@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

15th International Particle Accelerator Conference,Nashville, TN

ISBN: 978-3-95450-247-9

ISSN: 2673-5490

JACoW Publishing
doi: 10.18429/JACoW-IPAC2024-MOPC25

ENHANCING BEAM INTENSITY IN RHIC EBIS BEAMLINE VIA
GPTUNE MACHINE LEARNING-DRIVEN OPTIMIZATION*

X. Gu', B. Coe, T. Kanesue, M. Okamura
Brookhaven National Lab, Upton, NY, USA
Y. Hao, Michigan State University, East Lansing, MI, USA
J. Qiang, X. S. Li, Y. Liu, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract

The application of machine learning techniques to ac-
celerator research has led to significant breakthroughs in
optimization strategies. This paper presents a pioneering
study using a novel machine learning algorithm, GPTune, to
optimize beam intensity by adjusting parameters in the EBIS
injection and extraction beamlines. Our research demon-
strates substantial improvements, achieving a remarkable
22% and 70% increase in beam intensity at two separate
measurement locations.

Furthermore, the XGBoost package is employed for of-
fline data analysis to evaluate the individual impact of each
parameter on beam intensity. This analysis provides valu-
able insights to guide us toward optimal parameter settings,
paving the way for further beam intensity enhancements.

INTRODUCTION

Brookhaven National Lab has successfully developed the
Electron Beam Ion Source (EBIS) [1], a compact and ver-
satile heavy ion accelerator. EBIS serves as the pre-injector
system for both the Relativistic Heavy Ion Collider (RHIC)
and NASA Space Radiation Laboratory (NSRL). It utilizes
an electron beam ionization source followed by a radiofre-
quency quadrupole linac and an interdigital H linac.

One of EBIS’s key advantages is its ability to produce
short, high-intensity pulses of ions. These pulses are ideally
suited for single or few-turn injection into synchrotrons like
RHIC, where ions need to be injected quickly and efficiently.
Additionally, EBIS offers significant operational benefits
compared to traditional injector systems. Its lower energy
consumption translates to reduced operating costs, while its
ability to quickly switch between different ion beams within
one second enhances operational flexibility. This, in turn,
allows for the simultaneous feeding of beams of different
ions to RHIC and NSRL, enabling quick transitions between
various ion species for diverse research programs.

Figure 1 shows the layout of the EBIS system. The sys-
tem comprises several beamline sections, and they are LION
(Laser Ion Source), EBIS Injection Line, EBIS, EBIS Extrac-
tion Line, RFQ, MEBT, Linac, and HEBT. Each beamline
section has numerous parameters that can influence beam
performance. These operational parameters can affect beam
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performance simultaneously, making it challenging to isolate
their individual effects.

Furthermore, the beam intensity signal exhibits signifi-
cant noise at xf14 (current transformer). Optimizing these
parameters individually based solely on the intensity signal
would be a time-consuming task. This is due to the instabil-
ity of the beam intensity when the system is not optimized,
necessitating the collection of multiple data cycles to obtain
representative intensity values. This is particularly true af-
ter certain parameters have already reached their optimal
values.

To address the aforementioned issues and optimize EBIS
beam intensity online, a machine learning algorithm, GP-
Tune [2], was implemented on the EBIS beam injection and
extraction lines at the conclusion of the RHIC 2023 run.

Concurrently, following the online optimization with
GPTune, we applied a machine-learning algorithm, XG-
Boost [3—6], to the same operational data for offline analysis.
Upon acquiring the data for these parameters and construct-
ing a model using XGBoost, the beam intensity as a function
of individual parameters can be plotted separately for dis-
tinct parameters. This enables the identification of optimized
operational parameters.

GPTUNE OPTIMIZATION

Experimental Setup

During the optimization, the ion beam species was Si*!1.

The beam injection system (Booster-AGS) has a supercycle
time of 6.6 seconds. Although within a single supercycle,
up to 12 pulses of EBIS beam could be injected into the
Booster-AGS ring, while only one pulse was injected into
the Booster-NSRL target room. Only one pulse of the ion
beam was then used for subsequent processes.

Meanwhile, some power supplies require two supercy-
cles for their outputs to settle. After the power supplies
stabilize, the script takes four measurements for averaging,
each separated by the supercycle time, to obtain more robust
statistics.

The Faraday-cup FC96 measurement was used for injec-
tion optimization, employing 9 control parameters with 70 it-
erations. Similarly, the current transformer XF14 measure-
ment was used for extraction optimization, utilizing 10 con-
trol parameters with 60 iterations. The conversion factors
from raw integral to beam charge vary depending on the
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Figure 2: 30 mA CW electron beam current test in 2018.

location. At xf14, 1 uVs corresponds to 1.43 nC, while at
fc96, the same signal translates to 0.109 nC.

Injection Line Optimization

During the optimization, the injection and extraction beam
lines were initially optimized separately. When optimizing
the injection line, the current transformer fc96 was used to
measure the ion beam intensity.

Figure 2 shows the progress of the injection line opti-
mization using GPTune. The horizontal axis represents the
iteration number of the GPTune script, while the vertical
axis represents the normalized and averaged signal of fc96.
As mentioned earlier, GPTune aims to minimize the sig-
nal to achieve maximum output; therefore, a more negative
value indicates a better optimization result. As Fig. 2 demon-
strates, GPTune finds a significantly improved result after
approximately 45 iterations for the 9 variable parameters.

Figure 3 displays the fc96 beam intensity signal during
the optimization process (between the two vertical green
lines). Following the optimization, the average beam inten-
sity increased from 11.5 uVs to 14.0 uVs, representing an
improvement of approximately 22 %.

Extraction Line Optimization

Figure 4 depicts the progress of injection line optimization
using GPTune. It’s evident that GPTune identifies a superior

MOPC: Monday Poster Session: MOPC
MC1.A08 Linear Accelerators

L

14; ...-'
SO N . 2
g 10 ","'-‘.\-. o
2 ]
£ s Ay
: 3 -
o Foar k!
fis] e .
a-‘.' A & E
! k. et .\ :
. o . L. . ¥
ok . 5.“36 ‘{‘.‘;'-’ % %m%ﬁfrm
. !j'i ﬁ 4 .

12:30 12:40 12:50 13:00 13:10 13:20 13:30 13:40 13:50 14:0
Time

Figure 3: Injection Line Optimization Result. Red dots
represent the fc96 signals, and black dots represent the xf14
signal.

outcome after approximately 45 iterations with 10 control
variable parameters.

Figure 5 illustrates the xf14 beam intensity signal dur-
ing the optimization process (delineated by the two vertical
green lines). Post-optimization, the average beam intensity
exhibited a substantial increase from 1.4 uVs to 2.0 uVs,
translating to a remarkable 43 % improvement.
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Figure 4: Extraction Line Optimization using GPTune.
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Figure 5: Extraction Line Optimization result.

While xf14 and fc96 share the same unit, direct com-
parison of their results is not feasible due to the utilization
of different normalization factors during post-measurement
data processing.

Injection and Extraction Combined Optimization
Settings

In the previous sections, we optimized the injection and
extraction lines separately. Their power supply settings were
also saved individually. To evaluate their combined contri-
bution to beam intensity, we compared the intensity under
three settings:

* Inj + Ext: Power supplies optimized for both injection
and extraction lines

» Ext: Power supplies optimized only for extraction with
original injection settings
* Original: Original settings without any optimization

The optimization results for the three different settings are
shown in Fig. 6. In Fig. 6, the red and black dots represent
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Figure 6: Optimization results with different settings: Inj +
Ext, Ext only, and Original.
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the measurements from fc96 and xf14, respectively. The
green and cyan numbers represent the average beam intensity
with their deviations for the fc96 and xf14 measurements.

Figure 6 reveals a characteristic of the beam intensity
signal: substantial noise. The standard deviation is +10 %,
and the peak-to-peak deviation is +15 %. This demonstrates
GPTune’s outstanding capability to handle noisy signals, a
valuable feature for many experimental settings.

From Fig. 6, we observe significant intensity gains:

* xf14 measurement: 42 % for extraction-only optimiza-
tion and 68 — 71 % for combined optimization.

* fc96 measurement: 8.4 % for extraction-only optimiza-
tion and 22 — 24 % for combined optimization.

SUMMARY AND DISCUSSION

In this paper, we demonstrate the power of GPTune as
an optimization tool. We applied it to EBIS intensity opti-
mization and achieved a 22 to 24 % intensity improvement
at fc96 (reaching 70 % with xf14 CT). This was achieved
despite the presence of noisy signals with +10 % standard
deviation and involving 19 variables. We plan to expand
GPTune’s use to other beamlines in the RHIC complex.

Meanwhile, XGBoost exhibits excellent model construc-
tion capabilities. Combined with model interpretation al-
gorithms like SHAP, it can provide valuable insights into
setting operation parameter ranges.
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