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Abstract: The performance of embedding methods is directly tied to the quality of the bath orbital

construction. In this paper, we develop a versatile framework, enabling the investigation of the

optimal construction of the orbitals of the bath. As of today, in state-of-the-art embedding methods,

the orbitals of the bath are constructed by performing a Singular Value Decomposition (SVD) on

the impurity-environment part of the one-body reduced density matrix, as originally presented in

Density Matrix Embedding Theory. Recently, the equivalence between the SVD protocol and the use

of unitary transformation, the so-called Block-Householder transformation, has been established. We

present a generalization of the Block-Householder transformation by introducing additional flexible

parameters. The additional parameters are optimized such that the bath-orbitals fulfill physically

motivated constraints. The efficiency of the approach is discussed and exemplified in the context of

the half-filled Hubbard model in one-dimension.

Keywords: one-body reduced density matrix functional embedding; effective Hamiltonian; Hubbard

model; unitary transformation; divide-and-conquer algorithm; density matrix embedding theory

1. Introduction

Quantum chemistry relies on solving the Schrödinger equation, but this quickly
becomes computationally prohibitive for practical systems due to the exponential increase
in numerical cost as the system size grows. Numerically exact solutions are challenging
to obtain for systems containing around 15 to 20 electrons. In this context, quantum
embedding methods [1,2] have emerged as a powerful tool, particularly for the study of
strongly correlated systems [3–5], where traditional methods often fall short [6,7]. In short,
an embedding protocol consists of partitioning the original extended system containing a
large number of N orbitals into fragments. Each fragment, often referred to as an impurity,
is complemented with bath orbitals to define an effective reduced system described by an
effective Hamiltonian. The reduced system, comprising the fragment and bath (denoted
as the cluster), contains Ni orbitals of the fragment, which interact with the additional Nb

bath orbitals. Ideally, the fragment and bath reduced system is entirely decoupled from the
rest of the system containing Ne orbitals, referred to as the environment of the cluster. The
cornerstone of these embedding methods is the construction of bath orbitals associated with
a fragment in order to derive the effective Hamiltonian of the reduced system. This effective
Hamiltonian captures the physics of the larger original environment while integrating out
most of its degrees of freedom. Consequently, it provides a highly efficient approach to
treat localized electron correlation without the need to explicitly consider the entire system,
thus balancing computational feasibility with accuracy. Different embedding strategies
have been proposed in the literature to construct such a reduced effective Hamiltonian.

Among these embedding strategies, some rely on the Green’s function formalism,
which focuses on single-particle excitations and can naturally incorporate electronic cor-
relation effects. In particular, within the dynamical mean-field theory (DMFT) formal-
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ism [8–10], the effective Hamiltonian is an effective Anderson impurity model (AIM) [11],
and is derived self-consistently using the Green’s function of the system. Note that various
alternative embedding approaches using the Green’s function have been developed to
derive effective AIM [12–14] or other effective Hamiltonians [15,16].

In parallel, embedding approaches have been proposed within the one-body Reduced
Density-Matrix (1RDM) formalism. The aim is to design a protocol to construct the bath
orbitals, and the corresponding effective Hamiltonian of the cluster, that become functional
of the 1RDM. Among the different approaches recently proposed [17–20], the pioneering
work of Knizia et al. [21] proposes to define the effective Hamiltonians by means of the
Schmidt decomposition of a single Slater determinant |Φ〉 that is univocally associated with
an idempotent 1RDM γ0 with the Density Matrix Embedding Theory (DMET). The Schmidt
decomposition of |Φ〉 defines a projector via a Singular Value Decomposition (SVD) of
the fragment-environment part of γ0 [22–24]. Indeed, SVD is known to yield the most
compact representation of all information contained within the fragment-environment
1RDM. This approach imposes that the bath constructed through the SVD contains as
many orbitals as the impurity fragment, and also that only idempotent 1RDM can be
used to describe the extended system. Over the past decade, different variations and
improvements of the original DMET have been investigated and benchmarked [25–29].
Recently, Sekaran et al. [23,30] proposed to use a specific unitary transformation, defined
as a functional of the 1RDM, to construct the bath orbitals [30]. The aforementioned
unitary transformation is known as the Block-Householder transformation (BHt). They
demonstrated that the SVD of the fragment-environment 1RDM is equivalent to the BHt,
even for a non-idempotent 1RDM [24]. Despite the appealing compactness of the resulting
sub-space of the bath, it should be noted that there is no inherent physical reason to
believe that such decomposition yields the “best” effective Hamiltonian for reproducing
the interactions between the fragment and its environment.

In this paper, our contributions lie in the proposal of a versatile framework that gener-
alizes the Block-Householder transformation, introduction of additional degrees of freedom
for the construction of bath orbitals, and derivation of the effective Hamiltonian. As a result,
additional constraints are required for the bath orbitals such as maximally disentangling the
cluster from the environment, or matching density matrices. The effects of the additional
constraints to optimally construct the orbitals of the bath are benchmarked on the well-
known but non-trivial half-band filled one-dimensional Hubbard model [31], following the
divide-and-conquer (DaC) algorithm proposed in a previous work by the authors [32].

2. Theory

In this section, we recall the DaC algorithm proposed in Ref. [32], represented in
Figure 1, applied to the paramagnetic Hubbard ring. The Hubbard Hamiltonian is given by

Ĥ = −t ∑
<ij>σ

ĉ†
iσ ĉjσ + U ∑

i

n̂i↑n̂i↓ (1)

where ĉ†
iσ (ĉiσ) corresponds to the creation (annihilation) of an electron of spin σ on the i-th

orthogonal atomic (or localized) orbital, n̂iσ is the counting operator equal to ĉ†
iσciσ. Indexes

< ij > refer at nearest neighbor orbitals. −t corresponds to the hopping integral, while U
stands for the Coulomb integral.
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Figure 1. Schematic Representation of the DaC Algorithm for Two Impurity Orbitals in the Fragment.

2.1. Quantum Bath from the Block-Householder Transformation

In this section, we recall the generic construction of the unitary Block-Householder
matrix Rσ, following the work of Sekaran et al. [30]. The unitary transformation Rσ is
defined as a functional of the spin 1RDM γσ. It performs the rotation of the mono-electronic
basis set as

c̃†
iσ = ∑

k

Rσ†
ik ĉ†

kσ , c̃iσ = ∑k Rσ
ik ĉkσ , (2)

where c̃†
iσ ( c̃iσ) stands for the creation (annihilation) operators of an electron in the i-th

orbital with spin σ expressed in the Rσ representation, respectively. The latter is denoted by
a ˜ in the following. It follows that the system is divided into a compact subset of Ni + Nb

orbitals, the cluster, interacting minimally with a large number of Ne orbitals More precisely,
the unitary transformation is designed such that (i) the fragment in the full system is the
same as in the cluster

c̃†
iσ = ĉ†

iσ , c̃iσ = ĉiσ ∀i ∈ fragment, (3)

or equivalently Rσ = δik where i belongs to the fragment, and (ii) the fragment is fully
disconnected from the environment at the one-body level,

γ̃ie = ∑k Rσ
ekγσ

ik = 0 ∀i ∈ fragment, ∀e ∈ environment. (4)

Numerous unitary transformations satisfy Conditions (3) and (4) resulting in identical
bath orbitals subspace [33,34]. Among all these transformations, we focus explicitly on the
unitary Block-Householder matrix Rσ defined using an auxiliary matrix V[γσ] ∈ RNNi

, with

Rσ = I − 2V
(

VTV
)−1

VT , (5)

where I stands for the identity matrix. By construction, Rσ is a normal involution

(i.e., Rσ−1
=Rσ, RσT

= Rσ and det(Rσ) = (−1)Ni ) with eigenvalues {1,−1}, and
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dim(Ker(Rσ + I))= r = Ni. The matrix V is given as follows.

V =







0:r
:Ni

γ:r
Ni :2Ni

+ X:r
:Ni

γ:r
2Ni :N






. (6)

The notation A:c
i:j corresponds to a ”pythonic” notation where only the elements from

i-th to the j-th lines for first c-th columns of the matrix A. For example, the square matrix
γ:r

Ni :2Ni
refers to the first r = Ni-th columns of γσ from the Ni-th element to the 2Ni-th. The

null matrix 0:r
:Ni

allows to fix the identity in Equation (3) on the subspace corresponding to
the fragment, and X:r

:Ni
is a square matrix to be determined in order to satisfy Condition (4).

To this aim, Rotella et al. [35] proposed a systematic construction with

X:r
:Ni

= PT
√

DPγ:r
Ni :2Ni

, (7)

and
√

D = diagN
i=1{

√
di}, where the non-negative scalar di and the orthogonal matrix P

are defined by

I +
(

γr
2Ni :N

γ:r−1

Ni :2Ni

)T(

γ:r
2Ni :N

γ:r−1

Ni :2Ni

)

= PTDP, (8)

and D (P) is eigenvalues (eigenvectors) matrix of the left-sided matrix in Equation (8),
respectively. The construction of X:r

:Ni
in Equation (7) holds only if the square matrix γ:r

Ni :2Ni

is invertible. Then we obtain

(Rσγσ):r =







γ:r
:Ni

−X:r
:Ni

0:r
:Ne






. (9)

Equation (9) is strictly equivalent as the conditions defined in Equations (3) and (4),
i.e., the transformation preserves the orbitals of the fragment in the cluster and disconnects
the fragment from the environment at the one-body level.

A recent study expounded on the mathematical equivalence between the bath or-
bitals constructed using the BHt of the 1RDM and the SVD of the fragment-environment
1RDM [24]. As a result of this equivalence, the BHt provides the most compact representa-
tion, encapsulating information pertaining to the one-body level interactions between the
fragment and its environment. Once the BHt has been presented to construct the orbitals
of the bath, we briefly recall the procedure based on Rσ in order to define an effective, yet
approximated, embedded Hamiltonian. Details and discussion on the straightforward
generalization to the ab initio Hamiltonian can be found in Ref. [32]. Following Equation (2),
we perform the BHt of the full Hamiltonian (1) to derive the Hamiltonian H̃,

H̃ = ∑
ijσ

t̃ij c̃
†
iσ c̃jσ + ∑

ijkl

Ũijkl c̃
†
i↑ c̃j↑ c̃†

k↓ c̃l↓, (10)

where single- and two-body integrals in the Rσ-representation t̃ij and Ũijkl , respectively,
are calculated in the same manner,

t̃ij = −∑kl tklR
σ†
ik Rσ

jl , (11)

Ũijkl = U ∑m Rσ†
imRσ

jmRσ̄†
kmRσ̄

lm. (12)

At this point, the complexity of solving Hamiltonian (10) is the same as the original
Hamiltonian (1). Considering that the BHt maximally uncouples the fragment from the
environment through the orbitals of the bath, an approximation for the effective Hamil-
tonian on the cluster H̄c is obtained by projecting the Hamiltonian (10) onto the cluster
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orbitals thus drastically reduce the numerical complexity of the system by solving a system
of Ni + Nb ≪ N orbitals. Part of the cluster-environment two-body interactions are taken
into account at a mean-field level in H̄ce

MF with

H̄ce
MF[γ

σ] = ∑
σ

∑
i,j∈cluster

c̃†
iσ c̃jσ ∑

(kl)

Ũijkl ∑
mn

Rσ̄†
kmRσ̄

nlγ
σ̄
kl + h.c., (13)

where the notation (kl) refers to pairs of orbitals in Rσ-representation such that at least
k or l belongs to the environment. Finally, an effective homogeneous chemical potential
µemb is added within the bath to preserve the total number of electrons in the fragment. All
together, the cluster effective Hamiltonian for wich the ground-state solution is numerically
obtained, reads

H̄c
eff = H̄c + H̄ce

MF + µemb ∑
i∈bath

c̃†
i c̃i. (14)

Likely influenced by the non-interacting character of the bath in DMFT, the non-local
interaction integrals Ũijkl that naturally arise in the bath have been initially neglected in
DMET, leading to a Anderson impurity model in the cluster [21]. This approximation is
called non-interacting bath (NIB) in contrast to the interacting bath (IB) version of DMET
where Ũijkl are explicitly taken into account [22]. The similar distinction between NIB an IB
can also be considered using the BHt to construct the orbitals of the bath [30,32].

Interestingly for non-interacting Hamiltonian (U = 0), for which the associated 1RDM
is idempotent (γσ2 = γσ) , the BHT of the 1RDM leads to a perfect decoupling of 1RDMs
of the clusters (Equation (4) being fulfilled ∀i ∈ the cluster instead of the fragment). It
corresponds to an exact factorization of the underlying associated wave-function |Ψ〉 = |φ〉,
where |φ〉 refers to a single Slater determinant. The factorization of the wave-function gives

R|φ〉 = Â|φ̃c〉|φ̃e〉, (15)

where |φ̃c〉 (|φ̃e〉) is an anti-symmetrized product of orbitals that belong solely to the cluster
(environment). R|φ〉 is a shortcut notation, such that the Slater determinant is expressed in
the Rσ-representation using the Equation (2). Consequently, in this specific case, the pro-
jected cluster Hamiltonian proposed in Equation (14) serves as a useful approximation and
is solved to extract exact local properties of the impurity site, where the ground-state wave
function |φ̄〉 is equal to |φ̃c〉 [30].

The Hamiltonian (14) is de facto a functional of the 1RDM via the definition of Rσ[γσ].
Several studies have developed self-consistent schemes predicated on the local cluster
1RDM calculated with Equation (14), as seen in DMET [21] and more recent DaC algo-
rithms [32]. Regardless of the self-consistent matching or conquer strategy employed,
the efficiency of the method hinges crucially on the ability of the effective cluster Hamilto-
nian (14) to locally mimic the full Hamiltonian on the fragment. On this subject, there is
no unambiguously definitive approach to determine what exactly constitutes “mimicry”.
To address this challenge, we propose in the following sections to generalize Equation (6),
introducing variational parameters to explore different flavours of embedding.

2.2. Quantum Bath from a Versatile Unitary Transformation Framework

Following the philosophy of exact diagonalization solver in DMFT [36], we would like
to control the number of bath orbitals, independently of the number of impurity orbitals in
the fragment, in order to systematically gain a better description of the interactions of the
fragment with the environment. As shown schematically in Figure 2, the BHt leaves the
fragment (dark blue square) unchanged in the cluster (gray square), and interacts solely
with the bath (orange square), where the number of bath orbitals is the same as in the
fragment. In the following, we give a general and flexible definition of the unitary matrix
R′σ[γσ] to obtain an optimized cluster, composed of Ni impurities coupled to Nb ≥ Ni

bath orbitals.
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Figure 2. Schematic representation of the BHt and the generalization, both functionals of the 1RDM.

Small dark blue squares correspond to the fragment 1RDM in the system, identical as in the cluster,

and orange squares correspond to bath 1RDM in the cluster. The gray squares correspond to

the cluster.

In what follows, spin index σ is omitted for clarity. Similarly as the BHt, we use the
auxiliary matrix V′ with

R′σ = I − 2V′
(

V′TV′
)−1

V′T . (16)

The auxiliary matrix V′ ∈ RNr, where Ni ≤ r ≤ N refers to the rank of the auxiliary
matrix, is constructed as following

V′ =







0:r
:Ni

γ:r
Ni :Ni+Nb

− X′ :r
:Nb

γ:r
Ni+Nb :N






, (17)

and indexes Ni, Nb, Ne refer to the number of impurity orbitals in the fragment, the number
of bath orbitals and the number of orbitals in the environment, respectively. γ:r

Ni :Ni+Nb
(γ:r

Ni+Nb :N) corresponds to the r first columns of the spin 1RDM γσ and the Nb lines (Ne)
after the Ni-th (Ni + Nb-th) first one. At this point, condition (3) (preservation of the frag-
ment in the cluster) is already satisfied. The matrix X′ :r

:Nb
must be determined in order to

preserve condition (4), i.e., it must satisfy the following equation,

(X′ :r
:Nb

− γ:r
Ni :Ni+Nb

)T(X′ :Ni
:Nb

+ γ
:Ni
Ni :Ni+Nb

) = γ:rT

Ni+Nb :Nγ
:Ni
Ni+Nb :N . (18)

In the Equation (18), we distinguish the matrix X′ :r
:Nb

from the matrix X′ :Ni
:Nb

. The latter

contains only the first Ni-th column(s) of X′ :r
:Nb

. More precisely, the matrix X′ :r
:Nb

is build

from the concatenation of matrices X′ :Ni
:Nb

and X′Ni :r
:Nb

. In practice, the nonlinear Equation (18)
can be solved numerically. In the following, we discuss only the single impurity case Ni = 1,

where Equation (18) is solved analytically. In this simple case, the matrix X′ :Ni
:Nb

= X′1
:Nb

is

reduced to a vector. In the same manner, we split the matrix X′Ni :r
:Nb

into a complete set of

vector, denoted as X′ j
:Nb

where 1 < j ≤ r. For the single impurity case, the Equation (18)
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becomes

(X′1
:Nb

− γ1
Ni :Ni+Nb

)T(X′1
:Nb

+ γ1
Ni :Ni+Nb

) = γ1T

Ni+Nb :Nγ1
Ni+Nb :N (19)

(X′ j
:Nb

− γ
j
Ni :Ni+Nb

)T(X′1
:Nb

+ γ1
Ni :Ni+Nb

) = γ
jT

Ni+Nb :Nγ1
Ni+Nb :N ∀ 1 < j ≤ r. (20)

The Equation (19) is nonlinear and constrains the norm of the vector X′1
:Nb

. More

precisely, this equation is fulfilled for any vectors X′1
:Nb

satisfying

||X′1
:Nb

|| = ||γ1
Ni :Ni+Nb

||+ ||γ1
Ni+Nb :N ||, (21)

where ||v|| = vTv refers to the norm of the vector v. The Equation (20) exists only for

r > Ni and is linear for X′ j
:Nb

, corresponding to a scalar-product preservation, and can be
written for all 1 < j ≤ r as follows,

X′ jT

:Nb

(

X′1
:Nb

+ γ1
Ni :Ni+Nb

)

= γ
jT

Ni :Ni+Nb
(X′1

:Nb
+ γ1

Ni :Ni+Nb
) + γ

jT

Ni+Nb :Nγ1
Ni+Nb :N . (22)

We introduce a spherical representation which allows us to express the vectors X′ j
:Nb

with lengths l j and a complete set of angles {θ}. In this representation, length l1 (l j) is

used to fulfill norm preservation (21) (scalar product (22)) for X′1
:Nb

(X′ j
:Nb

), respectively.

The set of angles {θ} are thus completely free and can take any value between [−π, π[.
Consequently, we have a complete set of {θ} parameters to construct the corresponding set
of different auxiliary matrices defined in Equation (17) satisfying the conditions (3) and (4).
The number of free parameters is equal to r × (Nb − Ni), with r ≥ Ni. In Figure 3, we
illustrate all vectors that can be obtain for Ni = 1, Nb = 3 and r = 2. Dark blue vectors
correspond to the special two impurities Ni = r = 2 (or rank two) Block-Householder
solution, where the construction of such vectors has been presented in detail in Section 2.1.
The rank two BHt preserves the identity over the second impurity, meaning that the axe
Nb = 1 in the figure corresponds to the second impurity. This transformation is a particular
solution of the Equations (21) and (22). Beyond the special BHt, all vectors belonging to
the orange sphere are solutions of the Equation (21), such as presented with the orange

vector X′1
:Nb

for example. The second vector (light blue vector) norm depends on its scalar

product with X′1
:Nb

. Thus, the norm (and the direction) is fixed using Equation (22) and

all other angles left are free. More generally, when r > 1, every vectors X′ j
:Nb

, 1 < j ≤ r

are independent from each other and are correlated to X′1
:Nb

solely. With the spherical

representation of the vectors X′ j
:Nb

, we have access to a complete set of solutions of the

Equations (21) and (22), as a free set of parameters with the angles {θ}.
Note that by considering r, Nb and N′

b > Nb, the auxiliary matrix V′[X′ :r
:Nb

] space is

not included into V′[X′ :r
:N′

b
], i.e., any rank r auxiliary matrices expressed using Equation (17)

with Nb bath cannot be expressed with an auxiliary matrix with a greater number of bath

N′
b. Similarly, if we consider Nb, r and r′ > r, we get V′[X′ :r

:Nb
] /∈ V′[X′ :r′

:Nb
], which means

that different ranks r lead to a specific definition of the cluster.
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Nb = 2

Nb = 3

Nb = 1

X′1
:Nb

l1 Eq. (21)

X′2
:Nb

l2[X′1
:Nb

] Eq. (22)
θ1

2

θ1
1

Figure 3. Schematic representation of vectors X′ j
:Nb

(orange vector for j = 1 and light blue vector for

j = 2) in spherical representation for the single impurity case Ni = 1 and three orbitals in the bath,

corresponding to the number of axes. The rank of the tranformation is equal to the number of vectors,

here with a rank r = 2. Dark blue vectors correspond to the two impurities (equivalently r = 2)

Block-Householder vectors from a 1RDM of a non-interacting 1D-Hubbard system. The length l1 is

fixed according to Equation (21), while lengths l j, r ≥ j > 1 depends on the vector X′1
:Nb

following the

Equation (22). All angles parameters {θ
j
i}, 1 ≤ i ≤ r − Ni are free. For example, all vectors belonging

to the orange sphere are available as a choice of X′1
:Nb

. The number of free parameters is equal to

r × (Nb − Ni) = 4 (orange and light blue dashed curves).

At this stage, we have proposed a generic construction of unitary transformations
following Equations (16) and (17) that generalize the BHt. Indeed, given an arbitrary
number of bath orbitals Nb (Nb ≥ Ni) and rank r of matrix V′ (Ni ≤ r ≤ N), we show
that we can construct many unitary transformations that fulfill conditions (3) and (4) up
to r × (Nb − Ni) free parameters. In the next section, we propose to use these additional
parameters in order to add physically motivated criteria to design bath orbitals.

2.3. Optimization of Free Parameters

The free parameters {θ} are variationaly optimized to adjust the bath orbitals using
physical insights, unlike the systematic BHt. In what follows, the transformation R′σ is a
functional of the spin 1RDM, but also a function of a full set of free parameters {θ} and is
denoted as R′σ[γσ]({θ}), or in a more compact notation R′σ(θ). The transformation of γσ

with the transformation R′σ(θ) is denoted as γ̃σ.
According to the construction of R′σ(θ) fulfilling constraint (4), the fragment is dis-

connected from the environment at the one-body level. In the non-interacting case, we
show analytically that the Block-Householder (r = Ni) disconnects bath orbitals from the
environment. However, this is not the case for the correlated 1RDM. Therefore, the set of
variational parameters is used to minimize the value of the so-called buffer-zone ∆, which
gives a quantitative insight into the disentanglement of the environment cluster at the one
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body level and leads to the saddle-point equation

∆2(θ) = ∑b∈bath ∑e∈env γ̃σ2

be , (23)

∂∆(θi)

∂θi
= 0 ∀θi ∈ {θ}. (24)

Following a similar philosophy, one could minimize the single-particle Von-Neumann
entropy of the truncated 1RDM of the cluster.

From the medium to the strong correlated regime, the buffer-zone ∆ is not able to give
a quantitative value of the entanglement between the cluster and the environment, where
two-body interactions dominate at this regime. In the following, we propose to minimize
the square of the Hartree (i.e., mean-field) contribution energy between the cluster and
the environment

E2
H(θ) = ∑σ,c∈cluster

[

∑(jkl)

(

Ũ(θ)cjkl γ̃
σ
cjγ̃

σ
kl

)2
+ ∑e∈env(t̃ceγ̃σ

ce)
2
]

, (25)

∂E2
H(θi)

∂θi
= 0 ∀θi ∈ {θ}, (26)

where c (e) belongs to the cluster (environment), respectively, and the notation (jkl) refers
to pairs of orbitals in R′σ(θ) representation such that at least j, k or l belongs to the
environment, and t̃ce (Ũ(θ)cjkl) defined in Equation (11) (Equation (12)), respectively. In a

practical way, the evaluation of E2
H using Equation (25) is numerically more expensive than

the evaluation of ∆.
Finally, inspired by the DMET matching, we propose to design the transformation in

order to enforce the matching between density matrix elements connected to the fragment
in the transformation space, and in the cluster

min
θ

∑
ij

(

γ̃σ
ij − γ̄σc

ij

)2
∀i ∈ fragment,∀j ∈ cluster, (27)

with γ̄σc refers as the ground-state spin σ 1RDM of the cluster obtained by solving H̄c
e f f

defined in Equation (14).
In Figure 4, we show the representation of the projected hypersurface spanned by

two variational parameters. It highlights the non-trivial shape of the landscape with
local minima and flat zones. More precisely, we test the cost functions proposed in
Equations (23), (25) and (27) with respect to two free parameters {θ} for Ni = 1, Nb = 3
and r = 2. A non-interacting one body reduced density matrix (idempotent) is used as a
1RDM test to obtain the transformation R′σ(θ). The first rank r = 1 vector is fixed using
Block-Householder solution. The minimization of the buffer zone ∆ (Figure 4a) strictly
cancels the value of ∆ and corresponds to the Block-Householder solution, as discussed in
Section 2.1. This result is attributed to the fact that the trial density matrix is idempotent.
However, this particular value is enclaved between regions of higher ∆ values, which can
make optimization difficult depending on the starting point of the numerical minimization.
Subsequently, the minimization of the mean-field term between the cluster and the envi-
ronment (Figure 4b) also yields the same solution in this case. However, the landscape is
distinct from the previously studied cost function. Finally, the matching of the density ma-
trices (Figure 4c) presents a very specific landscape. Indeed, such a landscape is numerically
very challenging to explore in order to obtain the global minimum. Contrary to the cost
functions studied previously, the Block-Householder solution (dark blue triangle) is not the
global minimum. It appears that there exists a continuous set of minima, which further
complicates the exploration of the landscape. Altogether, this highlights the non-trivial
character of the resulting landscape that might display many local minima and quasi-flat
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regions. As a result, the numerical optimization of the {θ} parameters might become
challenging for a large number of parameters.

(a) (b)

(c)

Figure 4. Evaluation of the cost functions with respect to free parameters {θ} for Ni = 1, Nb = 3

and r = 2 using a non-interacting one body reduced density matrix from a 1D Hubbard chain.

The vector corresponding to the rank r = 1 is fixed and corresponds to the Block-Householder vector

(see Figure 3), and the second is presented with the dark blue triangle. In this case, two angles are

available, and are represented using spherical coordinates. The colorbar gives a continuous scale

from the lowest value of the different cost function evaluation (white) to the highest (dark blue) for

differents cost functions. In (a), we evaluate the buffer-zone ∆ (see Equation (23)). In (b), we evaluate

the Hartree contribution E2
H (see Equation (25)) for U/t = 8, and in (c) we evaluate the density matrix

matching (see Equation (27)) for U/t = 8.

3. Results and Discussion

In this section, the various cost functions outlined in Section 2.3 are evaluated against
the homogeneous paramagnetic Hubbard model at half-filling, and compared to exact
Bethe-Ansatz (BA) results [37,38], and against the standard Block-Householder transfor-
mation presented in Ref. [32] denoted by “BHt”. We recall that the BHt corresponds to a
particular case, where the set of parameters {θ} is set according to the Equation (7). More
specifically, the construction of the unitary transformation R′σ with the minimisation of
the buffer in Equation (23) is denoted in the following with “Buffer”, the minimisation of
the Hartree contribution of the interactions between the cluster and the environment in
Equation (25) is denoted with “Hartree”, and by enforce the matching with density matrices
with the Equation (27) with “Matching”. The non-idempotent N-representable 1RDM space
is spanned using the self-consistent protocol presented in [32]. The various results pertain
to the case of a single impurity. The generalization to multiple impurities, discussed in
Section 2.2, will not be covered in this paper. For comparison purposes, the standard BHt
method (gray lines) and the various cost function-based methods in this work (colored
lines) are compared at the same level of numerical complexity, meaning that the clusters
contain the same number of orbitals. For example, the single impurity and three orbitals in
the bath in our approach are compared to the two impurities BHt, the latter containing two
orbitals in the bath.
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Additionally, the variational parameters are optimized using the numpy Python
library [39], particularly with the L-BFGS-B method, which is similar to the conjugate
gradient optimization method. Finally, as explained in [32], a damping parameter is added
to avoid drastic changes in the 1RDM and convergence issues, meaning that a fraction of
the previous 1RDM obtained is kept in the new 1RDM. In the results presented here, we
used a damping of 60%.

In Figure 5, we show the relative error of the kinetic energy ∆Ek = 100×
(

EBA
K − EK

)

/EBA
K ,

where BA refers to the Bethe Ansatz solution, and the relative error of the double occupation
∆d = 100×

(

dBA − d
)

/dBA as a function of the relative correlation strength U/(U + 4t), where
4t corresponds to the non-interacting band width. This figure presents the effect of the various
cost functions outlined in Section 2.3 (color-coded lines). In this case, the single impurity
Ni = 1 is embedded with three IB orbitals Nb = 3 for a vector V′ of rank r = 2. Thus, there
is a number of parameters θ equal to 2× (3− 1) = 4 to optimize. In the non-interacting limit
U/(U + 4t) → 0, the kinetic energy and the double occupation are correctly reproduced for
all cost functions. Regarding to the atomic limit U/(U + 4t) → 1, the proposed modified
embedding schemes are not suitable to recover the asymptotic behavior at this limit, as well
as the BHt. For intermediate regimes U/4t ≃ 1, there is a strong competition between
electronic delocalization which increases kinetic energy, and the electron–electron repulsion
strength which penalizes the number of double occupation. For state-of-the-art embedding
methods, such as DMET [21] or the projected site-occupation embedding theory [18],
describing this regime accurately is very challenging.

Figure 5. Relative error for the kinetic energy ∆Ek (top panel) and per site double occupation ∆d

(bottom panel) in percent with respect to correlation strength U/(U + 4t) for one impurity orbital

in the fragment, three bath orbitals and a rank two vector. Colored lines correspond to different

cost functions.

For weakly-to-intermediate correlated regimes (U/(U + 4t) < 0.6), the results from
the minimization of the cluster environment Hartree term (25) (dark blue line) are consis-
tently better than those obtained by minimizing the buffer zone (23) (orange line), which
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are in turn better than the Block-Householder solutions (gray line). However, the nu-
merical cost associated with the minimization of constraint (25) scale as O

(

NcN4
e

)

, which
is significantly higher than the cost associated with constraint (23) scaling as O

(

NcN2
e

)

,
where Ne represents the number of orbitals belonging to the environment of the cluster,
and Nc the number of orbitals belonging to the cluster. Concerning the one-body reduced
density matrix matching proposed in Equation (27) (blue line), the results obtained are
similar to the constraint (25) from low to middle correlated regime, and deviate for values
of U/(U + 4t) ≃ 0.6 for kinetic energy and double occupancy. For strongly correlated
regimes (U/(U + 4t) ≥ 0.6), the interaction energy Eint = U × d dominates. Although the
double occupancy is similar for the BHt and the buffer-zone minimization at this regime,
the minimization of the mean-field term improves the results. The double occupancy
is poorly described by the density matrix matching and exhibits nonphysical numerical
instabilities for values of U/(U + 4t) → 1.

In Figure 6, we show the evolution of the four different variational parameters θ
for different cost functions as a function of relative correlation strengh U/(U + 4t) for
a two rank r and a three bath orbitals calculation. In the left panel, we show the two
variational parameters associated with rank r = 1, i.e., the first column of the matrix
V′ in Equation (17), while in the right panel, the parameters are associated with rank
r = 2. Solid lines correspond to the first angles for all ranks, and dotted lines to the
second ones. Interestingly, we found that three among the four parameters do not change
significantly with respect to U/(U + 4t). While a definitive interpretation of this behavior
remains challenging, it likely originates from system symmetries, specifically in this case,
the translational and electron-hole symmetry, which significantly reduce and constrain
the cost-function hyper-surface. Consequently, it is conceivable to simplify the variational
optimization of the different parameters by considering only a reduced set of parameters (in
this case the first of the second rank) varying significantly in the process. This simplification
could greatly improve the numerical optimization of the parameters, and therefore the
numerical efficiency of the method in general.

Figure 6. Optimized free-angle parameters with respect to the relative correlation strengh U/(U + 4t)

for a rank r = 2 and a three bath orbitals calculation, for different cost functions (colored dashed lines).

The left panel corresponds to the first rank, while the right panel to the second. Solid lines correspond to

the first parameter of each rank, and dashed lines to the second.

As originally presented in DMET [21], the effective Hamiltonian was an AIM, which
implies that interaction terms within the bath are neglected, a scenario referred to as the NIB
approximation. In this context, we present in Figure 7 the relative error of the ground-state
energy per site Egs = Ek + Ud, with respect to the correlation strength for a system with
a single impurity in the fragment, three bath orbitals, and a rank-two vector. In the low
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correlation regime (U/(U + 4t) < 0.3), both NIB (represented by dashed colored lines)
and IB (represented by full colored lines) yield similar results across all presented cost
functions. However, for the intermediate to strong correlation regime (U/(U + 4t) > 0.6),
the NIB approximation fails to provide an accurate description of the ground-state energy
of the system. It should be noted that the BHt IB (full gray line) appears to offer the
most accurate representation of the ground-state, contradicting the observations made
in Figure 5. However, this apparent accuracy is misleading and arises from a larger error
compensation between the kinetic and interaction energies. Additionally, we found the
same error compensation for the NIB approximation, leading to inadequate results for both
kinetic and interaction energies. It is also noteworthy to optimize variational parameters to
minimize the strength of Coulomb repulsion in the bath. This method could potentially
close the gap between finite interacting baths in DMET or DaC approaches, and the infinite
but non-interacting baths present in DMFT.

Figure 7. Relative error of the ground-state energy per site ∆Egs = 100 × (1 − Egs/EBA) with respect

to correlation strength U/(U + 4t) for one impurity and three bath orbitals and a rank two vector.

Colored lines correspond to different cost functions for the IB case, and dashed lines for the NIB case.

In the following, we focus on the IB case and the minimization of the buffer zone
(see Equation (23)) to explore the influence of the number of bath orbitals and the rank
of the matrix V′ used to define the unitary transformation. In Figure 8, we present the
per site kinetic energy scaled with the non-interacting kinetic energy per site E0

K = −4/π
(upper panel) and the per site double occupation (lower panel) as a function of relative
repulsion strength U/(U + 4t). Results correspond to the cases Ni = 1, Nb = 3 and
are given for different rank r of the vector V′, ranging from one up to three. For in-
stance, the rank two (orange line) corresponds to the results previously shown in Figure 5
(also with the orange line). The number of variational parameters is equal to 2 for r = 1,
equal to 4 for r = 2, and equal to 6 for r = 3. For a rank 1 vector, we examine a special
case where the rank equals the number of impurities Ni. In this case, the construction of
vector V′ needs to satisfy only the norm preservation in Equation (21). As demonstrated
previously in Section 2.2, increasing the rank of vector V′ does not systematically improve
the solutions, as the accessible solution spaces are disjoint. Indeed, we show that the rank 2
results are the closest to the exact results for both kinetic energy and double occupation,
and this applies to all correlation regimes U/(U + 4t). For strongly correlated regimes,
rank 3 slightly improves the results of rank 1, but exhibits numerical instabilities due to the
optimization of a larger amount of variational parameters. According to this figure, it is not
necessary to increase the rank of vector V′ in order to systematically improve the results.
Moreover, the best results are obtained for r = 2, corresponding to the number of singular



Computation 2023, 11, 203 14 of 17

values in DMET [21], or the number of columns of the vector V′ = V for the BHt presented
here [32].

Figure 8. Renormalized kinetic energy per site Ek/E0
k (top panel) and per site double occupation

d (bottom panel) with respect to correlation strength U/(U + 4t) for one impurity and three bath

orbitals and the minimization of the buffer zone as a cost function. Colored lines correspond to the

rank of the vector up to three. Black solid line correspond to Bethe Ansatz.

In Figure 9, we present the scaled kinetic energy per site (upper panel) and the per site
double occupation (lower panel) as a function of relative repulsion strength U/(U + 4t).
The results are shown for a rank r = 3 vector V′, for different number of orbitals in the bath,
ranging from one up to five (colored lines). For spin symmetry reasons, we only consider
cases where the number of orbitals in the cluster is even. The case with a single orbital
in the bath (yellow line) is very particular, as there are no variational parameters to be
optimized in this case. In the other cases, the number of variational parameters corresponds
to 6 for Nb = 3 orbitals (similarly as the orange line in Figure 5), and 12 for Nb = 5 orbitals.
Importantly, increasing the number of orbitals in the bath systematically improves the
kinetic energy and double occupation for all correlation regimes U/(U + 4t). However,
for strongly correlated regimes U/(U + 4t) >> 0.5, we observe oscillations of the solutions
for five bath orbitals likely due to the non-trivial and complex shape of the cost-function
hyper-surface, which might be sharp and display many local minima at this limit.
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Figure 9. Renormalized kinetic energy per site Ek/E0
k (top panel) and per site double occupation

d (bottom panel) with respect to correlation strength U/(U + 4t) for a rank three vector and the

minimization of the buffer zone as a cost function. Colored lines correspond to the number of bath

orbitals up to five. Black solid line corresponds to Bethe Ansatz.

4. Conclusions

In this study, we have thoroughly investigated the performance of various 1RDM-
based embedding methods to construct the orbitals of the bath. Particular emphasis is
placed on the characteristics of the resulting reduced and effective Hamiltonian. Indeed, this
Hamiltonian is tasked with accurately reproducing the interactions between the fragment
of the system and its environment within a downscaled cluster.

While DMET employs the SVD of the fragment-environment 1RDM to define the effec-
tive Hamiltonian, we have demonstrated that the compact subspace is not the optimal setting
for deriving the effective Hamiltonian. By generalizing the Block-Householder equations,
we introduce a significant amount of additional flexible parameters, notably by adding bath
orbitals that are nearly independent of the number of fragment orbitals or by exploring differ-
ent transformation domains via rank augmentation. To efficiently leverage these additional
degrees of freedom, we have proposed cost functions that, in most cases, effectively disconnect
the cluster, containing an integer number of electrons, from the environment.

These cost functions were tested on the half-filled Hubbard model Hamiltonian, with a
single impurity orbital in the fragment for which the equations are simplified. The results
showed significant improvements over the Block-Householder outcomes.

Nevertheless, these improvements imply numerical optimization, which often proves
challenging due to the complex landscape of cost functions. The complexity of these
landscapes likely contributes to the fact that we can currently only achieve half-filled
results. Moreover, this complexity occasionally makes it difficult to obtain continuous
solutions for all relative correlation strengths, resulting in certain non-physical instabilities.
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Therefore, we encourage further research into the development of efficient cost functions
that can derive an optimized effective Hamiltonian to describe the fragment, offering a
smoother landscape than its counterparts. A compelling challenge for future research
would be to test the method on multiple impurity fragments and, importantly, to derive
linearized equations to define the unitary transformation more effectively.
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