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Abstract. To honor the memory of Stefano Catani and Marcello Ciafaloni, I
describe part of their scientific results in the field of Quantum ChromoDynamics
during their long and fruitful careers.

1 Introduction

Stefano Catani and Marcello Ciafaloni (Stefano and Marcello henceforth) have given impor-
tant contributions to many aspects of quantum field theory and its applications to high energy
physics. Reviewing all of them in a short talk is an impossible task. I will limit myself to a
selection of topics, largely influenced by the subject of this Workshop (Quantum Chromody-
namics) and by my personal interests.

2 Soft gluon resummation

Stefano’s and Marcello’s results I am most familiar with are those obtained in the context of
the all-order resummation of large logarithmic contributions in the perturbative expansion of
cross sections close to the threshold energy for the production of heavy systems. I summarize
here the basic ideas of this subject following a simple and beautiful review presented by
Stefano at a workshop in Montpellier in 1996. [1]

Physical cross sections are always inclusive over arbitrarily soft particles in the final state,
because of finite detector resolution. On the other hand, inclusiveness plays a crucial role in
QCD calculations, because infrared divergences from virtual corrections are cancelled by
radiation of undetected real gluons. The finite left-over of these cancellations give large
contributions if the tagged final state is forced to take most of the available energy.

Let us consider a generic process, e.g. the production of some heavy system accompanied
by unobserved radiation, which carries a fraction 1 − z of the available energy

√
s. Loop

corrections and real emission contributions to the cross section at order αS are separately
infrared divergent, and must be regularized by an infrared cut-off ε:

dwvirtual

dz
= −2C αS δ(1 − z)

∫ 1−ε

0
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1 − y log

1
1 − y + finite terms (1)

dwreal

dz
= +2C αS

1
1 − z

log
1

1 − z
θ(1 − ε − z) + finite terms (2)
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because of the bremsstrahlung energy spectrum dω/ω and the spectrum for collinear emis-
sion, dk2

T /k
2
T . The sum of the two contributions is finite as ε → 0, and can be written

dw(z)
dz
=

dwvirtual

dz
+

dwreal

dz
= 2 C αS

[
1

1 − z
log

1
1 − z

]

+

(3)

with the usual definition of the + distributions
∫ 1

0
dz [D(z)]+ f (z) =

∫ 1

0
dz D(z)

[
f (z) − f (1)

]
. (4)

The contribution of virtual corrections is concentrated at z = 1, while the real emission
contribution is spread over the range x < z < 1, where x is the fraction of total energy carried
by the observed final state. Hence, the contribution of soft emission to the cross section is
proportional to ∫ 1

x
dz

dw
dz
= −C αS log2(1 − x), (5)

a finite left-over of the cancellation of infrared divergences. When observations are restricted
to the region of x close to 1, the phase space for real emission is suppressed, and the finite
left-over becomes large. The same mechanism is replicated at higher orders; at order n, at
most two powers of log(1 − x) for each power of αS appear in the perturbative coefficients:

Cn(x)αn
S = α

n
S

2n∑
m=1

cnm logm(1 − x) + non singular terms. (6)

The perturbative expansion becomes unreliable in the limit x → 1, and therefore logarith-
mically enhanced contributions must be resummed to all orders. Typical examples of pro-
cesses where resummation of soft gluons plays a role are lepton-nucleon scattering in the
quasi-elastic limit (x = xBj → 1), the production of systems with a large invariant mas Q2

(Drell-Yan pairs, Higgs) close to threshold (x = Q2

s for s>∼Q2), transverse momentum qT

spectra in the small-qT region (x = 1 − q2
T

Q2 , q2
T � Q2)).

Soft gluon resummations are typically performed after a suitable integral tranform. In the
case of threshold production, one takes Mellin moments of the cross section with respect to
x:

F̂(N) =
∫ 1

0
dx xN−1F(x); F(N) =

1
2πi

∫ N̄+i∞

N̄−i∞
dN x−N F̂(N). (7)

(in the case of transverse momentum the appropriate transform is two-dimensional Fourier
transform with respect to �qT .) In the space of the Mellin variable N, the region x → 1
is mapped in the large N region; in this limit, the perturbative expansion of a coefficient
function takes the form

C(N) =
∞∑

n=0

αn
S

2n∑
k=1

cnk logk N + non singular terms (8)

with at most two powers of log N for each power of αS. Terms with n+1 ≤ k ≤ 2n are leading
logs, while terms with k = n are next-to-leading logs.

Resummation of soft emission contributions at the leading logarithmic approximation
can be performed easily in QED on the basis of the eikonal approximation. However, its
generalization to QCD, and to higher logarithmic accuracy, is highly non trivial. Both Stefano
and Marcello have given central contribution in this direction. I summarize them below.

1. Eikonal emission exponentiates in QED because soft photons are emitted indepen-
dently of each other. This is not the case in QCD, because of the presence of three-
gluon and four-gluon vertices. However, gluon correlations can be shown to cancel
in the soft limit, therefore leading to the exponentiation of the single-emission cross
section in the leading log approximation. A proof of the exponentiation at leading log
in QCD was given by Stefano and Marcello in ref. [2].

2. In QCD, running coupling effects are especially relevant. It was shown by Marcello
and collaborators (see e.g. refs. [3], [4]) that the appropriate scle choice for the running
coupling is the transverse momentum kT of emitted gluons with respect to the direction
of the emitting parton. On the basis of kinematics, k2

T is bounded from above by the
hard scale of the process Q2 times a power of 1 − x. Hence, the upper bound on the
transverse momentum can be very different from Q2 in the threshold limit. This is
an important point, because by this choice leading log terms of order αk

S logk+1 N are
resummed.

3. Also next-to-leading logarithmic terms can be shown to take the form of an exponential
of a function of the conjugated variable N. A proof was given by Stefano and Luca
Trentadue in ref. [5].

In the case of deep-inelastic scattering and Drell-Yan pair production, the resummed coeffi-
cient functions in the conjugate space take the form

CN(Q2)
CLO

N (Q2)
= g0(Q2) exp GN(Q2) + O

(
logk N

N

)
(9)

where CLO
N (Q2) is the leading-order result, and

GDIS
N Q2) = log∆q(Q2, µ2) + log Jq(Q2) + log∆DIS

int (Q2)
GDY

N Q2) = 2 log∆q(Q2, µ2) + log∆DY
int (Q2)

with

∆q(Q2, µ2) =
∫ 1

0
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1 − z
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dq2

q2 A(αS(q2))
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dq2

q2 A(αS(q2)) + B(αS(Q2(1 − z)))



∆int(Q2, µ2) =
∫ 1

0
dz

zN−1 − 1
1 − z

D(αS(Q2(1 − z)2))

and A, B,D analytic functions of their argument. After performing the integrals, the exponent
takes the form of an expansion in powers of αS with fixed αS log N.

A difficulty immediately arises. The ratio CN (Q2)
CLO

N (Q2) is a function of αS(Q2/Na), a = 1, 2

which can be expanded in powers of αS(Q2). To next-to-leading log we have

αS

(
Q2

Na

)
=
αS(Q2)
1 + L

[
1 − αS(Q2)

β1

β0

log(1 + L)
1 + L

]
; L = αS(Q2)β0 log

1
Na (10)

which has a simple pole at L = −1, or

N = NL ≡ e
1
ᾱ ; ᾱ = aβ0αS(Q2) (11)
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(the so-called Landau singularity) and a branch cut on the real positive N axis for Re N > NL.
Hence, the inverse Mellin transform of CN(Q2)/CLO

N (Q2) does not exist. This has to do with
non-perturbative contributions, which are not under control in perturbation theory.

A solution, now widely adopted, is presented in a paper [6] by Stefano, in collabora-
tion with M. Mangano, P. Nason and L. Trentadue. Their suggestion (named the minimal
prescription) is in fact very simple: they suggest to define

σ(x,Q2) =
1

2πi

∫ c+i∞

c−i∞
dN x−N L(N,Q2) C(N, αS(Q2)) (12)

with the constant c taken to the right of all singularities of C(N), but to the left of the Landau
pole, as shown in fig. 1. Clearly, this is not a true inverse Mellin: the integrand is not analytical

c

NL

N space

Figure 1. The inversion contour of the minimal prescription.

in any right half-plane, because of the branch cut due to the Landau pole. However, it is
shown in ref. [6] that the minimal prescription, which provides a well-defined cross section
for all values of x, is an asymptotic sum of the original (divergent) perturbative expansion.
Furthermore, the difference between the original series, truncated at the best-approximation
term, and the minimal prescription, is suppressed more strongly than any power of Λ2/Q2.

The minimal prescription allows one to obtain resummed predictions for physical observ-
ables, and since its formulation an impressive amount of phenomenological results have been
produced by Stefano and collaborators. An important example is the calculation of the cross
section for the production of a Higgs boson at hadron colliders, presented in ref. [7]. Figs. 2
and 3 are taken from that paper.

Figure 2. Higgs production at the LHC.

Figure 3. Higgs production at the Tevatron.

Figure 4. Left: NLL+LO compared with the LO spectrum. Right: uncertainty band from scale varia-
tions.

The uncertainty bands are obtained by varying the renormalization and factorization
scales around a central value. We note that resummation has a sizable effect on central values,
and considerably reduces the theoretical uncertainty.

In some cases, cross section are affected not only quantitatively, but also qualitatively, by
the resummation of soft logarithms. This is the case for transverse momentum distributions,
where the inclusion of large logs of q2

T /Q
2 produces a suppression of the cross section in the

low-qT region. The qT spectrum of Higgs production at the LHC was computed in ref. [8],
from which figs. 4 and 5 are taken.

Many other applications of the resummation formalism outlined above were performed
by Stefano and a long list of collaborators. [10]-[25].

The subject of soft gluon resummation was addressed later by Stefano with Pino March-
esini and Bryan Webber from a different point of view, which proves to be suitable for imple-
mentation in shower Monte Carlo Codes. [9]
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Figure 5. Left: NNLL+NLO compared with the LO spectrum. Right: uncertainty band from scale
variations.

3 High-energy resummation
A relevant part of the collaboration between Stefano and Marcello is the study of perturba-
tive QCD in the large energy regime. These subject was addressed in a series of papers in
collaboration with Francesco Hautmann ([26]-[32]).

Perturbative QCD predictions for hadronic processes at squared energy s and large trans-
verse momentum pT ∼ s are remarkably accurate in the regime pT � Λ, whereΛ is the QCD
energy scale, of order a few hundred MeV. Indeed, non-perturbative contributions suppressed
by powers of Λ/pT , while logarithmic corrections to the naive parton model are systemati-
cally computable as a power series in αS(p2

T ) ∼ (β0 log p2
T
Λ2 )−1 � 1. However, in the regime

s � p2
t � Λ2, powers of log x = log p2

t
s (usually referred to as small-x, or high-energy

logarithms) appear in the perturbative coefficients and spoil the accuracy of perturbative pre-
dictions. A similar situation arises whenever the process is characterized by two (or more)
hard scales, sizably different from each other; an example is the production of heavy quarks.

The leading high-energy logarithmic contributions to total cross sections are powers of
αS log x, which is of order one in the small-x limit. Stefano, Marcello and F. Hautmann have
shown in refs. [26]-[32] that these large logarithmic contributions can be summed to all orders
for hard processes directly coupled to gluons. To this purpose, they prove a high-energy (or
kT ) factorization property of the cross section, valid in the small x limit, where by a universal
kT depending parton density is convoluted with a partonic cross section with an off-shell
gluon in the initial state.

4 All-order calculations and Monte Carlo codes
In a beautiful series of papers in collaboration with Mike Seymour [33]-[35], Stefano has
introduced a generalization of the subtraction method for the computation of high-order per-
turbative contributions to QCD observables

The cross section for a process with m partons in the final state at leading order receives
next-to-leading order corrections from emission of one extra parton, and from virtual correc-
tions to the m parton process:

dσNLO = dσR
m+1partons + dσv

m partons. (13)

Both contributions are divergent in the infrared region of the momentum of virtual or real
gluons, and the divergence is cancelled in the sum.

The cancellation of infrared singularities is not easy to implement numerically, because it
takes place between processes with different final states. In most calculations, the so-called
subtraction method is employed, which amounts to add and subtract an arbitrary term with
m + 1 partons in the final state:

dσNLO =
[
dσR

m+1partons − dσA
m+1partons

]
+ dσA

m+1partons + dσv
m partons. (14)

The cross section dσA is chosen in such a a way that it cancels the singularities in dσR
m+1partons

and can be integrated analytically in the singular region. Furthermore, it is convenient to
choose it so that it is independent of the observable one wants to compute.

The Catani-Seymour formalism, named the dipole formalism by the authors, is a choice
of dσA which is completely general, i.e. not only observable-independent for a given process,
but also process independent. The dipole implementation of the subtraction method proves
to be especially useful for the implementation of QCD corrections in a Monte Carlo event
generator.

5 Non-QCD research

Although not directly related to QCD, some other achievements in Marcello’s scientific work
are worth mentioning. In the early stage of his scientific career Marcello gave significant
contributions in the study of composite models and relativistic bound states, mainly in col-
laboration with Pietro Menotti at Scuola Normale Superiore in Pisa, where he was a stu-
dent. [39]-[36]

More recently, Marcello has transferred his knowledge in QCD in an interesting series of
papers about the role of large logarithmic corrections arising in the electroweak theory. Most
of this work was performed in collaboration with his son Paolo. [40]-[47]

In the latest stage of his scientific activity, Marcello devoted his attention to gravitational
scattering at transplanckian energies. [48]

6 Personal recollections

I would like to conclude with some personal reflections on my relationships with Marcello
and Stefano. I had the opportunity to meet Marcello a few times between 1986 and 1988,
when I was a student in Pisa. Later, in 2001, we were both visiting the CERN Theory Division
for an extended period, which gave me many chances to spend time with him. I was always
struck by Marcello’s profound and vast knowledge of quantum field theory and advanced
mathematics, as well as by his calm and pleasant way of discussing both physics and other
topics.

Stefano, on the other hand, was a close friend. We first met at an International School
organized by the Italian Physical Society in Varenna, on Lake Como, in 1984, and we stayed
in close contact ever since. Our scientific interests overlapped significantly, yet for various
reasons, we never had the chance to collaborate. However, I was fortunate to have many
conversations with Stefano, which were often illuminating. In those moments, I always felt
that Stefano’s understanding of the subject went far deeper than mine, and that, in some way,
I could not reach the level of insight he possessed. I cherish those conversations as a precious
gift. For that, and for all the time we shared, I will miss Stefano deeply.
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αS log x, which is of order one in the small-x limit. Stefano, Marcello and F. Hautmann have
shown in refs. [26]-[32] that these large logarithmic contributions can be summed to all orders
for hard processes directly coupled to gluons. To this purpose, they prove a high-energy (or
kT ) factorization property of the cross section, valid in the small x limit, where by a universal
kT depending parton density is convoluted with a partonic cross section with an off-shell
gluon in the initial state.

4 All-order calculations and Monte Carlo codes
In a beautiful series of papers in collaboration with Mike Seymour [33]-[35], Stefano has
introduced a generalization of the subtraction method for the computation of high-order per-
turbative contributions to QCD observables

The cross section for a process with m partons in the final state at leading order receives
next-to-leading order corrections from emission of one extra parton, and from virtual correc-
tions to the m parton process:

dσNLO = dσR
m+1partons + dσv

m partons. (13)

Both contributions are divergent in the infrared region of the momentum of virtual or real
gluons, and the divergence is cancelled in the sum.

The cancellation of infrared singularities is not easy to implement numerically, because it
takes place between processes with different final states. In most calculations, the so-called
subtraction method is employed, which amounts to add and subtract an arbitrary term with
m + 1 partons in the final state:

dσNLO =
[
dσR

m+1partons − dσA
m+1partons

]
+ dσA

m+1partons + dσv
m partons. (14)

The cross section dσA is chosen in such a a way that it cancels the singularities in dσR
m+1partons

and can be integrated analytically in the singular region. Furthermore, it is convenient to
choose it so that it is independent of the observable one wants to compute.

The Catani-Seymour formalism, named the dipole formalism by the authors, is a choice
of dσA which is completely general, i.e. not only observable-independent for a given process,
but also process independent. The dipole implementation of the subtraction method proves
to be especially useful for the implementation of QCD corrections in a Monte Carlo event
generator.

5 Non-QCD research

Although not directly related to QCD, some other achievements in Marcello’s scientific work
are worth mentioning. In the early stage of his scientific career Marcello gave significant
contributions in the study of composite models and relativistic bound states, mainly in col-
laboration with Pietro Menotti at Scuola Normale Superiore in Pisa, where he was a stu-
dent. [39]-[36]

More recently, Marcello has transferred his knowledge in QCD in an interesting series of
papers about the role of large logarithmic corrections arising in the electroweak theory. Most
of this work was performed in collaboration with his son Paolo. [40]-[47]

In the latest stage of his scientific activity, Marcello devoted his attention to gravitational
scattering at transplanckian energies. [48]

6 Personal recollections

I would like to conclude with some personal reflections on my relationships with Marcello
and Stefano. I had the opportunity to meet Marcello a few times between 1986 and 1988,
when I was a student in Pisa. Later, in 2001, we were both visiting the CERN Theory Division
for an extended period, which gave me many chances to spend time with him. I was always
struck by Marcello’s profound and vast knowledge of quantum field theory and advanced
mathematics, as well as by his calm and pleasant way of discussing both physics and other
topics.

Stefano, on the other hand, was a close friend. We first met at an International School
organized by the Italian Physical Society in Varenna, on Lake Como, in 1984, and we stayed
in close contact ever since. Our scientific interests overlapped significantly, yet for various
reasons, we never had the chance to collaborate. However, I was fortunate to have many
conversations with Stefano, which were often illuminating. In those moments, I always felt
that Stefano’s understanding of the subject went far deeper than mine, and that, in some way,
I could not reach the level of insight he possessed. I cherish those conversations as a precious
gift. For that, and for all the time we shared, I will miss Stefano deeply.
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