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Introduction

In generic isolated systems, non-equilibrium states are expected to thermalize: relax to
states in which the values of macroscopic quantities are stationary, universal with respect
to widely differing initial conditions and predictable using the framework of statistical
mechanics. Intuitively less clear, however, is how these states can be reached through local
dynamics that follows microscopic laws [1, 2].

Non-equilibrium dynamics of large-scale quantum many-body systems is a notorious
challenge for both analytical and numerical computations. Progress in this research di-
rection has accelerated in recent years, a trend that can be partially attributed to success
in producing controllable, quantum-coherent systems of ultracold atoms [3,4] and trapped
ions [5] with high degree of isolation [6]. The latter platforms can mimic interacting
quantum many-body systems by reconstructing their Hamiltonian, under precisely con-
trolled conditions [7–10]. These experimental platforms naturally realize quantum Ising
or Heisenberg models, with the possibility to engineer two-body interaction potentials de-
caying proportionally to r−α as a function of the distance r between lattice sites, ranging
from van-der-Waals-like (α = 6) and dipolar interactions (α = 3) in the context of Ryd-
berg atoms [11, 12], to Coulomb (α = 1) and infinite-range (α = 0) potentials for trapped
ions [13, 14]. For the case of van der Waals interactions, strong nearest-neighbor interac-
tions can be implemented on these systems, leading to an effective constrained dynamics in
both Ising- and XY-type regimes. This regime has proven fruitful to show interesting phe-
nomena and peculiar non-equilibrium properties. Particularly, the phenomenon of weak
ergodicity breaking found in Ref. [15] and its relation with the existence of many body
quantum scars [16] in the spectrum of the Hamiltonian. These setups offer the possibility
to access real-time quantum dynamics and strongly correlated quantum many-body states,
opening numerous avenues not only for future quantum technologies, but also for studying
long-standing theoretical problems. Thermalization and long-range interactions in isolated
quantum systems are of fundamental interest and naturally addressed in these platforms.

The research work presented in this thesis addresses some open questions regarding ther-
malization and thermal equilibrium in quantum systems featuring long-range interactions
and constrained dynamics. Utilizing a combination of numerical and analytical tools, this
work studies the thermalization and critical properties of experimentally important models
and contributes to the efforts towards the quantum simulation of complex phenomena in
condensed matter and statistical physics. In particular, we focus on two main grand-issues.
The first one concerns ergodicity breaking in constrained systems (inspired by strong power
law interactions with large decay exponent, such as the aforementioned van der Waals),
that we specifically address via characterising spectral properties. We will present two
studies on constrained systems, that suggest the following picture: while constraints fa-
vor weak-ergodicity breaking (in the form of quantum scar states), they seem to unfavor
strong-ergodicity breaking, such as many-body localization in the presence of disorder.
The second study concerns instead the critical properties of long-range systems. There, we
focus on equilibrium, critical properties, that we characterize in details in regimes of direct
access to present experiments. In doing so, we introduce a methodological development,
by empowering Monte Carlo algorithms with a combination of non-local loop updates - an
instrumental step to address criticality. Following this second line, we present a series of
additional methods developed to tackle continuous, long-range interacting systems, that
have recently surged to attention due to the realization of atom supersolids.

The thesis is structured as follows. Part I focusses on the study of thermalization in
constrained quantum many-body systems. In that respect, Chapter 1 reviews basics as-
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pects and concepts concerning quantum thermalization in isolated systems. By means of
the eigenstate thermalization hypothesis (ETH) we clarify how thermalization is directly
related - and strongly tied to - the properties of individual eigenstates. The phenomena
of Many-body localization and quantum many-body scars are explained, introducing dif-
ferent measures that characterize ETH and its breaking. Chapter 2 presents our results
on the calculated ETH and spectral properties of a certain kind of constrained quantum
models (PXP model with different radius of constraint). These results suggest an ergodic,
ETH obeying behaviour of all the studied models although the appearance of some special
eigenstates. In Chapter 3 we investigate whether quantum scars on these constrained mod-
els are stable with respect to perturbations in the Hamiltonian and if they persist for larger
constraint radii. In Chapter 4 we focus on the interplay between constraints, interactions
and disorder, and investigate ergodicity and its breaking under the combination of these
factors. We show that 1D spin chains with local constraints can remain ergodic even in the
presence of strong disorder, and explain such an unexpected behavior utilizing a series of
mappings that illustrates the qualitative, ‘delocalizing’ effect constraints might have. The
Part II of the thesis is dedicated to the study of strongly correlated systems by means of
Monte Carlo methods. In Chapter 5 we investigate both the ground state and the nonzero-
temperature regimes of quantum Ising chains with long-range ferromagnetic interactions.
Using large-scale path integral Monte Carlo simulations we study the phase diagram and
critical properties of the model. Chapter 6 presents my work on the development of an
implementation of the Path Integral Monte Carlo algorithm for continuous space systems.
Here, we present a benchmark of our implementation for a system of bosons interacting
via a soft-core potential.
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Chapter 1

Quantum thermalization in isolated
systems

Describing a system with many constituents by keeping track of every degree of freedom is
usually a practically impossible task. Statistical approach is mandatory, i.e. calculate the
average behaviour of the system, as given for example by some macroscopic observable in-
stead of the single particle dynamics. This approach finds support on the basis of statistical
mechanics and thermal equilibrium, where is claim that the exact knowledge of individual
trajectories is not necessary and systems can be well described by a few parameters that are
time independent, i.e., temperature, internal energy, etc.. This simple description comes
from the ability of systems to perform ergodic dynamics, i.e., all microscopic states of the
system will be uniformly explored, constrained only by conservation laws.

In the case of classical systems, the ergodic exploration of the phase space has been
traced to the chaotic motion present on the system [20]. Classical results and concepts
in this subject can not be directly applied in quantum systems [2]. Significant efforts
have been focused on understanding the process of quantum thermalization in isolated
systems, i.e, is statistical mechanics applicable in these systems, do quantum systems
act as their own bath, do quantum systems exhibit ergodic behaviour? The problem of
quantum thermalization has gain much interest thanks to recent experimental progress,
in controllable, quantum-coherent systems of ultracold atoms [3, 4] and trapped ions [5].
These highly tunable quantum systems that are – to very good approximation – isolated
from any environment allow to characterize their quantum thermalization properties [21].
Of great interest are quantum system failing to thermalize, for protecting exotic equilibrium
phenomena [22–24] and realize them in a non equilibrium setup [15, 25–27]. Opening up
opportunities for the creation of novel states with long-lived coherence in systems that are
now experimentally realizable.

This chapter introduces the basis on the current understanding of the process of quan-
tum thermalization in isolated systems. In that respect in Section 1.1 is introduced the
concept of thermalization for quantum system, and the ETH as the underlying mechanism
for thermalization on these systems is explained. The validity of the ETH is also addressed
in this chapter. Although the ETH has been numerically verified for few-body observ-
ables in a variety of systems, not all quantum systems or all eigenstates obey it. The fact
that many body localized phases strongly violate ETH is explained in Section 1.2. And
in Section 1.3 we address a phenomenon suggestive of weak ergodicity breaking found in
experiments, explained by the existence of highly non-thermal eigenstates called quantum
scars. Through the chapter different measures that characterize thermal, insulating and
ETH obeying behaviour are introduced.
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1.1 Thermalization in quantum systems

Given an isolated quantum system prepared in an out of equilibrium state ρ̂ = |Ψ0〉〈Ψ0|
and described by a time-independent Hamiltonian Ĥ. The expectation value of a few-body
operator Ô at time t is

〈Ô(t)〉 = Tr(e−iĤtρ̂eiĤtÔ) =
∑
n,m

ρnmOmne
−i(En−Em)t, (1.1)

where ρnm and Omn are the matrix elements of the density matrix and the operator Ô
in the eigenbasis {|En〉} of Ĥ, such that Ĥ|En〉 = En|En〉, and En is the energy for the
eigenstate n, for simplicity {En} is an ordered set.

Thermalization in quantum systems normally refers to observables. An observable is
said to thermalize if in the thermodynamic and long time limit the average expectation
value of the observable (Ō) is equal to the corresponding thermal ensemble [canonical (C)
and microcanonical (MC)] value (〈Ô〉T ),

Ō = 〈Ô〉T = 〈Ô〉C = 〈Ô〉MC (1.2)

〈Ô〉C =
1

Z
Tr(e−βĤÔ), (1.3)

〈Ô〉MC =
1

N∆

∑
|En−E|≤∆

Onn, (1.4)

where the total energy and the inverse temperature β are related by E = Tr(Ĥρ̂) =

(1/Z) Tr(e−βĤĤ) with Z = Tr(e−βĤ) and N∆ ≡
∑
|En−E|≤∆ 1 being ∆ a small energy

window. Importantly, is also required that temporal fluctuations of the expectation value
about the thermal ensemble prediction are small at most later times.

If one tries to calculate Ō from Eq. (1.1) assuming there are not degeneracies in the
energy spectrum (reasonable assumption for generic quantum systems after removing all
trivial symmetries) one obtains

Ō ≡ lim
t0→∞

1

t0

∫ t0

0
dt〈Ô(t)〉 =

∑
n

ρnnOnn. (1.5)

From Eq. (1.5), it would appear the equilibrium expectation value depends on the initial
state of the system through the matrix elements ρnn and this is at odds with the concept
of thermalization. Moreover, a many body system will need a long time to make sure that
the sum of the non diagonal elements in Eq. (1.1) averages to zero which is in contradiction
with experimental observation.

1.1.1 The eigenstate thermalization hypothesis

ETH is a conjecture introduced by Deutsch and Srednicki [28, 29] and propose an ansatz
for the matrix elements of observables in the basis of the eigenstates of a Hamiltonian [30]:

Omn = O(E)δmn + e−S(E)/2f0(E,ω)Rmn, (1.6)

where E ≡ (Em +En)/2, ω ≡ En−Em and S(E) is the thermodynamic entropy at energy
E. Both O(E) and f0(E,ω) are smooth functions of their arguments, O(E) is equal to
the expectation value of the observable O in the microcanonical ensemble at energy E and
Rmn is a random variable with zero mean and unit variance.
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This ansatz has immediate implications in the understanding of thermalization in many
body quantum systems. Indeed, assuming that the expectation value of the total energy

E =
∑
n

ρnnEn (1.7)

has a quantum uncertainty

∆ ≡

[∑
n

ρnn(En − E)2

]1/2

(1.8)

that is small (for typical states, this quantity scales with the system size L as ∆ ∼ L−1/2E).
In the large L regime, combining the ansatz Eq. (1.6) and the time average of the expec-
tation value in Eq. (1.5) one obtains the relation

Ō = 〈Ô〉T +O(∆2) +O(L−1) +O(e−S/2). (1.9)

Using this ansatz, one encounters that the fluctuations of 〈Ô(t)〉 about its equilibrium value
Ō are small. Then, whatever the initial value 〈Ô(t = 0)〉, 〈Ô(t)〉 must eventually approach
its equilibrium value, and remains near it most of the time.

As a consequence of ETH one can explain the occurrence of thermalization in isolated
quantum systems. Moreover, it follows that in the thermodynamic limit the expectation
value of every few-body operator in every energy eigenstate is the thermal value. The
previous statement sometimes is called “strong ETH” (every eigenstate), in the case the
expectation value for some eigenstates does not agree with the corresponding thermal value
it is normally said that the system only obey ETH in a weak sense (weak ETH).

The main approach for studying ETH numerically is exact diagonalization (ED). The
eigenstates and their ETH properties for discrete Hamiltonians like the Hubbard models
or spins systems have been calculated using ED, where many of these lattice systems have
been found to obey ETH [31–38]. ETH is difficult to thoroughly test numerically because
it requires calculating the many-body eigenstates using ED and extrapolate the results
to the thermodynamic limit. While all known examples of systems that thermalize obey
ETH, still is not clear if ETH is a necessary condition for thermalization.

1.2 Many body localization

The exchange of energy and particles between different parts of a system is required in
order for this to thermalize. Therefore, an insulating system is expected to break ergodicity.
Insulating behaviour was studied in non-interacting disordered systems. Here, a disorder
potential change the single particle eigenstates in a lattice, instead of having Bloch states
the eigenfunctions become localized in some region of space and decay exponentially far
away from that. This phenomenon goes under the name of Anderson localization [39,40].

Importantly was also the study of this phenomenon for interacting particles, where
the interaction could induces processes which may potentially destroy localization. This
lead to the discovery of an Anderson localization similar mechanism for interacting systems,
dubbed many body localization(MBL) [41–44]. This phenomenon exhibit a quantum phase
transition from an ergodic phase to a dynamical localized phase, where interestingly the
latter can survive even at nonzero temperatures. This transition is an eigenstate phase
transition marked by a sharp change in properties of the many-body eigenstates and thus
in the dynamics of the system. The MBL phase has been proved to be a stable phase making
this phenomenon a robust mechanism that avoids thermalization in closed systems.
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The localized phase was found to break ETH in Ref. [44]. There, Pal and Huse using
ED calculated the eigenstates for the Heisenberg spin 1/2 chain of size L with random
fields along the z direction

Ĥ =
L∑
i=1

hiŜ
z
i + J Ŝi · Ŝi+1, (1.10)

where the static-random fields for each site hi are independent, uniformly distributed ran-
dom variables in the interval [−h, h].

Eigenstate expectation values. In particular they calculated the local expectation
value of the z component of the spin

〈En|σ̂zi |En〉 (1.11)

in eigenstates |En〉 and found that in the localized phase this quantity fluctuate widely be-
tween adjacent many-body eigenstates, not obeying the ETH expected behaviour [Eq. (1.6)]
where a local observable should be smooth function of energy. The scaling of the aver-
age difference of 〈En|σ̂zi |En〉 between adjacent eigenstates showed that for weak disorder
strength (h) this difference decays exponentially in L, signaling an ergodic, ETH obeying
behaviour in the thermodynamic limit. On the contrary for large disorder strength the
difference is non-vanishing as L is increased, suggesting that ETH is violated. This result
is depicted in Fig. 1.1 where one can see the clear differences between the two regimes.

Figure 1.1: Logarithm of the averaged difference between the local magnetizations in ad-
jacent eigenstates for different h values (indicated in the legend). The m(n)

iα is the same
quantity in Eq. (1.11) where n refers to the state in certain realization α (certain set {hi}).
The average is over disorder realizations, states and sites. The figure is taken from Ref. [44].

Average level spacings ratio. The level statistics was also studied, in Ref. [44] the
average ratio of adjacent level spacings was calculated. The previous quantity is defined
as:

r =
〈Min{∆En,∆En+1}

Max{∆En,∆En+1}

〉
, (1.12)
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where ∆En = |En−En−1|. This quantity can be seen as an overall result from the studies
of Random Matrix Theory (RMT) and quantum chaos and it has been used to quantify
the distance from integrability on finite size lattices systems [45–47] and to characterize
diffusive-to-insulating transition and phases in the MBL phenomenon [42, 48, 49]. In the
localized, insulating phase, in the thermodynamic limit, the eigenstates are localized in
the many-body Fock basis of localized single-particle orbitals. Therefore, states that are
nearby in energy are far apart in this Fock space and do not interact or show level repulsion.
As a result, nearby energy levels are simply Poisson distributed yielding rPS ≈ 0.386.
In the diffusive phase, the level statistics of a large sample are those of the Gaussian
orthogonal ensemble (GOE) in the RMT, where rGOE ≈ 0.53 (associated with a Wigner-
Dyson statistics). In general for an ergodic systems this quantity is expected to flow to the
value rGOE as the thermodynamic limit is reached.

It was also proved numerically in [50,51] that MBL eigenstates display a low amount of
entanglement, where the entanglement scales proportional to the volume of the boundary
of the subsystem, known as area law entanglement. Oppositely, thermal eigenstates in the
same system showed volume-law entanglement with the entanglement equal to the thermal
equilibrium entropy of the subsystem, that scales with the number of its degrees of freedom.

All this suggested the existence of conservation laws for strongly disordered systems.
This expectations were made concrete in [51–53], proposing an emergent ‘integrability’ in
the MBL phase with Hamiltonians that are non linear functionals of a complete set of
local integrals of motions (LIOMs). This emergent integrability explains the breakdown
of ergodicity where information about the initial state is retained in the initial values of
LIOMs. The MBL integrability is conceptually different to other known types of inte-
grability present in non-interacting systems and in Yang-Baxter integrable systems [54],
been the MBL emergent integrability robust against weak and finite perturbations of the
Hamiltonian.

1.3 Many-body quantum scars

Many body localized systems fail to thermalize irrespective their initial state [54]. Another
phenomenon inconsistent with ergodicity and thermalization but strongly dependent on the
initial state has been discovered experimentally [15]. The experiment consisted of neutral
atoms loaded in a one-dimensional tweezer array. The atoms can couple to highly exited
Rydberg states resulting in repulsive van der Waals interactions between Rydberg atoms.
The quantum dynamics of the system is described by the Hamiltonian

H =
Ω

2

∑
i

σ̂i
x −∆

∑
i

n̂i +
∑
i<j

Vijn̂in̂j , (1.13)

where ∆ is the detuning of the driving lasers from the Rydberg state, n̂i = |ri〉 〈ri| is
the occupation of the Rydberg state, σ̂xi = |gi〉 〈ri| + h.c. describes the coupling between
the ground state |gi〉 and the Rydberg state |ri〉 of an atom at position i, driven at Rabi
frequency Ω, Vij is the interaction energy between Rydberg excitations. The interaction
strength Vij can be tuned varying the distance between the atoms or by coupling them
to a different Rydberg state. The strong interaction between Rydberg atoms provides
an effective constraint on the dynamics, not allowing simultaneous excitations of nearby
atoms into the Rydberg state. Interestingly, when the system was prepared in a charge
density wave state (CDW), with every odd atom in a exited state, and then quenched the
parameter ∆ to zero, the obtained dynamics exhibited oscillations with anomalously slow
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decay. Here, measurements of the Rydberg state occupation ni showed that the initial
CDW state collapses after the quench, a new state with an excitation at every even site
builds up and the system continues to oscillate between these two states (Fig. 1.2). The
oscillations persist on the full time range accessible in the experiment, much longer than
the timescales Ω−1 and V −1

i,i+1.

Figure 1.2: (a) ∆ is controlled in time in order to adiabatically prepare the CDW state,
then is quenched to ∆ = 0. The spatially resolved Rydberg probability is shown for an
array of 9 atoms. (b) Domain-wall density after the quench. (c) Illustration of a toy model
for the oscillations. (d) Numerical simulation of domain-wall density and entanglement
entropy after the quench. Figure taken from Ref. [15].

The initial state energy density corresponds to an infinite temperature ensemble with
respect to the quenched Hamiltonian and interestingly the system does not relax to thermal
equilibrium, or it does well beyond experimental timescales. Oppositely, it was found that
for other initial states the decay to thermal expectation values is rather fast, and no
anomalous oscillations are observed. It was later understood that this phenomenology
is due to a specific set of states present in the spectrum, dubbed quantum many-body
scars [16,55], in analogy with a similar phenomenon in single-particle quantum chaos [56].

1.3.1 The PXP model

The Rydberg atom experiment in Ref. [15] described by Eq. (1.13) is effectively captured
by a quantum model with kinetic constraints. The constraints in this model are induced
by strong nearest-neighbor repulsion between atoms in excited states. The interaction
between Rydberg atoms suppresses simultaneous excitations of nearby atoms, and allow
the excitation to Rydberg state only for pairs of atoms separated by at least one site. In the
strong interaction limit Vi,i+1 >> Ω, the system evolves in an effective constrained Hilbert
space. Here, one can project the Hamiltonian onto the subspace spanned by configurations
where only excitations separated by at least one site are admitted, obtaining an effective
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Hamiltonian

HPXP =

L∑
j

Pj−1XjPj+1, (1.14)

where Pi = (1−Zi)/2 and Xi, Zi are the X and Z Pauli matrices at site i respectively and
L is the number of sites. This Hamiltonian describes the so-called PXP model.

Using exact diagonalization methods Turner et al. calculated the eigenstates of this
model [55] and characterize the ETH behaviour of these states. In that respect, the ex-
pectation value of a local observable OZ = (1/L)

∑L
j=1 Zj in the eigenstate basis to test

the diagonal part of the ETH ansatz [Eq. (1.6)] was calculated. The expectation value for
most eigenstates was found to be concentrated in the vicinity of the canonical ensemble
prediction. Interestingly, from this analysis there was also found a number of states that
clearly violates the ETH prediction (dubbed “scars”) [see Figure 1.3 (left panel)]. The scars
and the tower of states departing from them with weakly non thermal values extend trough
the whole spectrum and the number of scars scales proportionally to the system size L.

Entanglement entropy of eigenstates. The bipartite entanglement of the eigenstates
S was also calculated and their results are reproduced in Figure 1.3 (right panel). The
equivalence of all observables to their canonical values proposed by the ETH implies
that the von Neumann entanglement entropy of a subregion A in an eigenstate |En〉,
SEn = −TrA (ρ̂EnA ln ρ̂EnA ) is equal to the thermodynamic entropy of A at temperature T
which correspond to the eigenstate energy En. Here a special band of eigenstate with low
entropy (labeled as 0,...,7) was found and is clearly differentiable from the cloud of thermal
states. It was also demonstrated that the entanglement entropy of these scars does not
scale obeying a volume law with the system size while thermal states on this system do.

The previous results demonstrate that the PXP model obeys the weak ETH due to
the existence of this relative small number of non-thermal eigenstates. These scars in
comparison with the thermal eigenstates resulted to have large overlap with the CDW
state, therefore a quantum quench from the CDW state was expected and proved to give
rise to coherent oscillations, and consequently was claimed that these eigenstates play a
key role in the experimentally obtained many body revivals in [15].

Figure 1.3: Expectation value of the local observable Z1 (left panel) as a function of energy.
The color scale indicate the density of points, contributions from scars are marked by a
cross in the figure and the continuous line marks canonical thermal average. Bipartite
entanglement entropy (right panel) as a function of energy. Figures taken from Ref. [55].
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Chapter 2

ETH characterization in constrained
models

2.1 Introduction

The PXP model introduced in Section 1.3.1 is defined on a constrained Hilbert space ex-
cluding configurations with two adjacent excitations. This reduction of the Hilbert space
allows to perform exact studies up to system sizes that are considerably larger when com-
pared to the usual ‘unconstrained’ models. Interestingly, one can generalize the PXP
model to take into account larger radius of constraints. In this case the strong interac-
tions allow excitations to Rydberg states only for pairs of atoms separated by at least α
sites [12, 15, 57–59]. As the radius of constraint is increased the Hilbert space dimension
Hd(L) is reduced for a certain system size L.

The characterization of thermal properties of eigenstates and insulating MBL behaviour
of an isolated system relies mainly on ED calculations. While in principle one can diagonal-
ize any Hamiltonian matrix by numerical means, in practice these numerically exact studies
are restricted for rather small systems sizes. In the case of spin chain systems, the study
is restricted to few tens of spins and great care has to be taken when drawing conclusions
about the thermodynamic limit. The system size restriction comes from the exponential
increase of Hd(L) with the number of spins (Hd(L) = 2L for a spin 1/2 system).

Although there has recently been much of activity and interest in characterizing the
finite-energy density (exited states) properties of quantum models [60], quantum models
with local constraints like generalizations of PXP model is an uncharted territory. There
is simply not much known on how these models behave, not only regarding thermalization,
but on rather general grounds. The peculiar scaling of the configuration space on these
models facilitate the study of finite-volume effects, but may also lead to cross comparison
(two constrained systems of the same size may have considerably different Hilbert space).
Importantly, these spin models are immediately motivated by Rydberg atoms experiments,
and simple instances like the PXP model have shown interesting properties. Lastly, it is
not immediately clear how the combination of disorder and local constraints may affect
quantum transport.

This chapter presents our results on the calculated ETH and spectral properties of the
PXP model for different constraint radius. ED methods were employed to calculate all the
eigenstates for different symmetry sectors using periodic and open boundary conditions.
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2.2 Model and methods

The model studied is a one dimension spin 1/2 lattice described by the Hamiltonian

Ĥ =

L∑
i=1

Pαi XiP
α
i+1+α, (2.1)

where the projectors Pαi =
∏i−1
j=i−α(1 − Zj)/2 assure that the dynamics is confined to a

constrained Hilbert space and α = 1 reduce to the usual PXP model. Here, the strong
interactions allow excitations to Rydberg states only for pairs of atoms separated by at
least α sites.

We analyzed the model in Eq. (2.1) via ED studies, performed in both open(OBC) and
periodic(PBC) boundary conditions and in a variety of reflection and translation symmetry
sectors. Here, for simplicity, we discuss our results and model properties for PBC and
symmetry sectors I = +1 and K = 0 for reflection and translation, respectively. Analysis
of results for OBC and others symmetries sectors lead us to the same conclusion stated at
the end of this chapter.

The local dimension dα of the system for different constraint radius α satisfies the
equation1

(dα)α+1 = (dα)α + 1. (2.2)

The following table list the different local dimension, maximum system size L and corre-
sponding Hd we fully diagonalized for several values of α.

α dα L Hd
1 1.61803 30 31836
2 1.46557 36 13604
3 1.38028 48 55449
4 1.32472 50 13190
5 1.2852 60 29445

Table 2.1: Different systems sizes and configuration space dimension for the different
models we studied with different radius of constraint α

2.3 Results

Our first step was to compute the half-chain bipartite entanglement entropy of every eigen-
state for different radius of constraint. Our results coincide with existing ones for α = 1
model in Ref. [16], showing hallmark features such as the “band of scars”, i.e, low-entropy
eigenstates that extend trough the spectrum [see Fig. 2.1]. Such a feature disappears when
considering other values of α; instead low-entropy eigenstates appear in “towers” in the
central region of the spectrum.

Subsequently, we calculated the expectation value of local observables in the eigenstates.
In Figure 2.2, the calculated expectation value 〈Zi〉 = 〈En|

∑
i Zi |En〉 as a function of the

eigenstate energy En is presented. There, the majority of the eigenstates produce thermal
1Although there is no explicit solution of this equation for α > 3 one finds the asymptotic form dα =

1 + W (α)
α

+ ... where W is the Lambert W -function solving the equation W (x)eW (x) = x. Already at α = 5
the error is about 1%.
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Figure 2.1: Half chain bipartite entanglement entropy calculated as a function of the
eigenstate energy for different values of radius of constraint α. Color scale indicates the
density of data points. Eigenstates showing special features are labeled with numbers for
the different α values.

expectations values. The special case α = 1 exhibit this band of eigenstates that don’t obey
the ETH. Results for α > 1 do not show mayor deviations from thermal expectations values.
Still, the special eigenstates found when analyzing the entanglement entropy(labeled in the
figures) show non thermal expectation values for some radius of constraint.

The study on how the locality of observables influences the eigenstate expectation values
is depicted in Figures 2.3 and 2.4. Here, 〈XiXi+1〉 = 〈En|XiXi+1 |En〉 and 〈XiXi+4〉 =
〈En|XiXi+4 |En〉 expectation values as a function of the eigenstate energy were calculated.
The analysis of our results indicates that expectation values such as 〈XiXi+4〉 do not
show great deviations from their thermal values even for the α = 1 case. Oppositely, for
observables with shorter support such as 〈XiXi+1〉, the band of scars eigenstates appears
in the α = 1 model.

We present our study of the spectral statistics for different values of α. The average
ratio of adjacent level spacings r defined in Eq. (1.12) was calculated, where the average
was taken over the full spectrum. For an ergodic system, this quantity is expected to flow
to the value rGOE ' 0.53 associated with a Wigner-Dyson statistics. While for α = 1
ergodicity has been already verified in various works [61, 62], we check this assumption
when α > 1 in Fig. 2.5 (a) , where we show the values of r for different α and system sizes.
We find a clear flow to rGOE for increasing system sizes. We can therefore argue that the
system has a spectral statistics compatible with ergodicity.

Finally, the scaling of the average difference of mn = 〈En| σ̂zi |En〉 between adjacent
eigenstates as a function of the system size L was calculated and is presented in Fig-
ure 2.5 (b). An exponential decay of this quantity is present for all the different radius of
constraints signaling an ergodic, ETH obeying behaviour in the thermodynamic limit for
all the models.
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Figure 2.2: Expectation value 〈Zi〉 in the eigenstates as the function of the corresponding
energy of the state for the different α models. Expectation values in special eigenstates are
labeled (see text).

2.4 Conclusions

Extensive full ED studies were performed in the generalized PXP model with different
radius of constraints. We characterized spectral and ETH properties of these models. Low-
entropy eigenstates that extend trough the spectrum were only found in the original(α = 1)
PXP model. Although the appearance of these special eigenstates in the α = 1 model,
more general estimators (i.e., average level spacing ratio scaling) suggest an ergodic, ETH
obeying behaviour of all the studied models. In the same manner our results suggest no
existence of integrable behaviour on these systems. The results presented in this section
provided the building blocks for the studies in the next two sections.
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Figure 2.3: Expectation value 〈XiXi+1〉 in the eigenstates as the function of the corre-
sponding energy of the state for the different α models. Expectation values in special
eigenstates are labeled.
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Chapter 3

Exact many-body scars and their
stability in constrained quantum
chains

3.1 Introduction

Quantum scars in the PXP model were originally used to explain the slow dynamics ob-
served by evolving a charge-density wave (CDW) initial state in the above-mentioned ex-
periment with Rydberg atoms: For a chain of length L, there are L + 1 scar eigenstates,
with a large overlap with the CDW, spread throughout the spectrum and (approximately)
equally spaced in energy. Crucially, numerical results reveal hybridization of these scars
with thermal eigenstates, implying that they are not stable in the thermodynamic limit [61].
Therefore the resulting dynamics from this initial state is expected to eventually thermal-
ize. However, two exact uniform matrix product eigenstates have been found for all (even)
system sizes [63]. This fact demonstrated the existence of ETH violating eigenstates that
survive in the infinite size limit, and motivated the study of their stability against pertur-
bation. In Ref. [64] the authors address this problem by using perturbation theory: From
the scaling of the averaged matrix elements, they find no qualitative difference between the
scars and thermal eigenstates, and thus deduce that the scars are not stable against per-
turbations. Nonetheless, they claim that thermalization is slow, because of parametrically
small matrix elements.

Here, we analyse a different quantity (the fidelity susceptibility), which is a renowned
probe of quantum chaos [65–67], and is not subject to the arbitrariness of the averaging
procedure. Part of our results contrast with Ref. [64], showing that the scars with zero
energy have a completely different behavior from thermal eigenstates and are anomalously
stable to first order in perturbation theory. These findings suggest that thermalization
of quantum scars is even slower than previously expected, having originated from effects
beyond the first perturbative order.

We remark that this anomalous stability is observed only for scars with zero energy,
so we cannot conjecture a similar mechanism for explaining the persistence of non-exact
scars at finite energy in the PXP model. In fact, although a construction based on a
“single mode approximation” suggests a possible connection between the band of L + 1
quantum scars at all energies and the matrix product state (MPS) quantum scars at zero
energy [63], these two sets of low-entropy eigenstates appear to have different origin. For
example, while the former are stabilized by a specific fine-tuned perturbation [68] and have
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logarithmic scaling of entanglement entropy with system size, the latter are destroyed by
the same perturbation and have finite entanglement entropy in the thermodynamic limit.

In order to frame our finding about scar stability in the broader picture of ETH vi-
olations in constrained quantum systems, we prove that a novel set of exact eigenstates
arising at zero energy (and at non-zero energy, when open boundary conditions are im-
posed) exists in generalized PXP models with α > 1. We do not find a band of eigenstates
equally spaced in energy like the one observed in the PXP model. These results suggest
that exact scars are a generic property of one-dimensional models constrained by Rydberg
blockade. We then extend our stability analysis to this second set of scars, and show how,
in analogy with the α = 1 case, they display anomalous stability.

The chapter is structured as follows. In Sec. 3.2, we introduce the PXP model and the
scar eigenstates, and we set the notation for the following sections. In Sec. 3.3 we introduce
the fidelity susceptibility and put forward a link between such observable and a recently
proposed spectral version of the adiabatic gauge potential [67,69]. In Sec. 3.4 we focus on
the models with radius of constraints α > 1: we describe the exact scars with E = 0 as
product states of “dimers” (Sec. 3.4.1), and the exact scars with E 6= 0 as matrix product
states (Sec. 3.4.2); finally, we show that the exact scars with E = 0 are anomalously stable
against perturbations (Sec. 3.4.4).

3.2 The model

The model considered is the PXP model, introduced in Section 1.3.1. We report here, for
convenience, the Hamiltonian in terms of the Pauli matrices Xi, Yi, Zi at site i and the
operators Pi = (1− Zi)/2, ni = (1 + Zi)/2. In the constrained space we define

H0 = X1P2 +
L−1∑
j=2

Pj−1XjPj+1 + PL−1XL (3.1)

for open boundary conditions and

H0 =
L∑
j=1

Pj−1XjPj+1 (3.2)

with the identification of the sites j ≡ j + L for periodic boundary conditions. We are
interested in the effects induced by a perturbation V that has the same symmetries of H0.
More concretely, the Hamiltonian is H = H0 + λV , where

V = X1P2Z3 +
L−2∑
j=2

Pj−1XjPj+1Zj+2 +
L−1∑
j=3

Zj−2Pj−1XjPj+1 + ZL−2PL−1XL (3.3)

for the case of open boundary conditions and

V =
L∑
j=1

(Pj−1XjPj+1Zj+2 + Zj−2Pj−1XjPj+1) (3.4)

for periodic boundary conditions.
Both H0 and V commute with the space reflection symmetry I and anticommute with

the particle-hole symmetry Cph =
∏
i σ

z
i . As a consequence, the spectrum is symmetric
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with respect to the eigenvalue E = 0 and the energy zero eigenspace has a dimension
growing exponentially with system size [70]. For more details about the peculiar properties
of the spectrum we refer to Appendix A.1.

Many-body scars

As stated above, many-body scars are states that do not satisfy ETH. It was shown in
Ref. [27] that the spectrum of the PXP model exhibits a band of equally-spaced many-
body scars. These scars were responsible for the observation of long-lived oscillation in
a Rydberg atom experiment [15]. Their exact form is not known analytically, and their
persistence in the thermodynamic limit is still an open question. However, as was shown
in Ref. [63], H0 has also some exact scars in the form of MPS eigenstates at finite energy
density. For open boundary conditions they are defined as

|Γi,j〉 =
∑
{σ}

vTi Aσ1σ2 . . . AσL−1σLvj |σ1σ2 . . . σL−1σL〉 (3.5)

with

A00 =

(
0 −1
1 0

)
, A01 =

(√
2 0

0 0

)
, A10 =

(
0 0

0 −
√

2

)
, (3.6)

i, j = 1, 2 and v1 = (1, 1)T , v2 = (1,−1)T . Γ12 has energy
√

2, Γ21 has energy−
√

2, whereas
Γ11 and Γ22 have energy 0. In the next sections, we will focus on scars with well-defined
inversion quantum number, so we define |ΓI〉 = (|Γ11〉 − |Γ22〉)/

√
2− 2 〈Γ11|Γ22〉.

For periodic boundary conditions, the two scarred eigenstates |Φ1〉 and |Φ2〉 are defined
as

|Φ1〉 =
∑
{σ}

Tr[Aσ1σ2 . . . AσL−1σL ] |σ1σ2 . . . σL−1σL〉 (3.7)

and |Φ2〉 = Tx |Φ1〉, where Tx is the translation operator. Both have energy 0. Their
properties under the symmetries are the following: I |Φi〉 = (−1)L/2 |Φi〉 and Cph |Φi〉 =
(−1)L/2 |Φi〉 for i = 1, 2. We will work with the linear combinations |ΦK=0,π〉 = (|Φ1〉 ±
|Φ2〉)/

√
2± 2 〈Φ1|Φ2〉. Even though these are not responsible for the persistent oscillations

observed in experiments, their putative stability in the thermodynamic limit outlines their
importance.

3.3 Perturbation theory and ETH

It is crucial to understand how to define stability for these kind of eigenstates. In general, we
will say that an eigenstate of H0 is stable if it can be deformed to an eigenstate of H0 +λV
with a local unitary transformation in the thermodynamic limit. Usually this criterion is
satisfied by ground states in gapped systems. Here we are interested in the scars |Γαβ〉 and
|Φi〉 which are in the middle of a dense spectrum, in the absence of a gap to protect them.
The local character of the transformation, if it exists, should guarantee that a stable scar
retains its character (no ETH and area law entanglement) in the thermodynamic limit.
For generic eigenstates, no stability is expected. This can be understood as a consequence
of the Eigenstate Thermalization Hypothesis: to first order in the perturbation strength
λ, the perturbed eigenstate can be written as

|n0〉+ λ |n1〉 = |n0〉+ λ
∑
m6=n

〈m0|V |n0〉
E0
n − E0

m

|m0〉 . (3.8)
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Figure 3.1: Absolute value of the ratio between the matrix element and the energy difference
between a target state and a state of the spectrum. The same data are represented in a
larger (first row) and in a smaller (second row) range of energy difference. The target states
are the scars eigenstates |Γ21〉 (a,d), |ΓI〉 (b,e) defined in Sec. 3.2 and a thermal eigenstate
|Γth〉 (c,f) taken as the third eigenstate after |Γ21〉 in order of increasing energy. The clear
peak observed when a thermal eigenstate |Γth〉 is considered is not present for the scars
eigenstates, pointing at a suppression of the matrix elements of the perturbation for the
latter states.

According to ETH, the off-diagonal matrix element 〈m0|V |n0〉 scales as exp(−S/2), where
S is the extensive thermodynamic entropy of the system. The energy denominator, on the
other hand, scales as exp(−S) for nearby eigenstates. This simple argument implies that
the first order correction diverges exponentially in the system size L.

Hence, a natural question to answer is whether the first order correction to the scars
behaves according to the scaling predicted by ETH or not. In Ref. [64], it was found that
the matrix elements 〈m0|V |Γ〉 averaged over a certain set of eigenstates {|m0〉} close in
energy to |Γ〉 do indeed scale as exp(−S/2), where |Γ〉 is one of the scars for the case of
open boundary conditions. This is however not sufficient to claim instability: the matrix
elements which are responsible for the divergence are the ones involving states that are
very close in energy. As can be seen in Fig. 3.1, the matrix elements weighted with the
inverse energy gaps behave very differently for the scars and for generic thermal states: the
vanishing denominator produces a peak in the case of a thermal state; the scars, despite
the vanishing energy gaps, do not exhibit this peak, signalling a suppression of matrix
elements for small gaps. Moreover, the averaging procedure of matrix elements introduces
some arbitrariness in this respect: the result depends on the choice of the set of eigenstates
that are included in the average.

We propose to diagnose the stability of scar eigenstates by studying the fidelity suscep-
tibility, defined as [71]

χF
[
|n0〉

]
= lim

λ→0

−2 ln | 〈n0|nλ〉 |
λ2

(3.9)

where |n0〉 is an eigenstate of H0 and |nλ〉 is the eigenstate of H0 + λV obtained from



CHAPTER 3. EXACT MANY-BODY SCARS AND THEIR STABILITY IN
CONSTRAINED QUANTUM CHAINS 21

10 15 20
L

102

104

106(a)
th

21
I

10 15 20
L

5

10

15

20

25(b)
I

20 25 30
L

102

104

106
(c)

th

K = 0

20 25 30
L

5

6

7

8

9(d)
K = 0

Figure 3.2: Scaling of the fidelity susceptibility with system size. The results shown refer
to the states (a) |Γth〉, |Γ21〉 and |ΓI〉 with open boundary conditions and to the states
(c) |Φth〉 and |ΦK=0〉 with periodic boundary conditions. As can be seen in the panels
with linear y-scale (b), (d), the scaling of the fidelity susceptibility of a zero energy scar
eigenstate is polynomial with the system size, in sharp contrast to what happens for thermal
eigenstates or scars at non-zero energy (a),(c). Solid lines are fits for the linear scalings
(the two different lines for ΦK=0 capture the even-odd effect), dashed lines are fits for
exponential scalings.

|n0〉 with a perturbative construction in λ. From the explicit construction of the state, one
finds1

χF
[
|n0〉

]
=
∑
m 6=n

∣∣∣∣〈m0|V |n0〉
E0
n − E0

m

∣∣∣∣2 . (3.10)

The fidelity susceptibility is a measure of the response of an eigenstate to perturbations:
when averaged over different eigenstates, for example, it has been very recently used as a
measure of quantum chaos [67, 69]. For gapped ground states of local Hamiltonians, it is
expected to scale as χF ∼ L with the system size L. On the other hand, as argued above,
ETH implies a scaling χF ∼ exp(L) for eigenstates at finite energy density.

Note that, due to the special properties of this perturbation, all the matrix elements
of V between zero energy states vanish (see Appendix A.1): as a consequence, the fidelity
susceptibility is well-defined even for states in the exponentially degenerate zero-energy
manifold and can be computed for all the scarred eigenstates.

We obtain that only a subset of the exact scars appear to be stable. Indeed the scaling of
the fidelity susceptibility for the scars |ΦK=0〉 (for the case of periodic boundary conditions)

1We use that |nλ〉 = (|n0〉+|n⊥〉)/‖|n0〉+|n⊥〉‖, with 〈n⊥|n0〉 = 0 to obtain 〈n0|nλ〉 = ‖|n0〉+|n⊥〉‖−1 =
(1 + 〈n⊥|n⊥〉)−1/2 = 1− 1

2
λ2 〈n1|n1〉+O(λ3).
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and |ΓI〉 (for the case of open boundary conditions) shown in Fig. 3.2 suggests a linear
dependence2 χF ∼ L, as evidenced by the solid lines. On the contrary, the scaling for |Γ21〉
and for the generic thermal eigenstates |Γth〉 and |Φth〉3 are compatible with an exponential
growth (dashed lines), as predicted by ETH. These results show that |ΦK=0〉 and |ΓI〉 are
perturbatively stable to an infinitesimal perturbation. We note that these differences are
not only qualitatively manifest (power versus exponential scaling), but also quantitatively
striking, so that the different scaling regimes can be diagnosed despite the fact that our
analysis is limited to modest system sizes up to L = 32 spins.

We now want to understand if they are also stable to a finite strength λ of the pertur-
bation. If these states were akin to gapped ground states, we would have expected stability
to hold in the thermodynamic limit for a finite λ as long as it is much smaller than the
gap. The absence of a gap makes the quest for an energy scale associated with scars much
less obvious.

To address this problem, we compute the states |Φλ
K=0〉 and |Γλi 〉 obtained by perturbing

the scars |ΦK=0〉 and |ΓI〉 in the following way

|Φλ
K=0〉 =

1

N λ
Φ

1

1 + λQH−1
0 QV

|ΦK=0〉 (3.11)

|ΓλI 〉 =
1

N λ
Γ

1

1 + λQH−1
0 QV

|ΓI〉 (3.12)

where Q projects on the subspace with E0 6= 0, and N λ
Φ , N λ

Γ are normalizing factors.
The states |Φλ

K=0〉 and |ΓλI 〉 are the perturbed eigenstates to infinite order in perturbation
theory. We numerically compute the von Neumann bipartite entanglement entropy S(λ)
of these states for different system sizes (Fig. 3.3). This quantity exhibits peaks that get
closer to λ = 0 as L increases, indicating a stronger and stronger hybridization with other
eigenstates in the spectrum. This fact strongly suggests that, despite the stability observed
to first order in perturbation theory, the scars are ultimately not stable for finite λ 6= 0 4.

3.4 Models with radius of constraint α > 1

Since the first studies on the PXP model, several other instances of quantum many-body
scars have been put forward [72–88]. While it is tempting to extend some of the findings
above to a general setting, we refrain from this for the very simple reason that PXP models
have a characteristic feature - a constrained Hilbert space that cannot be reduced in tensor
product form - that is not present in other instances of quantum scars. We pursue instead
an alternative route, based on investigating the stability of quantum scars in an enlarged
class of constrained models.

In concrete, we consider a generalization of the PXP model, where we extend the
constraint to the sites within an integer radius α, i.e. ninj = 0 whenever |i− j| ≤ α, with

2On top of the linear growth, the scaling for the scar |ΦK=0〉 is subject to an even-odd effect related to
the different parity under inversion symmetry of the state (I = (−1)L/2).

3The state |Γth〉 is chosen as the third eigenstate after |Γ21〉 in increasing order of energy. The state
|Φth〉 is the state with energy closest to −0.3.

4We note that performing a rigorous finite-size scaling analysis for the position of the first peak versus
system size is tricky for two reasons: (i) we can only consider a coarse grained set of values of λ, so that
we can only put an upper bound on the position of the peak, and (ii) the peaks may be due in principle to
different level crossing, making a finite-size extrapolation not fully reliable. Our conclusion is based on the
fact that we systematically observe the peak moving towards vanishing perturbations, with no exception,
very rapidly with system size.
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Figure 3.3: Bipartite entanglement entropy of the states (a) |Φλ
K=0〉 and (b) |ΓλI 〉 as a

function of λ. Peaks in this quantity signal hybridization of the perturbed state with
thermal eigenstates. By increasing the system size, we find peaks closer and closer to
λ = 0, suggesting that the scar eigenstates are not stable in the thermodynamic limit.

nj =
Zj+1

2 . The Hamiltonian has the form:

Hα
0 =

∑
i

Pi−α . . . Pi−1XiPi+1 . . . Pi+α, (3.13)

where Pj is the projector on the state |0〉. The Hamiltonian (3.13) coincides with the PXP
model for α = 1 and arises as an effective approximation of the long-range Hamiltonian
describing Rydberg atoms arrays when the (continuous) blockade radius is increased (by
e.g. tuning the distance between the atoms). Similarly to the PXP model, this Hamilto-
nian commutes with the reflection symmetry I and anticommutes with the particle-hole
symmetry Cph, and the spectrum has the same properties (see Appendix A.1).

3.4.1 Exact scars with E = 0

We now show that, although the models considered here satisfy the Wigner-Dyson spectral
statistics, some states in the spectrum have finite entanglement entropy in the thermody-
namic limit and hence violate the eigenstate thermalization hypothesis.

For a system with L = (α+ 2)n (with n integer), consider the following state

|φα〉 =

n−1⊗
i=0

[
(|01〉 − |10〉) |0 . . . 0︸ ︷︷ ︸

α

〉
]
bi

(3.14)

where the index bi labels blocks of α+ 2 sites. The state of the first two sites of a block is
an antisymmetric superposition (that we call a dimer) and hence is annihilated by the spin
flip. All the other sites of a block cannot be flipped: they are “frozen” by the previous or the
next dimer. Therefore, the state |φα〉 (and all the states obtained from it by translations)
is a scar with energy E = 0 for generic α > 1.

We can construct many exact scars with E = 0 by placing dimers (depicted in red in
Fig. 3.4) on the chain. Two dimers must be separated by a number ` of zeros in the range
α ≤ ` ≤ 2α− 2. We can also have longer-range dimers involving sites that are not nearest
neighbours. In this case, the number ` of zeros between two dimers of range r1 and r2 must
be in the interval α ≤ ` ≤ 2α− r1 − r2. This last condition implies that the ranges of two
consecutive dimers are bounded by r1 + r2 ≤ α.

This construction works also in the case of open boundary conditions, with the following
rules for the boundaries: if the first (last) dimer of the chain has range r, then the number
of zeros preceding (following) it must be ` ≤ α− r.
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Figure 3.4: Some eigenstates with E = 0. (a) The state |φα〉 is made of dimers (in red)
separated by sequences of 0s of length α. (b) Dimers can have range r > 1. (c) Dimers
can be separated by any distance `, such that α ≤ ` ≤ 2α− r1 − r2.

We note that the structure of these states, that we write as product states of dimers,
is reminiscent of the construction of scar eigenstates found in other constrained models
[84,89].

3.4.2 Exact scars with E 6= 0

In the following, we will show that the models of Eq. (3.13) have scars also at E 6= 0 when
open boundary conditions are imposed. While, as we have shown in Sec. 3.4.1, it is possible
to write many exact E = 0 eigenstates as product states of dimers, for these scars we need
to resort to a more involved construction: we write them as matrix product states with
finite bond dimension, independent of the system size.

Exact scars with E = ±
√

3

For system sizes L = (α+2)n+3, with n integer, we are able to write two exact scars with
energy E = ±

√
3 as matrix product states. To define these states, we divide the chain in

blocks labelled from 1 to 2n+ 1: the blocks labelled by odd numbers contain 3 sites, while
the blocks labelled by even number contain α− 1 sites. As we prove in Appendix A.4, the
following state is an exact eigenstate with energy E =

√
3:

|ψ(3)
α 〉 =

∑
~s

[
(1, 0)T ·N s1M s2 . . .M s2nN s2n+1 · (0, 1)

]
|~s〉 (3.15)

where s1, s2, . . . , s2n+1 label the states of the blocks and

M s =

{
1 if s = 00 . . . 00

0 otherwise,
(3.16)

N000 =

(
0
√

3
0 0

)
, N100 =

(
0 1
0 1

)
, (3.17)

N010 =

(
1 1
0 −1

)
, N001 =

(
−1 1
0 0

)
. (3.18)
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From the relation CphH
α
0 = −Hα

0 Cph we immediately find that the state |ψ(−3)
α 〉 =

Cph |ψ
(3)
α 〉 is another eigenstate of Hα

0 with eigenvalue E = −
√

3.
We also note that the state obtained by taking the trace in Eq. (3.15) is a zero energy
eigenstate for L = (α + 2)n + 3 when open boundary conditions are imposed. Moreover,
removing the matrix N at one of the two boundaries we can construct an MPS that is
invariant under translations of α+ 2 sites

|ϕα〉 =
∑
~s

Tr(Bs1Bs2 . . . Bsn) |~s〉 , (3.19)

where B = MN and si runs through the 3 allowed states of the i-th block, made of
α + 2 sites. This state is a zero energy eigenstate for periodic boundary conditions and
system sizes L = (α+ 2)n, and it has non-vanishing overlap with the dimer eigenstates of
Sec. 3.4.1; however, for generic α it has a component that is independent of those states.
The matrix B yields a non-injective MPS, whose parent Hamiltonian has a degenerate
groundspace [90]. In fact, the state in Eq. (3.19) can be written as a cat state

|ϕα〉 =

(|L〉+
1

2
|R〉 − 3

2
|C〉
)
|0 . . . 0︸ ︷︷ ︸
α−1

〉

⊗n

+

(1

2
|L〉+ |R〉 − 3

2
|C〉
)
|0 . . . 0︸ ︷︷ ︸
α−1

〉

⊗n

= |ϕ1
α〉+ |ϕ2

α〉 , (3.20)

where |L〉 = |100〉, |C〉 = |010〉 and |R〉 = |001〉. The parent Hamiltonian of this state have
|ϕ1
α〉 ± |ϕ2

α〉 as the two degenerate ground states. This is in contrast with the eigenstates
of Ref. [63] (|Φ1〉 and |Φ2〉 in Sec. 3.2) which are injective MPSs, and thus unique ground
states of their parent Hamiltonian.

Exact scars with E = ±√q

We find that other (possibly degenerate) MPS scars appear at energies E = ±√q with q
integer. This property is a consequence of the structure of these matrix product states. Sim-
ilarly to the case of periodic boundary conditions, the action of the Hamiltonian on these
states is such that the complicated interaction is decoupled into smaller non-interacting
blocks. Their energies are therefore determined by the energy of a single block: in the
cases we consider, the energy of a block can be 0 or ±√q where q ≤ α + 1 is the size of
the block. In Appendix A.5 we write down explicitly some exact eigenstates of Hα

0 with
energy E = ±

√
2 for α = 3.

3.4.3 Relation with exact scars for α = 1

The exact scars described here are reminiscent of the ones found in Ref. [63]: there, it was
shown that the PXP model (α = 1) has exact MPS scars at E = 0 for periodic boundary
conditions, and both at E = 0 and E = ±

√
2 when open boundary conditions are imposed.

The states we study for α ≥ 2, however, show a qualitative difference with respect to them:
in the case of open boundary conditions, the energy density profile does not have peaks
at the edges, but has a pattern that is uniformly repeated in the full system. This can
be understood from the MPS structure of these states. The scars in Eq. (3.5) have the
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form of AKLT states in which two-site blocks play the role of S = 1 spin variables. As
we show in Appendix A.3, the energy density of the PXP model corresponds to the local
magnetization of the AKLT state in the z direction. The boundary properties of the scars
can be interpreted using the “dilute antiferromagnet” representation of the AKLT state: in
the Sz basis, the state is a superposition of configurations with alternating + and −, and
with an arbitrary number of 0 placed in between. The different boundary vectors α, β of
|Γαβ〉 fix the sign of the first and last non-zero spins of the configurations. Therefore, the
local magnetization is non-zero close to the boundaries but goes to 0 far from them. The
state in Eq. (3.15), on the other hand, has a very different structure: if we use, once again,
a basis in which the local energy corresponds to a local magnetization, we can write |ψ(3)

α 〉
as a superposition of configurations with a single + (on one of the 3-site blocks), and 0
magnetization everywhere else. Therefore, in contrast with the dilute antiferromagnet of
the scars |Γαβ〉, this state is reminiscent of a spin wave, with a single magnetic excitation
uniformly spread in the chain.

3.4.4 Stability

We now analyse the response of the exact scars described above to a perturbation. The
perturbation we apply is

V α =
∑
i

Zi−α−1Pi−α . . . Pi−1XiPi+1 . . . Pi+α + Pi−α . . . Pi−1XiPi+1 . . . Pi+αZi+α+1.

(3.21)

This term has the same symmetries of Hα
0 , namely it commutes with I and anticommutes

with Cph. Similarly to the PXP case, we use the fidelity susceptibility to check whether
these states are stable to first order in perturbation theory.

In Fig. 3.5, we present the results of the stability analysis. In the upper left panel,
we plot the fidelity susceptibility of a generic (thermal) eigenstate of the spectrum |φth〉
(chosen as the eigenstate with energy closest to 1.9, 1.7, 1.35 for α = 2, 3, 4 respectively): for
every α, the scaling with system size is exponential, as expected from ETH (dashed lines).
In the other panels, we plot instead the fidelity susceptibility of the scars |φα〉 defined in
Eq. (3.14): the scaling here is linear5 (solid lines) for every α, signalling a clear violation
of ETH. These results suggest that the anomalous stability of the scars with E = 0 is a
generic feature of this class of one-dimensional models constrained by Rydberg blockade.

3.5 Conclusions

In this section, we investigated the stability against perturbations of exact quantum scars
arising in spin chains constrained by Rydberg blockade. We first analysed the PXP model
and found that some of the MPS scars found in Ref. [63] exhibit a power law scaling of
the fidelity susceptibility with system size. This result is a signature of their stability, a
remarkable feature for eigenstates in the middle of a dense many-body spectrum. This
fact is however limited to first order in perturbation theory, as a numerical analysis of
the higher-order perturbative corrections reveals hybridization of exact scars eigenstates
with thermal eigenstates. This behavior is reminiscent of the many-body “dark states”
observed in Ref. [91, 92]. We find the anomalous scaling of the fidelity susceptibility only

5Similarly to the state |ΦK=0〉 in Fig.3.2-(d), the scaling for |φα〉 is subject to an even-odd effect related
to the different parity under inversion symmetry (I = (−1)L/(α+2)).
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Figure 3.5: Scaling of the fidelity susceptibility with system size. The results shown refer
to the generic states φth (upper left panel) and the scarred eigenstates φα (upper right
panel and lower panels). Dashed lines are obtained from fits with an exponential scaling,
solid lines with linear scaling. The result points at the same behavior occuring in the PXP
model.

for scars with zero energy, suggesting that the properties of the E = 0 subspace, such as
the exponential degeneracy enforced by the invariance of this subspace under particle-hole
and inversion symmetries, may be a key factor in stabilizing these states. Although not
shown here, if we perturb with a term that breaks these properties, we find no signatures
of stability for any of these low-entropy eigenstates.

To validate these conclusions, we extended our discussion to models with larger blockade
radius α. First, we constructed novel classes of states that are exact scars eigenstates for
any α and have energy eigenvalues E = 0 and E = ±√q (with q integer). The construction
is based on an effective decoupling of the sites of the chain into “non-interacting blocks”,
and allows us to write these states into simple matrix product form. We then studied their
fidelity susceptibility under perturbations that do not spoil the exponential degeneracy of
the zero-energy eigenspace, a common property of the family of constrained models we
analysed. Also in this case, we found these eigenstates to be stable at first perturbative
order when they belong to the E = 0 subspace.

Our results suggest that an increasing number of exact MPS scars appear in the spec-
trum for larger values of α, and their complete classification is beyond the scope of this
work. It is also worth noticing that, contrarily to the α = 1 case (PXP model), no “ap-
proximate scars” eigenstates – akin to the ones found in Ref. [27] – appear for α > 1, as
can be seen from an inspection of the bipartite entanglement entropy of each eigenstate as
a function of the energy. This fact provides strong indications that there is, in general, no
relationship between the appearance of eigenstates with low entanglement entropy, equally
spread uniformly in the energy spectrum, and the existence of exact MPS eigenstates in
spin models constrained by Rydberg blockade. It stands as an open question whether these
new exact MPS states can lead to clear experimental signatures, since, having no recur-
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rent spectral structure, they are not expected to play any role in anomalous oscillations
observed in experiments (that, indeed, were not reported for larger constraint radii).

From a methodological standpoint, our results suggest that generalizations of the fi-
delity susceptibility to spectral properties can provide useful quantitative insights on the
stability of ETH, in agreement to recent applications to quantum chaos diagnostics pro-
posed in Ref. [67,69].
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Chapter 4

Constraint-induced delocalization

Locating and characterizing the MBL transition is notoriously difficult. For the most stud-
ied system which shows MBL, the disordered XXZ spin chain, the maximal system size
accessible to present day supercomputers for an exact treatment is L = 24 [93–96]. On top
of that, the observed finite-size scaling is slow. The ensuing difficulties in extrapolating
results to the thermodynamic limit sparkled a recent debate about the existence of the
MBL phase [97–100] and its dynamical properties [101–103]. In parallel to these theoret-
ical efforts, experiments in the synthetic quantum matter have already probed regimes of
strong interactions and strong disorder necessary for MBL in both Ising- and Hubbard-type
models [4, 104]. Very recently, a new generation of platforms based on Rydberg atoms in
optical lattices and tweezers [12, 15, 58, 59, 105] has demonstrated an impressive capability
to perform coherent dynamics up to considerably long timescales, allowing, for instance, for
the realization of mesoscopic-sized ordered states [106,107]. Strong nearest-neighbor inter-
actions that characterize these systems naturally lead to effective constrained dynamics in
both Ising- and XY-type regimes. A natural question to ask is thus, whether the interplay
between constraints, interactions and disorder can lead to a scenario that is qualitatively
different from the unconstrained models, and whether such a scenario can be characterized
by common, generic features.

In this chapter, we show that 1D spin chains with local constraints can remain ergodic
even in the presence of a strong disorder. Such models are experimentally realized in
arrays of ultracold Rydberg atoms [12, 15, 58, 59, 105]. The local constraints arise in the
Rydberg blockade regime and alleviate the exponential growth of Hilbert space with the
system size L. This feature allows us to overcome the limitation of small system sizes that
impede studies of the MBL transition in the conventional, unconstrained spin chains and
to consider constrained models of sizes exceeding L = 100 sites for the largest constraint
radius considered.

Investigating the crossover between ergodic and MBL regimes, we see no signs of local-
ization in the thermodynamic limit. We identify the reason for this behavior in a non-trivial
action of a “quenched disorder” term in a constrained model. Such a term does not simply
act as an on-site disorder on the basic excitations of the clean system, but between them:
in a representation in which the basic degrees of freedom of the system are unconstrained,
the quenched disorder term is written as both a random on-site energy term and a random
density-density interaction. Both terms are of the same order and their interplay does not
allow the system to be in a strong disorder, weak interaction regime in which MBL can
be established in a controlled manner [41]. Focusing on models that are motivated by the
aforementioned experiments, we believe that this observation extends to a broad class of
constrained models.
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Figure 4.1: The ergodic-MBL crossover in disordered PXP (4.1) models. Panels a)-c):
disorder strengths WT and W ∗ as function of system size L. Solid lines denote fits of the
form W (L) = aL+ b+ c/L+ d/L2 (both for WT (L) and W ∗(L)), dashed lines correspond
to W ∗(L) = aL+ b. The insets show derivatives of data with respect to L. Panel d) shows
W ∗(L) rescaled by a factor f , obtained by minimizing the distance between the W ∗(L)/f
curves for varying radius of constraint α.

4.1 Disordered PXP models

We consider a 1D chain of Rydberg atoms in the frozen regime and assume that strong
interactions allow the excitation to Rydberg state only for pairs of atoms separated by at
least α sites [12, 15,57–59]. This leads to the Hamiltonian

Ĥ =
L∑
i=1

Pαi S
x
i P

α
i+1+α +

L∑
i=1

hiS
z
i (4.1)

expressed in terms of the spin operators S, where the projectors Pαi =
∏i−1
j=i−α(1/2− Szj )

assure that the dynamics is confined to a constrained Hilbert space, hi are independent,
uniformly distributed random variables in the interval [−W/2,W/2] with W being the
disorder strength and with periodic boundary conditions (PBC) SL+i ≡ Si assumed.

The clean (hi = 0) PXP models are known to host many-body scar states for a con-
straint radius α = 1 [108–116] as well as for α ≥ 1 as discussed in the previous chapter and
even in presence of disorder [117]. The scar states are, however, not statistically important
for the properties of generic eigenstates that are of direct interest here. On the other hand,
for a PXP model with disorder on both the Sx and Sz terms, both an ergodic and an
MBL regimes were claimed to exist [118]. That was interpreted in favour of a stable MBL
phase at large disorder strengths. For the blockade radius α, the Hilbert space dimension
is Hαd (L) = (dα)L where dα ≈ 1.6180, 1.4656, 1.2852 respectively for α = 1, 2, 5 . This
allows us to access progressively larger system sizes with increasing α while studying the
crossover between ergodic and MBL regimes. Similar ideas, employing local constraints to
access larger volumes, were used to demonstrate a presence of MBL regime in 2D dimer
systems [119,120] and to study MBL in Krylov spaces of a pair-hopping model [121].

4.2 Ergodic-MBL crossover in PXP models

We calculate eigenvalues Ei and eigenstates of disordered PXP models (4.1) for α = 1, 2, 5
using full exact diagonalization for system sizes L for which the Hilbert space dimension
Hd ≤ 104 and POLFED algorithm [95] for larger L. We compute ri = min{gi, gi+1}/max{gi, gi+1}
(where gi = Ei+1−Ei), average it over min{Hd/20, 1000} of the eigenvalues from the mid-
dle of the spectrum and subsequently average the results over disorder realizations to obtain
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the average gap ratio r. The number of disorder realizations varies between a few millions
for the smallest L down to no less than 2000 (5000) for the largest (second largest) system
size L considered for a given model. The average gap ratio r reflects properties of level
statistics changing between rGOE ≈ 0.53 for an ergodic system and rPS ≈ 0.386 for a
localized system [122]. Indeed, for small disorder strengths W the average gap ratio in the
considered models is r = rGOE , and it decreases to r ≈ rPS for large W , see Appendix B.

To investigate the crossover between the ergodic and MBL regimes we introduce two
system-size dependent disorder strengths: i) WT (L) – the disorder strength for which, at
a given system size L, the average gap ratio starts to deviate from the ergodic value and
is equal to rGOE − p (we choose p = 0.01 but other choices of 0.005 < p < 0.02 lead to
quantitatively similar results); ii) W ∗(L) – the disorder strength for which curves r(W )
cross for system sizes L1 and L2 such that L = (L1 + L2)/2, we use 2 ≤ |L1 − L2| ≤ 4 for
α = 1, 2 and 4 ≤ |L1 − L2| for α ≥ 5 (see Appendix B).

The resulting WT (L) and W ∗(L) curves divide the phase diagram into three regimes:
ergodic for W < WT (L) with r(W ) = rGOE ; “critical” for WT (L) < W < W ∗(L) in which
the value of r(W ) increases with system size L towards rGOE ; MBL for W > W ∗(L) in
which, for system sizes smaller than L, the average gap ratio r(W ) decreases down to rPS
with increase of system size.

For the widely studied disordered XXZ model [42, 123–133], one observes the scalings
WT (L) ∼ L and W ∗(L) ∼ WC + c/L [95]. Extrapolating the scaling W ∗(L) ∼ WC + c/L
to L→∞, one gets a critical disorder strength WC ≈ 5.4, slightly larger than the usually
cited valueWC ≈ 3.7 [125] but consistent with various lower bounds [134–136]. At the same
time, the two scalingsWT (L) ∼ L andW ∗(L) ∼WC+c/L become incompatible for system
sizes larger than L0 ≈ 50 (a length scale which appeared before, for this model [100]). The
asymptotic regime L > L0 is well beyond reach of present day supercomputers for XXZ
model, hence evidence for either of the scalings to prevail in the thermodynamic limit
is lacking. We show below that the situation is much clearer for disordered constrained
models.

For disordered PXP models we observe a linear dependence WT (L) ∼ L as shown in
Fig. 4.1 (a-c). The disorder strength W ∗(L), describing the drift of the crossing point with
system size, shows a clear curvature at small L suggesting the W ∗(L) ∼WC + c/L scaling.
However, for L ' 20 for α = 1 (L ' 22 for α = 2) this curvature vanishes and W ∗(L)
starts to grow linearly with the system size L. see Fig. 4.1(a-b). Importantly, for α = 2 the
interval of system sizes for which the linear drift W ∗(L) ∼ L is observed is wider than for
α = 1. Increasing the radius of the blockade further, to α = 5, we still see – Fig. 4.1 c) –
a linear dependence WT (L) ∼ L. The curvature of the W ∗(L) curve, observed for smaller
system sizes disappears for α = 5. Instead, we observe a linear drift W ∗(L) with a small
oscillation on top of it for all available system sizes.

These conclusions are further supported by the derivatives ∂WT /∂L, ∂W ∗/∂L shown
in the insets of Fig. 4.1. The derivative ∂WT /∂L clearly approaches a constant wT with the
increasing system size. The derivative ∂W ∗/∂L decreases with L for α = 1, 2, oscillates
around a constant for α = 5 and is bound from below by ∂WT /∂L. This is consistent
with a linear drift of the both disorder strengths WT (L) ∼ wTL and W ∗(L) ∼ w∗L with
wT ≤ w∗ at sufficiently large L (see also [137]). A similar analysis can be performed for
entanglement entropy with the same conclusions.

Superimposing results for various constraint radius α as shown in Fig. 4.1 d), we observe
that they fall on top of a universal curve if the crossing points W ∗(L) are rescaled by
factor f that increases approximately logarithmically with α. This is surprising: one could
expect that the larger α implies smaller number of spin flips for a given spin configuration
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Figure 4.2: The ergodic-MBL crossover in disordered constrained models with U(1) sym-
metry (4.2). Panels a)-c): disorder strengths WT and W ∗ as function of system size L.
Panel d) (top): the mapping between constrained and unconstrained models: α unoccupied
sites added after the right end of the chain are denoted in gray, the underlined sites are
joined to the neighboring particles to form the particles of the unconstrained model. Panel
d) (bottom) the potential felt by the particles before and after the mapping.

enhancing localization in the system. In fact, exactly the opposite is true. To see that,
consider a spin configuration with maximal number of spins up for given α which is roughly
equal to L/(1 + α). To perform a transition to a spin configuration with all spins up
shifted by one lattice site, it suffices to act 2L/(1 + α) times with the kinetic term of the
Hamiltonian (4.1). Hence, the kinetic term becomes more effective with increasing radius
of constraint favoring delocalization at larger α (see also Appendix B). However, this is
not the ultimate reason of why we observe delocalization in the constrained models as we
show below.

A constrained model with U(1) symmetry. Consider a system of spinless fermions with
Hamiltonian

H =

L∑
i=1

Pi

(
c†ici+1 + c†i+1ci

)
Pi+2+α +

L∑
i=1

hini (4.2)

where c†i (ci) are fermionic creation (annihilation) operators, the particle number operator
is ni = c†ici, the projectors Pαi =

∏i−1
j=i−α(1 − nj) assure that the particles are separated

by at least α sites, hi are independent, uniformly distributed random variables in the
interval [−W/2,W/2] and PBC are imposed. The model (4.2) maps, via the Jordan-Wigner
transformation, to model analogous to disordered PXP model (4.1) with Sxi replaced by a
spin-flip term Sxi S

x
i+1+Syi S

y
i+1 in the kinetic term. Hence, (4.2) is a natural extension of the

constrained model (4.1) that has the U(1) symmetry and preserves the total magnetization
Sz =

∑L
i=1 S

z
i (or equivalently, the total number of particles N =

∑L
i=1 ni). We consider

a filling N/L = 1/(α + 2). The model (4.2) (for α = 1) can be viewed as a strong
interaction limit of XXZ spin chain [138] (We note that, differently from Ref. [138], we are
interested solely in the regime with the constrains exactly satisfied) and may be realized
experimentally by Rydberg dressing technique [105,139–142].

In contrast to the PXP models, the kinetic term of the constrained model (4.2) does
not become more effective when the constraint radius α is increased. Indeed, due to the
particle number conservation, roughly L/2 actions of the kinetic term are needed to reach
an arbitrary Fock state from a given starting Fock state (see also Appendix B). Based on the
argument above, one could then expect that the constrained models with U(1) symmetry
are much more prone to localization. This, however, turns out not to be the case, as
revealed by an analysis of the crossover in the average gap ratio r between the ergodic
and MBL regimes. The disorder strengths WT (L) and W ∗(L), shown in Fig. 4.2 a)-c) are
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similar to the results for the disordered PXP models. The boundary of the ergodic regime
WT (L), behaves linearly in L, WT (L) ∼ wTL. The boundary of the MBL regime, W ∗(L),
shows some curvature at smaller L but then approaches a linear behavior W ∗(L) ∼ w∗L,
with slope w∗ ≥ wT . Hence, the whole crossover between ergodic and MBL regimes drifts
linearly with L towards increasing disorder strengths and the systems delocalize in the
thermodynamic limit.

4.3 On-site disorder in presence of constraints

To understand the delocalization of the constrained models, let us reconsider the Hamil-
tonian (4.2), and assume open boundary conditions (OBC) for simplicity. The presence
of constraints prevents the particles from approaching each other at a distance smaller
than α. Hence, it is possible to associate an excluded volume of α sites with each of the
particles (for instance to the right of the particle). Then, by adding α unoccupied sites
at the right end of the chain, one can replace each particle and α sites to its right, by an
occupied site of a new, smaller chain. This shrinking procedure, illustrated in Fig. 4.2 d),
defines a one-to-one mapping between Fock states of system of L sites with constraint
of radius α and between Fock states of an unconstrained system of spinless fermions on
L− α(N − 1) sites. Moreover, the particles can hop in the same manner before and after
the mapping (if a given particle cannot hop, say, to the right in the constrained model
due to a presence of another particle α sites to its right, it also cannot hop to the right
in the unconstrained model since the neighboring site is occupied). This means that in
the absence of disorder (hi = 0), the Hamiltonian of the model (4.2) for N particles on L
sites with constraint radius α and OBC exactly coincides with a Hamiltonian of N spinless
fermions on L − α(N − 1) sites. Thus, for hi = 0 the constrained model (4.2), which is a
non-Gaussian fermionic model can be mapped to a non-interacting system.

What happens when disorder is introduced to the system? The model (4.2) becomes
interacting due to the presence of on-site disorder term

∑
i hini. To see this, consider again

the mapping between constrained and unconstrained model, as shown in the bottom panel
of Fig. 4.2 d). For the constrained model, a particle at site i experiences the potential hi.
After the mapping, the particle at site i of the unconstrained model feels the potential
hi+αNi (where Ni ≡

∑i−1
j=1 ni). The disorder becomes a source of interactions in the

constrained model (4.2) since the potential felt by a particle on site i depends on the total
number of particles to its right. Rewriting

∑L
i=1 hi+αNini =

∑
i hiniD

0
i +
∑

i hi+αniD
1
i +. . .,

where D0
i =

∏
j<i(1 − nj) [D1

i =
∑

k nk
∏
j<i,j 6=k(1 − nj)] is non-zero if there is exactly 0

[1] particles on sites 1 ≤ j < i and further terms contain analogous terms that are non-zero
if there are 1 < n < N particles on sites 1 ≤ j < i. Hence, the on-site disorder term
introduces random interactions of infinite range to the model the constrained model is
mapped to. Moreover, the strength of interactions is increasing with disorder strength W .
Those two factors are at the root of the numerically observed delocalization of constrained
models. Importantly, while our mapping between constrained and unconstrained models
does not directly apply to disordered PXP models (since the varying number of spins up
translates into varying length of the unconstrained chain), the mechanism in which disorder
in presence of constraints provides interactions in the system is at play also in those models.

Our argument works also in the context of gauge theories as long as there is no direct
Coulomb force. Hence, models such as 1D U(1) quantum links are captured by our reason-
ing (equivalent, for some parameter regimes, to the PXP model [116]), while models such
as U(1) Wilson theories [143,144] and 2D quantum link models [119,120] are not.
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4.4 Conclusions

Studying the crossover between ergodic and MBL regimes in locally constrained quantum
spin chains, we observe that the whole crossover shifts linearly to larger disorder strength
W with increasing system size. This trend, thanks to the availability of larger system
sizes in the constrained Hilbert space geometry, is well documented and occurs both in the
disordered PXP models as well as in models with U(1) symmetry.

We argue that the observed delocalization can be traced back to fundamentally different
roles played by the on-site disorder in conventional and constrained models. A sufficiently
strong disorder leads to MBL in the former models as was exemplified for the disordered
transverse field Ising model [145,146]. In contrast, for the constrained models studied here,
the disorder can be seen as giving rise not only to one-body terms that tend to localize
the fundamental excitations of the clean system but necessarily also to interactions that
become stronger when disorder strength is increased. Depending on the details of the
model, these interactions can be sufficiently strong to ultimately lead to delocalization.
The family of disordered, constrained quantum spin chains considered in this work can be
investigated experimentally in Rydberg atom setups. From the theoretical perspective, it
emphasizes the richness and potential generality of dynamics arising out of the competition
between interactions, disorder, and constraints.



35

Part II

Strongly Correlated Systems a Path
Integral Monte Carlo study
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Chapter 5

Finite-temperature critical behavior
of long-range quantum Ising models

5.1 Introduction

Systems featuring long-range interactions are central in condensed matter and statistical
physics, due to both their widespread presence in nature and the wide range of characteristic
physical phenomena they display. However, their statistical and dynamical properties
are much less understood than those of short-range systems [147, 148]. Classical long-
range interacting systems are present in many fields of physics, ranging from, e.g., the
dynamics of galaxies [149], plasma [150] to ionic crystals [151]. A statistical mechanics
approach highlights distinguished properties in these systems, such as nonadditivity of
energy, inequivalence of statistical ensembles, slow relaxation, and ergodicity breaking (for
a review see, e.g., [152]).

Within the last decade, interest in quantum long-range interacting models has further
surged due to the progress in manipulating and controlling these systems at an unprece-
dented level in cold atoms platforms [11–14,153].

These experimental platforms naturally realize quantum Ising or Heisenberg models,
with the possibility to engineer many-body interaction potentials decaying proportionally
to r−α as a function of distance r, ranging from van-der-Waals-like (α = 6) and dipolar
interactions (α = 3) in the context of Rydberg atoms [11, 12], to Coulomb (α = 1) and
infinite-range (α = 0) potentials for trapped ions [13,14].

In particular the latter platform is of remarkable interest for the study of extremely long-
range interactions, due to the small values of α that can be achievable. The spin system is
modeled by a crystal of electromagnetically trapped atomic ions, with two electronic energy
levels within each ion behaving as an effective spin-1/2 particle. These system achieve a
great number of interacting spins and high fidelity of quantum state initialization and
measurement. The ultracold ions arrange themselves in an equilibrium configuration from
the balance between the attraction towards the trap centers and the inter-ion Coulomb
repulsion resulting in a crystal structure along the weak confinement axes. The latter can
be highly tuned and allows to study interacting spin systems in one dimension. Effective
magnetic fields and spin-spin interactions can be realized by applying external microwave
or optical fields to the ions. Pair interactions between the spins of the form Jijσ

z
i σ

z
j can

be obtained, here, the experimental Ising couplings Jij describe a correlated hyperfine
transition of the i-th and the j-th ion mediated by the exchange of a virtual phonon. The
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form of the coupling is well approximated by a typical long-range coupling:

Jij =
J0

|i− j|α
. (5.1)

The exponent α can be set in the range 0 < α < 3 by adjusting the lasers frequencies. Note
that energy scales are α-dependent, so, depending on experimental details, some regimes
could be more accessible than others.

Recent experiments in such long-range interacting models have mostly centered on the
investigation of inherent dynamical phenomena, such as Kibble-Zurek mechanism [106,
154], or dynamical quantum phase transitions [155, 156], discrete time crystals [157, 158],
prethermalization [159] and many-body localization [5]. Despite of recent progress [160,161]
in the understanding of thermalization in these long-range systems one key question has,
however, remained open: especially in the limit of small interaction exponents, it is not
known whether these long-range systems follow the fundamental principle of thermalization
as expected for generic short-range models. In the first place, this obviously requires
a thorough understanding of the thermal properties of the system of interest, which have
only been partially explored even in paradigmatic Hamiltonians such as the one-dimensional
long-range quantum Ising model.

One-dimensional long-range quantum Ising model. A quantum long-range model
that can be directly realized in cold atoms experiments, is the long-range quantum Ising
model with algebraically decaying interactions,

H = −
N∑
i 6=j

V

|i− j|α
σ̂i
zσ̂zj − h

N∑
i

σ̂xi , (5.2)

where σ̂zi (σ̂xi ) is the z (x) Pauli matrix and N is the number of sites.
The critical behaviour of this model has been object of intense theoretical study in the

classical (h → 0) limit. It was proven by Dyson [162] the existence of a phase transition
for 1 < α < 2 between an ordered phase (ferromagnetic) and a disordered phase (param-
agnetic). Renormalization Group (RG) studies [163,164] predict that in any dimension d,
two values of α = α±(d) exist such that for α < α−(d) the critical behaviour of the model
is described by the mean-field theory, while for α > α+ the system recovers the short-range
counterpart model behaviour.

In particular, for d = 1, RG methods point to the existence of three different regimes
as a function of the parameter α: (i) for 1 < α ≤ 3/2 the mean field approximation is
valid even at the critical point, (ii) for α greater than some α∗ the model has the same
critical exponents of the short-range model (α → ∞), and (iii) for 3/2 < α ≤ α∗ the
critical exponents depend in a non trivial manner on the parameter α. The value α∗ = 2
was found in References1 [162,166,167] and for α = 2 a phase transition of the Berezinskii-
Kosterlitz-Thouless universality class occurs [168–170].

In the α ≤ 1 regime the energy density of the model diverges; this effect can be avoided
allowing to properly define the thermodynamic limit, by rescaling the interaction strength
according to a procedure known as Kac’s prescription.

Zero and finite temperature critical properties of the quantum model in Eq. 5.2 were
studied in [171]. Using RG methods, Dutta and Bhattacharjee characterized the critical
behaviour in the regime α > d. In the case of the quantum phase transition it was found

1this boundary is still at the center of intense investigations, see e.g. [165] and references therein.
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that the lower critical dimension for a fixed α follows the form dl = (α − 1)/2 and the
upper critical dimension depends also on α like du = 3(α−1)/2. The one dimensional case
was studied in detail. Importantly, due to the dependence of dl with α, a zero temperature
transition for all values of α is present. Here, was found three different regimes that
characterize the critical behaviour as a function of α: (i) for 1 < α ≤ 5/3 criticality is
described by mean field theory, (ii) for α ≥ 3 the model has the same critical exponents of
the well known short-range limit , and (iii) for 5/3 < α < 3 the critical exponents depend
in a non trivial manner on the parameter α.

Oppositely with respect to the zero-temperature case, the finite-temperature critical
behaviour of the one dimensional LR quantum Ising model is still poorly understood.
Indeed, the latter has been predicted by general theoretical arguments [172] to belong to
the universality class of the corresponding classical long-range Ising model, with quantum
effects not changing this description at the qualitative level. While this picture has been
essentially confirmed for the case α = 2 by SSE studies [173], the latter demonstrated,
in the proximity of the ground-state critical point, the presence of considerable finite-size
effects induced by strong quantum fluctuations, which all but prevent observation of the
expected classical regime even at very large system sizes.

In light of the experimental realizations of these models discussed above, investigating
the thermal critical behavior of these Hamiltonians remains therefore of great importance,
in order to determine the role and strength of the quantum effects in perturbing the pre-
dicted classical picture. Furthermore, (numerically) exact analysis of the finite-temperature
regime is essential to determine non-universal details such as, e.g., the position of thermal
critical points, which are influenced in a key way by quantum effects, and whose knowledge
is crucial for laboratory realizations. Such a study is of especially great interest in the ex-
tremely long-ranged regime 0 < α < 1, which, to our knowledge, has not been the object
of this kind of investigation, and (as mentioned above) is directly realizable in trapped-ions
setups.
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5.2 Methods

In this section, we describe the path integral mapping procedure, specifically for the quan-
tum Ising chain in a transverse field case. Our goal is to formulate the problem in such a
way that it becomes amenable to quantum Monte Carlo simulations. The latter method
together with its particularities for the study of long-range interacting systems is also
explained.

5.2.1 Path integral mapping

In the case of a system in thermal equilibrium described by a quantum Hamiltonian Ĥ, the
thermal expectation value of an observable Â at inverse temperature β = 1/T is defined
as

〈A〉 =
1

Z
Tr
{
Âe−βĤ

}
, (5.3)

where Z = Tr{e−βĤ} is the partition function.
Since in general the eigenvalues and eigenvectors of H are not known the estimation

of such a quantity is extremely difficult for large systems. In this context, an effective
strategy is provided by the Path Integral mapping: in this approach, one maps the quantum
many body Hamiltonian to an equivalent classical system, where thermal averages can be
computed employing standard techniques.

Following this prescription, the partition function is rewritten as

Z = Tr
{
e−βĤ

}
= Tr


P∏
j=1

e−τĤ

 =
∑
{|α0〉}

〈α0|
P∏
j=1

e−τĤ |α0〉 , (5.4)

where τ = β/P and {|α0〉} is a complete basis of the system Hilbert space. Inserting
identity operators

∑
{|α〉} |α〉 〈α| between the exponentials results in

Z =
∑
{|αi〉}

〈α0|e−τĤ |αP−1〉〈αP−1| · · · |e−τĤ |α1〉〈α1|e−τĤ |α0〉 (5.5)

The Hamiltonian is then decomposed in two non-commuting terms Ĥ = Ĥ0 + Ĥ1, where
e.g., Ĥ0 is diagonal on the chosen basis set {|α〉}. Then, the exponentials can be approxi-
mated as

eτ(Ĥ0+Ĥ1) = eτĤ0eτĤ1 +O(τ2). (5.6)

According to the Baker–Campbell–Hausdorff formula the partition function becomes

Z =
∑
{|αi〉}

〈α0| e−τĤ0e−τĤ1 |α1〉 〈α1| e−τĤ0e−τĤ1 |α2〉 · · · 〈αp−1| e−τĤ0e−τĤ1 |α0〉+O(τ)

(5.7)

=
∑
{|αi〉}

e−τE0 〈α0| e−τĤ1 |α1〉 e−τE1 〈α1| · · · e−τEp−1 〈αp−1| e−τĤ1 |α0〉+O(τ), (5.8)

where Ei ≡ 〈αi|H0 |αi〉.
The approximation error due to the procedure above (known as Suzuki-Trotter breakup)

vanishes for P →∞, making the mapping asymptotically exact.



CHAPTER 5. FINITE-TEMPERATURE CRITICAL BEHAVIOR OF LONG-RANGE
QUANTUM ISING MODELS 41

The quantum Ising chain in a transverse field case. To clarify the procedure, the
mapping is applied to a spin system. Specifically to a generalization of the Hamiltonian in
Eq. 5.2. The generalized Hamiltonian is

Ĥ =
∑
i<j

Jij σ̂
z
i σ̂

z
j︸ ︷︷ ︸

Ĥ0

+
∑
i

hiσ̂
x
i︸ ︷︷ ︸

Ĥ1

. (5.9)

Following the recipe explained in this section, a partition function of an equivalent classical
model will be obtained. In this case, the complete basis of the Hilbert space is formed by
the tensor product of single site σ̂zi eigenvectors with σ̂zi |σi〉 = σi |σi〉 and σi = ±1, the
elements of the basis are referred as |σ〉. Each term in Eq. 5.7 takes the form

〈σk| e−τĤ0e−τĤ1 |σk+1〉 = eτ
∑
ij Jijσkiσkj 〈σk| e−τĤ1 |σk+1〉 (5.10)

The remaining operator can be rewritten by expanding the exponential in Taylor series:
noting that (σxi )2 = 1, even terms carry no operators, while the odd terms are left with
only σ̂x. Regrouping the terms, one finds

e−τĤ1 =
∏
i

(cosh (τhi) + σ̂xi sinh(τhi)). (5.11)

In order to rewrite the global partition function as a classical partition function, one
needs to write the new matrix element as exponentials. For each spin term the desired
form is (keeping into account the presence of a fictitious inverse temperature βcl = 1)

〈σki| eτhiσ̂
x
i |σ(k+1)i〉 ≡ Γie

γiσkiσ(k+1)i , (5.12)

where the indexes k and i label the imaginary time slice and spin position respectively.
Using Eq. (5.11) for the cases of parallel and antiparallel spins expectation values, one
obtains

〈(↑, ↓)i| eτhiσ̂x |(↑, ↓)i〉 = cosh (τhi) ≡ Γie
+γi (5.13)

〈(↑, ↓)i| eτhiσ̂x |(↓, ↑)i〉 = sinh (τhi) ≡ Γie
−γi . (5.14)

Using the previous equations one can calculate the values of Γi and γi as

γi = −1

2
ln(tanh(τhi)) (5.15)

Γi =

√
1

2
sinh (2τhi). (5.16)

Each matrix element brings a
∏
i Γi multiplication factor, where i runs over the sites.

Therefore, the overall partition function can be written as

Z =

(
L∏
i=1

Γi

)P ∑
{σki}

exp

−βcl
− P∑

k=1

L∑
i,j=1

τJij
βcl

σkiσkj −
L∑
i=1

γi
βcl

P∑
k=1

σkiσ(k+1)i

 .
(5.17)

The product of exponentials becomes the exponential of the sum of terms. This is the
partition function of a classical, anisotropic, two-dimensional Ising mode, with system sizes
P and L along the two directions. The spins here are classical variables. This formulation
of the problem, unlike its quantum counterpart [Eq. (5.4)], is amenable to direct analysis
via the powerful framework of Monte Carlo (MC) techniques, which are presented in the
following sections.
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5.2.2 Monte Carlo algorithms

The ensemble average of a quantity A for a classical system is given by

〈A〉 =

∑
iA(Ci)e

−βE(Ci)∑
i e
−βE(Ci)

=
∑
i

A(Ci)

(
e−βE(Ci)

Z

)
=
∑
i

A(Ci)W (Ci), (5.18)

where the sum runs over all the configurations Ci of the system, A(Ci), E(Ci) are the value
of the observable on the configuration Ci and the energy of the latter respectively, Z is the
partition function and W (Ci) = e−βE(Ci)/Z will be referred as configuration weight.

The number of configurations in a many-body system usually scales exponentially with
the system size (e.g., 2N configurations for a system of N spin-1/2), making the exact
calculation of sums such as that in Eq. (5.18) is usually impossible for medium to large
system sizes. One of the most successful approach for the calculation of such quantities is
known as Monte Carlo Sampling. This is an stochastic approach where the key idea is to
approximate the complete sum in Eq. (5.18) with that of a number M of calculated terms
in random configurations {C ′} of the system. Such an estimate asymptotically converge
to the exact result as M is increased(as long as the configurations are uncorrelated). The
statistical uncertainty of the calculated value scales asymptotically as 1/

√
M and is inde-

pendent of the system size (which may however influence the time required to reach the
asymptotic regime).

A practically feasible sampling of uniformly-distributed configurations will result in
large statistical fluctuations on the calculated estimated values. This is because most
of the sampled configurations will give a small weight if W (Ci) is sharply peaked. A
more efficient way of selecting configurations is importance sampling, where the generated
configurations are statistically distributed following the weight function W (Ci). Naturally,
the latter procedure results in calculating sum terms with larger weight. With the weighting
taken into account already in the selection of configurations, the estimate of the expectation
value (A) is simply given by the arithmetic average of the function A(Ci) over the generated
subset C ′i:

〈A〉 ∼=
1

M

M∑
i=1

A(C ′i). (5.19)

Most importance sampling schemes involve creating a Markov chain of configurations (i.e.,
a sequence of configurations in which the probability that each of the elements is reached
only depends on the preceding one) via applying random changes called updates.

In order to faithfully sample configurations according to the weight function, the update
procedures are required to respect a few conditions.

(i) Detailed balance :
P (C ′i → C ′j)

P (C ′j → C ′i)
=
W (C ′j)

W (C ′i)
, (5.20)

where P (C ′i → C ′j) is the transition probability from a configuration C ′i to a configuration
C ′j . One possible choice for P (C ′i → C ′j) which respect the detailed balance condition is
the Metropolis-Hastings (MH) sampling [174] scheme,

P (C ′i → C ′j) = min

(
1,
AjiW (C ′j)

AijW (C ′i)

)
, (5.21)

where Aij(Aji) is the proposition probability for the C ′i → C ′j (C ′j → C ′i) updates, i.e.,
probability of selecting the particular update that will lead from C ′i to C

′
j .
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The update can be accepted or rejected with probability 5.21, in this way satisfying the
detailed balance condition. The ratio of configuration weights in this expression eliminates
the need to compute Z, simplifying the sampling procedure.

(ii) Ergodicity : any configuration must be reachable from any other in a finite number
of updates. If an update scheme is not ergodic, sectors of the configuration space may not
be sampled, yielding incorrect results

The chosen updates have to obey these general rules, but the choice depends on the
particular system and phenomena you are studying. The difference between all the possible
choices boils down to their efficiency in exploring the configuration space.

As an example one of the most important considerations to make when choosing an
update scheme is to minimize the amount of correlations between the sampled configura-
tions. Indeed, in the Markov Chain MC sampling procedures, consecutive configurations
are typically not statistically independent. Such condition is verified only between distant
enough steps in the Markov Chain. The ‘timescales’ (in terms of MC steps) required to
achieve statistical independence between two configurations is known as autocorrelation
time, and its value strongly depends on both the physical behaviour of the system and
the choice of MC updates. A higher auto correlation time leads to larger statistical un-
certainties on MC estimates for observables [175]: the consequence of this effect may vary
from simple requiring longer and more expensive simulations to making meaningful study
of certain physical problems impossible in practice. A wise choice of updates (if available)
is therefore paramount for numerically challenging problems.

In the next section, we will discuss several possible update choices for classical spin-
(1/2) systems, which (through the Path Integral mapping discussed above) will be the
focus of our numerical investigations.

5.2.3 MC updates for spin-1/2 systems.

We will consider systems of spin-1/2 degrees of freedom described by the Hamiltonian

H = −
∑
ij

Jijσiσj Jij ≥ 0. (5.22)

In the following, we will introduce several choices of MC updates which can be employed
to sample the configuration space of such spin systems, proceeding gradually towards more
complex (and efficient) update procedures.

Single spin-flip. This basic local update is performed as follows:

1. A spin i is selected at random.

2. The change in energy δEi between the present configuration and the one where the
spin i is flipped is computed.

3. The spin i is flipped with probability Pi = e−βδEi .

This update is ergodic and the choice of Pi respects the detailed balance, implying that
the single spin-flip is a fully valid choice for MC sampling of the configuration space.

However, updates such as this one may suffer from problems specifically caused by their
local nature. As an example, it is well known that, close to a second-order critical point,
the correlation length of the system diverges causing the effective dynamics of the system
to be described by large clusters of spins rather than single-spin dynamics.
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From the point of view of MC simulations, this leads a sharp increase in auto correlation
times when approaching the critical point, a phenomenon known in this context as critical
slowing down. In particular the auto correlation time τAC will depend on the system size
L through the dynamical critical exponent z as

τAC ∝ Lz. (5.23)

Due to the local nature of the single spin-flip updates, the sampling of the statistically
relevant configurations, which are separated by changes at the typical scale of the cluster
size, becomes extremely challenging. This leads to a relative hight value of z ∼= 2 which
renders simulations in the critical region very hard to perform.

Wolff or Single-Cluster algorithm Wolff [176] introduced a so-called single-cluster
update, which is a variant of Swendsen–Wang [177] cluster update. In the Wolff’s im-
plementation a single cluster of parallel spins is formed and flipped. The fact that is
exceedingly simple to implement has certainly contributed to the popularity of the Wolff
algorithm. The prescription for implementing this update is as follows:

1. A spin i is selected at random.

2. All nearest neighbours j of i are added to the cluster with probability pij = 1−e−2βJij ,
provided spins i and j are parallel and the bond between i and j has not been consider
before.

3. Each spin j that indeed have been added to the cluster is also placed on the stack.
Once all neighbours of i have been consider for inclusion on the cluster, a spin is
retrieved from the stack and all its neighbours are considered in turn for inclusion in
the cluster as well, following the prescription on step (2).

4. Steps (2) and (3) are repeated iteratively until the stack is empty.

5. The cluster is complete and all its spins are flipped.

Remarkably, this algorithms is rejection free. Indeed,the assignment of bonds involves
specific probabilities, but once the cluster(s) have been formed can be flipped independently
without imposing an acceptance criterion that involves the energy change induced by such
a collective spin-reversal operation. The cluster created have a structure that is very
efficient at destroying non local correlations in the MC sampling procedure. As a result,
the dynamical critical exponent z is lowered to a much smaller value [178] and independent
configurations can be generated at much faster rate that with a single-spin flip algorithm.
This advantage only holds in the vicinity of the critical point.

Long-range cluster update. The study of systems with long-range interactions is no-
toriously difficult, due to the large number of iterations that has to be taken into account.
Luijten and Blöte [179] developed an algorithm based on the Wolff cluster method. In this
algorithm, the time per spin visit in the process of forming the cluster is independent of
system size. This fact together with the reduction of critical slowing down by the use of
cluster methods makes this algorithm very suitable for the study of critical phenomena and
long-range interactions.

Following the single cluster prescription(for simplicity we consider a one dimensional
model), one starts with a randomly chosen spin and activate bonds with all others parallel
spins in the system with probability

pij = pm ≡ 1− e−2βJij , (5.24)
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where pm denotes the probability of activating a bond between two spins at distance
m = |j − i| (in lattice spacing units). As explained, when the bond is activated the
corresponding spin is added to the cluster and the stack. When all neighbours of the first
spin have been considered, a new spin is taken from the stack and the process is repeated
until the stack is empty.

Importantly, to avoid considering each single bond, the concept of cumulative bond
probability is introduced. This quantity allows to obtain the distance from the current
analyzed spin to the first spin to be considered to be added to the cluster(the spin is added
if both spins are aligned). The probability that the first bond is activated at a distance j
from the current spin is given by

P (j) = (1− p1)(1− p2) · · · (1− Pj−1)(pj). (5.25)

And one can define the cumulative bond probability as

C(j) ≡
j∑

n=1

P (n). (5.26)

Then, if a random number between C(j−1) and C(j) is drawn, the bond has to be activated
between the current spin and the spin at distance j, provided they are parallel. The next
bond has to be activated between the current spin and a spin at distance k > j, we have
to shift P as

Pj(k) = (1− pj+1)(1− pj+2) · · · (1− pk−1)pk. (5.27)

One can generalize Eq. (5.26) as

Cj(k) =
k∑

n=j+1

Pj(n), (5.28)

and substituting pm from Eq. (5.24), one finds:

Cj(k) = 1− exp

− k∑
n=j+1

−2βJn

, (5.29)

where Jn is the coupling between spins at distance n. The Cj(k) values can be calculated in
advance and saved in a lookup table. Then, the procedure of creating bonds with parallel
spins from the current spin reduce to through random numbers (∈ [0, 1]), and search in the
lookup table the corresponding Cj(k)(note that the j value is always known). This will
give us the distance k between the current spin and the spin to be added to the cluster.
The value of j becomes equal to k and a new random number is trough and the procedure
is repeated until j > L. After that, a spin is taken from the stack and the procedure of
forming the cluster is repeated, and the general Single-Cluster recipe is followed.
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5.3 Results

We study both the ground-state and finite-temperature phase diagram of the long-range
ferromagnetic quantum Ising model in one spatial dimension, by means of numerically
exact, large-scale Path Integral Monte Carlo simulations. We perform our calculations
for two representative values of α: namely, we choose α = 0.05 and α = 1.50, within
the extremely long-range region α < 1 and intermediate region 1 < α < 2, respectively.
We employ a wide variety of well-known finite-size scaling techniques to determine the
position (i.e., the critical points) and critical exponents of both the ground-state and finite-
temperature paramagnetic-ferromagnetic transitions displayed by the model, obtaining the
phase diagram displayed in Fig. 5.1.

We determine the critical points and critical exponents for the ground-state ferromagnetic-
paramagnetic transition. Our results for critical point positions and correlation length crit-
ical exponents are in agreement with existing predictions in the literature where the latter
are available (i.e., α = 1.50), while we encounter relatively small (∼ 7%) deviations with
respect to our estimate for the magnetization critical exponent. We then obtain accurate
results for the position of the critical points in the finite-temperature regime for several
values of the interaction strength. Concomitantly, our estimated correlation length critical
exponents at α = 1.50 essentially confirm the theoretical prediction of no qualitative devia-
tions from the classical universality class due to quantum fluctuations, while discrepancies
(up to 10% in the strongly interacting region) appear in the susceptibility critical exponent.
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Figure 5.1: Calculated phase diagram of the long-range transverse-field Ising model in
Eq. (5.30), displaying the ground-state and finite-temperature phase boundary and critical
exponents obtained using finite-size scaling techniques. Panels (a) and (b) correspond to
α = 0.05 and α = 1.50, respectively. Here, T is the system temperature in units of the
Boltzmann constant, and V is the interaction strength in units of the transverse field (see
below). The displayed results for the effective thermal exponent and its product with the
magnetization and susceptibility critical exponent are those obtained via data collapse (see
below).
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The model is described by the Hamiltonian

H = − V

K(L)

∑
i<j

Ŝzi Ŝ
z
j

rαij
− h

∑
i

Ŝxi , (5.30)

where V > 0 is the interaction strength, i, j run over the sites 1, . . . , L of a one-dimensional
lattice with periodic boundary conditions, rij is the distance between sites i and j, Ŝzi
(Ŝxi ) is the component along z (x) of the spin-1/2 operator acting on site i, and K(L) ≡
(L−1)−1

∑
i 6=j r

−α
ij is the Kać renormalization factor. The latter ensures the existence of a

proper thermodynamic limit in the regime α ≤ 1, while for α > 1 it amounts to a rescaling
of the interaction strength, and does not change the universal features of the critical be-
havior of the model. We remark that the presence of this renormalization factor is directly
related to how interactions with α < 3 are engineered in trapped ions experiments. The
latter exploit coupling between the ions and collective modes of the ion chain (phonons),
mediated via a single laser shined over the full sample. Increasing the number of ions while
keeping the lattice spacing constant naturally leads to a reduced coupling strength, that
translates into the fact that the energy of the full system is still extensive - as reflected by
Kać normalization. In the following, periodic boundary conditions are taken into account
following the minimum-image convention, and h = 1 will be taken as unit of energy.

For very small interaction strength V , the ground state of the system in the thermo-
dynamic limit is a paramagnet, characterized by a vanishing value of the magnetization
along the z direction |mz| ≡ L−1|

∑
i S

z
i |. On the contrary, for V � 1 the system is in a

ferromagnetic phase, displaying a finite |mz|. The existence of a finite-V phase transition
connecting these two states can be proven via analytical arguments (see, e.g., [180]); its
UC depends strongly on the value of the decay parameter α. Indeed, the α = 0 case, also
referred to as Lipkin-Meshkov-Glick model [181], can be described in an exact fashion at the
mean-field level [182], and the paramagnetic-ferromagnetic transition has been proven to be
of the mean-field type in the 1 < α < 5/3 region. In contrast, in the regime α ≥ 3, the crit-
ical point belongs to the short-range UC (i.e., the one of the ferromagnetic-paramagnetic
transition in the nearest-neighbor limit α→∞).

In the finite-temperature regime, generic scaling arguments [172] predict that the model
should display the same critical behavior as its classical (i.e., h = 0) counterpart, due to
the finiteness of the system size in the imaginary time dimension (see below). The critical
behavior of the classical model has been studied via both analytical (see, e.g., [183]), RG
(see, e.g., [184]) and numerical techniques (see, e.g., [185]) in the α > 1 regime. Here, the
system displays a second-order ferromagnetic-paramagnetic thermal phase transition for
1 < α < 2, with the region 1 < α < 3/2 belonging to the mean-field regime, while in the
point α = 2 the model undergoes a finite-temperature transition of the BKT type, and the
short-range regime is reached (i.e., no finite-temperature transition takes place) for α > 2.

We perform our investigation of the Hamiltonian in Eq. (5.30) via Path Integral Monte
Carlo (PIMC) [186], a numerically exact technique for the study of unfrustrated systems of
bosons and quantum spins. In this approach, one maps the features of a quantum model of
interest to those of an equivalent, higher-dimensional classical one, which is then studied via
Metropolis Monte Carlo simulations. The quantum-to-classical mapping described above
maps the partition function of the extended transverse-field Ising model in Eq. (5.30) into
the one of an anisotropic extended Ising model on a rectangular lattice, via a procedure
known as Suzuki-Trotter breakup. Here, in addition to the original spatial dimension, one
also considers a discretized and periodic one, known as imaginary time, which extends
in the interval [0, β], where β = 1/T is the inverse system temperature in units of the
Boltzmann constant. The number of sites M along this direction (also known as slices) is
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a free parameter which affects the accuracy of the mapping: indeed, the latter is exact up
to O(β/M) corrections, which vanish in the limit M →∞.

In the spatial direction, the extended Ising model resulting from the mapping displays
the same ferromagnetic long-range interactions present in the spin-spin term of the model
in Eq. (5.30), while spin-spin couplings are nearest-neighbor in the imaginary time direc-
tion. Our PIMC algorithm combines conventional Wolff cluster updates in imaginary time
with efficient long-range cluster updates in the spatial direction. The latter combination
-to our knowledge- has never been used before. The choice of these two state-of-the-art
techniques allow to accurately analyze large system sizes (up to L = 8192 sites) at low
enough temperatures (down to β = 1024) to reach the ground state regime. The Suzuki-
Trotter corrections mentioned above are kept into account by performing simulations with
increasing number of slices (up to M = 65536), until a value M = M∗ is found such that
the corresponding values of the observables of interest were determined to be identical,
within statistical error, to those obtained for M = 2M∗. The same protocol (with β in
the place of M) is adopted to ensure the T → 0 limit is reached in the investigation of the
ground state regime.

The PIMC algorithm gives us direct access to observables commuting with the Szi
operators, including the integer powers of |mz|. This allows us to compute quantities such
as the Binder cumulant

U =
1

2

[
3− 〈m

4
z〉

〈m2
z〉2

]
, (5.31)

where 〈. . .〉 stands for statistical averaging, which is expected to converge to 1 (0) in a
ferromagnetic (paramagnetic) phase [175]. We also compute the “classical” susceptibility

χ = βL
(
〈m2

z〉 − 〈|mz|〉2
)
, (5.32)

which, in proximity of a finite-temperature critical point of a quantum model, approximates
well the exact functional form of the magnetic susceptibility [173].

In order to extract reliable information on the critical behavior of the model in the
thermodynamic limit, we exploit the well known finite-size scaling (FSS) theory [175]. In
this framework, scaling relations of various quantities in terms of the correlation length
ξ, which diverges when approaching a critical point, are exploited to obtain finite-size
information by noting that in a finite system ξ will saturate to a value O(L), where L is the
system size. Features such as the position of the critical point or the critical exponents, on
which the original scaling relations depended, can then be directly extracted via numerical
fits as a function of L. In the following section, when discussing the fitting procedures
to obtain such quantities, we will offer detailed formulae regarding FSS predictions for
observables such as U and χ.

We investigate the critical properties of the model in Eq. (5.30) in the ground-state and
finite-temperature regime for α = 0.05 and α = 1.50.

The first step in our analysis is the determination of the paramagnetic-ferromagnetic
critical point Vc in the ground-state regime, which we accomplish by fitting to our numerical
data for the Binder cumulant U its expected FSS behavior. The Binder cumulant curves
U(V ) for system sizes L and, e.g., 2L are expected to cross at size-dependent points
V = VU (L), which will follow (to the leading order) the FSS scaling [187,188]

VU (L) = Vc

(
1 + aL−ω−θt

)
, (5.33)

where Vc is the critical point, and the effective thermal exponent θt is linked to the corre-
lation length critical exponent ν.
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Figure 5.2: Binder cumulant scaling in the ground state regime (in all panels, α = 1.50).
Panel (a): Binder cumulant curves as a function of V for different system sizes. Solid
lines are a guide to the eye. Inset: magnification of the curve crossing region. Panel (b):
computed crossing positions VU (L) between the Binder cumulant curves at system sizes L
and 2L. The continuous line is a numerical fit to the expected FSS behavior in Eq. (5.33).
Panel (c): computed values of the Binder cumulant at the crossing points VU (L) between
system sizes L and 2L. The continuous line is a numerical fit to the predicted FSS behavior
in Eq. (5.34).

In the ground-state regime ν−1 = θt outside of the mean-field region; conversely, when
the latter is entered, corrections to the leading scaling behavior can be taken into account
[188] via the generalized expression ν−1 = (duc(α)/d) θt, where d is the dimensionality and
duc(α) = 3(α− 1)/2 is the upper critical dimension for the value of α of interest.

Comparison of Eq. (5.33) with the predicted leading-order FSS behavior for the value
of the Binder cumulant at the VU (L)s,

U(L, VU (L)) = b+ cL−ω, (5.34)

allows us to obtain estimates for Vc and θt, by fitting our computed results for the crossing
features [see Fig. 5.2(a)] with the functional forms above.

Fig. 5.2(b-c) display examples of the FSS fitting procedures mentioned above; the
obtained values of the critical point and of the effective thermal exponent θt are listed in
Table 5.1.

α Vc (BC) Vc (DC) θt (BC) θt (DC) 2βmθt (DC)
0.05 1.9997(4) 1.9999 0.50(7) 0.688 0.68
1.50 2.1972(7) 2.1981 0.39(6) 0.64 0.715

Table 5.1: Values of Vc, θt, and βm (see text) associated to the ground state paramagnetic-
ferromagnetic transition, computed via FSS analysis of the Binder cumulant crossings (BC)
and via data collapse of the squared magnetization m2

z (DC).

In order to gain more insight into the ground-state critical behavior of the model, we
perform a data collapse analysis by directly exploiting the FSS predictions for the behavior
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Figure 5.3: Panel (a): data collapse of the rescaled squared magnetization ymL as a function
of the rescaled interaction strength xVL for α = 0.05. Panel (b): same as panel (a) for
α = 1.50. Panel (c): same as panel (b), where the data collapse rescaling is performed
on the Kać-factor-free rescaled interaction (see text). In all panels, the black dashed lines
enclose the interval of the independent variable within which the data collapse scaling fit
has been performed.

of the squared magnetization close to a critical point [175,188],

m2
z ∼ L−2βmθt · f

[
L+θt (Vc − V )

]
V & Vc, (5.35)

where βm is the magnetization critical exponent, up to corrections of higher order in 1/L.
This scaling law implies that the rescaled magnetization curves ymL ≡ m2

z(L)L+2βmθt for
different system sizes should coincide if plotted as a function of xVL ≡ (Vc − V )Lθt . We
perform a high-order polynomial fit of ymL as a function of xVL in a window around the
critical point xVL = 0 for a wide range of candidate values of Vc, θt and βm, choosing as our
final estimates for these quantities the values which resulted in the fit with the lowest chi-
square value. While it is hard to assign a rigorous error bar to the results of a data collapse
analysis, we estimate the order of magnitude of the error on our results by performing
the same fits in a considerably larger (i.e, containing of the order of double the number of
points) window around the critical point, and taking the difference between the optimal
values of Vc, θt, and βm for the two windows as the order of their numerical uncertainty.

Our collapsed data is displayed in Fig. 5.3(a-b); the obtained estimates for Vc, θt and
βm are listed in Table 5.1. We note that the data collapse behavior takes place over a
fairly wide range of values of the rescaled order parameter xVL , despite relatively narrow
fitting windows for the scaling behavior in Eq. (5.35) (the intervals between dashed lines
in Fig. 5.3). This highlights the faithfulness of the data collapse scaling description of our
numerical data, which translates to highly reliable estimates of the critical properties of
the system.

Examination of our results points out i) the remarkable agreement of the critical point
estimates obtained via the Binder cumulant FSS and the data collapse, and ii) conversely,
the incompatibility between the two estimates for the effective thermal exponent θt. Due
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Figure 5.4: Binder cumulant scaling in the finite-temperature regime (in all panels, α =
1.50 and V = 5.0). Panel (a): Binder cumulant curves as a function of β for different
system sizes. Solid lines are a guide to the eye. Inset: magnification of the curve crossing
region. Panel (b): computed crossing positions βU (L, V ) between the Binder cumulant
curves at system sizes L and 2L. The continuous line is a numerical fit to the expected
FSS behavior in Eq. (5.33). Panel (c): computed values of the Binder cumulant at the
crossing points βU (L, V ) between system sizes L and 2L. The continuous line is a numerical
fit to the predicted FSS behavior in Eq. (5.34).

to the arguments mentioned above, we believe the data collapse estimates for the critical
features to be more reliable in this regard.

For α = 1.50, we find agreement for θt and deviations of the order of 7% for 2βmθt from
the independent SSE predictions in Ref. [188] which, in our notation, are θt ' 2βmθt '
0.667. We also find good agreement with the estimate Vc ' 0.42 (in our notation) given
in [188] for the position of the ground-state critical point, by performing a data collapse
where the rescaled interaction xVL is replaced by

(
xVL
)∗ ≡ L+θt (Vc − V/K(L)) (the rescaling

is required since the Kać correction factor is not employed in [188]). The resulting data
collapse [see Fig. 5.3(c)] yields optimal values θt ' 0.64, 2βmθt ' 0.76, and Vc ' 0.42. For
α = 0.05, our estimates for θt and 2βmθt are compatible (up to deviations of the order
of 3% in θt) with the ones corresponding to the α = 0 mean-field critical behavior, i.e.,
θt = 2βmθt = 2/3 [182].

Once the boundary of the ground-state ferromagnetic phase is determined, we inves-
tigate whether or not ferromagnetic order survives for T > 0, and more in general the
details of the critical behavior of the model in this regime. To this end, we perform finite-
temperature calculations for fixed values of V belonging to the ferromagnetic phase in
the ground state regime. We apply the FSS framework to quantities such as the Binder
cumulant and the susceptibility, computed as a function of T , to estimate features of the
temperature-driven critical behavior.

Indeed, our results for the Binder cumulant as a function of β at fixed V and different
system sizes immediately confirm the presence of a finite-temperature phase transition, as
pointed out by the appearance of the crossing behavior discussed above [see Fig. 5.4(a)]
at size-dependent points βU (L, V ). We determine the V -dependent critical temperatures
βc(V ) and the associated θt(V ) via fitting of the FSS relations in Eqs. (5.33)-(5.34) to
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Figure 5.5: FSS analysis of the magnetic susceptibility in the finite-temperature regime
(in all panels, α = 1.50 and V = 5.0). Panel (a): susceptibility curves as a function of β
for different system sizes. Solid lines are a guide to the eye. Panel (b): finite-size peak
positions βχ(L). The continuous line is a numerical fit to the expected FSS behavior in
Eq. (5.36).

our computed crossing features, with the thermal critical points βc and β taking the role
of Vc and V , respectively. If the hypothesis of essentially classical critical behavior for
the finite-temperature quantum model holds (as we argue below) one may link [189] θt to
the correlation length critical exponent ν via the relation ν−1 =

(
dclass

uc (α)/d
)
θt, where

dclass
uc (α) = 2(α− 1) is the classical upper critical dimension.

Examples of this analysis are displayed in Fig. 5.4(b-c): the obtained critical parameters
are listed in Table 5.2. We remark here that our application of this approach encountered
in some cases strong difficulties due to significant finite-size effects in proximity of the
βc(V,L). In particular, the relatively large numerical uncertainties on the values of the
Binder cumulant in this region led to the necessity to perform conservative estimates of
the finite-size crossing points. In turn, this prevented us in some cases from obtaining
meaningful (i.e., with small enough error bars) estimates for θt.

In order to obtain an independent estimation of our quantities of interest, we inves-
tigate the finite-temperature behavior of the magnetic susceptibility for the same values
of V selected in our Binder cumulant analysis. At finite system size and fixed interaction
strength, χ is expected to display peaks at size-dependent temperatures βχ(L, V ); the FSS
framework predicts for the latter [175,188] the leading scaling behavior

βχ(L, V ) = βc + fL−θt (5.36)

as a function of the system size.
Our numerical data confirm the expected behavior of χ [see Fig. 5.5(a)]. Fitting the

FSS functional form in Eq. (5.36) to the computed peak positions [see Fig. 5.5(b) for
an example] allows us to directly estimate the critical temperatures and effective thermal
exponents as a function of the interaction strength (see Table 5.2 for a list of results).

While also requiring conservative estimates (and therefore large error bars) for the peak
positions, due to strong finite-size effects, we found the susceptibility-based approach to
be much less sensitive to this issue than the Binder cumulant FSS discussed above. In
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Figure 5.6: Data collapse of the rescaled magnetic susceptibility yχL as a function of the
rescaled order parameter xβL for the values of α and V studied in this work. The black
dashed lines enclose the interval of xβL within which the data collapse scaling fit has been
performed.

particular, we encountered problematic results only for V = 2.5, for both values of α
considered in this work, where our estimates were strongly dependent on the set of system
sizes considered in the fitting procedure (the reported results correspond to the fits with
all sizes considered).

We finally analyze the critical properties of the model by performing a data collapse
analysis for the behavior of the magnetic susceptibility close to the finite-temperature
critical points [175,185,188],

χ ∼ L+γθt · f
[
L+θt (βc − β)

]
β ∼ βc, (5.37)

where γ is the susceptibility critical exponent, up to corrections of higher order in 1/L. The
analysis follows the same protocol outlined in our discussion of the ground-state regime,
with the rescaled dependent and independent variables here being yχL ≡ χ(L)L−γθt and
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βc θt γθt
V U χ χdc U χ χdc χdc

α = 0.05 V = 2.5 2.2007(4) 2.23(1) 2.20 / 0.72(4)∗ 0.51 0.505
V = 3.0 1.6120(7) 1.61(1) 1.612 / 0.54(3) 0.485 0.515
V = 3.5 1.299(1) 1.303(3) 1.303 / 0.54(2) 0.49 0.523
V = 5.0 0.8474(2)∗ 0.844(2) 0.8491 0.5(1) 0.47(2) 0.50 0.524

α = 1.50 V = 2.5 3.21(1) 3.351(9) 3.229 0.49(7) 0.75(1)∗ 0.50 0.516
V = 3.0 2.109(1)∗ 2.12(1) 2.115 0.50(2) 0.48(3) 0.52 0.538
V = 3.5 1.647(6) 1.646(5) 1.650 0.5(2) 0.46(2) 0.52 0.545
V = 5.0 1.039(1) 1.035(1) 1.041 0.44(7) 0.41(1) 0.530 0.550

Table 5.2: Summary of the computed estimates for βc, θt, and γθt (see text) for the finite-
temperature transitions at our investigated values of α and V . Our results are categorized
according to the methodology employed to derive them: namely, FSS of the Binder cumu-
lant crossings (U), FSS of the magnetic susceptibility peak position (χ), and data collapse
of the susceptibility (χdc). Estimates marked with an asterisk (∗) did not converge with
respect to the choice of minimum size to be included in the fitting procedure.

xβL ≡ (βc − β)Lθt , respectively.
Fig. 5.6 displays our collapsed data for all the values of α and V investigated in this

work; the corresponding optimal (in the sense discussed above) results for βc, θt and γ are
displayed in Table 5.2. As in the ground-state regime, we observe that the parameter range
in which the data collapse scaling ansatz is respected noticeably exceeds our fitting window
(and vastly so, in most cases), highlighting the accuracy of this approach in describing the
critical behavior of the model. Furthermore, this protocol does not require the estimation
of size-dependent features, such as the curve crossings for the Binder cumulant, or the peak
position for the susceptibility, allowing us to obtain much more reliable and systematics-free
results. We also note that high degree of accuracy with which the scaling law in Eq. (5.36)
can be applied to describe the behavior of the “classical” susceptibility in Eq. 5.32 is a strong
indication of the goodness of the latter as an approximation for the complete functional
form of the magnetic susceptibility.

A direct analysis of the results for the critical exponents listed in Table 5.2 shows
that our estimates obtained via FSS of the Binder cumulant crossings, where meaningful
in the sense discussed above, are consistent within error bar with the ones obtained via
susceptibility data collapse. Concomitantly, in some points we observe differences (which
remain consistently small, except for the point α = 1.50, V = 5.00) between the latter and
the results of the susceptibility peak position FSS for the values of V in which the latter
have converged with respect to the system sizes employed in the fitting procedure. In the
points where this did not happen, the θt result from the susceptibility peak position fit
decreased, shifting towards the data-collapse results, when smaller sizes were discarded.

According to the arguments mentioned in the preceding paragraphs, the universality
class of the T > 0 ferromagnetic-paramagnetic transition should be the same of the cor-
responding transition in the classical counterpart of model Eq. (5.30). For α = 1.50, the
classical Hamiltonian is in the mean-field regime, and RG predictions, confirmed by classi-
cal Monte Carlo calculations [185], yield the estimates θt = γθt = 1/2. Direct comparison
with our most representative and reliable results in Table 5.2 (i.e., the one obtained via
data collapse of the magnetic susceptibility) shows that our estimates for θt are in essential
agreement with the classical prediction (with deviations outside of the estimated order of
magnitude of the error only appearing for V = 5.0). Compatibility between our estimate
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and the theoretical predictions, even for V = 5.0, is confirmed by the results obtained via
FSS of the Binder cumulant, while the susceptibility FSS estimates, where converged, show
appreciable deviations only for V = 5.0. Conversely, our estimates for γθt show relatively
consistent deviations (up to the order of 10%), which increase with the interaction strength.

These differences with the predicted results may be in principle due to several causes,
including i) the “classical” approximation employed for the study of the susceptibility in
our analysis, or ii) genuine quantum effects which introduce deviations with respect to
the predicted classical behavior. However, we find it unlikely that either (i) and/or (ii)
may be the dominant physical mechanism underlying the observed deviations, since both
effects are essentially quantum in nature, and are expected to become weaker for larger
values of V , where in contrast our results are more at odds with the classically predicted
values. Indeed, for higher interaction strengths quantum effects are expected to weaken,
due to both the larger value of V (in comparison to the transverse field h) and the higher
temperature at which the critical region is located. This consideration leads us to the
conclusion that despite these deviations (which may be caused by finite-size effects, or
by higher-order corrections) the critical behavior of the model in this regime follows the
classical UC.

As in the ground-state case, we find essential compatibility with the (classical) mean-
field exponents at α = 0; in particular, we match the predicted values [182] θt = γθt =
1/2 up to relatively small deviations (of up to 2.5%) for the latter quantity, which also
become larger in the strongly interacting regime, and are therefore likely not due to genuine
quantum effects as argued above.

5.4 Conclusions and outlook

We study the ground-state and finite-temperature phase diagram and critical behavior of
the long-range quantum Ising model in one spatial dimension, for values of the interaction
exponent parameter of direct interest for current experiments in trapped ion setups. We
perform numerically exact, large-scale PIMC simulations within both the extremely long-
range region and intermediate long-range regime, respectively, employing a wide variety of
finite-size scaling techniques to determine the location (i.e., the critical points) and critical
exponents of both the ground-state and finite-temperature phase transitions displayed by
the model.

We determine transition points and critical exponents for the ground-state ferromagnetic-
paramagnetic transition. We find essential agreement with existing predictions for these
quantities, where available (up to small deviations for the value of the magnetization critical
exponent), and compatibility of our extremely-long-range results with the fully-connected
universal properties. We then accurately estimate the position of the critical points in
the finite-temperature regime for several values of the interaction strength. Here, our es-
timated critical exponents in the intermediate-long-range region essentially confirm the
theoretical prediction of classical universality. In particular, in the intermediate long-range
regime our estimated correlation length critical exponent is fully consistent with the clas-
sical predictions, while the susceptibility one displays deviations at most up to the order
of 10%. Similarly, in the extremely long-range region we find compatibility with the (clas-
sical) mean-field universality class up to deviations of the order of 2.5% in the value of the
correlation length critical exponent.

Beyond exploring the equilibrium phase diagram and the nature of critical points, our
work is also directly relevant for another open question appearing in the context of quan-
tum Hamiltonians with long-ranged interactions. This concerns quantum thermalization
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and equilibration during coherent quantum dynamics without coupling to an environment,
which appears all but settled. In the infinitely-connected limit of α = 0 it is already well
known that thermalization does not occur [190]. Furthermore, numerical works close to
this infinitely-connected limit have already observed indications that thermalization could
be prevented at least on the achievable time scales [191]. In order to settle this funda-
mental question, the understanding of the thermal equilibrium phases and properties, to
which this work contributes, represents a first key step. While thermalization corresponds
to ensemble equivalence of the thermal ensemble with the diagonal ensemble, capturing
the long-time steady states during dynamics [192], it is also not known to which extent
such long-range models exhibit ensemble equivalence on a general level. This concerns for
instance the equivalence of the thermal and microcanonical ensemble, which is of central
importance from the statistical physics point of view.
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Chapter 6

PIMC in continuous space

As discussed in previous sections, the combination of Path Integral mapping and Monte
Carlo sampling provides a powerful approach for the study of quantum spin systems. Such a
technique, with the necessary modifications, can also be applied to the study of continuous-
space systems, i.e., in the absence of an underlying lattice structure.

Since its introduction by the pioneering work from Pollock and Ceperley [193], which
employed it to investigate the superfluid transition in 4He, PIMC has become one of the
most advanced and reliable methods for the analysis of these kind of systems, yielding
numerically exact results at considerable system sizes and low temperatures.

This chapter presents my work on the development of an implementation of the PIMC
algorithm for continuous space systems. Section 6.1 offers a brief introduction to the
quantum-to-classical mapping declined in the case of continuous space Hamiltonians, while
in Section 6.2 the configuration updates employed in the MC sampling process are dis-
cussed. Finally, Section 6.3 presents the testing results obtained using my PIMC imple-
mentation.

6.1 Path Integral mapping in continuous space

In the following, we will consider a many-body system of bosons of mass m in continuous
space, described by a Hamiltonian Ĥ = T̂ + V̂, where T̂ and V̂ are the kinetic and potential
terms respectively.

As in the case of lattice systems, the partition function Z [Eqs. (5.4) – (5.5)] remains
a central quantity for the evaluation of thermal expectation values.

Choosing the particle position basis {|R〉}, whereR = {r1, ..., rN} and ri is the position
of the ith particle for a system of N particles, and performing the Suzuki-Trotter breakup
procedure displayed in Eq. (5.7), one obtains

Z =

∫
dR0dR1 · · · dRP−1

P−1∏
i=0

ρ(Ri,Ri+1; τ) +O(τ) with RP ≡ R0 and (6.1)

ρ(Ri,Ri+1; τ) ≡
∫
dR〈Ri|e−τ T̂ |R〉〈R|e−τ V̂ |Ri+1〉. (6.2)

Since the potential part of the Hamiltonian is diagonal in the position basis, we find

〈R|e−τ V̂ |Ri+1〉 = e−τV (Ri+1)δ(R−Ri+1). (6.3)
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In the case of quadratic dispersion relation, i.e. T̂ = P̂ 2

2m , one can use the eigenfunctions of
the momentum operator P̂ to evaluate the kinetic matrix element in the large system size
limit as

〈Ri|e−τ T̂ |R〉 =

∫
dP ′dP 〈Ri|P ′〉〈P ′|e−τ

P̂ 2

2m |P 〉〈P |R〉 (6.4)

=

∫
dP

(
1

2π~

)Nd
exp

[√
−1
P (Ri −R)

~
− τ P

2

2m

]
(6.5)

=

(
1

4πτλ

)Nd
2

exp

[
−(Ri −R)2

4λτ

]
, (6.6)

where d is the dimensionality of the system and λ = ~2/2m. Joining Eq. (6.3) and Eq. (6.6),
the generic matrix element in Eq. (6.2), also known as propagator becomes

ρ(Ri,Ri+1; τ) =

(
1

4πτλ

)Nd
2

exp

[
−(Ri −Ri+1)2

4λτ

]
︸ ︷︷ ︸

ρF

exp [−τV (Ri+1)]︸ ︷︷ ︸
exp [g(V (Ri+1))]

. (6.7)

Then, ρF is the propagator of N free particles. Several choices are available for the inter-
action each providing a different level of accuracy (i.e. higher or smaller Trotter breakup
errors as a function of τ). In our work, we exploit the 4th order approximation introduced in
Ref. [194], which is considerably more accurate, than the so called primitive approximation
in Eq. (6.7).

The partition function then becomes

Z =

∫
dR0dR1...dRP−1(4πλτ)−

dNP
2 exp

[
−

P∑
s=1

(Rs−1 −Rs)
2

4λτ
+ g[V (Rs)]

]
. (6.8)

The model resulting from the quantum-to-classical mapping can be interpreted as a
system of polymers created by linking beads. The latter may move freely in space but
reside at fixed positions in imaginary time (see Fig. 6.1). In this description, each particle
is composed by P beads, which interact with nearest linked beads through a spring like
potential while beads at the same time slice s interact through the classical potential
g[V (Rs)].

6.2 PIMC sampling. The Worm Algorithm

As in the case of lattice systems, performing the integrals in Eq. (6.8) for a many particles
becomes prohibitive, suggesting the use of MC sampling to compute Z and the thermal
values of observables of interest.

The most basic sampling procedure which can be adopted to this end employs closed
line moves: these are updates in which the shape of the polymers is modified without
breaking them or changing their connectivity (an example of such moves is the “wiggle”
update discussed in the next paragraphs).

In order to sample sectors of the configuration space with different connectivity proper-
ties (which is crucial, for instance, to obtain accurate results for observables associated to
superfluidity) one may complement closed-line moves with ad-hoc updates which change
polymer connectivity [193]. While this choice in principle ensures ergodicity, in practice
other, more effective updates schemes have emerged over the years, the most advanced be-
ing Worm Updates [195,196], inspired by the original incarnation for lattice systems [197].
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R0

R1

R2

R3

R4

Rs = (rs1, r
s
2)

imaginary time

position

Figure 6.1: Equivalent classical system of interacting beads. In this case, the system is
composed of 2 particles and P=5. The continuous black lines connecting beads (links)
represent propagators between different time slices.

Worm updates work by sampling an extended configuration space, in which the poly-
mers (also known as world lines) may be either closed or open (i.e., with one or more
propagators missing). Most observables (including energies, superfluid properties, den-
sity profiles) are measured in configurations containing only the former. On the other
hand, performing updates in configurations containing the latter allows to naturally vary
polymer connectivity (and therefore, reliable investigating superfluid properties) to com-
pute observables which would otherwise be very complicated to access (e.g., single particle
density matrices) and to straightforwardly perform simulations in the Grand Canonical
ensemble.

In the following, the types of moves employed in our implementation of the Worm
Algorithm are discussed.

Open/Close. The open update is attempted on configurations with all worldlines closed.
The update attempts to remove the propagators linking two beads chosen uniformly on the
same worldline (see Fig. 6.2). If the update is accepted (with the probability prescribed
by the Metropolis sampling scheme in Eq. (5.21)) the resulting configuration will contain
an open worldline, also known as worm.

The close update inverts the previous one, extracting random positions for the missing
beads and constructing the connecting propagators between the two open ends (also known
as heads) of the worm (see Fig. 6.2).

Advance/Recede. This move attempts to shift forward or backward in imaginary time
one of the two worm heads, by deleting existing beads or randomly extracting new ones
where the distance between the heads increase or decreases, respectively (Fig. 6.3).

Wiggle. In the wiggle update one attempts to change the position of a finite number of
beads belonging to a polymer in a closed-worldline configuration (see Fig. 6.4).

Insert/Remove. This pair of updates is employed when performing simulations in the
Grand Canonical ensemble. The former is only applicable to closed-worldline configura-
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Figure 6.2: Open-Close updates. The worm heads are the red painted beads. Diferent
imaginary time slices are labeled by j.
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Figure 6.3: Advance-Recede updates.

j = 0
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j = 2

j = 3

j = 4

Wiggle

Figure 6.4: Wiggle update.

tions, and attempts to create a new open worldline composed by M < P beads placed at
randomly extracted positions. The latter attempts to delete an open worldline, if present,
as long as the worm is composed at most by M beads (to ensure respect of the detailed
balance conditions). See Fig. 6.5 for an example of such move in action.

Swap. This update is applicable to off-diagonal configurations only. Let j be the time
slice of one of the worm heads. One consider the time slice j + M(because of imaginary
periodicity, this addition is understood modulo P ) and choose randomly a bead α in this
time slice. The update attempts to connect the worldline where the worm resides with
the worldline containing α. In order to do this, M − 1 beads before α are removed and
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Figure 6.5: Insert-Remove updates.

replaced by randomly extracted position beads and a new link between the worm head and
the replaced beads is created as depicted in Fig. (6.6).

j

j +M

Swap

Figure 6.6: Swap update.

6.3 Numerical testing

In this section we report the results of several high-level tests that we performed to verify
the reliability of our implementation of the worm algorithm.

We simulated a system of bosons interacting with a soft-core potential described by the
Hamiltonian

H = −1

2

N∑
i=1

∆2
i +D

∑
i>j

Θ(|1− rij |), (6.9)

where Θ is the Heaviside function, rij is the distance between particles i and j, all lengths
are expressed in units of the soft-core diameter a, and all energies are expressed in units
of ε0 = ~2/ma2. The system is enclosed in a cell with periodic boundary conditions, of
sides (Lx, Ly). The study is performed in the Grand Canonical ensemble, we denote by
N the average number of particles and express the density ρ in term of the dimensionless
parameter rs = 1/

√
ρa2.

In order to reproduce published results [198, 199] we performed simulations for D =
5 and (Lx, Ly) = (11.855, 10.267) in the ground-state regime for different values of the
chemical potential µ.

At small values of the later (i.e. low particle number) the system is in a superfluid
state, characterized by long-range particle exchange cycles. This phase can be identified
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by computing the superfluid fraction ρs, i.e., the amount of particles involved in superfluid
exchange cycles. This quantity is immediately accessible to PIMC simulations via the
well-known winding number estimator [200].

At high density the system displays long-range crystalline order, with superfluid ex-
changes been suppressed; such a state can be straight forwardly characterized by computing
the structure factor

S(k) =
|ρk|2

N
; ρk =

∫
e−ik·rρ(r). (6.10)

where ρ(r) is the particle density profile. This quantity will display peaks at values of the
momentum k associated to the type of established crystalline order, while no such feature
will appear for liquid (and superfluid) phases.

For intermediated values of µ, the ground state of the system features the coexistence
of superfluidity and crystalline order, in a state known as supersolid and characterized by
nonzero values for both the observables introduced above.

Figure 6.7: Obtained density profiles for different values of µ. (a) µ = 37 and rs = 0.62;
(b) µ = 42 and rs = 0.55.

Figure 6.8 displays our results for ρs and S(k0), with k0 = [0.8662π
a , 0] being the peak
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position associated to the crystalline order displayed by the system in the regime discussed
above. A direct inspection immediately reveals the presence of the three regimes discussed
above as diagnosed by the interplay between the two order parameters. A comparison of
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Figure 6.8: Static structure factor S(k)(k = [0.8662π
a , 0] ) and superfluid fraction ρs

across the superfluid-supersolid transition. Results correspond to D = 5 and (Lx,Ly) =
(11.855, 10.267). Our calculated values are presented in the left panel while the right panel
plot is taken from Ref. [199]

our results with the ones available in the literature [ [199]; Fig. 6.8(right panel)] reveals
essential compatibility between the two sets of points.

In order to further test our code, we also performed finite-temperature calculations for
(Lx,Ly) = (4.7958, 4.7958) and fixed particle number N = 92 ± 1 with the aim of com-
paring with existing results [198]. The outcome of our calculations is displayed in Fig. 6.9.
In the limit of high temperature the superfluid ground state is expected to decay to a nor-
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Figure 6.9: Superfluid fraction as a function of T (in units of ε0) for a system of soft disks
with D = 5. Here, µ is set so that rs = 0.5. Left panel results correspond to an average
number of particles N = 92 ± 1 with (Lx,Ly) = (4.7958, 4.7958) calculated using our
implementation. Right panel plot is taken from Ref. [198]

mal (classical liquid), a behaviour fully caught by our numerical simulations (Fig. 6.9 (left
panel)). We also note essential agreement with existing predictions (Fig. 6.9 (right panel)).
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6.4 Conclusions

We have benchmarked our implementation of the PIMC method in continuous space and
the obtained results agree well with previous calculations. This allows us to study systems
of interacting bosons with high degree of accuracy in an exact manner. The method does
not suffer from critical slowing down which permits to characterize the system near a second
order phase transition in high dimensional systems. Future perspectives include the study
of experiments showing supersolidity and theoretical studies of bilayer systems.
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Appendix A

Stability of quantum scars

A.1 Properties of the PXP and the other constrained models

In this section, we summarize the properties of the spectrum of the PXP (α = 1) and
the other constrained model with α > 1 of their perturbations. For any α ≥ 1, the
Hamiltonian Hα

0 and the perturbation V α commute with the space reflection symmetry
I and anticommute with the particle-hole symmetry Cph =

∏
i σ

z
i . This fact has some

important consequences, that hold for any Hamiltonian with these symmetries:

• all the eigenstates with E 6= 0 are found in pairs of opposite energies (doublets),
related by particle-hole symmetry (Cph |E〉 = |−E〉);

• states with E = 0 can be classified as eigenstates of Cph (singlets);

• the subspace of zero-energy eigenstates is exponentially large in L;

• the singlets have same eigenvalue with respect to Cph and I: this means that the
zero-energy space is the direct sum of two subspaces with Cph = I = ±1;

• if |ψ〉 and |φ〉 are two singlet eigenstates of H0, then 〈φ|V |ψ〉 = 0. This holds even if
〈φ|ψ〉 6= 0 (or even if |ψ〉 = |φ〉).

A.1.1 Scars

Here we report the properties of the scars under the action of I and Cph. For the PXP
model (α = 1), they satisfy:

I |Γ12〉 = (−1)L/2−1 |Γ12〉 (A.1)

I |Γ11〉 = (−1)L/2 |Γ11〉 (A.2)

Cph |Γ11〉 = (−1)L/2 |Γ11〉 (A.3)

I |Γ21〉 = (−1)L/2−1 |Γ21〉 (A.4)

I |Γ22〉 = (−1)L/2 |Γ22〉 (A.5)

Cph |Γ22〉 = (−1)L/2 |Γ22〉 . (A.6)

The scars defined in Section 3.4.2 for α > 1 and L = (α+ 2)n+ 3 satisfy

I |ψ(±3)
α 〉 = (−1)n |ψ(±3)

α 〉 (A.7)

Cph |ψ(±3)
α 〉 = |ψ(∓3)

α 〉 . (A.8)
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Figure A.1: Scaling of the fidelity susceptibility with system size, for the perturbation V ′.
The results shown refer to the states (a) |Γth〉, |Γ21〉 and (b) |ΓI〉 with open boundary
conditions. Dashed lines are obtained from fits with an exponential scaling, solid lines
with linear scaling. Similarly to the results for the perturbation V shown in Fig. 3.2, also
in this case the scaling is exponential for the states |Γth〉, |Γ21〉 (in agreement with ETH)
and is linear for the state |ΓI〉.

A.2 Stability to other perturbations

We report here the data of the fidelity susceptibility of the scars and of a generic thermal
eigenstate in the PXP model for a different perturbation V ′, defined as

V ′ =

L−3∑
i=2

Pi−2 σ
+
i−1σ

−
i σ

+
i+1Pi+2 + H.c. (A.9)

The perturbation is again chosen in such a way to have the same properties under symmetry
transformations as the PXP Hamiltonian H0, i.e. IV ′I = V , CphV ′Cph = −V ′. The results
in Fig. A.1 show the same behaviour that we observed for the perturbation V in the main
text: the fidelity susceptibility grows exponentially with system size for the states |Γth〉,
|Γ21〉 and linearly for the state |Γth〉.

A.3 Exact scars in the PXP model – properties of the edges

In this section we recall some properties of the scars of Eq. (3.5) and (3.7), and we comment
on the profile of the energy density. As was noticed in Ref. [63], the PXP Hamiltonian can
be written as a sum of two parts: a part which contains two-body interactions between
blocks, and one with single-block terms only. The two-body terms annihilate the scars (we
refer to the appendix of Ref. [63] for the proof), while the remaining terms are

H ′ =
∑
b

[|10〉 〈00|+ |01〉 〈00|+ h.c.]b. (A.10)

A more convenient expression is obtained by defining the states

|±〉 =
1

2
(|01〉+ |10〉+

√
2 |00〉), (A.11)

|0〉 =
1√
2

(|10〉 − |01〉). (A.12)
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The Hamiltonian H ′ has the form

H ′ =
√

2
∑
b

(|+〉 〈+| − |−〉 〈−|). (A.13)

This expression is useful to interpret the profile of the energy density of the scars. After

this change of basis and a gauge transformation with the unitary matrix V = 1√
2

(
1 1
1 −1

)
,

the new matrices have the form

A+ = V
1

2
(A01 +A10 +

√
2A00)V −1 =

(
0
√

2
0 0

)
, (A.14)

A− = V
1

2
(A01 +A10 −

√
2A00)V −1 =

(
0 0√
2 0

)
, (A.15)

A0 = V
1√
2

(A10 −A01)V −1 =

(
1 0
0 1

)
, (A.16)

and the new boundary vectors are

v′1 = V v1 =

(
1
0

)
, (A.17)

v′2 = V v2 =

(
0
1

)
. (A.18)

Now each block can be interpreted as a spin-1 variable with states +,0,− indicating
the Sz component, and the Hamiltonian H ′ corresponds to the magnetization in the z
direction. The form of the matrices A+, A−, A0, allows to easily see which are the non-
zero components in the local Sz basis: they are the ones with the structure of a “dilute
antiferromagnet”, i.e. with alternating + and − and an arbitrary number of 0s in between.
This structure is a renowned feature of the AKLT state, whose relation with the MPS scars
has been already pointed out in Ref. [63]. In open boundary conditions, the boundary
vectors fix the sign of the first non-zero spin: on the left v′1 (v′2) constrains it to be in
a + (−) state and vice versa for the vector on the right. Therefore, the components of
the state Γ12 have a number of +s that exceeds the number of −s by one, so its energy
is E =

√
2 (and vice versa for Γ21, with E = −

√
2). The states Γ11 and Γ22, on the

other hand, have the same number of −s and +s, so they have energy E = 0. The energy
density profiles reported in Ref. [63] can be understood as well from this construction:
they correspond to the magnetization profile of the dilute antiferromagnet. In the bulk,
the local magnetization averages to 0, while on the boundary it is affected by the choice of
the boundary vector.

A.4 Exact scars with E =
√
3 – Proof

In this section we prove that the following state is an exact scar with energy E =
√

3

|ψ(3)
α 〉 =

∑
~s

[
(1, 0)T ·N s1M s2 . . .M s2nN s2n+1 · (0, 1)

]
|~s〉 (A.19)

where s1, s2, . . . s2n+1 label the states of the blocks and

M s =

{
1 if s = 00 . . . 00

0 otherwise,
(A.20)
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N0 =

(
0
√

3
0 0

)
, NL =

(
0 1
0 1

)
, (A.21)

NC =

(
1 1
0 −1

)
, NR =

(
−1 1
0 0

)
. (A.22)

The indices 0, L, C,R are the state of three-site block, with the following notation:
|0〉 = |000〉, |L〉 = |100〉, |C〉 = |010〉, |R〉 = |001〉.

The matrices in Eqs. A.21 and A.22 satisfy

NRNL = 0, (N0 +NL)(NR +N0) = 0. (A.23)

The first equation implies that the state satisfies the blockade constraint. We can split the
Hamiltonian in two parts: H = HM +HN where HM (HN ) flips only sites in the M (N)
blocks.

We first prove that HM |ψ(3)
α 〉 = 0. Consider a single term Pi−α . . . Pi−1XiPi+1 . . . Pi+α

where i belongs to a block of typeM : if i is not the first or last site of the block, it can only
be flipped if both neighbouring N blocks are in the state 0. However, this never happens
because N0M sN0 = 0. If i is the first site of the blocks, these two conditions must hold
for it to be flippable: (i) the previous block must be in state 0; (ii) the following block
must be either in state 0 or R. But N0M sN0 = N0M sNR = 0, so this Hamiltonian term
annihilates the state. Similarly, using N0M sN0 = NLM sN0 = 0, we find that the last site
of the block cannot be flipped. This means that the sites in the M blocks are all “frozen”
in the 0 state and concludes the proof that HM |ψ(3)

α 〉 = 0.
We now consider HN :

HN |ψ(3)
α 〉 =

∑
b

[(
|0〉 〈R|

)
b

(
1− |L〉 〈L|

)
b+1

+
(
1− |R〉 〈R|

)
b−1

)
(
|0〉 〈L|

)
b

+
(
|0〉 〈R|

)
b

+ h.c.
]
|ψ(3)
α 〉 (A.24)

where b = 1, . . . n + 1 labels the blocks of type N . From the relations NRNL = N0NL +
NRN0 = 0, we find that all the terms involving more than one block cancel and we are
left with

HN |ψ(3)
α 〉 = H ′ |ψ(3)

α 〉 . (A.25)

H ′ =
∑
b

[
|0〉
(
〈R|+ 〈C|+ 〈L|

)
+ h.c.

]
b
. (A.26)

Now, to prove that H ′ |ψ(3)
α 〉 =

√
3 |ψ(3)

α 〉, it is useful to change basis and define:

|±〉 =
|L〉+ |C〉+ |R〉 ±

√
3 |0〉√

6
, (A.27)

|l〉 =
|C〉 − |L〉√

2
, |r〉 =

|C〉 − |R〉√
2

. (A.28)

In this new basis the matrices have the form

N+ =

(
0
√

6
0 0

)
, N− = 0, (A.29)
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N l =

(
1/
√

2 0

0 −
√

2

)
, N r =

(√
2 0

0 −1/
√

2

)
. (A.30)

and the Hamiltonian H ′

H ′ =
∑
b

[√
3 |+〉 〈+| −

√
3 |−〉 〈−|

]
b

(A.31)

H ′ is diagonal in the new basis {|+〉 , |−〉 , |l〉 , |r〉}. It is now sufficient to prove that all the
non zero-components of |ψ〉 in the new basis have a one and only one block in |+〉 and all the
others are in |l〉 or |r〉. This can be understood from the fact that (i)N+Nα1 . . . NαpN+ = 0
(for any string in between) and that (ii) any string of matrices without N+ is diagonal, so it
annihilates when contracted with the boundary vectors (1, 0)T , (0, 1). The energy density
profile of this state is then easy to understand in these basis: all the three-site blocks have
the same energy density, because the ’+’ can be located anywhere in the chain, while the
other sites have energy density 0. This contrasts with the MPS scars found in Ref. [63]:
while there the energy density is localized on the edges because of the structure of dilute
antiferromagnet, here the construction resembles a spin wave with a delocalized excitation.

A.5 Exact scars with E =
√
2, α = 3

We now consider the case α = 3 and construct exact eigenstates with E = ±
√

2 as matrix
product states with finite bond dimensions. They are constructed by assembling position
dependent matrices in a periodic pattern, illustrated in Fig. A.2.

A AB BC C AC C

Figure A.2: Structure of an MPS for L = 24. The blocks are made of two sites. Empty
dots are sites in the state 0. The structure of the state for generic system sizes is based on
the periodic repetition of the pattern 0BC0CA0 (highlighted in the picture).

The matrices A,B,C are defined on two-site blocks and have bond dimension 2. The
dots represent empty sites. The pattern (0BC0CA0) that is repeated periodically consists
of 11 sites. The first and last two sites of the open chain have to be in a block of type A
or B. Therefore we have 4 possible states, labelled by the first and last block:

• |φ(2)
AB〉, for L = 6 + 11n;

• |φ(2)
BA〉, for L = 9 + 11n;

• |φ(2)
AA〉 and |φ

(2)
BB〉, for L = 13 + 11n.

The matrices for the eigenvalue E =
√

2 are defined as

A00 =

(
0 1/

√
2

0 1

)
, A10 =

(
1/
√

2 1/2
0 0

)
, (A.32)

A01 =

(
−1/
√

2 1/2
0 0

)
(A.33)
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B00 =

(
1 1/

√
2

0 0

)
, B10 =

(
0 1/2

0 1/
√

2

)
, (A.34)

B01 =

(
0 1/2

0 −1/
√

2

)
(A.35)

C00 =

(
0 0
1 0

)
, C10 =

(
0 1/

√
2

0 0

)
, (A.36)

C01 =

(
0 −1/

√
2

0 0

)
(A.37)

The boundary vectors are obtained by contracting the extremal matrices with (1, 0)T

on the left and (0, 1) on the right. The states |φ(−2)
rs 〉 = Cph |φ

(2)
rs 〉 (r, s = A,B) are other

exact scars with energy E = −
√

2.
These scars satisfy the following properties:

I |φ(±2)
AB 〉 = − |φ(±2)

AB 〉 (A.38)

I |φ(±2)
BA 〉 = − |φ(±2)

BA 〉 (A.39)

I |φ(±2)
AA 〉 = |φ(±2)

BB 〉 (A.40)

I |φ(±2)
BB 〉 = |φ(±2)

AA 〉 . (A.41)

A.5.1 Proof

We first prove that the state above satisfies the constraints. The conditions are: BrCs =
CrAs = 0 for r = 01, 10 and s = 01, 10, C01C01 = C01C10 = C10C10 = 0, and A01B10 = 0.
It is straightforward to check that all of them are satisfied by the matrices A,B and C.

We now define the local Hamiltonian term hi = Pi−3Pi−2Pi−1XiPi+1Pi+2Pi+3 and
prove that hi |ψα=3〉 = 0 when i is one of the sites between two C blocks. To prove this, we
note that C00C00 = 0, which immediately implies Pi−2Pi−1Pi+1Pi+2 |ψα=3〉 = 0. Similarly,
we can prove that hi |ψα=3〉 = 0 when i is one of the sites between an A and a B block by
noting that A00B00 = 0 so the projectors in hi annihilate the state |ψα=3〉.

The next step is proving hi |ψα=3〉 = 0 for i belonging to the C blocks. To set the
notation, we label the two-site blocks (of types A, B, C) in the chains with indices b =
0, 1, 2, . . . , Nb from left to right. We define ΓA as the set of integers b such that the b-th
block is of type A, and similarly for ΓB and ΓC . We also define the operator P sb which
projects the block b in the state |s〉.

With this notation, we obtain the following equation∑
b∈ΓC

∑
i∈b

hi =
∑

b,b+1∈ΓC

P 00
b−1 |00〉b (〈10|+ 〈01|)bP 00

b+1

+ P 00
b |00〉b+1 (〈10|+ 〈01|)b+1P

00
b+2

+ P 00
b−1(|10〉+ |01〉)b 〈00|b P

00
b+1

+ P 00
b (|10〉+ |01〉)b+1 〈00|b+1 P

00
b+2. (A.42)

The sum in the right hand side runs over the indices such that both b and b+ 1 are blocks
of type C. The first two terms of the sum annihilate |ψα=3〉 because C01 + C10 = 0, the
last two terms because C00C00 = 0.
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From the observations we made so far, we have now obtained that

H |ψα=3〉 =
∑

b∈ΓA∪ΓB

∑
i∈b

hi |ψα=3〉 . (A.43)

We can rewrite the action of these terms as∑
b∈ΓA∪ΓB

∑
i∈b

hi |ψα=3〉 = (Hnon−int −Hint) |ψα=3〉 . (A.44)

The Hamiltonian Hnon−int contains the terms

Hnon−int =
∑
b∈ΓA

P 00
b−1[|00〉 (〈10|+ 〈01|) + h.c.]b

+
∑
b∈ΓB

[|00〉 (〈10|+ 〈01|) + h.c.]bP
00
b+1, (A.45)

where, for the sake of brevity, in our notation for the boundary terms we choose to define
P 00
−1 ≡ 1, P 00

Nb+1 ≡ 1. The Hamiltonian Hint reads

Hint =
∑
b∈ΓA

b+1∈ΓB

P 00
b−1[|00〉 〈01|+ h.c.]bP

10
b+1

+ P 01
b [|00〉 〈10|+ h.c.]b+1P

00
b+2. (A.46)

By noting that A01B10 = 0 and C00(A00B10 +A01B00)C00 = 0, we find that Hint |ψα=3〉 =
0.

To conclude our proof, we now have to demonstrate that Hnon−int |ψα=3〉 =
√

2 |ψα=3〉.
We define the states

|e〉 =
|10〉+ |01〉√

2
|o〉 =

|10〉 − |01〉√
2

, (A.47)

|±〉 =
|00〉 ± |e〉√

2
, |0〉 = |00〉 . (A.48)

We now perform the following changes of basis: on the A and B blocks, we use the
(non-orthogonal) states |+〉 , |o〉 , |0〉, such that the new matrices of the MPS have the form

Ã+ =

(
0 1
0 0

)
, Ão =

(
1 0
0 0

)
, (A.49)

Ã0 =

(
0 0
0 1

)
(A.50)

B̃+ =

(
0 1
0 0

)
, B̃o =

(
0 0
0 1

)
, (A.51)

B̃0 =

(
1 0
0 0

)
, (A.52)

while on the C blocks we use |0〉, |e〉 and |o〉, with the matrices

C̃0 =

(
0 0
1 0

)
, C̃e = 0, C̃o =

(
0 1
0 0

)
. (A.53)
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We now merge the pairs of consecutive C blocks. The only non-zero matrices for the
superblock are

G̃0,o =

(
0 0
0 1

)
, G̃o,0 =

(
1 0
0 0

)
. (A.54)

The components of |ψα=3〉 now have the form

|ψα=3〉 =
∑

~s=(s0,...,sNb )

c~s |s0〉 ⊗ |s1〉 · · · ⊗ |sNb〉 (A.55)

where the sum runs over the three new states of the basis for each component sb and

c~s =
(
1 0

) (
. . . B̃sb−1G̃sb,sb+1Ãsb+2B̃sb+3 . . .

)(0
1

)
. (A.56)

From the simple structure of the matrices, it is now easy to see that the only cases that
give c~s 6= 0 are the ones where the product of matrices in parentheses is a sequence of Ão,
B̃0, G̃o,0, followed by a single matrix Ã+ or B̃+ and then by a sequence of Ã0, B̃o, G̃0,o.
Consider now a state ~s that satisfies this condition and let b∗ be the index that corresponds
to the Ã+ or B̃+ matrix. All the terms in Hnon−int annihilate |~s〉, except for the one with
b = b∗: to prove this, it is sufficient to note that, for b ∈ ΓA if (i) b < b∗ then sb−1 = o and
hence P 0

b−1 |sb−1〉 = 0, while if (ii) b > b∗ then sb = o and [|00〉 (〈10|+ 〈01|)+h.c.]b |sb〉 = 0;
similarly, if (i) b < b∗ then sb = o and [|00〉 (〈10| + 〈01|) + h.c.]b |sb〉 = 0, while if (ii)
b > b∗ then sb+1 = o and P 0

b+1 |sb+1〉 = 0. The term of Hnon−int with b = b∗, on
the other hand gives a non-zero term: if b∗ ∈ ΓA, then sb∗−1 = 0 and sb∗ = +, so
P 0
b∗−1[|00〉 (〈10|+〈01|)+h.c.]b |~s〉 =

√
2 |~s〉, while if b∗ ∈ ΓB, then sb∗+1 = 0 and sb∗ = +, so

[|00〉 (〈10|+〈01|)+h.c.]bP
0
b∗+1 |~s〉 =

√
2 |~s〉. Therefore, we conclude that for each ~s such that

c~s 6= 0 Hnon−int |~s〉 =
√

2 |~s〉, and using Eq. (A.55), we have Hnon−int |ψα=3〉 =
√

2ψα=3.
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Appendix B

Constraint-induced delocalization

B.1 Extracting the disorder strengths W ∗(L) and WT (L)
The average gap ratio r obtained for disordered PXP model with the constraint radius
α = 2 is shown in Fig. B.1a). A crossover between the ergodic regime at small disorder
strengths W with r ≈ rGOE ≈ 0.53 and the MBL regime at a large disorder with r ≈
rPS ≈ 0.39 is clearly visible.

To extract the disorder strength WT (L) we find a crossing point of the r(W ) curve for
a given system size L with a constant r = rGOE − p, as shown in Fig. B.1b). We take
p = 0.01 and we have verified that setting p ∈ (0.005, 0.02) does not change the quantitative
behavior of WT (L) curves reported in the main text. We note that the value of parameter
p is chosen in such a way that the average gap shows a “small deviation” from the GOE
value at WT . When the value of p is larger, e.g. p ∈ (0.03, 0.05) (data not shown), the
small L behavior of WT (L) is affected, however, the coefficient a describing the asymptotic
linear growth WT (L) = aL+ b+ c/L+ d/L2 remains the same within error bars.

The disorder strength W ∗(L) is obtained as a crossing point of r(W ) curves for system
sizes L1, L2 such that L = (L1 + L2)/2. Fig. B.1c) illustrates the extraction of W ∗(L =
26) = 6.00(4) for disordered PXP model with α = 2. For W = 6.2 > W ∗(L = 26), we
observe that the average gap ratio r decreases down to rPS with increase of L when L < 26.
At those system sizes the system is in the MBL regime for W > W ∗(L = 26). However,
at sufficiently large L this is no longer the case and the system enters the “critical regime”,
as the comparison of r for L = 28 and L = 32 at W = 6.2 shows.

Due to a large variation in the scaling of Hilbert space dimension with system size L for
various α, we proceed as follows when choosing L1 and L2 in the process of determination
W ∗(L):

• for models with α ≤ 2, we choose 2 ≤ |L1 − L2| ≤ 4. As the minimal difference
between L1 and L2 we take 2, because the r(W ) curves for |L1 − L2| = 1 lie very
closely to each other which prevents us from an accurate determination of the crossing
point. Disorder strength W ∗(L) is supposed to reflect the properties of the system
at length scale L. To that end the values of L1 and L2 must be possibly close to L,
hence we use |L1 − L2| ≤ 4. The uncertainty of the length scale L at which W ∗(L)
increases for larger values of |L1 − L2|. While this could be taken into account by
adding an error bar on the value of L, we opt for choosing possibly small value of
|L1 − L2| for each model considered.

• for models with α > 2, we choose 4 ≤ |L1−L2| ≤ 2(2 +α). Such a value of |L1−L2|
is a result of balancing the two trends: we want |L1−L2| to be possibly small (so that



76 B.1. EXTRACTING THE DISORDER STRENGTHS W ∗(L) AND WT (L)

Figure B.1: Determination of disorder strengths WT (L) and W ∗(L). a) The average gap
ratio at the middle of the spectrum for disordered PXP model with constraint radius α = 2;
b) WT (L) is found as a disorder strength W for which r(W ) = rGOE − p ≈ 0.52 (denoted
by the red line); c) The crossing point (denoted by ∗) of the gap ratio vs disorder strength
r(W ) curves for L = 24 and L = 28 determines W ∗(L = 26) = 6.00(4).

Figure B.2: The average entanglement entropy 〈S〉 of eigenstates at the middle of the spec-
trum of disordered PXP models divided by the entanglement entropy of random Gaussian
states SRG as a function of disorder strength W for various system sizes L and radius of
constraint α.

Figure B.3: The ergodic-MBL crossover in disordered PXP models. Disorder strengths
WT (L) andW ∗(L) are obtained from analysis of the rescaled average entanglement entropy
of eigenstates and plotted as function of the systems size L. Solid lines denote fits of the
form W (L) = aL+ b+ c/L+ d/L2. The insets show derivatives of data with respect to L.
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L1 and L2 are close to L), but not too small because then the determination of the
crossing point is impeded. In the case of disordered PXP models: for α = 5 we use
|L1 − L2| = 4, 6, 8; for α = 7 we use L1 − L2| = 6; for α = 10 we use |L1 − L2| = 8.
For the constrained models with U(1) symmetry we use |L1 − L2| = (2 + α) and
|L1 − L2| = 2(2 + α).

B.2 Analysis of the crossover in the average bipartite entan-
glement entropy of eigenstates

In a similar way one can analyze the crossover between the ergodic and MBL regimes using
the average bipartite entanglement entropy of eigenstates 〈S〉. The average is performed
over min{Nα/20, 1000} eigenstates in the middle of the spectrum and over all disorder
realizations. Subsequently, the obtained values of the average entanglement entropy 〈S〉 are
divided by the entanglement entropy of random Gaussian states SRG for the constrained
model of radius α. The value of SRG is calculated numerically. The resulting rescaled
entanglement entropy 〈S〉 /SRG is expected to be close to 1 in the ergodic phase and to
follow a 1/L scaling at large disorder strengths when the entanglement of eigenstates follows
an area-law. This is indeed observed, as we show in Fig. B.2.

The disorder strengthWT (L) is extracted from the rescaled entanglement entropy data
at the point at which 〈S〉 /SRG = 0.8 (other values in the interval (0.7, 0.95) give similar
results). The rescaled entanglement entropy 〈S〉 /SRG can be used to determine crossing
points resulting inW ∗(L), analogously as in the case of the average gap ratio. The disorder
strengths WT (L) and W ∗(L) obtained in such an analysis of the rescaled entanglement
entropy data are shown in Fig. B.3. The linear drift of the whole ergodic-MBL crossover
with increasing system size L to larger disorder strengths is clearly observed. This supports
the conclusions obtained from the analysis of the average gap ratio in the main text.

B.3 Localization of wave function in the Fock space
In the main text we have shown that WT (L) as well as W ∗(L) increase linearly with L at
sufficiently large system size: WT (L) ∼ wTL and W ∗(L) ∼ w∗L. We have also established
that wT ≤ w∗.

The recent work [137] examines the behavior of fractal dimensions Dq for random quan-
tum Ising model, finding that the wave function of the system is localized in the Fock space
for WAT (L) = w′L. Anderson localization of wave function is much stronger ergodicity
breaking than MBL (which is defined on the level of local observables). Nevertheless, this
results is consistent with our predictions provided that w′ > w∗.

B.4 The radius of Fock space

In this section we provide arguments supporting the expectation that the kinetic term is
getting more effective with increasing constraint radius α for the PXP models and that it
is not the case for the constraints models with U(1) symmetry.

Let us take an arbitrary eigenstate |n〉 of Szi operators which can be mapped to a certain
Fock state of spinless fermions. Such a state is an eigenstate of the Hamiltonian of the
constrained model in the large disorder (W → ∞) limit. We consider now the following
procedure. Acting with Hamiltonian H on |n〉, we obtain a state H |n〉 which is a non-
trivial superposition of Fock states. The minimal integer R for which HR |n〉 has a non-zero
overlap with all Fock states in the Hilbert space, averaged over initial states, defines a Fock
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Figure B.4: The average radius of the Fock space 〈R〉 as function of the system size L for
varying constrain radius α. For PXP models – panel a) – 〈R〉 ≈ 1

κL where κ is increasing
linearly with α (see the inset); for the constrained models with U(1) symmetry, 〈R〉 ≈ 1

2L
for large constraint radius α.

space radius 〈R〉. The bigger the value of 〈R〉, the larger is the number of actions of the
kinetic term of Hamiltonian H needed to reach an arbitrary Fock state. Hence, it may be
expected that the localization will be favored in systems where 〈R〉 increases rapidly with
the system size L. And conversely, slow growth of 〈R〉 with system size L means that only
few actions of H is needed in order to reach an arbitrary state from a given initial state,
hence the Fock states are much more prone to delocalization over the whole Hilbert space.

The values of the average Fock space radius 〈R〉 for PXP models shown in Fig. B.4
a), demonstrate the approximately linear dependence 〈R〉 = 1

κL + const for all values of
constraint radius α. The coefficient κ is linearly increasing with the constrain radius as
the inset in Fig. B.4 a) shows. This implies that the disordered PXP models are indeed
more prone to delocalization as the constraint radius is increased – this is reflected both
in the values of W ∗ growing with α as well as in the well pronounced linear behavior of
the W ∗(L) curves at large L. In fact, the oscillations on top of the linear trend in W ∗(L)
for disordered PXP models with α = 5, 7, 10 match the stair-like structure that appears in
〈R〉 (L) dependence.

The average Fock space radius 〈R〉 for the constrained models with U(1) symmetry is
shown in Fig. B.4 b) confirming that 〈R〉 ≈ 1

2L at large α. This makes the constrained
models with U(1) symmetry much more prone to localization in comparison to disordered
PXP models. However, the interplay of disorder and constraints, described in the main
text, assures the ergodicity of the constrained models with U(1) symmetry at sufficiently
large system size.
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Figure B.5: Mapping between constrained model (constraint radius α = 1) with U(1)
symmetry (top) and an unconstrained model.

B.5 Forward approximation for disordered PXP models

The forward approximation (FWA) provides a perturbative expression for the coefficients
ψ(n) of eigenstates in the basis of Fock states |n〉 [201]. The coefficient is equal (to the
lowest order in 1/W ) to

ψ(n2)r =
∑

p∈spaths(n1,n2)

∏
n∈p

1

En1 − En
, (B.1)

where spaths(n1, n2) are the shortest paths connecting the Fock States |n1〉, |n2〉, it was
assumed that ψ(n2)→ δn,n2 asW →∞ and r is the length of the path between states |n1〉,
|n2〉. FWA allows to qualitatively capture the MBL in disordered XXZ spin chain [201].
The localization occurs when the amplitude of the wavefunction decreases exponentially
with distance from the center of the localization of a given eigenstate. Hence, we study
the average growth rate:

ZR =
log |ψ2

R|
2R

, (B.2)

where the wavefunction ψR is calculated for the longest available paths with the average
length of the Hilbert space radius R. This quantity, averaged over the centers of localization
n1 and over disorder realizations gives rise to 〈ZR〉 shown in Fig. B.6 a), b) for disordered
PXP models. FWA clearly captures the ergodic regime at small disorder strength W for
which 〈ZR〉 increases with system size L. The localized regime for which 〈ZR〉 decreases
with L is also visible. The crossing point of 〈ZR〉 (W ) curves for different L occurs at
W ∗FWA ≈ 2.7 both for α = 1 and α = 10 (and is, within the error bar, the same for all all
α ∈ [1, 10]). Fixing the system size to L = 34 and varying the radius of constraint α, we
see that 〈ZR〉 collapse upon rescaling 〈ZR〉 → 〈ZR〉 /fFWA where the factor fFWA depends
linearly on the system size as shown in Fig. B.6.

The results of FWA, predicting a localization transition at the disorder strengthW ∗FWA

independent of the constraint radius α, are in a striking mismatch with the exact diagonal-
ization data discussed in the main text which show that the crossover to localized regime
occurs at a disorder strength increasing with α. Hence, the non-perturbative (beyond the
FWA) effects destabilize the localized regime. Moreover, the impact of non-perturbative
effects is getting stronger with increasing α since the mismatch betweenW ∗FWA andW ∗(L)
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Figure B.6: Forward approximation for disordered PXP models. Panels a), b): the loga-
rithm FWA amplitude 〈ZR〉 (see text) for constraint radius α = 1, 10. Panel c) the collapse
of 〈ZR〉 (W ) for fixed system size L = 34 and varying radius of constraint α ∈ [1, 10] is
obtained after a rescaling 〈ZR〉 → 〈ZR〉 /fFWA. The factor fFWA is shown in the inset in
panel c).

from exact diagonalization data increases with α. Such a scenario can be anticipated from
the FWA results: the values of 〈ZR〉 in the localized regime are orders of magnitude smaller
for α = 10 than for α = 1. Hence, it seems plausible that the non-perturbative effects will
be more apparent in systems with larger α.

The crossover between ergodic and MBL regimes in disordered PXP models was in-
terpreted in favour of a stable MBL phase in [118]. The main argument of [118] is that
the projection operators Pαi commute with the disorder term

∑
i hiS

z
i and hence do not

introduce new terms in expansion of a Fock state |n〉 in the 1/W perturbation series, in
addition to removing some amplitudes which are instead allowed in their absence, for any
fixed L. The argument was limited to lowest orders in perturbation theory and in this sense
it cannot be considered rigorous. In fact, while it is true that for any given system size L
the amplitudes are reduced by the presence of the constraints, it seems from our results
that this simply moves the amplitudes growth up to some larger length scale (increasing
with α), and that going to sufficiently larger L one recovers the lost amplitudes and then
some more. We believe this ultimately leads to delocalization.

It is also true that one cannot, prima facie, discard the hypothesis that, for any given
α, W ∗(α,L) → W ∗c (α) < ∞; But by comparing systems with different L’s and α’s we
believe our data and interpretation do provide a coherent picture of delocalization in these
constrained models. The impact of effects which occur beyond the FWA is apparent from
the mismatch between FWA and exact diagonalization result. We believe that it is the
strong non-perturbative effects, which cannot be captured within perturbation theory, that
underlie the delocalization of the considered constrained models.

B.6 The mapping between constrained and unconstrained
models

The mapping between constrained and unconstrained models is schematically shown in
Fig. B.5. State |ψα=1〉 = |010010100〉 is a state of the constrained model with constraint
radius α = 1. Due to the presence of constraints, the particles on sites i = 4 (i = 6), where
numeration starts from i = 0, cannot hop to the right (left). To map a state of model with
constraint radius α and size L to a state of unconstrained model, each particle is joined
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Figure B.7: The average gap ratio at the middle of the spectrum of disordered PXP models
a function of disorder strength W for various system sizes L and radius of constraint α.

Figure B.8: The average gap ratio at the middle of the spectrum of disordered constrained
models with U(1) symmetry (Hamiltonian (2) in the main text) a function of disorder
strength W for various system sizes L and radius of constraint α.

with α sites to its right (in some sense each particle acquires a 1+α site radius). To assure
that it can be done for each particle α sites are added at the right end of the chain, so
that the chain is of size L + α. Subsequently, each ’particle’ of radius 1 + α is replaced
by an ordinary spinless fermion. The resulting chain size is L + α − Nα. The procedure
can be performed for each Fock state of the constrained model establishing a 1:1 mapping
between a constrained model with N particles on L sites with constraint radius α (and
open boundary conditions) to a model of N spinless fermions on L− α(N − 1) sites.

B.7 Average gap ratio for constrained models

Data for average gap ratio for disordered PXP models and for constrained models with
U(1) symmetry, used to extract the disorder strengths W ∗(L) and WT (L) is shown in
Fig. B.7 and Fig. B.8.
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