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Chapter 1

Introduction

The understanding of the violations of discrete symmetries as parity (P ), charge
conjugation (C) and time reversal (T ) presents interesting aspect and it is far
to be complete still nowadays. Many experiments, starting from Madame Wu’s
experiment, have confirmed the presence of “parity violation” (PV ) in weak in-
teraction accompanied by a corresponding C-violation, combined so that to have
conservation of the CP symmetry. These effects are well described in the Stan-
dard Model (SM) via fermion currents having both vector and axial components.
More complicated and more recent experiments have confirmed the presence of
tiny “parity violating” and “C-conserving” terms. From the CPT theorem these
terms must be “T -violating” (TV through this work). This violation is one of
the ingredients needed to explain why the visible universe seems to be made
predominantly of matter, without a significant fraction of antimatter [1]. The
violation observed in K and B decays are well described by the complex phase
in the Cabibbo-Kobaiashi-Maskawa (CKM) matrix, the mixing matrix of the
quarks [2]. However the CKM phase gives very small contributions to observ-
ables that do not involve flavour change between the initial and final states. In
particular it is insufficent to account for the observed matter-antimatter asymme-
try [3]. Other TV terms can be introduced in the foundamental Lagrangian of the
SM: the one we are most interested in, it is the so called θ-term in the quantum
chromodynamics (QCD) sector. The interaction term is estimated in terms of
gluon fields and it has a strength given by a parameter θ (further terms involving
other gauge bosons should play a neglegible role in hadron physics) [4]. It con-
tributes directly to the permanent electric dipole moments (EDM) of the neutron
dn = θ · (2.7±1.2) ·10−16 e cm [5]. From the current experimental estimate of the
neutron EDM, however the value of the θ angle is estimated to be . 10−10 [6].
The presence in the SM of a so small constant is the so called “strong CP prob-
lem” related also to the existence of the axions [7]. TV could originate also from
further terms beyond the standard model (BSM), as complex phase(s) in the the
Pontecorvo-Naki-Makagawa-Sakata (PNMS) matrix, the leptons mixing matrix
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2 CHAPTER 1. INTRODUCTION

counterpart of the CKM or also from more exotic mechanisms [6]. Therefore any
measurement of a non-vanishing TV effect above the CKM “background” would
be a signal of new physics.

In this respect the light nuclei could be good laboratories to study the violation
of these discrete symmetries. The PV and TV interactions contribute also to the
parity conserving (PC) nucleon-nucleon (NN) potential via second order effects.
This contribution is obviously totally “hidden” by the strong and electromagnetic
interactions and it is therefore not accesible experimentally. However, the PV
and TV effects can be highlighted considering physical observables that would
be zero if the nuclear interaction had only the standard strong interaction and
the electromagnetic interaction. These studies represent also a new “window” to
have information on the properties of the systems composed by light quarks and
gluons at low energies, and so in a highly non-perturbative regime.

PV effects in low-energy hadronic processes have been measured in few ex-
periments. Finite signals were obtained in proton-proton (pp) and pα scattering,
radiative decays of 19F, and other experiments. Strong upper bounds are found
in radiative np capture, radiative decays of 18F as well as for the spin rotation
of a polarized proton beam moving through a 4He gas [8]. Other experiments at
ultra-cold neutron facilities are being completed or are in advanced stage. The
interpretation of the experiments that involve medium-heavy nuclei is difficult
due to the complexity of the structure of these systems. For this reason most
of the new experiments to study PV effects involve light nuclei, where the cal-
culation of the nuclear structure is under control. The main objective of these
experiments is to determine the constants entering the PV NN potential.

The search of TV observables is another hot topic in modern Physics. The
most studied observable is the EDM, which require both P and T violation. The
current upper bounds on the neutron and proton EDMs are |dn| < 2.9 · 10−13e
fm [9] and |dp| < 7.9 · 10−12e fm [10], respectively, where the upper bound on
the proton EDM has been inferred from a measurement of the diamagnetic 199Hg
atom. In general a single EDM measurement will not be sufficent to identify the
source of TV and new experiments to measure the EDMs of light nuclei directly at
dedicated storage rings with an accurancy of∼ 10−16e fm have been proposed [11].
Other observables could test the TV effects in light nuclei framework, as for
example, from measurement of particular polarized neutron-polarized nucleus
forward scattering amplitudes [12]. In particular, in this work we will focus on
the rotation of the spin of polarized neutrons along the y axis [13, 14] which can
be used as an unambiguous TV observable.

A systematic description of PV and TV effects at nuclear level can be obtained
using the so-called chiral effective field theory (χEFT), the low energy effective
field theory of the QCD [15]. The χEFT approach is based on the observation
that the restrictions imposed by chiral symmetry in QCD has a noticeable impact
in the low energy regime [16, 17]. In particular the form of the interactions among
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the nucleons will have tight constrains due to this symmetry. This method has
put the nuclear physics on a more foundamental basis by provinding a direct con-
nection between the QCD symmetries and the strong and electroweak interaction
in nuclei and also a systematic scheme to construct the interactions, the so-called
chiral perturbation theory (ChPT) (see, for example, the review papers [18, 19]).
This method allows to order the different contributions as an expansion on Q/Λχ

where Q is the energy scale of the nuclear processes (∼ 10÷100 MeV) and Λχ ' 1
GeV specifies the symmetry-breaking scale.

There are different versions of the χEFT:

• the “pionless” theory: it assumes that the pionic degrees of freedom are
freezed and all the interactions reduces to nucleon-nucleon contact terms
(see for example [20]). Such a theory is valid at energy much lower than the
pion mass. For example it has been used to study PV effects in low energy
NN scattering, and in ultracold neutron experiments as PV asymmetries
in 1H(~n, γ)2H capture, spin rotation ~np and ~nd scattering, as well as other
observables [21];

• the “pionfull theory: both nucleons and pions are considered as dynami-
cal degrees of freedom. The energy range of the validity of this approach
extends up to energy of the order of the pion mass. This theory has been
found to work well in the PC sector [22, 23]. It is reasonable that the same
approach will also work for the PV and TV interactions. We will use this
approach in this work.

To each term of the nuclear Lagrangian is associated a low energy constant (LEC)
that takes into account the high energy physics. Usually these LECs are fixed from
observable experimental data but they can be also extimated using Lattice QCD,
or other non perturbative methods in terms of the parameters of the SM, or of a
for more fundamental theory. One of the aim of these studies of Nuclear Physics
is actually devoted to the determination of the parameters of the fundamental
theory, using experimental data taken in low-energy nuclear processes. To achieve
this result one needs to take into account the dynamics of the nucleons and to
obtain the LECs from present or future experimental data. This is the aim of the
present Thesis, where we focus on PV and TV observables which can be measured
in the study of the scattering of two-nucleons. In a successive step, further studies
will be required to relate the LECs to the parameters of the fundamental theory
using Lattice QCD or other methods (as the renormalization group method),
see, for example, Ref. [5] for a discussion of the methods used to study the TV
interaction.

In most of the works in literature, the calculation of the observables goes
through a sort of non-relativistic expansion of the nucleon field entering the La-
grangian, the so called“heavy barion chiral perturbation theory” (HBChPT) [24].
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This expansion is obtained dividing the nucleon field in a “light” and a “heavy”
part in order to isolate the mass term in the nucleon four-momentum, because it
is of the same magnitude of our symmetry-breaking scale Λχ. In this work, we
will not use this method but we will work with the “normal” nucleon field; terms
proportional to the nucleon mass will be subtracted explicitly.

Many derivations of the PV potential agree that this potential include, up
to next-to-next-to leading order (N2LO), a long range one pion exchange (OPE)
component at the leading order (LO), a medium range component originating
from two pion exchanges (TPE), and five indipendent NN contact terms [25].
The PV potential at N2LO included in total 6 LECs, the pion-nucleon PV cou-
pling constant and 5 LECs coming from the contact terms. This version of the
potential was used in particular to study the longitudinal analyzing power (Az)
in ~pp scattering. However for this observable the LO contribution vanishes and
therefore possible corrections that come from the next-to-next-to-next leading
order (N3LO) could be very important and not negligible. The price that we pay
introducing the N3LO is to add five new LECs to the six that comes at N2LO.
Therefore two of the aims of the present work are:

• to derive the N3LO component of the PV potential between two nucleons
(a first derivation of this potential was alredy given by de Vries et al. [26]);

• to study the ~pp Az and the ~np spin rotation observables with the new
potential in order to investigate the effect of the N3LO components.

The TV potential have been derived using χEFT in a few works up to now [6].
Up to the next-to-leading order it includes a OPE terms and a three pions ex-
change due to a three-pion interaction vertex in the TV Lagrangian. It is possible
to build also two contact terms which formally belongs to the N2LO. In total we
have five LECs directly connected with the θ angle. So the other two aims of this
Thesis are:

• to derive the TV potential between two nucleons up to NLO using our
framework. This potential will depend on 5 LECs;

• to study a different observable from the classical EDM. In particular we will
focus on the ~n~p spin rotation in order to fix some LECs entering the TV
potential.

This work will be organized as follows. In Chapter 2 we will introduce the
chiral symmetry. Then we will discuss how we can build the χEFT Lagrangian
with only nucleons and pions as degrees of freedom. The PV terms will be
constructed so that, under chiral transformations, they transform under chiral
symmetry as the PV weak interaction terms involving the quarks u and d in the
SM.
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In Chapter 3 we will explain how to build a potential starting from the χEFT
Lagrangian. In particular we will discuss how to construct the T -matrix using
the “time ordered perturbation theory” order by order in the Q/Λχ expansion
and then how to derive the potential. The derivation of the PV NN potential up
to the N3LO with all the time-ordered diagrams will be discussed in Chapter 4.

The TV interaction will be discussed in Chapter 5. We will briefly explain
how the θ-term can be included in the mass term of the QCD Lagrangian via
a U(1)A rotation and then incorporated in the χEFT. In the last section of the
chapter we will present the explicit derivation of the TV potential up to NLO.

In Chapter 6 we will explain how to calculate the observables like Az for
~pp elastic scattering and ~np spin rotation angle. After an introduction on the
two body scattering problem, we will present an algorithm that allows to solve
the Schrödinger equation with a PC plus a PV or TV potential. Then we
will introduce the M -matrix formalism in order to calculate the observables of
interest. In particular we will discuss the Az observable in ~pp scattering and
the spin rotation in ~np scattering to reveal PV effects. Moreover, we will study
the ~n~p spin rotation along the y-axis to reveal TV effects. In Chapter 7 we will
present the results concerning the studied observables and in Chapter 8 we will
discuss the conclusions and perspectives of the present work. Finally, a number
of technical details will be given in several Appendices.
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Chapter 2

The chiral symmetry

In this Chapter we will discuss how to construct a theory of nuclear forces using
the constraints of the symmetries (in some cases approximates) of the fundamen-
tal theory of the strong interactions of quarks, the QCD. In particular, we will
show that the QCD Lagrangian is almost symmetric under the so-called chiral
symmetry. Then we will see how it is possible to build an effective field theory
with pions and nucleons as degrees of freedom, being as well almost symmetric un-
der chiral symmetry. In this way it has been possible in the last years to construct
an accurate theory of the PC strong interaction between nucleons. Inspecting
the transformation properties of the interaction terms of the weak interaction in
the SM, in particular the terms that are PV , we will introduce in our χEFT new
terms that transform in the same way and are PV . These Lagrangian terms will
be our starting point to build the PV NN potential. The construction of the
TV interaction will be addressed in Chapter 5.

The Chapter is organized as follows. In Section 2.1 we will introduce the
chiral symmetry as an approximate symmetry of QCD and we will explain its
properties. In Section 2.2 we will present the ideas on which the χEFT is based.
We will present the PC Lagrangian in Section 2.3 and 2.4 for the pions and the
nucleons, respectively. In the last Section we will analyse the structure of the
weak interaction among the quarks and then, focusing on the PV interaction
terms, we will build the PV EFT Lagrangian.

2.1 The chiral symmetry in QCD

Let’s consider the standard QCD Lagrangian density. Our aim is to obtain a
theory that describes processes of two nucleons at low energy (under the threshold
of the pion production), thus we only consider the lighter quarks u and d [27]:

LQCD =
∑
f=u,d

qf (x)
(
iγµDµ −mf

)
qf (x)− 1

4
Gµν,a(x)Gµνa (x)

7



8 CHAPTER 2. THE CHIRAL SYMMETRY

≡ q(x)
(
iγµDµ −M

)
q(x)− 1

4
Gµν,a(x)Gµνa (x), (2.1)

where

q(x) =

(
qu(x)
qd(x)

)
, M =

(
mu 0
0 md

)
, (2.2)

qu, qd being the fields of the quarks, mu, md their masses, Dµ = ∂µ−ig
∑8

a=1 TaGµ,a(x)
is the covariant derivative of quark fields, Gµ,a(x) the gluon fields, and 2Ta are
the Gell-Mann matrices, that are the generators of the color gauge group SU(3)
in the fundamental representation. Above, Gµνa (x) are the force tensor of the
gluonic fields,

Gµνa (x) = ∂µGν
a(x)− ∂νGµ

a(x) + gfabcG
µ
b (x)Gν

c (x), (2.3)

with fabc structure constants of the gauge group SU(3), defined by the commu-
tation properties of the Gell-Mann matrices

[Ta, Tb] = ifabcTc. (2.4)

The quark fields q(x) are actually vectors in the color space and the SU(3) Gell-
Mann matrices act on them. The Lagrangian in Eq. (2.1) is invariant under local
transformations of SU(3) on the color degrees of freedom of the quark and gluon
fields as [28]

qf (x)→ q′f (x) = U(θ(x))qf (x), (2.5)

Gµa(x)Ta → G′µ = U(θ(x))GµaTa(x)U(θ(x))† +
i

g

(
∂µU(θ(x))

)
U †(θ(x)), (2.6)

where
U(θ(x)) = e−i

∑8
a=1 θa(x)Ta . (2.7)

The QCD Lagrangian has a U(1)u⊗U(1)d (global) symmetry where the field
of each flavour transforms as

qf (x)→ q′f (x) = e−iθf qf (x). (2.8)

From the above symmetry it follows the conservation of the flavour number and
also, assigning the values 1/3 to quarks and −1/3 to the antiquarks, the conser-
vation of the baryon number.

If we neglect the mass term (the so-called chiral limit), the U(1)u ⊗ U(1)d
symmetry group can be extended. Let’s rewrite the Lagrangian in Eq. (2.1) in
terms of the left and right spinors of the quarks:

qR(x) =
1 + γ5

2
q(x) =

(
qu,R(x)
qd,R(x)

)
, (2.9a)

qL(x) =
1− γ5

2
q(x) =

(
qu,L(x)
qd,L(x)

)
, (2.9b)
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we find

LM=0
QCD = qL(x)iγµDµqL(x) + qR(x)iγµDµqR(x)− 1

4
Gµν,a(x)Gµνa (x). (2.10)

We can consider the chiral limit because the quarks’ masses are much smaller
than the hadronic mass (∼ 1 GeV) [29]

mu ' 2.3 MeV, md ' 4.8 MeV. (2.11)

The Lagrangian in Eq. (2.10) is invariant under global transformations that trans-
form the left and the right components independently. The complete group of
transformations is G = U(1)R ⊗ U(1)L ⊗ SU(2)R ⊗ SU(2)L, corresponding to

U(1)R : qR(x)→ q′R(x) = e−iΘRqR(x), (2.12a)

U(1)L : qL(x)→ q′L(x) = e−iΘLqL(x), (2.12b)

SU(2)R : qR(x)→ q′R(x) = e−i~εR·~τ/2qR(x)≡ RqR(x), (2.12c)

SU(2)L : qL(x)→ q′L(x) = e−i~εL·~τ/2qL(x) ≡ LqL(x), (2.12d)

where with ~τ we indicate a vector that has as components the Pauli’s matrices
τa with a = x, y, z. This group is isomorphic to the group U(1)V ⊗ U(1)A ⊗
SU(2)V ⊗ SU(2)A:

U(1)V : q(x)→ q′(x) = e−iΘV q(x), (2.13a)

U(1)A : q(x)→ q′(x) = e−iγ
5ΘAq(x), (2.13b)

SU(2)V : q(x)→ q′(x) = e−i~εV ·~τ/2q(x) ≡ V q(x), (2.13c)

SU(2)A : q(x)→ q′(x) = e−iγ
5~εA·~τ/2q(x)≡ Aq(x). (2.13d)

The transformations SU(2)V are obtained from SU(2)L ⊗ SU(2)R choosing L =
R = V , while imposing L = R† = A we get SU(2)A. In the same way, if we take
the same rotation angle in the transformation U(1)R ⊗ U(1)L we have U(1)V ,
while if we take opposite angles we have U(1)A.

Using the Noether’s theorem for each transformation we get the following
currents [28]

Jµ(x) = q(x)γµq(x), (2.14a)

Jµ5 (x) = q(x)γµγ5q(x), (2.14b)

V µ
a (x) = q(x)γµ

τa
2
q(x), (2.14c)

Aµa(x) = q(x)γµγ5 τa
2
q(x). (2.14d)
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Calculating the derivative of the currents and using the classical equations of
motion, not neglecting the mass matrix yet, one obtains

∂µJ
µ(x) = 0, (2.15a)

∂µJ
µ
5 (x) = 2iq(x)γ5Mq(x), (2.15b)

∂µV
µ
a (x) = iq(x)

[
M,

τa
2

]
q(x), (2.15c)

∂µA
µ
a(x) = iq(x)

{
M,

τa
2

}
q(x). (2.15d)

As we expect, the first current is always conserved, since it represents the conser-
vation of the baryon number as confirmed by the experiments. The other three
currents are classically conserved in the chiral limit (M = 0). The requirement
for the conservation of the current V a

µ (x) is however less restrictive: we need only
that the masses of the two quarks were equals, namelyM∝ 1. This corresponds
to the isospin symmetry known to be reather well verified in Nature. If M = 0
we would have ∂µJ

µ
5 = ∂µA

µ = 0. It is well-known that the U(1)A symmetry
is broken at quantum level by a quantum effect (anomaly) [28]. We will treat
the symmetry U(1)A later, for the moment we limit our discussion to the chiral
group:

Gχ ≡ UV (1)⊗ SUV (2)⊗ SUA(2). (2.16)

The Lagrangian LM=0
QCD given in Eq. (2.10) is invariant under Gχ.

As we have seen, the chiral symmetry is a global symmetry but it is useful
to upgrade it to a local one; in this way we can couple the quarks with external
source fields. In particular we can introduce the coupling with external Hermitean
isoscalar and isovector currents

v(s)
µ (x), vµ(x) =

∑
a=x,y,z

τa
2
vaµ(x), aµ(x) =

∑
a=x,y,z

τa
2
aaµ(x). (2.17)

We introduce also the couplings with scalar and pseudoscalar density,

s(x) =
3∑

a=0

τas
a(x), p(x) =

3∑
a=0

τap
a(x), (2.18)

which are Hermitean matrices in isospin space and τ0 ≡ 1. The QCD Lagrangian
with the external fields reads [28]

LEXT
QCD = LM=0

QCD + q(x)γµ
(
vµ(x) +

1

3
v(s)
µ (x) + γ5aµ(x)

)
q(x)

−q(x)
(
s(x)− iγ5p(x)

)
q(x). (2.19)

Imposing that the Lagrangian be invariant under the local transformations in-
duced by the group Gχ, we deduce the transformation properties of the external
fields. Defining,

rµ(x) = vµ(x) + aµ(x), lµ(x) = vµ(x)− aµ(x), (2.20)
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and rewriting the Lagrangian in terms of the left and right components of the
quark fields

LEXT
QCD = LM=0

QCD + qL(x)γµ
(
lµ(x) +

1

3
v(s)
µ (x)

)
qL(x) + qR(x)γµ

(
rµ(x) +

1

3
v(s)
µ (x)

)
qR(x)

−qR(x)
(
s(x) + ip(x)

)
qL(x)− qL(x)

(
s(x)− ip(x)

)
qR(x), (2.21)

we find the transformation properties of the external source fields

rµ(x)→ R(x)rµ(x)R†(x) + iR(x)∂µR
†(x), (2.22a)

lµ(x)→ L(x)lµ(x)L†(x) + iL(x)∂µL
†(x), (2.22b)

v(s)
µ (x)→ v(s)

µ (x)− ∂µΘ(x), (2.22c)

s(x) + ip(x)→ R(x)(s(x) + ip(x))L†(x), (2.22d)

s(x)− ip(x)→ L(x)(s(x)− ip(x))R†(x) , (2.22e)

with Θ = 3ΘV .
For example, the vector and axial source fields are useful to take into account

the coupling of the quarks with the electromagnetic field or the W± and the Z0

fields. We will not discuss anymore the coupling with these vector fields. More
interesting for this Thesis it is the coupling with the scalar fields s(x) and p(x)
which we will use to introduce in the nucleon Lagrangian the mass and the TV
terms. The procedure is the following [5]. i) First we assume that the source fields
transform as in Eqs. (2.22) and we construct LEXT

QCD to be completely symmetric
under the Gχ transformations. ii)As a second step, we can include in the source
fields, terms which are not invariant, as for example the mass terms (see below).
When we will perform the same procedure for the nuclear Lagrangian LEFT, we
obtain automatically all terms which violates chiral symmetry in the same ways
as in the quark Lagrangian LEXT

QCD.
For example rewriting the mass matrix as

M = m1 + εmτ3 , (2.23)

where

m =
mu +md

2
, ε =

mu −md

mu +md

, (2.24)

it is easy to identify s0 = m and s3 = εm. In this way, using the scalar field s(x) it
is possible to reintroduce the mass term, explicitly violating the chiral symmetry,
in the Lagrangian LEXT

QCD. In the first part of this work, in the treatment of the
PV interactions we will neglect the isospin violating term s3 (imposing ε = 0)
and the pseudoscalar p(x) = 0. In the second part we will take into account these
terms in order to introduce the TV interaction.

Even if the symmetry SU(2)A is a symmetry of the chiral Lagrangian LM=0
QCD ,

it is not realized in the low energy hadronic spectrum. Hadrons show themselves
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as a multiplet of the isospin subgroup SU(2)V , but not of SU(2)A. If so, we will
expect for each hadronic state, another degenerate state (same mass, charge, ...)
but with opposite parity. Since no multiplet with different parities is observed,
the chiral symmetry suffers a spontaneus breaking with the pattern

SU(2)V ⊗ SU(2)A ⊗ U(1)V → SU(2)V ⊗ U(1)V . (2.25)

Using the Goldstone theorem we can deduce the properties of the Goldstone
bosons [27]:

• the Goldstone bosons are three as the broken generators of the quotient
group SU(2)A;

• their mass must be zero;

• they have the same quantum numbers associated with the charge operator
of the broken generators, in this case the charge operator of the three non
Abelian axial currents in Eq. (2.14d)

Qa
A(t) =

∫
d3xq†(x)γ5 τa

2
q(x), (2.26)

so they must be pseudoscalar, their baryonic number must be zero, and
they must transform under SU(2)V as a isospin triplet.

The three Goldstone bosons are identified with the pions. The fact that they
have a non zero mass can be explained saying that the chiral symmetry is only
an approximate symmetry of the QCD, due to the mass term which explicitly
breaks the symmetry.

2.2 The Effective Field Theory

The description of hadrons and their interactions using QCD is very compli-
cated. The interactions of gluons and quarks is very intense because the coupling
constant of the theory αS increases when the energy decreases; therefore each
possibility to describe perturbatively the low energy regime fails. In order to
solve this problem, it is possible to build an EFT which describes the low energy
dynamics of the hadrons and which allows for an expansion in terms of small mo-
mentum Q instead of a coupling constant [15]. In this kind of theory the degrees
of freedom are the hadrons which are not elementary particles, but considering
processes of energies not allowing the excitations of them, they can be treated as
elementary constituents.

The symmetries used to build the effective Lagrangian of the χEFT are i)
the chiral symmetry, seen in the previous Section, ii) the Lorentz invariance
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and iii) the discrete symmetries of charge conjugation C and parity P (clearly
in this Thesis we are also interested in PV and TV Lagrangians). With this
Lagrangians it is possible to treat processes of momenta Q � Λχ, with Λχ ∼
4πfπ ∼ 1 GeV [30], where fπ ' 92.4 MeV is identified as the charge pions decay
constant [31]. If the chiral symmetry was an exact symmetry of the theory, the
momentum Q would be the only expansion parameter. As we have seen before,
this is not true; the chiral symmetry is explicitly broken by the mass term of
the quarks that generates the mass of the pion mπ. This quantity reappears in
the EFT as a new expansion parameter. However also mπ is a small parameter
compared to Λχ, so we have two expansion scales: Q/Λχ and mπ/Λχ. From now,
we will indicate with Q both the typical momentum scale and the mass of the
pion. If we limit the range of Q between zero and the mass difference between
the baryon ∆(1232) and the nucleon, we can take as effective degrees of freedom
only the pions and the nucleons, without including heavier mesons or barions.
Thus we will include explicitly in the scale Λχ, all the quantities which are out
of our energy range and which represent all those degrees of freedom we consider
to be integrated out: ∆, ρ, etc.

In order to build the chiral effective Lagrangian we need to consider all the
possible terms compatible with the restrictions imposed by the symmetries [19,
32]. What we get is an infinite number of operators, each of them multiplied by a
free parameter. These parameters contain all the underlying high energy physics
and they represent our inability to understand it. Fortunately we can associate
each Lagrangian term with a power (Q/Λχ)ν , where ν is an integer index named
“chiral order”. There is a finite number of Lagrangian terms for each chiral order.
The terms that appear in the Lagrangian can be organized depending on their
index ν. It is one of the nice property related to the chiral symmetry that all
pion-nucleons interaction terms includes at least one derivative, so νmin is always
finite. The terms with index ν = νmin are named “leading order” (LO) terms and
usually they bring the largest contribution to the observables. The terms of order
ν = νmin + 1, named “next-to-leading order” (NLO) terms, give a first correction
to the values calculated using the LO terms only, and so on. Therefore the chiral
effective Lagrangian can be written as

LEFT = LLO + LNLO + LN2LO + ... . (2.27)

The theory build in this way can be renormalized order by order; considering
terms up to a given order, the constants that appear in the Lagrangian are used
to reabsorb the divergences of the loops diagrams. Removed the divergences, a
certain number of renormalized LECs remain. In principle, these LECs can be
calculated from the underlying physics, but practically they are fixed by (even-
tually) available experimental data. At this point we can use the theory to make
predictions.
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2.3 The ChPT for the pions

In order to describe the pions we must introduce a 2 × 2 “pionic field” matrix
U(x) [28] which belongs to the quotient group SU(2)A as prescribed by the spon-
taneous symmetry breaking discussed in Section 2.1. This matrix field is iden-
tified by three coordinates that are necessary to parametrize the group SU(2).
We have infinite ways to parametrize the matrix field U(x) [30]. Introducing the
Hermitean fields of the pion of type a = x, y, z, πa(x), see Chapter 3 for their
definition, we can use them as coordinates and write the matrix field as

U(x) = 1+
i

fπ
~τ ·~π(x)− 1

2f 2
π

~π 2(x)− iα
f 3
π

~π 2(x)~τ ·~π(x)+
8α− 1

8f 4
π

~π 4(x)+. . . , (2.28)

where α is an arbitrary coefficient reflecting our freedom in the choice of the pion
field [30]. Choosing α = 1/6 we get the canonical form for the matrix field U(x):

U(x) = e
i
fπ
~π(x)·~τ . (2.29)

The transformation law of the pionic field under the chiral group SU(2)R⊗SU(2)L
is given by [28]

U(x)→ U ′(x) = RU(x)L† . (2.30)

On the other hand the pion fields transform linearly only under the group SU(2)V ,
indeed taking {

L = A†V,
R = AV,

we can write

U ′(x) = RU(x)L†,

= AV U(x)V †A,

= AeiV ~π(x)V †·~τ/fπA, (2.31)

so considering a pure infinitesimal vector transformation (A = 1) and expanding
in series, it is easy to find that the fields ~π transform linearly (as a isospin triplet).
For infinitesimal transformation:

~π(x)→ ~π′(x) = ~π(x)− εV × ~π(x). (2.32)

Performing the same thing using a pure axial transformation (V = 1) in Eq. (2.31)
the transformation is not linear. For infinitesimal transformations:

~π(x)→ ~π′(x) = ~π(x) + ~εAfπ. (2.33)

as we expect from the spontaneous breaking of the symmetry SU(2)A and the
non vanishing expectation value on the vacuum of the charge in Eq. (2.26). Let’s



2.3. THE CHPT FOR THE PIONS 15

note that the field U(x) is invariant under transformations U(1)V because, being
the baryonic number of the pions zero, we have πa(x)→ πa(x).

As in the quarks case, we can upgrade the symmetry from global to local, con-
sidering the coupling with external fields. Given the transformation of field [28]

U(x)→ U ′(x) = R(x)U(x)L(x)† . (2.34)

we can define the covariant derivative

DµU(x) = ∂µU(x)− irµ(x)U(x) + ilµU(x). (2.35)

where the external fields rµ and lµ are those introduced in Section 2.1. Taking
into account of their transformation laws, given in Eq. (2.22a) and Eq. (2.22b),
it is easy to show that DµU(x) transforms as

DµU(x)→ R(x)(DµU(x))L†(x). (2.36)

As in the Lagrangian in Eq. (2.19) we can introduce a coupling with the scalar
fields s(x) and p(x) via the operators χ and χ† defined as

χ(x) = 2B
(
s(x) + ip(x)

)
, (2.37a)

χ†(x) = 2B
(
s(x)− ip(x)

)
. (2.37b)

Assuming that s(x) and p(x) transform as in Eq. (2.22d) and (2.22e) then

χ(x)→ R(x)χ(x)L†(x), (2.38)

χ†(x)→ L(x)χ†(x)R(x). (2.39)

The LEC B is related to the order parameter for the breaking of the chiral
symmetry 〈0 |qq| 0〉 [28]

B = − 1

3f 2
π

〈0 |qq| 0〉 . (2.40)

The building blocks for the construction of the Lagrangian has the follow chiral
order

U ∼ O(Q0), Dµ1 ...DµnU ∼ O(Qn), χ ∼ O(Q2). (2.41)

So the most general effective Lagrangian at the order Q2, invariant under the
Lorentz transformations, local chiral transformations, parity and charge conjuga-
tion including the source fields is

L(2)
π =

f 2
π

4

〈
DµU(x)(DµU(x))†

〉
+
f 2
π

4

〈
χ(x)U †(x) + U(x)χ†(x)

〉
, (2.42)

where 〈. . . 〉 indicates the trace of the matrices. The 7 terms entering the Q4 order
Lagriangian are discussed in Ref. [32], we only report the terms we will use to
construct the TV Lagrangian:

L(4)
π =

l3
16
〈χ(x)U †(x)+U(x)χ†(x)〉2− l7

16
〈χ(x)U †(x)−U(x)χ†(x)〉2 + . . . . (2.43)
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2.4 The ChPT for the nucleons

As in the case of the pions, we can choose the representation of the nucleon which
is the simplest to build the Lagrangian, because it is irrelevant when we compute
the observables. We will consider the most common representation used in the
chiral perturbation theory. In the isospin formalism we denote the nucleonic field
as

N(x) =

(
p(x)
n(x)

)
(2.44)

where p(x) and n(x) are the proton and neutron fields respectively. It is useful
to define a matrix u(x) such that u(x) =

√
U(x) [19, 28]. Remembering the

transformation of U(x) under global chiral transformation in Eq. (2.30), the u(x)
matrix transform as

u(x)→ u′(x) = Ru(x)h†(x) = h(x)u(x)L−1 (2.45)

where the function h(x) is defined

h(x) ≡ h[L,R, U(x)] =
√
RU(x)L†

−1
R
√
U(x), (2.46)

which is non linear in the pion field. Neglecting for the moment the subgroup
U(1)V , the transformation law of the nucleonic field under the global transforma-
tion SU(2)V ⊗ SU(2)A can be shown to be [28]

N(x)→ N ′(x) = h[L,R, U(x)]N(x). (2.47)

If the transformation is a pure vector transformation L = R = V , from the
definition of u(x) it follows that u′ = V uV †, and so from Eq. (2.46) h = V
and the nucleonic field transforms as a isospin doublet. Conversely the axial
transformation results to be non linear [28].

In order to build a Lagrangian that contains the interactions among pions,
nucleons and external fields, we upgrade the chiral symmetry from global to
local, introducing the external field rµ(x), lµ(x), v

(s)
µ (x), s(x) and p(x) with the

transformation properties given in Eq. (2.22a)-(2.22e). Under the local group Gχ

the doublet of the nucleons N transforms as

N(x) = e−iθ(x)h[L(x), R(x), U(x)]N(x). (2.48)

Let’s introduce the covariant derivative for the nucleonic field [19, 28]

DµN = (∂µ + Γµ − iv(s)
µ )N, (2.49)

where Γµ is the “connection” given by

Γµ =
1

2
[u†(∂µ − irµ)u+ u(∂µ − ilµ)u†]. (2.50)
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Using the properties transformation of u(x), rµ(x) and lµ(x) we find the properties
transformation of Γµ:

Γµ → Γ′µ = hΓµh
† + h∂µh

† , (2.51)

in this way when the derivative acts on the field N(x), it transforms covariantly,

DµN(x)→ h(x)DµN(x). (2.52)

We can introduce other building blocks which has simple transformation proper-
ties under Gχ and as well [19, 28]:

uµ = i(u†∂µu− u ∂µu†) + u†rµu− u `µu† , (2.53)

χ± = u†χu† ± uχ†u , (2.54)

F±µν = u†FR
µνu± uFL

µνu
† , (2.55)

(2.56)

with

FR
µν = ∂µrν − ∂νrµ − i[rµ, rν ] , (2.57)

FL
µν = ∂µ`ν − ∂ν`µ − i[`µ, `ν ] , (2.58)

which has the following properties under the group SU(2)L ⊗ SU(2)R

uµ → u′µ = huµh
† , (2.59)

χ± → χ′± = hχ±h
† , (2.60)

F±µν → F
′±
µν = hF±µνh

† . (2.61)

We can now write the most general term of the πN Lagrangian invariant
under parity, charge conjugation, Lorentz and local chiral transformations. At
the leading order (order Q) it reads

L(1)
πN = N

(
iγµDµ −M +

gA
2
γµγ5uµ

)
N, (2.62)

A complete list up to order Q3 is reported in Ref. [33]; here we report only the
terms we will use later in the thesis:

L(2)
πN = c1N〈χ+〉N

− c2

8M2
N〈uµuν〉DµνN + h.c.

+
c3

2
N〈uµuµ〉N

+
ic4

4
N [uµ, uν ]σ

µνN

+c5Nχ̂+N + . . . , (2.63)
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and

L(3)
πN = d16N

1

2
γµγ5uµ〈χ+〉N

+ d18N
i

2
γµγ5[Dµ, χ−]N + . . . , (2.64)

where we define

Â = A− 1

2
〈A〉. (2.65)

Other terms exist that involves four nucleonic fields. These are called “con-
tact terms” (CT) and they give point interaction vertices between nucleons which
include implicitly the effects of heavier meson exchanges. From all the possible
contact terms we can write down, imposing the Lorentz invariance and the con-
servation of the discrete symmetries, the non relativistic expansion identifies at
the leading order only two independent terms [22], so the contact Lagrangian
reads

LCT = −1

2
CS(NN)(NN) +

1

4
CT (Nγµγ

5N)(Nγµγ5N). (2.66)

It is also possible to write four-nucleons terms involving the quantities χ+ and
χ− that are invariant under the transformations cited above. We list only those
terms we will use later to build the TV interaction [5]

L(2)
4N = C1〈χ+〉NNNN + C2〈χ+〉Nγµγ5NNγµγ5N

+C3Nχ̂+NNN + C4Nχ̂+γµγ
5NNγµγ5N

+iC5〈χ−〉NN∂µ
(
Nγµγ5N

)
+iC6〈χ−〉N~τN∂µ

(
N~τγµγ5N

)
+iC7Nχ̂−N∂µ

(
Nγµγ5N

)
+i

1

2
C8N

{
χ̂+, ~τ

}
N∂µ

(
N~τγµγ5N

)
+ . . . . (2.67)

2.5 The PV interaction

In the previous Section we have used the transformations properties of the terms
appearing in the QCD Lagrangian in order to determine the effective Lagrangian
describing the strong interaction between nucleons and pions. In the same way, we
can study the transformation properties of the terms that violate the P symmetry
in the SM to construct a chiral effective Lagrangian that violates parity and
transform under Gχ in the same way as the terms of the SM.

In the SM, in the limit of low energies, the weak interaction is described by
the Lagrangian density [34]

Lweak =
GF√

2

(
Jµ†W JWµ + JWµJ

µ†
W + Jµ†Z JZµ

)
, (2.68)
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where JW is the current related to the exchange of the W± bosons, and JZ is
the neutral current, related to the exchange of the Z0 boson. The two currents
explicitly read

JµW = cos θcdγ
µ (1− γ5)u = cos θcqγ

µ (1− γ5) τ−q , (2.69)

JµZ =
1√
2cW

[
uγµ

(
1− 8

3
s2
W − γ5

)
u− dγµ

(
1− 4

3
s2
W − γ5

)
d

]
,

=
1√
2cW

q

[
γµ
(

1− 8

3
s2
W − γ5

)
1 + τz

2
− γµ

(
1− 4

3
s2
W − γ5

)
1− τz

2

]
q,

(2.70)

where θc is the Cabibbo angle, sW = sin θW and cW = cos θW , where θW is
the Weinberg angle, and τ− = (τx − iτy)/2. Writing the expressions in terms
of the right and left components of the quark fields and using the definitions in
Eq. (2.9a) and (2.9b), we get

JµW = 2 cos θcqLγ
µτ−qL , (2.71)

JµZ =
1√
2cW

{
−2

3
s2
W

(
qRγ

µqR + qLγ
µqL

)
+
(
2− 2s2

W

)
qLγ

µτzqL − 2s2
W qRγ

µτzqR

}
. (2.72)

In order to simplify the notations let’s define

AµR = qRγ
µqR, AµL = qLγ

µqL, (2.73a)

~Bµ
R = qRγ

µ~τqR, ~Bµ
L = qLγ

µ~τqL, (2.73b)

which transform under the group SU(2)L ⊗ SU(2)R as follow

AµR → A
′µ
R = qRR

†γµRqR = AR, (2.74)

AµL → A
′µ
L = qLL

†γµLqL = AL, (2.75)

(2.76)

so they are invariant over Gχ, namely they transform as isoscalar, and

~Bµ
R → ~B

′µ
R = qRγ

µR†~τRqR, (2.77)

~Bµ
L → ~B

′µ
L = qLγ

µL†~τLqL, (2.78)

(2.79)

which transform as isovectors under the transformation R and L, respectively.
When we apply the parity operator, we exchange qL ↔ qR and so AR ↔ AL
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and ~BR ↔ ~BL. Rewriting the coupling terms in the Lagrangian in Eq. (2.68) as
follows

J†WJW = cos2 θc(Bx,L − iBy,L)(Bx,L + iBy,L)

=
cos2 θc

2

[1

2

(
( ~BL · ~BL + ~BR · ~BR) + ( ~BL · ~BL − ~BR · ~BR)

)
−I ij(Bi,LBj,L +Bi,RBj,R)− I ij(Bi,LBj,L −Bi,RBj,R)

)
+i
(

(By,LBx,L +By,RBx,R)− (Bx,LBy,L +Bx,RBy,R)

+(By,LBx,L −By,RBx,R)− (Bx,LBy,L −Bx,RBy,R)
)]

, (2.80)

where

Iij =

 −1 0 0
0 −1 0
0 0 +2

 , (2.81)

and also

J†ZJZ =
1

2c2
W

[4

9
s2
W (AR + AL)2 − 4

3
s2
W (2− 2s2

W )(AR + AL)Bz,L +
8

3
s2
W (AR + AL)Bz,R

+(2− 2s2
W )2Bz,LBz,L − 2s2

W (2− 2s2
W )(Bz,LBz,R +Bz,RBz,L) + (2sW )2Bz,RBz,R

]
=

1

2c2
W

[4

9
s2
W (AR + AL)2 − 4

3
s2
W (2− 4s2

W )(AR + AL)
Bz,L +Bz,R

2

−8

3
s4
W (AR + AL)

Bz,L −Bz,R

2
+ (2− 2s2

W )2Bz,LBz,R +Bz,RBz,L

2

+(4− 4s2
W )
( ~BL · ~BL − ~BR · ~BR

2
+ I ijBi,LBj,L −Bi,RBj,R

2

)
+(2− 4s2

W + 8s4
W )

Bz,LBz,L +Bz,RBz,R

2

]
.

(2.82)

where the PV terms are the terms like (AR + AL)(BL − BR) or BLBL − BRBR.
From the expressions above, there are various PV terms which transform in
different way under the chiral group SU(2)R ⊗ SU(2)L, in particular

( ~BL · ~BL − ~BR · ~BR) isoscalar ∆I = 0,

(2.83)

(AR + AL)(Bz,L −Bz,R) isovector ∆I = 1,

(2.84)

(By,LBx,L −By,RBx,R)− (Bx,LBy,L −Bx,RBy,R) isovector ∆I = 1,

(2.85)

I ij(Bi,LBj,L −Bi,RBj,R) isotensor ∆I = 2.

(2.86)
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Let’s note that no terms like BRBL −BLBR appear in the weak Lagrangian and
so we cannot have a term like this in the effective Lagrangian.

At the hadronic level we reproduce the effect of the chiral symmetry breaking
using the following quantities [35]

X i
L = uτiu

† , X i
R = u†τiu , (2.87)

where their transformations under the chiral group are found using Eq. (2.45).
Therefore we obtain

(X i
L)′ = (hu†L†)τi(Luh

†) = hu†(L†τiL)uh† , (2.88)

(X i
R)′ = (huR†)τi(Ru

†h†) = hu†(R†τiR)uh† , (2.89)

therefore terms like NX i
LN and NX i

RN have exactly the same transformations

of ~BL and ~BR. Regarding the isoscalar terms proportional to ~XL · ~XL− ~XR · ~XR,
reproducing the term in Eq. (2.83), it vanishes, since

X i
LX

j
L = δij + iεijkX

k
L , X i

RX
j
R = δij + iεijkX

k
R. (2.90)

So it is not possible to construct isoscalar terms in terms of XL or XR but
they have to be constructed using PV terms like Nuµγ

µN [35] (see Appendix
A for a detailed discussion). As regarding the isovector terms in Eqs. (2.84)
and (2.85), using again the properties in Eq. (2.90), we see that they must be
proportional to terms like X3

L −X3
R or X3

L + X3
R. The isotensor terms will read

Iij(X i
LΘXj

L−X i
RΘXj

R), with Θ one of the possible operators which transform as
Θ→ hΘh† under the chiral symmetry (if Θ = 1 the term is zero).

In order to obtain the most general effective PV Lagrangian we will use X i
L

and X i
R with the other building blocks introduced in Section 2.3 and 2.4 repro-

ducing the isoscalar, isovector and isotensor terms discussed above and satisfying
the properties of the violation of both parity and charge conjugation. We will
consider also PV contact terms. In Appendix A a detailed discussion of the terms
used in this work is reported. For a complete list of the terms up to order Q2 see
Ref. [25]. The terms of the PV Lagrangian entering the PV potential up to Q3

are the following [25, 35]

L(0)
πN,PV =

h1
π

2
√

2
fπNX

3
−N (2.91)

L(1)
πN,PV =

h0
V

2
NγµuµN +

h1
V

4
NγµN〈uµX3

+〉

+
h1
A

4
Nγµγ5N〈uµX3

−〉

− 1

3
Iab
[
h2
V

2
N
(
Xa
RuµX

b
R +Xa

LuµX
b
L

)
γµN
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+
h2
A

4
N
(
Xa
RuµX

b
R −Xa

LuµX
b
L

)
γµγ5N

]
(2.92)

L(2)
πN,PV = −h

1
2

fπ
N̄X3

−N〈χ+〉 −
h1

3

fπ
N̄ [χ̂−, X

3
+]N

− h1
12

fπ

( 1

M
N̄ [hµν , X

3
+]γµDνN + h.c.

)
+ . . . (2.93)

L(3)
πN,PV = − h̃

0
1

f 2
π

Nuµγ
µN〈χ+〉 −

h̃1
1

f 2
π

N
{
uµ , X

3
+}γµN〈χ+〉

+
h̃2

1

3f 2
π

IabN
(
Xa
RuµX

b
R +Xa

LuµX
b
L

)
γµN〈χ+〉+ . . . . (2.94)

We will need also the following terms with only pionic degrees of freedom [25]

L(2)
ππ,PV = f 2

πh
1
3π〈uµX3

−u
µ〉

+ f 2
πh

2
3πIab〈Xa

RuµX
b
Ru

µ − (R→ L)〉 , (2.95)

Above the various parameters h∆I
n are unknown LECs. The superscript ∆I dis-

tinguishes the constant which multiply the isoscalar (∆I = 0), isovector (∆I = 1)
or isotensor (∆I = 2) terms. The magnitude of the costants h∆I

n can be estimated
to be

h∆I
n ∼ GFf

2
π ' 10−7 , (2.96)

which is the typical order of magnitude of the PV interactions. In the next
Chapters, the derivation of the PV potential from these interaction terms will be
discussed.



Chapter 3

From χEFT to potentials

In this Chapter we will present the construction of a nuclear potential, operating
in a non-relativistic framework, starting from the χEFT Lagrangian. In the first
Section we will present our conventions. In Section 3.2 we will use time order
perturbation theory to compute a T -matrix amplitude from the χEFT. Finally, in
Section 3.3, we will define the non relativistic nuclear potential by imposing that
solving the Lippmann-Schwinger (LS) equation in the non-relativistic regime, one
can obtain the same T -matrix calculated before from the field theory.

3.1 Notations

In this Section we briefly summarize the conventions used in the Thesis.

• We will use the natural system } = c = 1. We will work in a finite volume
Ω = L3, so the momenta are discretized

ki =
2πni
L

, (3.1)

where i = x, y, z and ni = 0,±1,±2, ... . In the infinite volume limit the
sum over the discretized momentum values is substituted by an integral as
follows ∑

k

→ Ω

∫
dk

(2π)3
. (3.2)

• The creation and annihilation operators for pions and nucleons satisfy the
following commutation rules

[ak,i, a
†
k′,j] = δk,k′δi,j , {bp,s,t, b†p′,s′,t′} = δp,p′δs,s′δt,t′ , (3.3)

where i = x, y, z are the (cartesian) isospin components of the pion and s,
t are the z components of the spin/isospin of the nucleon. The cartesian

23
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operators are defined as

ak,x =
a

(+)
k + a

(−)
k√

2
, ak,y =

a
(+)
k − a

(−)
k√

2
, ak,z = a

(0)
k , (3.4)

where a
(+)
k , a

(−)
k and a

(0)
k are the annihilation operators of π+, π−, and π0

respectively. In the rest of the Thesis we will also use α ≡ p, s, t to indicate
the nucleon quantum numbers.

• The free Hamiltonian is [31]

H0 =
∑
p,s,t

Ep
(
b†p,s,tbp,s,t + d†p,s,tdp,s,t

)
+
∑
q,i

ωqa
†
q,iaq,i , (3.5)

with Ep =
√
M2 + p2 and ωq =

√
m2 + q2 are the energies of the nucleons

and the pions, respectively. d†p,s,t is the creation operator of the antinucle-
ons.

• The pion and nucleon fields in interaction picture read

N(x) =
∑
p,s

1√
2EpΩ

(
bp,s,tu(p, s)e−ip·x + d†p,s,tv(p, s)eip·x

)
, (3.6)

πi(x) =
∑
q

1√
2ωqΩ

(
aq,ie

−iq·x + a†q,ie
iq·x
)
, (3.7)

where the Dirac spinors u(p, s), v(p, s), and the Dirac matrices γµ and γ5

are defined as in Ref. [31].

3.2 Time ordered diagrams

In field theory, the transition probability from an initial state |i〉 to a final state
|f〉 is given by the matrix element 〈f |S| i〉, where S in the interaction picture
reads [36]

S = 1 +
∞∑
n=1

(−i)n

n!

∫
d4x1...d

4xn T (HI(x1)...HI(xn)) , (3.8)

where x ≡ xµ = (t,x), T indicates the time-ordered product and HI(x) is the
Hamiltonian density in interaction picture. Usually HI is written as a sum of
terms given by products of fields and their derivatives

HI(x) =
∑

N(x)...πi(x)...∂µπj(x)...N(x) , (3.9)
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which is defined from the Lagrangian density discussed in the previous Chap-
ter. Working in Heisenberg picture, the Hamiltonian density H is related to the
corresponding Lagrangian L via the Legendre transformation

H = Πa∂0πa + ΠN∂0N − L, (3.10)

where

Πa =
∂L

∂(∂πa)
, ΠN =

∂L
∂(∂πa)

, (3.11)

are the conjugate momenta of pion fields and nucleon fields, respectively. Per-
forming the calculation subtracting the unperturbed Hamiltonian density and
returning in interaction picture it is possible to prove that (see Ref. [37])

HI(x) = −LI(x) + · · · , (3.12)

where the correction terms can be neglected since of high order in ChPT [37].
The Hamiltonian in interaction picture is defined as

HI(t) =

∫
dx HI(x), (3.13)

and is related to HSR
I in Schrödinger picture by

HI(t) = eiH0tHSR

I e
−iH0t, (3.14)

where H0 is the free Hamiltonian. Integrating analytically over all the time
variables, Eq. (3.8) can be written as [38]

〈f |S| i〉 = δf,i − 2πδ(Ef − Ei) 〈f |T | i〉 , (3.15)

where the operator T (the so-called T -matrix) is explicitly given by

T = HSR
I +HSR

I

1

E0 −H0 + iε
HSR
I +

+HSR
I

1

E0 −H0 + iε
HSR
I

1

E0 −H0 + iε
HSR
I + · · · , (3.16)

being ε an infinitesimal positive quantity.

In order to obtain the Hamiltonian terms expressed in Schrödinger picture,
we must write the fields in this representation using

ψSR(x) = e−iH0tψ(x)eiH0t. (3.17)
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In this way the fields of the pion and nucleon and their derivatives become

NSR(x) =
∑
p,s

1√
2EpΩ

(
bp,s,tu(p, s)eip·x + d†p,s,tv(p, s)e−ip·x

)
, (3.18)

∂µN
SR(x) =

∑
p,s

1√
2EpΩ

(
bp,s,tu(p, s)(−ipµ)eip·x +

+d†p,s,tv(p, s)(ipµ)e−ip·x
)
, (3.19)

πSRi (x) =
∑
q

1√
2ωqΩ

(
aq,ie

iq·x + a†q,ie
−iq·x

)
, (3.20)

∂µπ
SR
i (x) =

∑
q

1√
2ωqΩ

(
aq,i(−iqµ)eiq·x + a†q,i(iqµ)e−iq·x

)
. (3.21)

and thus we can write the Hamiltonian in the Schrödinger picture (see Eq. (3.9))

HSR

I =
∑∫

dx N
SR

(x)...πSR

j (x)...∂µπ
SR

i (x)...∂µN
SR(x) . (3.22)

Inserting the expressions (3.18)-(3.21) in Eq. (3.22) and integrating over x the
interaction Hamiltonian can be written as

HI = HCT,00 +HπNN,01 +HπNN,10 +HππNN,02

+HππNN,11 +HππNN,20 + · · · , (3.23)

where we have eliminated the SR superscript because from now on we will work
only in Schröedinger picture. The term Hv,nm

I derives from an interaction term
of type v and it has n creation and m annihilation pion operators. Explicitly,

HCT,00 =
1

Ω

∑
α′1,α1α′2,α2

b†α′1
bα1b

†
α′2
bα2 M

CT,00
α′1α1α′2α2

δp′1+p′2,p1+p2 , (3.24)

HπNN,01 =
1√
Ω

∑
α′,α

∑
q,i

b†α′bαaq,i M
πNN,01
α′α,qi δq+p,p′ , (3.25)

HπNN,10 =
1√
Ω

∑
α′,α

∑
q,i

b†α′bαa
†
q,i M

πNN,10
α′α,qi δq+p′,p , (3.26)

HππNN,02 =
1

Ω

∑
α′,α

∑
q′i′,qi

b†α′bαaq′,i′aq,i M
ππNN,02
α′α,q′i′qi δq+q′+p,p′ , (3.27)

HππNN,11 =
1

Ω

∑
α′,α

∑
q′i′,qi

b†α′bαa
†
q′,i′aq,i M

ππNN,11
α′α,q′i′qi δq+p,q′+p′ , (3.28)

HππNN,20 =
1

Ω

∑
α′,α

∑
q′i′,qi

b†α′bαa
†
q′,i′a

†
q,i M

ππNN,20
α′α,q′i′qi δp,q+q′+p′ . (3.29)
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In the following, we need also the three pions interaction terms,

H3π,30 =
1√
Ω

∑
q′i′,qi,pj

a†q′,i′a
†
q,ia
†
p,j M

3π,30
q′i′qip,j δq+q′+p,0 , (3.30)

H3π,21 =
1√
Ω

∑
q′i′,qi,pj

a†q′,i′a
†
q,iap,j M

3π,21
q′i′qip,j δq+q′,p , (3.31)

H3π,12 =
1√
Ω

∑
q′i′,qi,pj

a†q′,i′aq,iap,j M
3π,12
q′i′qip,j δq′,q+p , (3.32)

H3π,03 =
1√
Ω

∑
q′i′,qi,pj

aq′,i′aq,iap,j M
3π,03
q′i′qip,j δ0,q′+q+p , (3.33)

(3.34)

where the quantities MCT,00 , MπNN,10 , MπNN,01 , etc. are the so called “vertex
functions”. Appendix C reports the explicit expression of the vertex functions for
the PC, PV and TV Hamiltonian terms we need to determine the PV potential
up to order Q2 and the TV potential up to order Q0. For each of them it is
possible to perform a non relativistic expansion of these functions in power of
Q/M ∼ Q/Λχ, where Q is a typical value of the momentum, in order to control
the chiral order. For example from the term,

gA
2
Nγµγ5uµN , (3.35)

expanding the fields as in Eqs. (3.18)-(3.21) we find

PCMπNN,01
α′α,q a = −i gA

2fπ

ξ†t′τaξt√
2ωk

uα′√
2E ′

q/ γ5 uα√
2E

=
gA
2fπ

τa√
2ωq

iq · σ +O(Q3/2)

(3.36)

PCMπNN,10
α′α,q a = +i

gA
2fπ

ξ†t′τaξt√
2ωk

uα′√
2E ′

q/ γ5 uα√
2E

= − gA
2fπ

τa√
2ωq

iq · σ +O(Q3/2) ,

(3.37)

where the superscript “PC” remembers that the vertex functions come from a
PC vertex.

Let’s now consider for example the calculation of the T -matrix element for a
scattering process NN → NN from an initial state |i〉 = |α1α2〉 and a final state
|f〉 = |α′1α′2〉. To compute the matrix element 〈f |T | i〉 we consider the expression
of T reported in Eq. (3.16), we replace the expression of HI with Eq. (3.23), and
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insert where necessary a sum over intermediate states, obtaining

〈α′1α′2|T |α1α2〉 = 〈α′1α′2|HI |α1α2〉+
∑
INT

〈α′1α′2|HI |INT〉〈|INT|HI |α1α2〉
Eα1 + Eα2 − EINT + iε

+ · · · ,

= 〈α′1α′2|HCT,00|α1α2〉

+
∑
β1β2

〈α′1α′2|HCT,00|β1β2〉〈β1β2|HCT,00|α1α2〉
Eα1 + Eα2 − Eβ1 − Eβ2 + iε

+
∑
β1β2qi

〈α′1α′2|HπNN,01|β1β2qi〉〈β1β2qi|HπNN,10|α1α2〉
Eα1 + Eα2 − Eβ1 − Eβ2 − ωq + iε

+ · · · , (3.38)

where |qi〉 is the state of a pion with momentum q and type i. Making ex-
plicit HI as in Eq. (3.23), we can select the intermediate states which will give a
non vanishing contribution after the contraction of all the creation/annihilation
operators of the Hamiltonian.

Each matrix element, after using the creation/annihilation operator algebra,
contains only the vertex functions and Kronecker δ expressing the momentum
conservation at each vertex. For example

〈β1β2qi|HπNN,10|α1α2〉 = MπNN,10
β1α1qi

δqβ1+q,pα1
δβ2,α2 −M

πNN,10
β1α2qi

δqβ1+q,pα2
δβ2,α1

− MπNN,10
β2α1qi

δqβ2+q,pα1
δβ1,α2 +MπNN,10

β2α2qi
δqβ2+q,pα2

δβ1,α1 ,(3.39)

where δβ2,α2 ≡ δpβ2 ,pα2 δsβ2 ,sα2 δtβ2 ,tα2 , etc. Using the δ’s to eliminate either all
or part of the sums over the intermediate states, we have the final expression for
the T matrix as a series of terms which can be represented by “time ordered”
diagrams. For example the third line in Eq. (3.38) gives

1

Ω

(MπNN,01
α′2,α2,k2,a

MπNN,10
α′1,α1,−k1,a

Eα1 − Eα′1 − ωk
+
MπNN,01

α′1,α1,k1,a
MπNN,10

α′2,α2,−k2,a

Eα2 − Eα′2 − ωk

)
δp1+p2,p′1+p′2

− (α′1 ↔ α′2) ,

(3.40)
which can be represented by the “time ordered” diagrams reported in Fig. (3.1)

There is one-to-one correspondence between the diagrams and the correspond-
ing expressions of the contributions to the T -matrix. If we consider the time
running upward, the various factors are ordered starting from the top of the di-
agrams and going “backward”. Every time we meet a vertex, we associate the
corresponding vertex function; between two vertices we have a “propagator” or
better an energy denominator which takes into account of the “flying” particles
in the intermediate state. For each vertex there is a δ’s conservation of momenta.
After the elimination of the sum over the intermediate state momenta with the
δ’s, it remains an integrations over a momentum for each loop. It’s important
to notice that these diagrams are not Feynman diagrams. Unlike the latters, we
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Figure 3.1: Graphical representation, using the time ordered diagrams, for the
one pion exchange in the NN scattering.

must consider here all time orderings: thus, for example, when we have a one pion
exchange we must consider the diagrams where the pion is emitted by the first
nucleon and absorbed by the second and the diagrams where the pion is emitted
by the second nucleon and absorbed by the first. This is due to the analytical
integration over time we have performed when we have written the S-matrix in
terms of the T -matrix.

The reason of using time-ordered diagrams is connected to possibility to iden-
tify the chiral order (Q/Λχ)ν for each of them. The order of a diagram depends
simply on:

1. the chiral order of the non relativistic expansion of the vertex functions;

2. the energy denominators. We note that typical momenta p of the nucleons
are much smaller than the mass of the nucleons, so we can treat them non
relativistically. Namely Eα ' M + p2

2M
∼ O(Q0) + O(Q2). Regarding the

pion energies, ωk =
√
m2
π + k2 ∼ O(Q). Usually in the energy denominator

all the nucleon masses M cancel out and therefore we have two cases:

• if there are no pions in flight, the energy denominator has only nucleon
energy terms so it result of order 1/Q2.

• if there are pions in flight the energy denominator reads

1

∆E − ωk
∼ − 1

ωk

(
1 +

∆E

ωk
+ · · ·

)
, (3.41)

where the term ∆E = E1 + · · · − E0 where E1, . . . are the energies
of the nucleons and E0 is the initial scattering energy. In the Taylor
expansion the first term is of order Q−1, the second of order Q0 and
so on.

3. The number of loops, or better the number of the sums over the intermediate
state momenta that remains after using the conservation δ’s. Each loop at
the end will give a contribution of order Q3.
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For example let’s consider the OPE diagrams in the PC case in Fig. 3.1. From
the expression in Eqs. (3.37) and (3.36) the vertex functions at the LO are of
order Q1/2 while the energy denominator is of order Q−1. Therefore the lowest
order of the diagrams is

∼ Q
1
2 Q

1
2

1

Q
∼ O(Q0) . (3.42)

From an analysis of the diagrams contributing to the PC potential it is easy to see
that the LO has order O(Q0) as calculated above for OPE. Also the Lagrangian
in Eq. (2.66) is of order O(Q0) so the contact term in the PC case contribute to
LO. The PV and TV LO is O(Q−1) and it is obtained from the corresponding
PV or TV OPE.

3.3 The NN potential

As we have seen before, the T -matrix can be written as a sum over contributions
(diagrams) each of them of a given chiral index ν. For the T -matrix of NN
scattering we have

T =
∑
n

T (n), (3.43)

where T (n) ∼ Qn. In all cases the sum starts from a minimum value of n, n = 0
for the PC and n = −1 for the PV and TV amplitude. Assuming that the non
relativistic nuclear potential V has the same Q expansion as the T matrix,

V =
∑
n

V (n) , V (n) ∼ Qn , (3.44)

we can build V from the T -matrix using the LS equation [39]. In fact, if we
consider the state |φ〉 to be a non interacting two nucleon state, i. e. the solution
of the free Schrödinger equation

(H0 − Ei) |φ〉 = 0, (3.45)

and |ψ〉 the NN state solution of the full Schrödinger equation

(H0 + V − Ei) |ψ〉 = 0, (3.46)

then we can write the LS equation as

|ψ〉 = |φ〉+
1

Ei −H0 + iε
V |ψ〉 , (3.47)

where ε → 0+ have been inserted in order to eliminate the singularity. Defining
the operator TV as TV φ = V ψ we derive the integral equation for TV ,

TV = V + V
1

E0 −H0 + iε
TV , (3.48)
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which we can be solved iterating

TV = V + V
1

E0 −H0 + iε
V + V

1

E0 −H0 + iε
V

1

E0 −H0 + iε
V + · · · . (3.49)

We will construct V so

〈α′1α′2 |TV |α1α2〉 = 〈α′1α′2 |T |α1α2〉 , (3.50)

order by order in the Q power expansion.
We will now explain how to perform in practice the power expansion of

〈α′1α′2 |TV |α1α2〉. In the calculation of the amplitude 〈α′1α′2 |TV |α1α2〉 in Eq. (3.49),
we must consider intermediate states of only two nucleons, because the potential
couples only nucleonic degrees of freedom. Each term of the free Green functions

G0 ≡
1

Ei −H0 + iε
(3.51)

then brings a contribution of order Q. In fact, let us consider for example a
generic term like

〈α′1α′2|V (n′)G0V
(n) |α1α2〉 =

∑
β1β2

〈α′1α′2|V (n′) |β1β2〉 〈β1β2|V (n) |α1α2〉
Eα1 + Eα2 − Eβ1 − Eβ2 + iε

. (3.52)

As discussed in Section 3.2 this energy denominator is of order Q−2. Concern-
ing the matrix element of the potential, there is always a delta related to the
momentum conservation

〈α′1α′2|V (n) |α1α2〉 =
1

Ω
〈α′1α′2| v(n) |α1α2〉 δp′1+p′2,p1+p2

, (3.53)

with v(n) of order Qn. In Eq. (3.52) we have two deltas: one fixes the value of
one of the two momenta of the sum, the second brings an overall momentum
conservation. Thus, one integration over one of the intermediate momentum
remains contributing to a factor of order Q3. Therefore the total order of the
term in Eq. (3.52) will be Qn+n′+1. Similarly we obtain

V (n)G0V
(n′)G0V

(n′′) ∼ Qn+n′+n′′+2 , (3.54)

V (n)G0V
(n′)G0V

(n′′)G0V
(n′′′) ∼ Qn+n′+n′′+n′′′+3 , (3.55)

etc.
Let us discuss the case where the two nucleons interact through a PC potential

plus a very small non conserving part X, which can be either PV or TV . The
T -matrix calculated from the χEFT results in the following expansion in powers
of Q for T = TPC + TX :

TPC = T
(0)
PC + T

(1)
PC + T

(2)
PC + T

(3)
PC + . . . , (3.56)

TX = T
(−1)
X + T

(0)
X + T

(1)
X + T

(2)
X + . . . . (3.57)
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We assume that V = VPC + VX , with the two having a similar expansion

VPC = V
(0)
PC + V

(1)
PC + V

(2)
PC + T

(3)
PC + · · · (3.58)

VX = V
(−1)
X + V

(0)
X + V

(1)
X + T

(2)
X + · · · . (3.59)

Using this form of the potential in Eq. (3.49) and neglecting the terms like (VX)2

or of higher power we find

T = V + V G0V + V G0V G0V + V G0V G0V G0V + · · ·
= VPC + VX + VPCG0VPC + VXG0VPC + VPCG0VX

+ VPCG0VPCG0VPC + VXG0VPCG0VPC

+ VPCG0VXG0VPC + VPCG0VPCG0VX + · · · . (3.60)

Matching order by order the two sides of Eq. (3.60), taking into account the
“rule” G0 ∼ Q, we obtain for the PC potential up to order Q3

V
(0)
PC = T

(0)
PC , (3.61)

V
(1)
PC = T

(1)
PC −

[
V

(0)
PCG0V

(0)
PC

]
, (3.62)

V
(2)
PC = T

(2)
PC −

[
V

(0)
PCG0V

(1)
PC

]
−
[
V

(1)
PCG0V

(0)
PC

]
−

[
V

(0)
PCG0V

(0)
PCG0V

(0)
PC

]
, (3.63)

. . .

and for the non-conserving part

V
(−1)
X = T

(−1)
X , (3.64)

V
(0)
X = T

(0)
X −

[
V

(−1)
PV G0V

(0)
PC

]
−
[
V

(0)
PCG0V

(−1)
PV

]
, (3.65)

V
(1)
X = T

(1)
X −

[
V

(0)
X G0V

(0)
PC

]
−
[
V

(0)
PCG0V

(0)
X

]
−

[
V

(−1)
PV G0V

(1)
PC

]
−
[
V

(1)
PCG0V

(−1)
X

]
−

[
V

(−1)
X G0V

(0)
PCG0V

(0)
PC

]
−
[
V

(0)
PCG0V

(−1)
X G0V

(0)
PC

]
−

[
V

(0)
PCG0V

(0)
PCG0V

(−1)
X

]
, (3.66)

. . .

For the study of the TV potential we will stop to V
(0)
TV . This formal expression

will allow us to calculate the matrix element 〈α′1α′2 |V |α1α2〉 from the various
contributions of the matrix elements 〈α′1α′2 |T |α1α2〉.

The generic amplitude 〈α′1α′2 |T |α1α2〉 has “direct” terms and “exchange”
terms. The first corresponds to the diagrams where there is the transition αi → α′i
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with i = 1, 2, for example the first two terms in Eq. (3.40). The second represents
the transition αi → α′j with i 6= j = 1, 2, for example the terms we have denoted
with “(α′1 ↔ α′2)” in Eq. (3.40). Now we can write

〈α′1α′2|V |α1α2〉 =

∫
d3r1d

3r2d
3r′1d

3r′2 〈α′1α′2|r′1r′2〉〈r′1r′2|V |r1r2〉〈r1r2|α1α2〉 ,
(3.67)

where |α1α2〉 is an antisymmetric state of two nucleons which can be projected
on r-space obtaining

〈r1r2|α1α2〉 =
1√
Ω

eip1·r1+ip2·r2|s1t1〉|s2t2〉 − eip2·r1+ip1·r2 |s2t2〉|s1t1〉√
2

, (3.68)

where |siti〉 is the spin-isospin state of the i-th particle. Substituing this equation
in Eq. (3.67) we find

〈α′1α′2|V |α1α2〉 =
1

Ω

∫
d3r1d

3r2d
3r′1d

3r′2

[(
e−ip

′
1·r′1−ip′2·r′2〈s′1t′1|〈s′2t′2|

)
×〈r′1r′2|V |r1r2〉

(
eip1·r1+ip2·r2|s1t1〉|s2t2〉

)
−(α′1 ↔ α′2)

)
. (3.69)

As in the T -matrix also in the potential matrix elements we obtain a “direct”
term and an “exchange” term. It will be sufficent to match the direct part of the
T -matrix elements to the direct potential matrix elements via Eq. (3.62)–(3.66)
to obtain the potential.
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Chapter 4

The PV potential

In this chapter we will discuss in detail the derivation of the PV potential up
to N3LO. In the first section the notation used in this and next Chapter will be
introduced. In the second and third Sections we derive the PV potential up to
N2LO and N3LO, respectively. In Section 4.4 we will regularize the divergences
coming from the loops and in Section 4.5 we will give the complete expression of
the potential in momentum space. In the last Section we will give the potential
in configuration space. This is a very technical Chapter, the reader could skip
Sections 4.2, 4.3 and 4.4 and refers to the last two Sections for the final expression
of the potential.

4.1 Notations

In this and in the next chapter we will use the following notation. The process
under consideration is the scattering of two nucleons from an initial state |p1p2〉
to the final state |p′1p′2〉. It is convenient to define the momenta

Kj =
p′j + pj

2
, kj = p′j − pj , (4.1)

where pj and p′j are the initial and the final momenta of the nucleon j. Further-
more is useful to define

σj ≡ (σ)s′j ,sj ≡ 〈
1

2
s′j|σ|

1

2
sj〉 , ~τj ≡ (~τ)t′j ,tj ≡ 〈

1

2
t′j|~τ |

1

2
tj〉 , (4.2)

which are the spin (isospin) matrix element between the final state s′j (t′j) and
the intial state sj (tj) of the nucleon j.

Because k1 = −k2 ≡ k from the overall momentum conservation p1 + p2 =
p′1+p′2, the momentum-space potential V is a function of the momentum variables
k, K1 and K2, namely

〈α′1α′2|VPV |α1α2〉 =
1

Ω
VPV (k,K1,K2)δp1+p2,p′1+p′2

, (4.3)

35
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(a) (b) (c) (d) (e)

Figure 4.1: Diagrams contributing up to N2LO to the PV potential. Nucleons
and pions are denoted by solid and dashed lines, rispectively. The open (solid)
circles represent PC (PV ) vertices.

where αj = {pj, sj, tj} and the dependence on the spin-isospin quantum number
is understood. Moreover, we can write

VPV (k,K1,K2) = V
(CM)
PV (k,K) + V

(P )
PV (k,K) , (4.4)

where K = (K1 −K2)/2, P = p1 + p2 = K1 +K2, and the term V
(P )
PV (k,K)

represents a boost correction to V
(CM)
PV (k,K), the potential in the center-of-mass

frame (CM). Below we will ignore the boost correction and provide expressions

for V
(CM)
PV (k,K) only.

4.2 The PV potential up to N2LO

In this section we will give a detailed derivation of the PV potential from the
time ordering diagrams as discussed in Chapter 3. The diagrams contributing to
the T -matrix up to N2LO are shown in Fig. 4.1 in panels (a)− (e). The one pion
exchange diagrams (a) give a contribution to the T -matrix of order Q−1 (that
will be our LO) and then other contributions of higher order coming from the
successive orders of the NR expansion of the vertex functions PVMπNN,01 and
PCMπNN,01. The diagrams (b) represent a PV contact interaction of order Q;
also the diagrams (c) with the PC contact vertex and one pion exchange give
a contribution of order Q. The triangle diagrams (d) with a PC ππNN vertex
is of order Q, while if we consider the PV ππNN vertex, the diagrams will be
of order Q2, so it will be considered in the next section. The box diagrams (e)
includes contribution of order Q0 and Q; as we will see the contribution of order
Q0 is cancelled exactly by the terms V

(−1)
PV G0V

(0)
PC + V

(0)
PCG0V

(−1)
PV in Eq. (3.65).

We don’t consider vertex corrections or where there are dressed propagators as in
panels (1), (2), (3) of Fig. 4.2, they give simply a renormalization of the coupling
constant h1

π and of the masses, see Ref. [25] for more details. For our aim it is just
sufficent to say that the formulas below are given in terms of the renormalized
(physical) LECs and masses. The contribution of diagram (4) is cancelled by
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(2) (4)(1) (3)

Figure 4.2: Other diagrams that give contribution to the N2LO. These diagrams
contribute to the renoramlization of the LECs (panels (1), (2) and (3)) or give a
vanishing contribution to the potential (panel (4)) due to the subtraction terms
given in Eqs. (3.64)-(3.66). Notation as in Fig. 4.1.

1’ 2’

1 2

1’ 2’

1 2

1’ 2’

1 2

1’ 2’

1 2
(a1) (a2) (a3) (a4)

Figure 4.3: Time ordered diagrams that contribute to the PV OPE. Notation as
in Fig. 4.1.

the last three terms of Eq. (3.66). Therefore VPV = V
(−1)
PV + V

(1)
PV . The detailed

calculation of each diagram is given in the next subsections.

4.2.1 One pion exchange

The complete set of time ordered diagrams that contribute are shown in Fig. 4.3.
Using Eq. (3.38) from these diagrams we can derive the following expressions to
the T -matrix

T (a1 + a2) =
1

Ω

∑
qj

1

E0 − (E1′ + E2 + ωq)

(
PVMπNN,01

α′2α2,qj
PCMπNN,10

α′1α1,qj

+ PCMπNN,01
α′2α2,qj

PVMπNN,10
α′1α1,qj

)
δp1+p2,p′1+p′2

δ−k,q , (4.5)

T (a3 + a4) =
1

Ω

∑
qj

1

E0 − (E1 + E2′ + ωq)

(
PVMπNN,01

α′1α1,qj
PCMπNN,10

α′2α2,qj

+ PCMπNN,01
α′1α1,qj

PVMπNN,10
α′2α2,qj

)
δp1+p2,p′1+p′2

δk,q , (4.6)
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where E1 ≡ Eα1 , E1′ ≡ Eα′1 etc. In the energy denominator in Eqs. (4.5) and (4.6)
we have neglected the term +iε because at low energy ∆E � ωq, where ∆E =
E0−E1′−E2 or ∆E = E0−E1−E2′ , and since ωq ≥ mπ the denominator cannot
vanish. Above, E0 is defined as the initial scattering energy, E0 = E1 + E2.
Morover, the conservation of energy enforces E1 + E2 = E1′ + E2′ which is the
final energy. In the CM we have also E1 = E1′ and E2=E2′ , so in the present
case ∆E = 0. Integrating over q we have finally

T (a1 + a2) = − 1

Ω

1

ωk

(
PVMπNN,01

α′2α2,−kj
PCMπNN,10

α′1α1,−kj +

PCMπNN,01
α′2α2,−kj

PVMπNN,10
α′1α1,−kj

)
δp1+p2,p′1+p′2

, (4.7)

T (a3 + a4) = − 1

Ω

1

ωk

(
PVMπNN,01

α′1α1,kj
PCMπNN,10

α′2α2,kj
+

PCMπNN,01
α′1α1,kj

PVMπNN,10
α′2α2,kj

)
δp1+p2,p′1+p′2

, (4.8)

where the sum over j is implied (remember that k1 = p′1 − p1). We can now
use the expressions for the vertex functions given in Appendix C and obtain the
various terms of order Qn. The lowest order (Q−1) is a non relativistic (NR) term
which reads

T
(−1)
PV (NR− a) =

gAh
1
π

2
√

2fπ
(τ1 × τ2)z

ik · (σ1 + σ2)

ω2
k

. (4.9)

From Eq. (3.64) we can derive the expression V
(−1)
PV = T

(−1)
PV

The contributions to the T -matrix at order Q0 and Q2 vanish. In fact, at
these orders, the contribution of the time ordered diagram (a1) cancels out the
contribution of diagram (a3) and analogously for diagrams (a2) and (a4). At
order Q1 we obtain the term

T
(1)
PV (REN− a) = T (−1)(NR)

[2m2
π

gA
(2d16 − d18)− 8

√
2m2

π

h1
πf

2
π

(h1
2 − h1

3)
]
, (4.10)

which simply gives results to a renormalization of the LECs h1
π, and the term

T
(1)
PV (RC− a) =

gAh
1
π

2
√

2fπ

1

4M2
(~τ1 × ~τ2)z

1

ω2
k

[−4iK2k · (σ1 + σ2)

+k · σ1 (k ×K) · σ2 + k · σ2 (k ×K) · σ1] , (4.11)

which can be interpreted as a relativistic correction (RC). To obtain the po-
tential we can now use Eqs. (3.64)-(3.66). The subtraction terms in Eq. (3.65)
will be effective for cancelling the Q0 contributions of diagrams (e) of Fig. 4.1
(see later), and since T (0) = 0 we have V (0) = 0. From Eq. (3.66), we obtain

V
(1)
PV (a) = T

(1)
PV (a), since the subtraction terms are effective only to cancel (par-

tially) the contributions of the diagrams with only nucleons in at least one of the
intermediate states.
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1 2

1’ 2’

1 2

1’ 2’

1 2

1’ 2’

Figure 4.4: Time-ordered diagrams with a PC contact term and a exchange of a
pion. Notation as in Fig. 4.1.

4.2.2 Contact terms

From the diagram (b) in Fig. 4.1 we obtain

T (b) =
1

Ω
2 PVM00

α′1α1α′2α2
δp1+p2,p′1+p′2

, (4.12)

where PVM00 is given in Eq. (A.40) of Appendix A. The T -matrix derived from
this contribution is

T
(1)
PV (b) =

1

Λχm2
π

[C1i(σ1 × σ2) · k + C2(~τ1 · ~τ2)i(σ1 × σ2) · k

+C3(~τ1 × ~τ2)zi(σ1 + σ2) · k + C4(τ1z + τ2z)i(σ1 × σ2) · k
+C5Iab(τ1)a(τ2)bi(σ1 × σ2) · k] . (4.13)

Also in this case from Eq. (3.66) we find V
(1)
PV (b) = T

(1)
PV (b).

The diagram (c) in Fig. 4.1 is representative of the three kinds of time ordered
diagrams with a contact term and a OPE shown in Fig. 4.4. However all these
diagrams give a vanishing contribution after the integration over the loop variable.

4.2.3 Two pions exchange: triangle diagrams

The terms H01G0H
01G0H

20 +H01G0H
11G0H

10 +H02G0H
01G0H

01 in the expres-
sion of the T -matrix give 12 two pions exchange (TPE) diagrams, six of them
given explicitly in Fig. 4.5, plus six other diagrams with the ππNN vertex at-
tached to nucleon 2. From these diagrams we obtain the following contribution
to the T -matrix:

T (d1) =
∑

q1j1,q2j2β

PVMπNN,01
α′2β,q2j2

PCMππNN,11
α′1α1,q2j2q1j1

PCMπNN,10
βα2,q1j1

(E0 − (Eβ + E1 + ωq1))(E0 − (Eβ + E1′ + ωq2))

×δp1+p2,p′1+p′2
δq2+p′1,q1+p1δpβ+q1,p2

T (d2) =
∑

q1j1,q2j2β

PCMπNN,01
α′2β,q2j2

PCMππNN,11
α′1α1,q2j2q1j1

PVMπNN,10
βα2,q1j1

(E0 − (Eβ + E1 + ωq1))(E0 − (Eβ + E1′ + ωq2))
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1 2
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Figure 4.5: Triangle diagrams that contribute to the PV TPE. Notation as in
Fig. 4.1.

×δp1+p2,p′1+p′2
δq2+p′1,q1+p1δpβ+q1,p2

T (d3) =
∑

q1j1,q2j2β

PVMπNN,01
α′2β,q2j2

PCMπNN,01
βα2,q1j1

PCM
ππNN,20

α′1α1,q2j2q1j1

(E0 − (E1′ + Eβ + ωq2))(E0 − (E2 + E1′ + ωq1 + ωq2))

×δp1+p2,p′1+p′2
δp1,q1+q2+p′1

δpβ ,q1+p2

T (d4) =
∑

q1j1,q2j2β

PCMπNN,01
α′2β,q2j2

PVMπNN,01
βα2,q1j1

PCM
ππNN,20

α′1α1,q2j2q1j1

(E0 − (E1′ + Eβ + ωq2))(E0 − (E2 + E1′ + ωq1 + ωq2))

×δp1+p2,p′1+p′2
δp1,q1+q2+p′1

δpβ ,q1+p2

T (d5) =
∑

q1j1,q2j2β

PCM
ππNN,02

α′1α1,q1j1q2j2
PVMπNN,10

α′2β,q2j2
PCMπNN,10

βα2,q1j1

(E0 − (Eβ + E1 + ωq1))(E0 − (E2′ + E1 + ωq1 + ωq2))

×δp1+p2,p′1+p′2
δp1+q1+q2,p′1

δpβ+q1,p2

T (d6) =
∑

q1j1,q2j2β

PCM
ππNN,02

α′1α1,q1j1q2j2
PCMπNN,10

α′2β,q2j2
PVMπNN,10

βα2,q1j1

(E0 − (Eβ + E1 + ωq1))(E0 − (E2′ + E1 + ωq1 + ωq2))

×δp1+p2,p′1+p′2
δp1+q1+q2,p′1

δpβ+q1,p2 , (4.14)

where

PCM
ππNN,02

α′1α1,q1j1q2j2
= PCMππNN,02

α′1α1,q1j1q2j2
+ PCMππNN,02

α′1α1,q2j2q1j1
, (4.15)

PCM
ππNN,20

α′1α2,q1j1q2j2
= PCMππNN,20

α′1α1,q1j1q2j2
+ PCMππNN,20

α′1α1,q2j2q1j1
, (4.16)

since we have two ways to contract the creation-annihilation operators in the T-
matrix elements. Above β indicates the quantum numbers of the nucleons in the
loop. We can neglect again the term +iε in the energy denominators. Expanding
non relativistically the energies of the nucleons, summing over β, j1, j2 and using
the vertex functions MππNN,02, MππNN,11, MππNN,20 given in Eqs. (C.24)-(C.26)
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of the Appendix C, at the lowest order we obtain:

T (d1 + d2) =
1

Ω2
i
gAh

1
π

32
√

2f 3
π

(~τ1 × ~τ2)z
∑
q1,q2

ωq1 + ωq2
ω2
q1
ω2
q2

(q1 − q2)σ2

×δp1+p2,p′1+p′2
δq2+p′1,q1+p1 , (4.17)

T (d3 + d4) =
1

Ω2
i
gAh

1
π

32
√

2f 3
π

(~τ1 × ~τ2)z
∑
q1,q2

ωq2 − ωq1
ω2
q2
ωq1(ωq1 + ωq2)

(q2 + q1)σ2

×δp1+p2,p′1+p′2
δp1+q1+q2,p′1

, (4.18)

T (d5 + d6) =
1

Ω2
i
gAh

1
π

32
√

2f 3
π

(~τ1 × ~τ2)z
∑
q1,q2

ωq2 − ωq1
ω2
q1
ωq2(ωq1 + ωq2)

(q2 + q1)σ2

×δp1+p2,p′1+p′2
δp1,q1+q2+p′1

. (4.19)

We can redefine q1 and q2 to obtain the same δ in the different expressions and
then we have

T (d1 + · · ·+ d6) =
1

Ω2
i
gAh

1
π

8
√

2f 3
π

(~τ1 × ~τ2)z
∑
q1,q2

1

ωq1ωq2(ωq1 + ωq2)
(q1 + q2)σ2

×δp1+p2,p′1+p′2
δk,q1+q2 . (4.20)

We note that this contribution is of order Q. Let us define

Q =
q1 + q2

2
, q = q2 − q2 , (4.21)

and perform a change in the integration variables∑
q1,q2

−→
∫

d3Q

(2π)3

∫
d3q

(2π)3
. (4.22)

This type of variable change will be used frequently in the integration of diagrams
with one loop.

Thus our integral becomes, after exploiting the delta function δk,q1+q2 :

T (d1 + · · ·+ d6) =
1

Ω2

gAh
1
π

8
√

2f 3
π

(~τ1 × ~τ2)zik · σ2

∫
d3q

(2π)3

1

ω+ω−(ω+ + ω−)

×δp1+p2,p′1+p′2
, (4.23)

where ω± =
√

(q ± k)2 + 4m2
π.

Summing also the contribution of the other six diagrams, the total contribu-
tion from the triangle diagrams is

T
(1)
PV (d) =

gAh
1
π

8
√

2f 3
π

(~τ1 × ~τ2)zik · (σ1 + σ2)

∫
d3q

(2π)3

1

ω+ω−(ω+ + ω−)
. (4.24)

From Eq. (3.66) we find V
(1)
PV (d) = T

(1)
PV (d).
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Figure 4.6: Box diagrams that contribute to the PV TPE. Notation as in Fig. 4.1.

4.2.4 Two pions exchange: box diagrams

Let’s consider the terms H01G0H
01G0H

10G0H
10 and H01G0H

10G0H
01G0H

10 in
the expression of T -matrix. These terms give 48 diagrams represented by the
diagram of type (e) in Fig. 4.1 plus all possible time ordered. A representative
group of them is shown in Fig. 4.6 where we have depicted a single time-ordered
for each type. Moreover for each diagram, one needs to consider the possible
diagrams taking into account all possible positions of the PV vertex.

The diagrams in Fig. 4.6, approximating Epi ≈M , correspond to the following
expressions:

T (e1) =
1

Ω2

∑
q1j1q2j2βγ

−1

ωq1ωq2 (ωq1 + ωq2)[
PCMπNN,01

α′1β,q2j2
PVMπNN,01

α′2γ,q1j1
PCMπNN,10

γα2,q2j2
PCMπNN,10

βα1,q1j1

]
×δq1−q2,p′2−p2δpβ+q2,p′1

δpγ+q1,p′2
δp1+p2,p′1+p′2

T (e2) =
1

Ω2

∑
q1j1q2j2βγ

−1

ω2
q1

(ωq1 + ωq2)[
PVMπNN,01

α′2γ,q1j1
PCMπNN,01

γα2,q2j2
PCMπNN,10

α′1β,q2j2
PCMπNN,10

βα1,q1j1

]
×δq1+q2,p′2−p2δpβ ,p′1+q2δpγ+q1,p′2

δp1+p2,p′1+p′2

T (e3) =
1

Ω2

∑
q1j1q2j2βγ

−1

ω2
q1

(ωq1 + ωq2)[
PVMπNN,01

α′2γ,q1j1
PCMπNN,10

α′1β,q2j2
PCMπNN,01

γα2,q2j2
PCMπNN,10

βα1,q1j1

]
×δq1−q2,p′2−p2δpβ+q2,p′1

δpγ+q1,p′2
δp1+p2,p′1+p′2

T (e4) =
1

Ω2

∑
q1j1q2j2βγ

−1

ωq1ωq2 (ωq1 + ωq2)[
PVMπNN,01

α′2γ,q2j2
PCMπNN,01

γα2,q2j2
PCMπNN,10

α′1β,q2j2
PCMπNN,10

βα1,q1j1

]
×δq1+q2,p′2−p2δpβ ,p′1+q2δpγ ,p2+q1δp1+p2,p′1+p′2
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. (4.25)

For the diagrams (e5) and (e6) the calculation is a little bit more complicated
because we have a pure nucleonic intermediate state. The expression are the
following

T (e5) =
1

Ω2

∑
q1j1q2j2,βγ

1

(E0 − (Eβ + E2 + ωq1)) (E0 − (Eγ + E1′ + ωq2))

× 1

(E0 − (Eβ + Eγ) + iε)
δq1+q2,p′2−p2δpβ ,p′1+q2δpγ ,q1+p2δp1+p2,p′1+p′2[

PVMπNN,01
α′2γ,q2j2

PCMπNN,10
α′1β,q2j2

PCMπNN,01
γα2,q1j1

PCMπNN,10
βα1,q1j1

]
, (4.26)

T (e6) =
1

Ω2

∑
q1j1q2j2,βγ

1

(E0 − (Eβ + E2 + ωq1)) (E0 − (Eβ + E2′ + ωq2))

× 1

(E0 − (Eβ + Eγ) + iε)
δq1−q2,p′2−p2δpβ+q2,p′1

δpγ ,q1+p2δp1+p2,p′1+p′2[
PCMπNN,01

α′1β,q2j2
PVMπNN,10

α′2γ,q2j2
PCMπNN,01

γα2,q1j1
PCMπNN,10

βα1,q1j1

]
. (4.27)

Note that expanding the vertex function at the leading order, T (e5) and T (e6)
would be of order Q0. In one intermediate state there are no pions, therefore
we cannot eliminate the term +iε because E0 − (Eβ + Eγ) could be zero. To

obtain VPV , we must subtract the contribution of V
(−1)
PV G0V

(0)
PC + V

(0)
PCG0V

(−1)
PV as

given in Eq. (3.65). The matrix element 〈α1′α1′|V (−1)
PV G0V

(0)
PC |α1α2〉 gives a series

of contributions, two of them are

T (e5′) =
1

Ω2

∑
q1j1q2j2,βγ

[
PVMπNN,01

α′2γ,q2j2
PCMπNN,10

α′1β,q2j2
PCMπNN,01

γα2,q1j1
PCMπNN,10

βα1,q1j1

]
ωq1ωq2 (E0 − (Eβ + Eγ) + iε)

×δq1+q2,p′2−p2δpβ ,p′1+q2δpγ ,q1+p2δp1+p2,p′1+p′2
, (4.28)

T (e6′) =
1

Ω2

∑
q1j1q2j2,βγ

[
PCMπNN,01

α′1β,q2j2
PVMπNN,10

α′2γ,q2j2
PCMπNN,01

γα2,q1j1
PCMπNN,10

βα1,q1j1

]
ωq1ωq2 (E0 − (Eβ + Eγ) + iε)

×δq1−q2,p′2−p2δpβ+q2,p′1
δpγ ,q1+p2δp1+p2,p′1+p′2

. (4.29)

As we can see, these corrections have the same vertex function product but
differ in two of the energy denominators. Therefore the cancellation of the con-
tribution (e5) and (e6) is not exact. Assuming however that ∆E1 = E0−Eβ−E1

and ∆E2 = E0−Eγ −E1′ are of order Q2, we have ∆Ei � ωqi . Therefore we can
use the following Taylor expansion of these energy denominators,

1

∆E1 − ωq1
≈ − 1

ωq1

[
1 +

∆E1

ωq1
+ · · ·

]
. (4.30)
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Figure 4.7: Box diagrams that summed with the diagrams in Fig. 4.6 permits to
obtain a simple form for the T -matrix. Notation as in Fig. 4.1.

In summary, the subtraction of the terms (e5)− (e5′) reads

T (e5− e5′) = [. . .]

[
1

(∆E1 − ωq1)
1

(∆E2 − ωq2)
1

(E0 − (Eβ + Eγ) + iε)

− 1

ωq1ωq2 (E0 − (Eβ + Eγ) + iε)

]
= [. . .]

1

ωq1ωq2

1

(E0 − (Eβ + Eγ) + iε)

(
∆E1

ωq1
+

∆E2

ωq2

)
+O(Q2) ,

(4.31)

where [. . .] indicates schematically the product of the vertex functions. Practically
the final contribution is due to a “recoil” of the nucleons in the intermediate states.
Note that the contribution to VPV is of order Q. As stated before no contribution
of order Q0 is found.

Considering also the corresponding contributions of the 6 diagrams where
α1 
 α2 and α1′ 
 α2′ but where the PV vertex remains on the line of the
nucleon on the right (diagrams (e1)-(e6) in Fig. 4.7), the product of the δ and
the vertex functions can be reduced to the same form as for the diagrams (e1)-
(e6). In particular

T (e5) =
1

Ω2

∑
q1j1q2j2,βγ

1

(E0 − (Eγ + E1 + ωq1)) (E0 − (Eβ + E2′ + ωq2))

× 1

(E0 − (Eβ + Eγ) + iε)
δq1+q2,p2−p′2δpβ ,p1+q1δpγ ,p2−q1δp1+p2,p′1+p′2[

PCMπNN,01
α′1β,q2j2

PVMπNN,10
α2′γ,q2j2

PCMπNN,01
βα1,q1j1

PCMπNN,10
γα2,q1j1

]
, (4.32)

considering also the contribution coming from the subtraction term V
(−1)
PV G0V

(0)
PC

T (e5′) =
1

Ω2

∑
q1j1q2j2,βγ

[
PCMπNN,01

α′1β,q2j2
PVMπNN,10

α2′γ,q2j2
PCMπNN,01

βα1,q1j1
PCMπNN,10

γα2,q1j1

]
ωq1ωq2 (E0 − (Eβ + Eγ) + iε)
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×δq1+q2,p2−p′2δpβ ,p1+q1δpγ ,p2−q1δp1+p2,p′1+p′2
, (4.33)

we see that the product of the vertex functions is always the same. Therefore

T (E5) = T (e5)− T (e5′) + T (e5)− T (e5′)

' [. . .]
1

ωq1ωq2

∆E1 + ∆E2

(E0 − (Eβ + Eγ) + iε)

[
1

ωq1
+

1

ωq2

]
,

= [. . .]
1

ωq1ωq2

[
1

ωq1
+

1

ωq2

]
, (4.34)

since ∆E1 + ∆E2 = E0−Eβ −Eγ and the “dangerous” denominator cancels out.
The same happens for (e6), (e6′) and (e6), (e6′). Including also the contribution
of the diagrams (e4) and (e4) we find

T (E5 + E6 + e4 + e4) =
1

Ω2

∑
q1j1q2j2,βγ

2

ωq1ωq2

(
ω2
q1

+ ωq1ωq2 + ω2
q2

ωq1ωq2 (ωq1 + ωq2)

)
×δq1+q2,−kδpβ ,p′1+q2δpγ ,q1+p2δp1+p2,p′1+p′2

×
[
PVMπNN,01

α′2γ,q2j2
PCMπNN,10

α′1β,q2j2
PCMπNN,01

γα2,q1j1
PCMπNN,10

βα1,q1j1

]
.

(4.35)

Similarly the vertex functions for the diagrams (e1), (e2), (e3), (e1), (e2) and
(e3) can be summed up to obtain

T (e1 + · · ·+ e3) =
1

Ω2

∑
q1j1q2j2,βγ

−
2(ω2

q1
+ ωq1ωq2 + ω2

q2
)

ω2
q1
ω2
q2

(ωq1 + ωq2)

×δq1+q2,p′2−p2δpβ ,p′1+q2δpγ+q1,p′2
δp1+p2,p′1+p′2

×
[
PVMπNN,01

α′2γ,q1j1
PCMπNN,01

γα2,q2j2
PCMπNN,10

α′1β,q2j2
PCMπNN,10

βα1,q1j1

]
.

(4.36)

Doing the same procedure for all the other possible time ordering diagrams, and
integrating as in triangle diagrams we obtain the complete contribution of dia-
grams of type (e) of Fig. 4.1 at order Q.

V
(1)
PV (e) =

h1
πgA

2
√

2fπ

g2
A

4f 2
π

∫
d3q

(2π)3

ω2
+ + ω+ω− + ω2

−

ω3
+ω

3
− (ω+ + ω−)

{−2i (τ1z + τ2z) [q · σ1(q × k) · σ2 − q · σ2(q × k) · σ1]

−2i (τ1z − τ2z) [q · σ2(q × k) · σ1 + q · σ1(q × k) · σ2]

+i (τ1 × τ2)z
(
k2 − q2

)
k · (σ1 + σ2)} .

(4.37)

We remember that in this case we have alredy subtracted the term V
(−1)
PV G0V

(0)
PC +

V
(0)
PCG0V

(−1)
PV in Eq. (3.66) and therefore we have obtained directly the expression

of V
(1)
PV (e).
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4.2.5 Vertex corrections and dressed propagators

The diagrams in panels (1),(2) and (3) in Fig. 4.2 are discussed in Ref. [25]. To
be completed, here we report the final results

T
(1)
PV (1− 2− 3) = −T (−1)

PV (NR)

[
2

3

g2
A

f 2
π

J13 +
20α− 1

4f 2
π

J01 − 2 `4
m2
π

f 2
π

+
1− 10α

2f 2
π

J01 −
1

4f 2
π

J01

]
, (4.38)

where

Jmn =

∫
dq

(2π)3

q2m

ωnq
. (4.39)

From Eq. (3.66), we obtain V
(1)
PV (1−2−3) = T

(1)
PV (1−2−3). All these contributions

can be reabsorbed in the term V
(−1)
PV (NR) by a renormalization of the LEC h1

π.

4.3 The N3LO potential

In this Section we calculate the components of the PV potential of order Q2. The
diagrams that give a contribution to this order are those reported in Fig. 4.8.
At this order two new types of diagrams appear: the “bubble” diagrams and the
three pions exchange diagrams (see panels (f) and (g)). We have contributions
of order Q2 also by the triangle diagrams in three ways: from NLO terms of the
vertex functions (diags. (h), (i), (j)), from NLO terms in the expansion of the
energy denominator (diag. (l)) and from the diagrams with the PV ππNN vertex
(diag. (k)). From the box diagrams we have contribution from the NLO term
of the vertex functions (diag. (m), (n)) and energy denominators (diag (o), (p),
(q), (r)). As already discussed in Section 4.2.1, the one pion exchange diagrams
do not give any contribution at this order.

4.3.1 Bubble diagrams

Let’s consider the term H02G0H20 in the expansion of the T -matrix. It gives the
diagrams of type (f), explicitly depicted in Fig. 4.9. The expressions we obtain
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(f) (g) (h) (i) (j) (k) (l)

(m) (n) (p)(o)

(s) (t) (u)

(q) (r)

Figure 4.8: Time ordered diagrams that contribute to the N3LO T -matrix. The
vertices depicted by a square surrounding a circle indicate the NLO terms in
the expansion of the vertex functions and the crossed circle (square) on a pion
propagator indicates the NLO (N2LO) term in the energy denominator expansion
given in Eq. (4.30). For the other notation see Fig. 4.1.
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Figure 4.9: Time ordered bubble diagrams that contribute at N3LO. Notation as
in Fig. 4.1.
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for the first two diagrams are:

T (f1) = − 2

Ω2

∑
q1j1q2j2

1

ωq1 + ωq2
δp1+p2,p′1+p′2

δp1+q1+q2,p′1
×[

PCMππNN,02
α1α1′ ,q1j1q2j2

PVMππNN,02
α2α2′ ,q1j1q2j2

+ PCMππNN,02
α1α1′ ,q2j2q1j1

PVMππNN,02
α2α2′ ,q1j1q2j2

]
,

(4.40)

T (f2) = − 2

Ω2

∑
q1j1q2j2

1

ωq1 + ωq2
δp1+p2,p′1+p′2

δp1+q1+q2,p′1
×[

PVMππNN,02
α1α1′ ,q1j1q2j2

PCMππNN,02
α2α2′ ,q1j1q2j2

+ PVMππNN,02
α1α1′ ,q2j2q1j1

PCMππNN,02
α2α2′ ,q1j1q2j2

]
.

(4.41)

Making explicit the vertex functions we obtain

T (f1) = − 1

16f 4
π

(2h1
Aτ1z + h2

AI
bτ1bτ2b)

∑
q1j1q2j2

ωq1 − ωq2
ωq1ωq2(ωq2 + ωq1)

×

(q2 − q1) · σ2δp1+p2,p′1+p′2
δq1+q2,−k , (4.42)

T (f2) = − 1

16f 4
π

(2h1
Aτ2z + h2

AI
bτ1bτ2b)

∑
q1j1q2j2

ωq1 − ωq2
ωq1ωq2(ωq2 + ωq1)

×

(q2 − q1) · σ1δp1+p2,p′1+p′2
δq1+q2,−k . (4.43)

From these expressions it is easy to obtain those for the other two time ordering
diagrams (f3) and (f4) of Fig. 4.9 exchanging k → −k, τ1 ↔ τ2 and σ1 ↔ σ2.
Summing up all together, the various contributions cancel out and therefore these
diagrams do not give any contribution to V

(2)
PV .

4.3.2 Three pions exchange

The expansion in terms of pion fields of the term given in Eq. (2.95) of the χEFT
Lagrangian, give two terms proportional to π3 (see Eq. (B.22)). Expanding the
pion fields in terms of the creation/annihilation operators, the vertex function
proportional to h1

3π cancels out. The other term gives, after reordering the cre-
ation/annihilation operators, a Hamiltonian term like

H3π 12 =
16

Ω3/2

∑
q1j1q2j2q3j3

a†q1j1aq2j2aq3j3
h2

3π I
j3

fπ
εj1j2j3

(q2 · q3)√
8ωq1ωq2ωq3

δq1,q2+q3δp1+p2,p′1+p′2
,

with
Ij3 = (−1,−1, 2). (4.44)

This Hamiltonian term contributes to the scattering of two nucleons via diagrams
of type (g) of Fig. 4.8. However, after summing over all possible time orderings,
the final contribution vanishes.
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4.3.3 Two pions exchange: triangle diagrams

As discussed at the beginning of this Section, the N3LO contributions of these
diagrams come from different origins.

Diagrams like (h) take into account the NLO term of the πNN PC vertex
functions, given by

PCMπNN,01
α′α,qj = − gA

2fπM

τj√
2ωq

iωqK · σ (4.45)

and
PCMπNN,10

α′α,qj =
gA

2fπM

τj√
2ωq

iωqK · σ , (4.46)

where K = (p+ p′)/2.
Substituing the LO term of the πNN PC vertex function in Eq. (4.14), with

the second order given in Eqs. (4.45)-(4.46), and using the Fierz transformations
(see Eqs. (A.39)), we obtain

V
(2)
PV (h) = − h1

πgA

32
√

2f 3
πM

[
i(τ1z + τ2z)k · (σ1 × σ2)− 1

2
i(τ1 × τ2)zk · (σ1 + σ2)

]
×
∫

d3q

(2π)3

1

(q2 + 4m2
π)

, (4.47)

however this term can be reabsorbed in the CT potential given in Eq. (4.13). It
consists in fact in a renormalization of the contact LECs C3 and C4.

In diagrams like (i) of Fig. 4.8, substituting the LO part of the ππNN PC ver-
tex function with the NLO term (see Eqs. (4.45)-(4.46)) we find two contributions
to the potential: a term where the LEC c4 appears,

V
(2)
PV (i1) = −ic4h

1
πgA

2
√

2f 3
π

∫
d3q

(2π)3

1

ω2
+ω

2
−
×

[(q · σ1(q × k) · σ2)τ2z − (q · σ2(q × k) · σ1)τ1z] , (4.48)

and a second term coming from a relativistic correction of PCMππNN

V
(2)
PV (i2) = − h1

πgA

8
√

2f 3
πM

∫
d3q

(2π)3

1

ω2
+ω

2
−

[
2[(K · q)(q · σ2)τ1z − (K · q)(q · σ1)τ2z]

−i[(q · σ2(k × σ1) · q)τ1z − (q · σ1(k × σ2) · q)τ2z] . (4.49)

The contribution of diagrams (j) of Fig. 4.8 is calculated substituting the LO part
of the πNN PV vertex with the NLO one. We obtain the following expression

V
(2)
PV (j) = −h

1
vgA

32f 4
π

(τ1 × τ2)zik · (σ1 + σ2)

∫
d3q

(2π)3

1

(q2 + 4m2
π)

, (4.50)
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which again can be reabsorbed by a redefinition of the C3 LEC.

To obtain the expressions for the diagrams (k), one needs the vertex function
PVMππNN given in Eqs. (C.30)-(C.32). The final result is

V
(2)
PV (k) = − g2

A

8f 4
π

∫
d3q

(2π)3

1

ω2
+ω

2
−
×

{2h1
A[(q · σ1(q × k) · σ2)τ2z − (q · σ2(q × k) · σ1)τ1z] +

h2
AI

bτ1bτ2b[(q · σ1(q × k) · σ2)− (q · σ2(q × k) · σ1)]} , (4.51)

where h1
A and h2

A are the two new LECs that appear explicitly in PVMππNN .

In the triangle diagrams (l) we use the first and second order terms in the
expansion of the energy denominator given in Eq. (4.30). Remembering that
Ei ∼M + p2

i /2M we finally obtain

V
(2)
PV (l) =

h1
πgA

16
√

2f 3
πM

∫
d3q

(2π)3

1

ω2
+ω

2
−

[
4(K · q)q · (σ1τ2z − σ2τ1z)

+(τ1 × τ2)zik · (σ1 + σ2)
(k2 − q2

2

)]
. (4.52)

4.3.4 Two pions exchange: box diagrams

As for the triangle diagrams, the first N3LO contribution is obtained by taking
the NLO vertex functions like in diagrams (m) and (n). Some of the diagrams to
be taken into account are those shown in Figs. 4.6 and 4.7, diagrams (e1)− (e6)
and (e1)− (e6). We have to take into account again of the subtraction of terms
(e5′), (e6′), (e5

′
) and (e6

′
). Inserting the NLO vertex functions in diagrams (e5)

and (e6), both for the PV vertex and for the PC vertex, the combination of δ
functions and vertex functions take the same form as in (e5) and (e6) but with a
different sign. Therefore Eq. (4.34) becomes

T (e5− e5′ + e5− e5′) ' [. . .]
1

ωq1ωq2

∆E1 −∆E2

(E0 − (Eβ + Eγ) + iε)

[
1

ωq1
+

1

ωq2

]
.(4.53)

Using the condition that in the CM the difference ∆E1 −∆E2 = 0 we find that
the contribution of these diagrams vanishes. This condition is valid for all the
time-ordering diagrams of this type, so they don’t give any contribution at N3LO.
Also the N3LO contribution of diagrams (e4) and (e4) cancel out.

The only contribution we have from the NLO vertex functions comes from
diagrams like (e1), (e2) and (e3) of Fig. 4.6. Taking into account the NLO PC
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vertex we obtain

V
(2)
PV (m) =

h1
πg

3
A

32
√

2f 3
πM

[
(τ1 × τ2)z

(
− ik · (σ1 + σ2)

∫
d3q

(2π)3

1

ω2
+ω

2
−

q2 + 3k2

2
+

4[k · σ1 (K × k) · σ2 + k · σ2 (K × k) · σ1]

∫
d3q

(2π)3

1

ω2
+ω

2
−

)
+

(τ1z + τ2z)
(
− 8

∫
d3q

(2π)3

(K · q)q · (σ1 − σ2)

ω2
+ω

2
−

+ 4K · (σ1 − σ2)

∫
d3q

(2π)3

1

ω2
+ω

2
−
−

2i

∫
d3q

(2π)3

1

ω2
+ω

2
−

[(q · σ1(q × k) · σ2)− (q · σ2(q × k) · σ1)]
)]

. (4.54)

In the same way taking into account of the NLO term of the PV vertex we obtain

V
(2)
PV (n) =

g3
A

32f 4
π

[(
h0
V (3 + 2τ2 · τ1)− 4

3
h2
V I

bτ1bτ2b

)
i

∫
d3q

(2π)3

1

ω2
+ω

2
−

[(q · σ1(q × k) · σ2)

−(q · σ2(q × k) · σ1)]− 2ih1
V

∫
d3q

(2π)3

1

ω2
+ω

2
−

[(q · σ1(q × k) · σ2)τ1

−(q · σ2(q × k) · σ1)τ2] + ih1
V (τ1 × τ2)zk · (σ1 + σ2)

∫
d3q

(2π)3

q2 − k2

ω2
+ω

2
−

]
.

(4.55)

The second N3LO contribution of the box diagrams comes from the diagrams
(o), (p), (q) and (r). We need to compute

V
(2)
PV = T

(2)
PV − V

(−1)
PV G0V

(2)
PC − V

(2)
PCG0V

(−1)
PV

−V (1)
PVG0V

(0)
PC − V

(0)
PCG0V

(1)
PV , (4.56)

where V
(2)
PC and V

(1)
PV in this expression are N2LO contributions coming from the

PC and PV OPE terms due to the intermediate states.
Let us explain in detail this issue. For example in Eq. (4.56) we need to include

the matrix element 〈βγ|V (2)
PC |α1α2〉 where β and γ are the quantum numbers of

two-nucleon intermediate states. Now we have to sum over all values of pβ (for
example pγ is fixed by momentum conservation) and therefore we cannot assume
E1 + E2 = Eβ + Eγ. Let us consider again from the beginning the diagrams
contributing to the OPE between states |α1α2〉 and 〈βγ|. They are reported in
Fig. 4.10, where V1, V2, V1 and V2 are the LO vertex functions. So we obtain:

VPC(OPE) =
( V1V2

E2 − Eβ − ωk
+

V2V1

E1 − Eγ − ωk

)
δk,pβ−pγ . (4.57)

Now at LO the product V2V1 is equal to V1V2. Expanding the denominator up to
the second order

VPC(OPE) = V
(0)
PC(OPE)

(
1+

E1 + Eβ − E2 − Eγ
ωk

+
(E1 − Eβ)2 + (E2 − Eγ)2

2ω2
k

+. . .
)
,

(4.58)
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V2

V1

V2

V1

1 2 1 2

Figure 4.10: Diagrams that contribute to the PC OPE. Note that the final states
here are “intermediate” states β and γ. Notation as in Fig. 4.1.

where V
(0)
PC(OPE) = −2V1V2

ωk
. Assuming as usual that ∆E

ω
∼ Q, the Q2 term is

given by

V
(2)
PC(OPE) = V

(0)
PC(OPE)

(E1 − Eβ)2 + (E2 − Eγ)2

2ω2
k

. (4.59)

where k = pβ − p1. Analogously for the VPV (OPE), we find

V
(1)
PV (OPE) = V

(−1)
PV (OPE)

(E1 − Eβ)2 + (E2 − Eγ)2

2ω2
k

. (4.60)

Let us return to our problem. In the calculation of T
(2)
PV the diagrams of type

(q) are exactly cancelled by the subtraction terms

V
(−1)
PV G0V

(2)
PC + V

(2)
PCG0V

(−1)
PV + V

(1)
PVG0V

(0)
PC + V

(0)
PCG0V

(1)
PV , (4.61)

where the expressions (4.59) and (4.60) are used for V
(2)
PC and V

(1)
PV . So no con-

tributions for diagram (q) is found. Moreover, the contribution to the T -matrix
given by diagrams of type (o) is cancelled by the contribution that comes from
the diagrams (p). The only recoil correction comes from the diagrams (r); mak-
ing explicit the vertex functions and using the delta functions to eliminate an
integration over a loop momentum we obtain at order Q2

V
(2)
PV (r) =

h1
πg

3
A

32
√

2f 3
πM

[
i(τ1 × τ2)zk · (σ1 + σ2)

∫
d3q

(2π)3
(q2 − k2)2ω

2
+ + ω2

−

ω4
+ω

4
−

+8(τ1z + τ2z)

∫
d3q

(2π)3
(q2 − k2)

ω2
+ + ω2

−

ω4
+ω

4
−

×[(q · σ1(q × k) · σ2)− (q · σ2(q × k) · σ1)]
]

(4.62)
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4.3.5 Contact terms with a OPE

Diagrams like (s), (t) and (u) of Fig. 4.8 do not give any contribution to the
potential, but only corrections to the LECs of the contact terms. In fact the (t)
type diagrams, vanish directly due to the integration over the loop momentum.
Diagram (s) sums up three kind of diagrams showed in Fig. 4.4 where we take
the NLO part of the PC πNN vertex. If we perform this on the first type, all
the time-ordering contributions cancel out, while if we take all the time-orderings
of the other two, we obtain:

V
(2)
PV (s) = − hπgA

8
√

2fπM
(CS − 3CT )(τ1z + τ2z)ik · (σ1 × σ2)

∫
d3q

(2π)3

1

ω2
q

, (4.63)

which can be reabsorbed in the CT potential. If we consider the recoil corrections
of diagrams in Fig. 4.4 (diagrams (u)), from the first diagram we obtain

TCTPV (u) = V
(1)
PVG0V

(0)
PC(CT) + V

(0)
PC(CT)G0V

(1)
PV , (4.64)

which is exactly eliminated by the subtracting term in Eq. (3.66). On the other
hand, from the other two we have

V
(2)
PV (u) = +

h1
πgA

12
√

2fπM
(CS + CT )(τ1z + τ2z)ik · (σ1 × σ2)

∫
d3q

(2π)3

q2

ω4
q

, (4.65)

which redefine again the C4 constant.

4.4 Regularization of the PV potential

Now we have to deal with the divergences due to the loops. We obtain two types
of divergences: a logarithmic divergence presents in the N2LO terms and a linear
divergence in the N3LO terms. We will treat the first kind of divergence with the
dimensional regularization (DR) method [27]. The second kind of divergence is
more complicate to treat because DR does not work with this kind of divergence,
even if it gives the exact result for the non divergent part. Therefore in this
last case we will discuss the regularization via a cut-off momentum. A detailed
discussion of the DR and cut-off regularization can be found in Appendix D.

4.4.1 Regularization of the N2LO divergences

In the DR method, the integrals are defined in d dimensions and computed for a
generic value of d. Successively one takes the limit d→ 3. Alternatively, defined
ε = 3 − d, we will take the limit ε → 0, isolating in this way the divergent part.
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The details of the method are reported in Appendix D. Defining s =
√

4m2
π + k2,

and the functions

L(k) =
1

2

s

k
ln
s+ k

s− k
, H(k) =

m2
π

s2
L(k) , dε =

2

ε
−γ+ln π−ln

m2
π

µ2
, (4.66)

and taking into account the results obtained in Section D.2, the contributions of
box and triangle diagrams given in Eq. (4.67) and (4.68), respectively, in DR is
the following

V
(1)
PV (d) = − gAh

1
π

2
√

2fπ

1

Λ2
χ

(~τ1 × ~τ2)zik · (σ1 + σ2)
(
L(k)− 1

2
dε − 1

)
, (4.67)

V
(1)
PV (e) = − gAh

1
π

2
√

2fπ

g2
A

Λ2
χ

[
4(~τ1 + ~τ2)z ik · (σ1 × σ2)

(
L(k)− 1

2
dε −

2

3

)
+(~τ1 × ~τ2)zik · (σ1 + σ2)

(
H(k)− 3L(k) +

1

2
dε + 1

)]
, (4.68)

where Λχ = 4πfπ. Redefining the constants C3 and C4 entering the CT potential
given in Eq. (4.13), in order to reabsorb the divergent part proportional to dε,
and considering only the finite part, we obtain

V
(1)
PV (d− FIN) = − gAh

1
π

2
√

2fπ

1

Λ2
χ

(~τ1 × ~τ2)zik · (σ1 + σ2)L(k) , (4.69)

V
(1)
PV (e− FIN) = − gAh

1
π

2
√

2fπ

g2
A

Λχ2

[
4(τ1 + τ2)z ik · (σ1 × σ2) L(k)

+(~τ1 × ~τ2)zik · (σ1 + σ2)
(
H(k)− 3L(k)

)]
. (4.70)

Let’s note that the chiral order is always Q, also after the regularization. These
terms compared to the LO are suppressed by a factor (mπ/Λχ)2 which someway
justifies the idea of chiral expansion.

4.4.2 Regularization of the N3LO divergences

As we have already anticipated at the beginning of this Section, the regularization
of linear divergences is more complicated. Indeed, even if the DR gives the exact
result of the non divergent part, it does not identify the divergent part. For this
reason we impose a cut-off Λ on the integrals. For example, let us consider the
potential term

V
(2)
PV =

g3
Ah

1
V

32f 4
π

i(τ1 × τ2)zik · (σ1 + σ2)K(2)(k) (4.71)
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where

K(2)(k) =

∫
d3q

(2π)3

q2

ω2
+ ω

2
−

(4.72)

which appears in Eq. (4.55). Performing the integrals as shown in Appendix D.3
we get

K(2)(k) = −s
2A(k)

4π
− mπ

2π
+

Λ

4π2
+O

(k2

Λ

)
, (4.73)

where

A(k) =
1

2k
arctan

( k

2mπ

)
, (4.74)

therefore,

V
(2)
PV =

g3
Ah

1
V

32f 4
π

i(τ1 × τ2)zik · (σ1 + σ2)
(
− s2A(k)

4π
− mπ

2π
+

Λ

4π2
+O

(k2

Λ

))
(4.75)

where the term proportional to Λ carries all the divergence. This part is indepen-
dent on k. The term proportional to Λ therefore can be reabsorbed in the CT
potential given in Eq. (4.13) as we will see explicitly below. For what concern the
non divergent part we find a term independent on Λ which is exactly the same
obtained using the DR method, plus a number of other terms give as a power
series of Q/Λ, starting with the order Q2/Λ. Sending Λ to infinity this latter part
would disappear. In general we must fix Λ at a value greater than the typical
energies of the χEFT, then the terms must be included in the potential. However
it carries at least an additional power of Q (considering that Λ doesn’t influence
the chiral counting), which means it gives contribution to the N4LO or beyond
to the potential. Somehow the price we pay using a simple cut-off is to “dirty”
the next order in the chiral expansion.

From a practical point of wiew, we neglect the terms Q2/Λ and we find for
the various N3LO terms

V
(2)
PV (i1) = −c4h

1
πgA√
2fπ

π

Λ2
χ

ik · (σ1 × σ2)(τ1 + τ2)z

(
s2A(k)− 2

3π
Λ +mπ

)
, (4.76)

V
(2)
PV (i2) =

h1
πgA

4
√

2f 3
π

π

Λ2
χM

[
2K · (σ2τ1z − σ1τ2z)

+ik · (σ1 × σ2)(τ1z + τ2z)
](
s2A(k)− 2

3π
Λ +mπ

)
, (4.77)

V
(2)
PV (k) = − g2

A

2f 2
π

π

Λ2
χ

[
h1
A(τ1z + τ2z) + h2

AI
bτ1bτ2b

]
ik · (σ1 × σ2)

(
s2A(k)− 2

3π
Λ +mπ

)
,

(4.78)

V
(2)
PV (l) =

gAh
1
π

4
√

2fπ

π

Λ2
χM

{
ik · (σ1 + σ2)(~τ1 × ~τ2)z

[(k2 + s2

2

)
A(k)− Λ

2π
+mπ

]
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+2K · (σ2τ1z − σ1τ2z)
(
s2A(k)− 2

3π
Λ +mπ

)}
, (4.79)

V
(2)
PV (m) =

g3
Ah

1
π

16
√

2fπ

π

Λ2
χM

{
−8K · (σ1 − σ2)(τ1 + τ2)z

(
k2A(k)− Λ

3π
+mπ

)
−4ik · (σ1 + σ2)(~τ1 × ~τ2)z

(
s2A(k)− 2

3π
Λ +mπ

)
+ik · (σ1 + σ2)(~τ1 × ~τ2)z

[
(s2 − 3k2)A(k)− Λ

π
+ 2mπ

]
−8(~τ1 × ~τ2)z[k · σ1 (k ×K) · σ2 + k · σ2 (k ×K) · σ1]A(k)

}
, (4.80)

V
(2)
PV (n) =

g3
A

2f 2
π

π

Λ2
χ

{[h0
V

4
(3 + 2~τ1 · ~τ2)− 2

3
h2
V I

bτ1bτ2b + h1
V

(τ1z + τ2z)

2

]
×
(
s2A(k)− 2

3π
Λ +mπ

)
− h1

V ik · (σ1 + σ2)(~τ1 × ~τ2)z

×
[(

1− 2m2
π

s2

)
s2A(k)− Λ

π
+mπ

)]}
, (4.81)

V
(2)
PV (r) =

g3
Ah

1
π

2
√

2fπ

π

Λ2
χM

{
−ik · (σ1 + σ2)(~τ1 × ~τ2)z

[(
1− 2m2

π

s2

)
s2A(k)

−m
3
π

2s2
− 3

4π
Λ +

11

8
mπ

]
+ ik · (σ1 × σ2)(τ1z + τ2z)

×
[(

3− 4m2
π

s2

)
s2A(k)− 2Λ

3π
+ 3mπ

]}
. (4.82)

Reabsorbing the divergent terms proportional to Λ in the contact term LECs we
finally obtain the contribution to the potential coming from the N3LO diagrams.

4.5 The PV potential in k-space

In summary, the PV potential up to N3LO derived from χEFT is the following:

V
(−1)
PV (OPE) =

gAh
1
π

2
√

2fπ
(τ1 × τ2)z

ik · (σ1 + σ2)

ω2
k

, (4.83)

V
(1)
PV (CT) =

1

Λχm2
π

[C1i(σ1 × σ2) · k + C2(~τ1 · ~τ2)i(σ1 × σ2) · k

+C3(~τ1 × ~τ2)zi(σ1 + σ2) · k + C4(τ1z + τ2z)i(σ1 × σ2) · k
+C5Iab(τ1)a(τ2)bi(σ1 × σ2) · k] , (4.84)

V
(1)
PV (TPE) = − gAh

1
π

2
√

2fπ

1

Λ2
χ

(~τ1 × ~τ2)zik · (σ1 + σ2)L(k)

− gAh
1
π

2
√

2fπ

g2
A

Λχ2

[
4(τ1 + τ2)z ik · (σ1 × σ2) L(k)
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+(~τ1 × ~τ2)zik · (σ1 + σ2)
(
H(k)− 3L(k)

)]
, (4.85)

V
(1)
PV (RC-OPE) =

gAh
1
π

2
√

2fπ

1

4M2
(~τ1 × ~τ2)z

1

ω2
k

[−4iK2k · (σ1 + σ2)

+k · σ1 (k ×K) · σ2 + k · σ2 (k ×K) · σ1] , (4.86)

V
(2)
PV (c4) = −c4h

1
πgA√
2fπ

π

Λ2
χ

ik · (σ1 × σ2)(τ1 + τ2)zs
2A(k) , (4.87)

V
(2)
PV (LEC) =

g2
A

2f 2
π

π

Λ2
χ

{[3gAh
0
V

4
+
gAh

0
V

2
~τ1 · ~τ2 +

(gAh1
V

4
− h1

A

)
(τ1z + τ2z)

−
(
h2
A +

gAh
2
V

3

)
I bτ1bτ2b

]
ik · (σ1 × σ2)

−gAh
1
V

2
(~τ1 × ~τ2)zik(σ1 + σ2)

(
1− 2m2

π

s2

)}
s2A(k) , (4.88)

V
(2)
PV (RC-TPE) =

gAh
1
π

4
√

2fπ

π

Λ2
χM

[
ik · (σ1 + σ2)(~τ1 × ~τ2)z

(
1− 2m2

π

s2

)
+ik · (σ1 × σ2)(τ1z + τ2z)

+2K · (σ1 + σ2)(τ1z − τ2z)− 2K · (σ1 − σ2)(τ1z + τ2z)
]
s2A(k)

+
g3
Ah

1
π

2
√

2fπ

π

Λ2
χM

[
−K · (σ1 − σ2)(τ1z + τ2z)

(
1− 4m2

π

s2

)
s2A(k)

+
1

2
(τ1z + τ2z)ik · (σ1 × σ2)

(
5− 8m2

π

s2

)
s2A(k)

−1

4
(~τ1 × ~τ2)zik(σ1 + σ2)

(
5− 14m2

π

s2

)
s2A(k)

+
1

2
(~τ1 × ~τ2)zik(σ1 + σ2)

m3
π

s2

−(~τ1 × ~τ2)z[k · σ1 (k ×K) · σ2 + k · σ2 (k ×K) · σ1]A(k)
]
.

(4.89)

Let’s note that we have in total 11 LECs that must be determined from the
experimental data: one in the LO term, six in the subleading order and five in
the N3LO. In the RC-TPE terms it appears a strange factor that goes like 1/s2

which has the same form of the one pion exchange but with twice the mass of the
pion. The terms V

(2)
PV (c4) and V

(2)
PV (LEC) are exactly the same found in Ref. [26].

In addiction to them, we have also obtained for the first time the contributions
of the RC terms.
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4.6 The PV potential in r-space

In order to perform calculation with this potential for the NN system, we need
the potential in configuration space. Remembering that

〈α′1α′2|V |α1α2〉 =
1

Ω
V (k,K)δp1+p2,p′1+p′2

,

and performing the following change of variables

r = r1 − r2 , R =
r1 + r2

2
, (4.90)

r′ = r′1 − r′2 , R′ =
r′1 + r′2

2
, (4.91)

we obtain

〈r′1r′2|V |r1r2〉 = δ3(R−R′)
∫

d3k

(2π)3

d3K

(2π)3
ei(K+ 1

2
k)·r′V (k,K)e−i(K−

1
2
k)·r ,

(4.92)
where we use the fact that the potential does not depend on the total momentum
P . In order to compute the integral we must multiply V by a “cut -off” function
parametrized by ΛF . This modification is necessary since our potential is valid
only for small momentum values. The cut-off function we use is:

CΛF (k) = exp
(
−(k/ΛF )4

)
, (4.93)

where ΛF = 400 ÷ 700 MeV. The parameter ΛF represents a “cut-off” energy.
The physics above ΛF is taken into accounts through the LECs. In fact, the LECs
well depend on ΛF , while the physical observables should not depend on it (this
should be verified when more and more order in ChPT are included in our ChPT
expansion).

This choice of the cut-off function and the fact that the potential contains at
most terms linear in k makes that the final potential will be local, namely:

〈r′1r′2|V |r1r2〉 = δ3(R−R′)δ3(r − r′)V (r) . (4.94)

For example, if we have a potential like V (k,K) = g(k) + Kifi(k), using the
identities

ei(K+ 1
2
k)·r′ke−i(K−

1
2
k)·r = (−i∇r′ − i∇r)

(
ei(K+ 1

2
k)·r′e−i(K−

1
2
k)·r
)
, (4.95)

and

ei(K+ 1
2
k)·r′Ke−i(K−

1
2
k)·r =

−i∇r′ + i∇r

2

(
ei(K+ 1

2
k)·r′e−i(K−

1
2
k)·r
)
, (4.96)
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we obtain that

〈r′1r′2|V |r1r2〉 = δ3(R−R′)δ3(r−r′)g(r)+δ3(R−R′)−i∇r′ + i∇r

2

[
δ3(r−r′)fi(r)

]
,

(4.97)
where

g(r) =

∫
d3k

(2π)3
g(k)eik·r, , fi(r) =

∫
d3k

(2π)3
fi(k)eik·r . (4.98)

The action of the derivative on the δ function is a problem, but our final goal
is the calculation of 〈A|V |B〉, so we can write

〈A|V |B〉 =

∫
d3r

∫
d3r′ ψ†B(r′)g(r)δ3(r − r′)ψA(r)

+

∫
d3r

∫
d3r′ ψ†B(r′)

[−i∇r′ + i∇r

2
(δ3(r − r′)fi(r))ψA(r)

]
=

∫
d3r ψ†B(r)g(r)ψA(r) +

∫
d3r

∫
d3r′ (i∇r′ψ

†
B(r′))δ3(r − r′)fi(r))ψA(r)

−ψB(r)†δ3(r − r′)fi(r)(i∇rψA)

=

∫
d3r ψB(r)†

(
g(r) +

{−i∇i

2
, fi(r)

})
ψA(r) , (4.99)

where we use the integration by parts in order to move the derivatives from the
delta to the wave functions and {· · · } is the anticommutator. Therefore

〈r′1r′2|V |r1r2〉 = δ3(R−R′)δ3(r − r′)
(
g(r) +

{−i∇i

2
, fi(r)

})
. (4.100)

Applying this relation to the various terms of the potential given in Eqs. (4.83)-
(4.89), we obtain the expression of various term of the potential in r-space:

〈r′1r′2|V |r1r2〉 = δ3(R−R′)δ3(r − r′)V (r), (4.101)

with

V (r) = V (OPE)(r) + V (RC−OPE)(r) + V (CT)(r) + V (TPE)(r)

+V (c4)(r) + V (LEC)(r) + V (RC−TPE)(r) (4.102)
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V (OPE)(r) =
gAh

1
π

2
√

2fπ
(~τ1 × ~τ2)z (σ1 + σ2) · r̂ g′1(r) , (4.103)

(4.104)

V (RC−OPE)(r) = − gAh
1
π

2
√

2fπ4M2
(~τ1 × ~τ2)z[{

pj ,
{
pj , (σ1 + σ2) · r̂ g′1(r)

}}
+

εj`m
2

(
σ1i σ2j + σ1j σ2i

){
pm , ∂i ∂`g1(r)

}]
, (4.105)

V (CT)(r) =
m2
π

Λ2
χfπ

[
C1(σ1 × σ2) · r̂

+C2 ~τ1 · ~τ2 (σ1 × σ2) · r̂
+C3 (~τ1 × ~τ2)z (σ1 + σ2) · r̂
+C4 (τ1z + τ2z) (σ1 × σ2) · r̂

+C5 Iab τ1a τ2b (σ1 × σ2) · r̂
]
Z ′(r) , (4.106)

V (TPE)(r) = − gAh
1
π

2
√

2fπ

m2
π

Λ2
χ

(~τ1 × ~τ2)z(σ1 + σ2) · r̂L′(r)

− gAh
1
π

2
√

2fπ

g2
Am

2
π

Λ2
χ

[
4 (τ1z + τ2z) (σ1 × σ2) · r̂L′(r)

+(~τ1 × ~τ2)z(σ1 + σ2) · r̂
[
H ′(r)− 3L′(r)

]]
, (4.107)

V (c4)(r) = −c4h
1
πgA√
2fπ

πm3
π

Λ2
χ

(τ1z + τ2z) (σ1 × σ2) · r̂A′1(r) , (4.108)

V (LEC)(r) =
g2
A

2f 2
π

πm3
π

Λ2
χ

[[3gAh
0
V

4
+
gAh

0
V

2
~τ1 · ~τ2 +

(gAh1
V

4
− h1

A

)
(τ1z + τ2z)

−
(
h2
A +

gAh
2
V

3

)
I bτ1bτ2b

]
(σ1 × σ2) · r̂A′1(r)

−gAh
1
V

2
(~τ1 × ~τ2)z(σ1 + σ2) · r̂ (A′1(r)− 2A′2(r))

]
, (4.109)

V (RC−TPE)(r) =
gAh

1
π

4
√

2fπ

πm3
π

Λ2
χM

[
(~τ1 × ~τ2)z(σ1 + σ2) · r̂ (A′1(r)− 2A′2(r))

+i(τ1z + τ2z) (σ1 × σ2) · r̂A′(r)
+(τ1z − τ2z) (σ1 + σ2)j{pj , A1(r)}

−(τ1z + τ2z) (σ1 − σ2)j{pj , A1(r)}

]
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+
g3
Ah

1
π

2
√

2fπ

πm3
π

Λ2
χM

[
− 1

2
(τ1z + τ2z) (σ1 − σ2)j{pj , (A1(r)− 4A2(r))}

+
1

2
(τ1z + τ2z) (σ1 × σ2) · r̂ (5A′1(r)− 8A′2(r))

−1

4
(~τ1 × ~τ2)z (σ1 + σ2) · r̂ (5A′1(r)− 14A′2(r))

+
1

2
(~τ1 × ~τ2)z (σ1 + σ2) · r̂ g′2(r)

−(~τ1 × ~τ2)z
εj`m
2m2

π

(
σ1i σ2j + σ1j σ2i

){
pm , ∂i ∂`A2(r)

}]
, (4.110)

with p = −i∇ and

g1(r) =

∫
d3k

(2π)3

CΛF (k)

k2 +m2
π

eik·r , (4.111)

g2(r) =

∫
d3k

(2π)3

CΛF (k)

k2 + 4m2
π

eik·r , (4.112)

L(r) =

∫
d3k

(2π)3

CΛF (k)

m2
π

L(k) eik·r , (4.113)

H(r) =

∫
d3k

(2π)3

CΛF (k)

m2
π

H(k) eik·r , (4.114)

Z(r) =

∫
d3k

(2π)3

CΛF (k)

m2
π

eik·r , (4.115)

A1(r) =

∫
d3k

(2π)3

CΛF (k)

m3
π

(k2 + 4m2
π)A(k)eik·r , (4.116)

A2(r) =

∫
d3k

(2π)3

CΛF (k)

mπ

A(k)eik·r . (4.117)

(4.118)

Note that {
pj ,

{
pj , O

}}
= −

(
∇2O

)
− 4

[
(∇O) ·∇ + 4O∇2

]
,{

pj , O
}

= −i(∇O)− 2iO∇ , (4.119)

and

∇2(σ1 + σ2) · r̂ g′(r)

= (σ1 + σ2) · r̂
[
g′′′(r) + 2

g′′(r)

r
− 2

g′(r)

r2

]
, (4.120)

∂j(σ1 + σ2) · r̂ g′(r) = (σ1j + σ2j)
g′(r)

r

+(σ1 + σ2) · r̂
[g′′(r)

r
− g′(r)

r2

] rj
r
. (4.121)
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It’s convenient to define the operators,

S±r = (σ1 ± σ2) · r̂ , (4.122)

S±p = (σ1 ± σ2) · p , (4.123)

S×r = (σ1 × σ2) · r̂ , (4.124)

SL = σ1 · r̂ σ2 · L̂+ σ2 · r̂ σ1 · L̂ , (4.125)

where L̂ = r̂ × p is the “reduced” orbital angular momentum operator. Using
these definitions we can rewrite the relativistic corrections as

V (RC−OPE)(r,p) =
gAh

1
π

4
√

2FπM2
(~τ1 × ~τ2)z

[[
g′′′1 (r) + 2

g′′1(r)

r
− 2

g′1(r)

r2

]
S+
r

+4 i

[
g′1(r)

r
S+
p +

[
g′′1(r)− g′1(r)

r

]
S+
r r̂ · p

]
−4 g′1(r) S+

r p
2 −

[
g′′1(r)− g′1(r)

r

]
SL

]
, (4.126)

V (RC−TPE)(r,p) =
gAh

1
π

4
√

2fπ

πm3
π

Λ2
χM

[
(~τ1 × ~τ2)zS

+
r (A′1(r)− 2A′2(r))

+i(τ1z + τ2z)S
×
r A

′
1(r)

+i((τ1z + τ2z)S
−
r − (τ1z − τ2z)S

+
r )A′1(r)

−2A(r)((τ1z + τ2z)S
−
p − (τ1z − τ2z)S

+
p )

]

+
g3
Ah

1
π

2
√

2fπ

πm3
π

Λ2
χM

[
i
1

2
(τ1z + τ2z)S

−
r (A′1(r)− 4A′2(r))

−(A1(r)− 4A2(r))(τ1z + τ2z)S
−
p

+
1

2
(τ1z + τ2z)S

×
r (5A′1(r)− 8A′2(r))

−1

4
(~τ1 × ~τ2)z S

+
r (5A′1(r)− 14A′2(r))

+
1

2
(~τ1 × ~τ2)z S

+
r g
′
2(r)

+
1

m2
π

(~τ1 × ~τ2)zSL

(
A′′2(r)

r
− A′2(r)

r2

)]
. (4.127)



Chapter 5

The TV interaction

In this Chapter we will analyse the TV interaction terms appearing in the QCD
Lagrangian and how we can model them at the hadronic level using the χEFT.
We will concentrate in particular on the so called θ-term. As we will see, it is
possible to rewrite this T -violating term via a U(1)A transformation as a complex
mass term [5, 6]. In this way, it can be interpreted as an external pseudoscalar
field p(x), already introduced in Chapter 2, and include it in the χEFT. We will
study here only the θ-term, possible further BSM TV Lagrangian terms can be
treated in a similar way [5]. From the derived Lagrangian, using the technique
described in Chapter 3, we will build the NN TV potential.

This Chapter is organized as follow. In Section 5.1 we will introduce the
fundamental concepts regarding the θ-term in the QCD and how it is related to
the mass matrix via the U(1)A transformation. In Section 5.2 we will derive the
nuclear Lagrangian terms induced by the θ-term. The derived Hamiltonian at
the classical level admits a ground state which does not coincide with the void.
Therefore we have to redefine the fields expanding them around the new ground
state: we will perform this in Section 5.3. In the last Section we will discuss the
time-ordered diagrams that contribute to the NN TV potential and we will find
the potential in momentum and configuration space.

5.1 The θ-term

Within the SM, it is possible to build in the QCD Lagrangian a term that violate
P but not C, therefore for the CPT invariance, it must violate T . As it is known,
this term, named θ-term, is the only source of the P and T violation in the strong
interaction sector of the SM [4]. The θ-term is given by the full contraction of
the gluon field-strength tensor Ga (see Chapter 2 Eq. (2.3)) with its dual, and it
is parametrized by an angle θ. Therefore the Lagrangian of the QCD with the
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new term reads

LQCD = LQCD + LθQCD = LQCD − θ
g2

64π2
εµνρσGaµνGaρσ , (5.1)

where LQCD is given in Eq. (2.1) and g is the strong coupling constant.
This term is not the only possible source of P and T violation in the SM .

Another well-known term comes from the complex phase of the CKM matrix.
However this phase plays a role only for flavour changing processes [5] and there-
fore we will not consider it hereafter. Moreover, beyond the SM it is possible
to write other TV effective operators composed by SM degrees of freedom, still
verifying the gauge symmetries of the SM [40]. In particular, it is possible to
write new Lagrangian terms of energy dimension d = 6 that can generate CP
violation in nuclear systems down to the energy scale Λχ ∼1 GeV. We will not
treat these terms and we focus only on the θ-term. A complete discussion can be
found in [5].

Before starting to discuss how we can include the θ-term in our χEFT let’s
return to the chiral group G = SU(2)V ⊗SU(2)A⊗U(1)V ⊗U(1)A. In Section 2.1
we disregarded the symmetry U(1)A saying that at quantum level it is broken by
an anomaly. Now we will present how to take in account the anomalous behaviour
of the axial current.

First of all, let us study the divergence of the axial current given in Eq. (2.14b).
To this aim, we must take care that the axial current is an operator built from
fermionic fields and the product of these local operators often have singularities.
So we rewrite the current keeping separated the two fields by a distance ε and
then take the limit ε→ 0. The axial current can be defined as [27]

Jµ5 = sym lim
ε→0

{
q
(
x+

ε

2

)
γµγ5 exp

[
− ig

∫ x+ε/2

x−ε/2
dz Ga(z)T a

]
q
(
x− ε

2

)}
, (5.2)

where we have introduced the exponential term in order to preserve the SU(3)
color gauge invariance of the current, Ga being the gluons field and T a the matrix
defined in Eq. (2.4). The symbol sym limε→0 means that we take the symmetric
limit to have the correct properties under Lorentz transformation, for example [27]

sym lim
ε→0

(εµ
ε2

)
= 0, sym lim

ε→0

(εµεν
ε2

)
=

1

4
gµν . (5.3)

Now we can use the equation of motion neglecting the mass term M (classicaly,
as discussed in Chapter 2, one would aspect ∂µJ

µ
5 = 0). From LQCD we have

γµ∂µq(x) = −igγµGa
µT

a q(x). (5.4)

Performing the calculation as discussed in [27], we find

∂µJ
µ
5 = −g

2Nf

32π2
εµνρσGaµνGaρσ, (5.5)
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where Nf is the number of flavours involved in the process, in our case Nf = 2.
Therefore the axial current is not conserved also for the caseM = 0 and this

has some consequences on the generating functional of the QCD,

Z[θ] =

∫
[dG][dqdq] exp

[
i

∫
d4xLQCD(q, q, G)− θ g2

64π2
εµνρσGaµνGaρσ

]
. (5.6)

If we apply an U(1)A transformation,

q(x)→ q′(x) = q(x)e−iαγ
5

, (5.7)

the measure of the generating functional integral change due to the anomaly
related to the axial current, obtaining

[dG][dqdq]→ [dG][dq′dq′] = [dG][dqdq] exp
[
− 2Nfα

∫
d4x

g2

64 π2
εµνρσGaµνGaρσ

]
,

(5.8)
which exactly cancel out the θ-term if we take α = − θ

2Nf
. The U(1)A transfor-

mation however changes the mass term of the QCD Lagrangian

LMQCD = −q(x)Mq(x) = −qR(x)MqL(x) + h.c. (5.9)

where the most general mass matrix M can be written as

M = eiρM = eiρm(1 + ε τ3) (5.10)

where

m =
mu +md

2
, ε =

mu −md

mu +md

, (5.11)

and ρ is an arbitrary phase. Performing the U(1)A axial transformation given in
Eq. (5.7) imposing α = − θ

4
, one obtains

LMQCD → −q(x)ei
θ
4
γ5Me−i

θ
4
γ5q(x)

= −qR(x)e
−i
(
θ
2
−ρ
)
m(1 + ε τ3)qL(x) + h.c.

= −q(x)e
i

(
ρ− θ

2

)
Mq(x) (5.12)

so the physical observable is not θ but θ = 2ρ − θ. If θ is small we can expand
the exponential and the new mass Lagrangian reads

LMQCD = −q(x)(m1 + εm τ3 − i
θ m

2
γ51− iθ εm

2
τ3γ

5)q(x). (5.13)
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In this way we have redefined all the θ dependence in the mass term. According
to the Lagrangian given in Eq. (2.19) and Eq. (5.13), we can identify the sources
s0, p0, si and pi with i = 1, 2, 3 of Eq. (2.18) with

s0 → m, s1,2 → 0, s3 → εm. p0 →
θm

2
, p1,2 → 0, p3 →

θ εm

2
. (5.14)

It is possible to perform another transformation of quark fields via the group
SU(2)A such that the P and T violating term [5]

LTVQCD =
θm

2
(q(x)iγ5q(x) + εq(x)iγ5τ3q(x))

SU(2)A−−−−→ θm? (q(x)iγ5q(x)) . (5.15)

The second axial rotation moves the θ-term completly into a P and T violating
and isospin conserving quark-mass term with a reduced mass

m? =
mumd

(mu +md)
=
m

2
(1− ε2). (5.16)

This fact must be reflected in the absence of P and T violating terms that vio-
late isospin in the χEFT Lagrangian [5]. Therefore the final substitution of the
external source fields will be

s0 → m, s1,2 → 0, s3 → εm. p0 →
θm

2
(1− ε2), p1,2 → 0, p3 → 0. (5.17)

5.2 The χEFT Lagrangian induced by the θ term

The inclusion of the TV terms deriving from the θ-term is obtained simply by
including in χ (Eq. 2.37a) the new sources p0 and p3 [5],

χ = 2B
(
s0 + τ3s3 + ip0 + iτ3p3

)
(5.18)

where B is defined as in Eq. (2.40). Substituting the expression of χ in the
Lagrangian term (2.42)

L(2)
π =

f 2
π

4

〈
χ(x)U †(x) + U(x)χ†(x)

〉
(5.19)

and performing the expansion in term of the pion fields as in Eq. (B.9), we obtain

L(TV,2)
π = (2Bp3)fπ π3

(
1− απ

2

f 2
π

)
+ · · · , (5.20)



5.2. THE χEFT LAGRANGIAN INDUCED BY THE θ TERM 67

where the elipses denote - hereafter in this section - terms which are either of
higher order in the pion-field expansion or P and T conserving. Above, α rep-
resents the arbitrariness in the choice of the U(x) field, following the definition
given in Eq. (2.28).

From the fourth order pion-sector Lagrangian given in Eq. (2.43)

L(4)
π =

l3
16
〈χ(x)U †(x) + U(x)χ†(x)〉2 − l7

16
〈χ(x)U †(x)− U(x)χ†(x)〉2 (5.21)

developing in powers of pion field we obtain the following TV terms

L(TV,4)
π = 2l3(2Bs0)(2Bp3)

π3

fπ

(
1−

(1

2
+ α

)π2

f 2
π

)
−2l7(2Bs3)(2Bp0)

π3

fπ

(
1−

(1

2
+ α

)π2

f 2
π

)
+ · · · . (5.22)

The second order pion-nucleon sector Lagrangian with χ operator is

L(2)
πN = c1N〈χ+〉N + c5Nχ̂+N (5.23)

where χ+ is given in Eq. (B.9) which, after developing in pion fields, gives

L(TV,2)
πN = 4c1(2Bp3)

π3

fπ

(
1− απ

2

f 2
π

)
NN

+2c5(2Bp0)N
~τ · ~π
fπ

(
1− απ

2

f 2
π

)
N + · · · . (5.24)

There are also several four-nucleon terms induced by the theta terms that
come from the leading order four-nucleon Lagrangian in Eq. (2.67)

L(TV,2)
4N = C14(2Bp3)NNNN/fπ

+C24(2Bp3)Nγµγ
5NNγµγ5N/fπ

+C32(2Bp0)N(~τ · ~π)NNN/fπ

+C42(2Bp0)N(~τ · ~π)γµγ
5NNγµγ5N

−C54(2Bp0)NN∂µ
(
Nγµγ5N

)
/fπ

−C64(2Bp0)N~τN∂µ
(
N~τγµγ5N

)
/fπ

−C72(2Bp3)Nτ3N∂µ
(
Nγµγ5N

)
/fπ

−C82(2Bp3)NN∂µ
(
Nτ3γ

µγ5N
)
/fπ + · · · . (5.25)

A more complete list of P and T violating terms induced by the θ term can
be find in [5].
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5.3 Selection of the ground state

The Lagrangian terms in Eqs. (5.20)-(5.22) are linear in the pion fields. This mean
that we are expanding the EFT around the wrong ground state. In particular
the minimum of the energy will be for π3 6= 0.

The ground state is identified minimizing the potential of the pion-sector
Lagrangian of the χEFT:

V = −
∫
d3x
{f 2

π

4
〈χU † + Uχ†〉+

l3
16
〈χU † + Uχ†〉2

− l7
16
〈χU † − Uχ†〉2

}
(5.26)

with χ given in Eq. (5.14). Here we assume that the fields are classical. In term
of the pion field the potential reads,

V = −
∫
d3x
{
f 2
π2Bs0

(
1− π2

2f 2
π

)
+ 4l3B

2s2
0

(
1− π2

f 2
π

)
−4l7B

2
[ s2

3

fπ
π2

3 +
2s3p0

fπ
π3

(
1−

(1

2
+ α

)π2

f 2
π

)]}
, (5.27)

where we have used the fact that the field source p3 = 0 and we have neglected

the terms proportional to θ
2

like p2
0, etc. We have also neglected higher terms

in the pion field expansion supposing that the value of the minimum for the
pions is proportional to θ and therefore very small (hypothesis we will verify a
posteriori). The minimum of the potential is identified by a variation of the field
~π which reads in term of its components

πi → πi + δπi. (5.28)

Performing this transformation, the variation of the potential reads

δV = i

∫
d3x
{

(2Bfπ)2s0πi + 2(4B2l3)s2
0πi

+2(4B2l7)(p0s3δi3 − s3p0ε3ijπj − s2
3π3δi3)

}
δπi = 0 . (5.29)

Imposing this condition for i = 1, 2 we get two equations{
π1A+ π2C = 0
π2A− π1C = 0

where

A = f 2
π(2Bs0) + 2l3(2Bs0)2 (5.30)

C = 2(2B)2l7p0s3 . (5.31)
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Solving the system we get that π2(A2 +C2) = 0⇒ π2 = 0 and π1 = 0. For i = 3
we find the following condition

π3 = − 4Bl7p0s3

f 2
πs0 + 4Bl3s2

0 − 4Bl7s2
3

, (5.32)

thus π3 ∝ θ and so the condition that ~π is very small is verified. Picking up
a term f 2

πs0 in the denominator we can expand it in a Taylor series assuming
Bl3s0/f

2
π � 1. We obtain, keeping the first order,

π3 = (π3)min ' −
4Bl7s3

f 2
πs0

p0 (5.33)

The approximation above is based on the assumption that the LECs l3 and l7 are
higher order in the chiral expansion (see later).

We can now redefine the pion field π3 → π3 + (π3)min and evaluate the La-
grangian terms. Taking into account explicitly that p3 = 0, the Lagrangian term
in Eq. (5.19) becomes (we neglect the terms depending only on (π3)min, since
constant terms do not play a role in the dynamics)

L(TV,2)
π =

(4B)2l7s3p0

2fπ
π3

(
1− απ

2

f 2
π

)
+ · · · . (5.34)

Using the same procedure for the Lagrangian term in Eq. (2.43), we obtain

L(TV,4)
π = −(4B)2l7s3p0

2fπ
π3

(
1−

(1

2
+ α

)π2

f 2
π

)
+ · · · , (5.35)

where we have neglected higher order terms in the LECs l7 and l3 as before.
Summing these Lagrangian terms, it remains only the term

L(TV )
π =

4B2l7s3p0

f 3
π

π3π
2 + · · · , (5.36)

which is exactly the term obtained in Ref. [5]. Let’s note that the terms with α
cancel out removing the arbitrariness on the choice of U .

In the same way, after the redefinition of the ground state and the imposition
p3 = 0, the second order pion-nucleon sector Lagrangian reads

L(TV )
πN = 8c1

(2B)2l7s3p0

f 3
π

Nπ3N + 2c5(2Bp0)N
~τ · ~π
fπ

N . (5.37)

From the leading order four-nucleon Lagrangian we will get only two contact
interaction terms which reads

L(TV )
4N = −8BC5p0NN∂µ

(
Nγµγ5N

)
/fπ

−8BC6p0N~τN∂µ
(
N~τγµγ5N

)
/fπ .

(5.38)
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A more formal derivation of these expression can be found in [5].
The final P and T violating Lagrangian at the lowest order can be written in

general as

L(TV ) = − 1

fπ
N(gθ0 ~τ · ~π + gθ1π3)N − ∆θ

fπ
π3π

2

+Cθ
1NN∂µ

(
Nγµγ5N

)
+ Cθ

2N~τN∂µ
(
N~τγµγ5N

)
+ . . . . (5.39)

where with the dots we indicates terms with higher power of pion field that are
of no interest here.

The parameters gθ0, gθ1, ∆θ, Cθ
1 , Cθ

2 are LECs, which from our derivation can
be written in terms of the parameter θ. First of all, from Eq. (5.36), we identify

∆θ

Mfπ
= −4Bl7s3p0

Mf 3
π

, (5.40)

where the LEC l7 is related to the square of the strong mass difference between
the charged and the neutral pions [41],

(δm2
π)str = (m2

π+ −m2
π0)str '

2B2

f 2
π

l7(mu −md)
2. (5.41)

The relation [41]

(δm2
π)str =

ε2

4

m4
π

m2
K −m2

π

(5.42)

with the averaged kaon mass mK = 494.98 MeV [42]. Substituting the terms in
Eq. (5.40) and making explicit p0 as defined in Eq. (5.17) we obtain

∆θ

Mfπ
= −ε(1− ε

2)

16fπM

m4
π

m2
K −m2

π

θ = (0.37± 0.09) · 10−3θ, (5.43)

where the prediction for the quark-mass ratio, mu/md = 0.46 ± 0.03, has been
used here to compute ε [43]. Similarly, from Eq. (5.37) it is possible to estimate

gθ1
fπ

= −32B2c1l7s3p0

f 3
π

=
2c1(δm2

π)str(1− ε2)

fπε
θ = (0.0034± 0.0011)θ, (5.44)

where we use c1 = (−1.0 ± 0.3) GeV−1 as derived from the NN scattering
data [44]. The LEC c5 is related to the proton-neutron mass difference [45],[46]

δM str
np = (Mn −Mp)

str = 4B(mu −md)c5 = (2.44± 0.18)MeV. (5.45)

Using this in Eq. (5.37), it is possible to estimate gθ0/fπ as

gθ0
fπ

= −4Bc5p0

fπ
=
δM str

np (1− ε2)

4fπε
θ = (0.0155± 0.0019)θ. (5.46)
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(a) (b) (c) (d)

Figure 5.1: Diagrams that give contribution to the TV T matrix up to NLO.
Nucleons and pions are denoted by solid and dashed lines, respectively. The open
(solid) circles represent PC (TV ) vertices.

The estimates of the contact LECs Cθ
1,2, related to the θ angle via Eq. (5.38), is

more complicate [47], so here we report only the results,

Cθ
1,2 ' (2 · 10−3)θ fm3 . (5.47)

A more complete derivation of these results can be found in Ref. [5].

5.4 The TV potential

From L(TV ) given in Eq. (5.39), we can define the Hamiltonian and following
the procedure described in Chapter 3, we can now obtain the potential. Using
the time-ordered diagrams we will derive it up to the NLO. We will also add
the contact terms that nominally contribute to N2LO. The diagrams that give
contributions are shown in Fig. 5.1. As in the PV case the LO is given by the
OPE diagrams which give a contribution to order Q−1. At NLO, in the TV
T -matrix a new class of diagrams appears with a three pion exchange vertex,
coming from the ∆θ-terms in the Lagrangian, see Eq. (5.39). These diagrams
will contribute to order Q0. In the following we will explain the details of the
calculation. We will use the same notation as in Chapter 4.

5.4.1 One pion exchange

The time ordered diagrams that contribute are shown in Fig. 5.2. From these
diagrams we derive exactly the same formulas given in Eqs. (4.5) and (4.6) but
with the PV vertex function replaced by the TV vertex function. Using the
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Figure 5.2: Diagrams that contribute to OPE term of the T -matrix. Notation as
in Fig. 5.1.
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Figure 5.3: Example of three pions exchange with two pions emission vertex.
Notation as in Fig. 5.1.

expression of the vertices given in Eqs. (C.33)-(C.34) we obtain

V (−1)(NR− a) = −gAg
θ
0

2f 2
π

(~τ1 · ~τ2)
i(σ1 − σ2) · k

ω2
k

−gAg
θ
1

4f 2
π

[
(τ1z + τ2z)

i(σ1 − σ2) · k
ω2
k

+ (τ1z − τ2z)
i(σ1 + σ2) · k

ω2
k

]
(5.48)

5.4.2 Three pions exchange

We have two possibilities to build a diagram with a three pion vertex at order Q0.
The first one is to consider a one pion emission/absorption vertex on a nucleon
and a two pion emission/absorption vertex on the other nucleon as in Fig. 5.3.

The expression we derive from these diagrams is

T (b1 + b2) = − 6

Ω

∑
q1j1,q2j2,q3j3

− 1

(ωq1 + ωq2)ωq3

[
TVM3π,03

q1j1,q2j2,q3j3
PCMπNN,10

α′2α2,q3j3

×PCMππNN,20
α′1α1,q2j2,q1j1

]
δq3,kδq1+q2,kδp1+p2,p′1+p′2

, (5.49)
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Figure 5.4: Three pions exchange diagrams with only one pion emis-
sion/absorption vertex. Notation as in Fig. 5.1.

where the factor 6 comes from the different possible contractions of the cre-
ation/annihilation operators. Making explicit the vertex functions, the isospin
operators automatically cancel out and so these diagrams do not give any contri-
bution.

The second type of diagrams is given in Fig. 5.4. To these we have to add the
diagrams where the pion of momentum q3 is emitted by the second nucleon and
the diagrams where we exchange α1 
 α2 and α1′ 
 α2′ . In total we have 24
time-ordered diagrams. Summing up all the contributions the final expression is

V (0)(c) = −25

16

g3
A∆θ

f 4
π

ik · (σ2τ2z − σ1τ1z)

ω2
k

∫
d3q

(2π)3

k2 − q2

ω2
+ω

2
−

. (5.50)

As we see the integral diverges linearly and so applying the same prescription
used for the regularization of the linear divergences in Section 4.4.2 we obtain

V (0)(c) =
25

32

g3
A∆θ

f 4
π

[
(τ1z + τ2z)

i(σ1 − σ2) · k
ω2
k

+ (τ1z − τ2z)
i(σ1 + σ2) · k

ω2
k

]
×
[(

2− 4m2
π

s2

)s2A(k)

4π
− Λ

4π2
+
mπ

2π
+O

(k2

Λ

)]
, (5.51)

where A(k) is defined in Eq. (4.74) and Λ is the cut-off. The divergences and
the term proportional to mπ can be reabsorbed in gθ1, and we neglect the terms
O
(
k2

Λ

)
for the reasons discussed in Section 4.4.2. Therefore the final result is

V (0)(c) =
25g3

A∆θ

2f 2
π

π

Λ2
χ

[
(τ1z + τ2z)

i(σ1 − σ2) · k
ω2
k

+ (τ1z − τ2z)
i(σ1 + σ2) · k

ω2
k

]
×
(

1− 2m2
π

s2

)
s2A(k) . (5.52)

5.4.3 Contact terms

From the diagram (d) in Fig. 5.1 we obtain

(d) =
1

Ω
2 TVM00

α′1α1α′2α2
δp1+p2,p′1+p′2

, (5.53)
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whence the contact (CT) potential reads,

V (1)(d) =
C1

θ

Λ2
χfπ

ik · (σ1 − σ2) +
C2

θ

Λ2
χfπ

ik · (σ1 − σ2)(~τ1 · ~τ2) (5.54)

where we have defined the constants C1
θ

and C2
θ

in such a way they are adimen-
sional

C1
θ

= Λ2
χfπC

θ
1 , C2

θ
= Λ2

χfπC
θ
2 . (5.55)

5.4.4 The TV potential in r-space

Using the same procedure explained in Section 4.6 the potential in coordinate
space reads

V (OPE)(r) = −gAg
θ
0

2fπ
(~τ1 · ~τ2)(σ1 − σ2) · r̂ g′1(r)

−gAg
θ
1

2fπ

[(τ1z + τ2z)

2
(σ1 − σ2) · r̂ +

(τ1z − τ2z)

2
(σ1 + σ2) · r̂

]
g′1(r)

(5.56)

V (3π)(r) =
25g3

AM∆
θ

2fπ

mπ π

Λ2
χ

[
(τ1z + τ2z)(σ1 − σ2) · r̂ + (τ1z − τ2z)(σ1 + σ2) · r̂

]
×
(
Ã′1(r)− 2Ã′2(r)

)
(5.57)

V (CT )(r) =
m2
π

Λ2
χfπ

[
C1

θ
(σ1 − σ2) · r̂ + C2

θ
(σ1 − σ2) · r̂(~τ1 · ~τ2)

]
Z ′(r) , (5.58)

where

g1(r) =

∫
d3k

(2π)3

CΛF (k)

k2 +m2
π

eik·r , (5.59)

Z(r) =

∫
d3k

(2π)3

CΛF (k)

m2
π

eik·r , (5.60)

Ã1(r) =

∫
d3k

(2π)3

CΛF (k)

mπ(k2 +m2
π)

(k2 + 4m2
π)A(k)eik·r , (5.61)

Ã2(r) =

∫
d3k

(2π)3

CΛF (k)

(k2 +m2
π)
mπ A(k)eik·r , (5.62)

(5.63)

and we have defined

gθ0 =
gθ0
fπ
, gθ1 =

gθ1
fπ
, ∆

θ
=

∆θ

Mfπ
, (5.64)
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in order to have adimensional constants. In total we have 5 LECs to be extracted
from the comparison with experimental data. As we have seen the LECs are
directly related to the angle θ, thus from an experimental measurement of them
it would be possible to have an estimate of the θ angle via the estimate of the
LECs given in Section 5.3.
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Chapter 6

PV and TV observables in two
nucleon systems

In this Chapter we will study some PV and TV observables in the two nucleon
systems (in particular, in this Thesis we will focus our attention to PV and
TV observables in two nucleon scattering only). First of all, we will present
the general two-body scattering problem (Section 6.1) and discuss a method of
solution based on the Kohn variational Principle (Section 6.2). In Section 6.3 we
will introduce the M matrix formalism in order to compute the cross-section and
the scattering observables. In the last Section we will discuss the observables we
are interested in: the Az in the ~pp scattering and the neutron spin rotation along
the z-axis in the ~np scattering in order to reveal PV effects and the neutron spin
rotation along the y-axis in the ~n~p scattering to reveal TV effects. In order to
perform the calculation, in the same Section we relate these observables to the
M -matrix.

6.1 Scattering wave functions

In order to find the wave function for the two body system, we have to solve the
Schrödinger equation1:(

− ∇
2
1

2M1

− ∇
2
2

2M2

+ V (r1 − r2)
)
ψNN(r1, r2) = EψNN(r1, r2). (6.1)

Using the relative coordinate and the coordinate of the center of mass (CM) ,

r = r1 − r2, R =
M1r1 +M2r2
M1 +M2

, (6.2)

1In this section we present the formalism in case of NN potentials of local form. The
extension to non local potentials is easily obtained, however for the sake of simplicity we have
not reported it here.

77
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where we have considered M1 ≈ M2 ≈ M = 938 MeV, we can separate the CM
motion from the relative motion. So we can write the wave function as:

ΨNN(R, r) =
eiPcm·R√

Ω
ψ(r), (6.3)

and the equation for the relative motion becomes,(
− ∇

2

2µ
+ V (r)

)
ψ(r) = Eψ(r), (6.4)

where µ is the reduced mass of the system and µ ≈ M/2. In our case, the
potential V (r) is composed by two terms,

V = VPC + VZ , (6.5)

where VPC is the parity conserving nuclear potential and VZ is either the PV or
TV potential. We can write the wave function as

ψ(r) =
∑
JJz

∑
LS

fLS(r)iL
[
YL(r̂)χS

]
J,Jz

ξT,Tz , (6.6)

where χS,Sz (ξT,Tz) is the spin (isospin) state of the two nucleons. In the previous

formula
[
YL(r̂)χS

]
J,Jz

is the state with a total angular momentum J (and pro-

jection on the z-axis Jz) built with the spherical harmonics YLM(r̂) and the spin
states χS,Sz [

YL(r̂)χS

]
JJz

=
∑
M,Sz

〈L,M, S, Sz|J, Jz〉YLM(r̂)χSSz , (6.7)

and fLS(r) is a radial function.
For given total angular momentum J , the sum over L and S runs over all their

possible combinations permitted by Pauli’s exclusion principle. Pauli’s principle
requires that the wave function of a fermionic system must be completely anti-
symmetric, in our case we have (−)L+S+T = −1. Since T is 0 or 1, for given L
and S, T is fixed. For the np system Tz = 0 and so T can assume both values.
In this case all the values of L, S compatible with a given J are possible. On
the other hand, for the pp system, Tz = +1 and so only the T = 1 isospin state
is possible. The asymmetry condition (−1)L+S+T = −1 simplifies in this case to
(−)L+S = +1. All the possible combinations allowed by the exclusion principle
are summarized in Table 6.1.

We now focus on the scattering problem. We consider a collision between two
nucleons of energy E = k2/2µ. The wave function of our system can be written
as a sum on a “inner” part φ (when the particles are close) and an “asymptotic”
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case np (Tz = 0)
J S = 0 S = 1 2S+1LJ

2S+1LJ
parity + parity −

0 L = 0 L = 1 1S0
3P0

1 L = 1 L = 0, 1, 2 3S1,
3D1

1P1,
3P1

2 L = 2 L = 1, 2, 3 1D2,
3D2

3P2,
3F2

3 L = 3 L = 2, 3, 4 3D3,
3G3

1F3,
3F3

4 L = 4 L = 3, 4, 5 1G4,
3G4

3F4,
3H4

case pp (Tz = 1)
J S = 0 S = 1 2S+1LJ

2S+1LJ
parity + parity −

0 L = 0 L = 1 1S0
3P0

1 − L = 1 − 3P1

2 L = 2 L = 1, 3 1D2
3P2,

3F2

3 − L = 3 − 3F3

4 L = 4 L = 3, 5 1G4
3F4,

3H4

Table 6.1: Values of the orbital angular momentum L and spin S for a two
nucleon system for a given state of angular momentum J (the spin S refers to
the nucleon pair). In the last two columns the possible combinations of L,S and
J are given in spectroscopic notation, separated in odd and even parity states.
In the pp system, the Pauli’s principle imposes (−1)L+S = 1 and this reduces the
possible states.

part. The latter part is the solution of the free Schrödinger equation in the region
where r � r0 (where r0 is the typical nuclear interaction radius). In the pp case
we must consider also the Coulomb interaction in the asymptotic region. The
component φ goes to zero for r � r0 by definition.

For the np scattering, the asymptotic function can be written in terms of the
quantities ΩF

LS and ΩG
LS, which are defined as

ΩF
LS = CiL [YL(r̂)χS]JJZ ξTTzjL(kr) , (6.8)

ΩG
LS = CiL [YL(r̂)χS]JJZ ξTTznL (kr)

(
1− e−βr

)2L+1
, (6.9)

where jL is the regular Riccati-Bessel (spherical Bessel) function, while nL is the
irregular one. C is a constant that will be determined later. In the pp case, the
two particles have a long distance interaction due to the Coulomb potential. In
this case the asymptotic functions are defined as

ΩF
LS = CiL [YL(r̂)χS]JJZ ξTTz

FL(η, kr)

kr
, (6.10)

ΩG
LS = CiL [YL(r̂)χS]JJZ ξTTz

GL(η, kr)

kr

(
1− e−βr

)2L+1
, (6.11)
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where FL (GL) is the Coulomb regular (irregular) function. The η parameter is
defined as

η =
µe2

k
, (6.12)

where e is the unit of the electric charge. The factor
(
1− e−βr

)2L+1
was in-

troduced to avoid the singularity of nL(kr) o GL(η, kr) for r → 0. The Bessel
functions have the following asymptotic behaviour

xjL(x)→ sin

(
x− Lπ

2

)
, −xnL(x)→ cos

(
x− Lπ

2

)
, (6.13)

while the Coulomb functions have

FL(η, x) → sin

(
x− Lπ

2
− η log(2x) + σL

)
, (6.14)

GL(η, x) → cos

(
x− Lπ

2
− η log(2x) + σL

)
, (6.15)

(6.16)

and σL is the Coulomb phase shift defined as σL = arg
[
Γ(L+ 1 + iη)

]
, or better

σ0 = −ηγ
∞∑
n=0

[
η

n+ 1
− arctan

( η

n+ 1

)]
, σL+1 = σL + arctan

( η

L+ 1

)
,

(6.17)
where γ = 0.57721566 . . .. The F and G functions are the solutions of the
Schrödinger radial equation with the Coulomb potential only. The C constant
was determined in order to satisfy the relation

〈ΩF
LS|H − E|ΩG

LS〉 − 〈ΩG
LS|H − E|ΩF

LS〉 = 1 , (6.18)

that gives |C|2 = kM . This identity mainly comes from the Wronskian property
of the Bessel and Coulomb functions.

We consider now the specific case of two nucleons (with Tz fixed) that collide
in a state of total angular momentum J , orbital angular momentum L and total
spin S (in the following the quantum numbers J and Tz, which are fixed in the
collision, will be understood). The exact wave function will have the following
form

ψLS = φLS + ΩF
LS +

∑
L′S′

RLS,L′S′Ω
G
L′S′ . (6.19)

The coefficients RLS,L′S′ , which form the R-matrix, are the relative weights be-
tween the regular and irregular components and they are the goals of our calcula-
tions. From these coefficients we can easily obtain the S matrix (which represents
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the relative weight between the incoming wave ΩG
LS − iΩF

LS and the outcoming
wave ΩG

LS + iΩF
LS) or the T -matrix. Alternatively, in fact, we can impose the

following boundary conditions

ψULS → ΩG
LS +

∑
L′S′

ULS,L′S′Ω
F
L′S′ , (6.20)

ψSLS → −
(

ΩG
LS − iΩF

LS

)
+
∑
L′S′

SLS,L′S′
(

ΩG
L′S′ + iΩF

L′S′

)
, (6.21)

ψTLS → ΩF
LS +

∑
L′S′

TLS,L′S′
(

ΩG
L′S′ + iΩF

L′S′

)
. (6.22)

These functions are linear combination of each other and it is possible to verify
that

U = R−1 , S = (I + iR) (I − iR)−1 , T = (I − iR)−1R . (6.23)

6.2 Construction of the wave function

In our calculation we will try to obtain the best approximation to the exact wave
function in Eq. (6.19) using a “test” wave function

ψLS = φLS + ΩF
LS +

∑
L′S′

RLS,L′S′Ω
G
L′S′ . (6.24)

where the “inner” part φLS and the coefficients RLS,L′S′ are to be calculated.
From now on, we indicate with L0S0 the orbital angular momentum and spin
of the nucleon pair in the incoming state. The “inner” part of the “test” wave
function can be written as

φL0S0
=
∑
LS

f
(L0S0)
LS (r) iL [YL (r̂)χS]JJz ξTTz , (6.25)

where the f
(L0S0)
LS (r) is here evaluated using an expansion over a complete set of

functions, more precisely the set of order 2 Laguerre polynomials L
(2)
n multiplied

by an exponential,

f
(L0S0)
LS (r) =

NL−1∑
n=0

a
(L0S0)
LS,n NnL

(2)
n (γr) e−γr/2 , (6.26)

where the coefficients a
(L0S0)
LS,n have to be determined and NL is the number of the

expansion terms. Increasing NL the accuracy of the wave function will increase,
but for obvious motivations we have to truncate the expansion. The parameter
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γ is used to optimize the expansion, if NL is large enough the results become
almost indipendent of it. Nn is a normalization factor, chosen to be

Nn =

√
n!

(n+ 2)!
γ

3
2 , (6.27)

so, ∫ ∞
0

dr r2

[
NnL

(2)
n (γr) exp

(
−γr

2

)]2

= 1 , (6.28)

following from the Laguerre polynomials’ properties. The factor e−γr/2 guarantees
that the “inner” wave function goes to zero for r →∞. We can rewrite Eq. (6.25)
as an expansion over the states

|φLS,n〉 = NnL
(2)
n (γr)iL [YL(r̂)χS]JJz ξTTz , (6.29)

so,

φL0S0
=
∑
LS

NL−1∑
n=0

a
(L0S0)
LS,n |ψLS,n〉 . (6.30)

At the end the “test” function is

ψL0S0
=
∑
LS,n

a
(L0S0)
LS,n |ψLSn〉+ ΩF

L0S0
+
∑
LS

RL0S0,LSΩG
LS . (6.31)

Now we briefly discuss the Kohn variational Principle. Let’s consider the
following quantities:

ILS,LS = 〈ψLS|H − E|ψLS〉 − 〈ψLS|H − E|ψLS〉 , (6.32)

where ψLS is the exact wave function given in Eq. (6.19) and ψLS the trial wave
function. Replacing in ψLS and ψLS the expressions (6.19) and (6.24) and using
the identity (6.18) we obtain:

ILS,LS = RLS,LS −RLS,LS . (6.33)

The exact wave function is the solution of the equation (H − E)|ψLS〉 = 0, thus
we obtain the exact relation

RLS,LS = RLS,LS − 〈ψLS|H − E|ψLS〉. (6.34)

Defining δψLS = ψLS − ψLS the “error” wave function, RLS,LS takes the form

RLS,LS = RLS,LS − 〈ψLS|H − E|ψLS〉+ 〈δψLS|H − E|δψLS〉 . (6.35)
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We can now build the functional [RLS,LS]:

[RLS,LS] = RLS,LS − 〈ψLS|H − E|ψLS〉 . (6.36)

This functional differs from the exact value of RLS,LS by a term which is quadratic
in the “error” wave function and so it is stationary for small variation of ψLS
around the exact value ψLS = ψLS (this is called Kohn variational Principle).

Asking that the functional RL0S0,L0S0 is stationary for a variation of the coef-

ficients a
(L0S0)
LS,n and RL0S0,LS, one obtains

0 =
δ [RL0S0,L0S0 ]

δa
(L0S0)
LS,n

, 0 =
δ [RL0S0,L0S0 ]

δRL0S0,LS

. (6.37)

From the first condition we obtain

0 =
∑
L′S′,n′

H̃LSn,L′S′n′ aL′S′,n′ + T FLSn,L0S0
+
∑
L′S′

RL0S0,L′S′T
G
LSn,L′S′ , (6.38)

where {
H̃LSn,L′S′n′ = 〈ψLS,n|H − E|ψL′S′n′〉
TXLSn,L′S′ = 〈ψLS,n|H − E|ΩX

L′S′〉
(6.39)

The second condition gives

0 = δL0S0,LS −
[ ∑
L′S′n′

TGL′S′n′,LSa
(L0S0)
L′S′,n′ + TGFLS,L0S0

+
∑
L′S′

RL0S0,L′S′T
GG
LS,L′S′

+
∑
L′S′n′

TGL′S′n′,LSa
(L0S0)
L′S′n′ + T FGL0S0,LS

+
∑
L′S′

RL0S0,L′S′T
GG
L′S′,LS

]
, (6.40)

where TXYLS,L′S′ = 〈ΩX
LS|H − E|ΩY

L′S′〉. We can now sum up all these equations in

a system where a
(L0S0)
LS,n and RL0S0,L′S′ are unknown:[

H̃LSn,L′S′n′ TGLSn,L′S′
TGL′S′n′,LS

1
2
(TGGLS,L′S′ + TGGL′S′,LS)

] [
a

(L0S0)
L′S′,n′

RL0S0,L′S′

]
=[

−T FLSn,L0S0
1
2
(δL0S0,LS − TGFLS,L0S0

− T FGL0S0,LS
)

]
, (6.41)

We have to compute all the quantities H̃LSn,L′S′n′ , T
X
LSn,L′S′ and TXYLS,L′S′ (where

X, Y indicates F,G), for all possible combinations of L, S and n for a given J
and Tz. We give now a summary of the explicit formulas for the elements of the
system in Eq. (6.41).
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The quantity H̃LSn,L′S′n′ = HLSn,L′S′n′ − EδLL′δSS′δnn′ , where HLSn,L′S′n′ =
〈ψLS,n|H|ψL′S′n′〉. The Hamiltonian can be written as H = K + VPC + VZ , where
Z stands for PV or TV term. The kinetic matrix element can be calculated
analitically getting:

〈ψLS,n|K|ψL′S′,n′〉 =
γ2

M
[(L (L+ 1) + n′) I2

n,n′ + (n′ + 1) I1
n,n′

−1

4
δn,n′ −

√
n′ (n′ + 1)I2

n,n′−1], (6.42)

with n ≤ n′ and where

I1
n,n′ =

∫ ∞
0

drr2L
(2)
n (γr)L

(2)
n′ (γr)

γr
e−γrNnNn′ ,

I2
n,n′ =

∫ ∞
0

drr2L
(2)
n (γr)L

(2)
n′ (γr)

(γr)2 e−γrNnNn′ . (6.43)

The potentials which we use have also terms with ∇ and ∇2 at maximum, so the
matrix element on the angular, spin and isospin variables is in general:

〈iL[YLχS]JJzξTTz |VZ |iL
′
[YL′χS′ ]JJzξT ′Tz〉θ,φ =

=

[
vZ0,JTz
LS,L′S′(r) + vZ1,JTz

LS,L′S′(r)
d

dr
+ vZ2,JTz

LS,L′S′(r)
d2

dr2

]
, (6.44)

where Z stands here for the PC, PV , or TV part of the potential and 〈〉θ,φ
points out that the matrix element is calculated performing the integration on dr̂
and evaluating the spin-isospin traces. The final result for the potential matrix
element is:

〈ψLS,n|VZ |ψL′S′,n′〉 =

∫ ∞
0

dr r2NnL
(2)
n (γr)e−γr/2

[
vZ0,JTz
LS,L′S′(r) + vZ1,JTz

LS,L′S′(r)
d

dr

+vZ2,JTz
LS,L′S′(r)

d2

dr2

]
Nn′L

(2)
n′ (γr)e−γr/2 . (6.45)

The derivatives of the Laguerre polynomials are calculated using recurrence for-
mulas. The integrals are numerically computed using the Gauss-Laguerre inte-
gration formula with Np points.

The quantities TX and TXY are evaluated considering that the Bessel or
Coulomb functions are solutions of the Schrödinger equation without the nuclear
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potential. And so:

T FLSn,L′S′ =

∫ ∞
0

dr r2NnL
(2)
n (γr)e−γr/2

[
vPC,JTzLS,L′S′(r) + vZ0,JTz

LS,L′S′(r)

+vZ1,JTz
LS,L′S′(r)

d

dr
+ vZ2,JTz

LS,L′S′(r)
d2

dr2

]
C
FL′(η, kr)

kr
, (6.46)

TGLSn,L′S′ = − 1

M

∫ ∞
0

dr r2NnL
(2)
n (γr)e−γr/2C

2G′L′y
′
β +GL′y

′′
β

kr

+

∫ ∞
0

dr r2NnL
(2)
n (γr)e−γr/2

[
vPC,JTzLS,L′S′(r) + vZ0,JTz

LS,L′S′(r)

+vZ1,JTz
LS,L′S′(r)

d

dr
+ vZ2,JTz

LS,L′S′(r)
d2

dr2

]
C
GL′(η, kr)

kr
yβ(r) , (6.47)

TXFLS,L′S′ =

∫ ∞
0

dr r2C
XL(η, kr)

kr

[
vPC,JTzLS,L′S′(r) + vZ0,JTz

LS,L′S′(r)

+vZ1,JTz
LS,L′S′(r)

d

dr
+ vZ2,JTz

LS,L′S′(r)
d2

dr2

]
C
FL′(η, kr)

kr
, (6.48)

TXGLS,L′S′ = − 1

M

∫ ∞
0

dr r2C
XL(η, kr)

kr
C

2G′L′y
′
β +GL′y

′′
β

kr

+

∫ ∞
0

dr r2C
XL(η, kr)

kr

[
vPC,JTzLS,L′S′(r) + vZ0,JTz

LS,L′S′(r)

+vZ1,JTz
LS,L′S′(r)

d

dr
+ vZ2,JTz

LS,L′S′(r)
d2

dr2

]
C
GL′(η, kr)

kr
yβ(r) , (6.49)

where yβ(r) =
(
1− e−βr

)2L+1
, X = F or G, Z = PC, PV or TV and f ′ ≡

df(r)/dr, etc. Let’s note that the integrands go to zero quickly for r → ∞, so
there are no difficulties in evaluating these integrals. As for the Hamiltonian
matrix elements, TX and TXY are computed using the Gauss-Laguerre numerical
integration using Np grid points. After having obtained all the quantities entering
Eq. (6.41), we can determine the coefficients RL0S0,LS and the “test” functions.
These functions are the “first order” approximation (indeed they differ from the
exact ψL0S0 by a quantity δψL0S0). If we use the first order functions to evaluate
the quantities [RL0S0L0S0 ] in Eq. (6.36) we will obtain a new estimate of RL0S0L0S0

which differs to terms that go like ∼ (δψL0S0)
2 from the exact ones.

For the “non diagonal” R-matrix elements there is a similar functional

[RL1S1,L2S2 ] =
1

2

(
RL1S1,L2S2 +RL2S2,L1S1

)
− 1

2

(
〈ψL1S1

|H − E|ψL2S2
〉+ 〈ψL2S2

|H − E|ψL1S1
〉
)
. (6.50)
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Also these quantities differ by a quadratic term from the exact coefficients. There-
fore [RL1S1L2S2 ] are a “second order” approximations and usually they are more
precise than RL1S1L2S2 and converge faster.

Let’s note an important difference between the TV and PV potential matrix
elements of the type

〈ψL′S′ |V |ψLS〉 , (6.51)

Both potentials are P -violating so they connect states with different parities, thus
L+L′ should be odd. When we calculate the matrix elements we have to take care
of the factor (−i)L′ in the bra and (i)L in the ket. In the case of the PV potential
all the terms of the potential have a vector product and this always produces
an extra i factor (see Appendix E). This extra factor, taking into account that
L+L′ is odd, says that the matrix element is real. On the other hand in the TV
potential there is no vector products so the matrix element will be imaginary.
The final result will be that the S-matrix will not be anymore symmetric.

6.3 The M matrix

Using Eq. (6.23) we can compute the TLS,L′S′ matrix directly from the R matrix.
In this section we reintroduce the explicit dependence on J and Tz, so TLS,L′S′ ≡
T JTzLS,L′S′ . The T matrix represents the transition probability between an initial
“plane wave” with an orbital angular momentum L and a total spin S to a final
outgoing spherical wave with an orbital angular momentum L′ and a total spin S ′.
For the calculation of the observables we introduce the M matrix which represents
the transition probability from two nucleons initial state of relative momentum
k and given projections of the spin and isospin states, to a final state of relative
momentum k′ where the two particles have other projections of the spin and
isospin. Usually the z direction is chosen parallel to the incoming momentum k.

We have to distinguish the np and the pp cases. In the np case the particles
are non interacting in the long range sector, so we can write the “unperturbed”
wave function as

Φk,s1,s2,t1,t2 =
1√
2

(
eik·rχs1(1)χs2(2)ξt1(1)ξt2(2)− e−ik·rχs2(1)χs1(2)ξt2(1)ξt1(2)

)
,

(6.52)
where χs(i) (ξt(i)) is the spin (isospin) particle state i with projection s (t) along
z. Expanding in partial waves and coupling spin and isospin we obtain

Φk,s1,s2,t1,t2 =
∑

LMSSzJJzTTz

4π(
1

2
s1

1

2
s2|SSz)(LMSSz|JJz)(

1

2
t1

1

2
t2|TTz)

×
√

2εLSJY
∗
LM(k̂)ΩF

LS , (6.53)

where ΩF
LS is defined in Eq. (6.8) and εLSJ = (1−(−)L+S+T )/2 in order to respect

Pauli’s principle.
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If we “turn on” the interaction the solution of the Schrödinger equation is

Ψk,s1,s2,t1,t2 =
∑

LMSSzJJzTTz

4π(
1

2
s1

1

2
s2|SSz)(LMSSz|JJz)(

1

2
t1

1

2
t2|TTz)

×εLST
√

2Y ∗LM(k̂)ψTLS(r) , (6.54)

where ψTLST (r) are the solution defined in Eq. (6.22). We consider only the
asymptotic part of the wave function because the experimental apparat are very
far from the interacting point. So asymptotically the wave function becomes

Ψk,s1,s2,t1,t2 → Φk,s1,s2,t1,t2+
√

2
∑

s′1s
′
2t
′
1t
′
2

Ms′1s
′
2t
′
1t
′
2;s1,s2,t1,t2(r̂)

eikr

r
χs′1(1)χs′2(2)ξt′1(1)ξt′2(2) .

(6.55)
Explicitly the M matrix for the np process reads

Ms′1s
′
2t
′
1t
′
2;s1,s2,t1,t2(r̂) =

∑
LST,L′S′T ′JJzTz

(
1

2
s1

1

2
s2|SSz)(L0SJz|JJz)(

1

2
t1

1

2
t2|TTz)

(
1

2
s′1

1

2
s′2|S ′S ′z)(L′M ′S ′S ′z|JJz)(

1

2
t′1

1

2
t′2|T ′Tz)

εLST εL′S′T ′
√

4πL̂
T JTzLS,L′S′

k
YL′M ′(r̂) , (6.56)

where YLM(k̂ ‖ ẑ) = δM0L̂/
√

4π and L̂ =
√

2L+ 1.
For the pp case the wave function in the r → ∞ is not simply an incoming

plane wave plus a outcoming wave, due to the Coulomb potential in the long
range region. In fact the solution of the Schröedinger equation with the Coulomb
potential for r →∞ is [48]

ψc(k, r)→ ei(k·r−η ln(kr−k·r)) + fc(θ)
ei(kr+η ln(2kr))

r
, (6.57)

where fc(θ) is the scattering function for a collision of two charged point particles
(without spin) and

fc(θ) = −ηe
2iσ0−iη ln(sin2(θ/2))

2k sin2(θ/2)
, (6.58)

where θ is the scattering angle defined as cos θ = k̂ · r̂. We can write a formula
similar to Eq. (6.52) considering the unperturbed wave function of the pp case,
where the plane waves are substituted by ψc(k, r)

ΦC
k,s1,s2

=
1√
2

(
ψc(k, r)χs1(1)χs2(2)ξ+1/2(1)ξ+1/2(2)

−ψc(k,−r)χs2(1)χs2(2)ξ+1/2(1)ξ+1/2(2)

)
. (6.59)



88CHAPTER 6. PV AND TV OBSERVABLES IN TWONUCLEON SYSTEMS

Expanding in partial wave using

ψc(k, r) =
∑
LM

4πiLY ∗LM(k̂)YLM(r̂)eiσLFL(η, kr) , (6.60)

where FL(η, kr) is the regular Coulomb function, we obtain

ΦC
k,s1,s2

=
∑

LMSSzJJz

4π(
1

2
s1

1

2
s2|SSz)(LMSSz|JJz)

√
2εLS1Y

∗
LM(k̂)eiσLΩF

LS ,

(6.61)
and here ΩF

LS is given by (6.10). When we add the nuclear potential the wave
function becomes

ΨC
k,s1,s2

=
∑

LMSSzJJz

4π(
1

2
s1

1

2
s2|SSz)(LMSSz|JJz)

√
2εLS1Y

∗
LM(k̂)eiσLψTLS ,

(6.62)
where ψTLS(r) has the behaviour defined by Eq. (6.22), but with the functions
ΩF,G
LS given in Eq. (6.10) and (6.11). Asymptotically the term ΩF

LS in ψTLS(r)
reconstructs ΦC

k,s1,s2
. We want isolate the scattering wave function and therefore

we have to subtract the unperturbed one, which is not simply the wave function
ΦC
k,s1,s2

because it also includes the scattering amplitude fC due to the Coulomb
repulsion. We define the unperturbed part as the function that asymptotically
goes like

Φ
C

k,s1,s2
=

1√
2

[
ei(k·r−η ln(kr−k·r))χs1(1)χs2(2)ξ+1/2(1)ξ+1/2(2)

−ei(−k·r−η ln(kr+k·r))χs2(1)χs2(2)ξ+1/2(1)ξ+1/2(2)

]
, (6.63)

as we can deduce from Eq. (6.57). So we can define

Ψk,s1,s2 → Φ
C

k,s1,s2
+
√

2
∑
s′1s
′
2

MC
s′1s
′
2;s1,s2

(r̂)
eikr−η ln(2kr)

r
χs′1(1)χs′2(2)ξ+1/2(1)ξ+1/2(2) ,

(6.64)
with

MC
s′1s
′
2t
′
1t
′
2;s1,s2,t1,t2

(r̂) = fc(θ)δs1s′1δs2s′2 − fc(π − θ)δs1s′2δs2s′1

+
∑

LS,L′S′JJz

(
1

2
s1

1

2
s2|SSz)(L0SJz|JJz)

(
1

2
s′1

1

2
s′2|S ′S ′z)(L′M ′S ′S ′z|JJz)

εLS1εL′S′1
√

4πL̂eiσL
T JTzLS,L′S′

k
eiσL′YL′M ′(r̂) . (6.65)



6.4. PHYSICAL OBSERVABLES 89

Now, let’s suppose to have a detector at distance r/2 from the interaction
point covering a solid angle dΩ. The particle flow that hits the detector with the
particle 1 (2) in the spin state s′1 (s′2) and isospin state t′1 (t′2) is given by

ϕusc = r2dΩ
k

µ

|Ms′1,s
′
2,t
′
1,t
′
2;s1,s2,t1,t2(r̂)|2

r2
. (6.66)

The incoming flow per unit area is ϕentr = k/µ, so from the definition of cross-
section we obtain

dσ

dΩ
= |Ms′1,s2,

′t′1,t
′
2;s1,s2,t1,t2(r̂)|2 . (6.67)

This is the cross section for the process |s1s2, t1t2〉 → |s′1s′2, t′1t′2〉, where the
incoming particles have the momentum in the z direction while the outcoming
particles have k′ ‖ r̂. In the pp case the cross-section contains three terms: the
Rutherford cross section, a purely nuclear term and an interference term. If we
have an unpolarized beam which hits an unpolarized target and we do not measure
the polarization of the reactants, the unpolarized differential cross-section reads

dσ

dΩ
=

1

4

∑
s2,s′1,s

′
2

|Ms1,′s′2,t1,
′t′2;s1,s2,t1,t2(r̂)|2 . (6.68)

6.4 Physical observables

Before starting to discuss about the physical observables, we need to define a
coordinate system for the projectile polarization and another for the outgoing
particle polarization. For the projectile we adopt the usual frame where the z-
axis is along the k; the y-axis along the normal to the scattering plane k × k′
(let us remember the k (k′) is the relative momentum of the incident (outgoing)
particles); and x is chosen to form a right-handed system. For the outgoing
particles we define the x′,y′,z′ coordinate system similarly with the z′-axis along
k′; the y′-axis still along k × k′; and x′ again chosen to form a right-handed
system (see Fig. 6.1).

As we have shown in the previous Section, the M matrix represents the tran-
sition probability from a given initial state to a given final state. Let us describe
the initial system with a spinor χi and the final state with χf which are related
by

χf = Mχi . (6.69)

where

χi =
∣∣∣1
2
s1

〉∣∣∣1
2
s2

〉
, χf =

∣∣∣1
2
s′1

〉∣∣∣1
2
s′2

〉
. (6.70)

We can write the density matrix for the initial and the final beams of particles
as [48]

ρi =
∑
k

ωkχ
(k)
i (χ

(k)
i )† , ρf =

∑
k

ωkχ
(k)
f (χ

(k)
f )† (6.71)
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Figure 6.1: Frame system for the incoming and the outcoming particles.

for an initial beam with a fraction ωk of the pairs in the spin state χ
(k)
i . It is

possible also to write the density matrix distinguishing the contribution of the
two particles for example ρi = ρ

(1)
i ρ

(2)
i where ρ

(j)
i represents the density matrix of

particle j. Clearly ρ(j) in our case is a matrix 2× 2. So from Eq. (6.69)

ρf = MρiM
† . (6.72)

If Tr(ρi) is normalized to 1, from the definition of cross-section we obtain

dσ

dΩ
=

Tr(ρf )

Tr(ρi)
= Tr(MρiM

†) . (6.73)

If the beam is not polarized ρi = 1/4 and the cross-section will read

dσ0

dΩ
=

1

4
Tr(MM †) , (6.74)

which is the same form of Eq. (6.68).
Let’s consider the process where particle 2 (the target) is unpolarized. Now

in general ρ
(i)
i is a 2× 2 matrix so we can write it as a linear expansion over the

Pauli matrix

ρ
(1)
i =

3∑
j=0

a
(1)
j σ

(1)
j , ρ

(2)
i =

1

2
1, (6.75)

where σ0 = 1. Defining pj = 〈σj〉, which is the expectation value of the i-th Pauli
matrix on the initial state, we can write the identity

Tr(ρ
(1)
i σj) = 2a

(1)
j = pj , (6.76)
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whence

ρ
(1)
i =

1

2

(
1 +

∑
j

pjσ
(1)
j

)
. (6.77)

Inserting Eq. (6.77) in Eq. (6.73) we obtain

dσ

dΩ
(θ, E) =

dσ0

dΩ
(θ, E)

(
1 + pxAx(θ, E) + pyAy(θ, E) + pzAz(θ, E)

)
, (6.78)

where dσ0/dΩ is the unpolarized cross-section and the quantities Aj(θ) are called
analyzing powers and are defined as

Aj =
Tr(Mσ

(1)
j M †)

Tr(MM †)
, (6.79)

and are related to the different polarization of the beam, refered to the given axis
frame. The superscript (1) remembers that σ

(1)
j operates on the spin states of

particle 1.

6.4.1 PV observables in ~pp system

We can now study how the analyzing powers transform under the parity operator.
The parity operator reverses all the polar vectors but leaves invariant the axial
vectors like the spin. Thus k→ −k, k′ → −k′ and k × k′ → k × k′.

Because the coordinates x, z, x′, z′ are linear combination of k and k′, they
reverse under parity, but the y, y′ axes do not. If parity is conserved, the trans-
formed system must be identical to the initial system; this means that all coef-
ficents must remain the same. In Fig. (6.2) we study for example the scattering
of a neutron beam polarized along z. In part (a) the original system is shown; in
(b) under parity k and k′ are reversed in direction, taking care not to reverse the
role namely their meaning of initial/final momenta; in (c) the entire system is
rotated by 180◦ around the y-axis. So if parity is a good symmetry, the scatter-
ing of particles of helicity +1 and −1 would give the same cross-section, namely
Az = 0. Therefore a value of Az different from zero is a signal of the presence of
PV in the nuclear interaction.

If we consider a beam with the spin parallel to the z-axis, Eq. (6.78) becomes

dσ+

dΩ
(θ, E) =

dσ0

dΩ
(θ, E)

(
1 + Az(θ, E)

)
, (6.80)

while for spin antiparallel to the z-axis we obtain

dσ−
dΩ

(θ, E) =
dσ0

dΩ
(θ, E)

(
1− Az(θ, E)

)
. (6.81)
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Figure 6.2: Pictorial demonstration that Az violates parity. In part (a) the
original system is shown; in (b) under parity k and k′ are reversed in direction,
taking care not to reverse the role namely their meaning of initial/final momenta;
in (c) the entire system is rotated by 180◦ around the y-axis.

Redefining σ+ = dσ+/dΩ and σ− = dσ−/dΩ we can write

Az(E, θ) =
σ+(θ, E)− σ−(θ, E)

σ+(θ, E) + σ−(θ, E)
, (6.82)

where θ is the scattering angle and E the energy in the laboratory frame.
From a practical point of view, the experiments detect the particles scattered

in angular range [θ1, θ2] and the measured quantity is an “average” of the asym-
metry over the total cross-section in this range, explicitly

Az(E) =

∫
θ1≤θ≤θ2 dr̂ Az(θ, E)σ(θ, E)∫

θ1≤θ≤θ2 dr̂ σ(θ, E)
, (6.83)

where

σ(θ, E) =
1

2
(σ+(θ, E) + σ−(θ, E)) , (6.84)

is the unpolarized differential cross-section for the process. This quantity is also
called longitudinal asymmetry.

6.4.2 Observables in np system: the spin rotation

Another possible parity violating observable is related to the spin rotation in ~np
elastic scattering. The transmission of a neutron beam through a slab of matter
of width d and density N is described in term of a refraction index.

To introduce the index of refraction we will follow Ref. [49]. In order to make
valid the following approximation, the neutron momenta must be such that d� λ
where λ = 1/|pn| and pn = 2p is the initial momentum of the neutrons in the



6.4. PHYSICAL OBSERVABLES 93

Figure 6.3: Transmission of a neutron beam through a slab of matter of width d.
Note that r2 = ρ2 + z2 and we are supposing that d� r.

laboratory system. Considering the momentum pn along the z-axis, the incoming
wave function can be written as

ψin = eipnz . (6.85)

Passing through the material the plane wave will move with a momenta npn
where n is the refraction index we are looking for. Thus, the wave after the
target will be

ψout = ei(npnd+pn(z−d)) , (6.86)

∼ eipnz(1 + ipnd(n− 1)) , z > d . (6.87)

From the scattering theory, we can also write the outcoming wave function as
a sum of the incoming wave plus the scattering wave which we can expand in
partial waves as

ψout = eipnz +
∞∑
l=0

∫ +∞

0

Cl
r
eipnrPl(cos θ)2πNdρdρ , (6.88)

where 2πNdρdρ represents the average number of collision of the neutron and
r is defined as in Fig. 6.3. Cl represents the scattering parameters for different
l. Namely, the final wave function along the z axis is given by the unperturbed
plane wave plus all the contributions of the scattering waves coming from the
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neutron passing in the circular corona of radius ρ and width dρ. Because we are
at low energies the only wave that contributes is l = 0 and so the outcoming wave
results

ψout = eipnz + 2πNdρC0

∫ +∞

z

eipnrdr , (6.89)

where we have used the fact that ρdρ = rdr as it is possible to deduce from
Fig. 6.3. The integral we get is divergent and in order to calculate it we use
a regularization function exp(−b2r) which goes fast to zero for r → +∞ (this
function has a physical meaning because the beam is not infinitely large), and
then we take the limit b→ 0. The final result is

ψout = eipnz + 2πNdρC0
i

pn
eipnz (6.90)

from which is simple to identify the refraction index with (see Eq. (6.87))

n− 1 =
2πN

p2
n

C0 . (6.91)

However we can identify C0 = f(0) [50] where f(0) is the forward scattering
amplitude therefore

n− 1 =
2πN

p2
n

f(0) . (6.92)

This formula defines the refraction index in term of the forward scattering am-
plitude.

The most general form for the forward scattering amplitude for two spin 1/2
particles, taking into account the dependence on the polarization of both initial
particles, can be written as

f(0) = f0 + fM(σ · S) + fP (σ · pn) + fTσ · (pn × S) , (6.93)

where f0, fM , fP and fT are general function of p2
n only. Above σ is the spin

operator of the beam, S is the spin operator of the target and pn the impulse of
the beam. The first term is the spin-indipendent forward scattering amplitude.
The second term explicits the dependence between the spin of the target and the
spin of the neutron. The third term is a PV term describing the dependence of
the forward amplitude if the neutron spins are aligned either along or opposite
the direction of propagation. The fourth term appears if there is a TV effect (see
later).

If we define the z-axis along pn and the other axes as defined in Fig. (6.3) and
the target is not polarized, 〈S〉 = 0 we get from Eq. (6.93)

f = f0 + fPσz , (6.94)
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so the index of refraction changes if the polarization of the beam changes, as fol-
lows from Eq. (6.92). In term of the M -matrix the forward scattering amplitude,
for a non polarized target, can be written as

fmn =
1

2

∑
mp

〈mnmp|M |mpmn〉|θ=0, (6.95)

where mn represent the polarization of the initial neutron state along the z-axis.
Since f+ = f0 + fP and f− = f0 − fP , from Eq. (6.95) we identify f0 and fp in
term of the M -matrix. If we consider a neutron beam initially polarized along
the x axis namely

ψin = eipnz
|+〉+ |−〉√

2
(6.96)

the state of the neutron after the interaction with the matter will be

ψout =
eipn(z−d)

√
2

(
eipndn+|+〉+ eipndn− |−〉

)
, (6.97)

which we can be rewritten as

ψout =
eipn(z−d)

√
2

eipnd
n++n−

2

(
eipnd

n+−n−
2 |+〉+ e−ipnd

(n+−n−)

2 |−〉
)
, (6.98)

where n+ − n− is proportional to fP as follows from Eq. (6.94), explicitly

n+ − n− =
2πN

p2
n

2fP =
2πN

p2
n

1

2

∑
mp

[
〈+mp|M |mp +〉 − 〈−mp|M |mp−〉

]
θ=0

,

(6.99)
while the phase proportional to n+ + n− is unobservable. This is correlated to a
rotation of the spin along the z-axis. In fact, if we consider a spin state |A〉 we
can define the rotated state of an angle α along a direction n̂ as

|B〉 = e−i(σ·n̂)α/2|A〉 . (6.100)

If we start with a spin directed on the x-axis and we consider a rotation around
the z-axis of an angle φz we obtain

|B〉 =
1√
2

(
e−iφz/2|+〉+ e+iφz/2|−〉

)
, (6.101)

where φz, the rotation angle, can be measured experimentally. From Eq. (6.101)
it is easy to identify the phase φz with the real part of the phase in Eq. (6.98),
thus

φz = −2πN

pn

d

2

∑
mp

Re
[
〈+mp|M |mp +〉 − 〈−mp|M |mp−〉

]
θ=0

(6.102)



96CHAPTER 6. PV AND TV OBSERVABLES IN TWONUCLEON SYSTEMS

where d is the width of the target, and so the rotation for unit length is given by:

dφz
dz

= −2πN

pn

1

2

∑
mp

Re
[
〈+mp|M |mp +〉 − 〈−mp|M |mp−〉

]
θ=0

. (6.103)

In Eq. (6.93) it appears a TV terms. If we consider also the target polarized
along the x-axis either before and after the scattering, the forward amplitude can
be written as

f(0) = f0 + fMσx + fPσz + fTσy . (6.104)

In analogy with Eq. (6.94), we can see that the real part of fT is proportional to
the rotation angle around the y-axis. So we can derive a formula for φy similar
to Eq. (6.102)

φy = −4πNd

pn
RefT (6.105)

Let’s derive the expression of fT in terms of the M -matrix. f(0) is a matrix, and
when the initial and final polarizations of the proton target are along the x-axis,
its elements can be expressed in term of the M -matrix as

f(0)m′n,mn =
1

2

∑
m′p,mp

〈m′pm′n|M |mpmn〉|θ=0 (6.106)

where mp,m
′
p are the initial and final state of the spin proton and mn,m′n are

the initial and final state of the spin neutron along the z axis. Writing the
expression (6.104) in a matricial form we obtain

f(0) =

(
f0 + fP fM − ifT
fM + ifT f0 − fP

)
. (6.107)

Because both the expressions are written in the basis of the enginestates of σz
it’s easy to get the expression for fT

fT =
f−+ − f+−

2i
(6.108)

and from Eq. (6.106) it is easy to obtain the spin rotation along y for unit length

dφy
dz

= −2πN

pn

1

2

∑
m′p,mp

Im
[
〈+m′p|M |mp−〉 − 〈−m′p|M |mp +〉

]
θ=0

. (6.109)



Chapter 7

Results

In this Chapter we will present the results for the observables we have studied.
We have written a program in FORTRAN language in order to solve Eq. (6.41)
and to evaluate the M -matrix.

As PC potential we will use the chiral potential derived in Ref. [51] by Entem
and Machleidt at N3LO. This potential is regularized with a cut-off function
depending on a parameter ΛF , its functional form, however, is different from that
adopted here for the PV and TV potentials. We will consider four versions of
this PC potential corresponding to ΛF = 414 MeV, ΛF = 450 MeV, ΛF = 500
MeV, and ΛF = 600 MeV. In spite of the use different cut-off each case, we use
the same value for the ΛF for our PV and TV potentials.

This Chapter is divided in two Sections. In the first Section we will present
the results for the Az observable in the ~pp scattering, studying in particular the
possibility of extracting the LECs from the available experimental data. In the
second Section we will present the results for the n~p spin rotation PV observable
and the ~n~p spin rotation TV observable discussed in the previous Chapter. In
the latter case we will discuss the possibility of estimating the θ angle.

7.1 The ~pp longitudinal asymmetry

There exist three accurate measurements of the angle-averaged ~pp longitudinal
asymmetry Az(E), see Eq. (6.83), obtained at different laboratory energies E [52,
53, 54]. The measurements are:

Az(13.6 MeV) = (−0.97± 0.20)× 10−7 ,

Az(45 MeV) = (−1.53± 0.21)× 10−7 , (7.1)

Az(221 MeV) = (+0.84± 0.34)× 10−7 .

The errors reported above include both statistical and systematic errors added in
quadrature. In these experiments, the asymmetry was measured averaging over

97
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E (MeV) (θ1, θ2)
13.6 (20◦, 78◦)
45 (23◦, 52◦)
221 (5◦, 90◦)

Table 7.1: Angle ranges used to compute the Az asymmetry in the different
experiments.

a range (θ1, θ2) of (laboratory) scattering angles as defined in Eq. (6.83). The
Az(E, θ), defined in Eq. (6.82) is approximately constant except at small angles
. 15◦ where the Coulomb scattering dominates. In Table 7.1, the angle ranges
used to compute the asymmetry are reported.

In the case of pp scattering the isospin state is |pp〉 ≡ |T = 1, Tz = 1〉 and so
the matrix elements of the isospin operators which appear in the expression of
the PV potential are the following:

〈T = 1, Tz = +1|(~τ1 · ~τ2)|T = 1, Tz = +1〉 = 1 , (7.2)

〈T = 1, Tz = +1|(~τ1 × ~τ2)z|T = 1, Tz = +1〉 = 0 , (7.3)

〈T = 1, Tz = +1|(τ1z + τ2z)|T = 1, Tz = +1〉 = 2 , (7.4)

〈T = 1, Tz = +1|(Iijτ1iτ2j)|T = 1, Tz = +1〉 = 2 , (7.5)

therefore the LO contribution that comes from the OPE in Eq. (4.83) vanishes.
The LEC h1

π will contribute to the observable only via the TPE box diagrams
that appear at N2LO and N3LO. Regarding the contact terms, the term with C3

does not contribute. From Eq. (4.84) we note that the other terms differ only for
the isospin part so,

〈V (1)
PV (CT)〉 = (C1 + C2 + 2C4 + 2C5)〈(σ1 × σ2) · r〉Z ′(r). (7.6)

Performing a similar analysis for the terms of the potential in Eq. (4.88) and
taking into account the matrix elements given in Eqs. (7.2)-(7.5), the longitudinal
asymmetry can be written as

Az(E) = h1
π a0(E) + C a1(E) + h̃ a2(E), (7.7)

where
C = C1 + C2 + 2 (C4 + C5) , (7.8)

h̃ =
3gA
4
h0
V +

gA
2
h0
V + 2

(gA
4
h1
V − h1

A

)
− 2
(gA

3
h2
V + h2

A

)
, (7.9)

and a0(E), a1(E), a2(E) are numerical coefficients independent of the LEC values.
The linear relation between the observables and the three LECs follows simply
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NL γ [fm−1] Np β [fm−1] Jmax a0 a1 a2

40 3 100 0.25 6 0.70038 −0.07994 −0.43854
50 3 100 0.25 6 0.70035 −0.07994 −0.43853
40 4 100 0.25 6 0.70034 −0.07994 −0.43853
40 3 120 0.25 6 0.70038 −0.07994 −0.43854
40 3 100 0.30 6 0.69949 −0.07974 −0.43874
40 3 100 0.25 8 0.70039 −0.07994 −0.43855

Table 7.2: Numerical stability and convergence of the coefficients a0, a1, a2

calculated at E = 45 MeV and for Λf = 500 MeV. The first line is calculated
using the parameters selected for this work. In the other lines we change one of
the parameters (bold) in order to compare the results with our choice. See the
text for more details.

from their smallness, they are of the order of 10−7. Therefore quadratic or higher
power dependence on the LEC can be safely disregarded. The coefficients a0, a1,
a2, are clearly dependent on the cut-off ΛF in the PV and PC potential. To
calculate one of the three numerical coefficients we just put to zero the other two
LECs exploiting the linear dependence of the Az from them.

Before discussing the results, let us study the dependence of the coefficients a0,
a1, a2 on the numerical code. The program requires to set different parameters:
NL the number of Laguerre polynomials, γ used to optimize the expansion in the
Laguerre polynomials, Np the number of points used for the Gauss-Laguerre nu-
merical integrations, β the parameter of the regularization factor of the Coulomb
irregular function and Jmax the maximum total angular momentum in the expan-
sion of the M -matrix, Eq. (6.65). These parameters have been chosen to optimize
the convergence in the calculation of the observables. In Table 7.2 the dependence
of the coefficients a0, a1, and a2 from the values of the parameters entering the
numerical code is discussed. The first line in the Table 7.2 represents the choice
of the parameters used through this work. As we can see the modification of the
parameters NL, γ, Np, β, Jmax give corrections only to the fourth decimal digit.
Therefore we can conclude that the coefficients are calculated very accurately.
An analogous accuracy is found for all the other cases we have studied.

The values of the coefficients a0, a1, and a2 obtained for the four choices of
the cut-off are reported in Table 7.3. As it is possible to see the values of the ai
for E = 13.6 MeV are approximately a factor 2 smaller than those obtained at
E = 45 MeV. At these energies the asymmetry is dominated by the contribution
of the S − P matrix elements, so it is sensitive only to the matrix element

〈ψ11(J = 0)|VPV |ψ00(J = 0)〉

∼
∫ ∞

0

dr r2F1(η, kr)

kr
vPV11,00

F0(η, kr)

kr
∼ ε0k , (7.10)
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E [MeV] a0(N2LO) a0(N3LO) a1 a2

ΛF = 414 MeV
13.6 0.27435 0.35523 −0.04127 −0.20997
45 0.56804 0.70048 −0.07545 −0.43652
221 −0.14068 −0.16771 0.01815 0.12816

ΛF = 450 MeV
13.6 0.28172 0.36334 −0.04233 −0.21555
45 0.55321 0.72237 −0.07795 −0.45308
221 −0.20976 −0.25520 0.02709 0.19039

ΛF = 500 MeV
13.6 0.26992 0.33560 −0.04159 −0.19719
45 0.55528 0.70038 −0.07994 −0.43854
221 −0.24340 −0.30487 0.03134 0.21941

ΛF = 600 MeV
13.6 0.25441 0.31705 −0.03990 −0.17869
45 0.53438 0.67215 −0.07841 −0.40520
221 −0.19342 −0.25520 0.02743 0.14378

Table 7.3: Values of the coefficients ai at the three energies corresponding to
the experimental data points for the four choices of cut-off parameters ΛF . The
calculations include contributions up to Jmax = 6 in the expansion of the pp
scattering state. For the coefficient a0 we give the calculation with N2LO only
and then adding the N3LO.

where ψLS are the wave function introduced in the previous chapter ε0 is a con-
stant independent of the energy. Therefore the ai at low energy scale as

√
E. This

explains why the values of the ai obtained at E = 45 MeV are approximately
twice larger than the values obtained at E = 13.6 MeV. Because of this scaling,
the experimental points at E = 45 MeV and E = 13.6 MeV do not provide
independent constraints on the LECs h1

π, C and h̃.
The presence of only two independent data points makes problematic to fix

the three LECs. To have an idea of the possible values of the LECs, we can fix
one of the three LECs and perform a χ2 analysis in order to define a region of
the “most probable values” of the other two for the given value of the first one.
In order to compare the results with Ref. [25] and [26] we will restrict our study
to ΛF = 500 MeV and ΛF = 600 MeV. The value of χ2 is calculated as

χ2 =
∑
i

(Az(i)− A
exp

z (i))2

(∆A
exp

z (i))2
, (7.11)

where the sum i is over the three energies of which we have the data, Aexpz (i)
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and ∆A
exp

z (i) are respectively the data and the correspondent experimental un-
certainty.

For the first analysis we choose h̃ = 0. The results obtained are reported
in Fig. 7.1. As we can see in both plots, the regions for different ΛF almost
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Figure 7.1: Countours for h1
π and C values (in units of 10−7) corresponding to

χ2 = 2 for the ~pp longitudinal asymmetry with h̃ = 0. The region χ2 < 2 is the
region inside the narrow ellipses. The blue solid (red dashed) countour is relative
to ΛF=500 (600) MeV. In the left (right) panel, the χ2 values obtained using the
N2LO (N2LO+N3LO) potential are shown.

coincide. Comparing the two figures we can see that, adding the N3LO component
of the potential, the region χ2 < 2 was reduced for both ΛF (in particular for
ΛF = 600 MeV). The regions for the two different ΛF using the potential at N3LO
completely overlap. The strictly correlation between h1

π and C is still present,
but their mutual dependence changes as we can see by the increase of inclination
of the ellipses. The range of allowed h1

π and C are

h1
π = (2.5± 7.5) · 10−7 (7.12)

C = (3.5± 6.5) · 10−6 (7.13)

which are perfectly in agreement with the results obtained in Ref. [26] and the
DDH (another potential model)“reasonable range” [55]

0 < h1
π < 11.2 · 10−7 . (7.14)

To study the dependence on h̃ we have to fix one of the other two constants.
There exist some independent estimates of the LEC h1

π from the DDH potential
model, from which it has been possible to extrapolate the range reported in
Eq. (7.14), or from Lattice QCD which has given the prediction h1

π = 1 ·10−7 [56].
In the following we will perform the calculations using:
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1. h1
π = 1 · 10−7 (lattice estimate);

2. h1
π = 4.56 · 10−7 (DDH “best value”);

The χ2 = 2 contours in the plane of parameters C and h̃ are reported in Fig. 7.2.
From the plots it is possible to note that there is a strictly correlation also between
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Figure 7.2: χ2 countours as function of h̃ and C (in units of 10−7) corresponding to
χ2 = 2 for the ~pp longitudinal asymmetry. The blue solid (red dashed) countours
is relative to ΛF=500 (600) MeV. The left figure is obtained considering h1

π =
1 · 10−7. The right figure is obtained with h1

π = 4.56 · 10−7.

C and h̃. The values of C are included within the range found before with h̃ = 0.
From the comparison of the two plots it is possible to note that increasing h1

π the
center of the ellipses move towards higher values of C and h̃ but they maintain
a similar size and the same inclination. This shows that the correlation between
C and h̃ is independent of the choice of h1

π. The estimate of the range for h̃ are

1. h̃ = (−0.5± 1) · 10−6 for h1
π = 1 · 10−7;

2. h̃ = (0± 0.9) · 10−6 for h1
π = 4.56 · 10−7.

These range of values for h̃ are in agreement with the result obtained in Ref. [26].
Larger values of this LEC could be a problem for the EFT as discussed in the
next section.

Let us study the energy dependence of the coefficients ai. From now on, we
will use an angle range between 15◦ and 90◦ to compute the average asymmetry
for all energies. The coefficient a0 receives various contributions, so we can write
it as

a0 = a0(NR) + a0(TPE) + a0(RC-OPE) + a0(RC-TPE) + a0(c4) (7.15)
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where the coefficient a0(X) derives from the part proportional to h1
π of potential

V
(x)
PV as given in Eq. (4.103)-(4.110). The contribution a0(NR) = a0(RC-OPE) =

0 because the corresponding components are proportional to (~τ1 × ~τ2)z. For
convenience let’s define also

a0(N2LO) = a0(NR) + a0(TPE) + a0(RC-OPE) (7.16)

a0(N3LO) = a0(RC-TPE) + a0(c4). (7.17)

The behaviour of these coefficients in function of the laboratory energy is shown
in Fig. 7.3. The contribution of a0(N3LO) is found to be ∼ 12% of a0(N2LO),
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Figure 7.3: The energy dependence of the a0 coefficients introduced in the main
text for ΛF = 500 MeV. The black solid line is the total contribution. a0(N2LO)-
red line, a0(N3LO)-blue line, a0(c4)-blue dotted line, a0(RC-TPE)-blue dash-
dotted line.

in line with what we expect from the chiral expansion where the importance
of the contributions should be of the order of mπ/Λχ ∼ 1

7
. The contribution

given by a0(c4) to a0 is however a bit anomalous. The presence of the LEC
c4 = 3.4 GeV−1 as deduced from the NN scattering data [57] make this factor
somewhat larger than the contributions of the other N3LO order terms. However,
the term a0(RC-TPE) reduce the impact of a0(c4) bringing a0(N3LO) in line with
what expected from the chiral expansion.

Let us study the dependence of the coefficients on the cut-off ΛF , reported
in Fig. 7.4. For energies smaller than 50 MeV the coefficients ai are rather
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Figure 7.4: Energy dependence of the coefficients a0(E) (panel a), a1(E) (panel
b), a2(E) (panel c) obtained for ΛF = 450 MeV (blue line), ΛF = 500 MeV (red
line) and ΛF = 600 MeV (green line) .
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Figure 7.5: Coefficients a0, a1, a2 calculated for ΛF = 500 MeV rescaled by
suitable factors. As we can see the three functions are very similar. The values
of the scaling factors are reported in the main text.

insensitive to ΛF . We have already discussed that at low energies the asymmetry
is dominated by the S − P matrix elements, see Eq. (7.10). At this energies, the
P wave function is suppressed at short distances by the centrifugal barrier. The
matrix element therefore receive contribution from the long range region, where
the various potential terms are independent of ΛF (the cut-off only modifies the
short range part of the potential). On the other hand, at higher energies the
particles come closer and closer, and the asymmetry starts to depend on ΛF .

Looking with more attention to Fig. 7.4 we observe that the energy behaviour
of the coefficients ai(E) is similar. Rescaling ai(E) by proper factors, the three
functions becomes almost identical, as can be seen from Fig. 7.5. In order to
understand this behaviour let us study the potential components that contribute
to the three coefficients. It is possible to write the PV potential that contributes
to the ~pp scattering as

VPV (pp) = h1
π V (h1

π) + C V (CT) + h̃ V (LEC), (7.18)

where we have used the isospin matrix element given in Eqs. (7.2)-(7.5), and we
have defined

V (h1
π) = − 4g3

Am
2
π√

2fπΛ2
χ

L′(r) (σ1 × σ2) · r̂ +O(N3LO), (7.19)

V (CT) =
m2
π

Λ2
χfπ

Z ′(r) (σ1 × σ2) · r̂, (7.20)

V (LEC) =
g2
A

2f 2
π

πm3
π

Λ2
χ

A′(r) (σ1 × σ2) · r̂. (7.21)

Only the terms proportionals to (σ1 × σ2) · r̂ contributes to the ~pp longitudinal
asymmetry for the parts V (CT) and V (LEC). For the term proportional to
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V (h1
π) the main contribution comes at N2LO again proportional to (σ1 × σ2) · r̂

while the N3LO component has also other angular and spin operators. However
these terms give negligible corrections. Therefore, the only difference between
the three potential terms comes from the radial dependence. However, as can
be seen in Fig. 7.6, the three potentials for the same ΛF have a similar radial
dependence. Therefore we can say that V (CT) ≈ X V (h1

π) and V (LEC) ≈
Y V (h1

π). Consequently

a1(E) ≈ Xa0(E), a2(E) ≈ Y a0(E). (7.22)

Let us define
a(E) ≡ a0(E), (7.23)

so,
Az = (h1

π +X C + Y h̃)a(E) + f(E) (7.24)

where f(E) is a correction which results to be almost negligible. For example,
the numerical values for X and Y for ΛF = 500 MeV are,

X = −0.128, Y = −0.571, (7.25)

and the correction reads,

f(E) = (0.34C−1.3h̃)(E ·10−3)−(0.20C−4.1h̃)(E ·10−3)2+O((E ·10−3)3) (7.26)

which gives a correction smaller than 1% in the energy range of interest.
Therefore we can safetly neglect f(E), and it is possible to explain the almost

linear correlation found in Figs. 7.1 and 7.2. In fact, it is evident from the above
relation, that the only possibility is to extract the value of h = h1

π+XC+Y h̃, also
with the availability of more numerous and accurate experimental data. Fixing
for example h1

π, the region of allowed values for C and h̃ would be the line

h̃ =
(h− h1

π)

Y
− X C

Y
. (7.27)

From the available experiments, and the calculated a(E), we can in any case
extract h, for the various values of ΛF . The results are reported in Table 7.4.
In Fig. 7.7, Az calculated as h a(E), for the various choices of the cut-off ΛF ,
is compared with the data. Let us note however that the curves are calculated
computing the average asymmetry between 15◦ and 90◦ while the data have been
obtained averaging over the angle ranges given in Table 7.1, so the comparison can
be only qualitative. In Table 7.5 we report the values of Az calculated as h a(E)
for ΛF = 500 MeV at the three energies where the data are available using the
correct angle ranges as specified in Table 7.1. The theoretical uncertainty comes
from the error obtained in the calculation of h using the mean square method.
Taking into account the experimental and theoretical errors, the results are in
agreement with the experimental data to fit the data.
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Figure 7.6: Radial behaviour of the potential terms V (h1
π) (panel a), V (CT)

(panel b), V (LEC) (panel c) obtained for ΛF = 450 MeV (blue lines), ΛF = 500
MeV (red lines) and ΛF = 600 MeV (green lines). In panels (b) and (c) the
potentials are multiplied × − 1 to have an easier comparison with the curves of
panel (a).
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ΛF (MeV) h
414 (−2.35± 0.26) · 10−7

450 (−2.28± 0.25) · 10−7

500 (−2.35± 0.26) · 10−7

600 (−2.47± 0.27) · 10−7

Table 7.4: Values obtained for h = h1
π + X C + Y h̃ using the least mean square

method for different choice of the cut off ΛF .

E(MeV) Az(N3LO) A
exp

z

13.6 (−0.79± 0.09)× 10−7 (−0.97± 0.20)× 10−7

45 (−1.65± 0.18)× 10−7 (−1.53± 0.21)× 10−7

221 (+0.72± 0.08)× 10−7 (+0.84± 0.34)× 10−7

Table 7.5: Values for Az calculated as h a(E) for ΛF = 500 MeV using the
correct angle range as specified inn Table 7.1. A

exp

z are the experimental value.
The theoretical error comes from the error obtained in the calculation of h using
the mean square method.

7.2 The ~np spin rotation

Let us study the ~np spin rotation for a very small incident neutron energy. Mea-
surements of this observable are in fact performed using ultracold neutron beams.
In the following we assume that the beam energy is E = 0.0001 MeV, in any case
for these energies the observable does not depend on the energy. The density for
the hydrogen target is assumed to be N = 0.4 · 1023 cm−1.

Let’s consider first the PV effects in the ~np spin rotation along the z-axis
which we can calculate using Eq. (6.102). In general the rotation angle depends
linearly on the PV LECs, in fact second order effects (quadratic in the PV LECs)
are surely negligible, therefore

dφz
dz

= h1
π b0 + C1 b1 + C2 b2 + C3 b3 + C4 b4 + C5 b5

+h0
V b6 + h1

V b7 + h2
V b8 + h1

A b9 + h2
A b10 , (7.28)

where the bi for i = 0, . . . , 10 are numerical coefficients. The coefficient b0 receives
contributions from different chiral orders, in particular:

b0 = b0(LO) + b0(N2LO) + b0(N3LO). (7.29)

Their calculated values for the four choices of cut-off ΛF are listed in Table 7.6.
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Figure 7.7: Longitudinal asymmetry calculated as h a(E) (see text) as function
of the energy in the laboratory frame compared with the experimental data. The
calculations are performed for ΛF = 500 MeV (red line), ΛF = 600 MeV (green
line), ΛF = 450 MeV (blue line) and ΛF = 414 MeV (purple line) using the values
of h reported in Table 7.4.

As can be seen the N2LO and N3LO components of the potential gives smaller
and smaller contributions. More in detail, in Table 7.7 we report the contribu-
tion of the OPE, TPE, OPE-RC and TPE-RC components of the PV potential.
As shown the contributions of the N2LO component via the TPE and OPE-RC
represent a correction of the 10% and 1%, respectively. The N3LO give a con-
tribution via the TPE-RC of 0.1% as we expect from the chiral expansion. No
contributions come from the c4 term in this case since it is proportional to τ1z+τ2z

which is zero for an np system. Looking closely to Table 7.6, it is possible to see
that the ~np spin rotation is not sensitive to LECs C4 and h1

A since they are both
proportional to τ1z + τ2z; the small sensitivity to the LECs h1

V , compared to the
other LECs that appear at N3LO, is related to the fact that one of the contribu-
tion to b7 comes from a term proportional to τ1z + τ2z. On the other hand there
is a large sensitivity to C5 and h2

A, which multiply the isotensor term of the PV
potential.

Let’s discuss in more details the contributions that come from the N3LO
terms. As we can see from the Table 7.6, the coefficients bi with i = 6, . . . , 10 are
of the same order of magnitude as b0 (except for b7 and b9). These contributions
comes from the N3LO component and so, from the chiral expansion, we expect
that they would give a small correction, around 1% of the contribution given by
the LO. However, this clearly should be true for the overall N3LO contribution,
given by the second line in Eq. (7.28). The lack of experimental data does not
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ΛF [MeV] b0(LO) b0(N2LO) b0(N3LO) b0 b1 b2

414 1.18505 0.12026 0.00181 1.30712 0.24503 0.17358
450 1.21510 0.11560 0.00060 1.33131 0.25202 0.17617
500 1.23758 0.12239 0.00152 1.36149 0.24399 0.17391
600 1.18923 0.07379 0.01553 1.27854 0.23549 0.15845

b3 b4 b5 b6 b7 b8 b9 b10

0.08978 0.00000 −0.90865 1.62707 −0.16967 1.82856 0.00000 4.32967
0.09993 0.00000 −0.93226 1.66419 −0.15664 1.87308 0.00000 4.43508
0.10537 0.00000 −0.90588 1.49517 −0.17195 1.69261 0.00000 4.00776
0.08464 0.00000 −0.86493 1.31925 −0.04357 1.52293 0.00000 3.60599

Table 7.6: Values of the coefficients bi in units of Rad m−1 for the ~np spin rotation
along the z-axis calculated for the four choices of cutoff ΛF at vanishing neutron
beam energy. For b0 we give explicitly the contribution of the different orders,
the sum of the three contributions is given in fourth column.

ΛF [MeV] OPE OPE-RC TPE TPE-RC
414 1.18505 −0.00636 0.12662 0.00181
450 1.21510 −0.00878 0.12438 0.00060
500 1.23758 −0.01202 0.13341 0.00152
600 1.18923 −0.00793 0.08172 0.01553

Table 7.7: Contributions given by the different term of the PV potential to the
coefficient b0 for the different choice of the cut-off ΛF .

permit us to speculate about the magnitude of the N3LO terms. On the other
hand, we have already seen how the corrections coming from the N2LO and N3LO
to b0(LO) are in line of what expected.

Let us consider the spin rotation along the y-axis, due to TV effects calculated
using Eq. (6.109). As for the neutron spin rotation along the z-axis, the rotation
angle along the y-axis is linearly dependent on the TV LECs,

dφy
dz

= gθ0d0 + gθ1d1 + ∆
θ
d2 + C

θ

1d3 + C
θ

2d4 , (7.30)

where di with i = 1, . . . , 5 are numerical coefficients. Their values calculated
with our TV potential at E = 0.0001 MeV for the four choices of the cut-off are
reported in Table 7.8. As we can see the ~n~p spin rotation along the y-axis does

not receive any contribution from the LECs gθ1 and ∆
θ
. The main contribution

comes from the term of the potential proportional to gθ0 while the corrections of
the contact terms are ∼ 5% of the main contribution.
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ΛF [MeV] d0 d1 d2 d3 d4

414 −3.85569 0.00000 0.00000 0.25291 0.14987
450 −3.88891 0.00000 0.00000 0.25920 0.15438
500 −3.84718 0.00000 0.00000 0.25444 0.14262
600 −3.83276 0.00000 0.00000 0.23944 0.14688

Table 7.8: Values of the coefficients di in units of Rad m−1 for the ~np spin
rotations along the y-axis calculated for the four choices of cutoff ΛF at vanishing
neutron beam energy.

Using the estimates of the LECs given in Eqs. (5.46)-(5.47), we obtain the
following results:

dφy
dz

∣∣∣
ΛF=414

= (−5.98± 0.73) · 10−2 θRad m−1, (7.31)

dφy
dz

∣∣∣
ΛF=450

= (−6.02± 0.74) · 10−2 θRad m−1, (7.32)

dφy
dz

∣∣∣
ΛF=500

= (−5.96± 0.73) · 10−2 θRad m−1, (7.33)

dφy
dz

∣∣∣
ΛF=600

= (−5.94± 0.73) · 10−2 θRad m−1. (7.34)

The contributions that come from the contact terms is smaller than the error that
comes from the estimate of gθ0, for this reason we have neglected that correction.
This observable is calculated for a very low energy and so, as discussed for the
PV case, it depends only on the long range part of the potential which have a
small dependence on ΛF . For this reason the theoretical error due to the choice
of ΛF is much smaller than the error related to the estimate of gθ0.

A measurement of this observable could permit an estimate of the θ angle.
But the value of θ from the neutron EDMs is known to be . 10−10 [6] and so we
expect dφy/dz . 10−11, a value very difficult to be measured experimentally. Any
measurement finding a larger value of dφy/dz would be a signal of BSM physics.
However, this rotation is expected to be magnified for neutrons moving through
other materials, due to the presence of close resonances of different parities [12].
Experiments of this type are currently under study [59].
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Chapter 8

Conclusions

In this work we have derived theNN PV and TV potentials within the framework
of an EFT based on the chiral symmetry (χEFT), with only pions and nucleons
as degrees of freedom. The potentials are obtained as an expansion in terms of
a small momentum or the pion mass. In particular the PV potential has been
obtained at N3LO and the TV potential at NLO for the first time using the S-
matrix method. Then these potentials have been used to study the longitudinal
asymmetry Az in ~pp scattering, the ~np spin rotation, and the ~n~p spin rotation as
TV observable.

First of all, we have introduced the concept of χEFT as the low energy theory
of QCD, the underlying theory that describes the strong interaction. Then we
have considered a PV Lagrangian density which describes the PV weak interac-
tions among the nucleons, imposing the condition to have the same transformation
properties under the chiral group as the PV part of the weak interaction in the
Standard Model. Regarding the TV interactions between nucleons and pions we
have taken into account the so-called θ-term as the only possible source of TV in
the strong interactions sector within the SM (other possible TV terms have di-
mension 6 which however should be suppressed by a factor M−2

H , where MH ≥ 200
TeV is an energy scale where the BSM physics should start to manifest [5]). The
TV terms deriving from the θ-term can be included in the EFT using the external
source method introduced in Ref. [5]. Starting form these Lagrangian interaction
terms, we have studied the NN → NN transition amplitude using the field the-
oretic method and then, exploiting the Lippman-Schwinger equation, we have
defined the “effective” PV and TV nuclear potentials.

We have now considered the two nucleon system, in particular their scatter-
ing states. In order to study scattering observables we have discussed the general
formalism to solve the scattering problem between two particles. We have pre-
sented a numerical algorithm based on the Kohn variational principle for solving
the problem exactly. In the numerical program we have implemented the derived
PV potential with the aim of investigating the longitudinal asymmetry Az in ~pp

113
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scattering and the ~np spin rotation. The existence of only three experimental
data for the Az does not permit to fix the LECs of the potential but only to
determine a linear correlation between them. The absence of data for the ~np spin
rotation does not allow to have new information. As discussed, new measure-
ments of Az would hardly provide more information about the LECs due to the
similar energy dependence of the cofficients ai. Only the study of other observ-
ables in systems with A ≥ 3 could bring new information about the LECs: for
example the ~nd spin rotation, the ~n3He longitudinal asymmetry or the ~n4He spin
rotation. Calculation for these reactions are under way. Another future topic is
to develop the PV electromagnetic nucleon-photon interaction, in order to study
PV observables in ~np radiative capture or in other electromagnetic processes.

We have then implemented the TV potential in our two nucleon code and
we have studied the ~n~p spin rotation. Here the interest is to obtain information
on the 5 LECs entering the NN TV potential. From the theory it is possible
to relate these LECs to the θ angle. The very small value of the θ makes dif-
ficult the experimental measurement of this observable. However it represents
a demonstration that other nuclear observables, over the EDMs, can be used to
test the TV . Future goals will be the study of TV observables in medium-heavy
nuclei where TV effects can be magnified by the presence of particular resonant
states [12]. In this case clearly we need to implement our TV potential in nuclear
shell model codes which allows reliable calculations of the structure of heavy nu-
clei [60]. We plan also to extend our study to TV observables in radiative capture
and to compute with our potential the EDMs of light and heavy nuclei.



Appendix A

PV interactions terms

In this Appendix we will discuss the construction of the independent PV πN
interactions terms used in this Thesis. In the first part we will recall the transfor-
mation properties of the building blocks discussed in Chapter 2 under Hermitian
conjugation (H), parity (P ) and charge conjugation (C). Then we will present
some useful relation used to reduce the number of independent terms. In the last
Section we will build the terms we need.

A.1 Transformation properties of the various field

under P and C

We list the transformation properties under Hermitian conjugation (H), parity
(P ) and charge conjugation (C). For a generic combination O of fields, we have

O† = sH O ,

Oµ1 µ2 ...
P−→ sP σµ1 σµ2 · · ·Oµ1 µ2 ... , (A.1)

O
C−→ sC O

T ,

where sH , sP , and sC are ±1 phase factors, σµ is +1 when µ = 0 (time-like)
and –1 when µ = 1, 2, 3 (space-like), and no summation is implied here over the
repeated indices µi. The phase factors sH , sP , and sC in the case of bilinears
O = N ΓN , where Γ is one of the elements of the Clifford algebra, are listed in
Table A.1. When an operator also includes the Levi-Civita tensor εµνρσ as in

εµνρσOµνρσ, then εµνρσOµνρσ
P−→ −sP εµνρσOµνρσ since the Lorentz indices µ, ν, ρ,

and σ must be all different, and hence εµνρσ may be considered odd under parity.
In reference to combinations of pion fields, we have under parity

u
P−→ u† , uµ

P−→ −σµuµ ,
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1 i γ5 γµ γµγ5 σµν
sH + + + + +
sP + – + – +
sC + + – + –

Table A.1: Transformation properties of the elements of the Clifford algebra
under H, P and C.

and

Xa
L

P←→ Xa
R , χ

P−→ χ† ,

and under charge conjugation

u
C−→ uT , uµ

C−→ uTµ , (A.2)

X2
L

C−→ −(X2
R)T , X2

R
C−→ −(X2

L)T , (A.3)

X1,3
L

C−→ (X1,3
R )T , X1,3

R

C−→ (X1,3
L )T , (A.4)

χ
C−→ χT , (A.5)

because (τ2)T = −τ2. When considering terms involving O and the covariant
derivative Dµ, it is convenient to introduce the combinations

{Dµ , O} = DµO +ODµ , [Dµ , O] = DµO −ODµ , (A.6)

and determine how {Dµ , . . .} and [Dµ , . . .] transform under hermitian conjuga-
tion, P , and C independently of O. It is also usefull to introduce the combinations

Xa
± = Xa

L ±Xa
R , (A.7)

which transform in as simple way under C and P . The transfromation properties
of the blocks discussed in this section is listed in Table A.2.

uµ Γµ {Dµ , . . .} [Dµ , . . .] Xa
+ Xa

− χ+ χ−
sH + – – + + + + –
sP – + + + + – + –
sC + – – + (−)a+1 −(−)a+1 + +

Table A.2: Transformation properties of the building blocks used to build the
Lagrangian under H, P and C.
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A.2 Useful relations

We list some relations we will use in the next section to reduce the number of
PV tems. From the Lagrangian in Eqs. (2.62) and (2.63) we get the following
equation of motion (EOM)

iγµDµN =
(
M +

gA
2
γ5γ

µuµ + c1〈χ+〉+ · · ·
)
N, (A.8)

where the dots indicate terms either proportional to the pion field of order Q3 or
more or proportional to higher power of the pion field at least of order Q. This
notation will be used through all this Appendix. Other usefull relations are the
pion EOM,

[Dµ, u
µ] =

i

2
χ̂− +O(Q4) , (A.9)

and the identities,

[Dµ, Dν ] =
1

4
[uµ, uν ]−

i

2
F+
µν , (A.10)

[Dµ, uν ]− [Dν , uµ] = F−µν . (A.11)

Note that covariant derivatives of uµ can only appear in the symmetrized form

hµν = [Dµ, uν ] + [Dν , uµ] , (A.12)

and that further simplifications follow from the Cayley-Hamilton relation, valid
for any 2×2 matrices A and B,

AB +BA = A〈B〉+B〈A〉+ 〈AB〉 − 〈A〉〈B〉 , (A.13)

and from the traceless property of uµ and Xa
L/R. Care must be taken when

constructing combinations of terms like DµX
a
L/R, since they do not transform as

given in Eqs. (2.88) and (2.89), see discussion in [25]. There it is also shown that
it is convenient to work instead with the following quantities

(Xa
R)µ =

[
Dµ + iu†rµu , X

a
R

]
, (A.14)

(Xa
L)µ =

[
Dµ + iu `µu

† , Xa
L

]
. (A.15)

These, in turn, reduce to

(Xa
R)µ =

i

2
[uµ , X

a
R] , (Xa

L)µ = − i
2

[uµ , X
a
L] . (A.16)
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A.2.1 Properties of the γ matrices

The γµ matrices are in the standard form as given, for example, in Ref. [31]. They
satisfy the following identities:

σµν =
i

2
[γµ, γν ] , (A.17)

γ5σµν =
i

2
εµναβσαβ , (A.18)

i σµν = gµν − γµγν , (A.19)
1

2
{σµν , γα} = εµναβγ5γβ , (A.20)

1

2
[σµν , γα] = −i gµαγν + i gναγµ , (A.21)

σµνγα = εµναβγ5γβ − i gµαγν + i gναγµ , (A.22)

γασµν = εµναβγ5γβ + i gµαγν − i gναγµ . (A.23)

A.3 Independent interaction terms

The terms of order Q0 and of order Q are simply derived using the transformation
properties of the building blocks and are given in Eqs. (2.91) and (2.92). In this
Section we limit our discussion to the πN interaction term type of order Q2 and
Q3. Terms contributing to the vertices ππNN terms of order Q2 or higher are
not consider because they are not necessary to the present work. Also, we will
not consider terms that contain F µν

± . Moreover, the following power counting is
assumed

uµ ∼ Q , χ± ∼ Q2 . (A.24)

The covariant derivative Dµ is taken as of order Q, except when it acts on a
nucleon field, in which case it is of order Q0 due to the presence of the heavy
mass scale. We can also develop the building blocks in terms of pion fields (see
Appendix B)

χ+ ∼ π0 + π2 +O(π4) χ− ∼ π +O(π3) , (A.25)

Xa
+ ∼ π0 + π2 +O(π4) Xa

− ∼ π +O(π3) , (A.26)

uµ ∼ π +O(π3) . (A.27)

We will exclude from our discussions term like ∼ uµuν because they contain at
least terms quadratic in the pion field of order Q2. The (independent) isoscalar
(∆I=0), isovector (∆I=1), and isotensor (∆I=2) interaction terms are con-
structed in the next three subsections.
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A.3.1 The ∆I = 0 sector

1. Terms with χ±. These are already of order Q2, so at this order we can not
build new P -odd and C-odd terms. We have two ways to obtain terms of
order Q3: adding derivatives or multiply by uµ. The terms we can build are

N̄i{Dµ , χ+}γµγ5N ,

N̄i[Dµ , χ−]γµN ,

N̄i{uµ , χ+}γµN ,

N̄i[uµ , χ−]γµγ5N ,

(A.28)

The first, the second and the last combinations contain only quadratic with
terms in the pion field of at least order Q3 and so we can neglect them. The
third combination, using Eq. (2.65) and the fact that the traceless part of
χ+ is zero (if we consider only non isospin-violating terms) reduces to the
term proportional to h̃0

1 given in Eq. (2.94). Additional terms must involve
more derivatives and can be reduced via the EOM.

2. Terms with a single uµ plus one or more Dµ’s. With a single Dµ we can
form the combinations N̄{Dµ , uµ}N and N̄ [Dµ , uν ]σ

µνN . Using the EOM
up to order Q2—see Eq. (A.8)—the first expression can be reduced to a
combination of terms proportional to h0

V and h̃0
1 (Eq. (2.92) and (2.94))

(ignoring terms of order Q4 and that contains F µν
− ). The second expression

is seen to be identical to twice the sum of the terms proportional to h0
V

and h̃0
1. Terms with two or more Dµ’s can be reduced using the EOM. In

general, each iD/ψ gives a term Mψ plus terms of order Q proportional to
u/ and terms of order Q2 proportional to c1〈χ+〉. Terms with the nucleon
mass are found to be proportional to those without covariant derivatives,
which have already been accounted for, while terms with the additional uµ
are at least quadratic in the pion fields and thus neglected. Therefore, at
order Q3, no new (independent) terms with a single uµ and one or more
Dµ’s appear.

A.3.2 The ∆I = 1 sector

1. Terms with χ±. We can combine these quantities with X3
± to form the

following P -odd and C-odd combinations

N̄{χ+ , X
3
−}N , N̄ [χ− , X

3
+]N . (A.29)
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As per the isospin structure, for each of these terms one needs to consider
the following possibilities:

N̄tAtt′Bt′t′′Nt′′ , N̄tAtt′Bt′′t′′Nt′ , N̄tAt′t′Btt′′Nt′′ ,

N̄tAt′t′′Bt′′t′Nt , N̄tAt′t′Bt′′t′′Nt ,

where A and B denote schematically the various pairs of isospin matrices
corresponding to χ+X

3
− (or X3

−χ+) and so on. Obviously, if both A and
B are traceless, only the first and the fourth are non vanishing. Recall
that 〈uµ〉 = 〈Xa

±〉 = 〈χ−〉 = 0. The other quantities (χ+ and Dµ) are

conveniently written as A = Â + 〈A〉 I/2 with Â traceless. A number of
manipulations allow one to express the terms in Eq. (A.29) as the combi-
nations of terms proportional to h1

1 and h1
3 in Eq. (2.93) plus other terms

that we can safely neglect. We can also add a term uµ which give the
combination

N̄{X3
+ , uµ}γµN〈χ+〉, (A.30)

all the other possible combinations of these three elements can be reduced to
this one. Combinations of χ± with one or more Dα’s (in the form {Dα , . . .}
or [Dα , . . .]) can be eliminated using the EOM.

2. Terms with a single uµ and one or more Dµ’s. First consider terms with
the anticommutator of the type N̄{Dµ, {X3

±, uν}} . . . N , which involve a Dµ

acting on the nucleon fields N̄ or N . These terms can always be reduced via
the EOM to one of the terms of order Q proportional to h1

V or h1
A given in

Eq. (2.92) plus a term ∼ uµuν , which we neglect. Next, we consider terms
with the commutator of type [Dµ, X

3
L/R] or [Dµ, uν ]. As discussed above,

combinations of Dµ with Xa
L/R must be included via (Xa

L/R)µ defined in

Eqs. (A.14)–(A.15). However, by using the identities (A.16), combinations
with a single uµ and a (Xa

R/L)ν reduce to terms ∝ uµuνX
a
R/L discarded here.

Turning our attention to terms including a commutator [Dµ, uν ], we note
that, since [Dµ, uν ] − [Dν , uµ] = F−µν , we only need to consider operators
involving hµν , as defined in Eq. (A.12), which is odd under P and even
under C. In combination with X3

± we can form the 4 operators listed
in Table A.3, along with their transformation properties under P and C.
Note that hµν is of order O(Q2). Since hµν = hνµ, without any additional
covariant derivatives we can construct the terms:

N̄i[hµν , X
3
+]gµνN , N̄{hµν , X3

−}gµνγ5N . (A.31)

However, using the pion EOM in Eq. (A.9), these terms are the same,
up to additional terms of order O(Q4), as those constructed with χ− (see
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{hµν , X3
+} i[hµν , X

3
+] {hµν , X3

−} i[hµν , X
3
−]

sH + + + +
sP – – + +
sC + – – +

Table A.3: Transformation properties under hermitian conjugation (H), parity
(P), and charge conjugation (C) of quantities constructed in terms of hµν .

point 1 above). Operators with hµν and an additional covariant derivative
enter only in combinations with {Dµ, . . .} or [Dµ, . . .]. These combinations
give the terms proportional to h1

12 plus other we neglect. Terms with more
derivatives can be reduced via the EOM to terms already taken into account.

A.3.3 The ∆I = 2 sector

1. Terms with χ±. We can form the following P -odd and C-odd combinations

IabN̄
(
Xa
Rχ+X

b
R −Xa

Lχ+X
b
L

)
N ,

IabN̄
(
Xa
Rχ−X

b
R −Xa

Lχ−X
b
L

)
iγ5N .

(A.32)

The second combination is of order Q3 but developing it in term of the pion
field it doesn’t give any term linear in the pion field. The remaning term
contains only terms quadratic in the pion field. We can add uµ in order to
reach the order Q3; the only indipendent term that gives contribution is

IabN̄
(
Xa
RuµX

b
R −Xa

LuµX
b
L

)
N〈χ+〉 (A.33)

As for the ∆I = 1 case, combinations of χ± with one or more operators Dα

(in the form {Dα, . . .} and [Dα, . . .]) can be eliminated using the EOM.

2. Terms with a single uµ and one or more Dµ’s. First, we consider combina-
tions with the anticommutator like N̄ Iab{Dµ, X

a
RuνX

b
R± (L −→ R)} · · ·N ,

namely with Dµ acting on the nucleon fields N̄ or N . Using the EOM, these
can always be reduced to one of the order Q terms given in Eq. (2.92), terms
involving uµuν which we don’t consider, and terms with the commutator of
Dµ, as shown below. For example, for

Oν = Iab(Xa
RuνX

b
R +Xa

LuνX
b
L) , (A.34)

Oν = Iab(Xa
RuνX

b
R −Xa

LuνX
b
L) , (A.35)
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we have, respectively

N̄{Dµ , Oν}gµνN

= −2iMO
(2)
2V + N̄

[
Dµ , Oν

]
iσµνN

+(terms with uµ, uν) ,

N̄{Dµ , Oν}εµναβσαβN

= 4iMO
(2)
2A − 2N̄

[
Dµ , O

µ
]
N

+(terms with uµ, uν) ,

where the operators O
(2)
2V and O

(2)
2A are the terms proportional to h2

V and h2
A

given in Eqs. (2.92).

Next, we consider the terms with the commutator of type [Dµ, X
3
L/R]. As

discussed previously, combinations of Dµ with Xa
L/R must be included via

(Xa
L/R)µ. However, by using the identities (A.14) and (A.15), terms with a

single uµ and a (Xa
R/L)ν are ∝ uµuνX

a
R/L, and therefore neglected. Turning

our attention to terms including a commutator [Dµ, uν ], we note that, since
[Dµ, u

µ] = (i/2)χ̂− + O(Q4) and [Dµ, uν ] − [Dν , uµ] = F−µν ,. we need only
consider operators involving hµν . We can form two combinations:

N̄ Iab
(
Xa
RhµνX

b
R +Xa

LhµνX
b
L

)
σµνN , (A.36)

N̄ Iab
(
Xa
RhµνX

b
R −Xa

LhµνX
b
L

)
gµνiγ5N , (A.37)

which both can be disregarded. Combinations with additional Dα’s don’t
give contributions.

A.4 Contact terms

The contact terms are products of a pair of bilinears of nucleon fields, which are
odd under P and even under CP . We must build isoscalar, isovector and isotensor
terms as discussed in Section 2.5. The operators moreover have to conserve the
electric charge, so namely they must commute with the third component of the
isospin operator. The most general bilinear product reads

Õk
AB =

4∑
i,j=0

F k
ij(N τiΓAN) (N τjΓB N) , (A.38)

where ΓA and ΓB are elements of the Clifford’s algebra with the possible addition
of 4-gradients. There are 6 possible choice for the coefficents F k

ij, as discussed in
Table A.4. In Ref. [58], 58 operators that can contribute to order Q are listed.
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k F k
ij Operatore NN C

1 δi,0δj,0 1 +
2 δi,j − δi,0δj,0 τ1 · τ2 +
3 δi,3δj,0 + δi,0δj,3 τ1z + τ2z +
4 δi,3δj,0 − δi,0δj,3 τ1z − τ2z +
5 δi,1δj,1 + δi,2δj,2 − 2δi,3δj,3 τ1 · τ2 − 3τ1zτ2z +
6 i [δi,1δj,2 − δi,2δj,1] i [τ1 × τ2]z −

Table A.4: Possible combinations for the coefficents F k
ij. In the third coloumn the

corresponding operator which would contribute to the NN potential. In the last
coloumn their transformation properties under charge conjugation is reported.

Analyzing the NR limit and the respective vertex functions it is possible using
the Fierz transformations for the Pauli’s matrices:

(1)s′1,s1(1)s′2,s2 =
1

2
(1)s′2,s1(1)s′1,s2 +

1

2
(σ)s′2,s1 · (σ)s′1,s2 ,

(σ)s′1,s1 · (σ)s′2,s2 =
3

2
(1)s′2,s1(1)s′1,s2 −

1

2
(σ)s′2,s1 · (σ)s′1,s2 ,

(σa)s′1,s1(1)s′2,s2 =
1

2
(σa)s′2,s1(1)s′1,s2 +

1

2
(1)s′2,s1(σa)s′1,s2

+
i

2
εabc(σb)s′2,s1(σc)s′1,s2 , (A.39)

(1)s′1,s1(σa)s′2,s2 =
1

2
(σa)s′2,s1(1)s′1,s2 +

1

2
(1)s′2,s1(σa)s′1,s2

− i
2
εabc(σb)s′2,s1(σc)s′1,s2 ,

(σa)s′1,s1(σb)s′2,s2 =
1

2
δab(1)s′2,s1(1)s′1,s2 −

i

2
εabc

[
(σc)s′2,s1(1)s′1,s2 − (1)s′2,s1(σc)s′1,s2

]
+

1

2
(δacδbd − δabδdc + δadδbc)(σc)s′2,s1(σd)s′1,s2 ,

to reduce to 5 the number of indipendent contact terms at order Q. So the most
general vertex function is the following (alredy reported in NR limit):

PVM00
α′1α1α′2α2

=
1

2Λ2
χfπ

[
C1(σ1 × σ2) · k

+ C2 ~τ1 · ~τ2 (σ1 × σ2) · k
+ C3 (~τ1 × ~τ2)z (σ1 + σ2) · k
+ C4 (τ1z + τ2z) (σ1 × σ2) · k

+ C5 Iab τ1a τ2b (σ1 × σ2) · k
]
, (A.40)
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where Λχ = 4πfπ. We have chosen a definition of the LECs Ci, i = 1, . . . , 5 in
such a way they are adimensional.



Appendix B

Development in terms of pion
fields

In this section we report the expansion of the building blocks u, uµ, Γµ and Xa
L/R,

Xa
± and of the various Lagrangian vertices in term of pion fields. Remembering

Eq. (2.28) we have:

u −→ 1 +
i

2fπ
~τ · ~π − 1

8f 2
π

π2 +
i(8α− 1)

16f 3
π

π2 ~τ · ~π +O(π4), (B.1)

uµ −→ − 1

fπ
~τ · ∂µ~π +O(π3), (B.2)

Γµ −→
1

4f 2
π

(~τ × ~π) · ∂µ~π, (B.3)

Xa
R −→ τa − 1

fπ
(~π × ~τ)a +

1

2f 2
π

πa(~π · ~τ − τaπ2) +O(π3), (B.4)

Xa
L −→ τa +

1

fπ
(~π × ~τ)a +

1

2f 2
π

πa(~π · ~τ − τaπ2) +O(π3), (B.5)

Xa
− −→

2

fπ
(~π × ~τ)a +O(π3), (B.6)

Xa
+ −→ 2τa +

1

f 2
π

πa(~π · ~τ − τaπ2) +O(π4). (B.7)

For χ± we report the complete expansion in the pion field considering

χ = 2B(s0 + s3τ3 + ip0 + ip3τ3), (B.8)

explicitly,

χ+ = 2B
[
s0

(
2− π2

f 2
π

)
+

2p0

fπ
(~τ · ~π)

(
1− απ2

f 2
π

)
+s3

(
2τ3 −

π3(~τ · ~π)

f 2
π

)
+

2p3

fπ
τ3

(
1− απ2

f 2
π

)]
+O(π4) (B.9)
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χ− = 4iB
[
− s0

fπ
(~τ · ~π)

(
1− απ2

f 2
π

)
+ p0

(
1− π2

2f 2
π

)
− s3

fπ
π3

(
1− απ2

f 2
π

)
+ p3

(
τ3 −

π3(~τ · ~π)

2f 2
π

)]
+O(π4) , (B.10)

(B.11)

where α represents the arbitrariness in the choice of the U(x) field, following
the definition given in Eq. (2.28). Let’s remember that in the study of the PV
interaction we have s3 = p0 = p3 = 0 and that 2Bs0 ' m2

π. In the next two
subsections we will report the Lagrangian vertices expanded in terms of the pion
field we need to build the PV potential. The TV terms will be reported in
Section 5.3.

B.0.1 PC Lagrangian in pion fields

Taking into account only the interactions terms and substituting the building
blocks in Eqs. (2.62)–(2.64) we obtain

L(1)
πN = − gA

2fπ
N(~τ · ∂µ~π)γµγ5N + . . . , (B.12)

L(3)
πN =

d16

2fπ
N(~τ · ∂µ~π)γµγ5N

+
d18m

2
π

fπ
N(~τ · ∂µ~π)γµγ5N + . . . , (B.13)

L(1)
ππN =

i

4f 2
π

N(∂µ~π) · (~τ × ~π)γµN + . . . , (B.14)

L(2)
ππN = −c1

2m2
π

f 2
π

Nπ2N +
c2

f 2
π

N(∂0~π∂0~π)N

+
c3

f 2
π

N(∂µ~π∂
µ~π)N

− c4

2f 2
π

N~τ · (∂µ~τ × ∂ν~τ)σµνN + . . . . (B.15)

(B.16)

B.0.2 PV Lagrangian in pion fields

Performing the substitution in Eqs. (2.91)–(2.95) we get

LPV (0)
πN =

h1
π√
2
N(~π × ~τ)3N + . . . , (B.17)

LPV (1)
πN = − h

0
V

2fπ
N(~τ · ∂µ~π)γµN − h2

V

fπ
N(∂µπ3)γµN
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+
2h2

V

3fπ
IabNτa(∂µπb)γµN + . . . (B.18)

LPV (2)
πN = −8h1

2

f 2
π

N(~π × ~τ)3N −
8h1

2

f 2
π

N(~π × ~τ)3N

+
16h1

12

f 2
πM

N(~τ × (∂µ∂ν~π))3γ
µ∂νN + . . . , (B.19)

LPV (3)
πN = +

4m2
πh̃

0
1

f 3
π

N(~τ · ∂µ~π)γµN +
8m2

πh̃
1
1

f 3
π

N(∂µπ3)γµN

−16m2
πh̃

2
1

3f 3
π

IabNτa(∂µπb)γµN + . . . (B.20)

LPV (1)
ππN =

h1
A

f 2
π

N(~π × ∂µ~π)3γ
µγ5N

− h2
A

3f 2
π

IabN(~π × ∂µ~π)aτbγ
µN + . . . (B.21)

LPV (2)
3π = −16h2

3π

fpi
Iab(∂µπ)b(~π × ∂µ~π)a + . . . , (B.22)

where in the last expression the three pions exchange term proportional to h1
3π

vanishes.
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Appendix C

Interaction vertices

In this Appendix we will report the explicit forms of the vertex functions. When
we substitute the explicit expression of the nucleons and pions fields as given
in Eqs. (3.24)–(3.33), in the various Hamiltonian terms reported in Eqs. (3.18)–
(3.19), the creation and annihilation operators are usually not normal ordered.
Therefore, after normal ordering them, tadpole type contributions result, which
can be relevant when discussing renormalization. In this chapter we only display
the vertex functions used in Chapter 4 and 5 for the derivation of the potentials.

C.1 Bilinears

The vertex functions involve the bilinears

u(p′, s′)√
2Ep′

Γ
u(p, s)√

2Ep
= χ†s′B(Γ)α′αχs , (C.1)

where Γ denotes generically an element of the Clifford algebra and χs, χs′ are spin
states. These bilinears are expanded non-relativistically in powers of momenta,
and terms up to order Q3 are included. We obtain (subscripts are suppressed for
brevity):

B(1) = 1− F (2)(1)

4M2
, (C.2)

B(iγ5) = −iσ · k
2M

+
F (3)(γ5)

16M3
, (C.3)

B(γ0) = 1 +
F (2)(γ0)

4M2
, (C.4)

B(γ) =
2K − ik × σ

2M
− G

(3)(γ)

16M3
, (C.5)

B(γ0γ5) =
K · σ
M

− F (3)(γ0γ5)

8M3
, (C.6)
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B(γγ5) = σ +
G(2)(γγ5)

4M2
, (C.7)

B(σ0i) = −ik + 2K × σ
2M

+
G(3)(σ0i)

16M3
, (C.8)

B(σij) = εijl

[
σl −

G
(2)
l (σij)

4M2

]
, (C.9)

where F (n)(Γ) and G(n)(Γ) are, respectively, scalar and vector quantities of order
Qn, explicitly given by

F (2)(1) = 2K2 + i(k ×K) · σ , (C.10)

F (3)(γ5) = i
[
σ · k (4K2 + k2)

×+ 4σ ·Kk ·K
]
, (C.11)

F (2)(γ0) = −k2/2 + i(k ×K) · σ , (C.12)

G(3)(γ) = (2K − ik × σ)
(
4K2 + k2

)
+2 (k − 2iK × σ) K · k , (C.13)

F (3)(γ0γ5) = k · σ k ·K +K · σ(4K2 + k2) , (C.14)

G(2)(γγ5) = 2 (K · σ) K − (k · σ) k/2

−2K2σ − ik ×K , (C.15)

G(3)(σ0i) = (ik + 2K × σ)
(
4K2 + k2

)
+2 (2iK + k × σ) K · k , (C.16)

G(2)(σij) = 2 (K · σ)K − (k · σ)k/2 + σ k2/2

−ik ×K , (C.17)

with the momenta K = (p′ + p)/2 and k = p′ − p. We also expand K0 and
KµK

µ as

K0 =
E + E ′

2
→M

(
1 +

2K2 + k2/2

4M2

)
, (C.18)

KµK
µ = (K0)2 −K2 →M2

(
1 +

k2

4M2

)
. (C.19)

Note that in the power counting of these vertices below, we do not include the
1/
√
ωk normalization factors present in the pion fields.

C.2 PC vertex functions

The LO PC interaction term (of order Q) in Eq. (B.12) contains the following
vertex functions:

PCM01
α′α,q a = −i gA

2fπ

ξ†t′τaξt√
2ωk

uα′√
2E ′

q/ γ5 uα√
2E

, (C.20)
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PCM10
α′α,q a = +i

gA
2fπ

ξ†t′τaξt√
2ωk

uα′√
2E ′

q/ γ5 uα√
2E

, (C.21)

where uα ≡ u(p, s), etc., and ξt, ξt′ are isospin states. The non-relativistic (NR)
expansion of these amplitudes is needed up to order Q3. Other PC πNN vertices
follow from the interactions terms in L(3)

πN given in Eq. (B.13) proportional to the
LEC’s d16 and d18. The NR expansion is needed up to order Q2. No one pion
exchange vertex functions come from L(4)

πN . Thus, up to order Q4 we find (spin-
isospin states are suppressed for brevity):

PCMπNN,01
α′α,q a =

gA
2fπ

τa√
2ωq

[
i q · σ − i

M
ωq K · σ +

i

4M2

(
2K · q K · σ

−2K2 q · σ − 1

2
k · σ q · k

)
− ωq

8M3

(
k · σ k ·K

+K · σ (4K2 + k2)
)]

+
m2
π

fπ
(2d16 − d18)

τa√
2ωq

[
iq · σ − i

M
ωq K · σ

]
, (C.22)

PCMπNN,10
α′α,q a = −PCMπNN,01

α′α,q a . (C.23)

The PC ππNN interaction is due to the Weinberg-Tomozawa term in Eq.
(B.14) where terms up to NLO are needed. At NLO also terms proportional to
c1, c2, c3 and c4 from Eq. (B.15) where the NR expansion is needed up to order
Q. The corresponding vertex functions read

PCMππNN,02
α′α,q′a′ q a =

i

8f 2
π

εaa′bτb√
2ωq
√

2ωq′

[
(ωq − ωq′)

−2K · (q − q′)− i(k × σ) · (q − q′)
2M

]
+

δaa′

f 2
π

√
2ωq

√
2ωq′

[
2c1m

2
π + (c2 + c3)ωqωq′ − c3q · q′

]
− c4

2f 2
π

εaa′bτb√
2ωq
√

2ωq′
(q × q′) · σ , (C.24)

PCMππNN,11
α′α,q′a′ q a =

i

4f 2
π

εaa′bτb√
2ωq
√

2ωq′

[
(ωq + ωq′)

−2K · (q + q′)− i(k × σ) · (q + q′)

2M

]
+

2δaa′

f 2
π

√
2ωq

√
2ωq′

[
2c1m

2
π − (c2 + c3)ωqωq′ + c3q · q′

]
+
c4

f 2
π

εaa′bτb√
2ωq
√

2ωq′
(q × q′) · σ , (C.25)
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PCMππNN,20
α′α,q′a′ q a =

i

8f 2
π

εaa′bτb√
2ωq
√

2ωq′

[
(ωq′ − ωq)

−2K · (q′ − q)− i(k × σ) · (q′ − q)

2M

]
+

δaa′

f 2
π

√
2ωq

√
2ωq′

[
2c1m

2
π + (c2 + c3)ωqωq′ − c3q · q′

]
− c4

2f 2
π

εaa′bτb√
2ωq
√

2ωq′
(q × q′) · σ . (C.26)

From the Lagrangian Eq. (2.66) we have also the contact terms

PCM00
α′1α

′
2,α1α2

=
1

2
[CS + CTσ1 · σ2] . (C.27)

C.3 PV vertex functions

The PV πNN vertices are due to interaction terms proportional to the LEC’s
h1
π in Eq. (B.17), h0

V , h1
V and h2

V in Eq. (B.18), h1
2, h1

3, and h1
12 in Eq. (B.19), h̃0

1,
h̃1

1 and h̃2
1 in Eq. (B.20). Up to order Q3 we have

PVMπNN,01
α′α,q a = − h

1
π√
2

ε3abτb√
2ωq

[
1− 2K2 + i(k ×K) · σ

4M2

]
− i

fπ

(h0
V

2
τa + h1

V δa,3 +
2

3
h2
V Iab τb

)
× 1√

2ωq

[
ωq

(
1 +
−k2/2 + i(k ×K) · σ

4M2

)
− q ·K

M

]
+

8

f 2
π

ε3abτb√
2ωq

[
(h1

2 − h1
3)m2

π − 2h1
12 ω

2
q

]
+

16

f 2
π

ε3abτb√
2ωq

ωq

(
2(q ·K)− q · k

2

)
+

i

f 3
π

(
h̃0

1τa + 2h̃1
1 δa,3

+
4

3
h̃2

1 Iab τb
)4m2

πωq√
2ωq

, (C.28)

PVMπNN,10
α′α,q a = − h

1
π√
2

ε3abτb√
2ωq

[
1− 2K2 + i(k ×K) · σ

4M2

]
+
i

fπ

(h0
V

2
τa + h1

V δa,3 +
2

3
h2
V Iab τb

)
× 1√

2ωq

[
ωq

(
1 +
−k2/2 + i(k ×K) · σ

4M2

)
− q ·K

M

]
+

8

f 2
π

ε3abτb√
2ωq

[
(h1

2 − h1
3)m2

π − 2h1
12 ω

2
k

]
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+
16

f 2
π

ε3abτb√
2ωq

ωq

(
2(q ·K)− q · k

2

)
− i

f 3
π

(
h̃0

1τa + 2h̃1
1 δa,3

+
4

3
h̃2

1 Iab τb
)4m2

πωq√
2ωq

. (C.29)

The PV ππNN vertices follow from the interaction terms proportional to h1
A and

h2
A in Eq. (B.21), and are given by

PVMππNN,02
α′α,q′a′ q a =

i

2f 2
π

1√
2ωq
√

2ωq′

[
−h1

A ε3aa′(q − q′) · σ

−1

3
h2
A εaa′b I

b τb (q − q′) · σ

+
1

3
h2
A εaa′b τb (Ia q − Ia′ q′) · σ

]
, (C.30)

PVMππNN,11
α′α,q′a′ q a =

i

f 2
π

1√
2ωq
√

2ωq′

[
−h1

A ε3aa′(q + q′) · σ

−1

3
h2
A εaa′b I

b τb (q + q′) · σ

+
1

3
h2
A εaa′b τb (Ia q + Ia

′
q′) · σ

]
, (C.31)

PVMππNN,20
α′α,q′a′ q a =

i

2f 2
π

1√
2ωq
√

2ωq′

[
−h1

A ε3aa′ (q′ − q) · σ

−1

3
h2
A εaa′b I

bτb (q′ − q) · σ

+
1

3
h2
A εaa′b τb (Ia

′
q′ − Ia q) · σ

]
, (C.32)

where the factor Ia has been defined as Ia = (−1,−1, 2).

The contact vertex function is given in Appendix A.4.

C.4 TV vertex functions

The TV πNN vertices up to order Q2 coming from interactions terms propor-
tional gθ0 and gθ1 read

TVMπNN,01
α′α,q a =

gθ0τa + gθ1δa,3

fπ
√

2ωq
, (C.33)

TVMπNN,01
α′α,q a = TVMπNN,10

α′α,q a . (C.34)

The other vertex functions come from the 3π Lagrangian term proportional
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to ∆θ and read

TVM3π,03
pb q′a′ q a =

∆θ

fπ

1√
8ωqωq′ωp

[δa,a′δb,3 + δa,bδa′,3 + δb,a′δa,3
3

]
, (C.35)

TVM3π,12
pb q′a′ q a =

∆θ

fπ

1√
8ωqωq′ωp

[
δa,a′δb,3 + δa,bδa′,3 + δb,a′δa,3

]
, (C.36)

TVM3π,21
pb q′a′ q a =

∆θ

fπ

1√
8ωqωq′ωp

[
δa,a′δb,3 + δa,bδa′,3 + δb,a′δa,3

]
, (C.37)

TVM3π,30
pb q′a′ q a =

∆θ

fπ

1√
8ωqωq′ωp

[δa,a′δb,3 + δa,bδa′,3 + δb,a′δa,3
3

]
. (C.38)

From the contact terms we obtain the following vertex function

TVM00
α′1α1α′2α2

=
C1

θ

2Λ2
χfπ

i(σ1 − σ2) · k +
C2

θ

2Λ2
χfπ

(~τ1 · ~τ2)i(σ1 − σ2) · k (C.39)



Appendix D

Regularization

In this Appendix we will discuss the method used to regularize the integrals that
come from the loops. We will use the dimensional regularization (DR) method
to control the logarithmic divergences. In case of the linear divergences we will
compare the result of DR with the use of a cut-off.

D.1 Useful relations

We will make use of the following identity (the “Feynman trick”)

1

AB
=

∫ 1

0

dy
1

[yA+ (1− y)B]2
, (D.1)

furthermore in order to simplify some energy factors we will use the following
reppresentations [61]:

1

ω+ + ω−
=

2

π

∫ ∞
0

dβ
β2

(ω2
+ + β2)(ω2

− + β2)
, (D.2)

1

ω+ ω− (ω+ + ω−)
=

2

π

∫ ∞
0

dβ
1

(ω2
+ + β2)(ω2

− + β2)
. (D.3)

When we use the DR, it is better to “rescale” all the dimensional quantities
with an energy scale µ. Therefore we define q = q̃µ, m = m̃µ, etc., where the
“tilde” quantities are adimensional. We can now perform the integrations in d
dimension ∫

d3q̃

(2π)3
→
∫

ddq̃

(2π)d
≡
∫
q̃

, (D.4)
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and then use the following integrals:∫
q̃

1(
(q̃)2 + A

)α =
1

(4π)d/2
Γ(α− d/2)

Γ(α)
A−(α−d/2) , (D.5)

∫
q̃

(q̃)2(
(q̃)2 + A

)α =
1

(4π)d/2
d

2

Γ(α− d/2− 1)

Γ(α)
A−(α−d/2−1) , (D.6)

∫
q̃

(q̃)4(
(q̃)2 + A

)α =
1

(4π)d/2
d (d+ 2)

4

Γ(α− d/2− 2)

Γ(α)
A−(α−d/2−2) , (D.7)

where Γ(z) is defined by z Γ(z) = Γ(z + 1), with the following trend for z → 0

Γ(z) =
1

z
− γ +

(
γ2

2
+
π2

12

)
z + O(z2) , (D.8)

and γ ≈ 0.5772 is the Euler-Mascheroni constant.
Lastly we will need the following integrals∫ 1

−1

dx ln(a+ x) = −2 + ln
a+ 1

a− 1
+ ln(a2 − 1), (D.9)∫ 1

−1

dx x2ln(a+ x) =
1

9

[
−2− 6a2 + 3a3ln

a+ 1

a− 1
+ 3ln(a2 − 1),

]
(D.10)∫ 1

−1

dx
1√

a− x2
= 2 arctan

( 1√
a− 1

)
, (D.11)∫ 1

−1

dx
√
a− x2 =

√
a− 1 + a arctan

( 1√
a− 1

)
, (D.12)∫ 1

−1

dx
x2

√
a− x2

= −
√
a− 1 + a arctan

( 1√
a− 1

)
. (D.13)

We also define the following quantities:

L(k) =
1

2

s

k
ln
s+ k

s− k
, H(k) =

m2
π

s2
L(k) , A(k) =

1

2k
arctan

( k

2m2
π

)
,

(D.14)
where s =

√
4m2

π + k2.

D.2 Integrals with logarithmic divergences

In Eqs. (4.24) and (4.37) all the integrals have the following function to integrate

f(ω+, ω−) ≡
ω2

+ + ω+ ω− + ω2
−

ω3
+ ω

3
−(ω+ + ω−)

= −1

2

d

dm2
π

1

ω+ ω− (ω+ + ω−)
, (D.15)
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so we need to consider the following integral

I(0)(k) =

∫
d3q

(2π)3

1

ω+ ω− (ω+ + ω−)
, (D.16)

and then we take the derivative of the result respect to m2
π. Using the transfor-

mation q → q̃µ and then going to d dimension we have

I(0)(k) → 2

π

∫
ddq̃

(2π)d

∫ ∞
0

dβ
1(

(ω̃+)2 + β2
)(

(ω̃−)2 + β2
) , (D.17)

where ω̃± =
√

(q̃ ± k̃)2 + 4 (m̃π)2. Using the “Feynman trick” (D.1) with A =

(ω̃+)2 + β2 e B = (ω̃−)2 + β2, we obtain

I(0)(k) =
2

π

∫
q̃

∫ 1

0

dy

∫ ∞
0

dβ

[[
q̃ + (2 y − 1) k̃

]2

+ 4 [(m̃π)2 − y (y − 1) k2] + β2

]−2

=
1

2

∫
q̃

∫ 1

0

dy
[
(q̃)2 + 4 [(m̃)2 − y (y − 1) (k̃)2]

]−3/2

, (D.18)

where in the second line we have changed the integration variable q̃ → q̃+ (2 y−
1) k̃. Exploiting Eq. (D.5) with α = 3/2, and A = 4

[
(m̃π)2 − y (y − 1) (k̃)2

]
, and

using the following asymptotic behaviors for ε+ → 0

Γ
( ε

2

)
=

2

ε
− γ + O(ε) , (D.19)(

A

4 π

)−ε/2
= 1− ε

2
ln

A

4π
+ O(ε2) , (D.20)

we obtain, neglecting O(ε) terms,

I(0)(k) =
1

8π2

(
ln π +

2

ε
− γ
)
− 1

8 π2

∫ 1

0

dy ln
[
(m̃π)2 − y (y − 1) (k̃)2

]
. (D.21)

At the end, setting y → (x+ 1)/2 and using the integral in Eq. (D.9), we obtain

I(0)(k) = − 1

8 π2

(
s

k
ln
s+ k

s− k
− 2

ε
+ γ − ln π + ln

m2
π

µ2
− 2

)
. (D.22)

where we have expressed the results in terms of the dimensional quantities. In
the following, we define

dε =
2

ε
− γ + ln π − ln

m2
π

µ2
, (D.23)
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which contains the diergent part, so

I(0)(k) = − 1

4π2

(
L(k)− dε + 2

)
. (D.24)

In the same way we calculate the integrals

I(2)(k) =

∫
q

q2

ω+ ω− (ω+ + ω−)
, (D.25)

I
(2)
ij (k) =

∫
q

qi qj
ω+ ω− (ω+ + ω−)

, (D.26)

obtaining

I(2)(k) =
1

24π2

[
4S2L(k) + 2 k2

(
−dε −

5

3

)
+ 18m2

π

(
−dε −

11

9

)]
,(D.27)

I
(2)
ij (k) =

1

24π2
δij

[
2s2L(k) + k2 (−dε − 2) + 6m2

π

(
−dε −

5

3

)]

− 1

24π2

kikj
k2

[
2s2L(k) + k2

(
−dε −

8

3

)
− 8m2

π

]
. (D.28)

Performing the derivative we obtain the integral of the integrals containing the
quantity f in Eq. (D.15):

J (0)(k) =

∫
q

f(ω+, ω−) =
1

4 π2

H(k)

m2
π

, (D.29)

J (2)(k) =

∫
q

q2f(ω+, ω−) = − 1

8 π2

[
4L(k) + 3

(
−dε −

2

3

)]
, (D.30)

J
(2)
ij (k) =

∫
q

qiqjf(ω+, ω−) = − 1

8π2
δij

[
2L(k) +

(
−dε −

4

3

)]
+

1

8 π2

kikj
k2

(2L(k)− 2) . (D.31)

D.3 Integrals with linear divergences

From Sections 4.3.3 and 4.3.4, it results that we need to calculate the integrals
that contains the following function

g(ω+, ω−) =
1

ω2
+ ω

2
−
. (D.32)

Let us start, for example, with the integral

K(0)(k) =

∫
d3q

(2π)3

1

ω2
+ ω

2
−

(D.33)
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using the formula in Eq. (D.1) we get

K(0)(k) =

∫
q

∫ 1

0

dy
1

(y ω2
+ + (1− y)ω2

−)

(D.34)

where we don’t need to go in d dimensions and using the tilde quantities since the
integral does not have divergences. Thus we get, changing q → q + (2 y − 1)k,

K(0)(k) =

∫
q

∫ 1

0

dy
1

(q2 + A)2

=
1

8π

∫ 1

0

dy
1√

4(m2
π − y (y − 1)k2)

, (D.35)

where A = 4 [(m)2 − y (y − 1) (k)2] and in the last step we use Eq. (D.5) with
d = 3. Then performing the transformation y → (x+ 1)/2, we obtain

K(0)(k) =
1

8π k
arctan

( k

2m2
π

)
, (D.36)

and recalling the definition of the function A(k) given in Eq. (D.14), and so we
can rewrite this result as

K(0)(k) =
1

4π
A(k) . (D.37)

Let us now consider the integrals

K(2)(k) =

∫
d3q

(2π)3

q2

ω2
+ ω

2
−

(D.38)

K
(2)
ij (k) =

∫
d3q

(2π)3

qi qj
ω2

+ ω
2
−
. (D.39)

In these cases the integrals are divergent for q →∞. Using however DR as before,
we obtain

K(2)(k) = −s
2A(k)

4π
− mπ

2π
(D.40)

K
(2)
ij (k) =

(
− s2A(k)

8π
− mπ

8π

)
δij +

(s2A(k)

8π
− mπ

8π

)ki kj
k2

, (D.41)

which do not contain any divergent factor dε. In fact the DR does not match
the linear divergences. In order to clarify what is happening, let us evaluate
these integrals using a simple cut off. For example, the integral K

(2)
ij is given
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in Eq. (D.39), using the Feynman trick and performing the change of variable
q → q + (2 y − 1)k, becomes

K
(2)
ij (k) =

∫
q

∫ 1

0

dy
qiqj + (2y − 1) kikj

(q2 + A)2
. (D.42)

Only the integration over q = |q| is divergent so we can write,

K
(2)
ij (k) =

∫
q

∫ 1

0

dy
qiqj

(q2 + A)2
−→ δij

6π

∫ 1

0

dy

∫ Λ

0

dq
q4

(q2 + A)2
, (D.43)

which gives

K
(2)
ij (k) =

δij
6π

∫ 1

0

dy
( AΛ

2(A+ Λ)2
− 3

2

√
A arctan

( Λ√
A

)
+ Λ

)
. (D.44)

Then developing the terms with Λ in Laurent series Λ/A� 1 we obtain

K
(2)
ij (k) =

δij
6π

[
Λ− 3

4
π

∫ 1

0

dy
√
A+O

(∫ 1

0

dy
A

Λ

)]
. (D.45)

Note that
∫ 1

0
dyA

Λ
∼ k2

Λ
and so this term contributes only to the next order

in ChPT as discussed in Section 4.4.2. Performing the integration in dy using
Eq. (D.12) and summing the contribution of the non divergent part, we get

K
(2)
ij (k) =

Λ

12π2
δij+

(
−s

2A(k)

8π
−mπ

8π

)
δij+

(s2A(k)

8π
−mπ

8π

)ki kj
k2

+O
(k2

Λ

)
, (D.46)

Note that we have obtained a term proportional to Λ which contains the full
divergence of the integral. In the same way

K(2)(k) =
Λ

4π2
− s2A(k)

4π
− mπ

2π
+O

(k2

Λ

)
. (D.47)

The integrals given in Eq. (4.62) can be decomposed as follows

L
(2)
ij (k) =

∫
q

ω2
+ + ω2

−

ω4
+ ω

4
−

(q2 − k2)qiqj

=
1

2

∫
q

qiqj

( 1

ω4
+

+
1

ω4
−

+
2

ω2
+ ω

2
−

)
−4(k2 + 2m2

π)

∫
q

qiqj
(q2 + s2)

ω4
+ ω

4
−
, (D.48)

where the first part contains all the divergences and can be calculated imposing
a cut-off as discussed above while the second part is finite and can be calculated
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in an elementary way. A similar decomposition can be performed for the integral
give in Eq. (4.62)

L(2)(k) =

∫
q

ω2
+ + ω2

−

ω4
+ ω

4
−

(q2 − k2)2

=
1

2

∫
q

((q2 − k2)

ω4
+

+
(q2 − k2)

ω4
−

+
2(q2 − k2)

ω2
+ ω

2
−

)
−4(k2 + 2m2

π)

∫
q

(q2 − k2)
(q2 + s2)

ω4
+ ω

4
−

(D.49)

where we have the same structure as before. After a length calculation, the final
results are

L
(2)
ij (k) =

( Λ

4π2
− 3mπ

8π
− 1

8π

(
3− 4m2

π

s2

)
s2A(k)

)
δij

+
kikj
8πk2

(
3− 4m2

π

s2

)
s2A(k) +O

(k2

Λ

)
, (D.50)

L(2)(k) =
3Λ

4π2
− 11mπ

8π
− 1

π

(
1− 2m2

π

s2

)
s2A(k) +

m3
π

2πs2
+O

(k2

Λ

)
, (D.51)

where we have used the results of the integral type,∫ 1

−1

dx
xn

(a− x2)
m
2

, (D.52)

which is possible to find in [65] for different m and n.
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Appendix E

Matrix elements of the PV and
TV potentials

In this Appendix we will report the explicit analytic expression of the spin-isospin-
angular matrix elements of the operators entering the PV and TV potentials.
In the first section we will report some useful formulas and then in the second
and third sections we will discuss the spin-angular and isospin matrix elements
respectively.

E.1 Useful formulas

In this Appendix we will use the following notation[
TKΨL

]
JJz

=
∑
κM

(Kκ,LM |JJz)TKκΨLM , (E.1)

where TKκ is a generic spherical tensor operator of rank K and component z given
by κ, while ΨLM rappresents a state of angular momentum L,M . (Kκ,LM |JJz)
is a Clebsh-Gordan coefficient.

Coupling of two spherical harmonics[
Y`1Y`2

]
LM

=
B`
`1`2√
4π
YLM(r̂) , BL

`1`2
= ˆ̀

1
ˆ̀
2(−)`1+`2

(
`1 `2 L
0 0 0

)
, (E.2)

where ˆ̀=
√

2`+ 1.

Coupling of 3 angular momenta

|(j1j2)j12j3JM〉 =
∑
j23

T j1j2j3j12j23J
|j1(j2j3)j23JM〉 (E.3)
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where

T j1j2j3j12j23J
= (−)j1+j2+j3+J ĵ12ĵ23

{
j1 j2 j12

j3 J j23

}
. (E.4)

Coupling of 4 angular momenta

|(j1j2)j12(j3j4)j34JM〉 =
∑
j13j24

N j1j2j3j4
j12j34j13j23J

|(j1j3)j13(j2j4)j24JM〉 (E.5)

where

N j1j2j3j4
j12j34j13j23J

= ĵ13ĵ24ĵ12ĵ34


j1 j2 j12

j3 j4 j34

j13 j24 J

 . (E.6)

Spherical Tensors The Cartesian operators σ and r̂ can be written like spher-
ical tensor of rank 1:

σ10 = σz

σ1−1 =
1√
2

(σx − iσy)

σ1+1 = − 1√
2

(σx + iσy) ,

where with the notation σ1µ we indicate the rank 1 tensor and component z given
by µ = ±1, 0. Furthermore

z

r
=

√
4π

3
Y10 ,

y

r
=

√
4π

3
i
Y1−1 + Y1+1√

2
,

x

r
=

√
4π

3

Y1−1 − Y1+1√
2

.

We can rewrite the scalar and vector products in terms of these spherical com-
ponents

(σ · r̂) = −
√

4π [σ1Y1]00 , (σ × r̂)1µ = i

√
8π

3
[σ1Y1]1µ ,(E.7)

(σ(1)× σ(2))1µ = −i
√

2 [σ1(1)σ1(2)]1µ , (E.8)
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where σ(i) indicates Pauli’s matrices acting on the spin state of the i-th particle.
Other useful formula are (remembering that χSSz = |s1s2〉SSz):[

σ1|
1

2
〉
]

1
2
m

= −
√

3|1
2
m〉 , (E.9)[

σ1χS

]
S′

=
√

3T
1 1
2

1
2

1
2
SS′
χS′ , (E.10)[

σ2χS

]
S′

= (−)S+S′
√

3T
1 1
2

1
2

1
2
SS′
χS′ . (E.11)

where T are given in Eq. (E.4).

E.2 Spin-angular matrix elements

First let us compute, the effect of an operatorO on a spin-angular state
[
YL(r̂)χS

]
,

namely

O
[
YL(r̂)χS

]
JJz

=
∑
L′S′

OJ
L′S′,LS

[
YL′(r̂)χS′

]
JJz

, (E.12)

where O is one of the following operators:

S±r = (σ1 + σ2) · r̂ , S±p = (σ1 + σ2) · (−i∇) , S×r = (σ1 × σ2) · r̂ ,
SL = σ1 · r̂σ2 ·L+ σ2 · r̂σ1 ·L , (E.13)

and the quantities OJ
L′S′,LS are

OJ
L′S′,LS = 〈YL′χS′ |O|YLχS〉. (E.14)

Operators S±r and S×r . Using the Eq. (E.2) and Eq. (E.10)

S±r [YLχS]JJz =
∑
L′S′

(1± (−)S+S′)
√

3N11LS
0jL′S′jB

L′

1LT
1 1
2

1
2

1
2
SS′

[YL′χS′ ]JJz , (E.15)

S×r [YLχS]JJz =
∑
L′S′

i3
√

2N11L1S1

0jL′S′jB
L′

1LN
11 1

2
1
2

1S 1
2

1
2
S′

[YL′χS′ ]JJz , (E.16)

Operators S±p e SL. The gradient in spherical coordinates can be written as:

∇ = r̂
∂

∂r
− i

r
(r̂ ×L) . (E.17)

Therefore

S±p = S±r
∂

∂r
+

1

r
S±L , S±L = −i(σ1 ± σ2) · (r̂ ×L) . (E.18)
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We get the matrix element of the operators S±L considering that[
LYL(r̂)

]
L′M

= −
√
L(L+ 1)δLL′YL′M(r̂) , (E.19)

so

S±L [YLχS]JJz =
∑
L′S′

√
6
√
L(L+ 1)N11LS

0jL′S′jT
11L
1LL′B

L′

1LT
1 1
2

1
2

1
2
SS′

(1± (−)S+S′)| [YL′χS′ ]JJz

(E.20)

In the same way we find

SL [YLχS]JJz = −3
√

3N1111
00ll0N

llLS
0jL′S′jN

11 1
2

1
2

lS 1
2

1
2
S′
T 11L

1LL′

√
L(L+ 1)B1LL′ | [YL′χS′ ]JJz

(E.21)

E.3 Isospin matrix elements

In this case we need the matrix elements of the following operators

~τ1 · ~τ2 , (~τ1 ± ~τ2)z , (~τ1 × ~τ2)z , Iij(~τ1)i(~τ2)j = 3(~τ1)z(~τ2)z − ~τ1 · ~τ2 .
(E.22)

In general the total isospin is not conserved (only its z components). So in this
case it is convenient to decompose the isospin states ξTTz in terms of the isospin
state of the two nucleons, and then evaluate the sum over the z components. We
have explicitly,

〈ξTTz |(~τ1 · ~τ2)|ξT ′Tz〉 = (4T − 3)δTT ′ (E.23)

〈ξTTz |(~τ1 ± ~τ2)z|ξT ′Tz〉 =
∑
t1zt2z

C
1
2

1
2
T ′

t1zt2zTz
C

1
2

1
2
T

t1zt2zTz
(t1z ± t2z) (E.24)

〈ξTTz |3(~τ1)z(~τ2)z − ~τ1 · ~τ2|ξT ′Tz〉 =
∑
t1zt2z

C
1
2

1
2
T ′

t1zt2zTz
C

1
2

1
2
T

t1zt2zTz
3t1zt2z

−(4T − 3)δTT ′ (E.25)

〈ξTTz |(~τ1 × ~τ2)z|ξT ′Tz〉 =
∑
t1zt2z

C
1
2

1
2
T ′

t1zt2zTz
C

1
2

1
2
T

t1z+1,t2z−1,Tz
(1− t1z)(1 + t2z)

+C
1
2

1
2
T ′

t1zt2zTz
C

1
2

1
2
T

t1z+1,t2z−1,Tz
(t1z + 1)(t2z − 1)

(E.26)

where C
1
2

1
2
T

t1zt2zTz
= 〈1

2
1
2
; t1zt2z|12

1
2
;TTz〉.
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