the fixed form
of the supercharges (3.3) select just three cases with the integrable bosonic Hamiltonians. Usually,
N=2 supersymmetry is too weak to select integrable systems. For example, the supercharges
constructed in [10] we started with (2.11) form N=2 superalgebra (2.9) for arbitrary potential
W (x).

To prove that the supercharges satisfy the N=2 superalgebra condition in all orders in the
fermions, one definitely should take into account that the only acceptable functions W (x) are listed
(3.6). The simplest way to perform this is to connect the present construction to the previous
work [10]. Indeed, performing resummation of power series, one could prove that the proposed
supercharges (3.3) coincide with the “exponential” ones (2.11) for W (x) = 1/x, as

Qrat =
∑
i, j=1

pi

(
1

1 − Π

)
i j

ξ j =
∑
i

pi exp
{
−

i
2

n∑
j

ξ j ξ̄ j

xi−x j

}
ξi = Qrat,

Qrat =
∑
i, j=1

pi

(
1

1 − Π

)
i j

ξ̄ j =
∑
i

pi exp
{ i

2

n∑
j

ξ j ξ̄ j

xi−x j

}
ξ̄i = Qrat,

Πi j =
i
2
ξi ξ̄ j − ξ j ξ̄i

xi − x j
. (3.7)

The explicit proof of this relation is given in the first half of the Appendix B.
In the trigonometric/hyperbolic case the relation is more complicated, and the supercharges

differ by multiplication by functions of J =
∑

k ξk ξ̄k , which, however, do not spoil the superalgebra.

3We put a sketch of the proof in the Appendix A

4
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The explicit relations between the “trigonometric” supercharges read

Qtan =
∑
i, j

pi

(
1

1 − Π

)
i j

ξ j =
1

cosh
(
J
2

) n∑
i

pi exp
{
−

i
2

n∑
j

ξ j ξ̄ j

tan(xi−x j )

}
ξi =

1
cosh

(
J
2

)Qtan,

Qtan =
∑
i, j

pi

(
1

1 − Π

)
i j

ξ̄ j =
1

cosh
(
J
2

) n∑
i

pi exp
{ i

2

n∑
j

ξ j ξ̄ j

tan(xi−x j )

}
ξ̄i =

1
cosh

(
J
2

)Qtan,

Πi j =
i
2
ξi ξ̄ j − ξ j ξ̄i

tan(xi − x j )
. (3.8)

The relations in the hyperbolic case are almost similar:

Qtanh =
∑
i, j

pi

(
1

1 − Π

)
i j

ξ j =
1

cos
(
J
2

) n∑
i

pi exp
{
−

i
2

n∑
j

ξ j ξ̄ j

tanh(xi−x j )

}
ξi =

1
cos

(
J
2

)Qtanh,

Qtanh =
∑
i, j

pi

(
1

1 − Π

)
i j

ξ̄ j =
1

cos
(
J
2

) n∑
i

pi exp
{ i

2

n∑
j

ξ j ξ̄ j

tanh(xi−x j )

}
ξ̄i =

1
cos

(
J
2

)Qtanh,

Πi j =
i
2

ξi ξ̄ j − ξ j ξ̄i

tanh(xi − x j )
. (3.9)

The detailed proof of these relations is given in the Appendix B. However, one can give a simpler
argument why the J-dependent factors should appear. Let us (approximately) calculate the brackets
between the generalized fermions in the “exponential” basis [10]

Q =
∑
i

piψi, Q =
∑
i

piψ̄i ⇒




ψi = exp
{
− i

2
∑n

j
ξj ξ̄j

tan(xi−x j )

}
ξi

ψ̄i = exp
{

i
2

∑n
j

ξj ξ̄j
tan(xi−x j )

}
ξ̄i

,
{
ψi, ψ̄i

}
= −i . (3.10)

At the same time, one can define the generalized fermions in the trigonometric case (3.8) Qtan =∑
i pi χi, Qtan =

∑
i pi χ̄i and approximately calculate their bracket

χi =
∑
j

(
1

1 − Π

)
i j

ξ j, χ̄i =
∑
j

(
1

1 − Π

)
i j

ξ̄ j, Πi j =
i
2
ξi ξ̄ j − ξ j ξ̄i

tan(xi − x j )
⇒

{
χi, χ̄i

}
= −i

1
cosh2 (

J/2
) + i

sinh
(
J/2

)
cosh3 (

J/2
) ξi ξ̄i . (3.11)

Taking into account that ξi ξ̄i = ψiψ̄i, one can observe that

{
cosh(J/2) χi, cosh(J/2) χ̄i

}
= −i (3.12)

and thus one can identify χi = ψi/ cosh(J/2), just as in (3.8).
Let us also mention that the supercharges (2.11) can be rescaled by an arbitrary function of

J and still form N=2, d=1 Poincaré superalgebra. Indeed, as a consequence of brackets (2.10),{
ξi ξ̄i, ξ j ξ̄ j

}
= 0 and, therefore,

{
f (J),Q

}
= −i f ′(J)Q and

{
f (J)Q, f (J)Q

}
∼ f f ′Q2 = 0.

5
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4. Conclusions

In this paper, we constructed a simpleN = 2 supersymmetric generalization of the Ruijsenaars-
Schneider model. The discussed model is closely related to one constructed in [10] but assumes
standard brackets (and conjugation rules) of the fermions from the beginning and relies on the
specific structure of supercharges to produce the proper interaction terms. Unlike other proposed
supersymmetric versions of the Ruijsenaars-Schneider model, which either assumed the specific
interaction from the beginning [6, 9] or were valid for any interaction given by an odd function [10],
our model naturally produces constraints on possible interactions. All three selected interaction
functions

W (z) ∈
{1

z
,

1
tanh(z)

,
1

tan(z)

}

correspond to the models with integrable bosonic core, thus naturally raising the questions whether
the supersymmetric model is integrable and how the assumed structure of supercharges is related
to integrability. Unfortunately, other integrable interactions 1/ sin(z) and 1/ sinh(z), as well as
more general interaction related to the Weierstrass elliptic function, fall out of the scope of the
present paper. While the present scheme does not seem to be directly generalizable to higher
supersymmetries, another question for further study is construction of N = 4 extensions of the
model, possibly using ideas of papers [11] and [12].
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A. Solution to the main equation

To prove that the equation (3.5)

W (xi − x j )W (xi − xk ) −W (xi − x j )W (x j − xk ) +W (xi − xk )W (x j − xk ) = c = const (A.1)

has only solutions W (x) ∼ 1/x, 1/ tan x, 1/ tanh x, depending on value of c, one should note that
(A.1) is a relation on the function W that should be identically satisfied for any values of three
variables xi, x j , xk within the domain of acceptability (xi , x j , xk). Thus one could let xk = 0
to find

W (xi−x j )W (xi)−W (xi−x j )W (x j )+W (xi)W (x j ) = c ⇒ W (xi−x j ) =
c −W (xi)W (x j )
W (xi) −W (x j )

. (A.2)

Substituting this into equation (A.1), one can see that it is satisfied identically. Then, introducing
ϕ(x) = 1/W (x) and replacing x j → −x j , it becomes evident that (A.2) is the law satisfied by the
tangent/hyperbolic tangent/linear function of sum of two arguments, depending on value of c:

ϕ(xi + x j ) =
ϕ(xi) + ϕ(x j )

1 + c ϕ(xi)ϕ(x j )
⇒ ϕ(x) =




x, c = 0
tan x, c = −1
tanh x, c = 1

. (A.3)

6
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There are no more smooth solutions, as one can find that, as a consequence of (A.3), the function ϕ
satisfies a differential equation which is enough to constrain the functional form of ϕ. Indeed, for
general differentiable function

ϕ(x + ε ) = ϕ(x) + ε ϕ′(x) +O(x2). (A.4)

At the same time, (A.3) implies

ϕ(x + ε ) =
ϕ(x) + ϕ(ε )

1 + c ϕ(x)ϕ(ε )
. (A.5)

Treating ε as an infinitesimal parameter, one notes that ϕ(ε ) = ϕ(0)+ εϕ′(0)+O(ε2) = aε +O(ε2).
Here, ϕ(0) = 0, as ϕ(x) is odd, and a = ϕ′(0) is some constant. Therefore,

ϕ(x + ε ) − ϕ(x) =
ϕ(x) + ϕ(ε )

1 + c ϕ(x)ϕ(ε )
− ϕ(x) = aε

(
1 − c ϕ2(x)

)
+O(ε2). (A.6)

Thus, as a consequence of (A.3), ϕ(x) satisfies a differential equation with easily obtained solutions

ϕ′(x) = a
(
1 − c ϕ2(x)

)
⇒




c = 0 ⇒ ϕ(x) = a x + C0
c = −1 ⇒ ϕ(x) = tan(a x + C−1)
c = 1 ⇒ ϕ(x) = tanh(a x + C1)

(A.7)

As the functions should be odd, C0, C−1, C1 should be set to zero. The constant a is unessential as
(A.1) holds even under arbitrary change of variables xi → yi (x j ).

B. Relation with the exponential form of supercharges

To prove the formulas (3.7), (3.8), (3.9), we should at first study the general properties of the
power series (3.2), (3.3).

At first, one should note that ξi
(
Πα

)
i jξ j = 0. This is obvious for α = 1 and can be proven for

any power α by induction:

ξi
(
Π
α)

i jξ j =
i
2
ξi ξ̄i

∑
k

W (xi − xk )
(
Π
α−1)

k jξkξ j . (B.1)

Therefore,∑
j

(
Π
α)

i jξ j =
i
2

∑
j,k

W (xi − xk )
(
ξi ξ̄k − ξk ξ̄i

) (
Π
α−1)

k jξ j = −ξi
i
2

∑
j,k

W (xi − xk )
(
Π
α−1)

k jξ j ξ̄k

(B.2)
and one can present

∑
j (1 − Π)−1

i j ξ j = ξi + λiξi for any W . Then one can derive equation the
function λi should satisfy

ξi =
∑
j,k

(1−Π)i j

(
1

1 − Π

)
jk

ξk ⇒ ξi
(
λi +

i
2

∑
j

W (xi − x j )ξ j ξ̄ j +
i
2

∑
j

W (xi − x j )ξ j ξ̄ jλ j
)
= 0.

(B.3)
In more clear notation, it could written as (we assume that ξi can be factorized out)∑

j

(
δi j − Zi j

)
λ j = Ti, Zi j = −

i
2

W (xi − x j )ξ j ξ̄ j, Ti =
∑
j

Zi j ⇒ λi =

∞∑
α=0

∑
j

(
Zα

)
i jTj . (B.4)

7
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These relations were, so far, valid for general W (xi − x j ). If W (xi − x j ) is a solution to (A.1), it
can be shown that Zi j satisfies the relation∑

j

Zi j Z jk =

(
−

i
2

)2 ∑
j

W (xi − x j )W (x j − xk )ξ j ξ̄ j ξk ξ̄k =

=

(
−

i
2

)2 ∑
j

(
W (xi − x j )W (xi − xk ) −W (xi − xk )W (xk − x j ) − c

)
ξ j ξ̄ j ξk ξ̄k ⇒

∑
j

Zi j Z jk =
(
Ti − Tk

)
Zik +

1
4

c ξk ξ̄k J, J =
∑
m

ξm ξ̄m. (B.5)

This relation should be used to calculate
∑

j

(
Zα

)
i jTj to find the solution of (B.4).

Rational W

In the simpler rational case c = 0, one can observe that
∑

j

(
Zα

)
i jTj for α = 1, 2 reduces to(

Ti
)2 and

(
Ti

)3:∑
j

Zi jTj =
∑
j,k

Zi j Z jk =
(
Ti

)2
−

∑
k

ZikTk ⇒
∑
j

Zi jTj =
1
2
(
Ti

)2,

∑
j

(
Z2)

i jTj =
1
2

∑
j

Zi j
(
Tj

)2
= Ti

∑
k

ZikTk −
∑
k

Zik
(
Tk

)2
⇒

∑
j

Zi j
(
Tj

)2
=

1
3
(
Ti

)3,
∑
j

(
Z2)

i jTj =
1
6
(
Ti

)3, (B.6)

with coefficients coinciding with those in the power expansion of eTi . To find
∑

j

(
Zα

)
i jTj for

general α, one can use (B.5) to establish relation∑
j

(
Zα

)
i jTj = Ti

∑
j

(
Zα−1)

i jTj −
∑
j

Zi jTj

∑
k

(
Zα−2)

jkTk . (B.7)

Substituting here
∑

j

(
Zα

)
i jTj = f (α)

(
Ti

)α+1, one finds that it is needed to calculate also
∑

j Zi j
(
Tj

)α:∑
j,k

Zi j Z jk
(
Tk

)α
= Ti

∑
k

Zik
(
Tk

)α
−

∑
k

Zik
(
Tk

)α+1. (B.8)

Substituting here
∑

k Zik
(
Tk

)α
= g(α)

(
Ti

)α+1, one obtains equation

g(α)g(α + 1) = g(α) − g(α + 1) ⇒
(

1
g

)
(α) = α + const or g(α) =

1
α + 1

for g(1) =
1
2
. (B.9)

With use of (B.9) equation (B.7) can be reduced to single difference equation by assuming∑
j

(
Zα

)
i jTj = f (α)

(
Ti

)α+1:

(α + 1) f (α) = (α + 1) f (α − 1) − f (α − 2) ⇒ f (α) =
1

(1 + α)!
. (B.10)
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Therefore, the solution for λi reads

λi =

∞∑
α=0

∑
j

(
Zα

)
i jTj =

∞∑
α=0

(
Ti

)α+1

(1 + α)!
= eTi − 1 and

∑
j

(
1

1 − Π

)
i j

ξ j = e−
i
2
∑

k W (xi−xk )ξk ξ̄k ξi for W (x) =
1
x
, (B.11)

which proves the formula (3.7).

Trigonometric and hyperbolic W

In the case c , 0, the situation is more complicated. The main relation is∑
j

(
Zα

)
i jTj = Ti

∑
k

(
Zα−1)

i jTj −
∑
k

ZikTk

∑
m

(
Zα−2)

kmTm +
c
4

J
∑
k,m

ξk ξ̄k
(
Zα−2)

kmTm.

(B.12)
At the first glance, it cannot be solved by substitution

∑
j

(
Zα

)
i jTj =

∑α+1
β=0 f (α, β)

(
Ti

)α+1−β Jβ .
The problem is to relate

∑
k,m ξk ξ̄k

(
Zα−2)

kmTm to other quantities. The equation on
∑

j Zi j
(
Tj

)α
∑
j,k

Zi j Z jk
(
Tk

)α
= Ti

∑
j

Zi j
(
Tj

)α
−

∑
j

Zi j
(
Tj

)α+1
+

c
4

J
∑
k

ξk ξ̄k
(
Tk

)α (B.13)

is solvable by substitution∑
j

Zi j
(
Tj

)α
= g(α)

(
Ti

)α+1
+h(α)

c
4

J
∑
k

ξk ξ̄k
(
Tk

)α−1, g(α) =
1

1 + α
, h(α) =

α

1 + α
. (B.14)

Moreover, this allows to find
∑

k ξk ξ̄k
(
Tk

)α:∑
k

ξk ξ̄k
(
Tk

)α
= −

i
2

∑
k,l

ξk ξ̄kW (xk − xl)ξl ξ̄l
(
Tk

)α−1
=

= −
∑
k,l

ξl ξ̄l Zlk
(
Tk

)α−1
= −

1
α

∑
l

ξl ξ̄l
(
Tl

)α
−
α − 1
α

cJ
4

∑
l

ξl ξ̄l
(
Tl

)α−2 . (B.15)

Therefore, we find ∑
k

ξk ξ̄k
(
Tk

)α
= −

α − 1
α + 1

cJ2

4

∑
l

ξl ξ̄l
(
Tl

)α−2. (B.16)

Applying (B.16) to itself, one can continue reduction

∑
k

ξk ξ̄k
(
Tk

)α
= . . . =

(
−

cJ2

4

)β
α − 2β + 1
α + 1

∑
l

ξl ξ̄l
(
Tl

)α−2β (B.17)

and reduce
∑

k ξk ξ̄k
(
Tk

)α to∑
k ξk ξ̄k

(
Tk

)0
= J ifα is even or to

∑
k ξk ξ̄k

(
Tk

)1
= − i

2
∑

k,l ξk ξ̄kW (xk−
xl)ξk ξ̄l = 0 in the case of odd α. Finally,

∑
k

ξk ξ̄k
(
Tk

)α
=



0, α = 2N + 1,
J

1+α

(
− cJ2

4

)α/2
, α = 2N.

(B.18)
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Using this formula, one can substitute
∑

j

(
Zα

)
i jTj =

∑α+1
β=0 f (α, β)

(
Ti

)α+1−β Jβ to (B.12) and
reduce it to a system of difference equations:

α+1∑
β=0

f (α, β)
(
Ti

)α+1−β Jβ =
α∑
β=0

f (α − 1, β)
(
Ti

)α+1−β Jβ −

−

α−1∑
β=0

f (α − 2, β)
α − β + 1

(
Ti

)α+1−β Jβ +
cJ
4

α−1∑
β=0

f (α − 2, β)
α − β + 1

∑
k

ξk ξ̄k
(
Tk

)α−1−β Jβ . (B.19)

Counting powers of J with the help of (B.18), one can note that the last term is proportional to
Jα+1. This power of J can be found also only in the first term. Only first and second terms contain
Jα. Thus one can write down, considering Jα and Jγ, γ < α, two equations:

f (α, β) = f (α − 1, β) −
f (α − 2, β)
α − β + 1

, f (α, α) = f (α − 1, α). (B.20)

Solution of the first is

f (α, β) =
a(β)

(α − β + 1)!
, (B.21)

second is then satisfied automatically, and the only way to fix a(β) is to consider Jα+1 terms. Let
us consider them separately for odd and even α. Then, taking into account (B.18), only even and
odd β in (B.19) are relevant, respectively. Noting that f (α, α + 1) = a(α + 1), one can find

α = 2N + 1 : a(α + 1) =
(α−1)/2∑
β=0

(−1)(α−1−2β)/2a(2β)
(α − 2β + 1)!

( c
4

) (α+1−2β)/2
,

α = 2N : a(α + 1) =
α/2∑
β=0

(−1)(α−2β)/2a(2β − 1)
(α − 2β + 2)!

( c
4

) (α+2−2β)/2
. (B.22)

Note that the equations relate values of a of even numbers to values of a of even numbers, and the
same for odd, not mixing them together. Thus, as a(0) = 1, a(1) = 0, one finds that a(2N+ 1) = 0.
Relabeling α − 1 → α in the first equation, one can finally obtain the relation, that expresses a of
any even α in terms of a(α − 2), a(α − 4), e.t.c.

a(α + 2 = 2N) =
α/2∑
β=0

(−1)(α−2β)/2a(2β)
(α − 2β + 2)!

( c
4

) (α+2−2β)/2
. (B.23)

A few first of a(α) read

a(0) = 1, a(2) =
c
8
, a(4) =

5c2

384
, a(6) =

61c3

46 080
, a(8) =

277c4

2 064 384
, . . . (B.24)

Coefficients can be found this way up to any desired order. It was checked up to 20th order in T · J
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that

λi =

∞∑
α=0

α+1∑
β=0

f (α, β)
(
Ti

)α−β+1 Jβ = eTi
1

cos
(√

cJ
2

) − 1 ⇒

∑
j

(
1

1 − Π

)
i j

ξ j =
1

cosh
(
J
2

) e−
i
2
∑

k W (xi−xk )ξk ξ̄k ξi for W (x) =
1

tan x
,

∑
j

(
1

1 − Π

)
i j

ξ j =
1

cos
(
J
2

) e−
i
2
∑

k W (xi−xk )ξk ξ̄k ξi for W (x) =
1

tanh x
. (B.25)

Thus the relations between the supercharges (3.8), (3.9) hold.
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