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We set up a covariant renormalisation group equation on a foliated spacetime which preserves 
background diffeomorphism symmetry. As a first application of the new formalism, we study the effect 
of quantum fluctuations in Lorentz symmetry breaking theories of quantum gravity. It is found that once 
a small breaking is introduced e.g. at the Planck scale, quantum fluctuations enhance this breaking at low 
energies. A numerical analysis shows that the magnification is of order unity for trajectories compatible 
with a small cosmological constant. The immediate consequence is that the stringent observational 
constraints on Lorentz symmetry breaking are essentially scale-independent and must be met even at 
the Planck scale.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The beginning of the 20th century has been a very successful 
time for theoretical physics. On the one hand, the foundations of 
quantum mechanics were laid out, leading ultimately to the formu-
lation of the Standard Model (SM) which describes the electromag-
netic, weak and strong interactions. On the other hand, Einstein 
put forward his theory of General Relativity, showing that gravity 
could be seen as the effect of the curvature of spacetime. Despite 
tremendous effort, no consistent theory combining quantum me-
chanics with gravity is available at present. Different contesters 
include Loop Quantum Gravity [1,2], String Theory [3,4], Asymp-
totic Safety, both in continuum [5–8] and discrete [9] formulations, 
Causal Sets [10,11] and many more. Nevertheless, none of the ap-
proaches can claim full success in the combination of gravity and 
the SM.

A key guiding principle in the construction of the SM is Lorentz 
invariance. Experimentally this is well justified: we do not have 
any reason to believe that at the presently available energies this 
symmetry is broken [12,13]. However, it is well-known that cou-
pling constants in quantum field theories as the SM depend on the 
energy scale of the process under consideration. It is thus con-
ceivable that coupling constants related to Lorentz-breaking terms 
are important at trans-Planckian energy scales, whereas they be-
come negligible at scales currently accessible by experiment. This 
is the general idea of Hořava-Lifshitz (HL) quantum gravity [14,15]. 
In this approach one tries to circumvent the problem of the pertur-
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bative non-renormalisability of quantum gravity by introducing an 
anisotropic scaling in the form of higher order spatial derivatives of 
the metric. These might cure the ultraviolet divergences and thus 
make a perturbative quantisation of gravity similar to that of the 
SM possible [16,17]. For reviews of HL gravity, see [18–20], and for 
the experimental status see [12,13,21–27]. A discussion of explicit 
and spontaneous symmetry breaking in the present context can be 
found in [28–31], and for recent work on modified dispersion re-
lations inspired by Causal Dynamical Triangulations, see [32].

An open issue in HL gravity is whether Lorentz invariance can 
be restored, at least to a high precision, at large enough length 
scales. Depending on whether quantum fluctuations enhance or di-
minish the breaking, HL is viable as a theory of quantum gravity. In 
this letter, we will analyse this question by setting up a renormal-
isation group (RG) equation for foliated spacetimes which reduces 
to the equation derived in a covariant setting if no breaking terms 
are present.

2. Functional renormalisation group

The functional renormalisation group (FRG) is a versatile non-
perturbative tool to investigate quantum fluctuations. We will use 
the formulation introduced in [33–35],

k∂k�k = 1

2
STr

[(
�

(2)

k +Rk

)−1
k∂kRk

]
. (1)

In this equation, �k is the effective average action which describes 
processes at some scale k, �

(2)

k its second functional derivative 
with respect to the dynamical fields, and Rk is a regulator which 
acts as a momentum-dependent mass term. Finally, the supertrace 
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STr sums over discrete and integrates over continuous indices. Due 
to the regularisation, the equation is well-defined both in the ul-
traviolet and the infrared.

This equation has seen successful exploitation in a variety of 
contexts in quantum field theory and condensed matter, but in 
particular also in quantum gravity [36–68]. For reviews of the FRG 
in quantum gravity see [5,6,69–73], and for a recent reformulation 
taking appropriate care of the normalisation of the partition func-
tion see [74].

The technical challenge of the present work is to implement 
this flow equation for quantum gravity in a foliated setup. Earlier 
approaches [59,75–81] have not been able to retain the full back-
ground diffeomorphism invariance for invariant theories, and thus 
in these approaches it is hard to decide whether contributions to 
the energy dependence of symmetry-breaking couplings stem from 
these breaking terms or from genuine physical effects. In the fol-
lowing, we will advocate a formulation without this deficit.

3. Foliation setup

Renormalisation group calculations in quantum gravity heavily 
rely on the use of the background method. In this, the dynam-
ical, d-dimensional (Lorentzian) metric gμν is split into a fixed 
but arbitrary background metric ḡμν , and (not necessarily small) 
perturbations hμν around that. This entails, for a linear parameter-
isation of the perturbation,

gμν = ḡμν + hμν . (2)

Nonlinear parameterisations have received a lot of interest recently 
[37,39,40,47,82–90]. Let us now establish the foliation setup. For 
the given Lorentzian metric gμν , we introduce a timelike, nor-
malised vector n and a spatial metric σ orthogonal to n, such that

gμν = σμν + nμnν ,

gαβnασβγ = 0 ,

gμνnμnν = 1 .

(3)

For the study of the renormalisation of local actions, it is presum-
ably enough to assume local existence of the vector field nμ , and 
in the following we will restrict ourselves to this case.

The central idea of this work is to start in a background dif-
feomorphism invariant setup in the metric language, and then to 
replace the metric perturbation h by the corresponding foliation 
perturbations, restricting the path integral to foliated spacetimes 
only. This is most easily done if this map is linear, as then the 
one-loop structure of the flow equation (1) is preserved. For this 
reason, we choose a linear parameterisation for the n-fluctuations, 
but a particular quadratic parameterisation for the σ -fluctuations:

nμ = n̄μ + n̂μ ,

σμν = σ̄μν + σ̂μν − n̂μn̂ν .
(4)

Hatted quantities refer to the fluctuating fields. We also assume 
that the background quantities fulfil the corresponding relations 
of normalisation and orthogonality (3). With this parameterisation, 
the map between h and the foliation fluctuations is indeed linear 
as the quadratic piece cancels,

hμν = σ̂μν + n̄μn̂ν + n̂μn̄ν . (5)

Clearly, in the process of going from h to σ̂ and n̂, we increased 
the number of degrees of freedom from 10 (symmetric matrix in 
4d) to 14 (symmetric matrix plus vector). On the other hand, σ̂
and n̂ are not completely independent, as the full spatial metric 
σ and timelike vector n have to fulfil their respective constraints 
(3). A short calculation shows that the simplest solution to both 
constraints is1

Fν := n̄μσ̂μν − n̄μn̂μn̂ν = 0 . (6)

This constraint is implemented via a Lagrange multiplier, similar to 
a gauge fixing, and we will call this procedure suggestively folia-
tion gauge fixing. No (dynamical) ghosts arise from this procedure 
as the functional Fν is ultralocal.

With these two ingredients, we already have the dictionary be-
tween the metric and the foliation language. On a path integral 
level,

Z ∼
∫

Dh ei(S[ḡ,h]+Sgf[ḡ,h])

∼
∫

Dσ̂Dn̂ ei(S[ḡ,σ̂ ,n̂]+Sgf[ḡ,σ̂ ,n̂]+Sf[ḡ,σ̂ ,n̂]) ,
(7)

where S is some gravitational action, e.g. the Einstein-Hilbert ac-
tion or an f (R) action. Let us stress at this point that in the path 
integral we only include foliatable spacetimes. Moreover,

Sf = 1

32πG Nαfol

∫ √|ḡ|ḡμνFμFν (8)

is the foliation gauge fixing action with foliation gauge parameter 
αfol, S g f is the gauge fixing action, and we suppressed the integral 
over the Faddeev-Popov ghosts and their corresponding action. For 
simplicity, we will choose a harmonic gauge fixing,

Sgf = 1

32πG N

∫ √|ḡ|ḡμνFμFν ,

Fμ =
(

δα
μ D̄β − 1

2
ḡαβ D̄μ

)
hαβ .

(9)

For a recent analysis of the gauge dependence of the renormali-
sation group behaviour of quantum gravity, we refer the reader to 
[37,61].

3.1. Approximations

Having specified this setup, we can now apply the standard ma-
chinery of the FRG to obtain the renormalisation group running of 
couplings appearing in a given action. Since we have access to a fo-
liation structure, our action can include terms which break the full 
diffeomorphism symmetry but are invariant under foliation pre-
serving diffeomorphisms. In the following, we will combine the 
Einstein-Hilbert action,

SEH = 1

16πG N

∫ √|g| (−R + 2�) , (10)

with Newton’s constant G N and the cosmological constant � as 
the two coupling constants, and all breaking terms with up to two 
derivatives,

S̃ = 1

16πG N

∫ √|g|
(

k2 K μν Kμν + k0 K 2 + a1AμAμ

)
, (11)

with breaking coupling constants k0, k2 and a1. In this,

1 More complicated solutions to the constraints exist which differ by terms at 
least quadratic in the fluctuations. These do not contribute in the subsequent ap-
proximations, where only the linear part is important; other choices of solutions 
will be considered elsewhere.
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Kμν = 1

2

(
nα Dασμν + Dμnν + Dνnμ

)
(12)

is the extrinsic curvature of spatial slices, and is orthogonal to the 
normal vector,

nμKμν = 0 . (13)

K is the trace of the extrinsic curvature,

Aμ = nα Dαnμ (14)

is the so-called acceleration vector. A term proportional to the in-
trinsic (3-dimensional) Ricci scalar can be reabsorbed in the terms 
already present by a Gauss-Codazzi equation, up to a total deriva-
tive which we neglect. Our ansatz for the action appearing in the 
path integral is thus

S = SEH + S̃ . (15)

Before we go on and derive the RG running of the 5 couplings 
(G N , �, k0, k2, a1), let us emphasise that the given construction 
links the fully diffeomorphism invariant metric language on foli-
atable spacetimes to a still invariant language which has explicit 
access to the foliation structure. This construction is intimately re-
lated to the question of a well-defined Wick rotation. A closely 
related proposal for a Wick rotation in curved spacetimes can be 
found in [91], which should carry over to the present setup. Thus 
this flow provides a link for previous Euclidean RG studies of quan-
tum gravity to flows on foliatable Lorentzian spacetimes. The RG 
flow of the non-breaking couplings in the foliation language is the 
same as in the metric language. The new implementation is in 
spirit very close to causal dynamical triangulations (CDT), and the 
present RG equation allows a more direct connection of the flow in 
the discrete and the continuum.

4. Foliated renormalisation group equation

We are now in the situation to set up the RG flow for fo-
liated spacetimes. In the following, we will use the background 
field approximation: once the hessian �(2)

k is calculated, the fluc-
tuations are set to zero. This is for technical simplicity, for more 
elaborate approximations retaining parts of the fluctuation depen-
dence in pure gravity see [36,41–43,46,48,51,54,61–63,88,92–94]. 
To our ansatz for the effective action (15), where all couplings are 
replaced by k-dependent counterparts, we add the standard and 
foliation gauge fixings, (9) and (8). Finally, we have to specify the 
regulator. For this, we take

�Sk = 1

2

1

16πG N

∫ √|ḡ|h [1− 2
tr]Rk(�̄)h , (16)

where �̄ = −D̄2 is the background covariant Laplacian, 1 is the 
unit operator for symmetric tensors, 
tr is the projector onto the 
trace, Rk(�̄) is the regulator function and h is understood to be 
replaced by the foliation fluctuations according to (5). The minus 
sign in front of the trace part is due to the conformal instabil-
ity, which we treat in the standard way by choosing a regulator 
with the same sign as the kinetic term. Clearly, this regulator pre-
serves background diffeomorphism invariance by construction. On 
the other hand, in foliation language, nontrivial curvature terms 
are included in exactly the right way to preserve the symmetry. 
These additional terms would be very hard to guess if a regula-
tor would be constructed directly for the foliation fluctuations. In 
the ghost sector, we use a similar standard regularisation. In the 
background field approximation, the ghost contribution towards 
the flow is anyway the same as in the non-foliated setup. Since 
it does not involve graviton fluctuations, it can be directly copied 
from the literature [95].

The actual calculation of the RG flow is implemented by the 
Mathematica package xAct [96–101]. In the evaluation of the trace, 
one additional advantage of the present covariant approach mani-
fests itself: we can employ standard heat kernel techniques, see e.g.
[102,103], and do not have to resort to the much more complicated 
heat kernel for anisotropic operators [104–106]. Nevertheless, due 
to the additional background foliation structure, the technical com-
plexity is significantly larger than for unfoliated calculations. For 
that reason, we will restrict ourselves to the most interesting part 
of the flow: we only consider the diffeomorphism invariant part 
plus terms linear in the breaking couplings. With this, we can 
already evaluate whether Lorentz symmetry-breaking theories of 
quantum gravity stand a chance in restoring the symmetry at low 
energies. Let us finally note that to calculate the heat kernel trace, 
we assume that we can rotate to Euclidean signature.

Let us point out where earlier approaches failed to retain back-
ground diffeomorphism invariance in a foliated setup. The key 
point in our construction is that both the gauge fixing and the 
regularisation are exactly the same as in the invariant setting. We 
use a nonlinear split in the foliation setting so that the map be-
tween invariant and foliated language is linear, and thus no non-
linearities can spoil the setup. In all other approaches so far, the 
standard ADM formalism was used, which results in a highly non-
linear relation between invariant and ADM variables, and gauge 
fixing and regularisation were chosen for the linear parts of the 
ADM variables, spoiling background diffeomorphism invariance.

5. Results

For convenience let us first introduce the threshold integrals

Q α
n,m(μ) :=

∞∫
0

dz
zn

(
(2−α)Rk(z)−2zR′

k(z)
)

(z+Rk(z)+μ)m ,

Q̃ α
n,m(μ) :=

∞∫
0

dz
zn

(
(2−α)Rk(z)−2zR′

k(z)
)(

1+R′
k(z)

)2

(z+Rk(z)+μ)m .

(17)

We furthermore introduce the dimensionless couplings

g = G Nk2 , λ = �/k2 , (18)

and an overdot shall indicate a (k∂k)-derivative. The anomalous di-
mension of the background Newton’s constant is then given by

η = ġ − 2g

g
. (19)

With this, we can write down the flow equations for our system:

− η

16π g
= − 5

96π2
Q η

0,1(−2λ) + 1

16π2
Q 0

1,2(0)

+ 1

24π2
Q 0

0,1(0) + 3

16π2
Q η

1,2(−2λ)

+ 13a1 − 3k0 + 9k2

768π2
Q η

1,2(−2λ)

− 11a1 + k0 + 7k2

128π2
Q η

2,3(−2λ) ,

(20)

λ̇ + (2 − η)λ

8π g
= 5

16π2
Q η

1,1(−2λ) − 1

4π2
Q 0

1,1(0)

− 3(5a1 − k0 + 3k2)

2
Q η

2,2(−2λ) ,

(21)
256π
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k̇0 − ηk0

16π g
= −22a1 − 69k0 − 3k2

384π2
Q η

1,2(−2λ) , (22)

k̇2 − ηk2

16π g
= 22a1 − 3k0 + 39k2

384π2
Q η

1,2(−2λ)

+ 16a1 + 3k0 + k2

384π2
Q̃ η

3,4(−2λ) ,

(23)

ȧ1 − ηa1

16π g
= −a1 + 2k0 + 4k2

32π2
Q η

1,2(−2λ)

+ 16a1 + 3k0 + k2

128π2
Q̃ η

3,4(−2λ) .

(24)

By construction, the flow equations of the breaking couplings van-
ish when the breaking couplings themselves vanish, and the equa-
tions for ġ and λ̇ reduce to the flow equations of the covariant set-
ting [95]. Notice that the equations are independent of αfol , which 
is due to the linearisation in the breaking couplings. It comes 
about by the fact that the foliation gauge fixing operator only ap-
pears in the σ̂ σ̂ -part of the hessian, is proportional to n̄, and all 
propagators (which are expanded in the breaking couplings) are, to 
linear order in the breaking, contracted with the regulator, which 
is proportional to σ̄ in that sector. Terms of higher order in the 
breaking couplings are expected to be foliation gauge dependent. 
The set of equations (20)-(24) constitutes one of the main results 
of this work.

To further analyse the flow equations, we will use the Litim 
regulator [107,108],

Rk(z) = (1 − z)θ(1 − z) , (25)

where θ is the Heaviside theta function. We further linearise the 
flow of the breaking couplings in all couplings (not counting the 
overall prefactor of g), which simplifies the subsequent discussion 
and gives the leading order behaviour near the diffeomorphism 
symmetric hypersurface in coupling space. This reduces the equa-
tions to

k̇0 = − g

24π
(22a1 + 19k0 − 3k2) ,

k̇2 = g

24π
(22a1 − 3k0 − 49k2) ,

ȧ1 = − g

6π
(25a1 + 6k0 + 12k2) .

(26)

Notice that once any of the couplings is present, it immediately 
generates the other couplings. This implies that reductions to sub-
sets, e.g. the so-called λ − R model [15,109–112] which only retains 
k0, are in general not stable under renormalisation.

Before analysing the equations, let us point out their range of 
viability. Clearly, for large breaking couplings, the linear approxi-
mation is not applicable, we are thus confined to the situation of 
small breaking. We also expanded in g and λ, thus they should 
be small, which is the case in the semi-classical regime.2 Here 
we assume that the flow is close to the Gaussian fixed point, in 
agreement with observations which find a very small cosmologi-
cal constant [113]. From previous studies in the field, one sees the 
generic feature that at energies just below the Planck scale, the 
couplings already run classically, see e.g. [36,46,66,95]. Thus we ex-
pect the equations to be valid from slightly below the Planck scale 

2 Note that in the deep infrared, the dimensionless cosmological constant goes 
to ∞ owing to a finite dimensionful cosmological constant. Since λ appears in de-
nominators only, this further suppresses the flow, which is already suppressed by 
a dimensionless Newton’s constant which goes to zero. The approximation thus 
should do fine even in the deep infrared as long as we do not take into account 
positive powers of λ.
to the regime where the dimensional running of the cosmological 
constant sets in. This should include most of the phenomenologi-
cally interesting scales.

We can now make a statement about dynamical symmetry 
restoration. Assume that Lorentz symmetry is broken by some 
small amount, parameterised by the couplings (k0, k2, a1), at some 
high energy scale �UV. Using (26), one sees that for a fixed value 
of g > 0, the vector field of beta functions points towards the ori-
gin.3 To see this, we take the scalar product of the radial vector 
(k0, k2, a1) with the vector field (k̇0, ̇k2, ̇a1),

(k0,k2,a1) · (k̇0, k̇2, ȧ1)

= − g

24π

[
23

2
(2a1 + k0)

2 + 13

2
(2a1 + k2)

2

+ 28a2
1 + 15

2
k2

0 + 85

2
k2

2

]
≤ 0 ,

(27)

which is non-positive, i.e. it points inwards. This means that if we 
decrease the energy scale (increase the length scale), the break-
ing couplings grow generically. The consequence of this is that 
generically, quantum effects enhance the breaking of the Lorentz 
symmetry towards large scales. On the other hand, the flow of the 
breaking couplings dies out quickly in the infrared since in this 
regime g ∝ k2 as k → 0, owing to the correct classical limit of a 
finite Newton’s constant.

To decide which effect dominates, a numerical analysis has to 
be done. For this, we diagonalise the flow equations for the break-
ing couplings, (26). The eigenvalues of the corresponding matrix 
are approximately −0.21, −1.01 ±0.11i, thus the diagonalised cou-
plings d1, d2, d3 follow the flow

ḋ1 ≈ −0.21g d1 ,

ḋ2,3 ≈ (−1.01 ± 0.11i)g d2,3 .
(28)

These equations can be easily integrated. The infrared value of the 
coupling at scale k is related to its value at some ultraviolet scale 
�UV by

d1,k ≈ d1,�UV exp

⎡
⎣0.21

�UV∫
k

dk
g

k

⎤
⎦ ,

d2,3,k ≈ d2,3,�UV exp

⎡
⎣(1.01 ∓ 0.11i)

�UV∫
k

dk
g

k

⎤
⎦ .

(29)

Ignoring the oscillatory behaviour due to the complex part of the 
eigenvalues, the largest magnification of the Lorentz breaking is in 
the couplings d2,3.

Let us quantify the magnification factor. First, it is clear due to 
our invariant setting that the original fixed point of the Einstein-
Hilbert truncation persists, with breaking couplings set to zero. 
This is the only nontrivial fixed point in our approximation be-
cause of the linearisation in the breaking couplings. From this it is 
clear that we cannot sensibly take the limit �UV → ∞ to evaluate 
the magnification factor, since di,�UV → 0 in that limit, whereas the 
exponential diverges. Let us nevertheless try to give an estimate 
for the magnification. For this, we consider the separatrix connect-
ing the Gaussian and the nontrivial fixed point, as seen in Fig. 1, 

3 Recall that this vector field points from IR to UV, which is the opposite direc-
tion of the physical RG flow, which points from UV to IR.
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Fig. 1. Phase diagram of the diffeomorphism invariant cut plane. Arrows point to-
wards higher energies. The red, dashed trajectory is the separatrix joining the ultra-
violet fixed point and the Gaussian fixed point.

which is close to the trajectory realised in nature. For scales be-
low the Planck mass MPl , Newton’s constant runs canonically to a 
very good approximation, g ≈ 1

MPl
k2. We will take the Planck scale 

to cut off the scale integral:
√

MPl∫
0

dk
g

k
= 1

MPl

√
MPl∫

0

dk k = 1

2
. (30)

With this, we can estimate the magnification factors for the diag-
onalised couplings:

d1,0 ≈ 1.11d1,
√

MPl
, d2,3,0 ≈ 1.66d2,3,

√
MPl

. (31)

Translating back to the original couplings, we have⎛
⎝k0,0

k2,0
a1,0

⎞
⎠ ≈

⎛
⎝1.15 0.01 0.22

0.01 1.35 −0.24
0.24 0.52 1.92

⎞
⎠

⎛
⎝k0,

√
MPl

k2,
√

MPl

a1,
√

MPl

⎞
⎠ . (32)

This indicates that during the flow the breaking couplings in-
crease by a factor of order unity. Thus in practice even though 
Lorentz symmetry breaking is relevant, Lorentz symmetry break-
ing quantum gravity theories stand a chance if they provide a 
mechanism that drives the breaking couplings close to zero in the 
trans-Planckian regime. On the other hand, the calculation also 
shows that even if Lorentz symmetry breaking would be irrelevant, 
chances are that the breaking is not washed out in the infrared, be-
cause the flow of Newton’s constant strongly suppresses the flow 
of the breaking couplings.

To conclude, the very stringent experimental bounds on Lorentz 
violations together with the present results make a Lorentz sym-
metry breaking theory of quantum gravity less attractive, since 
the constraints are essentially scale-independent up to very high 
scales, pointing towards a substantial amount of fine-tuning.

6. Conclusions and outlook

In this letter, we have put forward several results:

• We have introduced a renormalisation group equation for fo-
liated spacetimes which preserves diffeomorphism symmetry 
if the original action is diffeomorphism invariant. For foliated 
spacetimes, there might exist a well-defined Wick rotation, our 
flow thus could provide a direct link of Euclidean flows to 
flows on foliatable Lorentzian manifolds.
• The new flow equation allows for a systematic study of renor-
malisation group flows of terms which break diffeomorphism 
symmetry. In particular, this should yield a very close link 
between the continuum approach and the Monte Carlo sim-
ulations of CDT, where an anisotropy parameter is introduced. 
This connection shall be investigated in the future.

• As an application of the new flow, we derived the leading or-
der flow equations of all couplings arising in a foliated setup, 
including up to two derivatives on the quantum fields. The 
analysis of this flow shows that generically the flow is not 
attracted towards the subspace spanned by diffeomorphism 
invariant action functionals. That means that General Relativ-
ity does not emerge from the RG running of HL gravity. The 
numerical analysis shows that the enhancement of the break-
ing is rather small, thus Lorentz symmetry breaking theories 
are not ruled out entirely by our analysis if they have a mech-
anism to drive the breaking couplings close to zero already at 
the Planck scale. The very slow RG running implies that the 
constraints on Lorentz symmetry violations essentially hold 
also at the Planck scale, posing significant challenges to any 
Lorentz symmetry breaking theory of quantum gravity.

A crucial point in a full description of nature is clearly the addi-
tion of matter, together with the corresponding Lorentz breaking 
terms. These might have the potential to change the relevance of 
the symmetry breaking. Furthermore the addition of matter al-
lows to disentangle different speeds of light, which is one of the 
key signatures searched for in experiments on Lorentz symmetry 
breaking.
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Renormalization of Hořava gravity, Phys. Rev. D 93 (6) (2016) 064022, https://
doi .org /10 .1103 /PhysRevD .93 .064022, arXiv:1512 .02250.

[17] A.O. Barvinsky, D. Blas, M. Herrero-Valea, S.M. Sibiryakov, C.F. Steinwachs, 
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