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Chapter 1

Introduction

The understanding of the violations of discrete symmetries as parity (P), charge
conjugation (C') and time reversal (7') presents interesting aspect and it is far
to be complete still nowadays. Many experiments, starting from Madame Wu’s
experiment, have confirmed the presence of “parity violation” (PV') in weak in-
teraction accompanied by a corresponding C-violation, combined so that to have
conservation of the C'P symmetry. These effects are well described in the Stan-
dard Model (SM) via fermion currents having both vector and axial components.
More complicated and more recent experiments have confirmed the presence of
tiny “parity violating” and “C-conserving” terms. From the CPT theorem these
terms must be “I-violating” (T'V through this work). This violation is one of
the ingredients needed to explain why the visible universe seems to be made
predominantly of matter, without a significant fraction of antimatter [1]. The
violation observed in K and B decays are well described by the complex phase
in the Cabibbo-Kobaiashi-Maskawa (CKM) matrix, the mixing matrix of the
quarks [2]. However the CKM phase gives very small contributions to observ-
ables that do not involve flavour change between the initial and final states. In
particular it is insufficent to account for the observed matter-antimatter asymme-
try [3]. Other TV terms can be introduced in the foundamental Lagrangian of the
SM: the one we are most interested in, it is the so called #-term in the quantum
chromodynamics (QCD) sector. The interaction term is estimated in terms of
gluon fields and it has a strength given by a parameter @ (further terms involving
other gauge bosons should play a neglegible role in hadron physics) [4]. It con-
tributes directly to the permanent electric dipole moments (EDM) of the neutron
dp=0-(2.741.2)-107% ¢ cm [5]. From the current experimental estimate of the
neutron EDM, however the value of the § angle is estimated to be < 1071 [6].
The presence in the SM of a so small constant is the so called “strong CP prob-
lem” related also to the existence of the axions [7]. TV could originate also from
further terms beyond the standard model (BSM), as complex phase(s) in the the
Pontecorvo-Naki-Makagawa-Sakata (PNMS) matrix, the leptons mixing matrix
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2 CHAPTER 1. INTRODUCTION

counterpart of the CKM or also from more exotic mechanisms [6]. Therefore any
measurement of a non-vanishing 7'V effect above the CKM “background” would
be a signal of new physics.

In this respect the light nuclei could be good laboratories to study the violation
of these discrete symmetries. The PV and T'V interactions contribute also to the
parity conserving (PC') nucleon-nucleon (N N) potential via second order effects.
This contribution is obviously totally “hidden” by the strong and electromagnetic
interactions and it is therefore not accesible experimentally. However, the PV
and TV effects can be highlighted considering physical observables that would
be zero if the nuclear interaction had only the standard strong interaction and
the electromagnetic interaction. These studies represent also a new “window” to
have information on the properties of the systems composed by light quarks and
gluons at low energies, and so in a highly non-perturbative regime.

PV effects in low-energy hadronic processes have been measured in few ex-
periments. Finite signals were obtained in proton-proton (pp) and pa scattering,
radiative decays of F, and other experiments. Strong upper bounds are found
in radiative np capture, radiative decays of 8F as well as for the spin rotation
of a polarized proton beam moving through a “He gas [8]. Other experiments at
ultra-cold neutron facilities are being completed or are in advanced stage. The
interpretation of the experiments that involve medium-heavy nuclei is difficult
due to the complexity of the structure of these systems. For this reason most
of the new experiments to study PV effects involve light nuclei, where the cal-
culation of the nuclear structure is under control. The main objective of these
experiments is to determine the constants entering the PV NN potential.

The search of T'V observables is another hot topic in modern Physics. The
most studied observable is the EDM, which require both P and T violation. The
current upper bounds on the neutron and proton EDMs are |d,| < 2.9 - 1073
fm [9] and |d,| < 7.9 - 107*?e fm [10], respectively, where the upper bound on
the proton EDM has been inferred from a measurement of the diamagnetic 1% Hg
atom. In general a single EDM measurement will not be sufficent to identify the
source of T'V and new experiments to measure the EDMs of light nuclei directly at
dedicated storage rings with an accurancy of ~ 10~!%¢ fm have been proposed [11].
Other observables could test the TV effects in light nuclei framework, as for
example, from measurement of particular polarized neutron-polarized nucleus
forward scattering amplitudes [12]. In particular, in this work we will focus on
the rotation of the spin of polarized neutrons along the y axis [13, 14] which can
be used as an unambiguous T’V observable.

A systematic description of PV and T'V effects at nuclear level can be obtained
using the so-called chiral effective field theory (YEFT), the low energy effective
field theory of the QCD [15]. The YEFT approach is based on the observation
that the restrictions imposed by chiral symmetry in QCD has a noticeable impact
in the low energy regime [16, 17]. In particular the form of the interactions among



the nucleons will have tight constrains due to this symmetry. This method has
put the nuclear physics on a more foundamental basis by provinding a direct con-
nection between the QCD symmetries and the strong and electroweak interaction
in nuclei and also a systematic scheme to construct the interactions, the so-called
chiral perturbation theory (ChPT) (see, for example, the review papers [18, 19]).
This method allows to order the different contributions as an expansion on /A,
where () is the energy scale of the nuclear processes (~ 10+-100 MeV) and A, >~ 1
GeV specifies the symmetry-breaking scale.
There are different versions of the yEFT:

e the “pionless” theory: it assumes that the pionic degrees of freedom are
freezed and all the interactions reduces to nucleon-nucleon contact terms
(see for example [20]). Such a theory is valid at energy much lower than the
pion mass. For example it has been used to study PV effects in low energy
NN scattering, and in ultracold neutron experiments as PV asymmetries
in 'H(77, v)*H capture, spin rotation 7ip and 7id scattering, as well as other
observables [21];

e the “pionfull theory: both nucleons and pions are considered as dynami-
cal degrees of freedom. The energy range of the validity of this approach
extends up to energy of the order of the pion mass. This theory has been
found to work well in the PC' sector [22, 23]. It is reasonable that the same
approach will also work for the PV and TV interactions. We will use this
approach in this work.

To each term of the nuclear Lagrangian is associated a low energy constant (LEC)
that takes into account the high energy physics. Usually these LECs are fixed from
observable experimental data but they can be also extimated using Lattice QCD,
or other non perturbative methods in terms of the parameters of the SM, or of a
for more fundamental theory. One of the aim of these studies of Nuclear Physics
is actually devoted to the determination of the parameters of the fundamental
theory, using experimental data taken in low-energy nuclear processes. To achieve
this result one needs to take into account the dynamics of the nucleons and to
obtain the LECs from present or future experimental data. This is the aim of the
present Thesis, where we focus on PV and T'V observables which can be measured
in the study of the scattering of two-nucleons. In a successive step, further studies
will be required to relate the LECs to the parameters of the fundamental theory
using Lattice QCD or other methods (as the renormalization group method),
see, for example, Ref. [5] for a discussion of the methods used to study the TV
interaction.

In most of the works in literature, the calculation of the observables goes
through a sort of non-relativistic expansion of the nucleon field entering the La-
grangian, the so called “heavy barion chiral perturbation theory” (HBChPT) [24].
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This expansion is obtained dividing the nucleon field in a “light” and a “heavy”
part in order to isolate the mass term in the nucleon four-momentum, because it
is of the same magnitude of our symmetry-breaking scale A,. In this work, we
will not use this method but we will work with the “normal” nucleon field; terms
proportional to the nucleon mass will be subtracted explicitly.

Many derivations of the PV potential agree that this potential include, up
to next-to-next-to leading order (N2LO), a long range one pion exchange (OPE)
component at the leading order (LO), a medium range component originating
from two pion exchanges (TPE), and five indipendent NN contact terms [25].
The PV potential at N2LO included in total 6 LECs, the pion-nucleon PV cou-
pling constant and 5 LECs coming from the contact terms. This version of the
potential was used in particular to study the longitudinal analyzing power (A,)
in pp scattering. However for this observable the LO contribution vanishes and
therefore possible corrections that come from the next-to-next-to-next leading
order (N3LO) could be very important and not negligible. The price that we pay
introducing the N3LO is to add five new LECs to the six that comes at N2LO.
Therefore two of the aims of the present work are:

e to derive the N3LO component of the PV potential between two nucleons
(a first derivation of this potential was alredy given by de Vries et al. [26]);

e to study the pp A, and the 7ip spin rotation observables with the new
potential in order to investigate the effect of the N3LO components.

The TV potential have been derived using YEFT in a few works up to now [6].
Up to the next-to-leading order it includes a OPE terms and a three pions ex-
change due to a three-pion interaction vertex in the 7'V Lagrangian. It is possible
to build also two contact terms which formally belongs to the N2LO. In total we
have five LECs directly connected with the § angle. So the other two aims of this
Thesis are:

e to derive the T'V potential between two nucleons up to NLO using our
framework. This potential will depend on 5 LECs;

e to study a different observable from the classical EDM. In particular we will
focus on the 7p spin rotation in order to fix some LECs entering the TV
potential.

This work will be organized as follows. In Chapter 2 we will introduce the
chiral symmetry. Then we will discuss how we can build the yEFT Lagrangian
with only nucleons and pions as degrees of freedom. The PV terms will be
constructed so that, under chiral transformations, they transform under chiral
symmetry as the PV weak interaction terms involving the quarks u and d in the

SM.



In Chapter 3 we will explain how to build a potential starting from the yEFT
Lagrangian. In particular we will discuss how to construct the T-matrix using
the “time ordered perturbation theory” order by order in the @)/A, expansion
and then how to derive the potential. The derivation of the PV NN potential up
to the N3LO with all the time-ordered diagrams will be discussed in Chapter 4.

The TV interaction will be discussed in Chapter 5. We will briefly explain
how the #-term can be included in the mass term of the QCD Lagrangian via
a U(1)4 rotation and then incorporated in the yEFT. In the last section of the
chapter we will present the explicit derivation of the T'V potential up to NLO.

In Chapter 6 we will explain how to calculate the observables like A, for
pp elastic scattering and 7p spin rotation angle. After an introduction on the
two body scattering problem, we will present an algorithm that allows to solve
the Schrodinger equation with a PC' plus a PV or TV potential. Then we
will introduce the M-matrix formalism in order to calculate the observables of
interest. In particular we will discuss the A, observable in pp scattering and
the spin rotation in 7ip scattering to reveal PV effects. Moreover, we will study
the 7p spin rotation along the y-axis to reveal T'V effects. In Chapter 7 we will
present the results concerning the studied observables and in Chapter 8 we will
discuss the conclusions and perspectives of the present work. Finally, a number
of technical details will be given in several Appendices.
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Chapter 2

The chiral symmetry

In this Chapter we will discuss how to construct a theory of nuclear forces using
the constraints of the symmetries (in some cases approximates) of the fundamen-
tal theory of the strong interactions of quarks, the QCD. In particular, we will
show that the QCD Lagrangian is almost symmetric under the so-called chiral
symmetry. Then we will see how it is possible to build an effective field theory
with pions and nucleons as degrees of freedom, being as well almost symmetric un-
der chiral symmetry. In this way it has been possible in the last years to construct
an accurate theory of the PC strong interaction between nucleons. Inspecting
the transformation properties of the interaction terms of the weak interaction in
the SM, in particular the terms that are PV, we will introduce in our YEFT new
terms that transform in the same way and are PV. These Lagrangian terms will
be our starting point to build the PV NN potential. The construction of the
TV interaction will be addressed in Chapter 5.

The Chapter is organized as follows. In Section 2.1 we will introduce the
chiral symmetry as an approximate symmetry of QCD and we will explain its
properties. In Section 2.2 we will present the ideas on which the yEFT is based.
We will present the PC' Lagrangian in Section 2.3 and 2.4 for the pions and the
nucleons, respectively. In the last Section we will analyse the structure of the
weak interaction among the quarks and then, focusing on the PV interaction
terms, we will build the PV EFT Lagrangian.

2.1 The chiral symmetry in QCD

Let’s consider the standard QCD Lagrangian density. Our aim is to obtain a
theory that describes processes of two nucleons at low energy (under the threshold
of the pion production), thus we only consider the lighter quarks v and d [27]:

. 1 v
Locp = E G5 () (" Dy — my) qp(x) — Zguu,a(ﬂﬁ)gﬁf (z)
f=u,d
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200) (17" Dy~ M)a(z) — 7Gua ()G (), (2.)

xr) = , M= , 2.2
1) (%(@) <0 mg (22)
qu, g4 being the fields of the quarks, m,,, m, their masses, D, = 0,,—ig 22:1 T,G ()
is the covariant derivative of quark fields, G, ,(x) the gluon fields, and 27, are
the Gell-Mann matrices, that are the generators of the color gauge group SU(3)

in the fundamental representation. Above, GX¥(x) are the force tensor of the
gluonic fields,

where

g (x) = O"GY(x) — 0"G(x) + gfauc Gl (2)GY (), (2.3)

with fup. structure constants of the gauge group SU(3), defined by the commu-
tation properties of the Gell-Mann matrices

[Tm Tb] = Z.fabcTc' (24)

The quark fields ¢(x) are actually vectors in the color space and the SU(3) Gell-
Mann matrices act on them. The Lagrangian in Eq. (2.1) is invariant under local
transformations of SU(3) on the color degrees of freedom of the quark and gluon

fields as [28]
qr(x) = qp(x) = U(0(x))qy (), (2.5)

Gua(®)Ta = G}, = U(0(2))GuaTu(2)U (0(2))" + | (0.U(0())) U (0(x)),  (2.6)

Q| =

where

U(6(z)) = e Za=1 fa@)Tu (2.7)

The QCD Lagrangian has a U(1),, ® U(1)4 (global) symmetry where the field
of each flavour transforms as

q5() = qp(x) = e qp (). (2.8)

From the above symmetry it follows the conservation of the flavour number and
also, assigning the values 1/3 to quarks and —1/3 to the antiquarks, the conser-
vation of the baryon number.

If we neglect the mass term (the so-called chiral limit), the U(1), ® U(1)q4
symmetry group can be extended. Let’s rewrite the Lagrangian in Eq. (2.1) in
terms of the left and right spinors of the quarks:

qr(z) = ﬂq(w) _ ( Qu,r(z

: ; ) (2.92)
(o) = = o) = ( q’“vLél’i ) , (2.9b)
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we find
_ B ‘ _ ‘ 1 v
L5 = G,(2)iv" Duqr(x) + Gg(2)iv"Daugr(z) — 1 9ma(2)G4" (2). (2.10)

We can consider the chiral limit because the quarks’ masses are much smaller
than the hadronic mass (~ 1 GeV) [29]

m, ~ 2.3 MeV, my ~ 4.8 MeV. (2.11)
The Lagrangian in Eq. (2.10) is invariant under global transformations that trans-

form the left and the right components independently. The complete group of
transformations is G = U(1)r @ U(1), ® SU(2)g ® SU(2), corresponding to

UD)r : qr(x) = dp(r) = e qr(z), (2.12a)
UML) : qu(z) = gy (o) = e ©rqr(z), (2.12b)
SU2)g : qr(z) = ¢rl(x) = e “®qp(z)= Rqgp(z), (2.12¢)
SUQ2)p : qu(x) = ¢, (z) = e 2q, (z) = Lqp(x), (2.12d)

where with 7 we indicate a vector that has as components the Pauli’s matrices
7, with @ = x,y,z. This group is isomorphic to the group U(1)y ® U(1)s ®

Uy : q(x) = ¢'(x) = e ®Vq(x), (2.13a)
U(1)a: q(a) = ¢'(z) = e O1g(x), (2.13b)
SUQ)y : q(z) = ¢ (x) = e 2q(z) =Vq(z), (2.13¢)
SU2) 4 : q(x) = ¢ (z) = e 4T 2g(z)= Ag(x). (2.13d)

The transformations SU(2)y are obtained from SU(2), ® SU(2)g choosing L =
R =V, while imposing L = RT = A we get SU(2)4. In the same way, if we take
the same rotation angle in the transformation U(1)r ® U(1) we have U(1)y,
while if we take opposite angles we have U(1) 4.

Using the Noether’s theorem for each transformation we get the following
currents [28]

JH(x) = q(z)7"q(2), (2.14a)
g (x) = q(a)y"yq(x), (2.14b)
Vi) = qla)y" (o), (2.14¢)
Ab(z) = q(a)r"y° L q(). (2.14d)
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Calculating the derivative of the currents and using the classical equations of
motion, not neglecting the mass matrix yet, one obtains

d,J*(x) =0, (2.15a)
0T () = 2ig(x)y" My(2), (2.15b)
OuVE(w) = ia(w) | M, | a(a), (2.15¢)
9,A"(x) = ig(w ){M,%}q(;ﬁ). (2.15d)

As we expect, the first current is always conserved, since it represents the conser-
vation of the baryon number as confirmed by the experiments. The other three
currents are classically conserved in the chiral limit (M = 0). The requirement
for the conservation of the current V#(x) is however less restrictive: we need only
that the masses of the two quarks were equals, namely M oc 1. This corresponds
to the isospin symmetry known to be reather well verified in Nature. If M = 0
we would have 0,Jf = 0,A" = 0. It is well-known that the U(1)4 symmetry
is broken at quantum level by a quantum effect (anomaly) [28]. We will treat
the symmetry U(1),4 later, for the moment we limit our discussion to the chiral
group:

GXEUv( )®SUv(2)®SUA(2). (2.16)
The Lagrangian EQCD given in Eq. (2.10) is invariant under G,,.

As we have seen, the chiral symmetry is a global symmetry but it is useful
to upgrade it to a local one; in this way we can couple the quarks with external
source fields. In particular we can introduce the coupling with external Hermitean
isoscalar and isovector currents

W@, wl)= Y S, a@)= Y Fak).  (217)

We introduce also the couplings with scalar and pseudoscalar density,

=Y ms'(z),  ple) =) mp'(x), (2.18)

which are Hermitean matrices in isospin space and 7 = 1. The QCD Lagrangian
with the external fields reads [28]

0 . 1
Laep = Loop +a(@)" (vale) + 31);)( ) +9°a,(x))q(x)
—q(x) (s(z) — i’°p(x))q(2). (2.19)
Imposing that the Lagrangian be invariant under the local transformations in-

duced by the group G, we deduce the transformation properties of the external
fields. Defining,

ru(z) = vu(z) + au(z), Lu(x) = vu(x) — au(z), (2.20)
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and rewriting the Lagrangian in terms of the left and right components of the
quark fields

LB = LA+ 2 <x>+§vff>< )4z (2) + Ty (1) + 5080 () an()
~ Tl (s(2) + b)) (2) — 7,(2) (s(2) — in(a))an(a), (2.21)

we find the transformation properties of the external source fields

r.(r) = R(z)r,(z) RN (x) + iR(2)0, R (z) (2.22a)

l.(x) = L(z)l,(x)LY () + iL(2)9,L (z) (2.22b)
vl(f)(x) — Ul(f) (x) —0,0(z), (2.22¢)

s(z) +ip(z) — R(z)(s(z) 4+ ip(x)) L' (z), (2.22d)
s(x) —ip(x) = L(z)(s(x) —ip(x))R' () (2.22¢)

For example, the vector and axial source fields are useful to take into account
the coupling of the quarks with the electromagnetic field or the W* and the Z°
fields. We will not discuss anymore the coupling with these vector fields. More
interesting for this Thesis it is the coupling with the scalar fields s(z) and p(z)
which we will use to introduce in the nucleon Lagrangian the mass and the TV
terms. The procedure is the following [5]. i) First we assume that the source fields
transform as in Eqs. (2.22) and we construct LE&T, to be completely symmetric
under the G, transformations. ii)As a second step, we can include in the source
fields, terms which are not invariant, as for example the mass terms (see below).
When we will perform the same procedure for the nuclear Lagrangian Lgpr, we
obtain automatically all terms which violates chiral symmetry in the same ways
as in the quark Lagrangian L&gp.

For example rewriting the mass matrix as

M =ml+ emrs (2.23)
where n
My + M My — M
m= —d, €= —d, (2.24)
2 My, + Mg

it is easy to identify so = 7 and s3 = em. In this way, using the scalar field s(x) it
is possible to reintroduce the mass term, explicitly violating the chiral symmetry,
in the Lagrangian L&, In the first part of this work, in the treatment of the
PV interactions we will neglect the isospin violating term s3 (imposing € = 0)
and the pseudoscalar p(x) = 0. In the second part we will take into account these
terms in order to introduce the TV interaction.

Even if the symmetry SU(2) 4 is a symmetry of the chiral Lagrangian EQC D

it is not realized in the low energy hadronic spectrum. Hadrons show themselves
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as a multiplet of the isospin subgroup SU(2)y, but not of SU(2) 4. If so, we will
expect for each hadronic state, another degenerate state (same mass, charge, ...)
but with opposite parity. Since no multiplet with different parities is observed,
the chiral symmetry suffers a spontaneus breaking with the pattern

SU©2)y @ SU©2)4 @ U(L)y — SU(2)y @ U(1)y. (2.25)

Using the Goldstone theorem we can deduce the properties of the Goldstone
bosons [27]:

e the Goldstone bosons are three as the broken generators of the quotient
group SU(2) 4;

e their mass must be zero;

e they have the same quantum numbers associated with the charge operator
of the broken generators, in this case the charge operator of the three non
Abelian axial currents in Eq. (2.14d)

Q4 (1) = / g (o) (o), (2.26)

so they must be pseudoscalar, their baryonic number must be zero, and
they must transform under SU(2)y as a isospin triplet.

The three Goldstone bosons are identified with the pions. The fact that they
have a non zero mass can be explained saying that the chiral symmetry is only
an approximate symmetry of the QCD, due to the mass term which explicitly
breaks the symmetry.

2.2 The Effective Field Theory

The description of hadrons and their interactions using QCD is very compli-
cated. The interactions of gluons and quarks is very intense because the coupling
constant of the theory ag increases when the energy decreases; therefore each
possibility to describe perturbatively the low energy regime fails. In order to
solve this problem, it is possible to build an EFT which describes the low energy
dynamics of the hadrons and which allows for an expansion in terms of small mo-
mentum () instead of a coupling constant [15]. In this kind of theory the degrees
of freedom are the hadrons which are not elementary particles, but considering
processes of energies not allowing the excitations of them, they can be treated as
elementary constituents.

The symmetries used to build the effective Lagrangian of the xYEFT are i)
the chiral symmetry, seen in the previous Section, ii) the Lorentz invariance
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and iii) the discrete symmetries of charge conjugation C' and parity P (clearly
in this Thesis we are also interested in PV and TV Lagrangians). With this
Lagrangians it is possible to treat processes of momenta ) < A,, with A, ~
A fr ~ 1 GeV [30], where fr ~ 92.4 MeV is identified as the charge pions decay
constant [31]. If the chiral symmetry was an exact symmetry of the theory, the
momentum () would be the only expansion parameter. As we have seen before,
this is not true; the chiral symmetry is explicitly broken by the mass term of
the quarks that generates the mass of the pion m,. This quantity reappears in
the EFT as a new expansion parameter. However also m, is a small parameter
compared to A, so we have two expansion scales: /A, and m,/A,. From now,
we will indicate with @) both the typical momentum scale and the mass of the
pion. If we limit the range of () between zero and the mass difference between
the baryon A(1232) and the nucleon, we can take as effective degrees of freedom
only the pions and the nucleons, without including heavier mesons or barions.
Thus we will include explicitly in the scale A, all the quantities which are out
of our energy range and which represent all those degrees of freedom we consider
to be integrated out: A, p, etc.

In order to build the chiral effective Lagrangian we need to consider all the
possible terms compatible with the restrictions imposed by the symmetries [19,
32]. What we get is an infinite number of operators, each of them multiplied by a
free parameter. These parameters contain all the underlying high energy physics
and they represent our inability to understand it. Fortunately we can associate
each Lagrangian term with a power (Q/A, )", where v is an integer index named
“chiral order”. There is a finite number of Lagrangian terms for each chiral order.
The terms that appear in the Lagrangian can be organized depending on their
index v. It is one of the nice property related to the chiral symmetry that all
pion-nucleons interaction terms includes at least one derivative, so v, is always
finite. The terms with index v = vy, are named “leading order” (LO) terms and
usually they bring the largest contribution to the observables. The terms of order
V = Vnmin + 1, named “next-to-leading order” (NLO) terms, give a first correction
to the values calculated using the LO terms only, and so on. Therefore the chiral
effective Lagrangian can be written as

Lerr = L10 + Laro + Lnoto + - - (2.27)

The theory build in this way can be renormalized order by order; considering
terms up to a given order, the constants that appear in the Lagrangian are used
to reabsorb the divergences of the loops diagrams. Removed the divergences, a
certain number of renormalized LECs remain. In principle, these LECs can be
calculated from the underlying physics, but practically they are fixed by (even-
tually) available experimental data. At this point we can use the theory to make
predictions.
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2.3 The ChPT for the pions

In order to describe the pions we must introduce a 2 x 2 “pionic field” matrix
U(x) [28] which belongs to the quotient group SU(2) 4 as prescribed by the spon-
taneous symmetry breaking discussed in Section 2.1. This matrix field is iden-
tified by three coordinates that are necessary to parametrize the group SU(2).
We have infinite ways to parametrize the matrix field U(z) [30]. Introducing the
Hermitean fields of the pion of type a = x,y, 2z, m,(x), see Chapter 3 for their
definition, we can use them as coordinates and write the matrix field as

1 ~9 10,

S8a—1
—2—.}[,271' (I)—Fﬂ' 4

Ule) = 14 —7-#(x) o

fa

where « is an arbitrary coefficient reflecting our freedom in the choice of the pion
field [30]. Choosing o = 1/6 we get the canonical form for the matrix field U(z):

(2) 77 (x) +

(z)+..., (2.28)

Ulz) = er="®)7, (2.29)

The transformation law of the pionic field under the chiral group SU(2)g®@SU (2),
is given by [28§]
U(x) — U'(z) = RU(x)L' . (2.30)

On the other hand the pion fields transform linearly only under the group SU(2)y,

indeed taking
L = A,
R = AV,

we can write
U'(r) = RU(z)L,
= AVU(x)V1A,
AeVF@VIT/ g, (2.31)

so considering a pure infinitesimal vector transformation (A = 1) and expanding
in series, it is easy to find that the fields 7 transform linearly (as a isospin triplet).
For infinitesimal transformation:

7(z) = 7 (x) = 7(x) — ey x T(x). (2.32)

Performing the same thing using a pure axial transformation (V' = 1) in Eq. (2.31)
the transformation is not linear. For infinitesimal transformations:

7(2) = 7(z) = 7(x) + Erfr (2.33)

as we expect from the spontaneous breaking of the symmetry SU(2)4 and the
non vanishing expectation value on the vacuum of the charge in Eq. (2.26). Let’s
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note that the field U(z) is invariant under transformations U(1)y because, being
the baryonic number of the pions zero, we have m,(z) — m,(x).

As in the quarks case, we can upgrade the symmetry from global to local, con-
sidering the coupling with external fields. Given the transformation of field [28]

U(z) — U'(z) = R(x)U(x)L(z)" . (2.34)
we can define the covariant derivative
D,U(z) = 0,U(z) —ir,(x)U(x) +il,U(z). (2.35)

where the external fields r, and [, are those introduced in Section 2.1. Taking
into account of their transformation laws, given in Eq. (2.22a) and Eq. (2.22b),
it is easy to show that D,U(x) transforms as

D,U(x) = R(z)(D,U(x))L (). (2.36)

As in the Lagrangian in Eq. (2.19) we can introduce a coupling with the scalar
fields s(z) and p(x) via the operators y and x' defined as

x(z) = 2B(s(z)+ip(z)), (2.37a)

x'(z) = 2B(s(z) —ip(x)). (2.37b)
Assuming that s(x) and p(z) transform as in Eq. (2.22d) and (2.22¢) then

X(@) = R(z)x(x)L!(z), (2.38)

¥ () = L)y (2) Rz). (2.39)

The LEC B is related to the order parameter for the breaking of the chiral
symmetry (0 [gg| 0) [28]
1
B=———(0]qq|0) . 2.40
3 (0 [gq| 0) (2.40)
The building blocks for the construction of the Lagrangian has the follow chiral

order
UnOQ), DDl ~0@Q"), x~O0(Q). (2.41)

So the most general effective Lagrangian at the order ()%, invariant under the
Lorentz transformations, local chiral transformations, parity and charge conjuga-
tion including the source fields is

3 3
Ly =7 T @U@ +U@x' (@), (242
where (... ) indicates the trace of the matrices. The 7 terms entering the Q* order
Lagriangian are discussed in Ref. [32], we only report the terms we will use to
construct the TV Lagrangian:
l3 l7

£ = g@U' @) + U@ (@) = g @)U (@) = Ula)x (@)’ +... (243)

(DU (2)(DU(x))T) +
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2.4 The ChPT for the nucleons

As in the case of the pions, we can choose the representation of the nucleon which
is the simplest to build the Lagrangian, because it is irrelevant when we compute
the observables. We will consider the most common representation used in the
chiral perturbation theory. In the isospin formalism we denote the nucleonic field

) N(z) = < p(z) > (2.44)

where p(z) and n(x) are the proton and neutron fields respectively. It is useful
to define a matrix u(x) such that u(z) = /U(x) [19, 28]. Remembering the
transformation of U(z) under global chiral transformation in Eq. (2.30), the u(z)
matrix transform as

u(z) = o' (x) = Ru(z)h'(x) = h(z)u(z) L™ (2.45)

where the function h(x) is defined

h(z) = h[L, R, U(x)] = VRU@) LT R\/U(2), (2.46)

which is non linear in the pion field. Neglecting for the moment the subgroup
U(1)y, the transformation law of the nucleonic field under the global transforma-
tion SU(2)y ® SU(2)4 can be shown to be [28]

N(z) = N'(xz) = h[L, R, U(x)]N(x). (2.47)

If the transformation is a pure vector transformation L = R = V, from the
definition of wu(x) it follows that v/ = VuVT, and so from Eq. (2.46) h = V
and the nucleonic field transforms as a isospin doublet. Conversely the axial
transformation results to be non linear [28].

In order to build a Lagrangian that contains the interactions among pions,
nucleons and external fields, we upgrade the chiral symmetry from global to
local, introducing the external field r,(z), {,(z), vi(z), s(x) and p(z) with the
transformation properties given in Eq. (2.22a)-(2.22¢). Under the local group G,
the doublet of the nucleons N transforms as

N(z) = e “@n[L(z), R(z),U(z)|N(x). (2.48)
Let’s introduce the covariant derivative for the nucleonic field [19, 28]

D,N = (0, + T, — ()N, (2.49)

where I', is the “connection” given by

1
L= §[UT(au —iry)u +u(d, — il,)u']. (2.50)
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Using the properties transformation of u(x), r,(x) and [, (x) we find the properties
transformation of I',:

I, — I, = hD,h" + ho,h" (2.51)
in this way when the derivative acts on the field N(x), it transforms covariantly,
D,N(x) = h(zx)D,N(x). (2.52)

We can introduce other building blocks which has simple transformation proper-
ties under G, and as well [19, 28]:

u, = i(u'du—udut)+ulru—ulul (2.53)
xe = ulxu'tux'u, (2.54)
Fp = ulFlutuFLul, (2.55)
(2.56)
with
F;ﬁ = a,uru - a1/76/,L - ?;[7”“, TV] ) (257)
FE = 0,6, — 0,0, —i[l,, 0] | (2.58)
which has the following properties under the group SU(2), @ SU(2)g
U, — U, = hu,h (2.59)
X+ — Xi=hxeh', (2.60)
+ 'ttt
Ff — FZ=hFiht. (2.61)

We can now write the most general term of the 7N Lagrangian invariant
under parity, charge conjugation, Lorentz and local chiral transformations. At
the leading order (order @) it reads

LY =N (m“D# ~ M+ %‘Ww%) N, (2.62)

A complete list up to order Q* is reported in Ref. [33]; here we report only the
terms we will use later in the thesis:

ﬁg)v = aN{x )N
—%N(uuuy)D’“’N +h.c.
—i—%ﬁ(uuu“ﬂ\f

icy—

+IN[U’H7 uy, o N

+esNY N+ ..., (2.63)
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and

1
L% = digN 57" uy (x4 )N

+ dlgwév“ﬂf[l?w X-]N+..., (2.64)
where we define .
A=A- 5(4). (2.65)

Other terms exist that involves four nucleonic fields. These are called “con-
tact terms” (CT) and they give point interaction vertices between nucleons which
include implicitly the effects of heavier meson exchanges. From all the possible
contact terms we can write down, imposing the Lorentz invariance and the con-
servation of the discrete symmetries, the non relativistic expansion identifies at
the leading order only two independent terms [22], so the contact Lagrangian
reads

1 _— 1 — —

It is also possible to write four-nucleons terms involving the quantities y, and
X_ that are invariant under the transformations cited above. We list only those
terms we will use later to build the TV interaction [5]

LY = Ci(xs)NNNN + Colx ) N7 NNy*°N
+C3NX+NNN + C4Nx: 7, NNA#4° N
+iCs(x_) NN, (Ny"7°N)
+iCo(x-)NTNO,(NTy"7°N)
+iC7NX_N9,(Nv"7°N)
FigCsN {4, TYNOL(FPN) + .. (2.67)

2.5 The PV interaction

In the previous Section we have used the transformations properties of the terms
appearing in the QCD Lagrangian in order to determine the effective Lagrangian
describing the strong interaction between nucleons and pions. In the same way, we
can study the transformation properties of the terms that violate the P symmetry
in the SM to construct a chiral effective Lagrangian that violates parity and
transform under GG, in the same way as the terms of the SM.

In the SM, in the limit of low energies, the weak interaction is described by
the Lagrangian density [34]

Gr

Loens = 7 (J#J T+ Ty Tt + JgTJZH> , (2.68)



2.5. THE PV INTERACTION 19

where Jy is the current related to the exchange of the W* bosons, and J is
the neutral current, related to the exchange of the Z° boson. The two currents
explicitly read

Jh = cosfdy" (1 —7s5)u = cosO.gy" (1 — ) 7_q , (2.69)
1 _ 8 - 4
Jy = oo {uv“ (1 — 53%,[, — 75) u — dy* (1 — 53?/" — 75) d] :

1 8 1+7 4 1—7
— — o 1— = 2 .5 ") 1— = 2 .5 z
(2.70)

where 0. is the Cabibbo angle, sy = sinfy and cy = cosfy,, where Oy is
the Weinberg angle, and 7— = (7, — i7,)/2. Writing the expressions in terms
of the right and left components of the quark fields and using the definitions in
Eq. (2.9a) and (2.9b), we get

Jhy = 2cos0.g.7"7-qr (2.71)
1 2
JE = _Zg2 (— Fan 4G, yH )
Z \/§CW{ 3w qrY qr T 417 4L
+ (2 - 28%[,) q Y T.qn — 25124,§R7“Tzq3}. (2.72)

In order to simplify the notations let’s define

Al]}% - GR’YMQRJ A;[J; - GL’Y#QIM (273&)
By =qp""Tar, By =q,7"Tar, (2.73b)

which transform under the group SU(2); ® SU(2)g as follow

At A¥ =GR Rqp = Ag, (2.74)
A = Af =g Ly L = Ay, (2.75)
(2.76)

so they are invariant over G, namely they transform as isoscalar, and

BY — Bl =qux"R'7Rqg, (2.77)
B} — Bl'=q.7"L'7Lq, (2.78)
(2.79)

which transform as isovectors under the transformation R and L, respectively.
When we apply the parity operator, we exchange q; <> qr and so Ar <> Ap
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and ER & By Rewriting the coupling terms in the Lagrangian in Eq. (2.68) as
follows

J{JE[/JW = 0082 Hc(Bx,L — ’L.By,L)(B%L + ’l.By7L)
cos? 0, [1

5 §<(§L- B+ Br- Br)+ (B,- B, — Bg- ER))

~TY(B;1.Bj1 + BirBjr) — T (B; 1. Bj1 — Bi,RBj,R))

—l-i((By,LBx,L + By rBi.r) — (Bor. By + By.rBy.r)

+(By,LBx,L - By,RBx,R) - (Bx,LBy,L - BI,RBy,R))] ) (280>
where
-1 0 0
;=0 -10 : (2.81)
0 0 +2
and also
t 1 4 2 2 4 2 2 8 2
JZJZ = 59 |:_5W(AR + AL) — —SW(2 — QSW)(AR -+ AL)Bz,L + _5W<AR + AL)Bz,R
2¢y, L9 3 3
—|—<2 — QS%V)QBZ7LBZ7L - 2812/1/(2 - 2512/1/)(32,LBZ,R + Bz,RBz,L> + (2SW>2Bz,RBz,R
L 4, s 4, 2 B.r+ B.r
- 2 5ot (Ar+ AL)? = 2h(2 = 4shy) (Ap + Ay =0
8 BZ - Bz BZ Bz _'_ BZ BZ
— iy (A Ap) =25 o (2 25, )P R
B,-B,—Bgp-B - B;B; 1 — BirB;
"‘(4—45%/(/)( L L2 R DR | i Dil g,L2 R J,R)
BZ,LBZ,L + BZ,RBZ,R

+(2 — 453, + 8siy) 5

(2.82)

where the PV terms are the terms like (Ag + A )(Br — Bg) or BBy, — BrBg.
From the expressions above, there are various PV terms which transform in
different way under the chiral group SU(2)g ® SU(2)r, in particular

(EL . B, — Bp - ER) isoscalar AI =0,
(2.83)

(Ar+ AL)(B. 1 — B.r) isovector Al =1,
(2.84)

(By.1Bs — By rByr) — (Be By — BorByr) isovector Al =1,
(2.85)

Iij(Bi’LBj,L — BirBjr) isotensor AI = 2.

(2.86)
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Let’s note that no terms like BrB;, — By, Br appear in the weak Lagrangian and
so we cannot have a term like this in the effective Lagrangian.

At the hadronic level we reproduce the effect of the chiral symmetry breaking
using the following quantities [35]

Xi =uru' Xt =ulru , (2.87)

where their transformations under the chiral group are found using Eq. (2.45).
Therefore we obtain

(X1) = (hd'LY)7(Luh®) = hu' (LTr;L)uh' (2.88)
(XE)Y = (huRY)7(Ru'h’) = hu' (R'r;R)uh' | (2.89)

therefore terms like NX: N and NX,N have exactly the same transformations
of By, and Bgi. Regarding the isoscalar terms proportional to X - X; — Xy - Xk,
reproducing the term in Eq. (2.83), it vanishes, since

So it is not possible to construct isoscalar terms in terms of X; or Xz but
they have to be constructed using PV terms like Nu,v*N [35] (see Appendix
A for a detailed discussion). As regarding the isovector terms in Eqs. (2.84)
and (2.85), using again the properties in Eq. (2.90), we see that they must be
proportional to terms like X7 — X3 or X} + X3. The isotensor terms will read
Z,;(Xi©X] — X5,0X%), with © one of the possible operators which transform as
© — hOAT under the chiral symmetry (if © = 1 the term is zero).

In order to obtain the most general effective PV Lagrangian we will use X}
and X% with the other building blocks introduced in Section 2.3 and 2.4 repro-
ducing the isoscalar, isovector and isotensor terms discussed above and satisfying
the properties of the violation of both parity and charge conjugation. We will
consider also PV contact terms. In Appendix A a detailed discussion of the terms
used in this work is reported. For a complete list of the terms up to order Q? see
Ref. [25]. The terms of the PV Lagrangian entering the PV potential up to @Q*
are the following [25, 35]

Mo
LO oy = 5 \/ﬁfﬁNXEN (2.91)
1

- hl
ES},’PV = TVN’y”UMN—FZVny“N(uMXﬂ

Bl
+ NN (X
1 R

= 3TN (XX + Xju X7) 9N
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R —
+ZAN (Xpu, Xy — Xfu, X)) wﬂv} (2.92)
£? _ Myxsy B e XN
*N,PV = _ﬁ - <X+>_E X ]
hl
- fl2< Nlhy, X2] “D”N+h.c.>+... (2.93)
£® = hON “N b hig X3IMN
*N, PV 72 Upy (x+) — 72 {uua +}7 (xX+)
h2
+ B;ZIabN(XRuMXR+XLuMX2)7“N(X+)+.... (2.94)

We will need also the following terms with only pionic degrees of freedom [25]

Egz,Pv = fihéanXi“”)
+ f2hy T X Su, Xt — (R — L)), (2.95)

Above the various parameters h2! are unknown LECs. The superscript Al dis-
tinguishes the constant which multiply the isoscalar (Al = 0), isovector (Al = 1)
or isotensor (AI = 2) terms. The magnitude of the costants h5! can be estimated
to be

AT~ Grf2~107T, (2.96)

which is the typical order of magnitude of the PV interactions. In the next
Chapters, the derivation of the PV potential from these interaction terms will be
discussed.



Chapter 3

From yEFT to potentials

In this Chapter we will present the construction of a nuclear potential, operating
in a non-relativistic framework, starting from the yEFT Lagrangian. In the first
Section we will present our conventions. In Section 3.2 we will use time order
perturbation theory to compute a T-matrix amplitude from the YEFT. Finally, in
Section 3.3, we will define the non relativistic nuclear potential by imposing that
solving the Lippmann-Schwinger (LS) equation in the non-relativistic regime, one
can obtain the same T-matrix calculated before from the field theory.

3.1 Notations

In this Section we briefly summarize the conventions used in the Thesis.

e We will use the natural system 2 = c = 1. We will work in a finite volume
Q) = L3, so the momenta are discretized
i 27'('711'

k. = 1
=T (3.)

where © = x, y, z and n; = 0,£1,£2,... . In the infinite volume limit the
sum over the discretized momentum values is substituted by an integral as

follows
> = Q/ (;:)3. (3.2)

e The creation and annihilation operators for pions and nucleons satisfy the
following commutation rules

(ks aly 3] = OkarOig s Abpsas by o} = Opprbasbi . (3.3)

where i = x,y, z are the (cartesian) isospin components of the pion and s,
t are the z components of the spin/isospin of the nucleon. The cartesian

23
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operators are defined as

s — (+) —+ a;c ) - CLE:—) — age_) - CL(O) (34)

sT \/5 ) Y \/i ) 2 k >
where agj), a§;’ and ag)) are the annihilation operators of 7%, 7~, and 7°
respectively. In the rest of the Thesis we will also use a = p, s, t to indicate

the nucleon quantum numbers.

The free Hamiltonian is [31]

Ho =Y E,(b o bpsi+dh s idpas) + > wyahaq; . (3.5)

p,s;t q,’L

with £, = \/M? + p? and w, = \/m? + ¢* are the energies of the nucleons

and the pions, respectively. d;s’t is the creation operator of the antinucle-
ons.

The pion and nucleon fields in interaction picture read

V) = 3 s (Bt )7 (1) (3
mi(x) = —(a e gl ie“’"’”) : (3.7)
Zq:\/%uq(l 1 @

where the Dirac spinors u(p, s), v(p, s), and the Dirac matrices v* and ~°
are defined as in Ref. [31].

3.2 Time ordered diagrams

In field theory, the transition probability from an initial state |i) to a final state
|f) is given by the matrix element (f|S|4), where S in the interaction picture
reads [36]

S=1+ i %/d%l...dﬁn T (Hi(xy).. Hi(x,)), (3.8)

where x = 2# = (t,x), T indicates the time-ordered product and H;(z) is the
Hamiltonian density in interaction picture. Usually H; is written as a sum of
terms given by products of fields and their derivatives

=Y N(@)..7m(x)...0,m;(x)...N () | (3.9)
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which is defined from the Lagrangian density discussed in the previous Chap-
ter. Working in Heisenberg picture, the Hamiltonian density H is related to the
corresponding Lagrangian £ via the Legendre transformation

H = 11,007, + NN — L, (3.10)
where
oL oL
I— Iy = 11
“ T 9(0m,) N (om,) (3.11)

are the conjugate momenta of pion fields and nucleon fields, respectively. Per-
forming the calculation subtracting the unperturbed Hamiltonian density and
returning in interaction picture it is possible to prove that (see Ref. [37])

H[(l‘) = —/;](ZE)—F"' y (3.12)

where the correction terms can be neglected since of high order in ChPT [37].
The Hamiltonian in interaction picture is defined as

H;(t) = /dx Hi(x), (3.13)
and is related to H;™ in Schrodinger picture by
Hi(t) = etHot f§Re—tHot (3.14)

where H is the free Hamiltonian. Integrating analytically over all the time
variables, Eq. (3.8) can be written as [38]

(f151i) = bpi — 2mo(Ey — E3) (f |T]4) , (3.15)

where the operator T (the so-called T-matrix) is explicitly given by

1
T — HSR HSR SR
I + I EO—H0+lE I
H’SR SR HSR . 3.16
O B T Hy1ie ! Bo—Hotie L T (3.16)

being e an infinitesimal positive quantity.
In order to obtain the Hamiltonian terms expressed in Schrodinger picture,
we must write the fields in this representation using

PSR (x) = e~ oty (1)t Hot, (3.17)
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In this way the fields of the pion and nucleon and their derivatives become

NR(z) — e | d;s,twp,s)e-m) . (3.18)

Z \/T( D,s tu p? )
ONT() = ) ﬁ (bp,s,tmp, $)(=ip)e® +
D,s p

o V(P S)(ipu)e"”“) : (3.19)

1 ) )
SR _ iq-x T —igqx
() = —<aq7ieq + ag € ) : (3.20)
S q
1 . .
8M7TSR(ac) = E —(aw(—z‘qu)e“’”c +al i(iqu)e_zq'm) ) (3.21)
palR /2wy E
and thus we can write the Hamiltonian in the Schrédinger picture (see Eq. (3.9))

Hi* =" / dx N (%).. 75 (x)...0, 7™ (%)... 0, N (x) . (3.22)

Inserting the expressions (3.18)-(3.21) in Eq. (3.22) and integrating over x the
interaction Hamiltonian can be written as
H, = HOTO { geNNOL_ eNN10  prerNN,02
+H7r7rNN,11 4 H7T7I’NN,20 4o ’ (323>
where we have eliminated the SR superscript because from now on we will work

only in Schréedinger picture. The term H;"™™ derives from an interaction term
of type v and it has n creation and m annihilation pion operators. Explicitly,

HETY = Q Z bT balbl az MSQ?&@ Opl+pypitps »  (3-24)
o) a1ab,az

HTNNOL \/_ZZbT batgi Mmoo Sqipar (3.25)
a’',a g

HTNNI0 \/_ZZZ)T o :r” M;TZZZIO Og+p'p > (3.26)
o qii

HTNN0Z 9 Z Z b 1baGgriraq.i MQZJ\QNZ 23 Ogt+a'+pp > (3.27)

oo q'i,

HFNNIL 52 Z bl/baaqui/aq,i MS’;]EJZ 2 Oq+p.g'+p (3.28)
oo q'iqi

rTNN20 o Z Z bl,b aq p ql MJZN;ZZ? Opaidip - (3.29)

o, @' ,qi
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In the following, we need also the three pions interaction terms,

H3™30 = LQ > al bl MITE g s (3.30)
q'".qi,pj

HP™H = % Z aT, ,aglam M;’fr,ip] Sq+q'p » (3.31)
q'i',qi,pj

o2 = % Z aT/ jirq.ilp,j Ms:'gpg O’ .q+p > (3.32)
q'i',qi,pj

HmY = % Z g i'Qq,ilp,; Mgf’gfp] 00,q'+q+p > (3.33)

q'i,qi,pj

(3.34)

where the quantities MCT:00 = pfmNN10 = pyeNNOL “ote are the so called “vertex
functions”. Appendix C reports the explicit expression of the vertex functions for
the PC', PV and TV Hamiltonian terms we need to determine the PV potential
up to order Q? and the TV potential up to order Q°. For each of them it is
possible to perform a non relativistic expansion of these functions in power of
Q/M ~ Q/A,, where ) is a typical value of the momentum, in order to control
the chiral order. For example from the term,

%Wy“fuﬂV , (3.35)

expanding the fields as in Egs. (3.18)-(3.21) we find

PC 3 ymNN,01 gA é}fTaﬁt Uq 5 U ga Ta 3/2
M., = = ——iq-0+ 0
eaa PTG \/2Efg V2E  2fr\/2w, T (@)
(3.36)
PC 3 ymNN,10 . gaA ft/Taé} Uq! 5 Ua Ta 3/2
M™ = 4422 = ——iq-o+ 0
o’ a,qa 2f7r /2(,{) /2EI g / E 2fﬂ- /_ q (Q )
(3.37)

where the superscript “PC” remembers that the vertex functions come from a
PC vertex.

Let’s now consider for example the calculation of the T-matrix element for a
scattering process NN — NN from an initial state |i) = |ajae) and a final state
|f) = |a)jad). To compute the matrix element (f |T'|i) we consider the expression
of T reported in Eq. (3.16), we replace the expression of H; with Eq. (3.23), and
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insert where necessary a sum over intermediate states, obtaining

oy oy | Hr|INT) (|INT| Hy|ovpavp) N

’ / _ / / <
(10| Tlonan) = (ayag|Hiaraz) + Z Eo, + Eoy, — Einr + i€

INT
= (b H" vy 0)

i Z <0/10/2|HCT’00’5152><5152‘HCT’00’CY10‘2>
EOél + Eoéz - E,Bl - Eﬁz + e

B1B2

n Z (a4 ab| HTNNOY B, By qi) (51 Boqi| HTV N g cg)
Eoy + Eo, — Eﬁl - EﬁQ — Wq 1€

B1P2qi
S (3.38)

where |qi) is the state of a pion with momentum g and type i. Making ex-
plicit H; as in Eq. (3.23), we can select the intermediate states which will give a
non vanishing contribution after the contraction of all the creation/annihilation
operators of the Hamiltonian.

Each matrix element, after using the creation/annihilation operator algebra,
contains only the vertex functions and Kronecker J expressing the momentum
conservation at each vertex. For example

. TN N,10 _ TNN,10 TNN,10
<61ﬁ2qZ|H ‘041042> - Mﬂlalqi 5q31+q,pa1552,a2 - Mﬁlagqi 5q31+q,pa2562,a1
TINN,10 TNN,10
- Mﬁzalqi 5Q[32+q7pa1 5,317042 + Mf)’gazqi 5Q[32+qapa2 5617@39)

where g, 0, = Opg, pay 0550y Otpy ta,» €6C. Using the d’s to eliminate either all
or part of the sums over the intermediate states, we have the final expression for
the T" matrix as a series of terms which can be represented by “time ordered”
diagrams. For example the third line in Eq. (3.38) gives

MTI'NN,Ol 7TNN,10 Mﬂ'NN,Ol ﬂ'NN,lO

/ / _ / /! _

ah,a2,kz,a” "o ,a1,—k1,a o ,a1,k1,a” " ab,00,—k2,a S (O/ o )
A +p2.pi+p, — Y1 2
A\ By — Bo, — w1 Foy — By —wy, ) P1HP2PIHES ’

(3.40)

which can be represented by the “time ordered” diagrams reported in Fig. (3.1)
There is one-to-one correspondence between the diagrams and the correspond-
ing expressions of the contributions to the T-matrix. If we consider the time
running upward, the various factors are ordered starting from the top of the di-
agrams and going “backward”. Every time we meet a vertex, we associate the
corresponding vertex function; between two vertices we have a “propagator” or
better an energy denominator which takes into account of the “flying” particles
in the intermediate state. For each vertex there is a §’s conservation of momenta.
After the elimination of the sum over the intermediate state momenta with the
d’s, it remains an integrations over a momentum for each loop. It’s important
to notice that these diagrams are not Feynman diagrams. Unlike the latters, we
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Figure 3.1: Graphical representation, using the time ordered diagrams, for the
one pion exchange in the NN scattering.

must consider here all time orderings: thus, for example, when we have a one pion
exchange we must consider the diagrams where the pion is emitted by the first
nucleon and absorbed by the second and the diagrams where the pion is emitted
by the second nucleon and absorbed by the first. This is due to the analytical
integration over time we have performed when we have written the S-matrix in
terms of the T-matrix.

The reason of using time-ordered diagrams is connected to possibility to iden-
tify the chiral order (QQ/A,)" for each of them. The order of a diagram depends
simply on:

1. the chiral order of the non relativistic expansion of the vertex functions;

2. the energy denominators. We note that typical momenta p of the nucleons
are much smaller than the mass of the nucleons, so we can treat them non
relativistically. Namely E, ~ M + % ~ 0(Q%) + O(Q?). Regarding the
pion energies, wy = \/m2 + k? ~ O(Q). Usually in the energy denominator
all the nucleon masses M cancel out and therefore we have two cases:

e if there are no pions in flight, the energy denominator has only nucleon
energy terms so it result of order 1/Q%.

e if there are pions in flight the energy denominator reads

1 1 AFE
—_—~—— (14— 4 3.41
AFE — Wi Wi ( + W * ) 7 ( )
where the term AE = E; + --- — Ey where Ey,... are the energies

of the nucleons and Ej is the initial scattering energy. In the Taylor
expansion the first term is of order @', the second of order Q° and
SO on.

3. The number of loops, or better the number of the sums over the intermediate
state momenta that remains after using the conservation §’s. Each loop at
the end will give a contribution of order Q3.
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For example let’s consider the OPE diagrams in the PC' case in Fig. 3.1. From
the expression in Egs. (3.37) and (3.36) the vertex functions at the LO are of
order Q%2 while the energy denominator is of order Q~'. Therefore the lowest

order of the diagrams is
1 1 1

From an analysis of the diagrams contributing to the PC potential it is easy to see
that the LO has order O(Q°) as calculated above for OPE. Also the Lagrangian
in Eq. (2.66) is of order O(Q") so the contact term in the PC' case contribute to
LO. The PV and TV LO is O(Q™') and it is obtained from the corresponding
PV or TV OPE.

3.3 The NN potential

As we have seen before, the T-matrix can be written as a sum over contributions
(diagrams) each of them of a given chiral index v. For the T-matrix of NN
scattering we have

T=> T, (3.43)

where T ~ Q™. In all cases the sum starts from a minimum value of n, n = 0
for the PC and n = —1 for the PV and T'V amplitude. Assuming that the non
relativistic nuclear potential V' has the same () expansion as the T" matrix,

v=> v v gr (3.44)

we can build V' from the T-matrix using the LS equation [39]. In fact, if we
consider the state |¢) to be a non interacting two nucleon state, i. e. the solution
of the free Schrodinger equation

(Ho — E;) |9) =0, (3.45)
and |¢) the NN state solution of the full Schrédinger equation
(Hy+V — E)|¢) =0, (3.46)
then we can write the LS equation as
1
= —_—V 3.47
) = 16) + eV 10}, (3.47)

where € — 07 have been inserted in order to eliminate the singularity. Defining
the operator Ty as Ty ¢ = Vb we derive the integral equation for Ty,

1
Ty =V+V———T, 3.48
v + EO — HO + 1€ v ( )
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which we can be solved iterating

1 1 |
Ty=ViV— 1t yay v V. (349
Ve Y e T He e, T By Hotic Bo— Hotic (3.49)

We will construct V' so

(103 [Ty| araz) = (ah0s |T| aray) (3.50)

order by order in the ) power expansion.

We will now explain how to perform in practice the power expansion of
(afddy |Ty| arag). In the calculation of the amplitude (oo | Ty | ag ) in Eq. (3.49),
we must consider intermediate states of only two nucleons, because the potential
couples only nucleonic degrees of freedom. Each term of the free Green functions

1
T B, — Hy+ic

then brings a contribution of order (). In fact, let us consider for example a
generic term like

Go (3.51)

(o s V) |B152) (812 v laras)
Eal + Eoé2 - E,Bl - Eﬁ2 + e .

(0| VGV ™ anag) = 3
5182

(3.52)

As discussed in Section 3.2 this energy denominator is of order Q2. Concern-
ing the matrix element of the potential, there is always a delta related to the
momentum conservation
1

(a1ah| V™ aras) = g (a1 v |109) Opt 1) o1 4pa: (3.53)
with v(™ of order Q™. In Eq. (3.52) we have two deltas: one fixes the value of
one of the two momenta of the sum, the second brings an overall momentum
conservation. Thus, one integration over one of the intermediate momentum

remains contributing to a factor of order Q3. Therefore the total order of the
term in Eq. (3.52) will be Q"*"*1. Similarly we obtain

VG VMGV Qa2 (3.54)
VOGVMG VGV Qi (3.55)

etc.
Let us discuss the case where the two nucleons interact through a PC' potential

plus a very small non conserving part X, which can be either PV or T'V. The

T-matrix calculated from the yEFT results in the following expansion in powers
of Q for T'=Tpc + Tx:

Toe = Toh+ TS +TA+TSh+ ..., (3.56)
Tx = TS +19+18 +7¢ + ... (3.57)
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We assume that V' = Vpe 4+ Vx, with the two having a similar expansion

Vee = VIA+V2+VED+TS 4+ (3.58)
Vx = Ve D+ v+ v+ 1@+ (3.59)

Using this form of the potential in Eq. (3.49) and neglecting the terms like (Vy)?
or of higher power we find

T = V4+VG)WV +VG) VGV + VG VG VGV + - --
= Vpe +Vx + VpcGoVpe + VxGoVpe + VpeGoVx
+ VpcGoVpcGoVrc + VxGoVpcGoVpe
b VpeGoVxGoVio + VeeGoVieGoVi + - -+ . (3.60)

Matching order by order the two sides of Eq. (3.60), taking into account the
“rule” Gy ~ Q, we obtain for the PC potential up to order ()3
0 0
Vie = Tpe _ (3.61)
1 1 0 0
Vi = TR - VRG] (3.62)

2 2 0 1] 1 0
ViR = T8 - [VidGoVEe] - VARGV

- [Vzgoc)Govzgoc)Govétg , (3.63)

and for the non-conserving part

vt o= 1Y, (3.64)
= 10 - [viPavid) - vRGVS (3.65)
o= 1l = PG - (ViG]

- -Vzgx_/l)Govzglc)v} - [V;QGOV)E_I)}

~ [ cwews] - [Videw )

- [ViRGVERG Y] (3.66)

For the study of the TV potential we will stop to Vr}?/). This formal expression
will allow us to calculate the matrix element (o} |V|ajas) from the various
contributions of the matrix elements (o} |T'| aycvs).

The generic amplitude (o)jaf |T|aas) has “direct” terms and “exchange”
terms. The first corresponds to the diagrams where there is the transition «; —
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with ¢ = 1,2, for example the first two terms in Eq. (3.40). The second represents
the transition o; — oz;- with ¢ # j = 1, 2, for example the terms we have denoted
with “(a] <> a})” in Eq. (3.40). Now we can write

(afay|V|arag) = /d3r1d37"2d37"1d3r'2 (afag|riry) (r |V |rir) (rire| )

(3.67)
where |ajap) is an antisymmetric state of two nucleons which can be projected
on r-space obtaining

1 eiPrritipere |81t1> |82t2> _ ¢ip2ritipirs ‘52t2> ’31t1>

VQ V2 ’

where |s;t;) is the spin-isospin state of the i-th particle. Substituing this equation

in Eq. (3.67) we find

(3.68)

(7'17’2‘041042> =

1 . .
haVima) = & [ @ndrarang [(rromsis )
X (rirh|V]rirs) (P22 51t0) | s0to))

() & 0/2)> . (3.69)

As in the T-matrix also in the potential matrix elements we obtain a “direct”
term and an “exchange” term. It will be sufficent to match the direct part of the
T-matrix elements to the direct potential matrix elements via Eq. (3.62)—(3.66)
to obtain the potential.
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Chapter 4

The PV potential

In this chapter we will discuss in detail the derivation of the PV potential up
to N3LO. In the first section the notation used in this and next Chapter will be
introduced. In the second and third Sections we derive the PV potential up to
N2LO and N3LO, respectively. In Section 4.4 we will regularize the divergences
coming from the loops and in Section 4.5 we will give the complete expression of
the potential in momentum space. In the last Section we will give the potential
in configuration space. This is a very technical Chapter, the reader could skip
Sections 4.2, 4.3 and 4.4 and refers to the last two Sections for the final expression
of the potential.

4.1 Notations

In this and in the next chapter we will use the following notation. The process
under consideration is the scattering of two nucleons from an initial state |p;p2)
to the final state |p|p}). It is convenient to define the momenta

p; +Pp;
= ]2 ], kj:p;'_pj; (41)
where p; and p3 are the initial and the final momenta of the nucleon j. Further-
more is useful to define

K;

1, 1 1,

—

o 1
oy = <§S§-|0|§Sj> o T = Dy = GHITISH) (4.2)

o; = (o), ;

which are the spin (isospin) matrix element between the final state s/ (t;) and
the intial state s; (¢;) of the nucleon j.

Because k1 = —ky = k from the overall momentum conservation p; + py =
P +ph, the momentum-space potential V is a function of the momentum variables
k, K, and K5, namely

1
(0} ay|Vpy|onag) = QVPV(’%K17K2)5p1+p2,p'1+p'2 ; (4.3)

35
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. . -
7/ //
P x
Cj < //
(a (b) (c) (d) (e)

Figure 4.1: Diagrams contributing up to N2LO to the PV potential. Nucleons
and pions are denoted by solid and dashed lines, rispectively. The open (solid)
circles represent PC' (PV) vertices.

where a; = {p;, s;,t;} and the dependence on the spin-isospin quantum number
is understood. Moreover, we can write

Vev (k, K1, Ks) = Vi (k, K) + VD (k, K (4.4)

where K = (K; — K3)/2, P = p; + p» = K; + K5, and the term V]gl;)(k;,K)
represents a boost correction to Vlg(‘j/M)(k, K), the potential in the center-of-mass
frame (CM). Below we will ignore the boost correction and provide expressions
for VS (k, K) only.

4.2 The PV potential up to N2LO

In this section we will give a detailed derivation of the PV potential from the
time ordering diagrams as discussed in Chapter 3. The diagrams contributing to
the T-matrix up to N2LO are shown in Fig. 4.1 in panels (a) — (e). The one pion
exchange diagrams (a) give a contribution to the T-matrix of order Q! (that
will be our LO) and then other contributions of higher order coming from the
successive orders of the NR expansion of the vertex functions £V M™VN:01 and
PCA™NNOL - The diagrams (b) represent a PV contact interaction of order Q;
also the diagrams (c¢) with the PC contact vertex and one pion exchange give
a contribution of order (). The triangle diagrams (d) with a PC 77t NN vertex
is of order (), while if we consider the PV mw NN vertex, the diagrams will be
of order Q?, so it will be considered in the next section. The box diagrams (e)
includes contribution of order Q° and Q; as we will see the contribution of order
Q" is cancelled exactly by the terms Vlg‘_/l)GOVgg + Vlg(gGong‘_/l) in Eq. (3.65).
We don’t consider vertex corrections or where there are dressed propagators as in
panels (1), (2), (3) of Fig. 4.2, they give simply a renormalization of the coupling
constant hl and of the masses, see Ref. [25] for more details. For our aim it is just
sufficent to say that the formulas below are given in terms of the renormalized
(physical) LECs and masses. The contribution of diagram (4) is cancelled by
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4 oy
' BN I .
) ) s (\&/ ) % -
A 7/ 7/ 7
. e -
(1) (@) (3) (4)

Figure 4.2: Other diagrams that give contribution to the N2LO. These diagrams
contribute to the renoramlization of the LECs (panels (1), (2) and (3)) or give a
vanishing contribution to the potential (panel (4)) due to the subtraction terms
given in Egs. (3.64)-(3.66). Notation as in Fig. 4.1.

1 2 1 2 1 2 1 2
(at) (a2) (a3) (a4)

Figure 4.3: Time ordered diagrams that contribute to the PV OPE. Notation as
in Fig. 4.1.

the last three terms of Eq. (3.66). Therefore Vpy = Vlg;/l) + Vlgg. The detailed
calculation of each diagram is given in the next subsections.

4.2.1 One pion exchange

The complete set of time ordered diagrams that contribute are shown in Fig. 4.3.
Using Eq. (3.38) from these diagrams we can derive the following expressions to
the T-matrix

1 1 NN,01 pPC NN,10
T 1 + 2 — _ <PVM7TI - 7‘[77/ [y
(a a ) 0 % EO — (E1/ + Eg + Wq) aha,qj afai,qj
PC 1 ;xNN,OL PV 7 ;xNN,10
+ Maéag,qj Ma’lal,qj>5P1+P27P/1+P/25—kyq ) (45)
1 1 NN,01 pC NN,10
T(a3+ad) = = (PVM“, OL PC NN
(a a ) 0 g EO _ (El + By + Wq) ol ,qj abas,qj

PC 3 ymNN,01 PV 3 ymNN,10
+ Ma’lal,qj Ma’zag,qj >5P1+P27P/1+P/2 5"’:‘1 ’ (46)
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where Iy = E,,, Eiv = E,;, etc. In the energy denominator in Egs. (4.5) and (4.6)
we have neglected the term +ie because at low energy AE < w,, where AE =
Ey—FEy —E, or AE = Ey— Ey — Ey, and since w, > m, the denominator cannot
vanish. Above, Fy is defined as the initial scattering energy, Fy = FE; + FEs.
Morover, the conservation of energy enforces Fy + Fy = Ey + FEo which is the
final energy. In the CM we have also E; = Fy and Ey,=Fy, so in the present
case AF = 0. Integrating over g we have finally

1 1
T(al +a2) = (7Y MO POMEN G+
Q W oo J oo, —kj
PC 3 ;mNNOL PV 3 ;aNN,10
ahoo,—kj afai, kj>5P1+P2,P/1+P/2 ’ (47)
11 NN,01 NN 1
T(a3 + ad) = (7Y M +
ka oo, kj abag,kj
PC 3 ;7NN,0L PV y reNN,10
Moeloq kj Ma2a2 kj)5P1+P2»P'1+p'2 ) (48)

where the sum over j is implied (remember that k; = p| — p1). We can now
use the expressions for the vertex functions given in Appendix C and obtain the
various terms of order Q™. The lowest order (') is a non relativistic (NR) term
which reads

_ ! k-
TGONR — a) = 24 (7 ) Tl )

2v2fn W

From Eq. (3.64) we can derive the expression v};.” = T](D}D

The contributions to the T-matrix at order Q° and ()? vanish. In fact, at
these orders, the contribution of the time ordered diagram (al) cancels out the
contribution of diagram (a3) and analogously for diagrams (a2) and (ad). At
order Q' we obtain the term

(4.9)

_ 2m?2 8v/2m?
T0)(REN — ¢) = TCD(NR) . (215 — das) = = 7 (hk—hd)| . (4.10)
which simply gives results to a renormalization of the LECs hl, and the term

gAhl 1 1 )
2\/_f7r4M2<Tl XTQ) w,%[—ll’LK k(0'1+02)
+k - Ul(kXK)02+k02(kXK)01],<411>

TY(RC — a)

which can be interpreted as a relativistic correction (RC). To obtain the po-
tential we can now use Eqs. (3.64)-(3.66). The subtraction terms in Eq. (3.65)
will be effective for cancelling the Q° contributions of diagrams (e) of Fig. 4.1
(see later), and since T = 0 we have V(® = 0. From Eq. (3.66), we obtain
va( ) =T 1(31&(@), since the subtraction terms are effective only to cancel (par-
tially) the contributions of the diagrams with only nucleons in at least one of the
intermediate states.



4.2. THE PV POTENTIAL UP TO N2LO 39
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Figure 4.4: Time-ordered diagrams with a PC' contact term and a exchange of a
pion. Notation as in Fig. 4.1.

4.2.2 Contact terms
From the diagram (b) in Fig. 4.1 we obtain

1

T(b) = =2 "V MY
1

0 o, a1a§a25P1+P2,p/1+p/2 ) (412>

where PV M is given in Eq. (A.40) of Appendix A. The T-matrix derived from
this contribution is

1

T (h) = o3 (Crilen X 02) K+ Colfy - B)i(o x 09) - K
X
+C5(7) X T2).i(01 + 032) - k + Cy(11, + 72.)i(01 X 09) - k
+C5Iab(7'1)a(7'2)b’i(0'1 X 0'2) . k:] . (413)

Also in this case from Eq. (3.66) we find V]g/)(b) = Tlgl‘;(b).

The diagram (c) in Fig. 4.1 is representative of the three kinds of time ordered
diagrams with a contact term and a OPE shown in Fig. 4.4. However all these
diagrams give a vanishing contribution after the integration over the loop variable.

4.2.3 Two pions exchange: triangle diagrams

The terms H'GoH"'GoH?® + HYGoHM G H"Y + H? Gy H Gy H® in the expres-
sion of the T-matrix give 12 two pions exchange (TPE) diagrams, six of them
given explicitly in Fig. 4.5, plus six other diagrams with the 7t NN vertex at-
tached to nucleon 2. From these diagrams we obtain the following contribution
to the T-matrix:

PVMWNN,Ol PC 7 smtNN,11 PC 7 s7NN,10
T(dl) _ Z ab8,q252 ofa1,q2j2q171 Baz,q1j1
(Eo — (B + Er + wg))(Eo — (B + Ev + wg,))

q1j1,92528

X Opy+ps,p,+P, Oas+1/ .q1+1 Opg+a1,p
PC’MWNN,OI PC 7 g7t NN,11 PV 3 ymNN,10
ahB,q252 o o1,q2j2q171 Boaz,q1j1

T(d2) = Z (Eo — (Es+ By +wgq,))(Eo — (Eg + Ev + wg,))

q1j1,92728
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Figure 4.5: Triangle diagrams that contribute to the PV TPE. Notation as in
Fig. 4.1.

X Oy +p2.p + 1 Oqa+p a1 +p1 Ops+a1,p

vawNN,Ol PC 3 smNN,01 pc77mNN,20
ah3,q252 Baz,q11 afa1,q2j2q151
T(d3) = E 2
q171,92528

(Eo — (Ev + Ep + wg,)) (Eo — (Ey + By + wg, +wy,))

X5p1+p2,p’1+p’2 p1,91+q2+Dp; YPs,q1+p2

PC ) ymNNOL PV g mNN,01 PCMWWNN,QO
T(d4) = >

abB,q2j2 Boz,q151 aha1,q2j2q151

(Eo — (Bv + Eg + wg,)) (Eo — (By + By + wg, +wy,))

q171,92528
X5p1+p2,p’1+p’2 P1,91+q2+p} YP3,q1+Dp2
pCrmNN.02 PV 1 smNN,10 pC 7 ;mNN,10
T(d5) = E ol 01,q1519252 ob8,q272 Bas,q1j1
q171,92528 (EO N (Eﬁ + El + wa))(Eo B (E2/ + El + Wa + WQQ))

X5p1+p2,p’1+p’2 p1+q1+q2,p) Yps+q1,p2

pcMWWNNpQ PC MwNN,lO PV 3 s7NN,10
o 01,q151q272 ah3,q252 Baz,q1j1
T(d6) = > :

(Eo — (B + By + wq,)) (Eo — (Ba + By + Wy, + wy,))

q171,92528
X5P1+P2,P'1+P/2 p1+q1+92,01 YPs+q1,p2 » (4'14>
where
PC mrNN,02 PC 7N N,02 PC 7N N,02
M, C = ; 4 k S (4.15)
a7(1,41719272 Q1 (1,41719272 Q(1,42729171
PC_WWNNQO PC 7w NN,20 PC 7w NN,20
M, o = e i T i (4.16)
Q) a2,91719272 a;01,91719272 a;01,927249171

since we have two ways to contract the creation-annihilation operators in the T-
matrix elements. Above [ indicates the quantum numbers of the nucleons in the
loop. We can neglect again the term +ie in the energy denominators. Expanding
non relativistically the energies of the nucleons, summing over 3, 71, jo and using

the vertex functions M™NN.02 - JyrrNNIL - e NN20 oiven in Eqgs. (C.24)-(C.26)
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of the Appendix C, at the lowest order we obtain:

1. gAhl Wy, +w
T(dl + d2> = —1 l (Fl X 7_"2)2 u(ql — q2)0'2
02 32v/2f3 ,,Zq: Wi Wi,
X5P1+p2,p’1+p’25q2+p’1,q1+p1 ) (4-17)
1 . gaht Wgy — W
T(d3 + d4) = —1 s (’7_"1 X 7_"2)2 £ n (qQ + q1>0'2
Q2 32\/§f7‘:’ quqQ ngwm (Wg, + Wgy)
X5p1+p27p’1+p’2 p1+q1+q2.p) (4'18)
1 . gaht Wy, — W
T(d5+d6) = =51 (T X ), £ L (@2 +qi)o
Q2 32\/2f3 QIZ% We, Way (We, + Wey )
X6p1+p2,p’1+p’26p17q1+q2+p’1 : (4‘19>

We can redefine g; and g, to obtain the same ¢ in the different expressions and
then we have

1 . gah. 1
T(dl+ -+ db) Sl = (T X ). (q1 + q2)02
02 8\/§f7§ P Way Wey (Wg, + W)
X5p1+p2,p’1+p’25k7q1+¢,72 . (4-20)
We note that this contribution is of order (). Let us define
q1+q
Q= 5 ) 9=49: —Qq2; (4.21)

and perform a change in the integration variables

S~ [ o 422

q1,92

This type of variable change will be used frequently in the integration of diagrams
with one loop.
Thus our integral becomes, after exploiting the delta function g q,+¢,:

1 gaht . .. / d3q 1
T(dl+ -+ d6 A Lik -
(@1t +db) Q28v2f3 T )tk o (27)? wiw_(wy +w-)
X O+ po,p) 4P} (4.23)

where wy = \/(q +k)® + 4m2.
Summing also the contribution of the other six diagrams, the total contribu-

tion from the triangle diagrams is

d3q 1

2r)Pwiw (wy +w_)

hl
Th(d) = P27 (7 x 7).k - (01 + 02) / (4.24)

- 8V2f3
From Eq. (3.66) we find Vlgg(d) = T](Jl) (d).
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o ) , ) , ) , ) ; ) Pr
~02 / / q, ~ e q;™>
= xg qiy/ q%( P 7 . 9z I
v v
/q1 /q1 /q1 /q1 /v/ qlv/
1

1 (e1) 2 1 (e2) 2 1 (e3) 2 1 (e4) 2 1 (e5) 2 1 (e6) 2
Figure 4.6: Box diagrams that contribute to the PV TPE. Notation as in Fig. 4.1.

4.2.4 Two pions exchange: box diagrams

Let’s consider the terms H'GoH"GyH Gy H'"° and H"G H"YGoH"GyH' in
the expression of T-matrix. These terms give 48 diagrams represented by the
diagram of type (e) in Fig. 4.1 plus all possible time ordered. A representative
group of them is shown in Fig. 4.6 where we have depicted a single time-ordered
for each type. Moreover for each diagram, one needs to consider the possible
diagrams taking into account all possible positions of the PV vertex.

The diagrams in Fig. 4.6, approximating E,, ~ M, correspond to the following
expressions:

T(el) = é Z !

W Wy (Wgy + Wey )

q171927207
PC 7tNN,01 PV 7TNN,01 PC 7TNN,10 PC 7TNN,10
[ Mo/lﬁ,qwé a5Y,q151 M7a27Q2j2 M/3011,Q1j1]
X5Q1—q27p’2—p25p5+q27p’1 5p7+Q1 Py Vp1+p2,p)+ph

1 Z —1
Tle2) = 2 w2 (we, + W)
qij1q2j2By N
PV 3 yTNN0L PC ) mNNOL PC mNN10 PC j mNN,10
ahy,q151 Yo2,9272 oy B,q2j2 Baa,q11

X (5q1 +q2,p5—p2 517[3 Pi+a2 5p7+Q1 Db (5p1 +p2,p} +D)

1 -1
T = —
(€3) Q2 Z 2 (th + qu)

. ’ W
qij1q2j2By 1

PV 7wNN,01 PC 7wNN,10 PC 7TNN,01 PC 7TINN,10
[ Maé%qul Maﬁﬁ,qzjz szmh Mﬁahqm]

X 5q1 —q2,p5—P2 5175 +q2,p1 “py+q1,05 Vp1+p2,p| +D)

T(ed) = % > !

Way Weso (wa + qu)

q1j1q25287
PV ) fmNN,01 PC 3 mNN0L PC praNN10 PC preNN,10
ah7v,q2j2 yaz,q2j2 o 8,q252 Bai,q151

X 5«11 +q2,p5—p2 5pa D1 +aq2 5pw,p2 +q1 6p1 +p2,p| +D)
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(4.25)

For the diagrams (e5) and (e6) the calculation is a little bit more complicated
because we have a pure nucleonic intermediate state. The expression are the
following

1 1
) = @ 2. (57 B v )] (B (B ¥ By T o)

q1719272,87
1
. 5q1+q2,p’2—p25pg,p’1+q25p7,q1+p25p1+p2,p’1+p’2
Ey— (Es + E,) + ie)

T

PV 3 y7NN,01 PC 7 ;7NN,10 PC 1 ;rNN,01 PC 1 yrNN,10
[ Ma'g%tnjz Ma’l,@,tmh Mvazmjl Mﬁal,thjl J

(4.26)

1 1
6O = @ 2 B (B Bt ) (B (B 7 B 7o)

q1j1q92j2,8Y

1

X (Eo — (EB T E) + ie) 5(11—(12723'2—172517,6-%-(1271)/15Pw,q1+p25P1+P27P'1+P/2
ol
PC 7TNN,01 PV 7TNN,10 PC 7TNN,01 PC TN N,10
[ Moc’lb’,qzjz ayy,q252 Mvamqul Mﬁamhjl (4'27)

Note that expanding the vertex function at the leading order, T'(e5) and T'(e6)
would be of order @Q°. In one intermediate state there are no pions, therefore
we cannot eliminate the term +ie because Ey — (Es + E,) could be zero. To

obtain Vpy, we must subtract the contribution of ng‘_/l)GgVIgg + Vlg(gGOV;‘_/l) as

given in Eq. (3.65). The matrix element (alxal/\Vlg?)GOVIgOC”alag} gives a series
of contributions, two of them are

T(e5) = é >

q1719272,87

PVMﬂ-NN,Ol PCMﬂ'NN,lO PC A s7NN,01 pcC 3 s7NN,10
aby,q252 o} B,q252 yoz,q151 Bat,q151

Wq Weo (EO - (Eﬂ + E’Y) + ZG)
X5q1+q2,p’2—pz5p5,p’1+qz5pmq1+p25p1+p2m’1+p’2 ) (4'28)
PC ) mNNOL PV ) mNN10 PO j raNNOL pC g mNN,10
T( 6,) 1 Z o) 8,q252 a5v,q252 Yo2,q1 1 Bai,q1j1
e - -
Wq Wqy (EO - (EB + E’Y) + ZE)

QZ
q1j192j2,8Y

(4.29)

XéQl_QZ:pIQ_ID 5p5+q2,p’1 Dr,q1+P2 5p1+p2,p’1+p’2 :

As we can see, these corrections have the same vertex function product but
differ in two of the energy denominators. Therefore the cancellation of the con-
tribution (e5) and (e6) is not exact. Assuming however that AE, = Ey— Ez— E,
and AFy = Fy— E, — Ey/ are of order Q?, we have AE; < wg,- Therefore we can
use the following Taylor expansion of these energy denominators,

AFE; }

qu

Lo [1 +
AE; — wg, Wq,

(4.30)
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Figure 4.7: Box diagrams that summed with the diagrams in Fig. 4.6 permits to
obtain a simple form for the T-matrix. Notation as in Fig. 4.1.

In summary, the subtraction of the terms (e5) — (e5’) reads

1 1 1

T(esb—ed) = |... .
@) = b B o B8 ) (B~ B+ By 449
1
W W, (Eo — (B + Ey) + @f)l
1 1 AEl AEQ 2
=[] (22 22) vo@),
wqwe, (Bo — (Eg + Ey) +i€) \ wy, Was

(4.31)

where [. ..] indicates schematically the product of the vertex functions. Practically

the final contribution is due to a “recoil” of the nucleons in the intermediate states.
Note that the contribution to Vpy is of order (). As stated before no contribution
of order Q° is found.

Considering also the corresponding contributions of the 6 diagrams where
a1 = a9 and oy = ayw but where the PV vertex remains on the line of the
nucleon on the right (diagrams (el)-(e6) in Fig. 4.7), the product of the § and
the vertex functions can be reduced to the same form as for the diagrams (el)-
(€6). In particular

_ 1 L
T = @ 2 BB B o) B B B )

q1j1q9272,8Y

1

X K (5 + —_m + 5 _ 5 + /+ /
(EO _ (E,B + E’y) + ZE) q1+q2,p2—Py " P3,P1 1741~ P~,P2—q1 Y P1tP2,P1 TPy
PC 7TNN,01 PV TNN,10 PC 7TNN,01 PC TINN,10 (4 32)

o} B,q252 a2'y,q2j2 Bat,q1j1 yaz,qij1| .

considering also the contribution coming from the subtraction term Vlg;,l)GOV;%

T(e5) = % >

q1j19272,8Y

PC A smNN,01 Py 2 ;7NN,10  pC 2 s7NN,01 pcC x ;eNN,10
o 8,q272 a2'vy,q252 Ba1,q1j1 Yaz2,q1j1

WqWe, (Eo — (Ep + E5) + ie)
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Xéqﬂrqz DP2—p 5PB7P1+¢115P%P2*(115P1+p2,p'1+p/2 ) (433)

we see that the product of the vertex functions is always the same. Therefore

T(E5) = T(e5) — T(e5') + T(e5) — T(e5)

N [ 1 AFE, + AE, { 1 1 }
- Way Wqsy (Eo — (Es + Ew) + ie) We W ’
1 1 1
= [.] [— + —1 , (4.34)
WqWey [Wq  We

since AR, +AFE, = Ey — Eg — E, and the “dangerous” denominator cancels out.
The same happens for (e6), (e6') and (e6), (e6’). Including also the contribution
of the diagrams (e4) and (e4) we find

— 1 2 W2+ Wy Wy, + W2
T(E5+ FE6+ed+ed) = 0 Z (ql =g qz)

W Wy \ Wa, Wy (Wq, + We, )

q1j1q252,87
X5Q1+q2 —k5ma D) +az 5177 q1+p2 5p1 +p2,p}+p}

any, 112]2 o) B, Q2]2 Yoz, q1J1 Bai,q1]1

(4.35)

Similarly the vertex functions for the diagrams (el), (e2), (e3), (el), (e2) and
(€3) can be summed up to obtain
— 1 2(wy, + wgWe, +w7,)
T(el+ - +e3) = — - &
(el 4 +ed) » Z Wz wa, (Wgy + we, )

q1j1q252,687 a2

X Ogy +q2,p—p2Ops 0 +420p+a1,0,0p1 +p2.0, +9)

PV mNN,01 PC 4 sm7NN,01 PC 3 sy7NN,10 PC 5 ;smNN,10
X |: MOé 57,9171 M’Yaz Q252 M o B,q252 IBQI:QIjl]

(4.36)

Doing the same procedure for all the other possible time ordering diagrams, and
integrating as in triangle diagrams we obtain the complete contribution of dia-
grams of type (e) of Fig. 4.1 at order Q.

hlga 9% / d3q wi—i—erw_ + w?
2V2f-Af2 ) (27)° wiw? (Wi +wo)

{=2i (1, +7.)[q - 01(q x k) 090 —q-02(q X k) - 71]
—2i (T, — To,) [q-o2(q X k) - 01+ q-01(q X k) - 03]
+i(m x ), (K —¢) k- (o1+02)}.

Vile) =

(4.37)

We remember that in this case we have alredy subtracted the term VPV GOV © 4
VPC’GOVPV Y in Eq. (3.66) and therefore we have obtained directly the expression
of ngi,)(e).
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4.2.5 Vertex corrections and dressed propagators

The diagrams in panels (1),(2) and (3) in Fig. 4.2 are discussed in Ref. [25]. To
be completed, here we report the final results

1 1 2 g2 200 —1 m2
Té\;(l -2-3) = _Tlgv )<NR) [gf—gc]w + 4—f2J01 - 2647
1—10« 1
+2—‘]C2J01 - 4_PJ01:| 9 (438)
where
dq q2m
/ (2m)3 wy ( )

From Eq. (3.66), we obtain V) (1—2—3) = T4 (1—2—3). All these contributions
can be reabsorbed in the term V};”(NR) by a renormalization of the LEC hl.

4.3 The N3LO potential

In this Section we calculate the components of the PV potential of order Q2. The
diagrams that give a contribution to this order are those reported in Fig. 4.8.
At this order two new types of diagrams appear: the “bubble” diagrams and the
three pions exchange diagrams (see panels (f) and (g)). We have contributions
of order (Q? also by the triangle diagrams in three ways: from NLO terms of the
vertex functions (diags. (h), (i), (j)), from NLO terms in the expansion of the
energy denominator (diag. (1)) and from the diagrams with the PV 7r NN vertex
(diag. (k)). From the box diagrams we have contribution from the NLO term
of the vertex functions (diag. (m), (n)) and energy denominators (diag (o), (p),
(q), (r)). As already discussed in Section 4.2.1, the one pion exchange diagrams
do not give any contribution at this order.

4.3.1 Bubble diagrams

Let’s consider the term HyGoHyo in the expansion of the T-matrix. It gives the
diagrams of type (f), explicitly depicted in Fig. 4.9. The expressions we obtain
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Figure 4.8: Time ordered diagrams that contribute to the N3LO T-matrix. The
vertices depicted by a square surrounding a circle indicate the NLO terms in
the expansion of the vertex functions and the crossed circle (square) on a pion
propagator indicates the NLO (N2LO) term in the energy denominator expansion
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|
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@ X L 8
Sy N v
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X
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given in Eq. (4.30). For the other notation see Fig. 4.1.

Figure 4.9: Time ordered bubble diagrams that contribute at N3LO. Notation as

in Fig. 4.1.
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for the first two diagrams are:

2 1
T(fl) = _ﬁ E T 5p1+p2,p’1+p’2 p1+qi+q2,p, X
; ; w‘]l wth
q1j1q2j2
PCMTFTI'NN 02 PV 3 yrmNN,02 + PC p y7mNN,02 PVMT(‘ﬂ'NN 02
a1ay/,91J192J52 a209/,91J192]52 a1a4/,92752491J1 a209,q91J19272 |
(4.40)
2 1
T(fQ) = 02 E -w +w_5p1+p2,p’1+p’2 p1+q1+g2.p, X
W q2
q1j1q2j2
PV a s N N,02 PC 3 y7mNN,02 + PV 3 s N N,02 PC 3 y7mNN,02
a10q/,91j192J2 Q2057,91J19272 a10q7,92J2q171 Q20iy,q1J19272
(4.41)
Making explicit the vertex functions we obtain
T(f1) = ——(2p! 21 Yo Yo
(1) = —157han. +hy "T1Tan) X
fx GLirgaiz WaWay (Wey + Wy, )
(@2 —q) - 0'25p1+p27p1+p’ Oq1+q2.—k (4.42)
1 Wy, — W,
_ E : q1 92
T(f2) = 16 4 <2hA7—22 + hA[ 7-1b7-2b) X
Ix S Wa1Wes (wqg + wgy )
(q2 - QI> - 010, p1+p2,p| +Ph 6q1+q2, : (4'43>

From these expressions it is easy to obtain those for the other two time ordering
diagrams (f3) and (f4) of Fig. 4.9 exchanging k — —k, 1, <> 75 and o <> 0.
Summing up all together, the various contributions cancel out and therefore these
diagrams do not give any contribution to VP(,%).

4.3.2 Three pions exchange

The expansion in terms of pion fields of the term given in Eq. (2.95) of the YEFT
Lagrangian, give two terms proportional to 7 (see Eq. (B.22)). Expanding the
pion fields in terms of the creation/annihilation operators, the vertex function
proportional to h}_ cancels out. The other term gives, after reordering the cre-
ation/annihilation operators, a Hamiltonian term like

16 h3e 17 (g2 - q3)
H37r 12 Z T 3 5

a

QS/2 q1j1 %9272 q353 ¥ 6j1j2j3—8w R q17q2+q35
q17192j29333 4 q1%q2%gqs3

P1+p2,P1+Ph
with

I =(-1,-1,2). (4.44)
This Hamiltonian term contributes to the scattering of two nucleons via diagrams

of type (g) of Fig. 4.8. However, after summing over all possible time orderings,
the final contribution vanishes.
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4.3.3 Two pions exchange: triangle diagrams

As discussed at the beginning of this Section, the N3LO contributions of these
diagrams come from different origins.

Diagrams like (h) take into account the NLO term of the tTNN PC' vertex
functions, given by

PCys7NNOL _ 94 T .
Mitoar = ~3p 31 oy K 7 e
and .
PC ) rNN10 _ _9A I jw,K o (4.46)

oa,qj 2f71-M 2wq

where K = (p+p')/2.

Substituing the LO term of the tNN PC vertex function in Eq. (4.14), with
the second order given in Eqgs. (4.45)-(4.46), and using the Fierz transformations
(see Egs. (A.39)), we obtain

_ hzga
32v2f3M
3
1
X / (dq , (4.47)

27)3 (g% + 4m2)

, 1.
Viv(h) = [i(riz + )k - (01 % 02) = Si(m X )k (01 + o)

however this term can be reabsorbed in the C'T" potential given in Eq. (4.13). It
consists in fact in a renormalization of the contact LECs C5 and Cj.

In diagrams like (7) of Fig. 4.8, substituting the LO part of the 7t NN PC ver-
tex function with the NLO term (see Eqs. (4.45)-(4.46)) we find two contributions
to the potential: a term where the LEC ¢4 appears,

,C4h}rg,4 d’q 1
"2v2r /
(q-o1(q x k) -09)m9, — (q-02(q X k) -01)71.] , (4.48)

Vil = —

(27)3 w?w?

and a second term coming from a relativistic correction of ¢ M™™ NN

@) oy hrga dq 1
VPV(22> = _8\/§f7§M (27)3 wiw% [2[(1{ q)(q-o2)11. — (K - q)(q - 01)72.]

—i[(q-o2(k x1)-q)T1, — (q-01(k X 02) - @)T22] . (4.49)

The contribution of diagrams (7) of Fig. 4.8 is calculated substituting the LO part
of the tNN PV vertex with the NLO one. We obtain the following expression

d3q 1
(2m)3 (¢* +4m2)

, h,, :
VL) = P (1 x )ik - (01 + o) / (4.50)

- 32f2
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which again can be reabsorbed by a redefinition of the C3 LEC.

To obtain the expressions for the diagrams (k), one needs the vertex function
PV M NN given in Eqgs. (C.30)-(C.32). The final result is

2 [ dq 1
vy - _9a / q
pv (k) 82 | (2n)Pwin?

{2h}4[(q o1(q X k) 03)T2. — (q - 02(q X k) - 01)71.] +
WAl rma[(q - o1(q X k) - 02) — (g - 02(q x k) - 01)]} , (4.51)

where hl and h? are the two new LECs that appear explicitly in IV M VN,

In the triangle diagrams (I) we use the first and second order terms in the
expansion of the energy denominator given in Eq. (4.30). Remembering that
E; ~ M + p?/2M we finally obtain

1 3
) B hrga d’q 1 . ' B
Vey(l) = 16\/§f7§]\/[ (27)3 wiw% [4<K q)q - (0172, — 0371;)
. k‘2 2
+(7m XTz)ZZk'<O'1+0'2)< 5 ¢ >} . (4.52)

4.3.4 Two pions exchange: box diagrams

As for the triangle diagrams, the first N3LO contribution is obtained by taking
the NLO vertex functions like in diagrams (m) and (n). Some of the diagrams to
be taken into account are those shown in Figs. 4.6 and 4.7, diagrams (el) — (e6)
and (el) — (e6). We have to take into account again of the subtraction of terms
(e5), (e6'), (e5') and (e6). Inserting the NLO vertex functions in diagrams (e5)
and (e6), both for the PV vertex and for the PC vertex, the combination of ¢
functions and vertex functions take the same form as in (¢5) and (e6) but with a
different sign. Therefore Eq. (4.34) becomes

— 1 AFE, — AE 1 1
T(eb—eb +eb—eb)~|...] . & {

— |— + —| .(4.53)
W W, (Eo — (B + Ey) +i€) [wy, qu}

Using the condition that in the CM the difference AE; — AE; = 0 we find that
the contribution of these diagrams vanishes. This condition is valid for all the
time-ordering diagrams of this type, so they don’t give any contribution at N3LO.
Also the N3LO contribution of diagrams (e4) and (e4) cancel out.

The only contribution we have from the NLO vertex functions comes from
diagrams like (el), (€2) and (e3) of Fig. 4.6. Taking into account the NLO PC
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vertex we obtain

hlg? d>q 1 ¢*+ 3k?
V(2) — nIA A —ik- /
W) = g X (ke [t
dq 1
-0y (K x k) v+ eeon (K k)l [ s ) +
d’q (K q)q- (o1 — o) dq 1
(712 +72 >< 8/ (2m)3 wiw? * (e 02)/ (2m)% wiw?
i [ g o< K)o 0+ oula < K) - ))] (454)
(27r)w+w 4o\ 1 o2 ' ' '
In the same way taking into account of the NLO term of the PV vertex we obtain
3 3
o 4 [
Vn) = i (3 +2mm) - ghzvlbmm)z / G E @ olax k) o)

g 1

27} Bt ——5(q-o1(g x k) -02)7

—<q-az<qu>-m>J—2z’h1V/(
iy i
(27)3 w2w?

(4.55)

—(q-o3(q x k) - 01) T +ihi (11 X 7).k - (01 + 0'2)/

The second N3LO contribution of the box diagrams comes from the diagrams
(0), (p), (¢) and (r). We need to compute

2 2 -1 2 2 -1
VS = T = VR GoVER = VERGo VY
1 0 1
—VE)GoVED — VEAGoVEY) (4.56)

where VIEZC) and vﬁ) in this expression are N2LO contributions coming from the
PC and PV OPE terms due to the intermediate states.

Let us explain in detail this issue. For example in Eq. (4.56) we need to include
the matrix element (57|V1§263|a1a2> where § and 7 are the quantum numbers of
two-nucleon intermediate states. Now we have to sum over all values of pg (for
example p, is fixed by momentum conservation) and therefore we cannot assume
FEy 4+ Ey = Eg+ E,. Let us consider again from the beginning the diagrams
contributing to the OPE between states |ajag) and (57|. They are reported in
Fig. 4.10, where V4, Vi, V4 and V5 are the LO vertex functions. So we obtain:

ViVa VoV )
Okpo—mp - 4.57
_Eﬁ_wk+E1_E7—wk k.pg—p~y ( )

Vpo(OPE) = ( i

Now at LO the product V5V is equal to V7 V5. Expanding the denominator up to
the second order

E1+E,3—E2—E7+(E1—EB)2+(E2—E7>2+ )
Wi 2w? )

Vpe(OPE) = V{%(OPE) (1+
(4.58)
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Figure 4.10: Diagrams that contribute to the PC' OPE. Note that the final states
here are “intermediate” states 5 and . Notation as in Fig. 4.1.

where Vlgoc)(OPE) = —QV;—ZQ. Assuming as usual that % ~ @, the Q? term is
given by
(Er — Bg)* + (B» — E,)?

V2(OPE) = V2(OPE) 52 (4.59)
ke
where k = pg — p;. Analogously for the Vpy, (OPE), we find
_ E, — E3)? E, — E.)?
VﬁMOPE):Lé;ROPEf 1= Bp) + (B ) (4.60)

2
2w;,

Let us return to our problem. In the calculation of Tg& the diagrams of type
(q) are exactly cancelled by the subtraction terms

Vi GoVid + Vg GoViy” + VEYGoViee + Vg GoViy (4.61)

where the expressions (4.59) and (4.60) are used for VIE.? and Vg/). So no con-
tributions for diagram (g) is found. Moreover, the contribution to the T-matrix
given by diagrams of type (o) is cancelled by the contribution that comes from
the diagrams (p). The only recoil correction comes from the diagrams (r); mak-
ing explicit the vertex functions and using the delta functions to eliminate an
integration over a loop momentum we obtain at order (Q?

1.3 3 2 2
2) hzga . _ P 5wl Wl
VPV(T) 32\/§ng [Z(Tl X TZ)zk (Ul + 0'2)/ (271’)3 (q k ) Wiwzl_
dq 5 awitw?
+8(7-1z + 7—22) / (271')3 (q —k ) wiw‘l_

xl(q-o1(g x k) 02) — (g oa(q x k) - )]
(4.62)
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4.3.5 Contact terms with a OPE

Diagrams like (s), (¢) and (u) of Fig. 4.8 do not give any contribution to the
potential, but only corrections to the LECs of the contact terms. In fact the (¢)
type diagrams, vanish directly due to the integration over the loop momentum.
Diagram (s) sums up three kind of diagrams showed in Fig. 4.4 where we take
the NLO part of the PC n NN vertex. If we perform this on the first type, all
the time-ordering contributions cancel out, while if we take all the time-orderings
of the other two, we obtain:

d®q 1
@rpa?

hﬂgA

Vpv(s) = TSVl (4.63)

(Cs —3CT) (11, + Toz )ik - (01 X 0'2)/

which can be reabsorbed in the CT potential. If we consider the recoil corrections
of diagrams in Fig. 4.4 (diagrams (u)), from the first diagram we obtain

TSE(u) = Vi GoVER(CT) + VA (CT)GoV) (4.64)

which is exactly eliminated by the subtracting term in Eq. (3.66). On the other
hand, from the other two we have

d3q q2
(2m)3wi

hiQA

ONCTAT, (4.65)

Vzgf)(u) =+ (Cs + Cr) (115 + T22)ik - (01 X 0’2)/

which redefine again the C; constant.

4.4 Regularization of the PV potential

Now we have to deal with the divergences due to the loops. We obtain two types
of divergences: a logarithmic divergence presents in the N2LO terms and a linear
divergence in the N3LO terms. We will treat the first kind of divergence with the
dimensional regularization (DR) method [27]. The second kind of divergence is
more complicate to treat because DR does not work with this kind of divergence,
even if it gives the exact result for the non divergent part. Therefore in this
last case we will discuss the regularization via a cut-off momentum. A detailed
discussion of the DR and cut-off regularization can be found in Appendix D.

4.4.1 Regularization of the N2LO divergences

In the DR method, the integrals are defined in d dimensions and computed for a
generic value of d. Successively one takes the limit d — 3. Alternatively, defined
e = 3 — d, we will take the limit ¢ — 0, isolating in this way the divergent part.
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The details of the method are reported in Appendix D. Defining s = /4 m2 + k2,
and the functions

1 k m2 2 2
L) =53 HE =T, o= ==yt T (406

and taking into account the results obtained in Section D.2, the contributions of
box and triangle diagrams given in Eq. (4.67) and (4.68), respectively, in DR is
the following

1

Viv(d) = 29:/15} A12 (71 X T2):ik - (o1 + 0’2)<L(/€) - %de - 1) ., (4.67)
1

Viv(e) = Qf/}}lfﬁ ié‘ [4@ +7). ik (o1 x 03) (L) ~ 3.~ 2)

where A, = 47 f;. Redefining the constants C's and Cjy entering the CT potential
given in Eq. (4.13), in order to reabsorb the divergent part proportional to d.,
and considering only the finite part, we obtain

gAhl 1

Vi) (d — FIN) v — (7 X T).ik - (o) + o3)L(k) | (4.69)
(1) gahy g4 .
VPV(€—FIN) = _2\/§f7rA_X2 4(7’1—|—7'2)Z Zk-(a’l XO'Q) L(k’)

(7 % )ik - (o1 + o) (H(k) —3L(k)>] . (4.70)

Let’s note that the chiral order is always @), also after the regularization. These
terms compared to the LO are suppressed by a factor (m,/A,)? which someway
justifies the idea of chiral expansion.

4.4.2 Regularization of the N3LO divergences

As we have already anticipated at the beginning of this Section, the regularization
of linear divergences is more complicated. Indeed, even if the DR gives the exact
result of the non divergent part, it does not identify the divergent part. For this
reason we impose a cut-off A on the integrals. For example, let us consider the
potential term

g3 hl
AVi(r x 1)1k - (o) + a9) K (k) (4.71)

(2) _
Y o
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where

d3q q2
K@) — / B (4.72)

which appears in Eq. (4.55). Performing the integrals as shown in Appendix D.3
we get

ZAk) m A k2
@(p) = A M A v
K@ (k) o 5t 2 +(9(A), (4.73)
where . "
A(k) = o arctan <2m7r>, (4.74)
therefore,
371 2 2
@ _ gahy . . s*Ak)  my A k
VPV_ 32f#2(7-1XTQ)Zlk-<0'1+0-2><_ e —g—i-m-i-(?(x)) (4.75)

where the term proportional to A carries all the divergence. This part is indepen-
dent on k. The term proportional to A therefore can be reabsorbed in the CT
potential given in Eq. (4.13) as we will see explicitly below. For what concern the
non divergent part we find a term independent on A which is exactly the same
obtained using the DR method, plus a number of other terms give as a power
series of Q/A, starting with the order Q?/A. Sending A to infinity this latter part
would disappear. In general we must fix A at a value greater than the typical
energies of the YEFT, then the terms must be included in the potential. However
it carries at least an additional power of @) (considering that A doesn’t influence
the chiral counting), which means it gives contribution to the N4LO or beyond
to the potential. Somehow the price we pay using a simple cut-off is to “dirty”
the next order in the chiral expansion.

From a practical point of wiew, we neglect the terms Q*/A and we find for
the various N3LO terms

@, cahiga m ) 2
Vi) = -2 A—izk (o1 X @) (7 +7’2)z<s A(k) = —A +mﬁ> , (4.76)
higa =
vii2) = —= 2K - (0371, — 0172,)
423 N2 M [
2
Yik - (01 X o) (71 + TQZ)} (sQA(k) ~ZA+ mﬂ> , (4.77)
3
2
2
V(Q)(k) _ _da T hY (T + Tos) + hi]bﬁmb ik - (o) X 09) (s*A(k) — —A+my, ) ,
P 2f2A2 [ ] ( 3 )
(4.78)
) _gahl m ‘ L k? + 52 A
V) = e AiM{@k (01 + ) (71 x 7). | (5 ) Alk) = = + my |



26 CHAPTER 4. THE PV POTENTIAL

+2K : (O'Qle — 0'17'22) <S2A<k) — —A + mﬂ>} s
gahy

A
Vi (m) = WAiM{—SK (o1 — o) (1 + Tz)z<k2A(k;) — m,r>

—4ik - (0’1 + 0'2)(7_"1 X ?2)Z<S2A(k) - 3_7TA +m7r>

Vik - (o) + 02) (7 X 7). [(52 ~ 3k A(k) — % + zmﬂ}

(A X D)k (kX K) -0+ k-0 (k:xK)-al]A(k)},

1 (T + TQz)i|

T ho
Vg)(n) = gA {[ (3427 - T) — ghvf TiwTay + his 5

2f2 A2
X (sQA(k) - §A n m7r> ~ ik (o1 + 0)(F X B)s

<[(1- %)t - T om)]

371

gih, T e 5 o _
N2, AiM{ k- (o1 +02)(71 X 72)'3[(1
m3 3 11

_@ — EA + 5 mﬁ] +ik - (o1 X 09) (71, + To2)

<[5 )2 om]}

2m?

V) "))
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Reabsorbing the divergent terms proportional to A in the contact term LECs we
finally obtain the contribution to the potential coming from the N3LO diagrams.

4.5 The PV potential in k-space

In summary, the PV potential up to N3LO derived from yEFT is the following:

_ gahl ik (o1 +0
VED(OPE) = e (o, AT O (4.53)
g k
1 i N
VRACT) = S [Crilor x 0) -k + Colf - R)ier x 02) - k

X
‘|‘C3(7:i X 7_')2)Z’L(0'1 + 0'2) k+ C4(le + TQZ) (0’1 X 0'2) k
FOST™ (1) (72 )il % o2 - K] | (4.84)
gahy 1 . .
Vlg{)(TPE) = 2\/_f7r A2 — (7} X T5),ik - (o1 + 02)L(k)
gahy, gA

T2Vaf, A2

A1 + 12), tk - (o1 X 03) L(k)

(4.79)

(4.80)

(4.81)

(4.82)
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(7 X T)aik - (00 + a9) (H(k) - 3L(k;)>] , (4.85)
1
(1) _OPE) = gahy 1 = i —4i K%k -
VPV(RC @ ) 2\/§f7r A M2 (7-1 X 7-2)2 W]%[ ? (0'1 + 0'2)
+k'0’1(kXK)'UQ+k'UQ(kXK)‘O'1], (486)
caht T
Vlg/)—(cél) = — j/g]?: A_ilk (o1 X 09) (11 + 72).82A(k) (4.87)
2 0 0 1
) g4 T g3gahy, | gahy . L rgahy
VPV(LEC) = 2_f7%A_i{|: 1 + 9 Ty - To + < 1 _hA>(7-1z+7—22>
h? ,
— (hi + gA3 V)Ibﬁbrzb} ik - (o1 X 09)
ht . 2m?
— (R x T)uik(on+ o) (1- 5F ) PAR) . (489)
(2) _gahy T L 2m?2
VPV(RC-TPE) = 4\/§f7r AiM [Zk: . (0’1 + 0'2)(7'1 X TQ)Z<1 — 32 >

—|—Zk . (0'1 X 0'2)(7'12 + TQZ)
12K - (01 + 00) (11, — 7.) — 2K - (01 — o) (70, + m)] S2A(k)

311 2
gAh’TI' ™ 4m7r 2
Tovar, BN |- K@ —a)(n+ (1 ?)5 Alk)
1 ‘ 8m?2
—1—5(712 + Ty, )ik - (01 X 02) <5 - )szA(k)
.. .. 14mfr
_Z(Tl X Ty).ik(o1 + 0'2)<5 - >82A(/{:)
1 3
+5 (71 x R)ik(o + 02)%
(FAxB)k-or (kx K)oyt k-0, (kx K)- al]A(k)] .

(4.89)

Let’s note that we have in total 11 LECs that must be determined from the
experimental data: one in the LO term, six in the subleading order and five in
the N3LO. In the RC-TPE terms it appears a strange factor that goes like 1/s
which has the same form of the one pion exchange but with twice the mass of the
pion. The terms Vlg,)(czl) and Vg)(LEC) are exactly the same found in Ref. [26].
In addiction to them, we have also obtained for the first time the contributions
of the RC terms.
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4.6 The PV potential in r-space

In order to perform calculation with this potential for the NN system, we need
the potential in configuration space. Remembering that

1
<O/10/2‘V|O‘1042> = ﬁv(kaK)épﬁpz,p’ﬁp’g )

and performing the following change of variables

=TT, R—rlgm, (4.90)
/ /
v = r-rn, R= rl;% : (4.91)
we obtain
Bk BK et |
(riro|Virirs) =5‘°’(R—R’)/ e V(k, K)e 30T
e T
(4.92)

where we use the fact that the potential does not depend on the total momentum
P. In order to compute the integral we must multiply V' by a “cut -off” function
parametrized by Ar. This modification is necessary since our potential is valid
only for small momentum values. The cut-off function we use is:

Crp (k) = exp(—(k/Ar)*) . (4.93)

where Ap = 400 + 700 MeV. The parameter Ap represents a “cut-off” energy.
The physics above A is taken into accounts through the LECs. In fact, the LECs
well depend on Ap, while the physical observables should not depend on it (this
should be verified when more and more order in ChPT are included in our ChPT
expansion).

This choice of the cut-off function and the fact that the potential contains at
most terms linear in k makes that the final potential will be local, namely:

(Piry|V]rr) = (R — RS (r — )V (r) . (4.94)

For example, if we have a potential like V(k, K) = g(k) + K, fi(k), using the
identities

U ETSR) T poiUK—3k) T _ (%7, —z'v,.)(ei<K+%’“>""e—“K‘%’“”) , (4.95)
and

ei(K—i-%k)'r’Ke—i(K—%k)"" = —_in/2+ ivr <6i(K+%k)'r,6_i(K_%k)'r> ) (496)



4.6. THE PV POTENTIAL IN R-SPACE 29

we obtain that

Vi) = 5 (R-R)5(r—)g(r) +5(R-R) — " TV [ty )]
(4.97)
where
o) = [ s a0, = [ e sy

The action of the derivative on the ¢ function is a problem, but our final goal
is the calculation of (A|V|B), so we can write

awvip) = [ @ olgnse - v
s [ / & ) [T 6 = ) £ a(r)

_ / dr Bl (r)g(r)a(r) + / & / B! (V)5 (o — 1) fi (1) ba(r)
i (r)1 5 7)) (V)

= /d3r wB(T)T(g(r) + {_2

Vi fi(r)}>w,4(r) , (4.99)

where we use the integration by parts in order to move the derivatives from the
delta to the wave functions and {---} is the anticommutator. Therefore

(rrslVirrs) = (R~ R)5(r — o) (o) +{ =

‘| 4(7“)}). (4.100)

Applying this relation to the various terms of the potential given in Eqgs. (4.83)-
(4.89), we obtain the expression of various term of the potential in r-space:

(Pl |V|riry) = 8*(R — R (r — )V (1), (4.101)
with

Vir) = 1/ (OPE) (r) + V(RCfOPE)(T> 4+ pem (r) + / (TPE) ()
—I—V(c4)(r) + V(LEC)(,’,.) + V(RC—TPE)(T) (4.102)



60

V(OPE)(T‘)

V(RC70PE)(

V(CT)(T‘)

V(TPE) (,r,)

V(RC—TPE)(
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(71 X ), (o1 + 09) -7 gi(r) (4.103)

(4.104)

{{pj, {pj7 (014 09) - 729/1(7")}}

% <0u a5 + 01 021') {pm, 0; 31291(7”)}} ) (4.105)

2

ma

AZf,
+027?1 '?2 (0’1 X 0'2) -r
+03 (7?1 X 7?2>Z (0'1 —|—O'2) P
+O4 (T1z+T2z) (0’1 X 0'2) P

HC5 T g (o X 00) -7 | Z'(r) (4.106)

|:Cl(0'1 X 0'2) -7

gahy m2
2V2fr A}
gaht gim2

Cov2f, AL {4 (112 + 72) (01 X 02) -7 L'(r)

(7 % B)(oy + o) - 7 [H'(r) _ 3L’(T)H , (4.107)

(7?1 X 7?2)2(0-1 + 0'2) . ’IQL/(T)

1 3
. C4h7rgA ™M,

V2f, A2

3g4hY  gahl .
A

(112 + 72.) (01 X 09) - 7 Al (1) , (4.108)

2 3 1
ga ™My gAhV

2f2 A2

- h,14> (7_12 + 7_22)

gah,

—<h,24+ >1b71b72b](0'1><0'2)‘7214/1(7“)

LA 2 (o 4 o) - 7 (AL () — 245 ()

4.109
! S ()

gahl mm? [ L L .
= TN (71 X Ta).(01 + 03) - 7 (A1 (1) — 2A5(r))
12l A2 M 1 i

+i(T1. + T2.) (01 X 02) - 7 A'(r)
(712 — 72) (01 4+ 02){p;, Ai(r)}

—(T12 + 722) (1 — 02){p; , Ar(r)}
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e |~ et (o = . (i) = 4]
o+ 722) (01 X 02) 7 (5AY(r) — 844(r)
1 X ) o1+ 02) - (BAY () — 1LA4(r)
(7 X ) (o1 ) 7 g4(r)
(7 % ?2)2%(01i 02+ 013 02) {pm, 00 A(r) |, (4.110)
with p = —iV and
g(r) = / (;1:;3 Igﬁ(j% ek (4.111)
w0 = [ G g (112)
L) = / ((21:;3 O/;;;ML(k:) gk (4.113)
H(r) = / (g:;g C’:;?(rk)H(k) ek (4.114)
Z(r) = /(3371; OA#?@““ : (4.115)
A(r) = / é:; CA#;) (K* + 4m2)A(k)e™ ™ (4.116)
Ay(r) = / % C%@A(k)eik"’. (4.117)
(4.118)
e {p;, {p;, 0}} = —(V?0)-4[(VO) - V+40V?] ,
{p;, 0} = —i(VO)-2i0V, (4.119)
and
V(o1 +02) -7 g'(r)
— (o1t 0y) -7 [g”’(r) +2 gﬂy) —2 9’7527“)} , (4.120)
o+ 1) 7 (1) = (o0 + 02) T
o+ 0o) - 7 [g”?@ - glg)] % . (4.121)
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It’s convenient to define the operators,

Si
Sy
Sy
St

where L = 7 x p is the

(0'1:|:0'2)'7A’
= (o1%+09) p,

)
= (0’1X0’2)'T’7

= 0'1.730'2._[1_'_0-2.130-1._[17

“reduced” orbital angular momentum operator. Using

these definitions we can rewrite the relativistic corrections as

1/ (RC-OPE) (r,p) =

1/ (RC—TPE) (r,p) =

L | PPN (O 13}
m—w““ﬂz[{% 255 25,
/ /

+44 [917(7") Sy + [gi’(?“) - @] St p}

i) 57 - [l - A s,

hl 3
Al T T [( X 75).87 (A} (r) — 24)(r))

4V2f M
+i(T1, + T2.)S AL (1)
+i((7’1z + TQZ)ST_ — (le — TQZ)S:_) All(T)

—2A<’I")(<7—1z + 7—22)5’; - (le - TQZ)S;F)]

+

311 3
gAhﬂ' Tm, 1 — / /
TR [z§<m +722) S7 (44 (r) — 445(r)

—(As(r) — 4A2(r)) (112 + 722) S,
+1(7—lz +722) 57 (5A1(r) — 8A5(r))

2
1
— (i X 7). 57 (AL(r) — 1445(1)
1.
457 % 7). 57 g4(r)
1 Agr)  Ar)

+— (71 % Fz)zSL< - >] : (4.127)



Chapter 5

The TV interaction

In this Chapter we will analyse the T'V interaction terms appearing in the QCD
Lagrangian and how we can model them at the hadronic level using the yYEFT.
We will concentrate in particular on the so called #-term. As we will see, it is
possible to rewrite this T-violating term via a U(1) 4 transformation as a complex
mass term [5, 6]. In this way, it can be interpreted as an external pseudoscalar
field p(z), already introduced in Chapter 2, and include it in the YEFT. We will
study here only the 6-term, possible further BSM TV Lagrangian terms can be
treated in a similar way [5]. From the derived Lagrangian, using the technique
described in Chapter 3, we will build the NN T'V potential.

This Chapter is organized as follow. In Section 5.1 we will introduce the
fundamental concepts regarding the f-term in the QCD and how it is related to
the mass matrix via the U(1)4 transformation. In Section 5.2 we will derive the
nuclear Lagrangian terms induced by the #-term. The derived Hamiltonian at
the classical level admits a ground state which does not coincide with the void.
Therefore we have to redefine the fields expanding them around the new ground
state: we will perform this in Section 5.3. In the last Section we will discuss the
time-ordered diagrams that contribute to the NN T'V potential and we will find
the potential in momentum and configuration space.

5.1 The f-term

Within the SM, it is possible to build in the QCD Lagrangian a term that violate
P but not C, therefore for the CPT invariance, it must violate T'. As it is known,
this term, named #-term, is the only source of the P and T violation in the strong
interaction sector of the SM [4]. The #-term is given by the full contraction of
the gluon field-strength tensor G* (see Chapter 2 Eq. (2.3)) with its dual, and it
is parametrized by an angle 6. Therefore the Lagrangian of the QCD with the
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new term reads

92

64 72

where Locp is given in Eq. (2.1) and ¢ is the strong coupling constant.

This term is not the only possible source of P and T violation in the SM.
Another well-known term comes from the complex phase of the CKM matrix.
However this phase plays a role only for flavour changing processes [5] and there-
fore we will not consider it hereafter. Moreover, beyond the SM it is possible
to write other T'V effective operators composed by SM degrees of freedom, still
verifying the gauge symmetries of the SM [40]. In particular, it is possible to
write new Lagrangian terms of energy dimension d = 6 that can generate C'P
violation in nuclear systems down to the energy scale A, ~1 GeV. We will not
treat these terms and we focus only on the f-term. A complete discussion can be
found in [5].

Before starting to discuss how we can include the 6-term in our yEFT let’s
return to the chiral group G = SU(2)y @ SU(2)4@U(1)y @U(1) 4. In Section 2.1
we disregarded the symmetry U(1) 4 saying that at quantum level it is broken by
an anomaly. Now we will present how to take in account the anomalous behaviour
of the axial current.

First of all, let us study the divergence of the axial current given in Eq. (2.14b).
To this aim, we must take care that the axial current is an operator built from
fermionic fields and the product of these local operators often have singularities.
So we rewrite the current keeping separated the two fields by a distance € and
then take the limit ¢ — 0. The axial current can be defined as [27]

e g, Ge (5.1)

po s

Locp = Lgcp + ﬁ%CD = Lqocp — 0

z+e/2

. — € 5 . a a €
JU = symlg% {q(z - 5)7“7 exp [ — g /16/2 dzG*(2)T }q(x — 5)}, (5.2)
where we have introduced the exponential term in order to preserve the SU(3)
color gauge invariance of the current, G* being the gluons field and T the matrix
defined in Eq. (2.4). The symbol sym lim,_,o means that we take the symmetric
limit to have the correct properties under Lorentz transformation, for example [27]

p pev 1
sym lim (%) =0, sym lim (6 ; ) = —g". (5.3)

e—0 \ € e—0 € 4

Now we can use the equation of motion neglecting the mass term M (classicaly,
as discussed in Chapter 2, one would aspect d,J¢' = 0). From Lgcp we have

VOuq(x) = —igy" G T (). (5:4)

Performing the calculation as discussed in [27], we find

2

9 Nf vpo ma  a
(‘3ng = —%6“ P QW po (55)
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where Ny is the number of flavours involved in the process, in our case Ny = 2.
Therefore the axial current is not conserved also for the case M = 0 and this
has some consequences on the generating functional of the QCD,

Zl0) = / [dG][dgdg] exp [@ / d*z Locn(q,7,G) — 965 26“”””QZVQZU]- (5.6)

If we apply an U(1)4 transformation,

a(z) = ¢'(x) = q(x)e 7, (5.7)

the measure of the generating functional integral change due to the anomaly
related to the axial current, obtaining

e
[dG][dgdg] — [dG][dg'd¢] = [dG][dgdg] exp [ — 2N;a / d'x 64 - E“Vpagfiugﬁfg]
(5.8)
which exactly cancel out the 6-term if we take o = —%. The U(1)4 transfor-
mation however changes the mass term of the QCD Lagrangian
£QCD = —q(x)Mgq(x) = —qr(x)Mqr(z) + h.c. (5.9)
where the most general mass matrix M can be written as
M =e?M = e?m(l+eT3) (5.10)
where
m:77’Lu“F’I'I’Ld7 GZTrLu_Tnd7 (511)
2 My + My

and p is an arbitrary phase. Performing the U(1)4 axial transformation given in

Eq. (5.7) imposing o = Z, one obtains

EQCD —  —q(z)e'" "Me 1" q(z)

= —qgp(x ) (1+e73)qr(x) + h.c.

— e i< g>Mq< ) (5.12)

so the physical observable is not # but 8 = 2p — 6. If # is small we can expand
the exponential and the new mass Lagrangian reads

Om §em

EQCD = —g(x)(ml+emms — 277 1- 737°)q(x). (5.13)
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In this way we have redefined all the # dependence in the mass term. According
to the Lagrangian given in Eq. (2.19) and Eq. (5.13), we can identify the sources
S0, Po, S; and p; with i = 1,23 of Eq. (2.18) with

S|

m Oem

5 pi2 — 0, p3— (5.14)

So =M, S12 — 0,s3 > €em. pg—

It is possible to perform another transformation of quark fields via the group
SU(2) 4 such that the P and T violating term [5]

Ly = S@)in’e(@) + )i ()
200, G (q(x)inPq(x)) . (5.15)

The second axial rotation moves the #-term completly into a P and T violating
and isospin conserving quark-mass term with a reduced mass

mt = —— = —(1—¢). (5.16)

N My My m
(my +mg) 2

This fact must be reflected in the absence of P and T violating terms that vio-
late isospin in the YEFT Lagrangian [5]. Therefore the final substitution of the
external source fields will be

|
S

Sg — m, S12 — O, 83— €m. pyg— (1 — 62), P12 — 0, p3 — 0. (517)

5.2 The yEFT Lagrangian induced by the ¢ term

The inclusion of the T'V terms deriving from the #-term is obtained simply by
including in y (Eq. 2.37a) the new sources py and p3 [5],

Y= 2B (50 "+ Ty85 + ipo + zrgpg) (5.18)

where B is defined as in Eq. (2.40). Substituting the expression of x in the
Lagrangian term (2.42)

£ = = (@)U (@) + Un @) (5.19)

and performing the expansion in term of the pion fields as in Eq. (B.9), we obtain

7T2

ESrTV,Z) _ (QBps)fn T <1 _ aﬁ) SR (5.20)
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where the elipses denote - hereafter in this section - terms which are either of
higher order in the pion-field expansion or P and T conserving. Above, a rep-
resents the arbitrariness in the choice of the U(z) field, following the definition
given in Eq. (2.28).

From the fourth order pion-sector Lagrangian given in Eq. (2.43)

&

Z@U(@) - U@x @) (521)

£ = (@)U (@) + U)X @) -

developing in powers of pion field we obtain the following 7'V terms

LIV = 2l3(2B30)(2Bp3) T < (% + a)%)
7T2
—217(2333)(23p0)f—: (1 - (% + a)E) o (5.22)

The second order pion-nucleon sector Lagrangian with y operator is
LA = e N(x:)N + ;NN (5.23)

where x. is given in Eq. (B.9) which, after developing in pion fields, gives

2
LoV 401(23p3)f (1 a af2>NN
2
e
(1 ~ af_2>N +- (5.24)

—|—2c5(2Bp0) f

There are also several four-nucleon terms induced by the theta terms that
come from the leading order four-nucleon Lagrangian in Eq. (2.67)

£V = C14(2Bps)NNNN/ [
+C4(2Bp3) Ny, Y’ NNy*° N/ f.

T 22Bpo) N (7 FINNN/ S,
+C42(2Bpo)N(7 - @)1, NNA"° N

—C54(2Bpo) NN, (Nv#7°N) / fx
—Cs4(2Bpo)NTNO,(NTY"7°N) / [

—~C72(2Bps) N3N0, (Nv"°N) / fx
—Cs2(2Bp3)NNO,(N739"Y°N) [ fr 4+ -+ . (5.25)

A more complete list of P and T violating terms induced by the 6 term can

be find in [5].
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5.3 Selection of the ground state

The Lagrangian terms in Eqs. (5.20)-(5.22) are linear in the pion fields. This mean
that we are expanding the EFT around the wrong ground state. In particular
the minimum of the energy will be for 73 # 0.

The ground state is identified minimizing the potential of the pion-sector
Lagrangian of the yEFT:

2 l
vV = _/di”x{&@((ﬁ +UxH + 2 (U + UxH?
4 16
l7
__ T T\2
(U = Uy (5.26)

with x given in Eq. (5.14). Here we assume that the fields are classical. In term
of the pion field the potential reads,

2 2

Vo _/d%{fﬁ?B%(l—2f2>+4l332 <1_F)

2

4 BQ[f’r 2+% (1—(1 )PH} (5.27)

where we have used the fact that the field source ps3 = 0 and we have neglected

the terms proportional to 0 like p2, etc. We have also neglected higher terms
in the pion field expansion supposing that the value of the minimum for the
pions is proportional to 6 and therefore very small (hypothesis we will verify a
posteriori). The minimum of the potential is identified by a variation of the field
7 which reads in term of its components

T —>7Ti—|—57TZ‘. (528)

Performing this transformation, the variation of the potential reads

oV = i / d%{ (2B fr)*som; + 2(4B%13) sy,
—|—2(4BZZ7)(]90835¢3 — 83]90631'3'7'(']' — 857'('351'3)}(577'1' = O . (529)

Imposing this condition for i = 1,2 we get two equations

7T1A+7TQC =0
mA—mC = 0

where

C = 2(2B)%l:pyss . (5.31)
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Solving the system we get that my(A? + C?) =0 = 7, =0 and 7, = 0. For i = 3
we find the following condition
4Bl7p083

5.32
250 + 4Bl3s2 — 4Bl;s2’ ( )
™ 0 3

Ty = —

thus 73 o 6 and so the condition that 7 is very small is verified. Picking up
a term f2sy in the denominator we can expand it in a Taylor series assuming
Blsso/f? < 1. We obtain, keeping the first order,

4Bl783
250 Do

The approximation above is based on the assumption that the LECs I3 and [; are
higher order in the chiral expansion (see later).

We can now redefine the pion field m3 — 73 + (73)min and evaluate the La-
grangian terms. Taking into account explicitly that p3 = 0, the Lagrangian term
in Eq. (5.19) becomes (we neglect the terms depending only on (73)min, since
constant terms do not play a role in the dynamics)

(5.33)

T3 = (7T3>min =~ —

4B)2l733p0 2
pvay _ B lsspo J(1-alg) 4o 5.34
(¢ 77 P (5.34)
Using the same procedure for the Lagrangian term in Eq. (2.43), we obtain
4B)?l 1 ?
LIV — _(@B) lsspy )2f753p°7rg(1 — ( +a) f2) e (5.35)

where we have neglected higher order terms in the LECs [; and I3 as before.
Summing these Lagrangian terms, it remains only the term

4Bl7s3po
o) = B
which is exactly the term obtained in Ref. [5]. Let’s note that the terms with «
cancel out removing the arbitrariness on the choice of U.
In the same way, after the redefinition of the ground state and the imposition
p3 = 0, the second order pion-nucleon sector Lagrangian reads

2125300~ 7R
GBI Tsspors N+ 9cs(2Bpg) N

(5.36)

v
E;N) = 8¢ 3

N . (5.37)

™

From the leading order four-nucleon Lagrangian we will get only two contact
interaction terms which reads

ﬁg,v) = —8365p0NN8M (N7“75N) [ fx
—8BC4poNTNO,(NTY"v°N) / fr .
(5.38)
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A more formal derivation of these expression can be found in [5].
The final P and T violating Lagrangian at the lowest order can be written in
general as

£y _ _iw(ea'a_i_ 0 N_A_e 2
= 7 GoT T+ gim3) 7 T3

™ ™

+CYNNO,(Ny"7°N) + CYNTNO,(N77"+°N) + ... .(5.39)

where with the dots we indicates terms with higher power of pion field that are
of no interest here.
The parameters g, g7, A%, CY, Cg_ are LECs, which from our derivation can
be written in terms of the parameter . First of all, from Eq. (5.36), we identify
AG . 4Bl783p0

TR V1 O (5.40)

where the LEC [; is related to the square of the strong mass difference between
the charged and the neutral pions [41],

2B?
(6m2)" = (m2, —m2,)*" ~ 7 L (my, — mg)?. (5.41)
The relation [41]
2 4
(gm2)tr = & (5.42)

4 mi —m2
with the averaged kaon mass my = 494.98 MeV [42]. Substituting the terms in
Eq. (5.40) and making explicit py as defined in Eq. (5.17) we obtain

A (1—-€¢Y)  mi

— s _: . -39
VAR Ty g 0 = (0.37 +0.09) - 107°0, (5.43)

where the prediction for the quark-mass ratio, m,/mg = 0.46 £ 0.03, has been
used here to compute € [43]. Similarly, from Eq. (5.37) it is possible to estimate
0 2 2\ str 2

95 32B%cilzsspy 2c1(0mz)* (1 — €°) —

o = 6 = (0.0034 £ 0.0011)8, 5.44

T 73 e ( )0, (544
where we use ¢, = (—1.0 &+ 0.3)GeV™' as derived from the NN scattering
data [44]. The LEC c¢; is related to the proton-neutron mass difference [45],[46]

SMET = (M, — M,)*" = 4B(m,, — my)cs = (2.44 £ 0.18)MeV. (5.45)
Using this in Eq. (5.37), it is possible to estimate g5/ f. as

"] AR 5Mstr 1 — 62 _ _
9 _ _ABepo My )9 — (0.0155 £ 0.0019)8. (5.46)
I Jx 4fre
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(@) (b) (© (d)

Figure 5.1: Diagrams that give contribution to the TV T" matrix up to NLO.
Nucleons and pions are denoted by solid and dashed lines, respectively. The open
(solid) circles represent PC (T'V') vertices.

The estimates of the contact LECs Cfg, related to the 0 angle via Eq. (5.38), is
more complicate [47], so here we report only the results,

Y, ~ (2-107%)0fm® . (5.47)

A more complete derivation of these results can be found in Ref. [5].

5.4 The TV potential

From L) given in Eq. (5.39), we can define the Hamiltonian and following
the procedure described in Chapter 3, we can now obtain the potential. Using
the time-ordered diagrams we will derive it up to the NLO. We will also add
the contact terms that nominally contribute to N2LO. The diagrams that give
contributions are shown in Fig. 5.1. As in the PV case the LO is given by the
OPE diagrams which give a contribution to order Q='. At NLO, in the TV
T-matrix a new class of diagrams appears with a three pion exchange vertex,
coming from the A’-terms in the Lagrangian, see Eq. (5.39). These diagrams
will contribute to order @Q°. In the following we will explain the details of the
calculation. We will use the same notation as in Chapter 4.

5.4.1 One pion exchange

The time ordered diagrams that contribute are shown in Fig. 5.2. From these
diagrams we derive exactly the same formulas given in Egs. (4.5) and (4.6) but
with the PV vertex function replaced by the TV vertex function. Using the
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1 2 1 2 1 2 1 2
(at) (a2) (a3) (a4)

Figure 5.2: Diagrams that contribute to OPE term of the T-matrix. Notation as
in Fig. 5.1.

2’ 2
9 a9,
R 100G

og L o4 f

1 2 1 2
(b1) (b2)

Figure 5.3: Example of three pions exchange with two pions emission vertex.
Notation as in Fig. 5.1.

expression of the vertices given in Eqs. (C.33)-(C.34) we obtain

9 .
-1 9a9y - o 2(0'1—0'2)'k
V( )(NR — CL) = _2_ﬁ<T1 . TQ)T
0 .
gag i(oy —o9) - k i(o1 4+ 09) - k
- 4f21 |:(T12: + TQZ) w’z + (le - TQZ)W—’%
(5.48)

5.4.2 Three pions exchange

We have two possibilities to build a diagram with a three pion vertex at order Q°.

The first one is to consider a one pion emission/absorption vertex on a nucleon

and a two pion emission/absorption vertex on the other nucleon as in Fig. 5.3.
The expression we derive from these diagrams is

6 1
_ 6 _ TV 7 737,03 PC 3 s7NN,10
T(bl—i—bQ) = 0 E [ Mq1j1¢12j2413j3 Ma’zaz,qus
— Wgy T Wey )Wy
q1J1,9272,9373

PC j y7rmNN,20
X Maflal,quQ,qul}5q3,k5q1+q2,k5p1+p27p/1+p’2 ) (5.49)
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/ /
N p N /‘q g o p N g v
59 ® g Te% e 8%
qQ, q, 29,

R R R R

Figure 5.4: Three pions exchange diagrams with only one pion emis-
sion/absorption vertex. Notation as in Fig. 5.1.

where the factor 6 comes from the different possible contractions of the cre-
ation/annihilation operators. Making explicit the vertex functions, the isospin
operators automatically cancel out and so these diagrams do not give any contri-
bution.

The second type of diagrams is given in Fig. 5.4. To these we have to add the
diagrams where the pion of momentum g3 is emitted by the second nucleon and
the diagrams where we exchange oy = ay and oy = ay. In total we have 24
time-ordered diagrams. Summing up all the contributions the final expression is

25 g3 A% ik - (09T, — 01712) / d*q k* —¢?
16 f2 w} (271)% wiw?

As we see the integral diverges linearly and so applying the same prescription
used for the regularization of the linear divergences in Section 4.4.2 we obtain

VO(e) = (5.50)

25 giAg i1 —o09) - k i(o1 4+ 09) - k
VO = [+ ) AP ¢ (- S
am2 . s*A(k) A my k?
% [(2 T g2 ) 4 472 + om + O(X)] ’ (5.51)

where A(k) is defined in Eq. (4.74) and A is the cut-off. The divergences and
the term proportional to m, can be reabsorbed in ¢{, and we neglect the terms
(’)(%) for the reasons discussed in Section 4.4.2. Therefore the final result is

255 A% 7 i(oy —09) - k i(oy +02) - k
VO(c A —[TZ+TZ—+ Ty, — Top) 5
@ = P+ m) PE T - N
2 2
x (1 - :;“)32,4(1{:) . (5.52)
5.4.3 Contact terms
From the diagram (d) in Fig. 5.1 we obtain
1
(d> - 52TVMggaloc’zaz(SP1+P2ypll+P/2 ) (553)
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whence the contact (CT) potential reads,

o’ o’
V() = 2 ik (o) — 02) + ——ik - (0, — 02) (71 - 1) (5.54)
A2 fr A2t

where we have defined the constants ae and @9 in such a way they are adimen-
sional

O = N2 100, T = N Ol (5.55)

5.4.4 The TV potential in r-space

Using the same procedure explained in Section 4.6 the potential in coordinate
space reads

VORR(r) = TR T)(on — o) ()
—0
_ 9ag: (712 + 7o) B A (T2 — T22) nw
o T (= ow) S (0 + ) - 7 (1)
(5.56)
2565 MA' m, ) )
VeI (p) = JA m 27T [(7'12 +7,) (01 — 09) -+ (11, — T2.) (01 + 09) -
2f, A2
X ([1’1 (r) — 2[1'2(7“)) (5.57
2
VD) = G5 [0 =) 7+ Cllor — o) #A R Z0) (558
X ™
where
Pk Cap(k) e
gi(r) = /(27r)3 k2+m3re , (5.59)
Bk Oy (k) o
Z — F kT .
1) = [ G e (5.60)
. Bk Cn, (k) |
A = z k2 + 4m2) A(k)e* ™ 61
1(7”) /(27_[_)3 mw(k2+m%—)( + mw) ( )6 ) (56 )
. Bk Op, (k) |
Ay(r) = - A(k)e™ 62
2(T> /(27T)3 <k2+m721.) My (k)e ) (56 )
(5.63)
and we have defined
0 0 0
L Sy (5.64)

gozﬁv 91—fﬂ> M—fﬂ_v
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in order to have adimensional constants. In total we have 5 LECs to be extracted
from the comparison with experimental data. As we have seen the LECs are
directly related to the angle 0, thus from an experimental measurement of them
it would be possible to have an estimate of the 6 angle via the estimate of the
LECs given in Section 5.3.
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Chapter 6

PV and TV observables in two
nucleon systems

In this Chapter we will study some PV and TV observables in the two nucleon
systems (in particular, in this Thesis we will focus our attention to PV and
TV observables in two nucleon scattering only). First of all, we will present
the general two-body scattering problem (Section 6.1) and discuss a method of
solution based on the Kohn variational Principle (Section 6.2). In Section 6.3 we
will introduce the M matrix formalism in order to compute the cross-section and
the scattering observables. In the last Section we will discuss the observables we
are interested in: the A, in the pp scattering and the neutron spin rotation along
the z-axis in the 7ip scattering in order to reveal PV effects and the neutron spin
rotation along the y-axis in the 7p scattering to reveal T'V effects. In order to
perform the calculation, in the same Section we relate these observables to the
M-matrix.

6.1 Scattering wave functions

In order to find the wave function for the two body system, we have to solve the
Schrodinger equation’:

<_ Vi V3

2M,  2M,

+ V(I‘l — I'z))’@DNN(I'l, I'z) = E’QZ)NN(I'L I'g). (61)

Using the relative coordinate and the coordinate of the center of mass (CM) ,

Mty + Moty
=1y — R=—-—"-° 6.2
T=h=r, M, + My (6.2)

In this section we present the formalism in case of NN potentials of local form. The
extension to non local potentials is easily obtained, however for the sake of simplicity we have
not reported it here.

77
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where we have considered M; ~ M; ~ M = 938 MeV, we can separate the CM
motion from the relative motion. So we can write the wave function as:

ZA]?c'm'ft
VQ

and the equation for the relative motion becomes,

e

\IJNN<R> I’) = ¢(I‘), (63)

V2
(=g, V0))ot) = Bo), (6.4)
where p is the reduced mass of the system and g ~ M/2. In our case, the
potential V' (r) is composed by two terms,

V =Vpe + Vg, (6.5)

where Vpe is the parity conserving nuclear potential and V is either the PV or
TV potential. We can write the wave function as

0 = 30D fus(r)i |VelF)xs| | r (6.6)

JJ. LS I,

where xss. (§r7.) is the spin (isospin) state of the two nucleons. In the previous

formula [YL(f)XS} is the state with a total angular momentum J (and pro-

jection on the z-axis .J,) built with the spherical harmonics Y7/ (7) and the spin
states xgs,s,

YVL)Xs| = (LML S S, Y (P)xss. (6.7)
= M,S.

and frs(r) is a radial function.

For given total angular momentum J, the sum over L and S runs over all their
possible combinations permitted by Pauli’s exclusion principle. Pauli’s principle
requires that the wave function of a fermionic system must be completely anti-
symmetric, in our case we have (—)!+5tT = —1. Since T is 0 or 1, for given L
and S, T is fixed. For the np system T, = 0 and so T can assume both values.
In this case all the values of L, S compatible with a given J are possible. On
the other hand, for the pp system, T, = +1 and so only the T" = 1 isospin state
is possible. The asymmetry condition (—1)LT5+T = —1 simplifies in this case to
(—)E¥+5 = +1. All the possible combinations allowed by the exclusion principle
are summarized in Table 6.1.

We now focus on the scattering problem. We consider a collision between two
nucleons of energy E = k%/2u. The wave function of our system can be written
as a sum on a “inner” part ¢ (when the particles are close) and an “asymptotic”
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SCATTERING WAVE FUNCTIONS

case np (T, = 0)

79

J S=0 S=1 QS+1LJ 2S+1LJ
parity + parity —

0 L — 0 L =1 150 3P0

1 L=1 L=0,1,2 35.,°D, P3P

2 L=2 L=1,23 'Dy3Dy, 3P 3F,

3 L=3 L=234 3D3,3G3; 'F33F;

4 L=4 L=345 'G43Gy 3Fy3H,

case pp (T, = 1)

J S=0 S=1 5+, 254,
parity + parity —

0 L= 0 L=1 150 3P0

1 - L=1 — 3P

2 L=2 L=1,3 'D, 3Py, 3 F,

3 - L - 3 - 3F3

4 L=4 L=3,5 uen 3Fy,3H,

Table 6.1: Values of the orbital angular momentum L and spin S for a two
nucleon system for a given state of angular momentum J (the spin S refers to
the nucleon pair). In the last two columns the possible combinations of L,S and
J are given in spectroscopic notation, separated in odd and even parity states.
In the pp system, the Pauli’s principle imposes (—1)X™ = 1 and this reduces the
possible states.

part. The latter part is the solution of the free Schrodinger equation in the region
where r > ry (where rq is the typical nuclear interaction radius). In the pp case
we must consider also the Coulomb interaction in the asymptotic region. The
component ¢ goes to zero for r > ry by definition.

For the np scattering, the asymptotic function can be written in terms of the
quantities QF¢ and Q% which are defined as

Ops = Ci"[Yi(P)xslyy, &rrinlkr) (6.8)
0% = Cit[Yi(P)xslyy, Ernne (kr) (1 — ) (6.9)

where j;, is the regular Riccati-Bessel (spherical Bessel) function, while ny, is the
irregular one. C'is a constant that will be determined later. In the pp case, the
two particles have a long distance interaction due to the Coulomb potential. In
this case the asymptotic functions are defined as

. . Fr(n, kr

Of; = Ci* Vool o M) (6.10)
, R Gr(n, kr _r

Ofs = Ci" [Ye(P)xsl,, gTTzM(l—e gyl (6.11)

kr
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where Fy, (Gp) is the Coulomb regular (irregular) function. The n parameter is
defined as )

= % , (6.12)
where e is the unit of the electric charge. The factor (1 — e*ﬁr)QLJrl was in-
troduced to avoid the singularity of np(kr) o Gp(n, kr) for r — 0. The Bessel

functions have the following asymptotic behaviour

21 (x) = sin (;1: _ %)  —znp(z) — cos (a: - %) | (6.13)

while the Coulomb functions have

L
Fr(n,z) — sin (1’ — % —nlog(2z) + 0L> ) (6.14)
L
Gr(n,z) — cos (x -5 nlog(2x) + CTL) : (6.15)
(6.16)

and oy, is the Coulomb phase shift defined as o, = arg [F(L +1+ zn)} , or better

--n [ (71) - (z71)
= — —— —arct = t
o nynzzoln_i_l arctan " } , OrL+1 = 0 + arctan I+1/)

(6.17)
where v = 0.57721566.... The F and G functions are the solutions of the
Schrodinger radial equation with the Coulomb potential only. The C' constant
was determined in order to satisfy the relation

(QLs|H — EIQFs) — (Qfs|H - E|Qpg) =1, (6.18)

that gives |C|? = kM. This identity mainly comes from the Wronskian property
of the Bessel and Coulomb functions.

We consider now the specific case of two nucleons (with T, fixed) that collide
in a state of total angular momentum .J, orbital angular momentum L and total
spin S (in the following the quantum numbers J and T, which are fixed in the
collision, will be understood). The exact wave function will have the following
form

Vs = ¢rs + QES + Z RLS,L’S’QES/ ) (6.19)

s
The coefficients Rpg s/, which form the R-matrix, are the relative weights be-
tween the regular and irregular components and they are the goals of our calcula-
tions. From these coefficients we can easily obtain the S matrix (which represents
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the relative weight between the incoming wave Q¢¢ — Q¢ and the outcoming
wave QF¢ 4+ iQF¢) or the T-matrix. Alternatively, in fact, we can impose the
following boundary conditions

Vis = Qfs+ Z ULs,sQigr (6.20)
L's’
77Z)§S - - <Q€S - ZQES) + Z SLS,L’S’ (lesl + iQf/S/) s (621)
LS’
'Lp%s —> QES + Z TLS’L/S/ (Qg/sr + iQE’S’) . (622)
LS’

These functions are linear combination of each other and it is possible to verify
that

U=R?', S=(U+iR)I-iR)", T=(I-iR)"'R. (623

6.2 Construction of the wave function

In our calculation we will try to obtain the best approximation to the exact wave
function in Eq. (6.19) using a “test” wave function

ELS = aLS + Qfs + ZRLS,L'SfoIS/ . (6.24)
L/S/

where the “inner” part 5LS and the coefficients }_%LSJ;/S/ are to be calculated.
From now on, we indicate with LSy the orbital angular momentum and spin
of the nucleon pair in the incoming state. The “inner” part of the “test” wave
function can be written as

Brosy = §3Lﬁ it [Y1 (/) xs) . &rr. (6.25)

where the f (LoS0) (7“) is here evaluated using an expansion over a complete set of

functions, more precisely the set of order 2 Laguerre polynomials LY multiplied
by an exponential,

Np—-1
15700) = D g N L () e (6.26)
n=0

where the coefficients a%‘)’g‘)) have to be determined and N, is the number of the
expansion terms. Increasing Nj, the accuracy of the wave function will increase,

but for obvious motivations we have to truncate the expansion. The parameter
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~ is used to optimize the expansion, if Ny is large enough the results become
almost indipendent of it. IV, is a normalization factor, chosen to be

SO,
2

=1, (6.28)

/ dr r? [N@f’ (yr) exp(—%)
0

following from the Laguerre polynomials’ properties. The factor e=7"/2 guarantees
that the “inner” wave function goes to zero for r — co. We can rewrite Eq. (6.25)
as an expansion over the states

|brsn) = NoL (yr)i" [Yi(7)xs],,. &rr. (6.29)
S0,
Ny —1
Oroso =D O apen[rs,) - (6.30)
LS n=0
At the end the “test” function is
Vrgso = Z LI:S?SO [Yrsn) + Qs + Z Riys,050%s - (6.31)
LSn LS

Now we briefly discuss the Kohn variational Principle. Let’s consider the
following quantities:

Insrs = (Yrs|H — E¢g) — (Y| H — Elrs) | (6.32)

where 915 is the exact wave function given in Eq. (6.19) and 1), ¢ the trial wave
function. Replacing in 1s and ;¢ the expressions (6.19) and (6.24) and using
the identity (6.18) we obtain:

Irss = Rrss — Rrs.Ls - (6.33)

The exact wave function is the solution of the equation (H — F)|¢s) = 0, thus
we obtain the exact relation

Risris = Rrsps — (Yrs|H — Bl ). (6.34)

Defining d1prs = rs — ;g the “error” wave function, Rps s takes the form

Rrsis = Rrsis — (Ypg|H — Elg) + (0rs|H — E|dyrs) - (6.35)
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We can now build the functional [Rpg 1s]:

[Rrs,ps) = Rrss — (Yrs|H — E[Yg) - (6.36)

This functional differs from the exact value of Rys 1 by a term which is quadratic

in the “error” wave function and so it is stationary for small variation of 1),

around the exact value 9/, ¢ = ¥g (this is called Kohn variational Principle).
Asking that the functional Ry s, 1,5, is stationary for a variation of the coef-

S0) = .
ficients a'%%) and Ry s, s, one obtains
LSn 050,LS

) )
0 — [RL?EOéL§SO] : 0 — [‘R_LOSOyLOSO] ' (637)
dapgy’ ORL,50,L5

From the first condition we obtain

0= Z ﬁLSn,L/s/n/ ar/ s o + TleS'n,LoSo + ZELOSO,L/S/TgSn,L/S’ , (6.38)
L'S";n' 'S’
where
{ ﬁLSn,L’S’n’ - <wLS,n|H - E|¢L’S’n’> (639)
Ti)fsn,L'S/ = WLS,n’H - E’Q§S’>

The second condition gives

G (L0So) o GG
0 = OrySo.Ls — [ E Thism 1 LSALrs p ,+ 154 LS, LoSo T E Riryso,nsTrs s

LS/ s
(LoSo) o GG
E L’S’ 108 g + T LoSo,Ls T E :RLOSOL’S’TL’S’,LS} ) (6.40)
L/S/ / L/S/
where TXY, o = (QFg|H — E|QY,). We can now sum up all these equations in

Lo5So)
a system where a(LSOnO and Rp,s,.1vs are unknown:

7 G
l HLSn,L’S’n’ TLSn 'S’ :|
G 1 GG
T s Ls §(TLS s+ 10 1s)

LoS.
age |
Rryse.1s

_TLSn,LoS()

, 6.41
RO (040

We have to compute all the quantities Hygp, /s, Pon.rrs and T7g 7 g (where
X,Y indicates F,G), for all possible combinations of L,S and n for a given J
and T,. We give now a summary of the explicit formulas for the elements of the
system in Eq. (6.41).
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The quantity ﬁLSn,L’S’n’ = Hignsm — EdrrdssOnn, where Hrgp gy =
(Ursn|H | sm ). The Hamiltonian can be written as H = K + Vpe + Vz, where
Z stands for PV or TV term. The kinetic matrix element can be calculated
analitically getting:

72

(WrsnlKbps ) = J7UL(L+1)+0) Ly + (0 +1) I
1
_1‘5":”/_ n (0 + 1)1, (6.42)
with n < n’ and where
00 L,(f) L(2,)
I,lm, = / drr? (yr) Ly (’yr)e_WNnNn/,
' 0 yr
LY () LY
2, = / grr2 2 O7) n O7) oy i, | (6.43)
’ 0 (y7)

The potentials which we use have also terms with V and V? at maximum, so the
matrix element on the angular, spin and isospin variables is in general:

(G Y xs]0.6rm [Vl [Yoxs) 0. & )00 =

d d?
Z0,JT, Z1,JT, Z2,JT,

where Z stands here for the PC, PV, or TV part of the potential and ()g 4
points out that the matrix element is calculated performing the integration on dr
and evaluating the spin-isospin traces. The final result for the potential matrix
element is:

oo . d
(VrsnlVzlbrs w) = /0 dr r* N, L) (yr)e "/ {Ufg:i/Tsz/ (r) + Uf;i%/ (T)%

d? 9 o
+Uf§ji%/(r)ﬁ] N L (yr)e /2 (6.45)

The derivatives of the Laguerre polynomials are calculated using recurrence for-
mulas. The integrals are numerically computed using the Gauss-Laguerre inte-
gration formula with NV, points.

The quantities 7% and 7Y are evaluated considering that the Bessel or
Coulomb functions are solutions of the Schrédinger equation without the nuclear
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potential. And so:

> —r PC,JT, 20,07
TLFSn,L/s' = /0 dr T2NnLg) (yr)e /2 |:ULS,L’S’ (r) + Vrs,rs (r)
d d? Fr/(n, kr)
Z1,JT, Z2,JT, '\,
1 o0 2G,/ / + G , /!
TESH,L/S, =~ i dr TQNnLg)('yr)e_W/QC Lyﬁkr L'Ys

[T NP eme G + BT )

d d> _Gp(n, kr
BT )+ B0 35 | P ) e

[e’s) XL(T}? k?“) C a ’
TL)fo‘L/S/ = /0 dr TQC—/{:T UfS,’I:]’g’ (7") + 'U[Z,L(S)'Zi?:g/(r)
d2 F /( k?’)
Z1,JT, Z2,JT, '\,
1 [ X k 2G" yl + Gy
Tisus = 3 ), dr r*C L(n; 7n>0 L yﬁkr LYs

> Xr(n, kr
b [Car e G ) B )
0

Z1,JT, (r) d Z2,JT, d? }CGL’ (7], /W”)

rQr I 5 649
TS s Iy ys(r) , (6.49)

dr T VLS s (r) ar?

where yg(r) = (1—6*6’")%“, X =For G, Z=PC, PVor TV and f' =
df (r)/dr, etc. Let’s note that the integrands go to zero quickly for r — oo, so
there are no difficulties in evaluating these integrals. As for the Hamiltonian
matrix elements, 7% and T are computed using the Gauss-Laguerre numerical
integration using NV, grid points. After having obtained all the quantities entering
Eq. (6.41), we can determine the coefficients Ry,s, s and the “test” functions.
These functions are the “first order” approximation (indeed they differ from the
exact 1,5, by a quantity 0tr,s,). If we use the first order functions to evaluate
the quantities [Rr,s,1,5,] in Eq. (6.36) we will obtain a new estimate of Ry, 5,105,
which differs to terms that go like ~ (Jt1,s,)° from the exact ones.
For the “non diagonal” R-matrix elements there is a similar functional

1

[RLlsl,L25'2] (RL1317L252 + RL2527L1S1)

2
1/ — _ _ —
5 ((77Z)L151 |H - E|¢LQSQ> + <¢L252 |H - E|¢L151>) N (650)
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Also these quantities differ by a quadratic term from the exact coefficients. There-
fore [Rp,s,1,5,] are a “second order” approximations and usually they are more
precise than Ry, s,1,s, and converge faster.

Let’s note an important difference between the TV and PV potential matrix

elements of the type

(YpslVIvLs) (6.51)
Both potentials are P-violating so they connect states with different parities, thus
L+ L' should be odd. When we calculate the matrix elements we have to take care
of the factor (—i)* in the bra and (7)* in the ket. In the case of the PV potential
all the terms of the potential have a vector product and this always produces
an extra i factor (see Appendix E). This extra factor, taking into account that
L+ L' is odd, says that the matrix element is real. On the other hand in the TV
potential there is no vector products so the matrix element will be imaginary.
The final result will be that the S-matrix will not be anymore symmetric.

6.3 The M matrix

Using Eq. (6.23) we can compute the Tg ;¢ matrix directly from the R matrix.
In this section we reintroduce the explicit dependence on J and 717, so Trs /s =
T}EfL, - The T matrix represents the transition probability between an initial
“plane wave” with an orbital angular momentum L and a total spin S to a final
outgoing spherical wave with an orbital angular momentum L’ and a total spin S’.
For the calculation of the observables we introduce the M matrix which represents
the transition probability from two nucleons initial state of relative momentum
k and given projections of the spin and isospin states, to a final state of relative
momentum k' where the two particles have other projections of the spin and
isospin. Usually the z direction is chosen parallel to the incoming momentum k.

We have to distinguish the np and the pp cases. In the np case the particles
are non interacting in the long range sector, so we can write the “unperturbed”
wave function as

®k781,82,t1,t2 = % (eik.rXﬁ(1)X82(2)£t1(1)£t2 (2) - 6_ikATX82(1)X51(2>€t2<1)§t1 (2)) )

(6.52)
where y;(7) (&(7)) is the spin (isospin) particle state ¢ with projection s (¢) along
z. Expanding in partial waves and coupling spin and isospin we obtain

1 1 11
Dpoysntrts = > Am(551552] SS:) (LM SS.|J.J) (St 51| TT)
LMSS,JJ, TT,
X V25, Y () | (6.53)

where Qf ¢ is defined in Eq. (6.8) and €755 = (1—(=)ET5+T) /2 in order to respect
Pauli’s principle.
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If we “turn on” the interaction the solution of the Schrodinger equation is

1
Ukospsntite = Y 4 (251252|SS)(LMSS|JJ)( tl—t2|TT)
LMSS,JJ, TT,
xeLstV2Y 7 (k) ls(r) | (6.54)

where ¢ o..(r) are the solution defined in Eq. (6.22). We consider only the
asymptotic part of the wave function because the experimental apparat are very
far from the interacting point. So asymptotically the wave function becomes

ikr
NG
Wy, S1,82,b1,t2 7 Dy, ,51,52,t1, t2+\/_ Z MS/S Lt thss1,82,t1 tz(T>TX ( )XSQ( >£t’< )gt’Q (2) :
s} sht!th,
(6.55)
Explicitly the M matrix for the np process reads
. 1 1 1
My g0 tt5s1,8900 (F) = > (551552185 (LOS L] ) (Gt 5 t2|TT )
LST L’S’T/JJZTZ
1
(55, 554lS S L MIS'SILTL) (Gt 215/ T'T)
s
ersrersmVan L3S Yo (7) (6.56)

where Yy (k || 2) = a0l /V/A7 and L = /2L + 1.

For the pp case the wave function in the r — oo is not simply an incoming
plane wave plus a outcoming wave, due to the Coulomb potential in the long
range region. In fact the solution of the Schroedinger equation with the Coulomb
potential for r — oo is [48]

ei(kr-I—r] In(2kr))

wc(k7 Ir) - ei(k-rfnln(krfk-r)) + fc(e) ) (657)

r
where f.(0) is the scattering function for a collision of two charged point particles
(without spin) and

2io0—in In(sin2(6/2))

2ksin?(0/2)

where 6 is the scattering angle defined as cosf = k- 7. We can write a formula
similar to Eq. (6.52) considering the unperturbed wave function of the pp case,
where the plane waves are substituted by ¥.(k, r)

e

fe(0) = —n (6.58)

(I)g,sl,sz = %<¢c(k7"“)Xsl(1)st(2)§+1/2(1)§+1/2(2)
_wc(ka _T>st<1)st (2)§+1/2(1)§+1/2(2)) . (659>
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Expanding in partial wave using

szLYLM VYo (7)e ot Fr(n, kr) | (6.60)

where Fy(n, kr) is the regular Coulomb function, we obtain

W= 3 An(ynyoalSS)(EMSSIII)Vaers Viy (e
LMSS.JJ-
(6.61)
and here QF¢ is given by (6.10). When we add the nuclear potential the wave
function becomes

Vo= O An(5eigelSS)(LMSSIILN Sers Vi (Bl
LMSS.JJ.

(6.62)
where 97 4(7) has the behaviour defined by Eq. (6.22), but with the functions
QS given in Eq. (6.10) and (6.11). Asymptotically the term QF in ¢7g(r)
reconstructs (135781782. We want isolate the scattering wave function and therefore
we have to subtract the unperturbed one, which is not simply the wave function
@581 s, because it also includes the scattering amplitude fo due to the Coulomb

repulsion. We define the unperturbed part as the function that asymptotically
goes like

=C 1 i(k-r—nln(kr—k-r
(I)k,51782 = E{e(k nin(kr=k ))XS1(1)X32(2)£+1/2(1)6+1/2(2)

_ei(,k.y-fnln(kr+k-7'))xs2 (1>X82 (2)§+1/2(1)£+1/2(2) s (663>

as we can deduce from Eq. (6.57). So we can define

ethr—n In(2kr)
‘I/ksl S92 — (I)ksl ,52 + \/_ZMS'S’ 151,82 )

882

Xy (D)X (2)€41/2(1)€41/2(2)

(6.64)

r

with
Ms’lsét’lté;sl,@,tl,tg(f) = f6(9>6515/15828 - fC(ﬂ- - 0>5S18'25528'1

+ > | 31 SQISS)(LOSJZ]JJZ)
LS,L'S"JJ

1,1
(551554l 5"S0) (L'M'S'S|1.J.)

. T
€1,51€1/81V 47TL€’LO—L%€ZUL/YL/M/(72) . (665)
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Now, let’s suppose to have a detector at distance /2 from the interaction
point covering a solid angle df2. The particle flow that hits the detector with the
particle 1 (2) in the spin state s} (s5) and isospin state ¢} (t,) is given by

© _ T2dQ E |MS'I,S/27t/17t'2;81782,t1,t2 (TA')|2
usc —
1

2 (6.66)
The incoming flow per unit area is Yenty = k/pt, so from the definition of cross-
section we obtain

do

E - ’Ms/l,327ltl17t/2§517527t17t2 (72)‘2 : (667>
This is the cross section for the process |sisq,tite) — |s)sh,tith), where the
incoming particles have the momentum in the z direction while the outcoming
particles have k' || 7. In the pp case the cross-section contains three terms: the
Rutherford cross section, a purely nuclear term and an interference term. If we
have an unpolarized beam which hits an unpolarized target and we do not measure
the polarization of the reactants, the unpolarized differential cross-section reads

do 1 .
m - Z Z |MSl,/slg,tl/tlg;shsz,thtz(r)|2 : (668)

/ /
82,587,585

6.4 Physical observables

Before starting to discuss about the physical observables, we need to define a
coordinate system for the projectile polarization and another for the outgoing
particle polarization. For the projectile we adopt the usual frame where the z-
axis is along the k; the y-axis along the normal to the scattering plane k x k'
(let us remember the k (k') is the relative momentum of the incident (outgoing)
particles); and x is chosen to form a right-handed system. For the outgoing
particles we define the z’,3/,2’ coordinate system similarly with the z’-axis along
k', the y/-axis still along k x k’; and 2’ again chosen to form a right-handed
system (see Fig. 6.1).

As we have shown in the previous Section, the M matrix represents the tran-
sition probability from a given initial state to a given final state. Let us describe
the initial system with a spinor y; and the final state with x; which are related
by

Xp=Mxi . (6.69)

where

1 1 1 1
Xi = ‘531> §Sz>, Xf = ‘58/1>‘§S/2> (6.70)
We can write the density matrix for the initial and the final beams of particles
as [48]
k k k k
pi=Y " 0d T, =Y P ) (6.71)
k k
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Figure 6.1: Frame system for the incoming and the outcoming particles.

for an initial beam with a fraction w, of the pairs in the spin state ng). It is
possible also to write the density matrix distinguishing the contribution of the
two particles for example p; = pgl) p§2) where pgj ) represents the density matrix of

particle j. Clearly p") in our case is a matrix 2 x 2. So from Eq. (6.69)
pr=Mp;MT . (6.72)
If Tr(p;) is normalized to 1, from the definition of cross-section we obtain

do_ Tr(py)

Tl " Te(Mp; M) . (6.73)

If the beam is not polarized p; = 1/4 and the cross-section will read

which is the same form of Eq. (6.68).

Let’s consider the process where particle 2 (the target) is unpolarized. Now

in general pgl)

Pauli matrix

is a 2 X 2 matrix so we can write it as a linear expansion over the

A =3

3
(1) (1) @ 1
2 a; o;’, 0 —51, (6.75)

where og = 1. Defining p; = (o;), which is the expectation value of the i-th Pauli
matrix on the initial state, we can write the identity

Te(p{ Vo) = 20\ = p; . (6.76)

i J
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whence

P = %(1 + ; pja](”) . (6.77)

Inserting Eq. (6.77) in Eq. (6.73) we obtain

d d

%(9, E)= %(e, E) (1 4 poAa(0, E) + p, Ay (0, E) + p.A. (0, E)) o (6.78)
where doy/dS2 is the unpolarized cross-section and the quantities A;(6) are called
analyzing powers and are defined as

Tr(Moy" M) (6.79
T Te(MMT) 79)
and are related to the different polarization of the beam, refered to the given axis
frame. The superscript (1) remembers that O'](-l) operates on the spin states of
particle 1.

6.4.1 PV observables in pp system

We can now study how the analyzing powers transform under the parity operator.
The parity operator reverses all the polar vectors but leaves invariant the axial
vectors like the spin. Thus k — —k, k' — —k’ and k x k' — k x k'

Because the coordinates x, z, 2/, 2’ are linear combination of k and k', they
reverse under parity, but the y, ¥’ axes do not. If parity is conserved, the trans-
formed system must be identical to the initial system; this means that all coef-
ficents must remain the same. In Fig. (6.2) we study for example the scattering
of a neutron beam polarized along z. In part (a) the original system is shown; in
(b) under parity k and k" are reversed in direction, taking care not to reverse the
role namely their meaning of initial/final momenta; in (c) the entire system is
rotated by 180° around the y-axis. So if parity is a good symmetry, the scatter-
ing of particles of helicity +1 and —1 would give the same cross-section, namely
A, = 0. Therefore a value of A, different from zero is a signal of the presence of
PVin the nuclear interaction.

If we consider a beam with the spin parallel to the z-axis, Eq. (6.78) becomes

%(9, E) = %(0, E)(l + A.(0, E)) : (6.80)

while for spin antiparallel to the z-axis we obtain

do_ doy
S (6.B) = 20, E) (1 — AL, E)) . (6.81)
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=

Figure 6.2: Pictorial demonstration that A, violates parity. In part (a) the
original system is shown; in (b) under parity k and k' are reversed in direction,
taking care not to reverse the role namely their meaning of initial/final momenta;
in (c) the entire system is rotated by 180° around the y-axis.

Redefining 0, = do, /dQ? and 0_ = do_ /dS) we can write

o (0,E)—o0_(6,F)
0. (0,E)+0_(0,E) "’

A, (F,0) = (6.82)
where 6 is the scattering angle and F the energy in the laboratory frame.

From a practical point of view, the experiments detect the particles scattered
in angular range [0, 6] and the measured quantity is an “average” of the asym-
metry over the total cross-section in this range, explicitly

_ felgegez dr A.(0,F)o(0, E)
A(E) = Ty <rp. 7 00, B) : (6.83)
where ]
o(0,FE) = 3 (0, (0,E)+0_(0,F)), (6.84)

is the unpolarized differential cross-section for the process. This quantity is also
called longitudinal asymmetry.

6.4.2 Observables in np system: the spin rotation

Another possible parity violating observable is related to the spin rotation in 7ip
elastic scattering. The transmission of a neutron beam through a slab of matter
of width d and density N is described in term of a refraction index.

To introduce the index of refraction we will follow Ref. [49]. In order to make
valid the following approximation, the neutron momenta must be such that d < A
where A = 1/|p,| and p,, = 2p is the initial momentum of the neutrons in the
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g

\

Figure 6.3: Transmission of a neutron beam through a slab of matter of width d.
Note that r? = p? + 22 and we are supposing that d < r.

laboratory system. Considering the momentum p,, along the z-axis, the incoming
wave function can be written as

Ui = €77 (6.85)

Passing through the material the plane wave will move with a momenta np,
where n is the refraction index we are looking for. Thus, the wave after the
target will be

Your = €Prdtenle=d) (6.86)
e (1 +ip,din — 1)), z>d. (6.87)

From the scattering theory, we can also write the outcoming wave function as
a sum of the incoming wave plus the scattering wave which we can expand in
partial waves as

Yous = P77 + Z/ ’p’”"P (cos@)2mr Ndpdp , (6.88)

where 27 Ndpdp represents the average number of collision of the neutron and
r is defined as in Fig. 6.3. C) represents the scattering parameters for different
[. Namely, the final wave function along the z axis is given by the unperturbed
plane wave plus all the contributions of the scattering waves coming from the
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neutron passing in the circular corona of radius p and width dp. Because we are
at low energies the only wave that contributes is [ = 0 and so the outcoming wave
results

—+00
Yout = €7 4 2w NdpC / erdr (6.89)

where we have used the fact that pdp = rdr as it is possible to deduce from
Fig. 6.3. The integral we get is divergent and in order to calculate it we use
a regularization function exp(—b®r) which goes fast to zero for r — +oo (this
function has a physical meaning because the beam is not infinitely large), and
then we take the limit b — 0. The final result is

You = €777 + 2r NdpCo—ePn? (6.90)

from which is simple to identify the refraction index with (see Eq. (6.87))

2t N

2
n

n—1=

Co . (6.91)

However we can identify Cy = f(0) [50] where f(0) is the forward scattering
amplitude therefore

n—1==-£(0). (6.92)

This formula defines the refraction index in term of the forward scattering am-
plitude.

The most general form for the forward scattering amplitude for two spin 1/2
particles, taking into account the dependence on the polarization of both initial
particles, can be written as

f0) = fo+ fulo - S) + fp(o -pn) + fro - (Pn X S) (6.93)

where fo, fur, fp and fr are general function of p? only. Above o is the spin
operator of the beam, S is the spin operator of the target and p,, the impulse of
the beam. The first term is the spin-indipendent forward scattering amplitude.
The second term explicits the dependence between the spin of the target and the
spin of the neutron. The third term is a PV term describing the dependence of
the forward amplitude if the neutron spins are aligned either along or opposite
the direction of propagation. The fourth term appears if there is a T'V effect (see
later).

If we define the z-axis along p,, and the other axes as defined in Fig. (6.3) and

the target is not polarized, (S) = 0 we get from Eq. (6.93)

f=fo+ fro., (6.94)
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so the index of refraction changes if the polarization of the beam changes, as fol-
lows from Eq. (6.92). In term of the M-matrix the forward scattering amplitude,
for a non polarized target, can be written as

1

fnn = 2 Z<mn my| M |my, my)o—o, (6.95)

mp

where m,, represent the polarization of the initial neutron state along the z-axis.
Since fy = fo+ fp and f- = fy — fp, from Eq. (6.95) we identify f, and f, in
term of the M-matrix. If we consider a neutron beam initially polarized along
the z axis namely

__ _ipnz |+> + |_>
Vin = € — (6.96)

the state of the neutron after the interaction with the matter will be
6z'pn(z—d)

¢out = \/§

(el 4) + e =)) (6.97)

which we can be rewritten as

elpn (Zid)
V2

where n, — n_ is proportional to fp as follows from Eq. (6.94), explicitly

(ngp—n_)

. ny+n_ . n4y—n_ 1
ezpnd% (elpnd% ’_|_> + eflpnd 2 |—>) , (698)

wout =

2T N 2rN 1
ny—n_ = e 2fp = 22 [(+mp| M |my, +) — (= mp|M‘mp_>}9:o ,
(6.99)

while the phase proportional to n, + n_ is unobservable. This is correlated to a
rotation of the spin along the z-axis. In fact, if we consider a spin state |A) we
can define the rotated state of an angle a along a direction n as

|B) = e~i@™al2) 4) (6.100)

If we start with a spin directed on the z-axis and we consider a rotation around
the z-axis of an angle ¢, we obtain

L i
E(e 02|y e Ti0e/2| ) (6.101)
where ¢,, the rotation angle, can be measured experimentally. From Eq. (6.101)
it is easy to identify the phase ¢, with the real part of the phase in Eq. (6.98),
thus

|B) =

27N d
¢. = — 2 ZR6[<+ myp|M|my, +) — (= mp|M|m, _>]9:0 (6.102)

Dn 2
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where d is the width of the target, and so the rotation for unit length is given by:

de. 2rN 1
5 = 3 2 RellrmolMimy ) — (= my|Mimy )] (6:103)

In Eq. (6.93) it appears a T'V terms. If we consider also the target polarized
along the z-axis either before and after the scattering, the forward amplitude can
be written as

f0) = fo+ fuoz + fro. + froy . (6.104)

In analogy with Eq. (6.94), we can see that the real part of fr is proportional to
the rotation angle around the y-axis. So we can derive a formula for ¢, similar

to Eq. (6.102)

4w Nd
¢y = ———"Refr (6.105)

n

Let’s derive the expression of fr in terms of the M-matrix. f(0) is a matrix, and
when the initial and final polarizations of the proton target are along the z-axis,
its elements can be expressed in term of the M-matrix as

1

FOmgyma =5 ity Ml o) o (6.106)

mlp7mp
where mp,m; are the initial and final state of the spin proton and m,,m! are
the initial and final state of the spin neutron along the z axis. Writing the
expression (6.104) in a matricial form we obtain

_( fot+fp fu—tifr
ﬂm‘(m+m~h—ﬁ)' (6.107)

Because both the expressions are written in the basis of the enginestates of o,
it’s easy to get the expression for fr

St
fr= (6.108)

and from Eq. (6.106) it is easy to obtain the spin rotation along y for unit length

do 2rN 1
= 2 My =) = (= m Mim, +)]

m

oo (6.109)

p:"p



Chapter 7

Results

In this Chapter we will present the results for the observables we have studied.
We have written a program in FORTRAN language in order to solve Eq. (6.41)
and to evaluate the M-matrix.

As PC potential we will use the chiral potential derived in Ref. [51] by Entem
and Machleidt at N3LO. This potential is regularized with a cut-off function
depending on a parameter A, its functional form, however, is different from that
adopted here for the PV and T'V potentials. We will consider four versions of
this PC' potential corresponding to Ap = 414 MeV, Arp = 450 MeV, Ar = 500
MeV, and Ar = 600 MeV. In spite of the use different cut-off each case, we use
the same value for the Ap for our PV and T'V potentials.

This Chapter is divided in two Sections. In the first Section we will present
the results for the A, observable in the pp scattering, studying in particular the
possibility of extracting the LECs from the available experimental data. In the
second Section we will present the results for the np spin rotation PV observable
and the 7ip’ spin rotation T’V observable discussed in the previous Chapter. In
the latter case we will discuss the possibility of estimating the 8 angle.

7.1 The pp longitudinal asymmetry

There exist three accurate measurements of the angle-averaged pp longitudinal
asymmetry A,(F), see Eq. (6.83), obtained at different laboratory energies E [52,
53, 54]. The measurements are:

A (13.6MeV) = (—0.97 £0.20) x 10",
A, (45MeV) = (-1.534+0.21) x 107", (7.1)
A,(221MeV) = (+0.84 £0.34) x 1077 .

The errors reported above include both statistical and systematic errors added in
quadrature. In these experiments, the asymmetry was measured averaging over

97
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FE (MeV) (91, 02)
136 | (20°,78°)
15 | (23°,52°)
221 | (5% 90°)

Table 7.1: Angle ranges used to compute the A, asymmetry in the different
experiments.

a range (61, 60y) of (laboratory) scattering angles as defined in Eq. (6.83). The
A,(E,0), defined in Eq. (6.82) is approximately constant except at small angles
< 15° where the Coulomb scattering dominates. In Table 7.1, the angle ranges
used to compute the asymmetry are reported.

In the case of pp scattering the isospin state is |pp) = |T" = 1,7, = 1) and so
the matrix elements of the isospin operators which appear in the expression of
the PV potential are the following:

(T=1T,=+1|(7, )T =1,T,=+1)=1, (7.
(T =+1(A X 7). T=1,T.=+1)=0, (7.
(T _1 T +1[(r, + )| T =1,T, =+1) =2, (7.
(T=1,T, = +1|(Zjjrum)|T = 1,T. = +1) = 2, (7.

PRICN ICR N
S I RV N
— Nt N

therefore the LO contribution that comes from the OPE in Eq. (4.83) vanishes.
The LEC Al will contribute to the observable only via the TPE box diagrams
that appear at N2LO and N3LO. Regarding the contact terms, the term with Cj
does not contribute. From Eq. (4.84) we note that the other terms differ only for
the isospin part so,

(VID(CT)) = (Cy + Cy + 20, + 2C5){(ay X &3) - 1) Z'(r). (7.6)

Performing a similar analysis for the terms of the potential in Eq. (4.88) and
taking into account the matrix elements given in Eqgs. (7.2)-(7.5), the longitudinal
asymmetry can be written as

A (E)=hlag(E)+ Cai(E)+ hay(E), (7.7)
where
C=C+Cy+2(Cy+C5), (7.8)
7 39A 0o, 94,0 JA 1 1 9gA, 2 2
= 29450 hv+2<4hv—hA>—2<3hv+hA>, (7.9)

and ao(E), a1 (F), aQ(E ) are numerical coefficients independent of the LEC values.
The linear relation between the observables and the three LECs follows simply
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Ny ~[fm™] N, B ™ e ao ay as

40 3 100 0.25 6 0.70038 —0.07994 —0.43854
50 3 100 0.25 6 0.70035 —0.07994 —0.43853
40 4 100 0.25 6 0.70034 —0.07994 —0.43853
40 3 120 0.25 6 0.70038 —0.07994 —0.43854
40 3 100 0.30 6 0.69949 —0.07974 —0.43874
40 3 100 0.25 8 0.70039 —0.07994 —0.43855

Table 7.2: Numerical stability and convergence of the coefficients ag, ay, as
calculated at £/ = 45 MeV and for Ay = 500 MeV. The first line is calculated
using the parameters selected for this work. In the other lines we change one of
the parameters (bold) in order to compare the results with our choice. See the
text for more details.

from their smallness, they are of the order of 10~7. Therefore quadratic or higher
power dependence on the LEC can be safely disregarded. The coefficients ag, aq,
as, are clearly dependent on the cut-off Ag in the PV and PC potential. To
calculate one of the three numerical coefficients we just put to zero the other two
LECs exploiting the linear dependence of the A, from them.

Before discussing the results, let us study the dependence of the coefficients ay,
a1, as on the numerical code. The program requires to set different parameters:
Ny, the number of Laguerre polynomials, v used to optimize the expansion in the
Laguerre polynomials, N, the number of points used for the Gauss-Laguerre nu-
merical integrations, § the parameter of the regularization factor of the Coulomb
irregular function and J,,,, the maximum total angular momentum in the expan-
sion of the M-matrix, Eq. (6.65). These parameters have been chosen to optimize
the convergence in the calculation of the observables. In Table 7.2 the dependence
of the coefficients ag, a1, and as from the values of the parameters entering the
numerical code is discussed. The first line in the Table 7.2 represents the choice
of the parameters used through this work. As we can see the modification of the
parameters Ny, v, Ny, 8, Jmas give corrections only to the fourth decimal digit.
Therefore we can conclude that the coefficients are calculated very accurately.
An analogous accuracy is found for all the other cases we have studied.

The values of the coefficients ag, a1, and ay obtained for the four choices of
the cut-off are reported in Table 7.3. As it is possible to see the values of the a;
for E = 13.6 MeV are approximately a factor 2 smaller than those obtained at
E = 45 MeV. At these energies the asymmetry is dominated by the contribution
of the S — P matrix elements, so it is sensitive only to the matrix element

<Ell(‘] = 0)|VPV|E00(J = 0)>
-~ /OO dr T2F1(777 k?") PV F0(77a ]f?“)
0

o V11,00 lor ) (7.10)
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E [MeV]  ag(N2LO) ag(N3LO) a as
Ap = 414 MeV

13.6 0.27435 0.35523 —0.04127 —0.20997

45 0.56804 0.70048 —0.07545 —0.43652

221 —0.14068 —0.16771 0.01815 0.12816
Ap =450 MeV

13.6 0.28172 0.36334 —0.04233 —0.21555

45 0.55321 0.72237 —0.07795 —0.45308

221 —0.20976  —0.25520 0.02709  0.19039
Ap =500 MeV

13.6 0.26992 0.33560 —0.04159 —0.19719

45 0.55528 0.70038 —0.07994 —0.43854

221 —0.24340 —0.30487 0.03134 0.21941
Ap =600 MeV

13.6 0.25441 0.31705 —0.03990 —0.17869

45 0.53438 0.67215 —0.07841 —0.40520

221 —0.19342  —0.25520 0.02743 0.14378

Table 7.3: Values of the coefficients a; at the three energies corresponding to
the experimental data points for the four choices of cut-off parameters Ar. The
calculations include contributions up to Ji.x = 6 in the expansion of the pp
scattering state. For the coefficient ay we give the calculation with N2LO only
and then adding the N3LO.

where 1), ¢ are the wave function introduced in the previous chapter ¢, is a con-
stant independent of the energy. Therefore the a; at low energy scale as v/ E. This
explains why the values of the a; obtained at £ = 45 MeV are approximately
twice larger than the values obtained at F = 13.6 MeV. Because of this scaling,
the experimental points at £ = 45 MeV and EF = 13.6 MeV do not provide
independent constraints on the LECs kL, C' and h.

The presence of only two independent data points makes problematic to fix
the three LECs. To have an idea of the possible values of the LECs, we can fix
one of the three LECs and perform a y? analysis in order to define a region of
the “most probable values” of the other two for the given value of the first one.
In order to compare the results with Ref. [25] and [26] we will restrict our study
to Ap = 500 MeV and Ap = 600 MeV. The value of x? is calculated as

s (AL = A7)
AP DTV I r Ty

where the sum i is over the three energies of which we have the data, AS™(7)
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and AA." (i) are respectively the data and the correspondent experimental un-
certainty.

For the first analysis we choose A = 0. The results obtained are reported
in Fig. 7.1. As we can see in both plots, the regions for different Ar almost

10—, 150
/
100 2 . 100 1
U S0- 1 U S0- 1

0F - 0F -

— A=600 MeV — A=600 MeV

— ASS00MeV| | i — A=S00MeV
R PR O S R N R R PR O R R R R
MW "s 0 s w015 S S (S LA

b h

Figure 7.1: Countours for hl and C values (in units of 1077) corresponding to
Y2 = 2 for the pp longitudinal asymmetry with 2 = 0. The region x2 < 2 is the
region inside the narrow ellipses. The blue solid (red dashed) countour is relative
to Ap=>500 (600) MeV. In the left (right) panel, the x? values obtained using the
N2LO (N2LO+N3LO) potential are shown.

coincide. Comparing the two figures we can see that, adding the N3LO component
of the potential, the region y?> < 2 was reduced for both Ap (in particular for
Ap = 600 MeV). The regions for the two different A using the potential at N3LO
completely overlap. The strictly correlation between hl and C' is still present,
but their mutual dependence changes as we can see by the increase of inclination
of the ellipses. The range of allowed hl and C are

hl =(25+75)-1077 (7.12)

C=(3546.5)-107° (7.13)

which are perfectly in agreement with the results obtained in Ref. [26] and the
DDH (another potential model) “reasonable range” [55]

0<hl<11.2-1077. (7.14)

To study the dependence on h we have to fix one of the other two constants.
There exist some independent estimates of the LEC Al from the DDH potential
model, from which it has been possible to extrapolate the range reported in
Eq. (7.14), or from Lattice QCD which has given the prediction hl = 1-1077 [56].
In the following we will perform the calculations using:
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1. bl =1-1077 (lattice estimate);
2. hl =4.56- 1077 (DDH “best value”);

The x2 = 2 contours in the plane of parameters C and h are reported in Fig. 7.2.
From the plots it is possible to note that there is a strictly correlation also between

0w 07—

\\\ — 3 AN

S A=60MeY N  A=60MeY

N A=S00MeV| ] 801 AN A=S00MeV| ]
\\ N - 1 \\ — =

L N \\\\ ] L K ]
601 D g 60 |
L N\ A\ ] L ]
O 40+ e O 40+ b
0t ] 0t ]
0 ] 0 ]

R N R R R B i R R N B

50 5 0 5 10 s 5 0 5 10
h-tilde h-tilde

Figure 7.2: x? countours as function of i and C (in units of 10~7) corresponding to
x? = 2 for the pp longitudinal asymmetry. The blue solid (red dashed) countours
is relative to Ap=500 (600) MeV. The left figure is obtained considering hl =
1-107". The right figure is obtained with hl = 4.56 - 10~".

C and h. The values of C are included within the range found before with i = 0.
From the comparison of the two plots it is possible to note that increasing hl the
center of the ellipses move towards higher values of C' and k but they maintain
a similar size and the same inclination. This shows that the correlation between
C and h is independent of the choice of hl. The estimate of the range for h are

1. h=(-05+1)-10"% for AL =1-1077;
2. h=(040.9)- 1076 for hl =4.56-107".
These range of values for h are in agreement with the result obtained in Ref. [26].
Larger values of this LEC could be a problem for the EFT as discussed in the
next section.

Let us study the energy dependence of the coefficients a;. From now on, we
will use an angle range between 15° and 90° to compute the average asymmetry

for all energies. The coefficient aq receives various contributions, so we can write
it as

ag = CLQ(NR) + CLo(TPE) + CLo(RC—OPE) + ao(RC—TPE) + a0(64) (715)
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where the coefficient ag(X) derives from the part proportional to hl of potential
Vlgff/) as given in Eq. (4.103)-(4.110). The contribution ay(NR) = ao(RC-OPE) =
0 because the corresponding components are proportional to (7} X 73),. For
convenience let’s define also

ao(N2LO) = ao(NR) + ao(TPE) + ao(RC-OPE) (7.16)
CLQ(N?)LO) = Go(RC—TPE) + CLO<C4). (717)

The behaviour of these coefficients in function of the laboratory energy is shown
in Fig. 7.3. The contribution of ay(N3LO) is found to be ~ 12% of ao(N2LO),

i I i I i I i
B —_ aO(N3LO) T
- —_— aO(NZLO)
0’6 - aO(c4)
L e aO(RC—TPE) 1
0 4 | aO(N2L0+N3LO) |
@ I ..
< 0,2F
O -
o2 T
L | L | L | L
0 50 100 150 200

E, [MeV]

Figure 7.3: The energy dependence of the ag coefficients introduced in the main
text for Ap = 500 MeV. The black solid line is the total contribution. ao(N2LO)-
red line, ag(N3LO)-blue line, ag(cs)-blue dotted line, ag(RC-TPE)-blue dash-
dotted line.

in line with what we expect from the chiral expansion where the importance
of the contributions should be of the order of m,/A, ~ % The contribution
given by ag(cs4) to ag is however a bit anomalous. The presence of the LEC
¢4 = 3.4GeV ™! as deduced from the NN scattering data [57] make this factor
somewhat larger than the contributions of the other N3LO order terms. However,
the term aq(RC-TPE) reduce the impact of ag(¢y) bringing ag(N3LO) in line with
what expected from the chiral expansion.

Let us study the dependence of the coefficients on the cut-off Ap, reported

in Fig. 7.4. For energies smaller than 50 MeV the coefficients a; are rather
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Figure 7.4: Energy dependence of the coefficients ao(F) (panel a), a;(E) (panel
b), az(E) (panel c¢) obtained for Ap = 450 MeV (blue line), Ap = 500 MeV (red
line) and Ar = 600 MeV (green line) .
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Figure 7.5: Coefficients ag, a1, as calculated for Ap = 500 MeV rescaled by
suitable factors. As we can see the three functions are very similar. The values
of the scaling factors are reported in the main text.

insensitive to Ap. We have already discussed that at low energies the asymmetry
is dominated by the S — P matrix elements, see Eq. (7.10). At this energies, the
P wave function is suppressed at short distances by the centrifugal barrier. The
matrix element therefore receive contribution from the long range region, where
the various potential terms are independent of Ag (the cut-off only modifies the
short range part of the potential). On the other hand, at higher energies the
particles come closer and closer, and the asymmetry starts to depend on Ap.

Looking with more attention to Fig. 7.4 we observe that the energy behaviour
of the coefficients a;(F) is similar. Rescaling a;(E) by proper factors, the three
functions becomes almost identical, as can be seen from Fig. 7.5. In order to
understand this behaviour let us study the potential components that contribute
to the three coefficients. It is possible to write the PV potential that contributes
to the pp scattering as

Vey(pp) = RLV(RL) + CV(CT) + h V(LEC), (7.18)

where we have used the isospin matrix element given in Eqs. (7.2)-(7.5), and we
have defined

4gam; )
X
2
V(CT) = AZ”‘—}Z'(T) (1 X o) - 7, (7.20)
X ™
2 3
V(LEC) = %WXZ”A'(T) (01 % 03) - 7. (7.21)
T

Only the terms proportionals to (o7 X 3) - # contributes to the pp longitudinal
asymmetry for the parts V(CT) and V(LEC). For the term proportional to
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V(hl) the main contribution comes at N2LO again proportional to (o1 x o) - 7
while the N3LO component has also other angular and spin operators. However
these terms give negligible corrections. Therefore, the only difference between
the three potential terms comes from the radial dependence. However, as can
be seen in Fig. 7.6, the three potentials for the same Ar have a similar radial
dependence. Therefore we can say that V(CT) ~ X V(hl) and V(LEC) =~
Y V(hl). Consequently

Cl,l(E) ~ XCL()(E), CLQ(E) ~ Yao(E) (722)

Let us define
a(E) = ag(E), (7.23)
’ A = (hh+ X C + Yh)a(E) + f(E) (7.24)

where f(FE) is a correction which results to be almost negligible. For example,
the numerical values for X and Y for Ar = 500 MeV are,

X =-0.128, Y = —0.571, (7.25)
and the correction reads,
f(B) = (0.34C'—1.3Rh)(E-10%)—(0.20C —4.1h)(E-1073)2+O((E-107%)3) (7.26)

which gives a correction smaller than 1% in the energy range of interest.

Therefore we can safetly neglect f(FE), and it is possible to explain the almost
linear correlation found in Figs. 7.1 and 7.2. In fact, it is evident from the above
relation, that the only possibility is to extract the value of h = hl + X C +Yh, also
with the availability of more numerous and accurate experimental data. Fixing
for example hl, the region of allowed values for C' and h would be the line

(h—hh) XC
Y Y

From the available experiments, and the calculated a(F), we can in any case
extract h, for the various values of Ap. The results are reported in Table 7.4.
In Fig. 7.7, A, calculated as ha(E), for the various choices of the cut-off Ap,
is compared with the data. Let us note however that the curves are calculated
computing the average asymmetry between 15° and 90° while the data have been
obtained averaging over the angle ranges given in Table 7.1, so the comparison can
be only qualitative. In Table 7.5 we report the values of A, calculated as ha(E)
for Ap = 500 MeV at the three energies where the data are available using the
correct angle ranges as specified in Table 7.1. The theoretical uncertainty comes
from the error obtained in the calculation of h using the mean square method.
Taking into account the experimental and theoretical errors, the results are in
agreement with the experimental data to fit the data.

h = (7.27)
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Figure 7.6: Radial behaviour of the potential terms V(hl) (panel a), V(CT)
(panel b), V(LEC) (panel c) obtained for Ar = 450 MeV (blue lines), Ap = 500
MeV (red lines) and Ap = 600 MeV (green lines). In panels (b) and (c) the
potentials are multiplied x — 1 to have an easier comparison with the curves of

panel (a).
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Ap(MeV) h
414 | (=235 +0.26) - 10"
450 | (—2.28£0.25) - 10"
500 | (—2.35 % 0.26) - 10
600 | (—247+£0.27)-10"

Table 7.4: Values obtained for h = hl + X C' + Y h using the least mean square
method for different choice of the cut off Ag.

E(MeV) A.(N3LO) AT
13.6 | (=0.79+0.09) x 1077 | (—0.97 £ 0.20) x 107
45 (—1.654+0.18) x 1077

—1.5340.21) x 1077
221 (+0.72 £0.08) x 1077 | (+0.84 £0.34) x 1077

A~ N N

Table 7.5: Values for A, calculated as ha(E) for Ap = 500 MeV using the
correct angle range as specified inn Table 7.1. szp are the experimental value.
The theoretical error comes from the error obtained in the calculation of i using
the mean square method.

~—

7.2 The 7np spin rotation

Let us study the 7ip spin rotation for a very small incident neutron energy. Mea-
surements of this observable are in fact performed using ultracold neutron beams.
In the following we assume that the beam energy is £ = 0.0001 MeV, in any case
for these energies the observable does not depend on the energy. The density for
the hydrogen target is assumed to be N = 0.4 - 10 cm™!.

Let’s consider first the PV effects in the 7ip spin rotation along the z-axis
which we can calculate using Eq. (6.102). In general the rotation angle depends
linearly on the PV LECs, in fact second order effects (quadratic in the PV LECs)
are surely negligible, therefore

do.
dqi hl by + Crby + Cyby + C3bs + Cyby + Cs by
+hy, b6 + hy, by + i, bg + by by + B i (7.28)
where the b; for i = 0,..., 10 are numerical coefficients. The coefficient by receives

contributions from different chiral orders, in particular:
bo = bo(LO) 4 by(N2LO) + bo(N3LO). (7.29)

Their calculated values for the four choices of cut-off A are listed in Table 7.6.
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Figure 7.7: Longitudinal asymmetry calculated as ha(E) (see text) as function
of the energy in the laboratory frame compared with the experimental data. The
calculations are performed for Ap = 500 MeV (red line), Ap = 600 MeV (green
line), Ap = 450 MeV (blue line) and Ap = 414 MeV (purple line) using the values
of h reported in Table 7.4.

As can be seen the N2LLO and N3LO components of the potential gives smaller
and smaller contributions. More in detail, in Table 7.7 we report the contribu-
tion of the OPE, TPE, OPE-RC and TPE-RC components of the PV potential.
As shown the contributions of the N2LO component via the TPE and OPE-RC
represent a correction of the 10% and 1%, respectively. The N3LO give a con-
tribution via the TPE-RC of 0.1% as we expect from the chiral expansion. No
contributions come from the ¢4 term in this case since it is proportional to 7, + 7.
which is zero for an np system. Looking closely to Table 7.6, it is possible to see
that the 7ip spin rotation is not sensitive to LECs Cy and hl since they are both
proportional to 7y, + To.; the small sensitivity to the LECs h{,, compared to the
other LECs that appear at N3LO, is related to the fact that one of the contribu-
tion to by comes from a term proportional to 71, 4+ 75.. On the other hand there
is a large sensitivity to C5 and h?%, which multiply the isotensor term of the PV
potential.

Let’s discuss in more details the contributions that come from the N3LO
terms. As we can see from the Table 7.6, the coefficients b; with ¢ = 6,...,10 are
of the same order of magnitude as by (except for b; and bg). These contributions
comes from the N3LO component and so, from the chiral expansion, we expect
that they would give a small correction, around 1% of the contribution given by
the LO. However, this clearly should be true for the overall N3LO contribution,
given by the second line in Eq. (7.28). The lack of experimental data does not
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414 1.18505  0.12026 0.00181  1.30712 0.24503 0.17358
450 1.21510  0.11560 0.00060  1.33131 0.25202 0.17617
200 1.23758  0.12239 0.00152  1.36149 0.24399 0.17391
600 1.18923  0.07379 0.01553  1.27854 0.23549 0.15845
b3 b4 b5 b6 b? b8 b9 blO

0.08978 0.00000 —0.90865 1.62707 —0.16967 1.82856 0.00000 4.32967
0.09993 0.00000 —0.93226 1.66419 —0.15664 1.87308 0.00000 4.43508
0.10537 0.00000 —0.90588 1.49517 —0.17195 1.69261 0.00000 4.00776
0.08464 0.00000 —0.86493 1.31925 —0.04357 1.52293 0.00000 3.60599

Table 7.6: Values of the coefficients b; in units of Rad m~! for the 7p spin rotation
along the z-axis calculated for the four choices of cutoff Ap at vanishing neutron
beam energy. For by we give explicitly the contribution of the different orders,
the sum of the three contributions is given in fourth column.

Ar [MeV]  OPE OPE-RC TPE TPE-RC

414 1.18505 —0.00636 0.12662 0.00181
450 1.21510 —0.00878 0.12438  0.00060
500 1.23758 —0.01202 0.13341 0.00152
600 1.18923 —0.00793 0.08172  0.01553

Table 7.7: Contributions given by the different term of the PV potential to the
coefficient by for the different choice of the cut-off Ap.

permit us to speculate about the magnitude of the N3LO terms. On the other
hand, we have already seen how the corrections coming from the N2LO and N3LO
to bo(LO) are in line of what expected.

Let us consider the spin rotation along the y-axis, due to TV effects calculated
using Eq. (6.109). As for the neutron spin rotation along the z-axis, the rotation
angle along the y-axis is linearly dependent on the 7'V LECs,

d — — _
SO Gy + 7y + By + Ty + Ty (7.30)
where d; with ¢ = 1,...,5 are numerical coefficients. Their values calculated

with our TV potential at £ = 0.0001 MeV for the four choices of the cut-off are
reported in Table 7.8. As we can see the 7ip spin rotation along the y-axis does
not receive any contribution from the LECs g% and A’ The main contribution
comes from the term of the potential proportional to g while the corrections of
the contact terms are ~ 5% of the main contribution.
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Ar [MeV] do d; d ds dy

414 —3.85569 0.00000 0.00000 0.25201 0.14987
450 —3.88891 0.00000 0.00000 0.25920 0.15438
500 —3.84718 0.00000 0.00000 0.25444 0.14262
600 —3.83276 0.00000 0.00000 0.23944 0.14688

Table 7.8: Values of the coefficients d; in units of Rad m~! for the 7p spin
rotations along the y-axis calculated for the four choices of cutoff A at vanishing
neutron beam energy.

Using the estimates of the LECs given in Egs. (5.46)-(5.47), we obtain the
following results:

dg,

—_— —_ . _2_ _1

1y, = (598+£0.73) 10729 Radm ", (7.31)
d —

4o, — (=6.0240.74)- 10 2FRad m ™", (7.32)
dz |Ap=450

d —

4o, — (~5.9640.73) - 102G Radm™", (7.33)
dz |ap=500

d —

9, — (=5.94+0.73) - 10§ Radm™". (7.34)
dz |ap=600

The contributions that come from the contact terms is smaller than the error that
comes from the estimate of g, for this reason we have neglected that correction.
This observable is calculated for a very low energy and so, as discussed for the
PV case, it depends only on the long range part of the potential which have a
small dependence on Ap. For this reason the theoretical error due to the choice
of Ap is much smaller than the error related to the estimate of gj.

A measurement of this observable could permit an estimate of the 6 angle.
But the value of § from the neutron EDMs is known to be < 1071 [6] and so we
expect dg, /dz < 107!, a value very difficult to be measured experimentally. Any
measurement finding a larger value of d¢,/dz would be a signal of BSM physics.
However, this rotation is expected to be magnified for neutrons moving through
other materials, due to the presence of close resonances of different parities [12].
Experiments of this type are currently under study [59].
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Chapter 8

Conclusions

In this work we have derived the NN PV and T'V potentials within the framework
of an EFT based on the chiral symmetry (yEFT), with only pions and nucleons
as degrees of freedom. The potentials are obtained as an expansion in terms of
a small momentum or the pion mass. In particular the PV potential has been
obtained at N3LO and the TV potential at NLO for the first time using the S-
matrix method. Then these potentials have been used to study the longitudinal
asymmetry A, in pp scattering, the np spin rotation, and the 7p spin rotation as
TV observable.

First of all, we have introduced the concept of YEFT as the low energy theory
of QCD, the underlying theory that describes the strong interaction. Then we
have considered a PV Lagrangian density which describes the PV weak interac-
tions among the nucleons, imposing the condition to have the same transformation
properties under the chiral group as the PV part of the weak interaction in the
Standard Model. Regarding the TV interactions between nucleons and pions we
have taken into account the so-called #-term as the only possible source of TV in
the strong interactions sector within the SM (other possible T'V' terms have di-
mension 6 which however should be suppressed by a factor M 52, where My > 200
TeV is an energy scale where the BSM physics should start to manifest [5]). The
TV terms deriving from the #-term can be included in the EFT using the external
source method introduced in Ref. [5]. Starting form these Lagrangian interaction
terms, we have studied the NN — NN transition amplitude using the field the-
oretic method and then, exploiting the Lippman-Schwinger equation, we have
defined the “effective” PV and TV nuclear potentials.

We have now considered the two nucleon system, in particular their scatter-
ing states. In order to study scattering observables we have discussed the general
formalism to solve the scattering problem between two particles. We have pre-
sented a numerical algorithm based on the Kohn variational principle for solving
the problem exactly. In the numerical program we have implemented the derived
PV potential with the aim of investigating the longitudinal asymmetry A, in pp

113
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scattering and the 7ip spin rotation. The existence of only three experimental
data for the A, does not permit to fix the LECs of the potential but only to
determine a linear correlation between them. The absence of data for the mp spin
rotation does not allow to have new information. As discussed, new measure-
ments of A, would hardly provide more information about the LECs due to the
similar energy dependence of the cofficients a;. Only the study of other observ-
ables in systems with A > 3 could bring new information about the LECs: for
example the 7id spin rotation, the 7°He longitudinal asymmetry or the 7*He spin
rotation. Calculation for these reactions are under way. Another future topic is
to develop the PV electromagnetic nucleon-photon interaction, in order to study
PV observables in 7p radiative capture or in other electromagnetic processes.

We have then implemented the T'V potential in our two nucleon code and
we have studied the 7p spin rotation. Here the interest is to obtain information
on the 5 LECs entering the NN TV potential. From the theory it is possible
to relate these LECs to the 6 angle. The very small value of the # makes dif-
ficult the experimental measurement of this observable. However it represents
a demonstration that other nuclear observables, over the EDMs, can be used to
test the T'V. Future goals will be the study of T'V observables in medium-heavy
nuclei where TV effects can be magnified by the presence of particular resonant
states [12]. In this case clearly we need to implement our 7'V potential in nuclear
shell model codes which allows reliable calculations of the structure of heavy nu-
clei [60]. We plan also to extend our study to 7'V observables in radiative capture
and to compute with our potential the EDMs of light and heavy nuclei.



Appendix A

PV interactions terms

In this Appendix we will discuss the construction of the independent PV wN
interactions terms used in this Thesis. In the first part we will recall the transfor-
mation properties of the building blocks discussed in Chapter 2 under Hermitian
conjugation (H), parity (P) and charge conjugation (C'). Then we will present
some useful relation used to reduce the number of independent terms. In the last
Section we will build the terms we need.

A.1 Transformation properties of the various field
under P and C

We list the transformation properties under Hermitian conjugation (H), parity
(P) and charge conjugation (C'). For a generic combination O of fields, we have

OJf = SHO N
P
Om pz.. —7 SPOpu Opy - Oul 12 (A‘l)

C
0O — ScoT,

where sy, sp, and s¢ are +1 phase factors, o, is +1 when g = 0 (time-like)
and —1 when p = 1,2, 3 (space-like), and no summation is implied here over the
repeated indices p;. The phase factors sy, sp, and s¢ in the case of bilinears
O = NTN, where T is one of the elements of the Clifford algebra, are listed in
Table A.1. When an operator also includes the Levi-Civita tensor e as in
"7 O pe, then €770, 50 Ly s p €"P70 0 since the Lorentz indices pu, v, p,
and o must be all different, and hence €,,,, may be considered odd under parity.
In reference to combinations of pion fields, we have under parity

P
u—ul,  w, — —ouu, ,
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Lliys | Y | W | O
s |+ | + |+ + | +
sp | + - + - +
Sc | + + - + -
Table A.1: Transformation properties of the elements of the Clifford algebra

under H, P and C.

and
Xp e X, x ot
and under charge conjugation
uiqu, uu&ug, (A.2)
Xp -5 (R X (X)) (A3)
XS (XE XS 0N (A.4)
c
X —x" (A.5)

because (12)7 = —m.
derivative D,

When considering terms involving O and the covariant
, it is convenient to introduce the combinations
{D,,0}=D,0+ 0D, D, ,O0]=D,0—-0D, (A.6)
and determine how {D,,, ...} and [D,,, ...] transform under hermitian conjuga-
tion, P, and C' independently of O. It is also usefull to introduce the combinations

X=X+ X5, (A.7)
which transform in as simple way under C' and P. The transfromation properties
of the blocks discussed in this section is listed in Table A.2.

{Dy,..} | [Dy,...]| X¢ X X+ | x—
S — - + + + | -
sp + + - - + | -
sc - + (=) =)+ |+

Table A.2:

Lagrangian under H, P and C.

Transformation properties of the building blocks used to build the
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A.2 Useful relations

We list some relations we will use in the next section to reduce the number of
PV tems. From the Lagrangian in Egs. (2.62) and (2.63) we get the following
equation of motion (EOM)

iv'"D,N = (M + ‘%A”yyy“uu + o1 (xy) + - ) N, (A.8)

where the dots indicate terms either proportional to the pion field of order Q3 or
more or proportional to higher power of the pion field at least of order (). This
notation will be used through all this Appendix. Other usefull relations are the
pion EOM,

i

Dy ] = 53 +0(@") (A.9)
and the identities,
1 7
[D,,D,] = Z[u“’u"] — §Fljy , (A.10)
Dy, uw] — [Dy,u,] = F. . (A.11)

Note that covariant derivatives of u, can only appear in the symmetrized form
hyw = [D;muu] + [Dy, U,u] ) (A.12)

and that further simplifications follow from the Cayley-Hamilton relation, valid
for any 2x2 matrices A and B,

AB + BA = A(B) + B(A) + (AB) — (A\{(B) | (A.13)

and from the traceless property of w, and X} /R Care must be taken when
constructing combinations of terms like D, X7 /> Since they do not transform as
given in Eqs. (2.88) and (2.89), see discussion in [25]. There it is also shown that
it is convenient to work instead with the following quantities

(X%), = [Du+iulryu, X5, (A.14)
(X7), = [D,+iulul, X7] . (A.15)
These, in turn, reduce to

(XE)M = % [Uu, Xﬁ?] ) (Xff)u = _% [u#’ X}j] : (A'16)
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A.2.1 Properties of the v matrices

The 4" matrices are in the standard form as given, for example, in Ref. [31]. They
satisfy the following identities:

?

o= bl (A1)
o = Lawsg,,, (A.18)
7:0-#1/ — g‘“’—v“v”, (Alg)
1 v @ vo
L) = ey, a2
1 | |
Sl = gty gty (A21)
oyt = Iy —ighy gt (A.22)
Yot = @y iy — gy (A.23)

A.3 Independent interaction terms

The terms of order Q¥ and of order Q) are simply derived using the transformation
properties of the building blocks and are given in Egs. (2.91) and (2.92). In this
Section we limit our discussion to the 7N interaction term type of order Q* and
Q3. Terms contributing to the vertices 7NN terms of order Q) or higher are
not consider because they are not necessary to the present work. Also, we will
not consider terms that contain F{”. Moreover, the following power counting is
assumed

Uy ~ Q ) X+~ Q2 . (A24)

The covariant derivative D, is taken as of order @), except when it acts on a
nucleon field, in which case it is of order Q° due to the presence of the heavy
mass scale. We can also develop the building blocks in terms of pion fields (see
Appendix B)

Xy ~ 7m0+ 72+ O(1h) X ~ 7+ O, (A.25)
X4 ~ 7+ 7%+ O0(r) X* ~ 7+ 0(r%) (A.26)
u, ~ 7+ O(r?) . (A.27)

We will exclude from our discussions term like ~ w,u, because they contain at
least terms quadratic in the pion field of order ?. The (independent) isoscalar
(AI=0), isovector (Al=1), and isotensor (Al=2) interaction terms are con-
structed in the next three subsections.
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A.3.1 The Al =0 sector

1. Terms with x+. These are already of order %, so at this order we can not
build new P-odd and C-odd terms. We have two ways to obtain terms of
order @*: adding derivatives or multiply by u,. The terms we can build are

Ni{D, . x+}7"¥°N ,
Ni[D,, x-IW"N
Ni{uuv X+}7MN7
Nilu, , x-]7"*¥°N ,
(A.28)

The first, the second and the last combinations contain only quadratic with
terms in the pion field of at least order @* and so we can neglect them. The
third combination, using Eq. (2.65) and the fact that the traceless part of
X+ is zero (if we consider only non isospin-violating terms) reduces to the
term proportional to B(l] given in Eq. (2.94). Additional terms must involve
more derivatives and can be reduced via the EOM.

2. Terms with a single u, plus one or more D*’s. With a single D* we can
form the combinations N{D*, u,}N and N[D,, u,]o**N. Using the EOM
up to order Q*—see Eq. (A.8)—the first expression can be reduced to a
combination of terms proportional to hY and h? (Eq. (2.92) and (2.94))
(ignoring terms of order Q* and that contains F*”). The second expression
is seen to be identical to twice the sum of the terms proportional to h?
and h9. Terms with two or more D*’s can be reduced using the EOM. In
general, each [Py gives a term M1 plus terms of order () proportional to
4 and terms of order Q* proportional to ¢;(xy). Terms with the nucleon
mass are found to be proportional to those without covariant derivatives,
which have already been accounted for, while terms with the additional w,,
are at least quadratic in the pion fields and thus neglected. Therefore, at
order %, no new (independent) terms with a single u, and one or more
DW’s appear.

A.3.2 The Al =1 sector

1. Terms with x+. We can combine these quantities with X% to form the
following P-odd and C-odd combinations
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As per the isospin structure, for each of these terms one needs to consider
the following possibilities:

NtAtt’Bt/t”Nt” ) NtAtt/Bt”t”Nt’ 9 NtAt’t’Btt”Nt” )
NtAt’t”Bt”t’Nt ) NtAt’t’Bt”t"Nt )

where A and B denote schematically the various pairs of isospin matrices
corresponding to x;X? (or X3y, ) and so on. Obviously, if both A and
B are traceless, only the first and the fourth are non vanishing. Recall
that (u,) = (X?) = (x-) = 0. The other quantities (x4 and D,) are
conveniently written as A = A + (A) I/2 with A traceless. A number of
manipulations allow one to express the terms in Eq. (A.29) as the combi-
nations of terms proportional to hj and hj in Eq. (2.93) plus other terms
that we can safely neglect. We can also add a term w, which give the
combination

N{XZ, w3 N{x+), (A.30)

all the other possible combinations of these three elements can be reduced to
this one. Combinations of x4 with one or more D,’s (in the form {D,,, ...}
or [D,, ...]) can be eliminated using the EOM.

. Terms with a single u, and one or more D,’s. First consider terms with

the anticommutator of the type N{D,,{X3,u,}}... N, which involve a D,,
acting on the nucleon fields NV or N. These terms can always be reduced via
the EOM to one of the terms of order @) proportional to hi, or kY given in
Eq. (2.92) plus a term ~ w,u,, which we neglect. Next, we consider terms
with the commutator of type [DN,XE/R] or [D,,u,]. As discussed above,
combinations of D, with X7 » must be included via (X7 p), defined in
Eqgs. (A.14)—(A.15). However, by using the identities (A.16), combinations
with a single u, and a (Xj“%/L)V reduce to terms o< u,u, X, discarded here.
Turning our attention to terms including a commutator [D,, u,|, we note
that, since [D,,u,| — [D,,u,] = F,,, we only need to consider operators
involving h,,, as defined in Eq. (A.12), which is odd under P and even
under C. In combination with X7 we can form the 4 operators listed
in Table A.3, along with their transformation properties under P and C'
Note that h,, is of order O(Q?). Since hy, = h,,, without any additional
covariant derivatives we can construct the terms:

Nilh, X2)g" N, N{hu, X>}¢"7°N . (A.31)

However, using the pion EOM in Eq. (A.9), these terms are the same,
up to additional terms of order O(Q*), as those constructed with y_ (see
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(P X3} | il X3 | gy X2} | [Py X7
Si + + + -
Sp — - + +
Sc + — - +

Table A.3: Transformation properties under hermitian conjugation (H), parity
(P), and charge conjugation (C) of quantities constructed in terms of hy,.

A.3.

. Terms with x+. We can form the following P-odd and C-odd combinations

point 1 above). Operators with h,, and an additional covariant derivative
enter only in combinations with {D,,,...} or [D,,...]. These combinations
give the terms proportional to hi, plus other we neglect. Terms with more
derivatives can be reduced via the EOM to terms already taken into account.

3 The Al =2 sector

TN (X%X+X% - X2X+X2)N )
TN (X;X_Xg _ X;X_XQ)WN .
(A.32)

The second combination is of order @3 but developing it in term of the pion
field it doesn’t give any term linear in the pion field. The remaning term
contains only terms quadratic in the pion field. We can add w,, in order to
reach the order 3; the only indipendent term that gives contribution is
Top N (X Xy = Xgu, X2 ) N(x) (A.33)

As for the AI = 1 case, combinations of y4 with one or more operators D,,
(in the form {D,,...} and [D,,...]) can be eliminated using the EOM.

Terms with a single u, and one or more D, ’s. First, we consider combina-
tions with the anticommutator like N Z,,{D,,, X&u, X%+ (L — R)}--- N,
namely with D, acting on the nucleon fields N or N. Using the EOM, these
can always be reduced to one of the order @) terms given in Eq. (2.92), terms
involving u,u, which we don’t consider, and terms with the commutator of
D,,, as shown below. For example, for

yo= Tap(Xu, X%+ X0u,X?)
, Top(XEu, X8 — X0u, X?)

(A.34)

O
0 (A.35)
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we have, respectively

N{D,, O,}¢"N
— —2iMOR) + N| Dy, O, ia" N
+(terms with u,,u,) ,
N{D,, O,}""*?,sN
. 2 T =
— 4iMO® — 2N [DM , 0“] N
+(terms with w,, u,) ,

where the operators O} and O are the terms proportional to h2 and h2
given in Eqs. (2.92).

Next, we consider the terms with the commutator of type [D,, X} /Rl As
discussed previously, combinations of D, with X¢ /g Must be included via
(X7, g)u- However, by using the identities (A.14) and (A.15), terms with a
single u, and a (X?, / )v are o< u,u, X, L and therefore neglected. Turning
our attention to terms including a commutator [D,,, u,], we note that, since
(D, ut] = (i/2)x- + O(Q*) and [D,,u,] — [Dy,u,] = F,,. we need only

p:
consider operators involving h,,. We can form two combinations:

N, (X;ghwxg + XZhWXZ> VN | (A.36)
NT, (X;;h,wxg _ Xghwxg) g"iSN (A.37)

which both can be disregarded. Combinations with additional D,’s don’t
give contributions.

A.4 Contact terms

The contact terms are products of a pair of bilinears of nucleon fields, which are
odd under P and even under C'P. We must build isoscalar, isovector and isotensor
terms as discussed in Section 2.5. The operators moreover have to conserve the
electric charge, so namely they must commute with the third component of the
isospin operator. The most general bilinear product reads

4
Ohp =) FiN7I4N)(N7,TpN), (A.38)
i,j=0
where I'4 and I'g are elements of the Clifford’s algebra with the possible addition

of 4-gradients. There are 6 possible choice for the coefficents FZ;, as discussed in
Table A.4. In Ref. [58], 58 operators that can contribute to order @) are listed.
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k F Operatore NN | C
1 50070 1 +
2 (51'7]' — 52"053‘70 T * T2 +
3 51‘,36]’,0 + 5@053'73 T1z + T2, +
4 0i3050 — 0003 Ty — T2z +
5 51'715]',1 + 51’,253'72 — 2(52'73(5]'73 T - Ty — 37’1ZTQZ +
6 10,1052 — 8;20;1] i[T X T, —

Table A.4: Possible combinations for the coefficents F};. In the third coloumn the
corresponding operator which would contribute to the NN potential. In the last
coloumn their transformation properties under charge conjugation is reported.

Analyzing the NR limit and the respective vertex functions it is possible using
the Fierz transformations for the Pauli’s matrices:

(1)5’1,51(1)5’2,52
(‘7)8’1,81 ) (0)3’2,52
<0a>8’1,51(1)8’2752

(1)5’1,31(0a)s’2,52

(Ua)s’l,sl (O'b)s’Q,sz

1 1

5 W1 (Mg + 5(0) 00 ()52

2D~ 50 (@)

0 (Do + 5D (00)sm

a0y (0 (4.39)
L0 (Do + 5D (00)

—%Gabc(ab)s;,sl(gc)s'l,SQ )

1 1
5(5111)(1)8/2781(1)8/1,82 - §€abc [(06)5’2,51(1)5’1,32 - (1)8’2,51 (Uc)s’l,sz}

1
+§(6a65bd - 5ab5dc + 5ad5bc)(gc)s’2,sl (gd)s’l,sz ’

to reduce to 5 the number of indipendent contact terms at order (). So the most
general vertex function is the following (alredy reported in NR limit):

PVMO

0 1
ek T 2N fr
CoTh - To (o1 X 02) - k

C3 (T4 X T2), (o1 +09) - k

Cy(T1 +72) (01 X 02) - k

CsT® 11Ty (01 X 09) - K |, (A.40)

[C’l(al X o9) - k

+ + + +
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where A, = 4w f;. We have chosen a definition of the LECs C;, i = 1,...,5 in
such a way they are adimensional.



Appendix B

Development in terms of pion
fields

In this section we report the expansion of the building blocks u, u,, I';, and X7 IR
X¢ and of the various Lagrangian vertices in term of pion fields. Remembering
Eq. (2.28) we have:

u — 1+i?-ﬁ—%ﬁﬂ2+%ﬂz7?'ﬁ+0(ﬂ4), (B.1)
u, — —if'- 0,7+ O(1%), (B.2)
r, — %ﬁ(f X ) 0,7, (B.3)

Xgp — 17— %(7? X T) 4+ 2—}7%7Ta(7? 7 —10%) + O(1%), (B.4)
X7 — 1"+ —ﬂ(ﬁ )"+ 2—}7% “7 -7 —7om?) + O(r), (B.5)
X — %(ﬁ x 7)* + O(7%), (B.6)
X0 s 20 (77— o) 4 O(n). (B.7)

For x4 we report the complete expansion in the pion field considering

X = 2B(so + $373 + ipo + ip3T3), (B.8)
explicitly,
2 200, am?
s = 23[50(2— P> —l—f(r-w)(l - )
73(7 - 7) 2ps3 am? A
+83<27'3—T> +f—7'3<1—?>i| +O<7T ) (B9)
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N 4@3[-%(?%)(1-?—7;) +P0<1—27r—j;>
—%m <1 - af7;> + D3 <T3 - %fgﬁ)ﬂ +0(x") (B.10)

(B.11)

where « represents the arbitrariness in the choice of the U(x) field, following
the definition given in Eq. (2.28). Let’s remember that in the study of the PV
interaction we have s3 = py = p3 = 0 and that 2Bsy ~ m?2. In the next two
subsections we will report the Lagrangian vertices expanded in terms of the pion
field we need to build the PV potential. The TV terms will be reported in
Section 5.3.

B.0.1 PC Lagrangian in pion fields

Taking into account only the interactions terms and substituting the building
blocks in Eqs. (2.62)—(2.64) we obtain

L = —QQTAN(f- 0, 7)Y N + ..., (B.12)
8 = S gy
dlgmfr_ R R 5
—i—f—N(T OV N + .., (B.13)
Ly = %ﬁﬁ(aﬁ) (TX TN + ..., (B.14)
2m2 —
L = —a ﬁ"Nw2N+%N<aoﬁaoﬁ)N
C3 == — —
+f—?;N(8M7T8“7r)N
C4 5= — — v
_2_;7%NT (0T x 0,T)o"' N + ... (B.15)
(B.16)
B.0.2 PV Lagrangian in pion fields
Performing the substitution in Eqgs. (2.91)—(2.95) we get
PV (0) hy —
c — TN(R XT3N+ ..., B.17
N /5 (T X T)s (B.17)

- h?,
Lox = —gp NGO N = ZEN @)y N
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+2§:IabNTa(6uﬁb)7“N +... (B.18)

Ve —8f—h;zv(7r X 7)s 8;5]\7(7? « )5 N

ﬁ’;\% N(F x (8,0,7))s7" "N + ..., (B.19)
crhy B = +4ﬂ;23h0N( -0, M)VN + 8n;zh%ﬁ(au7r3)v“]\7

16;7}?%1@]\[%(8 TN £ (B.20)
v = }}g‘N(w X 0,7)57"7° N

W v

ATV X R n N+ (B.21)
Ve 1‘;@“1&%@ (7 X D)t (B.22)

p

where in the last expression the three pions exchange term proportional to h}_
vanishes.
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Appendix C

Interaction vertices

In this Appendix we will report the explicit forms of the vertex functions. When
we substitute the explicit expression of the nucleons and pions fields as given
in Egs. (3.24)—(3.33), in the various Hamiltonian terms reported in Egs. (3.18)-
(3.19), the creation and annihilation operators are usually not normal ordered.
Therefore, after normal ordering them, tadpole type contributions result, which
can be relevant when discussing renormalization. In this chapter we only display
the vertex functions used in Chapter 4 and 5 for the derivation of the potentials.

C.1 Bilinears

The vertex functions involve the bilinears

- / /

2D puP) B (1)

2By  \/2E,
where I" denotes generically an element of the Clifford algebra and ys, xs are spin
states. These bilinears are expanded non-relativistically in powers of momenta,
and terms up to order @ are included. We obtain (subscripts are suppressed for
brevity):

B(1) = 1—11(?\)4(21), (C.2)
Blir®) — _ngk + Ff?;]? , (C.3)
B(") = 1+% , (C.4)
B(y) = 2K_2;fxa — 61:2\(4’;) , (C.5)

B(y'y’) = KMU - F<3;§\}275) , (C.6)
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G®(vy°)

5 _

B(vyy’) = o+ —hpm (C.7)
0; ik+2K xo  GY(s")

B(c%) = 7 + e (C.8)
B G (i

Bo%) = el G5 (©9)

where F(™(T') and G™ (I") are, respectively, scalar and vector quantities of order
Q", explicitly given by

F®(1) = 2K +i(kx K)o, (C.10)
FO() = ilo-k(4K* + k)
x+40-Kk- K], (C.11)
FORY) = —k?)2+i(kxK) o, (C.12)
G¥(y) = (2K —ik x o) (4K* + §?)
+2(k-2Kxo) Kk, (C.13)
FOR%) = k-ok-K + K- -o(4K? +k?), (C.14)
GP(vy") = 2(K-0) K — (k-0) k/2
2K’ —ik x K | (C.15)
G¥(0") = (ik+2K x o) (4K* + k?)
202K +kxo) K -k, (C.16)
GY(0") = 2(K -0)K —(k-0)k/2+0k*/2
—ikx K , (C.17)

with the momenta K = (p/ + p)/2 and k = p’ — p. We also expand K° and
K, K" as

E+E 2K? + k%/2
K° = —g —)M(l—l—%) , (C.18)
/{32
K, K" = (K")? - K?*— M? (1 + M) : (C.19)

Note that in the power counting of these vertices below, we do not include the
1/4/wy normalization factors present in the pion fields.

C.2 PC vertex functions

The LO PC interaction term (of order @) in Eq. (B.12) contains the following
vertex functions:

¥ _
PC ;3 s01 . gA ft/Tagt Uq! 5 U
MOL o 94 , .20

woan = T o vam ) VaE (€20
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PC 7 710 . ga ft/Taft Ua/ 5 Uy
Myyae = +Hi=F C.21
4 2fx V2w v/ 2E’g V2FE ( )

where u, = u(p, s), etc., and &, & are isospin states. The non-relativistic (NR)
expansion of these amplitudes is needed up to order Q3. Other PC wN N vertices
follow from the interactions terms in Eg, given in Eq. (B.13) proportional to the
LEC’s dig and di3. The NR expansion is needed up to order Q2. No one pion
exchange vertex functions come from L'EFA‘K,. Thus, up to order Q* we find (spin-
isospin states are suppressed for brevity):

PChrgrNNoO1 A Ta [ 1 (
M, = 1q-0— —w, K- -0+ 2K -q K -o
daga 2f7r\/_ M 4M2
1
—2K2q.a—§k-aq.k) 8M3(k: ok K
VK o (4K + k?))}
m?2 Ta i
+ (2d16 —dlg) |:Zq0'— -7 Wq KO'i| 5 (022)
fx /2w, M
PO frNN10 - __ PC jrmNNOL (C.23)

a’a,qga a’a,qga

The PC wmn NN interaction is due to the Weinberg-Tomozawa term in Eq.
(B.14) where terms up to NLO are needed. At NLO also terms proportional to
c1, ¢z, c3 and ¢4 from Eq. (B.15) where the NR expansion is needed up to order
. The corresponding vertex functions read

PC Mﬂ'ﬂ'NN 02 _ €aa’bTh [
o'a,q’a’ qa 8f2 \/_\/m
2K -(g—4q)—ilkxo) (g—4q)
2M

— W)

daa

— /2w, [QClm + (24 c3)wewy — ¢3q - ¢’
f2\/2wq v

€aa’bTh
.24
2f2 \/_\/mq q (C.24)

PC 3 yrrNN,11 o €aa’bTh |:
M™ —
o'a,q’a’ qa 4f2\/_\/_ wq+wq
2K -(gtq)—ilkxo)- (q+q’)]
2M

——— /2wy [QClmfr — (2 + c3)wgwy + c3q - ¢’

2044

a’
f 2/ 2w,
€aa’bTh

(g% q)- 0, (C.25)
f,% qu\ / qu/



132 APPENDIX C. INTERACTION VERTICES

PCM7r7rNN 20 o €aa’bTh [ W )
q

oda,q’'a’ ga T 8]02\/_@
2K (¢ —q)—i(kxo)-(d —q)
2M

dga
N [QClm + (24 c3)wewy — ¢3q - ¢’
f2\/2wq v

€aa’bTh
~5 f2 N (g xq)

From the Lagrangian Eq. (2.66) we have also the contact terms

(C.26)

a a ,Q1 Q2

PO %[OS b Cro - o) (C.27)

C.3 PV vertex functions

The PV wNN vertices are due to interaction terms proportional to the LEC’s
h; in Eq. (B.17), hy;, hy, and ki, in Eq. (B.18), hy, h3, and hy, in Eq. (B.19), A%,
hi and h? in Eq. (B.20). Up to order Q* we have

PV jfrNN0L - _ _h_}r€3ab7_b|: _2K2+i(k><K)~0'}
veaa f,/zwq 4M>

- (ho Ta b hY Gus + 3h2 Tn)

1 —k22+ikxK) o\ q-K
NS T
2, (14 1 M
8 €3abTh [ 11 1y, 2 1,2
+f_,3 2oy [(h2 — hg)mz — 2hy, Wq]
16 €347 q-k 0 1
7 qu@(q K-) s o (20
4 - 4miw
_h21-ab ) Tq C .28
+3 ! 7o /20, ’ ( )
PV gmNNI0 _h_}T €3abTb [1 _ 2K*+i(k x K) - a}
veaa V2 /2w, 4M?

f—<ﬁ7'a+hv5a3+§h2 IabTb)
W —k2/2+z‘(k:><K)-a>_q-K}
M

1
—[w,(1
N (14 IR

8 €34
B[ (hh — hh) m2 — 2hiyef]

I2 /2w,

X
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16 €3, -k
w10 5E)

I2 /2w,

4 ~
+§ h% Iab Tb>

7 (h? T+ 20 6

2
dmzw,

v/ 2wq '

The PV 7w NN vertices follow from the interaction terms proportional to k! and
h% in Eq. (B.21), and are given by

(C.29)

PV 3 ymmNN,02
Ma 'a,q’'a’ qa

2f2\/—\/m|: hA€3aa q— q)

_ghA €aa’b I ) (q - q/> "o

1 ,
+§h§l caas T (19 — 1% ¢ -0'] , (C.30)

PVMmrNN 11

da,q'a’ qa \/—m[ hAGBaa Q—l-Q)

_ghA €aa’b I’ 7 (q + q/) "o

1 /
+§h?46aa’b7—b (I“q—i—]“ ,) 0'] s (C31)

PV 7w NN,20 /
M7, [ hY €300 —q)-o
d'a,q'a qa 2f2 \/_\/m A3 q q)

_§hA aas I°75 (¢’ — @) - &

1 /
3k Cann (I g —1"q) o] | (C.32)

where the factor I has been defined as I* = (—1,—1,2).
The contact vertex function is given in Appendix A.4.

C.4 TV vertex functions

The TV 7NN vertices up to order Q? coming from interactions terms propor-
tional g§ and ¢¢ read

9 0
TV 3 ;rNN,01 90Ta + 91043
M _ %07aT 91%3 .33
da,qa f /_2wq ( )
M = T M (C.34)

The other vertex functions come from the 37 Lagrangian term proportional
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to A? and read

|:5a,a’ 6b,3 + 5a,b5a’,3 + 5b,a’5a,3_
3

5a,a’ 6b,3 + 5a,b5a’,3 + 5b,a’5a,3

5&,0/ 517,3 + 5a,b5a’,3 + 5b,a’5a,3

-6a,a’5b,3 + 5a,b6a’,3 + 5b,a’5a,3

0
TV 5303 . A 1
' -
pbq’a’qa f7r ’—8wqwq/wp
0
TV j3m12 N A 1
! A -
pbq'a’ qa f7r /—quwq/wp |
0
TV j3m:21 o A 1
! oyl e —
PLaaiae  f | fBuqwgwyp L
0
TV 3730 . A 1
pbq’'a’qa

C

TV 3 700 _ 1 .

ofjoarabas T 2A2f Z(o-l - 0-2)
™

B E \/ Bwqwgwp L

From the contact terms we obtain the following vertex function

3

282

K+

(Tl 'TQ)i(G'l — 0'2) -k

(C.35)
(C.36)
(C.37)

(C.38)

(C.39)



Appendix D

Regularization

In this Appendix we will discuss the method used to regularize the integrals that
come from the loops. We will use the dimensional regularization (DR) method
to control the logarithmic divergences. In case of the linear divergences we will
compare the result of DR with the use of a cut-off.

D.1 Useful relations

We will make use of the following identity (the “Feynman trick”)

1 1 1
AB ~ /0 WAT O pBE (1)

furthermore in order to simplify some energy factors we will use the following
reppresentations [61]:

1 2 [ 2
wi+w_ ;/0 dp (w? + B2)(w? + B2) (D.2)
1 2 [ 1
mvrm e B A im0

When we use the DR, it is better to “rescale” all the dimensional quantities
with an energy scale p. Therefore we define ¢ = qu, m = mu, etc., where the
“tilde” quantities are adimensional. We can now perform the integrations in d

dimension
/ (;ng?’ - / (;iq;d = /q ! (D.4)
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and then use the following integrals:

/q (@ + A)a - T A (D-5)
/q (@ qu) - L T AT 09
/q~ ( (g > ) _ (47T1)d/2 d(d4+ 2) N(a _r 254)2 —2) -(a-dj2-2) 07
where T'(2) is defined by 2T'(2) = T'(z + 1), with the following trend for z — 0
F(Z):§—7+(%2+71T;>z+0( 2 (D.8)

and v ~ 0.5772 is the Fuler-Mascheroni constant.
Lastly we will need the following integrals

1
1
/ dr In(a+z) = ot @ -, (D.9)
-1 a—1
! 1 1
/ dz  2%In(a+1x) = 5 {—2 — 6a? + 3a*In i 1 + 3in(a* — 1), [(D.10)
—1 -
1 d ! 2 arctan ( ! ) (D.11)
x = 2 arctan , .
1 va — 22 a—1
1
1
/ dz Va—2? = Va—1+aarctan ( 1), (D.12)
1 a —
1 £C2 \/_ 1
dx = —va—1+aarctan . D.13
/1 Vva— x? (\/a—l) ( )
We also define the following quantities:
ls s+k m? 1 k
L(k) = 5% In ﬂ s H(k’) = ?L(k) s A(k) = % arctan (2m721_) s
(D.14)

where s = y/4m2 + k2.

D.2 Integrals with logarithmic divergences

In Eqgs. (4.24) and (4.37) all the integrals have the following function to integrate

w2 +wpw_ +w? 1 d 1
Gt (wy +w)  2dm2 wyw (wy +w) (D-15)
Fwilwy +w- e (i

f(w+7 w*)
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so we need to consider the following integral

10 = / g L : (D.16)

(27)3 wyw_ (wy +w-)

and then we take the derivative of the result respect to m2. Using the transfor-
mation ¢ — qu and then going to d dimension we have

. 2 [ dig 1
%) - / / ,3 +52)(( )+62>7 (D.17)

where wy = \/(q~ k)2 + 4 (m,)2. Using the “Feynman trick” (D.1) with A =
(Wy)*+ 5% e B = (w_)*+ 2, we obtain

-2

2) 1 00 ~ 12 ~
1O(k) = —/ / dy / ds Hq+ (2y - 1)k| + 407~y (y - 1)K +52}
T Jg Jo 0
1 1 ~ ~ . .1-3/2
= 5 [ [ wl@aimr -v-van) (D.18)
g Jo
where in the second line we have changed the integration variable ¢ — g+ (2y —

1) k. Exploiting Eq. (D.5) with a = 3/2, and A = 4 [(Thﬂ)Q —y(y—1) (/;:)2} , and

using the following asymptotic behaviors for e — 0

r(%) — %—%L Ole) (D.19)
(ﬁ)_ep _ 1_§1n%+0( ) (D.20)

we obtain, neglecting O(e) terms,

I(O)(k)—g—;2<ln7r+%—”y)—8%/Oldyln [( )2 —y(y—l)(l%)z} . (D.21)

At the end, setting y — (2 + 1)/2 and using the integral in Eq. (D.9), we obtain

1 (s, s+k 2 m2

where we have expressed the results in terms of the dimensional quantities. In
the following, we define

2 2
d€:——7—|—ln7r—lnm—;, (D.23)
¢ 7
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which contains the diergent part, so

1
O () = — —_ —
19(0) = = (L(k) d€+2>. (D.24)
In the same way we calculate the integrals
2 ¢
I'“)(k) = : D.25
(%) /q wiw- (wy +w-) ( )
1D = / %9 , D.26
K () q Wiw_ (wy +w_) ( )
obtaining
IP%k) = ! 4S?L(k) +2k* | —d SO g2 (g - 2 (D.27)
24 72 ° 3 " 9
IP(k) = LNV 252 L(k) + k* (—d. — 2) + 6m2 | —d _2
" 2472 Y ‘ i <3
— —|2s°L(k) + k| —dc. — = | — : D.2
U2 |2 [S (k) + ( € 3> 8my (D.28)

Performing the derivative we obtain the integral of the integrals containing the
quantity f in Eq. (D.15):

1 H(k)

) 2
472 mz

J(O)(k) = flwg,w-) ) (D.29)

q

JO(k) = /q ¢ f(wy,w_) = —# {4L(k) +3 (—de — %)1 ., (D.30)

10 = [ a ) =gzt 2000+ (<= )
gl (2L(R) ~2) (D.31)

D.3 Integrals with linear divergences

From Sections 4.3.3 and 4.3.4, it results that we need to calculate the integrals
that contains the following function

_)= . D.32
g(w+,w ) wgr wg ( )

Let us start, for example, with the integral

KO(k) = /ﬂ b (D.33)

(27m)% w?w?



D.3. INTEGRALS WITH LINEAR DIVERGENCES 139

using the formula in Eq. (D.1) we get

KO®%) = /q/oldy(ywijt(i—y)wz)

(D.34)

where we don’t need to go in d dimensions and using the tilde quantities since the
integral does not have divergences. Thus we get, changing ¢ — q+ (2y — 1) k,

1

1 1
B gfo WA =y - D

, (D.35)

where A = 4[(m)? —y(y — 1) (k)?] and in the last step we use Eq. (D.5) with
d = 3. Then performing the transformation y — (z + 1)/2, we obtain

1
KO®%k) = —karctan(i

87 2m2

) (D.36)

and recalling the definition of the function A(k) given in Eq. (D.14), and so we
can rewrite this result as

1
KO%) = AR (D.37)
Let us now consider the integrals
dSq q2
K¥(k) = / D.
(k) (27m)% w?w? (D-38)
3
@1y — d°q  dqig

In these cases the integrals are divergent for ¢ — oo. Using however DR as before,
we obtain

s2A(k)  m,
K®k) = _%‘g (D.40)
2 2
) (s A(k) LAY s*A(k) My k; k;
Kij (k) = ( & 87T> K ( 81 87T> k27 (D-41)

which do not contain any divergent factor d.. In fact the DR does not match
the linear divergences. In order to clarify what is happening, let us evaluate
these integrals using a simple cut off. For example, the integral Kg) is given
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in Eq. (D.39), using the Feynman trick and performing the change of variable
q — q+ 2y — 1) k, becomes

// %% T v +A)1)kikj. (D.42)

Only the integration over g = |q| is divergent so we can write,

K2 (k) / / q’qf / dy / W (OB

which gives

6ij [* AN 3 A
@)y — Z4 — =V S
K7 (k) = 67r/0 dy<2(A—|—A)2 5 Aarctan(\/z)

+ A) . (D.44)
Then developing the terms with A in Laurent series A/A > 1 we obtain

K2 (k) = g;r [A - %r /1 dyv/A + (9(/01 dy%)]. (D.45)

Note that fol dy% ~ %2 and so this term contributes only to the next order
in ChPT as discussed in Section 4.4.2. Performing the integration in dy using

Eq. (D.12) and summing the contribution of the non divergent part, we get

A s2A(k) m s2A(k)  ma\ ki k; k2
K3 (k) = S — il ——T)= D4
(k) 12#252]+( 8m 8%)5 +( 8w 87r) k? +O(A) (D-46)

Note that we have obtained a term proportional to A which contains the full
divergence of the integral. In the same way

K®(k)=— "= —-_Z4+0(~). (D.47)

w2 +w?
LY (k) = /1—4(612—162)%%
. g

—4(k* + 2m3r)/ Ul et (D.48)
q

where the first part contains all the divergences and can be calculated imposing
a cut-off as discussed above while the second part is finite and can be calculated



D.3. INTEGRALS WITH LINEAR DIVERGENCES 141

in an elementary way. A similar decomposition can be performed for the integral
give in Eq. (4.62)

2 2
1w = [ ey
q

wi w>
1 2—k2 2—k2 2 2—k2
:_/<(q4)+((J4)+(q22)>
2 Jq wi w> Wi w2
2 2 2 2 (@° +5%)
q + W

where we have the same structure as before. After a length calculation, the final
results are

A 3m 4m?
(2) _ . 2
L’L] (k) - (47T2 - ST - 871'_ (3 - 52 ) A(k))(;lj
k; k; 4m k2
t a3 )5 AR) + O(), (D.50)
3A 11m 1 2m? m3 k2
(2) . 2 7t (1 _ 7 o2 s >
LK) = 472 8T 7T<1 52 ) Alk) + 2152 +O(A)’ (D-51)

where we have used the results of the integral type,

/ P (D.52)

1 (a—:L‘Q)%’

which is possible to find in [65] for different m and n.
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Appendix E

Matrix elements of the PV and
TV potentials

In this Appendix we will report the explicit analytic expression of the spin-isospin-
angular matrix elements of the operators entering the PV and TV potentials.
In the first section we will report some useful formulas and then in the second
and third sections we will discuss the spin-angular and isospin matrix elements
respectively.

E.1 Useful formulas

In this Appendix we will use the following notation

[TK@L} = > (KR LML) Ty (E.1)

z
K

where Tk, is a generic spherical tensor operator of rank K and component z given
by x, while W, rappresents a state of angular momentum L, M. (Krx, LM|JJ,)
is a Clebsh-Gordan coefficient.

Coupling of two spherical harmonics

l

_Bflfz - L _ 7y 01405 {y ly L
[YAY@LM— /—47TYLM(T‘)> Bie, = lila(—) 0o o0 o ) (E2

where ¢ = V20 4+ 1.

Coupling of 3 angular momenta

(G152 juods T MY =TI |y (fajs) oy I M) (E.3)

J23
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where

J1j2J3 j1t+je+is+J s o J1 J2 Ji2
7}112]223% = (_)]1 Jo+js ]12]23{ Js T s } . (E4)

Coupling of 4 angular momenta

|(J1J2) 12 (J3J4) jsa T M) = ZNjfjf;fffgmﬂ(jljs)jlg(jzj4)jz4JM> (E.5)
J13J24
where
o J1 J2 Ji2
N ey = J13J2412J34 8 J3  Ja Jaa ¢ - (E.6)
J13 Joa J

Spherical Tensors The Cartesian operators o and 7 can be written like spher-
ical tensor of rank 1:

O — O
1 :
o171 = E(Ux—wy)
1

o — -
1+1 \/§

where with the notation o, we indicate the rank 1 tensor and component z given
by = %1, 0. Furthermore

E= e,

Y 4_7TZ.Y1—1 + Y1
T 3 V2 ’
r 4_7TY1—1 —Yip

r 3 V2 '

We can rewrite the scalar and vector products in terms of these spherical com-
ponents

(0-#) = —VIr[oYily , (o x#), =i 8?”[0—13/1]1# (E7)

(1) x o(2),, = —ivV2[o1(1)o1(2)] (E.8)

1p
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where o (i) indicates Pauli’s matrices acting on the spin state of the i-th particle.
Other useful formula are (remembering that yss. = [s152)ss.):

)], = —valm, (E9)
[meL, = \/§T155,Xsu (E.10)
[am L= (3 TISS,XS,. (E.11)

where T" are given in Eq. (E.4).

E.2 Spin-angular matrix elements

First let us compute, the effect of an operator O on a spin-angular state [YL('ﬁ) XS] ,

namely

@ [YL<7A1>XS} .

z

- Z OLrsrLs [YL'(f)XS'} ; (E.12)

LS Iz

where O is one of the following operators:

Sri = (0'1+0'2)"f', S;t:(0'1+0'2)(—2V), S;(:<0'1><0'2>"f',

S, = o1-ro0y-L+o0y- 1o L, (E.13)
and the quantities Of, g, ;¢ are
OLrsr.1s = (Yoxs|O|Yixs). (E.14)
Operators S and S*. Using the Eq. (E.2) and Eq. (E.10)

SEWixslyy, = D> (L (=)"")VBNG LS, BfLTlgS, Yixs],,. . (E.15)
LS’

. ’ 11

57 Yixslyy, = 223‘/§N5J‘1LL'3€§31LLN15
L/S/

[SIESSIE

g [YL’XS’]JJZ 5 (E16)

[NIERSIE

Operators S;[ e Sp. The gradient in spherical coordinates can be written as:

N, i
V=is—=(ixL). (E.17)

Therefore

1
S = Sfag + - Sf . St=—i(o+0y) (#xL). (E.18)
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We get the matrix element of the operators S; considering that

[LYL (#) } I+ V010 Yo () | (E.19)

M
SO
SEYixslyy. = 3 VOV/L(L + )NUES, TiE BT ;;,(1 + (=) [Yoxs ],
L/S/
(E.20)
In the same way we find
11
St [Yixs),,, = —3V3Naw N s, ZSEES,Tlef,\/ (L+1)Biou| [Yoxs],,
(E.21)
E.3 Isospin matrix elements
In this case we need the matrix elements of the following operators
T T2, (71 £ 7)., (71 X 73)2 , Iz‘j(ﬂ)i(FQ)j =3(71).(T2). —T1 - T2 -
(E.22)

In general the total isospin is not conserved (only its z components). So in this
case it is convenient to decompose the isospin states &pr, in terms of the isospin
state of the two nucleons, and then evaluate the sum over the z components. We
have explicitly,

Err (71 - T2)érr.) = (4T — 3)orr (E.23)
- N 11l 1ip
(Ere|(RER)lerr) = > C22 p.C22 ot £ 1) (E.24)
tlzt2z
. 5 . 1 1o llT
<5TTZ ‘3(7—1)2(7—2)2 - 7_1 ' T2’£T/Tz> = Z Ct2122t22Tz tlzt2sz 3t12t22
tlthZ
— (4T — 3)5TT' (E.25)
— N 1 11v
(rnl(Fi x R)lern) = D CRinC tlz"rl to—1m (1= 112) (1 +222)
tlzt2z
1 17# 1 171
Ctijtngthle o, —1,T, (tlz + 1)(t2z - 1)
(E.26)

11
33T 11 11,
where Ct1 1 T, = (55 ti:t2:]55; TT,).
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