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1. Introduction

Like many other mathematical concepts, symmetry groups have a rich struc-
ture including regular families and sporadic or exceptional phenomena [16].
The exceptional symmetry group in 3D is icosahedral symmetry. This fact
has profound implications for the natural world around us, because objects
consisting of identical building blocks that are ‘maximally symmetric’ dis-
play icosahedral symmetry. This includes most viruses and many fullerenes,
as well as artificial nanocages in bionanotechnology and geodesic domes in
architecture [13]. Even before any of these examples were known, icosahedral
symmetry had inspired Plato to formulate a ‘unified theory of everything’ in
his dodecahedral ‘ordering principle of the universe’. This pattern of (excep-
tional) symmetries inspiring ‘grand unified theories’ continues to this day,
with Ay = SU(5) in GUTs, and Ejg in string theory and GUTs, as well as
Dy = SO(8) and By = SO(9) being critical in string and M theory.

Traditionally, people seek to understand symmetries ‘top-down’. For
instance Eg includes A4 and Hy, or Hy, includes Hs, so that people seek
to understand the smaller groups as subgroups of the larger ones. In recent
work [6,8,10,11] the author has shown that instead there is also a ‘bottom-
up’ view, by which e.g. H; and even Eg can be constructed from Hs. In this
sense the key to the larger exceptional symmetry groups is already contained
in the smaller exceptional group. In particular, the author proved a uniform
theorem that any 3D root system/reflection group induces a corresponding
4D root system/reflection group in a systematised way. The unusual abun-
dance of exceptional symmetry structures in 4D could thus be based on (the
accidentalness of) this construction, because it gives rise to the 4D excep-
tional objects Dy (triality), Fy (the largest 4D crystallographic group) and
Hj (the largest non-crystallographic group altogether). There is an immediate
connection with Arnold’s Trinities, mysterious connections between different
triplets of exceptional objects throughout mathematics [1,2,12].

There is therefore a lot of additional geometric insight to be gained
from understanding this connection between 3D and 4D geometry, rather
than looking at these phenomena from a 4D perspective alone. In fact, the
link with 3D is much wider, including an ADE-type correspondence between
3D and 4D but also between 3D and ADE-type diagrams, in addition to the
famous McKay correspondence [12,27]. The connection between 3D and 4D
geometry arises because 3D reflections give rise to rotation groups via spinors.
These 3D spinors themselves behave like 4D objects and can be shown to
satisfy the root system axioms. This paper seeks to provide an example of
concrete calculations performed entirely within the 3D Clifford algebra C1(3)
and its even subalgebra rather than in R*. There is of course also a connection
with quaternions, because of an isomorphism. A lot of previous work has
been done using quaternions and a purely algebraic description [4,22-26]
with some somewhat haphazard results. However, we would argue that a lot
of the deeper geometric insight, and its universality and systematic approach,
have been lost by following an approach that is algebraically equivalent but
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is really not well suited for uncovering and understanding the underlying
geometry and the generality of the situation.

In this paper we therefore give a comprehensive and pedagogical expo-
sition of how to perform group theoretic calculations for H3 in a Clifford
approach, leading to the detailed construction of H3 — H,. We give explicit
results of calculations in the paper, as well as making python Jupyter note-
books available as supplementary information for convenience and repro-
ducibility. These detail the calculations, results and algorithms used based
on the galgebra python package [3] as well as some visualisations also from
SageMath [30]. These notebooks are shared in the interest of open science,
collegiality and reproducibility, and may be useful to the readers for adapting
them for their own calculations. If they are useful please cite this paper along
with the original software provided by e.g. [3] and [30].

After the basic construction of the Hy root system (the 600-cell) from Hg
we investigate various subrootsystems that arise within H4. These groups and
root systems are of course separately invariant within Hy,, and the 120 vertices
of the Hy root system can be split into two separately invariant sets by
taking the complement of the subrootsystem in H;. Conway and Guy found
the Grand Antiprism computationally 55 years ago this year [5]. Conway
and Michael Guy’s father, Richard Guy, himself a famous mathematician,
populariser of mathematics and collaborator of Conway, have unfortunately
passed away this year (2020). This paper is dedicated to their memory. The
construction and the symmetries of the Grand Antiprism actually benefit
from the construction from 3D as noted in [7]. In this paper we follow in
detail how the Hy x Hs subgroup arises naturally within Hy in the induction
process. This subrootsystem is then used to split the 120 vertices of Hy
into the set of 20 roots of Hy @ Hy and the 100 vertices of its complement,
which is exactly the Grand Antiprism. A completely analogous construction
works in a uniform way for other subrootsystems of Hy that arise via the 3D
construction, either as subrootsystems of H3 or even subgroups of 21. The
analogous cases include D, and the snub 24-cell, A}, A2 ® A and Ajy.

We organise this paper as follows. We review some basics of Clifford
algebras, reflection groups and root systems in Sect. 2, leading to the Versor
Theorem and the Induction Theorem. In Sect. 3 we build on the Versor Theo-
rem to set up a framework for explicit group theoretic calculations, including
the construction of the Pin(H3) and Spin(Hj3) groups, and discussion of their
conjugacy classes. Subrootsystems can arise either as even subgroups of the
spinor group (here the binary icosahedral group 21I), via subrootsystems of
Hj or generated via the inversion ejeqes, which is discussed in Sects. 4 and 5,
respectively. The Coxeter plane is a convenient way to visualise root systems
and other polytopes in any dimension, and the calculations in this case can
also be entirely performed within the even subalgebra, as shown in Sect. 6.
The next sections give detailed results for splitting the H4 root system with
respect to various subrootsystems, yielding complementary pairs of invariant
polytopes, including Ho @ Hy and the Grand Antiprism in Sect. 7, D4 and the
snub 24-cell in Sect. 8, and examples from A}, Ay & Ay and Ay in Sect. 9. In
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Sect. 10 we conclude with a few words about the insights that can be gained
from this novel approach via induction from 3D.

2. Root System Induction

The setting for reflection groups and root systems stipulates the existence of
a vector space with an inner product, so without loss of generality one can
construct the corresponding Clifford algebra. The Clifford algebraic frame-
work used here is very standard, though we broadly follow [14,17]. We define
an algebra product via the geometric product zy = = -y + = A y, where
the inner product (given by the symmetric bilinear form) is the symmetric
part z -y = %(azy + yz), and the wedge/exterior product the antisymmetric
part xt Ay = %(my —yx). These relations also mean that parallel vectors com-
mute whilst orthogonal vectors anticommute. The full 2"-dimensional algebra
is generated via this geometric product, linearity and associativity. For our
purposes we only consider the Clifford algebra of 3D Cl(3) generated by three
orthogonal unit vectors e, es and ez, though some of the following statements
hold under very general conditions. This yields an eight-dimensional vector
space generated by the elements

{1} {e1,e2,e3} {erea = Iez,eqe3 = Iej,ezer = Tea} {1 = ejeqes},
1;2;1 3 vectors 3 bivectors 1 trivector
with an even subalgebra consisting of the scalar and bivectors, which is 4-
dimensional. Note that for the orthogonal unit vectors e.g. ejes = e A es.
We follow the galgebra IXTEX output, which has the wedge version.

Root systems and in particular their simple roots are convenient objects
to characterise reflection and Coxeter groups. We therefore briefly introduce
the relevant terminology here:

Definition 2.1. (Root system) A root system is a collection ® of non-zero
(root) vectors « that span an n-dimensional Euclidean vector space V
endowed with a positive definite bilinear form, that satisfies the two axioms:
1. ® only contains a root a and its negative, but no other scalar multiples:
®NRa={-a,a} Yacd.
2. ® is invariant under all reflections corresponding to root vectors in ®:
$5a® = ® YV a € ®. The reflection s, in the hyperplane with normal
vector «v is given by

(z-a)

Sq 1T — So(x) =12 —2 a,

(a-a)

where (z - y) denotes the inner product on V.

Unlike other popular conventions here we assume unit normalisation for
all our root vectors for later convenience.

Proposition 2.2. (Reflection) In Clifford algebra, the reflection formula sim-
plifies to

S 1 — So(x) = —azxa
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for normalised root vectors, so that double-sided (‘sandwich’) application of
a root vector generates the corresponding reflection.

Proof. Using the Clifford form for the inner product -y = %(my +yz) in the
(simple) reflection formula in Definition 2.1 s; : & — s;(x) = . — 2 gzzg
assuming unit normalisation of roots «; - a; = 1 yields the much simplified
version

« and

1
sitx—si(r)=x—2- i(xai + o), =x — xa? — Ty = — T,
O

Proposition 2.3. (Double cover) In Clifford algebra, the reflections o and —a
doubly cover the same reflection s,

Proof. Straightforward, since due to the double-sided application the signs
cancel out. O

A subset A of @, called simple roots aq, ...,y is sufficient to express
every element of ® via linear combinations with coefficients of the same sign.
For a crystallographic root system, these are Z-linear combinations, whilst for
the non-crystallographic root systems one needs to consider certain extended
integer rings. For instance for Hy, Hs and H4 one has the extended integer
ring Z[r] = {a + 7bla,b € Z}, where 7 is the golden ratio 7 = 1(1+ v/5) =
2cos Z, and o is its Galois conjugate o = (1 — V/5) (the two solutions to
the quadratic equation 22 = x4 1), and linear combinations are with respect
to this Z[r]. This integrality property of the crystallographic root systems
(types A-G) leads to an associated lattice which acts as a root lattice for Lie
algebras, which are named accordingly. In contrast, no such lattice exists for
the non-crystallographic groups (types H and I), which accordingly do not
have associated Lie algebras, and are perhaps less familiar as a result.

The reflections corresponding to simple roots are also called simple
reflections. The geometric structure of the set of simple roots encodes the
properties of the reflection group and is summarised in the Cartan matrix and
Coxeter-Dynkin diagrams, which contain the geometrically invariant infor-
mation of the root system as follows:

Definition 2.4. (Cartan matriz and Coxeter—Dynkin diagram) The Cartan
matriz of a set of simple roots a; € A is defined as the matrix

(v - ay)
Ay =2—-2 2.1
] (ai . ai) ( )
A graphical representation of the geometric content is given by Cozeter—
Dynkin diagrams, in which nodes correspond to simple roots, orthogonal roots

are not connected, roots at ¥ have a simple link, and other angles - have a
link with a label m.

Example. The Cartan matrices for Hy and Hy are respectively given by
2 -1 0 0

2 -1 0

-1 2 -1 0

A(Hg) = -1 2 —T 714(1"[4) = 0 1 92 .
0 -7 2

0 0 —T 2
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Possible choices of simple roots are e.g.
ay = ey, ag = 5(—7’61 —ey— (1 —1)e3),a3 = e
and

1
o = 5(7’61 — e + (7' — 1)64), Qo = €2,

1
ag = —5((7 —1eg +ea+7e3) and a4 =es.

Remark 2.5. What is a slight drawback of the diagrammatic approach is that
it is rather unobvious which subgroups are contained e.g. in H; — at least
exhaustively. We will see some non-obvious examples later on.

Root systems and simple roots are therefore convenient paradigms for
considering reflection groups: each root vector defines a hyperplane that it is
normal to and thereby acts as a generator of a reflection in that hyperplane. In
Clifford algebra this root vector in fact directly acts as a reflection generator
via the geometric product. Multiplying together such simple reflections s; :
xr — si(m) =x—2 ((illo;i)) «a; = —a;ray; therefore generates a reflection group.
This is in fact a Coxeter group, since the simple reflections s; satisfy the
defining relations:

Definition 2.6. (Coxeter group) A Cozeter group is a group generated by
a set of involutory generators s;,s; € S subject to relations of the form
(Sisj‘)mij =1 with Myj = Myj; > 2 for i # j.

Definition 2.7. (Cozeter element and Cozxeter number) The product of all the
simple reflections in some order is called a Coxeter element. All such elements
are conjugate and as such their order is well-defined and called the Coxeter
number.

These reflection groups are built up in Clifford algebra by performing
successive multiplication with the unit vectors defining the reflection hyper-
planes via ‘sandwiching’

S1...8, @ — 81...8:(x) = (—1)ka1 e QETQ . = (—1)kAmf~l, (2.2)

where the tilde denotes the reversal of the order of the constituent vectors
in the product A = a; ... ag. In order to study the groups of reflections one
therefore only needs to consider products of root vectors in the Clifford alge-
bra, which form a multivector group under the geometric product and yield
a Pin double cover of the corresponding reflection group [29]. The inverse of
each group element is of course simply given by the reversal, because of the
assumed normalisation condition. Since «; and —«; encode the same reflec-
tion, products of unit vectors are double covers of the respective orthogonal
transformation, as A and —A encode the same transformation. We call even
products R, i.e. products of an even number of vectors, ‘spinors’ or ‘rotors’,
and a general product A ‘versors’ or ‘pinors’. They form the Pin group and
constitute a double cover of the orthogonal group, whilst the even prod-
ucts form the double cover of the special orthogonal group, called the Spin
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group. Clifford algebra therefore provides a particularly natural and simple
construction of the Spin groups.

In fact, more general groups can be constructed in this way because
of the fundamental importance of reflections according to the Cartan—
Dieudonné Theorem [15].

Theorem 2.8. (Cartan-Dieudonné Theorem) FEwvery orthogonal transforma-
tion in an n-dimensional symmetric bilinear space can be described as the
composition of at most n reflections.

The above approach to group theory via multivector groups (2.2) is
therefore a much more general way of doing group theory.

In Clifford algebra, instead of using matrices to perform linear transfor-
mations one can use spinors,/rotors/pinors/versors to perform linear transfor-
mations that leave the inner product invariant i.e. orthogonal transformations
[18-20]. Here the normalisation condition has been dropped as long as the
vectors are non-null since the inverse of multiplication with a non-null vector
x is simply 271 = ﬁ since zx = x-x = |z|? (in the positive signature spaces
we will consider there are no null vectors anyway). Therefore the multivector
A that is a product of vectors is invertible and preserves the inner product,
though the inverse is no longer just given by the reverse:

Theorem 2.9. (Versor Theorem) Every orthogonal transformation A can be
expressed in the canomnical form A:x — ' = A(r) = A7 x A where A is a
versor and the sign is its parity.

A concept familiar from abstract group theory via generators and rela-
tions is that group elements can be written as words in the generators. It
is noteworthy here that in contrast to for instance the Coxeter group ele-
ments as words in the generators s, in the Clifford algebra approach the
root vectors are directly generators for the Pin double cover under multipli-
cation with the geometric product. To stress this slight distinction we call
these ‘generator paths’ for each versor v, with +v each versor corresponding
to one Coxeter group word.

Therefore Clifford algebras and root systems are frameworks that per-
fectly complement each other since performing reflections in Clifford algebras
is so simple and only assumes the structure of a vector space with an inner
product that is already given in the root system definition. Therefore Clif-
ford algebras are perhaps the most natural framework for studying reflection
groups and root systems, and through the above arguments also more general
groups [9]. In the next section we perform a detailed computation of the Pin
and Spin covers of the icosahedral groups to illustrate the principles. Fol-
lowing the above two frameworks, given (simple) roots in a root system one
can start multiplying these together using the geometric product. General
products will be in Pin whilst even products are in Spin. For now we will
concentrate on the Spin and the even subalgebra.

Proposition 2.10. (O(4)-structure of spinors) The space of C1(3)-spinors has
a 4D Fuclidean structure.
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Prgof. For a spinor R = ag + aieses + aseze; + azeies, the norm is given by
RR = a% + a2 + a3 + a3, and the inner product between two spinors R; and
Rs is (R1,R2) = %(RlRQ + RgRl). O

Remark 2.11. For rotors, the inner product %(Rléz + Rgf%l) is of course
invariant under R; — RRZR but also just under R; — RR;.

From the double cover property of Proposition 2.3 we have the following
corollary:

Corollary 2.12. (Discrete spinor groups) Discrete spinor groups are of even
order since if a spinor R is contained in the group then so is —R since it
encodes the same orthogonal transformation.

Proposition 2.13. (Spin group closure properties) Spin groups are closed
under:

e multiplication using the geometric product

e reversal

e multiplication by —1

Proof. Straightforward:
e by definition of multivector groups via the geometric product
e by the inverse element group axiom since reversal is equivalent to the
inverse
e by Corollary 2.12 both R and —R are contained in the group

O

Following the formula for fundamental reflections from Definition 2.1
one can likewise define reflections on this spinor space with respect to the
inner product between spinors.

Proposition 2.14. (Spin reflections) Reflections between spinors using the
spinor inner product are given by

Ry — R, = —R1RyR.

Proof. In analogy to Proposition 2.2, for normalised spinors R; and Rs
and using the definition of the spinor inner product from Proposition 2.10
this amounts to Ry — R, = Ry — 2(R1,R)/(R1,R1)R; = Ry — (R1fi2 +
RoR1)Ry = Ry — RiRyR) — RyR 1Ry = —R RoR;. O
Proposition 2.15. (3D spinor—4D vector correspondence) Spinor reflections
in the spinor R = ag + aies N\ es — azeq N eg + aszep A e are equivalent to 4D
reflections in the 4D vector (ag,as, —az,a1).

Proof. By direct calculation or see supplementary material. O

In practice, the exact mapping of the components is a matter of con-
vention and often irrelevant, since most root systems contain roots up to +
and (cyclic) permutations anyway.

Theorem 2.16. (Induction Theorem) Any rank-3 root system induces a root
system of rank 4.
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TABLE 1. List of the rank 3 root systems and their induced
root systems in four dimensions, as well as the binary poly-
hedral groups that act as the spinor group intermediaries

Start root system Induced root system Binary polyhedral group
A A Q

A1 & Ir(n) Ir(n) @ I2(n) (2,2,n)

As Dy 27

B3 F, 20

Hg Hy 21

Proof. A root system in three dimensions ®) gives rise to a group of spinors
by taking even products of the root vectors. From Corollary 2.12, this group
contains —R if it contains R, and therefore satisfies the first root system
axiom from Definition 2.1. The set of spinors has a 4D Euclidean structure
by Proposition 2.10 and can thus be treated as a collection of 4D vectors ®(*)
with the inner product as given in the Proposition. It remains to show that
this collection of vectors ®® is invariant under reflections (axiom 2), which
is satisfied by Proposition 2.3. O

Closure of the root system is thus ensured by closure of the spinor group.
This also has very interesting consequences for the automorphism group of
these spinorial root systems, which contains two factors of the spinor group
acting from the left and the right [7] (in this sense, the above closure under
reflections amounts to a certain twisted conjugation).

There is a limited number of cases which we can just enumerate. The
3D root systems are listed in Table 1 along with the 4D root systems that
they induce as well as the intermediate spinor groups (the binary polyhedral
groups). In this article, we focus on the case Hs — Hy.

Definition 2.17. (Subrootsystem) By a subrootsystem ®; of a root system Py
we mean a subset ®; of the collection of vectors ®, that itself satisfies the
root system axioms.

From the Induction Theorem 2.16 we immediately get:

Corollary 2.18. (Induced subrootsystems) A subrootsystem <I>§3) of a root sys-
tem @53) induces a subrootsystem <I>§4) of the induced root system <I>(24),

Any subrootsystem of Hj therefore induces a subrootsystem of Hy. For
instance, the A% inside Hj induces the rather boring Af in Hy. Similarly, Ao
and H, are contained, if rather boring as 2D root systems. If H3 contained
A; @ Ay and A; @ Hs subrootsytems (which it doesn’t), then this would lead
to the doubling As & As and Hy & Hs inside the Hy. This is not quite the
case, but nearly so, which we will return to later. Similarly, it follows from
the Induction Theorem that any even subgroup of a spinor group will also
yield a subrootsystem. We will explore these points in the Sects. 4 and 5
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which follow the next section, where we will discuss the multivector group
calculation framework.

3. Pin Group and Spin Group

In this section we pick up on the practical implications of the versor Theorem
2.9 and the Cartan—Dieudonné theorem in order to do explicit calculations in
group theory in the Clifford algebra approach. We use the concrete example of
the Hj reflection/Coxeter group. The icosahedral rotation group (in SO(3))
is the alternating group Ajs of order 60, also known simply as I (which we will
avoid due to the pseudoscalar often being denoted by that too). This group
is of course doubly covered in Spin(3) by its spin double cover, with its nice
Clifford algebra construction via the reflection formula in Proposition 2.2. We
might denote this group by Spin(H3) but it is also commonly known as the
binary icosahedral group 21. From the induction theorem 2.16 of the previous
section the elements of this group of course give the 120 roots of the Hy root
system. The rotational group is of course also doubly covered in O(3) by its
double cover Hy = Ag X Zs. Both double covers are of course of order 120.
Hj3 however is itself also doubly covered in Pin(3) by a group of order 240,
which doesn’t have a common name since it is simply Hg X Zo = Ag X Zo X 7o
but which we might for consistency call Pin(Hs).

For the reader’s convenience and for reproducibility in Tables 2, 3, 4, 5
we list the different group elements of Pin(H3) in our Clifford approach explic-
itly. The python Jupyter notebooks in the supplementary material contain
the algorithms used, which are based on the galgebra software package [3].
For convenience we group the elements as whole conjugacy classes but we
give the order in which the elements are generated by repeated application
of the generating simple roots. This gives a number for each group element
as a reference for ease of access, as well as the word in the generators (the
‘generator path’) that generates this particular group element in terms of the
Hj simple roots/generators aq, ag, as. For the simple roots of H3 we pick

1
a1 = ea,ay = 5(—7‘6’1 —eg— (1 —1)e3),as = ey.

Note that the wedge could be omitted since we have picked the orthogo-
nal unit vectors eq, e, e3 so the wedge product is synonymous with the full
geometric product. We multiply all group elements by 2 to save clutter.

The spin group Spin(3) = 21 is given in Tables 2 and 3. Its nine conju-
gacy classes lead to irreducible representations of dimensions 1, 3, 3,4, 5 which
are shared by As, as well as the spinorial ones of dimensions 2,2, 4, 6. (Inter-
esting connections with the binary polyhedral groups and the McKay corre-
spondence [27] are explored elsewhere [12]). Since Pin(H3) = Spin(Hs) X Zs,
the remaining Tables 4 and 5 list the remaining 9 conjugacy classes achieved
by multiplying those of Spin(Hs) with the inversion ejeses.

Tables 2 and 3: The only normal subgroup of 27 consists of the first two
conjugacy classes i.e. 1. We note that the conjugacy class of order 4 consists
of thirty pure bivectors, and that they give rise to the 2-fold rotations of the



Clifford Spinors and Root System

Page 11 of 35 57

TABLE 2. The first set of the conjugacy classes of Spin(Hzs),
the ones with orders of ‘crystallographic type’ 1,2,3,4,6.
These conjugacy classes all contain their own reverses i.e.
inverses. The only normal subgroup consists of the first two
conjugacy classes and is +1, and the order 4 conjugacy class
consists of pure bivectors

Order Number Element x2 Generator path
1 4 2 11

2 26 -2 1313

3 5 —1+4+7e1 Nes +oes Nes 12

3 7 —1—7e1 Neg —oey Neg 21

3 36 —1—7e1 Ney+0es Neg 3123

3 38 —1+7e1 Nes —oes Aes 3213

3 82 —1l+e1ANes+e1 Neg—egNeg 231232

3 83 —1l—ejANes —eg ANeg+es Neg 232132

3 124 —-1-— €1 A €2 + €1 A €3 + €2 A €3 12312321

3 125 -1+ e1Nex —ep ANeg —eg Nes 12321321

3 128 —1—egANes+eg Neg —es Neg 12323123

3 131 —1l—ejANes—eg ANeg —eg Neg 13213232

3 134 —1—0ey ANea +7e1 Nes 21321323

3 137 —14+e1ANes+eg ANes+ea Aes 23213213

3 141 —1+o0e1 ANey —Ter ANeg 32132132

3 143 —1+e1Ney—ep Aeg+es ANeg 32132321

3 170 —1+o0e1 ANeg +Te1 Neg 1213213231
3 172 —1—0ey ANez —Tea N es 1213231232
3 174 —1+40ey1 ANeg —Tea N es 1232132312
3 177 —1—0e1 ANea —Ter Nes 1321321321
3 184 —1—0e1 ANeg+Tes Neg 2132312321
3 187 —1+4+0e1 Nes+ Tea Aeg 2321323121
4 6 —2e1 N es 13

4 9 261 A\ €9 31

4 30 Te1 Neg —oeyp Neg —es Neg 2132

4 31 —T7€e1 N\ ea + oey /\63+62/\63 2312

4 66 —Te1 Ney —oe; Neg+ ez Aeg 121321

4 68 Te1 Neg +oe; Nes — e Aes 123121

4 89 —Te1 Neg+oep ANeg — e Aeg 321323

4 91 Te1 Neg —oep Neg+ e Neg 323123

4 129 —7e1 Negy —oer N\ €3 — €9 A €3 13213213

4 130 Ter Neg +oer Neg+ex Aes 13213231

4 139 e1 Nes+Ter Nes + oea N es 23213232

4 140 —ey1 Neg —Tep Neg —oes A ey 23231232

4 175 —e1 Negy+Tep Neg —oes A eg 1232132321
4 176 e1 Ney —Tep Nesg + oges N eg 1232312321
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TABLE 2. continued

Order Number

Element x2

Generator path

181
182
186
188
209
211
213
214
221
222
233
234
235
236
237
238
28

32

37

39

81

84

123
126
127
132
136
138
142
144
169
171
173
179
183
185

(o2 exle) e e oo e o) oo e) o o e e e e e e T T T T e T N S N S S

—oeyp Nex +e1 Nes —Tea Aes
0'61/\62761/\634’7’62/\63
—e1 Neg —Tep Neg +oea Aes
e1 Nex+T7e; Nes —oeg N\es
oey Nexs +e1 Nes+Tex Neg
—oey; Nex —ep Nes —Tea A eg
—e1 Neg+Tep Nes +oex Nes
61/\62—761/\63—062/\63
oeir Nex —eyp Neg —Tey N\es
—coe; Ney+ep Nes+Tex Aes
—262/\63

262/\63
7061/\62761/\634’7'62/\63
oeir Nex+€1 Neg —Tey N\es
2eq1 N es

—261/\63

1+ 7e1 Nes —oeg Nes
1+T€1/\62+O’€2/\63
1—T61/\62—062/\63
1—7e1 Nes+0es Aes
l—ejANes —eg ANeg+esNeg
l+e1ANes+e1Neg—eaNeg
1+61/\62761/\637€2/\63
1+€1/\€2—61/\63+62/\63
l—ejANes+e1 ANes+eax Neg
l+eiANes+e1 ANeg+esNeg
1+o0eg Nes —Teg Aes
1761/\62761/\63762/\63
1—o0ei Nea+Tep Nes
1—ei1ANes+eg Neg —ea Neg
1—o0ceg Nes —Teqg Aes
1+o0eg Neg+T1es Aes
1—0ei1 ANeg +T1ea Nes

14+ o0e1 Nea+Tep Nes
1+O’61/\63—T62/\63
1—oceg ANes —Tes Aes

2132132132
2132132312
2321321323
2321323123
121321321321
121321323121
123213213213
123213213231
321321321323
321321323123
12132132132132
12132132132312
12321321321323
12321321323123
21321321321323
21321321323123
1323

2313

3132

3231

213232

232312
12132321
12321323
12323121
13231232
21323123
23213231
32132312
32312321
1213213213
1213213232
1232132132
1321323121
2132132321
2321321321

icosahedron around its 30 edges. The 20 3-fold rotations around the 20 trian-
gular faces are split into two conjugacy classes of orders 3 and 6, which are
related by multiplication by —1, and each contain their own reverse/inverse.
Similarly, the two sets of twelve 5-fold rotations are doubly covered by 4
conjugacy classes which are related by multiplication by —1. The two classes



Clifford Spinors and Root System Page 13 of 35 57

TABLE 3. The second set of conjugacy classes of Spin(Hs),
the ones with orders of ‘non-crystallographic type’ i.e. the
ones related to 5-fold symmetry. These conjugacy classes
also all contain their inverses. The first column denotes the
order of the elements in each conjugacy class. The second
column is the position in the order in which our algorithm
generates this element, for convenience (c.f. the supplemen-
tary material). The final column denotes the order in which
the generators with the corresponding labels are applied to
generate this group element, i.e. is effectively the ‘word in
the generators’ that yields this element. To avoid confusion,
pairs of such words doubly cover the rotations of the icosa-
hedral group As, which are also often considered in terms
of words in the Ay generators. The ones meant here are the
root vectors multiplied by using the geometric product

Order Number Element x2 Generator path
5 8 —T+e1 Ney —oep Aeg 23

5 10 —T7 —e1 Ney+0e; Nes 32

5 23 —T —e1 Neyg —oep Nes 1231

5 27 —T+e1 Nes+ ogeq Aes 1321

5 65 —T —0e; Ney — e A eg 121312

5 67 —T+e; Nes+oex Nes 121323

5 72 —T7 +o0e; Nex —eg N\ es 123232

5 75 —T —e1 Neg+oex Nes 132312

5} 77 —T +0e1 Neg + es A es 213121

5 80 —T+e1 Neg —oes A eg 213231

5 85 —T —oe; Neg+ ex Aeg 232321

5 90 —T —e1 Nes —oex N\es 323121

5 34 —0—Te1 Nex —ep Nes 2323

5 40 —o+71e1 Nes+ e Aes 3232

5 71 —0+7e1 Nea —e1 ANes 123231

5 76 —o—Te1 Nex+e1 Aeg 132321

5 122 —o—e1 Neg+Tes Nes 12132312

5 135 —o+e1 Ney —Tes Neg 21323121

5 178 —o+e1 ANes+Teg A es 1321321323

5 190 —0—e1 Ney —Tex Neg 3213213231

5 212 —o —Te; Neg+ ez Neg 121321323123
5 215 —o+Te; Neg+ ey Aes 132132132132
5 217 —o—Te; Neg —ex Nes 213213213213
5 220 —o+Te; Neg —ey Neg 232132132312
10 22 T4+e1Nes+oe; Neg 1213

10 24 T+ o0e1 Nes+ea Nes 1232

10 25 T+ e1Ney —oer Neg 1312

10 29 7—61/\62+061/\63 2131




57 Page 14 of 35 P. Dechant Adv. Appl. Clifford Algebras

TABLE 3. continued

Order Number Element x2 Generator path
10 33 T—o0er Neg —ea Aes 2321

10 35 T—e1Ney —o0eq /\63 3121

10 69 T—e1 Nes —oeg N es 123123

10 74 T+ e1 Nes —oex A\ es 132132

10 79 T—e1Nes+oex Aes 213213

10 87 T—0erNex+ e Nesg 312323

10 88 T+ el Nes+ oes Aeg 321321

10 92 T+ oer Ney —es Nes 323213

10 70 o—Teyp Ney +e1 Nes 123213

10 73 o—Ter Neg —e1 Nes 131232

10 78 oc+Ter Nes+e1 Neg 213123

10 86 o+ Tep Nex —ep N €3 312321

10 121 o+erNey —Teg Neg 12132132

10 133 o—e1 Ney+ Teg A eg 21321321

10 180 o—e1 Neyg —Tea Neg 1321323123
10 189 o+e Ney+Tea Nes 3213213213
10 210 o+ Ter Nes —ea Aes 121321321323
10 216 o—Tel Nez —eg Aeg 132132132312
10 218 o+ Te1 Neg+eg Aeg 213213213231
10 219 oc—Tei Neg+es Aeg 232132132132

describe rotations by +27/5 and +47 /5, respectively, around the 5-fold axes
of symmetry, the icosahedral vertices.

Tables 4 and 5: The first two conjugacy classes are the inversion and
its negative. The conjugacy class consisting of pure vectors of course corre-
sponds to the 30 roots of H3 which generate the reflections, and which are
of course related to the 30 2-fold rotations since the inversion is contained in
the group (so one can dualise a (root) vector to a pure bivector). The con-
jugacy classes of order 12 are the two inversion-related versions of the 3-fold
rotations, and are rotoreflections. The four conjugacy classes of order 20 are
both related to the 5-fold rotations, as well as serving as the versor analogues
of the Coxeter elements e.g. w = ajasas. These are in one conjugacy class in
the reflection/Coxeter group framework where their order gives the Coxeter
number. But in this Clifford double cover setup these ‘Coxeter versors’ are
given in 4 conjugacy classes that are related by reversal and multiplication
by ejeqes.

Remark 3.1. It has been noted that a;as and asas generate the quaternionic
root system multiplicatively e.g. for Hy. This is pretty obvious when thought
of in terms of the 3D simple roots and the Induction Theorem, as they of
course generate Spin(Hs), which gives rise to the Hy root system.

This example illustrates how one can perform practical computations in
group theory via versors in this Clifford algebra framework, and in galgebra
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in particular. We will discuss group and representation theoretic aspects in
more detail elsewhere.

4. Subgroups

The Induction Theorem 2.16 from Sect. 2 showed that every 3D root system
determines a 4D root system. This proceeded essentially via using the 3D
roots to construct a group of spinors (via multiplication with the geometric
product), which satisfies the properties of a root system. Our main example
is of course Hs which induces H, in four dimensions via the binary icosa-
hedral group of order 120 as the spinor group intermediary. It is therefore a
straightforward corollary of the Induction Theorem that each even subgroup
of 2I also yields a root system.

Corollary 4.1. (Subgroups of 2I) Each even subgroup G of the binary icosa-
hedral group 21 determines a corresponding root system ® that is a subset of
the Hy root system, the 600-cell.

Theorem 4.2. (Induced subrootsystems of Hy) The binary icosahedral group
21 has the following subgroups that determines the corresponding root sys-
tems:

e The normal subgroup +£1 which gives A;.

o The quaternion group @ consisting of +1, tejes, teses and teszeq,

which gives Ay X Ay X Ap x Aj.
o The binary dihedral groups of orders 6 and 10, which yield Ay and Ha.
e The binary tetrahedral group, which yields Dy.

Remark 4.3. Note that although the A3 root system is not contained in Hs,
2T is a subgroup of 21 and therefore D, is contained in H4. We will revisit
these examples in later sections and in the next section investigate this deli-
cate relationship between subgroups and other subrootsystems further.

Proposition 4.4. (Simple roots of induced subrootsystems) Ay and Hs are
generated straightforwardly from the Hs generators ai,as,as e.g. via the
‘spinorial simple roots’ aia; = 1 and ayas for As and aiaqy = 1 and asas
for Hy.

One possible choice of simple roots for D, contained in Hy is given by

(a1a1,a1a2, a1a2a302a3010203, A302010302010302),
but it is of course not unique.

Explicit versions of these simple roots can be looked up in the earlier
tables via the ‘generator path’, which can be used to explicitly verify the
correct Cartan matrix and closure of the root system (see e.g. supplementary
information).

5. Subrootsystems

There is a subtlety at play here since there are subrootsystems of H, that
are neither induced by 3D subrootsystems nor by even spinor subgroups. We
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TABLE 4. The first set of the remaining conjugacy classes of
Pin(Hj3). Note that the first two conjugacy classes show that
the inversion ejeses is contained in the group. The class of
order 2 consists of pure vectors and are thus their own reverse
i.e. inverse. The other pair are each other’s reverses/inverses

Order Number Element x2 Generator path
4 240 2e1 Aeg N es 121321321323123
4 239 —2e1 Neg Aeg 121321321321323
2 1 2¢eq 1

2 2 —Te1 — eg + oeg 2

2 3 261 3

2 11 Tel — ey — Jeg 121

2 13 —2e; 131

2 17 —oe] +T€2 +€3 232

2 19 —2e9 313

2 21 —Te1 + eg — oeg 323

2 44 —T1e; +e2 +oe3 12313

2 45 oe; + Tey — e3 12321

2 48 TE€| — e + 0es 13123

2 49 Te1 + eg — oeg 13132

2 50 —Tep — ey — Oeg 13213

2 51 Te1 + ey + oeg 13231

2 53 oge; — Tey — €3 21312

2 60 —0e| — Teg — €3 23232

2 93 —oey —Teg + €3 1213121

2 101 oel — Tey + e3 1232321

2 103 ey + Tes + e3 1312323

2 108 —oe1 + Tes — e3 1323213

2 109 —e1 + oey — Teg 2132132

2 110 e1 — oeg + Tes 2132312

2 145 e1+ oey + Teg 121321321

2 147 —e] — o€y — Teg 121323121

2 166 —e1 —o0ey + Teg 321321323

2 168 e1 + oey — Teg 321323123

2 199 —e1 + 0ey + Teg 13213213213

2 200 e1 — 0ey — Teg 13213213231

2 229 —2eg3 2132132132132
2 230 2e3 2132132132312
12 52 —Te1 —oey —ep ANea N es 13232

12 55 —Tes +0e3 —ep ANea N es 21323

12 58 Te1 + oey —ep Nex Aeg 23213
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Order Number Element x2 Generator path
12 62 Teg —oe3 —e1 Nea Aeg 32132

12 64 T€1 —0€ey —ep Nea A\ €3 32321

12 94 —Te1 +oeg — ey ANeax Nes 1213123

12 96 —Teg —oez —e1 Nex N\ es 1213231

12 98 —ep —eg —e3 —e; Neg Nes 1231232

12 100 —ep +e3—e3 —e; Nea Aes 1232312

12 104 Teg +0e3 —e1 Nea Aeg 1321321

12 112 €1 — ey t+e3—e1 N ea A €3 2312321

12 115 e1+est+e3—e; ANeg Aeg 2323121

12 116 e1 —eg —e3—e; Nex Aes 2323123

12 120 —e1 +ex+e3—e; ANeg Nes 3231232

12 149 —e; —eg+e3—e; Nea Aes 123213213

12 156 e1+ey—e3—e;g ANea ANeg 132312321

12 191 oge1 —Tez3 —ep ANeg Aes 12132132132
12 201 —oe; +T1e3 —ep Nea Nes 21321321321
12 228 oge1+Tez3 —ep Aeg Aes 1321321323123
12 232 —oe; —Tez —ep Nea Neg 2321321323123
12 46 TE€1 — o€y + e N eo /\63 12323

12 57 Tey —oesz +e1 Neax Aes 23123

12 59 —Te1 —oex +e1 Nex A es 23231

12 61 Te1 +o0es+e1 Nea Aeg 31232

12 63 —Teo +0e3+ €1 Nes Aeg 32312

12 95 Teo + 0e3 +e1 Nex Aeg 1213213

12 97 e1+ex+es+e ANexg Aes 1213232

12 99 e1 —est+este; ANeg Aeg 1232132

12 102 —Te1 +0es+e1 ANes Aeg 1312321

12 106 —Teq —0ez+e1 Nea Aeg 1323121

12 111 —e1 + €2 — €3 + e A €9 A €3 2132321

12 113 —e1 —ey—eg3+e; ANeg Aeg 2321321

12 114 —e1+ex+e3+e; Nes Aeg 2321323

12 119 e1—ey—eg+e; ANeg Aeg 3213232

12 150 el +e—e3+e; ANex Nesg 123213231

12 155 —e1 —ex+e3+e; Nex Aes 132132321

12 192 —oe; +Tez +e1 Aeg Aes 12132132312
12 203 oe; —Tes + e ANex Aes 21321323121
12 227 —oey —Teg+e1 ANes Neg 1321321321323
12 231 oge1+Tez+ep Aeg Aes 2321321321323

have observed in the spinor Induction Theorem that A; @ Iz(n) root systems
experience a doubling to Iz(n) @ Iz(n) in the induction process. Indeed, such
As ® As and Hy @ Hy within Hy are induced, but not because they have an
orthogonal A;. Instead, it is because the group Hj3 contains the inversion,
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TABLE 5. The four conjugacy classes of order 20 are related
to the 5-fold rotations in Spin(Hj) via multiplication by
e1eses. They are also the spinor version of the Coxeter ele-
ments e.g. w = ajasaz. They are related by reversal and
multiplication by ejeses

Order Number Element x2 Generator path
20 14 e1 — Teg —oe1 Nes A es 132

20 15 —e1 +Tea —oep Aea N es 213

20 20 —e1 —Teg —oep Neg Aeg 321

20 41 e1 +717eg —oep Neg A €3 12131

20 43 Te1 +e3—oep Aeg Aes 12312

20 56 —Te1 —eg —oep Neg Aeg 23121

20 105 Te1 —e3 —oer Nes Aeg 1321323

20 118 —Te1 +e3 —oep Nes Aeg 3213231

20 159 es +Tez —oer Aeg Aes 213213232
20 162 —ey —Teg3 —oeyp ANex Aes 232132312
20 193 eo —Tez —oe; Neg Aeg 12132132321
20 197 —eg +Te3 —oep Nex Neg 12321323121
20 12 —ep —Tes +oep Nes Aeg 123

20 16 e1 —Teg +0ep Nex N eg 231

20 18 —e1 +Teg +oep Aex A €3 312

20 42 —Te1 —e3 +oep Aea N es 12132

20 47 e1 +Tes +oe1 ANes Aes 13121

20 54 Te1 +e3+oer Nea Aeg 21321

20 107 —Te1 +e3+oep ANea N es 1323123

20 117 Te1 —e3 +oep Nea Aes 3213213

20 160 —ey —Teg +0eyp Aex Aes 213231232
20 161 es +Tes +oeyp Aea Aeg 232132132
20 194 —eo 4+ Teg +0e; Neg N es 12132312321
20 195 ey —Teg +o0ep Neg Neg 12321321321
20 146 ogel —eg —Te1r ANeg Aes 121321323
20 151 —e1 + ge3 —Tep N ea A €3 123213232
20 154 oge1 + ey —Tep Aeg Aes 132132312
20 158 —oge; — ey —Teyp Neg Aeg 213213231
20 163 e1 —oegz —Te1 ANes A eg 232132321
20 167 —oe1 +ey —Tep Aea N es 321323121
20 198 —e1 —oez3 —Tep ANex Aes 12321323123
20 202 ogeg —ez —Tep Aeg Aes 21321321323
20 205 e1 +oe3 —T1ep Neg Neg 23213213213
20 207 —oey +e3 —Teyp Aea N es 32132132132
20 224 oeg +e3 —Ter ANeg Aes 1213213213231
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TABLE 5. continued

Order Number Element x2 Generator path
20 226 —oey —e3 —Tep Nea Aes 1232132132312
20 148 —oe; + ey +Tep Neg Aes 121323123

20 152 e1 —oeg+T1er ANey Aes 123231232

20 153 —ogeyp — ey +Tep Neg Nes 132132132

20 157 el +ex+T7ep Neg Aes 213213213

20 164 —e1 +oes+Tep ANes Aeg 232312321

20 165 ogep — ey +Tep Aeg A es 321321321

20 196 e1 +oe3+T1e; ANes Aeg 12321321323
20 204 —oeg +e3+Tep ANeg Nes 21321323123
20 206 —e; —oez+Tep Nex Neg 23213213231
20 208 gey —egz +Ter Nea Aeg 32132132312
20 223 —0geg — ez +Tep Aeg N es 1213213213213
20 225 ges +e3+Tep Aeg Aes 1232132132132

which is manifested at the level of the pin group by virtue of containing the
pseudoscalar ejegesz from Table 4. These are all contained in Hs, and have
the effect of creating a second orthogonal I5(n) in the even subalgebra. We
illustrate the idea and its complexities with some examples.

Ezample. Take as a first example A3 with simple roots ey, ea, e3 but think of
it as I5(2) @ A;. Now this gets doubled to I5(2) @ I5(2) = A} via the spinor
group 1, tejes, teses and tege;.

Ezample. Now consider the following twist: take A? with simple roots ej, ea
but instead of having es available as another orthogonal simple root, we just
have the inversion ejeqes available. So we get £1 and Fejes from multiplying
the simple roots. But by operating in the whole pin group we can multiply e;
by the pseudoscalar ejeses, which yields eses, which s in the spin part. So
similarly we get +eses and +egeq, i.e. we get the same spinor group as in the
previous example, without actually having the third simple root e3 available.
This therefore induces the same A root system.

Proposition 5.1. (Doubling—even case) For even n the root system Is(n)
together with the inversion eyeses yields the doubling Iz(n) @ Iz(n).

Proof. Without loss of generality take e; as the first simple root. Since n
is even, the number of roots is a multiple of 4 and therefore ey is also a
root. Therefore having ey, e; and ejeses available is equivalent to having
es available as well, which via the Induction Theorem leads to a doubling

A convenient choice of simple roots for Ir(n) is a1 = e; and as =
—cos Teq +sin e,

Proposition 5.2. (Doubling—general case) The root system Iy(n) together
with the inversion eieges yields the doubling Io(n) @ Ix(n). A possible choice
of simple roots for Ir(n) @ I2(n) is given by ayay, ajag, arejeses, agereses).
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Proof. Direct calculation confirms that these constitute two orthogonal I5(n)
root systems with respect to the spinor inner product, and the simple roots
give the correct Cartan matrix

2 —2cos - 0 0
—2cos & 2 0 0
A(Iy(n) @ Ix(n)) = 0 " 0 2 —2cos T
0 0 —2cos = 2
C.f. also the computational proof in the supplementary information. O

Remark 5.8. The inclusion of the As ® Ay or Ho @ Hs subrootsystems there-
fore arises in the more oblique way for odd n root systems as n = 3 and
n = 5. The Cartan matrices are given by

2 1 0 0 2 —x 0 0
1 2 0 0 7 2 0 0
Aaed)= |0 o, [AtheH) = o,
0 0 -1 2 0 0 —r 2

Proposition 5.4. (Simple roots of other subrootsystems) As® Ay and Ho® Ho
are generated straightforwardly from the Hs generators ay,as,as e.g. via the
‘spinorial simple roots’

aray = 1,a1a2,a1e1e2e3, azerezes
for Ay and
aiay = 1,aza3, azeiezes, agejezes

for Hs.
One possible choice of simple roots for Ay within Hy is given by

(a1a17a1a27 a1a3020103020103, A30201030201030203010203),
but other choices are of course possible.

Remark 5.5. The fact that H3 can’t have A1 & Ay or A1 & Hs subrootsystems
is clear from the following: the H3 root system is the icosidodecahedron with
vertices at the 2-fold axes. It contains decagonal/hexagonal grand circles
which are valid Ay or Hs subrootsystems. However, a root normal to those
can’t exist because they would be the vertices of the icosahedron (5-fold
axes) or dodecahedron (3-fold axes), which is of course inconsistent with the
vertices being the 2-fold axes of the icosidodecahedron.

Remark 5.6. For odd n the 4D root systems induced by A; & Iz(n) and via
I>(n) in combination with the inversion ejeses are subtly different (related
via e; < eg). However, for even n they of course coincide.

Remark 5.7. The inversion ejeses is often contained in Coxeter groups, but
is famously not contained in the A,, family for odd n. As such As, the tetrahe-
dral group, is a prime example of where this isn’t the case; it is even obvious
from the tetrahedron itself that it is not inversion invariant. The existence of
the inversion in a group means that one can use this pseudoscalar to dualise
root vectors to pure bivectors. In work on quaternions it was often regarded
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as deeply meaningful that the pure quaternion roots e.g. of H4 are exactly
the Hs root system, and analogously for other cases (e.g. [28]). However, a
more useful way of viewing this is that this is pretty obvious from the Induc-
tion Theorem as long as the inversion is contained in the group. And that
rather than it being proof that the ‘top-down’ approach is somehow deeply
significant it is rather a sign of the opposite: that the ‘bottom-up’ approach
constructs Hy from Hjz whilst one can dualise the 30 roots of Hs directly
to pure bivectors/quaternions using the pseudoscalar/inversion. This is not
possible for A3 where the inversion is missing and no pure quaternion repre-
sentation of Az within D, exists; however, the Induction Theorem still holds
and yields Az — Dy [6].

Having shown the existence and nature of various H, subrootsystems
we now briefly discuss a nice way of visualising 4D polytopes in the Coxeter
plane, before using the subrootsystems of H, in order to construct pairs of
invariant polytopes which we then visualise in the Coxeter plane.

6. The Coxeter Plane

The Coxeter plane is a convenient way of visualising any root system in
any dimension. The exposition is not necessary for the following sections
but helps with the visualisation. We will briefly summarise the construction
of this plane that is invariant under a corresponding Coxeter element. Its
existence relies on the bipartite nature of the corresponding graphs (a two-
colouring) [21], which means that the simple roots can be partitioned into two
mutually orthogonal sets (e.g. black and white), as can the reciprocal basis,
the basis of fundamental weights. The properties of the Cartan matrix further
mean that a Perron—Frobenius eigenvector with all positive entries exists.
The components of this eigenvector corresponding to the black, respectively
white, roots are used in a linear combination of the black, respectively white,
fundamental weights. This gives a pair of (black and white) vectors which
together determine a plane, which can be shown to be invariant under the
Coxeter element. Since of course several such Coxeter elements exist (that are
conjugate to one another), there are likewise several such planes. However,
they give an equivalent description.

The Clifford view of the Coxeter plane more generally has been inves-
tigated in [11]. Here, we instead perform all calculations in the 3D even
subalgebra. The 4D simple roots can be chosen as follows in terms of the 3D
Hj simple roots:

Q1 = a1a; = 1

1 1
OZQ:a1a2:—§+5761/\62+§062/\€3

1 1 1
3 = €1€2092€3 = 5061 N eg — 561 N es + 57’62 A €3

1 1 1
Q4 = (2€1€9€3 —oey Ney + —ep Neg — 57’62 N es

2 2
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The reciprocal basis in this spinorial setup (with respect to the spinor
inner product) is given by the following basis of fundamental weights:

wr=1—-Tea Neg— (T +1)er Aes
we = —27ea Nes —2(T+ 1)e; Nes
wy=—(274+1)ea Aes —3(T+ 1)e; Aes — Ter A ez
wy=—27+1)ea Nes — (37 +1)e; Aes — Ter A ez
The Perron—Frobenius eigenvector of the Hy Cartan matrix is given by

4+ 45

2(1+V/5) \/\/5+\/6\/5+30—|—7
v V65 + 30 4+ 8 + 45 + /5615 + 30

(=1+ V5 +V6v5+30) VVB+ V6513047

whilst the eigenvalue is

Lo iy
A=2-3 7+5 + 1/ 6V5 + 30.

Figure 1 shows the projection of the 120 vertices and 720 edges of the
H, root system (aka the 600-cell) into its Coxeter plane. The projection is
performed via the respective inner product with the ‘black and white spinors’.
The computations are shown in the supplementary information.

We will use this Coxeter plane as a means to visualise the H, substruc-
tures of the following sections, including the Grand Antiprism and the snub
24-cell with their Hy @ Ho and Dy (aka 27) complements, as well as anal-
ogous constructions with Ay & A1 & A1 & A1 , Ay & Ay and A4 and their
complements in the 600-cell.

7. The Grand Antiprism and H, X H-

It is of course simple to show that Hs contains an Hs root system (generated
by the as and ag simple roots), which leads to a corresponding root system Hs
in the 4D space of spinors. However, since the inversion ejeses is contained in
the group Hj this gets doubled to two orthogonal copies Ho@® H> sitting inside
the H, root system, as seen above. A possible set is shown below, which is the
one multiplicatively generated by as and a3 in combination with ejeqes via
the geometric product. Of course the H3 root system, the icosidodecahedron,
contains many such decagonal circles, but for this set of simple roots this set
could be considered preferred:

Of course they are invariant under their own automorphism group
Aut(Hy® Hs) of order 20 x 20 = 400. In previous work the author has already
argued that the automorphism group of a spinorial/quaternionic root system
is just the group acting on itself by left and right multiplication, leading to
two factors of the same group [7]. This spinorial group multiplication is to
be distinguished from the above ‘spin reflections’, which one could consider
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FIGURE 1. Projection of the 120 roots of H, into the Coxeter
plane. This is a familiar view—however, all the calculations
have been done in the even subalgebra of 3D

Element x2 Element x2

2 262/\63

—2 —2e9 N eg

—T —e1 Nex+0ep Nes oeir Neax+e1 Neg —Tey N\es
o—Tey Nex —ep Nes —e1 Neg +T7ey Neg 4+ oes N eg
T—e1 Neg+0e; Nes oey Nex+e1 Neg+Teax Aes
T+€1/\€2*O’€1/\€3 70’61/\62761/\63+T62/\63
—o+T7ep Neg+ep Nes e1Ney —Tep Nesg —aoex N\ es
—0 —Te1 Neg —ep Nes —e1 Neg+Tep Nes —oes N\ eg
—T+ei Nes —oep Nes —oey Ney —ep Neg —Teg N\ eg
o+ T1ey Nex+e1 Nes e1 Nea —Tep Nes +oex Nes

a different type of multiplication, generating the reflection/Coxeter groups,
which was termed ‘conjugal’ in the above paper. The Hy @ Hs root system
is invariant under this conjugal group multiplication (i.e. 4D reflections) by
virtue of being a spinor group by Proposition 2.13.

But since this Hy x Hy is a subgroup of Hy, its complement in the 600-
cell is separately left invariant. By this we mean the collection of vertices
derived from the 600-cell by subtracting from the 120 vertices the 20 vertices
from the Hy @ Hj root system. This orbit / collection of points is separately
invariant and therefore has the same automorphism group of order 400. This
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FI1GURE 2. The projection of the 20 roots of the Ho & Ho sit-
ting inside the 600-cell/ H4 root system into the H, Coxeter
plane
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with 100 vertices. Their projection into the H, Coxeter plane
is shown above



Clifford Spinors and Root System Page 25 of 35 57

can also be verified straightforwardly by direct computation (see supplemen-
tary material). This complement of the Ho @ Hy root system is a 4D polytope
with 100 vertices and 500 edges which was found in 1965 in [5] by computa-
tional means and is called the ‘Grand Antiprism’. This is also discussed from
a quaternionic perspective in [22-25]. The construction from 3D seems both
simpler in terms of deriving the vertex set and in shedding light on its sym-
metry group, as well as the conceptual and uniform construction that carries
over in the other cases below. The projection of the two orthogonal Hss into
the H, Coxeter plane is shown in Fig. 2. The corresponding projection of the
Grand Antiprism is shown in Fig. 3. For ease of visualisation the edges are
also computed and projected, and plotted in 3D in a SageMath visualisation
that can be further explored [30] (supplementary information).

Proposition 7.1. (Hs x Hy split of Hy vertices) The sets Hy @ Ho and its
complement the Grand Antiprism are separately invariant under Ho X Hs.

Proof. Straightforward or by straightforward explicit calculation (supplemen-
tary material). O

8. Snub 24-Cell

From a 3D perspective it is obvious that although As is not a subrootsystem
of Hs, the binary tetrahedral group 27" is contained in the binary icosahedral
group 21 (this can also easily been seen since the tetrahedral group is the
alternating group A4 whilst the icosahedral group is As and thus the former
is contained in the latter, and this also holds for their spin double covers) and
the root system D, is thus contained in Hy. As a spin/quaternionic group,
Dy is of course just 27" and its automorphism group is just 27" x 2T of order
242 = 576. Removing the 24 vertices from the 600-cell leads to a set of 96
points that is separately invariant under Dy, in analogy to the construction
of the Grand Antiprism above. This collection of 96 vertices connected by
432 edges is known as the ‘snub 24-cell’. Again we believe the construction
from 3D to be conceptually clearer, more systematic and more economical.
The projection of the 24 2T spinors (listed below) aka the Dy root system
along with its 96 edges into the H, Coxeter plane is shown in Fig. 4. The
corresponding projection of the snub 24-cell and its edges is shown in Fig. 5.
Note that because of the spin double cover property they come at least
in pairs. But if they are not their own reverse, then they even come in quadru-
plets related via reversal and multiplication by —1 (c.f. Proposition 2.13).

Proposition 8.1. (D, split of Hy vertices) The sets Dy and its complement
the snub 24-cell are separately invariant under Dy.

Proof. Straightforward or by straightforward explicit calculation (supplemen-
tary material). O
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FIGURE 4. The projection of the 24 roots of the D4 root
system sitting inside the 600-cell/ Hy root system into the
H, Coxeter plane. These vertices of course come from the
binary tetrahedral group 27 inside the 27

Element x2 Element x2

2 —2

er Nea —Tep Nes +oex Nes —e1 Neg+T7ep Neg —oea Aesg
061/\62761/\634’7’62/\63 7061/\62+61/\€377'62/\63
Te1 Neg —oep Nes+eax A\es —71€1 Negy+oep Nes —ea Aes
l14+e31 Neg—eg Aes+ex NAeg —1l—ejANes+e1 Neg—egNeg
l—ei1 Neg+e1 ANeg —ex Neg —1+eiANes—eg Neg+esNeg
14+ 7e1 Nes+ oes Nes —1—7e1 Neg —oes A eg
1—7e1 Neg —oea Aes —1+4+7e1 Neg+ oey Aeg
1+U€1/\62—7’61/\63 —1—061/\€2+T€1/\63
1—0e; ANes +Te; ANes —1+c0e1 Nes —Teg Aes
1+o0e1 ANes —Tes Aes —1—c0e1 Neg+Tes Aes
1—o0ey ANeg +Tea Nes —1+0e1 Neg —Tes Aeg

9. Aéll, A2 X Az and A4

We follow the above uniform construction of splitting the Hy root system

with respect to its subrootsystems, using the remaining examples of A; @
A1 @ AL @ Ar, Ay ® Ay and Ay.
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——\Z

FIGURE 5. The projection of the snub 24-cell into the Hy
Coxeter plane. The 96 vertices can be derived by removing
the 24 vertices of Dy/the binary tetrahedral group from the
600-cell

The basic unit vectors e, es, e3 of course generate the quaternion group
consisting of +1, +ejes, teqsesz and teze;. The projection of this 16-cell with
its 8 vertices and 24 edges into the H, Coxeter plane is shown in Fig. 6. Of
course its complement is also invariant under A; x A; x Ay X Aq:

Proposition 9.1. (A; x Ay x Ay x Ay split of Hy vertices) The sets A1 ® A; &
A1 Ay and its complement are separately invariant under A1 x A1 x A; x Aq.

Proof. Straightforward or by straightforward explicit calculation (supplemen-
tary material). O

The projection of this complement of this 16-cell with its 112 vertices
and 624 edges into the Hy Coxeter plane is shown in Fig. 7.

Similarly to the Hy case above, it is simple to show that Hs contains
an As root system (generated via reflections in the a; and as simple roots),
which leads to a corresponding root system A, in the 4D space of spinors.
However, since the inversion ejeses is contained in the group Hgs this As
again gets doubled to two orthogonal copies Ay @ As sitting inside the Hy
root system, as seen above. A possible set is shown below, which is the one
multiplicatively generated by a; and as simple roots of H3 in combination
with the inversion ejeses. But other choices would be possible, since of course
the Hjs root system, the icosidodecahedron, contains many such hexagonal
circles.
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FIGURE 6. The projection of the 8 roots of the A} sitting
inside the 600-cell/ Hy root system into the H, Coxeter plane

Element x2 Element x2

2 —261 /\63

—2 261/\63
71+T€1A€2+U€2/\63 0'61/\62+1€1/\637T€2/\63
1+ 7e1 Neg +o0es Aes ogep Ney —leg Neg —Teg A eg
1—7e1 Ney —oey Aeg —oe; Neg —leg ANeg+ Tes Aes
—1—7e1 Neg —oes A eg —oey Nes + leg Aeg + Tes N es

The projection of these 12 points into the H, Coxeter plane as before
is shown in Fig. 8. Its complement consisting of 108 vertices and 576 edges
is shown in Fig. 9.

Proposition 9.2. (As x Ay split of Hy vertices) The sets Ay @ A and its
complement are separately invariant under Ag X As.

Proof. Straightforward or by straightforward explicit calculation (supplemen-
tary material). O

Our final example is the A4 root system contained in H; as we saw
above. Again the A4 root system and its complement are both invariant.

Proposition 9.3. (A4 split of Hy vertices) The sets Ay and its complement
are separately invariant under Ay.
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FIGURE 7. The projection of the 112 vertices into the Hy
Coxeter plane that are left from the 600-cell by removing
the above 8 vertices constituting the A} root system, along
with its 624 edges

Proof. Straightforward or by straightforward explicit calculation (supplemen-
tary material). O

The root system consists of 20 vertices and 60 edges (shown in Fig. 10)
whilst its complement consists of 100 vertices and 480 edges and is shown in
Fig. 11.

A possible choice of A4 roots is shown here:

Element x2 Element x2

2 —2

Te1 Neg +oep Nes+ ey Nes —T7e1 Ney —oep Nes — ez N\ es
e1 Nex —T1e1 Nes+oex N\es —e1 Neg+Tep Nes —oes N\ es
oey Ney —ep Neg —Tea A eg —oey Nex e ANeg+ Teg N eg
1+ 7e1 Neg+ oes Aes —1—7e1 Ney —oes Aeg
].77'61/\6270’62/\63 71+T61A€2+U€2/\63
1+U€1/\€3+T€2/\63 —1—061/\63—7’62/\63
1—0e; ANes —Tey Aes —1+4+0e1 Neg+Tes Aeg
1+o0e1 ANes —Teq; Aeg —1—0e1 Nea +Tep ANeg
1—0ey ANes +7e1 Nes —1+o0e1 Neg —Tep Neg

Note that because of the spin double cover property these elements come
at least in pairs (which satisfies the corresponding root system axiom). But
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FI1GURE 8. The projection of the 12 roots of the A @ A sit-

ting inside the 600-cell/ H4 root system into the H, Coxeter
plane
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FIGURE 10. The projection of the 20 roots of the A4 root

system sitting inside the 600-cell/Hy root system into the

H,4 Coxeter plane
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if they are not their own reverse, then they even come in quadruplets related
via reversal and multiplication by —1 (c.f. Proposition 2.13).

This concludes our listed examples, which illustrate the uniform
approach of constructing subrootsystems via the connection with 3D and
splitting the vertices of the 600-cell into two separately invariant sets. The
H, Coxeter plane provides a nice visualisation for each complementary pair
based on H, subrootsystems.

10. Conclusions

The intention for this article was to firstly shed light on 4D geometry, root
systems and polytopes through the connection with 3D spinors via the uni-
form Induction Theorem. This gives additional insight into 4D root systems
and polytopes along with their symmetries via another uniform construc-
tion that splits the H, root system into a complementary pair of separately
invariant polytopes, consisting of a subrootsystem and its complement in
H,. These can also be consistently visualised via a projection into the Cox-
eter plane. As we have shown in previous work there are many connections
across exceptional objects throughout mathematics, including Trinities and
ADE correspondences, which this work relates to. In particular, the ‘bottom-
up’ view of exceptional objects has led to a very fruitful and insightful line
of research, and is perhaps mirrored by some constructions in finite group
theory for some of the sporadic groups. We continue to advocate the use of
geometric insight in addition to the purely algebraic manipulation in terms of
quaternions, by viewing quaternions as arising in a geometric guise as spinors
in 3 dimensions with a much clearer and consistent geometric interpretation.

Secondly, we continue to advocate that Clifford algebras and root sys-
tems/reflection groups are natural and complementary frameworks - in a
setting with a vector space with an inner product, and a powerful reflection
formula - and can therefore be synthesised into one powerful and coherent
framework. Thirdly, this provides a general arena to do group theoretical cal-
culations in as demonstrated with some detailed examples in this paper, and
we will investigate group and representation theoretic topics in more detail
in future work. In particular, in the spirit of open science and reproducibility
I hope that the computational work sheets provided as supplementary mate-
rial are useful and can help further research in this area by adapting my code
and using other free software provided by the community such as galgebra
and Sage. Finally, at the end of 2020, we wish to commemorate and honour
some of the giants in this field, Conway and the Guys.
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