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Abstract

We report on a nonperturbative formulation of quantum gravity defined via

Euclidean dynamical triangulations (EDT) with a non-trivial measure term in the

path integral. We search the parameter space of EDT for a second-order critical

point, whose divergent correlation length would at least in principle allow one to

define a continuum limit, whereas the vanishing correlation length of a first-order

critical point makes it unsuitable for this purpose. We also search the parameter

space of EDT for a physical phase with 4-dimensional semiclassical geometry.

We find that the parameter space contains three phases which we call the

branched polymer phase, the collapsed phase, and the crinkled phase. We de-

termine the order of the phase transition dividing the branched polymer phase

from the collapsed phase to be first-order. The transition dividing the collapsed

phase from the crinkled phase appears to be an analytic cross-over, or a third or

higher-order transition. The effective dimension of each phase in the parameter

space is studied. We report that EDT with a nontrivial measure term does not

appear to contain a phase with 4-dimensional semiclassical geometry.

We argue that within a physical 4-dimensional semiclassical phase, such as

that found in causal dynamical triangulations (CDT), a dynamical dimensional

reduction from 4 on macroscopic scales to 3/2 on microscopic scales may resolve

the tension between asymptotic safety and the holographic principle.
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1

1 Introduction

1.1 Overview

Our current understanding of the Universe is based on two theories; quantum mechan-

ics and general relativity. Quantum mechanics describes three of the four fundamental

interactions of nature, with general relativity describing the fourth, gravity. At short

distances quantum mechanical effects typically dominate, whereas general relativistic

effects dominate over large distances and for strong gravitational fields. The vast ma-

jority of physical phenomena can be described independently by either general relativity

or quantum mechanics, without the need for both. However, when strong gravitational

fields interact over short distances, such as in the vicinity of the big-bang singularity or

near black holes, the description of such phenomena demand a unification of quantum

mechanics and general relativity. Such a unification would be a theory of quantum

gravity.

Newtonian gravity attempted to explain the gravitational force via the inverse square

law of gravitation, claiming that gravity was a universal property that acted instanta-

neously and on all massive bodies. This was an important mathematical step, but it

did not fully explain the mechanism behind gravity. After publishing his special theory

of relativity in 1905, Einstein wanted to generalise his theory such that all motion is

relative. Einstein’s realisation of the equivalence of inertial and gravitational mass is

called the equivalence principle, and ultimately led to our current understanding of

gravity known as the general theory of relativity. General relativity was not only able

to reproduce the results of Newtonian gravity in appropriate limits but it also gave an

intuitive explanation for the mechanism behind gravitation.

In general relativity [9] spacetime is represented by a four-dimensional manifold M

on which there exists a metric gµν [10]. The metric gµν is a set of numbers describing

the distance to neighbouring points on the manifold. The field equations of general

relativity constrain the possible values that the curvature of spacetime can take. Intro-

ducing no additional geometrical structure into spacetime apart from the metric itself

and requiring that the field equations contain no derivatives higher than second-order

[10], one is uniquely led to the equations,

Gµν = 8πGNTµν . (1)

Where Tµν is the stress-energy-momentum tensor describing the amount and distribu-

tion of energy in spacetime, and Gµν is the Einstein tensor describing how spacetime is
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curved by the presence of matter, and is a function of the metric gµν ,

Gµν = Rµν −
1

2
gµνR. (2)

Rµν is the Ricci tensor acting on the metric gµν , and R is the Ricci scalar.1 The Ricci

scalar quantifies the curvature at each point on a Riemannian manifold, and represents

the difference in the volume of a ball embedded in curved spacetime with that in flat

Euclidean spacetime. Mathematically, the Ricci scalar is defined by the product of the

metric with the Ricci tensor,

R = Rµνg
µν . (3)

In order to obtain exact solutions of the Einstein equations one must impose certain

symmetry constraints. For example, imposing spherical symmetry on a non-rotating

massive body leads to the Schwarzschild solution. In this way the number of coupled

partial non-linear differential equations one obtains when writing Eq. (2) in full are

reduced, and exact analytical solutions can be found.

The explanation of the gravitational force as a result of matter following the path

of shortest distance in curved spacetimes is an elegant theoretical explanation that

has been experimentally verified to high precision. The perihelion of Mercury’s orbit,

gravitational lensing, and high-precision measurements of the decay of the orbital period

of binary pulsars all agree well with general relativistic predictions [11].

Just as general relativity must replace Newtonian gravity in the large mass limit,

quantum mechanics must also replace Newtonian mechanics in the small distance limit.

For example, until the development of quantum mechanics physicists did not even have

a satisfactory explanation for the stability of the atom. In classical mechanics atoms

are composed of electrons orbiting along well defined paths about a central nucleus.

Classical electromagnetism says that a charged particle with acceleration a and charge

e will radiate energy with power P given by Larmor’s equation,

P =
e2a2

6πε0c3
. (4)

According to classical physics an electron, therefore, must radiate away all its energy

and spiral in towards the nucleus. However, this is not observed in nature.

Max Planck’s earlier radical solution to the so-called ultraviolet catastrophe of black-

body radiation – in which he posited that electromagnetic energy is not a continuous

1Eq. (2) is for pure gravity (vanishing cosmological constant), however for a non-zero cosmological constant one

would obtain Gµν = Rµν − 1
2
gµνR+ Λgµν .
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variable, but can only take discrete values, or quanta – also helped to resolve the prob-

lem of the apparent instability of the atom. Niels Bohr realised that if an electron’s

energy was also quantised then the atom could not collapse, because electrons must

have a non-zero minimum energy.

Our understanding of the atom was further developed by de Broglie who proposed

that particles also have a wave-like nature. In this picture only integer wavelengths

will be admitted by the electron’s orbit, thereby explaining the particular values of

the allowed energy levels of the electron within the atom. Heisenberg and Schrödinger

developed these concepts further to give a complete description of a particle’s quantum

state at any instant of time in terms of the wavefunction Ψ. The evolution of the

non-relativistic wavefunction is governed by the Schrödinger equation,

ih̄
∂

∂t
Ψ (r, t) =

[
− h̄2

2m
52 +V (r, t)

]
Ψ (r, t) , (5)

where |Ψ (r, t) |2 is interpreted as the probability density of finding the particle of mass

m at a given location r at a time t. A wave-like description automatically introduces an

uncertainty relation, for example between the position x and the momentum px, known

as Heisenberg’s uncertainty principle,

4x4 px ≥
h̄

2
. (6)

A reformulation of quantum mechanics based on a path integral approach was devel-

oped by Wiener, Dirac and Feynman [12, 13, 14]. In this interpretation the probability

amplitude A for a particle initially located at xi at time ti, to be found at some later

time tf at position xf is calculated by taking a weighted sum over all possible ways in

which this can happen,

A (xi, ti → xf , tf ) =
∫
path

e
i
h̄
Spath = 〈xf |e−

iSpath
h̄ |xi〉. (7)

The path integral approach to quantum mechanics has a number of advantages over

the traditional Hamiltonian approach. Firstly, the path integral approach is intrinsically

symmetric with regard to space and time and so provides a manifestly covariant version

of quantum mechanics, therefore admitting the possibility of coordinate change in a

straightforward manner [14]. Secondly, the path integral approach can be used to study

nonperturbative quantum amplitudes using stochastic importance sampling which is

important in the development of many physical theories (e.g. Ref. [15]), including the

theory that forms the main subject of this thesis.
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Quantum mechanics has been subjected to high precision measurements for several

decades, and no significant discrepancy between theory and experiment has ever been

found. For example, the anomalous magnetic moment of the electron a given in terms

of the g−factor is experimentally determined to be, [16]

a =
g − 2

2
= 0.00115965218073(28), (8)

which is in agreement with the value calculated using QED [17] to 10 significant figures.

General relativity and quantum mechanics, in their respective domains of applica-

bility, are extremely accurate theories. However, even at a quick glance there exist

points of tension that resist a straightforward unification of the two theories. Firstly,

the energy-time uncertainty relation coupled with mass-energy equivalence implies that

the smaller the region of spacetime under consideration the greater the allowed mass

of particle-antiparticle pairs in the quantum vacuum. Hence, a prediction of general

relativity in combination with the uncertainty principle is that as one probes space-

time on ever decreasing distance scales the geometry becomes increasingly turbulent;

eventually creating infinite energy fluctuations as the distance scale is taken to zero.

Secondly, the notion of time has fundamentally different meanings in general relativity

and ordinary quantum mechanics. In ordinary quantum mechanics time is an absolute

quantity, the passage of which is completely independent of the state of the physical

system. In general relativity, however, time is a purely relational concept whose passage

is dependent on the particular configuration of the system.

Nature does not appear to encounter any such problems; after all atoms do fall down

in a gravitational field. Physicists tend to think, therefore, that the seeming incompat-

ibility of general relativity and quantum mechanics necessitates the alteration of one or

both theories, rather than that nature does not conform to a singular description.

Attempts at unifying general relativity and quantum mechanics have a long history

(see Ref. [18] for an excellent overview). As early as 1916, Einstein recognised that

his theory of general relativity must be modified to accommodate quantum effects [19]

after realising that general relativity predicts that an electron in an atom will radiate

away all of its energy in the form of gravitational waves, and eventually collapse on to

the nucleus. In 1927, Oscar Klein realised a theory of quantum gravity must lead to a

modification of space and time [20]. Technical publications on quantum gravity began

appearing in the 1930’s, most notably by Fierz and Pauli [21, 22], and by Blokhinstev

and Gal’perin [23], whose work first recognised the spin-2 quantum of the gravitational

field. In 1938, Heisenberg had the insight that the dimensionality of the gravitational
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coupling constant is likely to cause problems with a quantum theory of gravity [24].

The 1950’s and 60’s saw the application of tools recently developed in quantum field

theory to the problem of quantum gravity, mainly because of the success in applying

these techniques to the quantisation of the other fundamental interactions. Charles Mis-

ner introduced the concepts developed in Feynman’s path integral approach to quantum

mechanics to develop a weighted sum over geometries [25], which was further developed

by Feynman [14]. The Wheeler-DeWitt equation, first published in 1967 [26], describes

the wavefunction of the Universe by expressing the quantum mechanical Hamiltonian

constraint using variables that are dependent on the metric. By the end of the 60’s a

complete set of Feynman rules for general relativity were known, thus paving the way for

’t Hooft and Veltman to apply perturbative quantisation techniques to the gravitational

field, eventually showing that the theory is perturbatively nonrenormalizable.

Although gravity was conclusively shown to be perturbatively nonrenormalizable

by power counting in the early 70’s, several advances were still made by using an

approximation to the full theory of quantum gravity, known as semiclassical gravity.

Semiclassical gravity is the quantum mechanical treatment of matter content on curved,

but still classical, background geometries. In semiclassical gravity the stress-energy-

momentum tensor takes on a quantum mechanical expectation value 〈Tµν〉 giving field

equations for semiclassical general relativity,

8πGN〈Tµν〉 = Rµν −
1

2
gµνR. (9)

Hawking used semiclassical gravity to study the effect of particle-antiparticle pair

production near a black hole horizon. Because particles can be viewed as positive energy

solutions to Dirac’s equation, and antiparticles as negative energy solutions, Hawking

was able to calculate the effect of antiparticles quantum mechanically tunnelling inwards

through the horizon, or conversely particles tunnelling outwards through the horizon

and escaping to infinity [27]. The result is that a black hole of mass M emits a thermal

shower of particles with Hawking temperature TH , given by

TH =
h̄c3

8πkBMGN

. (10)

This equation implies that the entropy of a black hole SBH is proportional to its surface

area and not its volume,

SBH =
A

4l2P
. (11)
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This so-called Hawking-Bekenstein entropy formula will prove to be important in later

discussions.

A similar phenomena that can be derived using semiclassical gravity is the Unruh

effect, first described in its full mathematical form by Bill Unruh in 1976 [28, 29, 30],

whereby an observer with non-zero acceleration a in a Minkowski vacuum will measure

a non-zero temperature TU to be

TU =
h̄a

2πkBc
. (12)

This result, which has not yet been experimentally confirmed, implies that the definition

of what constitutes a vacuum is dependent on the state of motion of the observer.

Semiclassical results such as Hawking radiation, the black hole entropy formula, and

the Unruh effect show the range of new phenomena that arise when combining quantum

mechanics with classical general relativity, and may act as a guiding principle in the

formulation of a full theory of quantum gravity.

General relativity has been successfully formulated as an effective quantum field

theory that is valid up to some low-energy cut-off scale, usually taken to be the Planck

scale. For example, the work of Donoghue [31] uses an effective field theory formulation

of gravity to calculate quantum corrections to the gravitational potential between two

heavy masses, finding that gravity actually forms the best perturbative theory in nature

[31]. However, as one increases the energy scale beyond the cut-off in a perturbative

expansion new divergences appear that require an infinite number of counterterm co-

efficients to define the theory [32]. Since an infinite number of counterterm coefficients

cannot be measured in a finite number of experiments the theory loses most of its pre-

dictive power at high energy scales. When considering small perturbations about flat

Minkowski space one observes that the divergences cancel for one-loop diagrams. How-

ever, at the two-loop level and higher, such cancellations do not occur and divergences

are once again present. The problem is compounded when one includes matter content,

with nonrenormalizability occurring at the one-loop level [33].

A more intuitive way of understanding why gravity is perturbatively nonrenormal-

izable comes from simple dimensional arguments. Gravity is distinguished from the

other fundamental interactions of nature by the fact that its coupling constant GN is

dimensionful. In d-dimensional spacetime Newton’s gravitational coupling GN has a

mass dimension of [GN ] = 2 − d. This means that higher-order loop corrections will

generate a divergent number of counterterms of ever increasing dimension. One can

clearly see this from the perturbative quantum field theoretic treatment of gravity in d-
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dimensional space, where ultraviolet divergencies at loop order L scale with momentum

p as

∫
pA−[GN ]Ldp, (13)

where A is a process dependent quantity that is independent of L [34]. Equation

(13) is clearly divergent for [GN ] < 0 because the integral will grow without bound

as the loop-order L increases in the perturbative expansion [34]. It is interesting to

note that [GN ] < 0 is only true when the dimension of spacetime d > 2. For d = 2

Newton’s gravitational coupling in fact becomes dimensionless. Therefore, gravity as

a perturbative quantum field theory becomes renormalizable by power counting in 2-

dimensions. However, in our 4-dimensional Universe this is clearly not the case.

If one includes higher-order derivative terms in the gravitational action and performs

a resummation, such that the higher-order derivative terms are incorporated into the

graviton propagator, then gravity is renormalizable by power counting. However, this

theory appears to be non-unitary at high energy scales due to the presence of ghost

terms containing the wrong sign in the propagator [35]. The ghost poles, however, are

of the order of the Planck mass and so the unitarity violations only become significant

in the high energy regime where perturbation theory is already known to break down.

This further highlights the need for a nonperturbative theory of quantum gravity.

One can still proceed with the standard perturbative approach by finding some

mechanism for reducing the infinite number of couplings to a finite set. One attempt

is to directly incorporate supersymmetry into general relativity, forming what has be-

come known as supergravity. Supersymmetry postulates the existence of a fundamental

symmetry of nature that exists between fermions and bosons, namely that each boson

of integer-spin is associated with a fermion whose spin differs by a half-integer [36].

Applying supersymmetry as a local symmetry constraint in combination with the pos-

tulates of general relativity leads to the theory of supergravity. In supergravity every

bosonic field is associated with a fermionic field with opposite statistics [37], thus the

bosonic spin-2 graviton would have a fermionic supersymmetric partner of spin 3/2,

the gravitino. It is hoped that supersymmetry can alleviate some of the ultraviolet

divergences via the cancellation of divergent quantities in one field with those in the

partner field, resulting in milder ultraviolet divergences, or perhaps even their complete

elimination [38].

Viewing supergravity as an effective theory of a much larger superstring theory may

resolve the issue of nonrenormalizability in quantum gravity all together, at least or-
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der by order in perturbation theory [38]. Superstring theory posits that 0-dimensional

point-like particles are actually 1-dimensional extended strings whose fundamental de-

grees of freedom are the vibrational modes of the string. In superstring theory discon-

tinuities in standard Feynman diagrams are smoothed out into two-dimensional sheets,

and so the infinite energy limit no longer corresponds to the zero distance limit. Di-

vergences previously associated with the zero distance limit simply do not exist in

superstring theory because there is no zero distance. Superstring theory is then pertur-

batively renormalizable, at least order by order in perturbation theory [38]. Supersym-

metric string theory has enjoyed a number of successes, such as the emergence of the

spin-2 gravitons as a fundamental mode of string oscillation [39, 40], calculations of the

entropy of a special class of black holes that agree with the holographic principle and

black hole thermodynamics [41, 42, 43], a calculation of the radiation spectrum emitted

from black holes that agrees with Hawking radiation [44], as well as passing several

non-trivial self-consistency checks. See Refs. [45, 46] for a comprehensive overview of

string theory and its connection to other approaches to quantum gravity.

Another approach to quantum gravity adopts the background independent lessons

of general relativity as a fundamental starting point and attempts to construct a quan-

tum theory from it. This approach has resulted in Loop Quantum Gravity, which is

background independent and therefore nonperturbative from the outset. The major

successes of Loop Quantum Gravity include the agreement with Bekenstein’s predic-

tion of black hole entropy up to a constant factor [47], and at least in the low-energy

limit the emergence of spin-2 gravitons [48].

An alternative and more conservative candidate for a theory of quantum gravity

comes from the asymptotic safety scenario, as first proposed by Weinberg [34]. If

the asymptotic safety scenario is correct, gravity is effectively renormalizable when

formulated nonperturbatively because the renormalization group flow of couplings end

on a non-trivial fixed point in the high energy limit, and therefore remain finite over

the entire range of energy scales. Furthermore, the ultraviolet critical surface of the

non-trivial fixed point is required to be finite dimensional, and so in principle gravity

would be completely determined by a finite number of couplings up to arbitrarily high

energies. Under this scenario a perturbative expansion around a fixed background

metric corresponds to perturbations about the low energy infrared fixed point, and

taking the high energy limit corresponds to following the renormalization group flow

towards the ultraviolet fixed point. A lattice formulation of quantum gravity that

attempts to make contact with the asymptotic safety scenario forms the central theme
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of this thesis.

The remaining sections of chapter 1 will introduce some concepts of lattice reg-

ularization, the asymptotic safety scenario and the associated renormalization group

methods, thereby providing the necessary theoretical concepts to understand later chap-

ters. This discussion will also naturally motivate the desire for a lattice formulation of

quantum gravity.

Chapter 2 focuses on the simplicial approach to quantum gravity as defined via

the method of Regge calculus. After detailing the geometric observables that can be

computed using simplicial quantum gravity, the scope of the discussion is narrowed to

focus on the method of dynamical triangulations. The Euclidean approach to dynamical

triangulations (EDT) is introduced before discussing the approach of causal dynamical

triangulations (CDT). Possible generalisations beyond 4-dimensional simplicial lattice

regularizations are also briefly discussed.

In Chapter 3 I discuss our motivations for resurrecting the original Euclidean theory

of dynamical triangulations, detailing how this theory is numerically implemented and

tested. Sources of error in lattice calculations, both systematic and statistical, are

reviewed.

Details of the phase diagram of EDT are presented in Chapter 4, which are based on

numerical calculations I have performed. The order of the phase transition, constraints

on the location of the phase transition in parameter space, and geometric properties of

the phases of EDT are presented. The various numerical techniques used in studying the

geometric properties of each phase, and the location and order of the phase transitions,

are given in this section.

In chapter 5 I focus on calculations I have performed within a specific region of the

parameter space, known as the crinkled phase. I present a result for the calculation

of a quantity known as the volume-volume correlator in order to determine the global

Hausdorff dimension of this phase.

Chapter 6 reviews the argument against the asymptotic safety scenario as put for-

ward by Banks and Shomer [49, 50]. I then discuss the behaviour of the short distance

spectral dimension in both EDT and CDT, presenting the possibility that a short dis-

tance spectral dimension of 3/2 may resolve the tension between asymptotic safety and

the holographic principle.

Finally, I present a discussion on what we have learnt about the asymptotic safety

scenario from the study of Euclidean dynamical triangulations and outline some future

directions for this line of research.
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1.2 Lattice regularization

The quantisation of a continuous field theory involves introducing an infinite number of

degrees of freedom, which can lead to divergent results. To prevent this, one typically

regulates the theory via the introduction of an ultraviolet cut-off. A theory can be

regularized by taking a high energy limit, above which the field theory is no longer

applicable, or conversely one can impose a minimum length scale. The latter is the

approach taken by lattice field theories, which originated from the seminal work of K.

Wilson [51]. Lattice field theories replace continuous spacetime with a discrete lattice

of points with non-zero spacing a.

The method of lattice regularization allows one to achieve a stable ultraviolet regu-

larization, yielding finite observables. Lattice methods also allow one to recover contin-

uum limit physics by calculating observables at different lattice spacings and extrapo-

lating to the continuum limit, i.e. sending a→ 0. In addition to taking a→ 0 one must

also take the infinite volume limit, so as to eliminate finite-size effects, whilst simultane-

ously making appropriate adjustments to the bare coupling constants. The existence of

a continuum limit requires the presence of a second-order phase transition because the

divergent correlation length characteristic of a second-order phase transition allows one

to take the lattice spacing to zero whilst simultaneously keeping observable quantities

fixed in physical units.

For strongly interacting field theories the applicability of perturbation theory is lim-

ited, and nonperturbative lattice methods become essential. Lattice QCD (LQCD), for

example, has become the central tool in developing our understanding of the strong in-

teraction, allowing one to calculate the hadronic spectrum and weak matrix elements to

high precision [52]. LQCD also contributes to our understanding of confinement, chiral

symmetry breaking, and finite temperature QCD. See Refs. [53, 54] for more detailed

accounts of the methods and successes of LQCD. Lattice regularization methods have

also been applied in Beyond the Standard Model (BSM) physics, most notably in super-

symmetric lattice field theories and technicolor theories. See Ref. [55] for an overview

of supersymmetric lattice field theory, and Ref. [56] for a more general overview of the

application of lattice methods to BSM physics.

Motivated by the successful application of lattice methods to the strong interaction,

and their use in studying BSM physics, one is led to ask whether applying similar

methods to the gravitational interaction may aid our understanding of nonperturbative

quantum gravity. The following section discusses the approach to nonperturbative

quantum gravity known as the asymptotic safety scenario.
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1.3 Asymptotic Safety

The problems raised by the perturbative nonrenormalizability of gravity have spawned

a multitude of competing solutions. A common approach is to assume that the reason

quantum mechanics and general relativity cannot be unified in a straightforward manner

is because one of the two theories needs to be modified. The most popular notion

is to regard quantum mechanics as the more fundamental theory, and that general

relativity is just an effective field theory that is only valid up to some high energy cut-

off. Typically, this is the route taken by perturbative approaches to quantum gravity

such as superstring theory. However, there does exist a possibility of defining a quantum

field theory of gravity that is valid over all energy scales despite being perturbatively

nonrenormalizable. This is known as the asymptotic safety scenario [34].

When describing phenomena as a function of scale the value of parameters measured

on large scales typically differ from those made on small scales. For example, in quantum

electrodynamics (QED) the charge of an electron appears to be scale dependent [57,

58]. Since virtual particle pairs permeate the vacuum they become polarised by the

presence of the electron’s charge. This polarisation tends to screen the strength of

the electric charge as measured at large distances. However, at small distances there

is less screening, therefore the strength of the electric charge is inversely proportional

to distance, or conversely, is proportional to energy. The observation that coupling

constants are not in fact constant, but are in general dependent on the energy scale at

which they are measured, led to the idea of the renormalization group (RG) [51].

In general relativity the fundamental degrees of freedom are given by the metric

field. Fluctuations of space-time would then modify the strength of the gravitational

coupling GN as a function of energy, in an analogous way to the scale dependence of

electric charge in QED. We now follow the discussion of asymptotic safety given by

Weinberg in [34] in which he considers a generalised set of couplings gi (µ) as a function

of a renormalization scale µ. If gi (µ) has mass dimensions of [M ]di then we replace

gi (µ) with a dimensionless coupling g̃i (µ),

g̃i (µ) = µ−digi (µ) . (14)

The behaviour of the RG flow of the coupling gi is governed by its β-function, which

describes the rate of change of gi with respect to the scale µ,

βi(g̃ (µ)) = µ
d

dµ
g̃i (µ) . (15)
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To prevent the couplings g̃i (µ) from diverging as µ→∞ we can force them to end

on a fixed point, g∗, in the limit µ → ∞. This requires that the beta-function of g̃

vanish at this point,

βi (g
∗) = 0. (16)

Additionally, the couplings must lie on a trajectory g̃i (µ) which actually hits the fixed

point. The surface formed from such trajectories is called the ultraviolet critical surface.

If the couplings of a particular theory lie on the ultraviolet critical surface of a fixed

point then the theory is said to be asymptotically safe.

There exist two types of fixed points, trivial fixed points where g∗ = 0 and non-

trivial fixed points where g∗ 6= 0. The trivial fixed points are said to be non-interacting

because the coupling constant vanishes; the immediate vicinity of this trivial fixed point

is described by perturbation theory. This is the construction underlying asymptotic

freedom. Conversely, a non-trivial fixed point lies at non-zero values of the coupling

constants, and so is said to be an interacting fixed point.

Quantum chromodynamics (QCD) is a special type of asymptotically safe theory

because it is also perturbatively renormalizable and asymptotically free. QCD contains

a fixed point with only a finite number of attractive renormalization group trajectories

in the ultraviolet, namely the Yang-Mills coupling and the quark masses [59]. All other

couplings are repelled from the fixed point, and must be set to zero in order to give a

well defined ultraviolet limit. QCD is also asymptotically free because colour charge is

anti-screened by quark-antiquark pairs, and so at asymptotically high energies quarks

become free.

As mentioned in the example of QCD, renormalization group trajectories typically

come in two types: trajectories that are attracted to the ultraviolet fixed point, and ones

that are repelled from it. As one increases the momentum scale k then the magnitude

of an observable under the renormalization group transformation can either increase,

decrease, or do neither. Renormalization group trajectories exhibiting such behaviour

are said to be relevant, irrelevant or marginal trajectories, respectively. Relevant opera-

tors are essential to the description of macroscopic systems, whereas irrelevant ones are

not. For a given marginal operator it is unclear whether it contributes to macroscopic

physics because it can be ill defined. Macroscopic physics is typically described by only

a few observables, whereas microscopic physics is typically characterised by a very large

number of variables. This implies that most observables are irrelevant, namely that the

microscopic degrees of freedom are not relevant on the macroscopic level.
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An important consideration when dealing with a non-trivial ultraviolet fixed point is

the dimensionality of its ultraviolet critical surface. The dimensionality of an ultraviolet

critical surface is given by the number of renormalization group trajectories that are

attracted to the fixed point in the ultraviolet, i.e. the number of relevant trajectories. If

an infinite number of such trajectories were attracted to the fixed point then we would

be in the same situation as for perturbative renormalization, namely a complete loss

of predictive power [34]. The ideal situation is one in which the number of relevant

couplings is minimised. For example, if there was just a single trajectory that ended at

the fixed point in the ultraviolet then the theory would be maximally predictive.

Theory Space

g3

g
2

g
1

S
UV

Irrelevant coupling

Relevant coupling

NTFP

Figure 1: A schematic of the ultraviolet critical surface SUV . Trajectories that are re-

pelled from the non-trivial fixed point (NTFP) are irrelevant couplings. Trajectories that are

attracted to the fixed point are relevant couplings. The theory space is defined by the cou-

plings gi. In the case of the Einstein-Hilbert truncation the couplings are GN (k) and Λ (k).

Schematic derived from the work of Refs. [1, 2, 3].

General relativity without matter content is described by the Einstein-Hilbert action

SEH =
1

16πGN

∫
d4x
√
−g(−2Λ +R), (17)

where GN is Newton’s gravitational constant, Λ is the cosmological constant, g is the

determinant of the metric gµν , and R is the scalar curvature, a function of the metric.

If we replace the couplings GN and Λ by the scale dependent running couplings GN(k)

and Λ(k), then recognising that the Einstein-Hilbert action is now a scale dependent

functional Γ(k) we can write,
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Γ(k) =
1

16πGN (k)

∫
d4x
√
−g(−2Λ (k) +R + ...). (18)

The functional of Eq. (18) in principle contains infinitely many couplings. The

renormalization group flow of the functional Γ (k) is defined by the exact renormaliza-

tion group equation (ERGE), and so the ERGE contains the beta-functions of all of the

couplings present in the functional. Although exact solutions have been found, e.g. for

supersymmetric O (N) theories in the infinite N limit [60, 61], the general form of the

ERGE is not exactly solvable, and so one is typically forced to perform truncations of

the functional Γ (k) such that it contains only a finite number of couplings. The beta-

functions can then be extracted from the ERGE without any further approximation [62].

The simplest truncation is the Einstein-Hilbert truncation, in which only the cosmo-

logical constant and Newton’s constant are retained. The RG flow will typically induce

terms quadratic in curvature. However, under the Einstein-Hilbert truncation these

contributions are neglected. A more accurate treatment takes the curvature squared

terms into account, which is known as the curvature squared truncation. One can then

extend this series of truncations up to terms polynomial in the scalar curvature; this has

been done up to a polynomial of order eight and higher, demonstrating the existence of

a fixed point with a three-dimensional critical surface [63, 64, 65]. Recent RG results

have even reported calculations with truncations to a polynomial of order thirty four

in the Ricci scalar [66]. See Ref. [67] for an overview of asymptotic safety.

An example of how the ERGE is applied comes from performing a numerical integra-

tion of the β-function extracted from the ERGE under the Einstein-Hilbert truncation,

i.e for only GN(k) and Λ(k). This gives the following picture [4]:
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G
N

Λ

Figure 2: Renormalization group flow of gravity in the Einstein-Hilbert truncation. Ar-

rows indicate RG flow in the direction of increased coarse-graining, or conversely decreasing

momentum scale k. Plot adapted from Ref. [4]

At the origin one observes the trivial fixed point (TFP) corresponding to the non-

interacting theory. For a non-zero value of Newton’s constant and the cosmological

constant one may observe a nontrivial fixed point (NTFP) that corresponds to an

interacting theory. The fixed point for gravity, if it exists, must be interacting; since

gravity is perturbatively nonrenormalizable.

Although the renormalization group studies are suggestive, the truncation of the

effective action makes it difficult to systematically assess the reliability of the results

obtained using this method2. A lattice formulation of gravity is thus desirable and com-

plementary, given the possibility of performing calculations with controlled systematic

errors. In a lattice formulation of an asymptotically safe field theory the fixed point

would appear as a second order critical point, the approach to which would define a

continuum limit [71].

There exists an argument due to Banks [49] (see also Shomer [50]) against the

possibility of asymptotic safety. The argument compares the density of states at high

energies expected for a theory of gravity to that of a conformal field theory. Since

a renormalizable quantum field theory is a perturbation of a conformal field theory

by relevant operators, a renormalizable field theory must have the same high energy

asymptotic density of states as a conformal field theory. It follows from dimensional

2Although systematic error control in ERGE studies is possible and has been exemplified in the work of Refs. [68, 69],

for example. Error estimates in quantum gravity in dimensions greater than four have also been studied [70].
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analysis, and the extensive scaling of the quantities considered, and the fact that a

finite temperature conformal field theory has no dimensionful scales other than the

temperature, that the entropy S and energy E scale as

S ∼ (RT )d−1 , E ∼ Rd−1T d (19)

where R is the radius of the spatial volume under consideration and T is the tempera-

ture. It follows that the entropy of a renormalizable theory must scale as3

S ∼ E
d−1
d . (20)

For gravity, however, one expects that the high energy spectrum will be dominated

by black holes.4 The d-dimensional Schwarzschild solution in asymptotically flat space-

time has a black hole with event horizon of radius rd−3 ∼ GNM , where M is the mass

of the black hole. The Bekenstein-Hawking area law tells us that S ∼ rd−2, so that

S ∼ E
d−2
d−3 . (21)

This scaling disagrees with that of Eq. (20). If the argument leading to Eq. (21) is

valid, then one is led to conclude that gravity cannot be formulated as a renormalizable

quantum field theory. This is a potentially serious obstacle that I shall address in

Chapter 6.

3See Ref. [72] for a critique of the reasoning that leads to this scaling.
4Although this assumption has been questioned by Percacci and Vacca [73], among others.
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2 Simplicial Quantum Gravity

2.1 Geometric Observables

General relativity describes gravity as the curvature of spacetime, and quantum me-

chanics describes spacetime on the smallest distance scales. So if we are to unify general

relativity and quantum mechanics we must understand what spacetime looks like on the

smallest distances. One idea is that spacetime is discrete at the Planck scale, meaning

that there exists a smallest possible unit of both space and time, namely the Planck

length and the Planck time. A further complication comes from the fact that quantum

mechanics describes observables as being in a superposition of all possible states until

observation has occurred, and therefore that the geometry of spacetime at the Planck

scale could consist of a superposition of all possible geometries. These complications

make it very difficult to study the Universe on such small scales. One simplifying ap-

proach is to approximate the smooth continuous geometry of spacetime by a lattice of

locally flat n-dimensional triangles called simplices. In this way one can numerically

generate a large ensemble of configurations that samples all the possibilities of curvature

and geometry, allowing one to calculate specific observables by taking the expectation

value over the entire set of configurations.

The simplicial approach to quantum gravity, as first proposed by Regge [74], allows

one to make use of the considerable number of techniques used in lattice gauge theories.

In a similar way to lattice gauge theories, one is not restricted to discrete spacetime,

since one can allow the lattice size to approach infinity and take the simplicial edge

length to zero. Under these limits one would effectively remove the ultraviolet lattice

regulator and recover continuum physics. Regge calculus is not dependent on simplices

either; any shape that can be extended into a n-dimensional polytope can be used in

the same way. Simplices are chosen because they are essentially the simplest possible

polytope that one can use to approximate n-dimensional manifolds.

An n-dimensional simplex is a polytope, where the number of k-dimensional faces

Nk is given by

Nk =

 n+ 1

k + 1

 =
(n+ 1)!

(k + 1)! ((n+ 1)− (k + 1))!
. (22)

A 4-simplex, therefore, has 5 vertices, 10 edges, 10 triangular faces and 5 tetrahedral

faces. Simplices are fitted together along their (n− 1)-dimensional faces creating a

simplicial piecewise linear manifold. Simplicial quantum gravity can be subdivided into
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two main approaches, Regge calculus and dynamical triangulations. The approach of

Regge calculus is to fix the connectivity of the simplices but allow the edge lengths

to vary; in this way the dynamics of the geometry is captured. Conversely, dynamical

triangulations fixes the simplicial edge lengths but allows the connectivity of the sim-

plices to define the dynamics of the geometry. The main subject of this thesis is that

of dynamical triangulations.

The interior geometry of an n-simplex is assumed to be flat, and so in the case of

dynamical triangulations the dynamics of a given simplex is entirely contained within

the connectivity of the (n+ 1) /2 fixed edge lengths. The curvature in simplicial quan-

tum gravity is defined by the deficit angle around a (n− 2)-dimensional face at which

arrangements of n-simplices converge. If we take the example of a lattice of 2-simplices,

or triangles, then the idea becomes clear. Imagine joining 6 such triangles together so

that they meet at a single shared vertex, as shown in Fig. 3.

δ
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Figure 3: The deficit angle δ for a 2-dimensional lattice (left) and a simplicial approximation

to a sphere (right).

One can define a complete angle of 2π radians about this vertex. However, upon

removing one of these triangles one now has a deficit angle δ. The remaining simplices

can now be joined together along their piecewise linear edges to form a curved geometry.

The angle δ is then a measure of the extent to which the geometry is curved. The deficit

angle δ is given by

δ = 2π −
∑
i

θi. (23)

The value of the deficit angle defines three different types of curvature. If
∑
i
θi = 2π

the geometry is flat. If
∑
i
θi < 2π the geometry has positive Gaussian curvature. If∑

i
θi > 2π the geometry has negative Gaussian curvature. This idea can be extrapolated
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to an arbitrary dimension n, where flat n-dimensional simplices are joined together along

their (n− 1)-dimensional faces, defining the curvature at a hinge of dimension (n− 2).

Another geometric observable that can be computed in simplicial quantum gravity

is the volume profile. One can calculate the volume profile of a simplicial ensemble

in the following way. Firstly, one defines a randomly chosen vertex from the set of

triangulations to be the origin o, one then shells radially outwards from this point by

hopping to an adjacent vertex. We can thus define a geodesic distance τ from the

origin o. By counting the number of simplices within a shell of radius τ one builds up

a volume profile for the ensemble of triangulations as a function of geodesic distance

from o. Then, just as one sums over all possible paths in the Feynman path integral

approach to quantum mechanics to obtain the macroscopic classical path, one should

average over all possible geometries to create an expectation value for the macroscopic

geometry of the Universe.5

Figure 4: A schematic representing the number of 4-simplices N4 as a function of geodesic

distance τ form an arbitrarily defined origin o. Collectively the blue bars form a single

measurement of the volume distribution of N4. One forms an expectation value 〈N4〉 by

making many such measurements and averaging. The centre of volume is located at 0.

Since in appropriate limits a theory of quantum gravity should reduce to general

relativity, one would expect that the phase diagram for a theory of quantum gravity

should contain a semi-classical phase whose geometry is a solution to general relativity.

One such solution is de Sitter space. A de Sitter space is the maximally symmetric

5The above description is specific to a model of simplicial quantum gravity with no explicit time direction, although

the same principle applies to a theory with an explicit time direction except that in this case one calculates the spatial

volume at proper time intervals t.
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geometrically flat solution to Einstein’s field equations with no matter content and a

positive cosmological constant. The de Sitter metric can be written as,

ds2 = dt2 + a (t) dΩ2
(3) = −dt2 +H2

Lcosh2
(

t

HL

)
dΩ2

(3). (24)

Where Hl is the Hubble length given by Hl = c/H0 =
√

3
Λ

. Ω(3) is the 3-dimensional

volume element [75],

Ω(3) = dχ2 + sin2χ
(
dθ2 + sin2θdφ2

)
. (25)

As I shall discuss in Section 2.3 such a de Sitter phase has been shown to exist for

a specific model of simplicial quantum gravity, thus verifying that this model has a

solution of general relativity as its low energy limit.

One may naively think that a n-dimensional theory of simplicial quantum gravity

will always result in a n-dimensional geometry, however, this is not necessarily the case.

For dynamical triangulations the dynamics is contained in the connectivity of the n-

simplices, where the geometry is updated by a set of local update moves (see Chapter

3.3 for more details). These local update moves can result in the deletion or insertion

of vertices within simplices and so it is possible to obtain a geometric structure that

has self-similar properties at different scales, meaning the geometry can be a fractal.

A fractal geometry admits non-integer dimensions, and so recovering n-dimensional

space from n-dimensional fundamental building blocks is a non-trivial result. The

approach of simplicial quantum gravity allows the fractal dimension of the ensemble

of triangulations to be computed numerically, typically this is done by computing the

Hausdorff dimension and the spectral dimension.

The Hausdorff dimension, first proposed by Felix Hausdorff in 1918 [76], generalises

the concept of dimension to non-integer values, thereby enabling one to quantify the

dimension of a fractal geometry. The standard non-fractal definition of dimension is

given by the familiar topological dimension, which can be determined by simply count-

ing the minimum number of coordinates to uniquely specify an event. For example,

the topological dimension of a line is one and the topological dimension of a plane

is two. However, the validity of the topological dimension comes into question when

one considers, for example, a line that undergoes a continuous random walk on a two-

dimensional plane. After a sufficiently long period of time the line will essential fill the

two-dimensional plane. What then is the dimension of such a geometry? The topolog-

ical dimension strictly remains one, however, the Hausdorff dimension is a non-integer
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DT r V

1 3 3

2 3 9

3 3 27

Table 1: A table showing how the volume of a sphere with topological dimension DT

scales with radius r.

number that is somewhere between one and two, thereby allowing us to quantify the

“roughness” of the geometry.

To motivate a mathematical definition of the Hausdorff dimension we consider self-

similarity and dimension under scale transformations. Take a line element of length r

and perform a scale transformation by a factor of three. The new line element now has

a length 3r. Now take a circle of radius r, and area A, and again apply a factor 3 scale

transformation to the radius, the new circle now has an area of 9A. Now take a sphere

of radius r, and volume V , and again scale r by a factor of 3, one now obtains a sphere

of volume 27V . This simple set of scale transformations is depicted in Fig. 5 and the

results are tabulated in Table 1.

Figure 5: A schematic describing how the Hausdorff dimension is determined. Column

1 shows a line segment with topological dimension 1, the line segment undergoes a scale

transformation from r = 1 to r = 3. Column 2 shows a circle of topological dimension 2

whose area increases by a factor of 9 under such a scale transformation. Column 3 shows a

sphere with topological dimension 3, whose volume increases by a factor of 27 under such a

scale transformation.

As can be seen from Table 1 the relationship between the D-dimensional volume
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and the radius r is given by

V ∝ rD. (26)

Making D the subject, and taking the limit r → 0, gives us the mathematical definition

of the Hausdorff dimension as,

DH = lim
r→0

ln (V (r))

ln (r)
. (27)

For volume profiles of the type seen in Fig. 4 one can then determine the Hausdorff

dimension of the ensemble of triangulations by simply counting the expectation value

for the number of simplices within a given geodesic distance from a randomly chosen

vertex. Observing how the number of simplices scales with geodesic distance allows one

to measure the fractal Hausdorff dimension.

The large scale geometry of the universe can also be studied via the volume-volume

correlator. In a theory with 4-dimensional building blocks the volume-volume correlator

gives us a measure of the distribution of the 4-volume as a function of geodesic distance

via determining the correlation of adjacent slices of 4-volume. We study the finite

volume scaling behaviour of the volume-volume correlator similar to the one introduced

in Ref. [77] to study the scaling of CDT,

CN4 (δ) =
t∑

τ=1

〈
N slice

4 (τ)N slice
4 (τ + δ)

〉
N2

4

. (28)

N slice
4 (τ) is the total number of 4-simplices in a spherical shell a geodesic distance τ from

a randomly chosen simplex. N4 is the total number of 4-simplices and the normalization

of the correlator is chosen such that
∑t−1
δ=0 CN4 (δ) = 1. If we rescale δ and CN4 (δ),

defining x = δ/N
1/DH
4 , then the universal distribution cN4(x) should be independent

of the lattice volume, where cN4 (x) = N
1/DH
4 CN4

(
δ/N

1/DH
4

)
. One can determine the

fractal Hausdorff dimension, DH , as the value that leaves cN4 (x) invariant under a

change in four-volume N4.

Another measure of the fractal dimension of a space is the spectral dimension DS.

The spectral dimension DS defines the effective dimension of a fractal geometry and

is related to the probability of return Pr (σ) for a random walk over the ensemble of

triangulations after σ diffusion steps.

One can derive the spectral dimension (following Refs. [8, 78]) starting from the

d-dimensional diffusion equation,
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∂

∂σ
Kg (ζ0, ζ, σ)− gµν 5µ5νKg (ζ0, ζ, σ) = 0. (29)

Where Kg is known as the heat kernel describing the probability density of diffusion

from ζ0 to ζ in a fictitious diffusion time σ. 5 is the covariant derivative of the metric

gµν . The diffusion process is taken over a d-dimensional closed Riemannian manifold

M with a smooth metric gµν (ζ).

In the case of an infinite flat Euclidean space, Eq. (29) has the simple solution,

Kg (ζ0, ζ, σ) =
exp

(
−d2

g (ζ, ζ0) /4σ
)

(4πσ)d/2
. (30)

Where d2
g (ζ, ζ0) is the geodesic distance between ζ and ζ0.

The quantity that is measured in the numerical simulations is the probability Pr (σ)

that the diffusion process will return to a randomly chosen origin after σ diffusion steps

over the spacetime volume V =
∫
ddζ

√
det (g (ζ)),

Pr (σ) =
1

V

∫
ddζ

√
det (g (ζ))Kg (ζ0, ζ, σ) . (31)

The probability of return to the origin in the flat infinite space is then just,

Pr (σ) =
1

σd/2
, (32)

and so we can extract the spectral dimension DS by taking the logarithmic derivative

with respect to the diffusion time, giving

DS = −2
dlog〈Pr (σ)〉

dlogσ
. (33)

Equation (33) is only strictly valid for an infinitely flat Euclidean space. However,

one can still use this definition of the spectral dimension to compute the fractal di-

mension of a curved, or finite volume, by factoring in the appropriate corrections for

large diffusion times σ. Specifically, the probability that the random walk will return

to the origin approaches unity as the ratio of the volume and the diffusion time ap-

proaches zero, i.e. when the diffusion time is much greater than the volume. This can

be intuitively explained by realising that the volume is proportional to the number of

vertices, and so as the number of diffusion steps increases relative to the volume, the

probability that the random walk will sample all available lattice sites at least once ap-

proaches unity. The mathematical explanation is that the zero mode of the Laplacian

−4g, which determines the behaviour of Pr (σ) via its eigenvalues λn, will dominate
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the diffusion in this region, causing Pr (σ) → 1 for σ � N
2/DS
4 [8]. One can therefore

factor in the appropriate finite volume corrections by ommiting values of DS (σ) for

which σ � N
2/DS
4 . The curvature of the space on which the diffusion process occurs

should also be corrected for due to the fact that it will change the probability that the

diffusion process will return to the origin [8].

When numerically computing the spectral dimension one must calculate the expec-

tation value of the return probability 〈Pr (σ)〉 by taking an average over the ensemble

of measurements. The diffusion time σ corresponds to the distance scale probed and

the dimensionality of the ensemble can be calculated down at the Planck scale if one

has fine enough lattices, assuming the lattice theory actually defines a theory of grav-

ity. It is hoped that the ultraviolet divergences encountered in perturbative quantum

gravity may be controlled by some as yet unknown property of spacetime on Planckian

length scales. Interestingly, a number of recent studies [79, 80, 81, 82, 83, 84, 85, 79, 1]

indicate that the number of spacetime dimensions decreases as a function of distance

scale. These surprising and exciting results may provide a mechanism to regulate non-

perturbative quantum gravity on the shortest distance scales, and therefore eliminate

the ultraviolet divergences in a natural way.

2.2 Euclidean Dynamical Triangulations

Euclidean dynamical triangulations (EDT) is a particular implementation of a lattice

regularization of quantum gravity. The approach of EDT was originally studied in two-

dimensions for the purpose of defining a nonperturbative regularization of bosonic string

theory [86, 87]. This two-dimensional approach proved successful; with gravity coupled

to conformal matter being shown to correspond to bosonic string theory [88]. Results

from lattice calculations agree with continuum calculations in non-critical string theory

wherever they are compared [88]. Motivated by the successes of the two-dimensional

theory, EDT was generalised to three [89, 90, 91] and four dimensions [92, 93]. This

work explores EDT in four-dimensions.

Euclidean dynamical triangulations defines a spacetime of locally flat n-dimensional

simplices of fixed edge length. The four-dimensional EDT formalism translates the

continuum path integral

Z =
∫
DgeiSEH , (34)
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SEH =
1

16πGN

∫
d4x
√
−g(−2Λ +R), (35)

into the discrete partition function

ZE =
∑
T

1

CT
e−SEH . (36)

Where the integration over the metric gµν is replaced by a sum over all possible trian-

gulations T . CT is a symmetry factor that divides out the number of equivalent ways

of labelling the vertices in the triangulation T . The discretised Einstein-Regge action

in the EDT formalism is

SE = −κ2N2 + κ4N4. (37)

Where Ni is the number of simplices of dimension i, and κ2 and κ4 are related to the

bare Newton’s constant GN and the bare cosmological constant Λ, respectively.

The particularly simple form of Eq. (37) for the discrete Einstein-Regge action SE is

determined via the simplicial geometry, being dependent on the deficit angle θ around

a triangular face, where θ = arccos
(

1
n

)
, and on the n-dimensional simplicial volume

Vn, where

Vn =

√
n+ 1

n!
√

2n
. (38)

The discrete Euclidean-Regge action is then

SE = κ
∑

2V2

(
2π −

∑
θ
)
− λ

∑
V4, (39)

where κ = (8πGN)−1 and λ = κΛ. One can rewrite Eq. (39) in terms of the bulk

variables Ni, and use Eq. (38) to obtain the simplicial volumes, giving

SE ≡ −
√

3

2
πκN2 +N4

(
κ

5
√

3

2
arccos

1

4
+

√
5

96
λ

)
. (40)

Upon substituting κ2 =
√

3
2
πκ and κ4 = κ5

√
3

2
arccos

(
1
4

)
+
√

5
96
λ one recovers the simple

form of the discrete Einstein-Regge action in terms of the bulk variables N2 and N4, as

given by Eq. (37).

Early studies of four-dimensional EDT reported a one-dimensional parameter space

containing two phases that were separated by a transition at some critical value of the

coupling κC2 , but neither of the phases resembled four-dimensional semi-classical general

relativity [92, 7, 94, 95, 96]. When κ2 < κC2 , a phase exists in which the simplicial
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geometry effectively collapses, and has an infinite fractal dimension [94]. In the regime

κ2 > κC2 the geometry resembles that of thin polymer strands [94]. Measurements of

the Hausdorff dimension of these two phases confirm that neither resembles a physical

4-dimensional phase [94].

The work of Catterall et al. in Ref. [95] studied the order of the phase transition

between the two phases via an order parameter related to the fluctuation in the number

of simplicial nodes and the scaling of the autocorrelation time. Tentatively, Catterall et

al. concluded that the transition separating the two phases is continuous, and therefore

has the possibility of being second-order. In Ref. [94] Ambjorn and Jurkiewicz mea-

sured the critical scaling exponents using numerical simulations in the vicinity of the

transition, also concluding that the transition is continuous. However, a more careful

study with sufficiently large lattice volumes and with an increased number of lattice

configurations showed that the transition was in fact a discontinuous first-order critical

point. Specifically, de Bakker in Ref. [97] analysed 32,000 and 64,000 4-simplices and

observed a histogram with a double peak in the number of vertices that grows with vol-

ume. This behaviour is characteristic of a first-order transition. An independent study

by Bialas et al. [98] also reached the same conclusion, showing that for lattice volumes

smaller than 16,000 simplices the data was consistent with a continuous transition, but

for a lattice volume of 32,000 simplices or greater a bimodal structure in the histogram

of the number of vertices emerged.

These studies not only explained why the transition was previously thought to be

continuous (because of large finite-size effects) but they also conclusively showed that

the transition is first-order. The fact that the transition separating the two phases is

first-order makes it unlikely that the theory has a well defined continuum limit, at least

in the simplest implementation of the model [98, 97]. This is because a second-order

transition, with its diverging correlation length, is needed to define a continuum limit

that is independent of the underlying discrete lattice structure.

The sum over triangulations in the original formulation of EDT all used a trivial

measure, that is, all triangulations in the sum defining the path integral were weighted

equally. The trivial measure is the simplest implementation, but this does not nec-

essarily mean that it is the correct one. Brugmann and Marinari [99], in the early

90’s, investigated the effect of adding a non-trivial measure term to the Euclidean path

integral by studying the resulting geometric observables. Brugmann and Marinari re-

ported that the inclusion of a non-trivial measure term induced a strong effect, and

even suggested that its inclusion may be responsible for a change in the universality
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class of the theory. In the late 90’s Bilke et al. [100] also investigated the result of

introducing a non-trivial measure term in the path integral of 4-dimensional simplicial

quantum gravity. Bilke et al. reported the emergence of a new phase for an appropriate

choice of couplings. Both the Brugmann and Marinari and Bilke et al. studies were

suggestive, but the resulting phase diagram had yet to be explored in any great detail.

The present study was partly motivated by the hope that a more thorough study of the

phase diagram of EDT with a non-trivial measure could lead to a physical semiclassical

phase, and ultimately to a nonperturbative theory of quantum gravity.

In this work we study the partition function,

ZE =
∑
T

1

CT

N2∏
j=1

O (tj)
β

 e−SE . (41)

The term in square brackets is a non-trivial measure term, which in the continuum

corresponds to a nonuniform weighting of the measure by [det (g)]β/2. The product in

Eq. (41) is over all 2-simplices, and O (tj) is the order of the 2-simplex j, i.e. the number

of four-simplices to which the triangle belongs. We vary the free parameter β as an

additional independent coupling constant in the bare lattice action (after exponentiating

the measure term [99]), bringing the total number of couplings to three. Apart from

the already mentioned work of Refs. [99] and [100] the vast majority of work on EDT

up to now has considered the partition function with β = 0 only.

The term associated with the non-trivial measure β can be combined into the dis-

crete Einstein-Hilbert action by exponentiating the measure term, giving

SE = −κ2N2 + κ4N4 − β
∑
j

logO (tj) . (42)

The partition function of Eq. (41) is implemented via a Monte Carlo integration over the

ensemble of 4-dimensional triangulations with fixed topology S4. The bare cosmological

constant, or equivalently κ4, controls the number of 4-simplices N4 in the ensemble

because they appear as conjugate variables in the action of Eq. (37). One must therefore

tune κ4 such that an infinite volume limit can be taken [101]. It is convenient to ensure

that our numerical simulations are performed for a nearly fixed four-volume, and so

we introduce a term δλ|N f
4 − N4| into the action such that N4 is kept close to the

target value N f
4 , i.e. N f

4 ≈ N4. However, this does not change the action for values of

N f
4 = N4, about which the volume fluctuates. The purpose of the term δλ|N f

4 −N4| is

to prevent volume fluctuations about N f
4 from becoming too large to be easily handled

in numerical simulations. While the simulation stabilises around the target volume N f
4
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the parameter δλ is set to 0.08, after stabilisation δλ is reduced to 0.04. This term

permits fluctuations in N4 of magnitude δN4 =
(
〈N2

4 〉
2 − 〈N4〉2

)1/2
=
(

1
2δλ

)1/2
. We are

then left with a two-dimensional parameter space, which is explored by varying κ2 and

β.

2.3 Causal Dynamical Triangulations

The difficulties encountered in the original EDT model, namely the absence of a phys-

ical phase and a second-order critical point, led Ambjorn and Loll [102] to introduce a

causality constraint on the set of triangulations over which the path integral is taken,

in the hope that it would fix these problems. The method of causal dynamical trian-

gulation (CDT) distinguishes between space-like and time-like links on the lattice so

that an explicit foliation of the lattice into space-like hypersurfaces of fixed topology

(usually chosen to be S3) can be introduced. This prevents branching of geometries

into “baby universes” along the time direction.

Figure 6: The building blocks of CDT. The (4, 1) and (3, 2) 4-simplices.

Figure 6 shows the two fundamental building blocks of causal dynamical triangula-

tions. The four-simplex labelled (4, 1) has four vertices on the space-like hypersurface

of constant time τ = 0 that are connected by space-like links ls, and one vertex on

the hypersurface τ = 1. The space-like hypersurfaces τ and τ + 1 are connected by

time-like edges lt. The two types of simplices can be glued together, along with their

time-reversed counterparts, to form a causal slice of spacetime of duration τ . One can

then stack t such slices on top of one another, forming a causal spacetime of duration

τ = t. The causal structure of spacetime in CDT demands an extra parameter α that

describes the ratio of the length of space-like links ls to time-like links lt (for Euclidean

dynamical triangulations α = 1) on the lattice and is given by,

α =
l2s
l2t
. (43)
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The metric for CDT has the Lorentzian signature (−1, 1, 1, 1) resulting in a path

integral, or partition function, of the type

Z =
∑
T

1

CT
e−ıSE(T ), (44)

which contains complex probabilities and is not suitable for numerical integration. CDT

must therefore be rotated to Euclidean signature (1, 1, 1, 1), producing a real action

that is numerically tractable. It is important to note, however, that although the sum

over geometries is performed with Euclidean metric signature the end result is strictly

Lorentzian. This is because one starts by restricting the set of possible Euclidean

geometries to only include those that meet the conditions of the causality constraint.

One then Wick rotates the α parameter in the lower half of the complex plane and

performs the Euclidean sum over geometries. At least in principle one can then Wick

rotate back to Lorentzian signature. The inverse Wick rotation is not feasible using

numerical methods alone, which is a familiar feature of numerical lattice field theory.

Numerical simulations in CDT generate a walk over the ensemble of triangulations

based on Monte Carlo importance sampling with time extension t. The local updating

algorithm consists of a set of moves that change the geometry of the simplicial manifold

locally, without altering its topological properties [77]. CDT appears to obtain the cor-

rect macroscopic properties of spacetime from a minimal set of assumptions. Numerical

simulations using causally triangulated ensembles have demonstrated the existence of

a phase whose ground state turns out to be the maximally symmetric vacuum solution

of general relativity, namely de Sitter space [103]. Quantum fluctuations, that are well

described by a semiclassical expansion about de Sitter space, have also been reported

[104, 103]. The macroscopic dimension of this phase has been non-trivially determined,

and is found to be consistent with 4-dimensional spacetime.

On microscopic scales CDT makes a number of non-classical predictions for the

geometry of spacetime. Specifically, the approach of CDT reports a reduction in the

number of spacetime dimensions as a function of distance scale, predicting that the

dimension of spacetime decreases from 4 on macroscopic scales to ≈ 2 on microscopic

Planckian scales. This result is found to be in approximate agreement with renormal-

ization group calculations [77].

A recent study by Ambjorn et al. [5] claims the existence of a second-order transition

in CDT. They determine the order of the transition in three main ways. Firstly, the

histogram of the vertex number is studied, revealing a double peak structure that is

found to not increase with simplicial volume in the vicinity of the transition that divides
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the de Sitter phase from the unphysical collapsed phase (B-C transition in Fig. 7). This

is indicative of a second, or higher-order, transition.

Secondly, they measure the shift in the critical exponent ν̃ of the asymmetry pa-

rameter ∆ to be 2.51, which is in clear violation of the prediction ν̃ = 1 known for a

first-order transition [105]. The critical parameter ∆ scales as a function of volume

∆C (N4) = ∆C (∞)− CN−1/ν̃
4 , (45)

where C is a constant of proportionality and ∆C(N4) is the critical value of the bare

parameter ∆ at which the transition occurs.

Finally, Ambjorn et al. also report on the measurement of geometric observables O
using a quantity known as Binder’s cumulant [105], which is defined by

BO =
1

3

(
1− 〈O

4〉
〈O2〉2

)
. (46)

This quantity will tend to zero in the infinite volume limit if the transition is second-

order, and will tend to a non-zero (but possibly very small) constant if the transition is

first-order. They report a Binder’s cumulant that is consistent with zero in the infinite

volume limit, as expected from a second-order transition.

Figure 7 shows the phase diagram of CDT containing three distinct phases A, B,

and C. Phase A consists of uncorrelated spatial slices. The volume profile is illustrated

by rotating the number of spatial simplices about the time axis, resulting in Fig. 8a.

Phase B consists of geometries of simplices with extremely high coordination number

such that the vast majority of the volume is concentrated around a single spatial slice,

as depicted in Fig. 8b. Phase C is a semi-classical de Sitter phase with extended

4-dimensional geometry. The volume of revolution for phase C is shown in Fig. 8c.

Ambjorn et al. in Ref. [5] present strong evidence that the A-C transition is first-order

and that the B-C transition is likely second-order.
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Figure 7: The 2-dimensional phase diagram of CDT as defined via the parameters κ0 and

∆. Image courtesy of Ambjorn et al. [5]

(a) (b) (c)

Figure 8: The volume profiles of the three distinct phases of CDT. (a) The branched

polymer phase of CDT (phase A). This phase primarily consists of a series of uncorrelated

spatial slices. (b) The collapsed phase of CDT (phase B), in which a large number of simplices

collapse onto a small number of vertices. (c) The extended phase of CDT (phase C). In this

phase one obtains an extended 4-dimensional de Sitter geometry. Image courtesy of Ambjorn

et al. [6].

The global time foliation that is an inherent feature of CDT and that explicitly

breaks the isotropy between space and time is also a defining feature of Hořava-Lifshitz

gravity [106]. Hořava-Lifshitz gravity is a proposed theory of quantum gravity that

explicitly breaks the four-dimensional diffeomorphism symmetry of general relativity

in the high energy regime [106]. Although in Hořava-Lifshitz gravity the symmetry

between space and time is explicitly broken at the shortest scales, it is hoped that

Lorentz invariance is recovered in the large distance limit. It has been shown that the
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phase diagram of CDT is similar to that of the generic phase diagram of Lifshitz gravity,

under the validity of a certain assumption.6 Furthermore, in Ref. [107] Ambjorn et

al. show that analytically solvable 2-dimensional CDT is equivalent to Hořava-Lifshitz

gravity in 2-dimensions. Thus, CDT might also provide a unifying nonperturbative

framework for anisotropic theories of quantum gravity [80].

In this work we revisit the original Euclidean theory for two reasons. Firstly, the

CDT restriction to a fixed foliation is potentially at odds with general covariance,

though it may amount to a choice of gauge [108]. Even if this is the case it would be

interesting to establish whether the same results can be obtained using the explicitly

covariant EDT approach. Secondly, the CDT model contains three free parameters in

the bare lattice action, whereas the original EDT model typically included only two.

Renormalization group studies [64, 65] suggest that the ultraviolet critical surface is

3-dimensional, so it seems worthwhile to revisit EDT with an additional parameter in

the bare lattice action [99, 100]. We point out that both the CDT and EDT models

include the bare Newton and cosmological constants, but that CDT also includes a

third parameter, the ratio of the lengths of space-like and time-like links on the lattice.

Thus, we would like to investigate the result of including a third parameter in the bare

lattice action of EDT [109, 110, 111].

2.4 Why 4-dimensional simplices?

There exist three main advantages of using simplices over any other geometric construc-

tion. Firstly, a simplex is the simplest possible regular polytope that will tessellate to

fill an n-dimensional volume. Secondly, a simplicial lattice provides a natural way

to define curvature via the counting of n-dimensional simplices that meet at a given

(n − 2)-dimensional hinge. Thirdly, geometric properties of simplices such as volumes

and angles allow for fast and easy computation of physical observables.

It should be emphasised, however, that choosing to simulate with simplices is made

out of simplicity and not necessity. For example, at least one group has developed

similar models using hypercubic lattices (See for example Ref. [112]). A continuum

theory of quantum gravity must be independent of the particular choice of lattice regu-

larization, such that as the lattice spacing is taken to zero one obtains a unique theory

of continuum physics.

One may also wonder whether there is anything special about using 4-dimensional

simplices. At first glance one would expect that constructing a theory out of 4-

6The assumption being that the average geometry in CDT can be correctly identified with the Lifshitz field [80].



2.4 Why 4-dimensional simplices? 33

dimensional building blocks will always yield a four-dimensional spacetime. However,

this is not necessarily the case because emergent geometry can exhibit fractal prop-

erties. It is therefore a non-trivial test of a theory constructed from 4-dimensional

building blocks that it obtain 4 macroscopic dimensions. To numerically simulate with

n-dimensional building blocks, where n is some integer greater than four, and obtain

a macroscopic dimension of 4 would be a remarkable result as it would non-trivially

verify that there is something unique about 4-dimensional spacetime. Very few higher-

dimensional studies of dynamical triangulations have been performed (See Ref. [113]

for the first detailed account of dynamical triangulations in 5-dimensions).
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3 Numerically Implementing EDT

3.1 Overview

Analytical methods in 4-dimensional dynamical triangulations have thus far proved in-

tractable due to the complex nonperturbative sum over geometries. However, with the

advent of powerful computational tools, numerical approaches to dynamical triangula-

tions can now be successfully employed via Monte Carlo simulations. In this section we

outline our method of numerically implementing Euclidean dynamical triangulations.

Since one wants to sample the path integral, one requires some process of sam-

pling the space of triangulations. This process can locally alter the geometry of the

triangulations without causing a change in the global topology.7 One can generate an

ensemble of dynamical triangulations using a set of ergodic local update moves that

are implemented via the Metropolis algorithm. A set of moves is said to be ergodic if

one can go from any given configuration of triangulations to any other via a repeated

application of moves in the set.

In this section I shall review the set of local update moves for the relatively straight-

forward case of 2-simplices, then extend these concepts to simplicial geometries of three

and four dimensions. One can choose different classes of triangulations over which

to perform the state sum. Here we consider two such classes of triangulations; com-

binatorial and degenerate triangulations. I shall define each approach and highlight

the computational advantages of degenerate over combinatorial triangulations. The

purpose of generating such a set of triangulations is so that we can calculate specific

physical observables in our theory. For this purpose I introduce the average Regge cur-

vature as an order parameter, and define its derivative χR, so that the phase diagram

can be explored. In this section I shall also discuss how we made various tests of our

code via a comparison of results obtained using our code with those obtained in the

literature. I will then outline the methods used to establish that our ensembles are

thermalized, so that calculations using these ensembles are reliable. Finally, I review

sources of systematic and statistical error, and how they are estimated using numerical

methods.

7Although it is possible to have a local topology change. The causal approach to dynamical triangulations in

two-dimensions has been generalised to include a limited number of spatial topology changes [114].
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3.2 Metropolis Algorithm

Feynman’s path integral approach to quantum mechanics teaches us that an individ-

ual quantum mechanical path does not constitute a macroscopic observable; one must

consider the weighted sum of all possible paths. In the same way, the measurement of

a particular observable calculated from a single simplicial configuration is not an ob-

servable, one must calculate an expectation value from a weighted sum over all possible

configurations.

The expectation value of the observable 〈O〉 is calculated by summing over all

individual measurements of the observable O (T ) and weighting each according to a

Boltzmann factor e−SE(T), applied over the ensemble of triangulations T .

〈O〉 ≡

∑
T
O (T ) e(−SE(T))

∑
T

e(−SE(T))
∼ 1

N

N∑
j

O (Cj) , (47)

where Cj is a Markov Chain Monte Carlo (MCMC), which in this case is a random

walk through the space of possible configurations. The Metropolis algorithm is one

particular example of a MCMC algorithm. The probability that one configuration CN

will transition to another configuration CN+j is donated by P (CN , CN+j). One ensures

that the random walk converges on an equilibrium probability distribution by use of

the so-called detailed balance condition,

P (CN , CN+j)

P (CN+j, CN)
=

e(−SE(TN+j))

e(−SE(TN))
= e(−∆SE). (48)

The number of update moves required for the random walk to reach an equilibrium

probability distribution is known as the thermalization time.

The proposed changes to the triangulation T implemented via the ergodic local

update moves are accepted or rejected based on the change to the Euclidean Einstein-

Hilbert action ∆SE. If ∆SE > 0 the proposed update move is accepted with probability

X. When this is the case, the probability X is calculated by defining some random

number r, where 0 ≤ r ≤ 1. If r ≤ X the proposed update is accepted, otherwise it is

rejected. If ∆SE ≤ 0 the proposed update move is accepted with probability one.

The MCMC begins with a randomly selected configuration CN . After one update

move the ensemble has a new configuration CN+1. One can use configurations CN and

CN+1 to calculate the expectation value of the observable 〈O〉, based on individual mea-

surements ON and ON+1, respectively. After one such local update move the observables

are typically highly correlated, O1 ' O2. To accurately calculate the statistical error
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associated with a given observable one must use uncorrelated configurations. The num-

ber of update moves required for measurements ON and ON+j to become uncorrelated

is known as the autocorrelation length. The autocorrelation length is dependent on

the particular observable, on the simplicial volume, and on the particular value of the

parameters in the bare lattice action.

3.3 Local Update Moves

An ensemble is generated using the Metropolis algorithm with a set of five local update

moves. The set of moves is chosen to be ergodic. The so-called (p, q) moves consist of

either inserting or removing a vertex, or flipping a triangle, or replacing a tetrahedron

by an edge, and vice-versa. The set of local update moves are called in random order

and it is ensured that the number of accepted moves of each type are approximately

equal. Every attempted local update to the geometry of triangulations is accepted or

rejected based on its effect on the action.

In order to fully characterise the dynamic ensemble of triangulations we must know

two things; the location of every vertex in the configuration space of triangulations at

any given instant of Monte Carlo time, and all the possible ways it can evolve to a

new configuration at some later instant of Monte Carlo time. The first step is achieved

by labelling the vertices of each n-dimensional simplex, so that for example any two

vertices are neighbours if they belong to the same n-dimensional simplex. In a similar

way, any two n-dimensional simplices are neighbours if they share a (n− 1)-dimensional

simplex, or equivalently d vertices [115]. This vastly simplifies the process of keeping

track of the dynamical connectivity, and by constructing such a list one can in principle

reconstruct the entire simplicial geometry.

The second step is slightly more involved as we have to define a set of local update

moves that result in a topologically invariant geometry. Furthermore, the moves are

to be applied randomly to the set of triangulations, and with an approximately even

distribution amongst the set of moves. The set of (p, q) moves provide one possible set of

ergodic update moves. I will now describe the set of (p, q) moves for the two-dimensional

case before extending the concepts to higher dimensions.

In two-dimensions there are just three possible moves. To understand the first move

imagine we have two triangles joined together along a common edge, forming a diamond

shape. Let’s label the vertices of the first triangle as 123, and the vertices belonging

to the second triangle as 124. The edge that the two triangles share is then clearly 12.

However, one can now flip the common edge length to be 34 instead of 12. One has now
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defined two new triangles whose vertices are labelled 134 and 234. Note that one could

then perform the inverse of this operation to return to the original configuration. This

specific move is ergodic on the space of fixed volumes. This is called the (2, 2) move

because one replaces two simplices, in this case triangles, with two completely different

simplices. The changes in the triangulation can be kept track of in the following way,

123 + 124↔ 134 + 234. (49)

The second move in 2-dimensions consists of adding a new vertex 4 to the inside

of the triangle 123, thereby creating three new triangles 124, 234, and 134. This move

is referred to as the (1, 3) move, because it changes one triangle into three different

triangles. Unlike in the case of the (2, 2) move, which is its own inverse, the inverse

of the (1, 3) move defines a separate third move in the set. The vertex 4 that was

added to the original triangulation 123 is of order three, meaning that it connects three

simplices. So if one is to perform the inverse of the (1, 3) move then one must ensure

that a vertex of order three is removed from the triangle; this third move is called the

(3, 1) move. Using vertex labelling notation these moves can be expressed as,

123↔ 124 + 234 + 134. (50)

The (p, q) moves in 2-dimensions are depicted in Fig. 9. This set of moves is

ergodic, meaning that one can go from any given configuration to any other via a

repeated application of moves from the set. It should be noted that this set of ergodic

moves is not unique [116]. A point-splitting method proposed in Ref. [71], a version

of which is used in the construction of the ergodic CDT moves, provide an equivalent

ergodic construction.
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Figure 9: The (2, 2) and (1, 3) 2-dimensional update moves.

Moving to the case of three dimensions, there are two types of moves, each with an

inverse, giving a total of four moves. The first move in three dimensions is the (1, 4)

move which consists of inserting a new vertex 5, of order four, within the tetrahedron

1234. This creates four separate tetrahedra 1235, 2345, 1245, and 1345.

1234↔ 1246 + 2346 + 1456 + 3456. (51)

Second is the (2, 3) move which starts out with two tetrahedra 1234 and 1235 sharing

a triangle 123 and replaces the triangle with an edge of order three connecting vertices

4 and 5, thus producing three separate tetrahedra 1245, 2345 and 1345.

1234 + 1235↔ 1245 + 2345 + 1345. (52)

The three-dimensional moves are shown diagrammatically in Fig. 10.
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Figure 10: The (1, 4) and (2, 3) 3-dimensional update moves.

Simplices in 4-dimensions and higher are more difficult to visualise and draw, how-

ever, we can simplify this process by using what is known as the triangulation’s dual

graph. A dual graph is constructed by replacing all simplices by vertices, and connect-

ing them if they share a (n− 1)-dimensional simplex. Using the dual graph method we

can more readily visualise the set of ergodic moves in 4-dimensions. The set of moves in

4-dimensions consists of the (1, 5) , (2, 4) and (3, 3) moves. The (1, 5) and (2, 4) moves

have distinct inverses, whereas the (3, 3) move is its own inverse. This gives a total of

five moves in 4-dimensions.
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Figure 11: The local update moves of EDT in 4-dimensions.

The partition function of Eq. (41) is implemented via a Monte Carlo integration

over the ensemble of 4-dimensional triangulations with fixed topology S4. As discussed

above an ensemble is generated using the Metropolis algorithm with a set of five ergodic

local update moves. The set of local update moves are called in random order and it

is ensured that the number of accepted moves of each type are approximately equal.

Every attempted local update to the geometry of triangulations is accepted or rejected

based on its effect on the action. We define a sweep to consist of 108 attempted moves,

with the computational time for a sweep exhibiting a weak volume dependence.
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3.4 Combinatorial and Degenerate Triangulations

A d-dimensional simplicial manifold is constructed by gluing d-simplices together along

their (d−1)-dimensional faces. To each d-simplex there exists a simplex label and a set

of combinatorially unique (d+ 1) vertex labels. The set of combinatorial triangulations

was used in most early simulations of EDT. However, the constraint of combinatorial

uniqueness can be relaxed to include the larger set of degenerate triangulations in which

the neighbours of a given simplex are no longer unique [100]. However, one retains the

restriction that every 4-simplex must be defined by a set of distinct vertices, i.e. we

exclude degenerate simplices [100]. Degenerate triangulations don’t need combinatorial

manifold constraints and are therefore computationally less expensive as compared to

combinatorial triangulations. Furthermore, it has been shown numerically that simu-

lations using degenerate triangulations lead to a factor of ∼10 reduction in finite-size

effects compared to combinatorial triangulations [100]. We have made various checks

of our code against the literature using combinatorial triangulations [7], as well as

for degenerate triangulations [117], and good agreement was found for both classes of

triangulation. I discuss these checks in more detail in Section 3.6.

Simulations are performed by locally manipulating the simplicial geometry via the

(p, q) moves. For spacetime dimension d ≤ 4 the (p, q) moves are known to be ergodic

for combinatorial triangulations. The same must be true for the larger degenerate set

of triangulations because every set of combinatorially unique simplices can be made

distinct by a finite sequence of (p, q) moves. Therefore, one can go from any given

degenerate triangulation to any given combinatorial triangulation via the (p, q) moves

[117].

3.5 Order Parameters and Phase Transitions

An order parameter is a quantity that characterises the location and order of a phase

transition. Previous attempts at Euclidean dynamical triangulations have taught us

the importance of quantifying the order of phase transitions. The original EDT model

without a non-trivial measure term found two distinct phases that were thought to be

separated by a second-order phase transition [92, 95, 94]. This created some excite-

ment because it implied the possibility of taking a continuum limit at the second-order

transition. However, upon a more detailed analysis, which included larger simplicial

volumes, the phase transition was revealed to be first-order [98, 97].

One must therefore take care when defining an order parameter and when using it
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to determine the order of a phase transition. In the infinite-volume limit a first-order

transition is characterised by a discontinuity in the first-order derivative of the order pa-

rameter at the transition point, whereas second-order transitions are continuous in the

first derivative of the order parameter but discontinuous in the second-order derivative

[118]. One cannot practically implement simulations in the infinite-volume limit, and

so with finite volume studies first-order transitions will only approximate discontinuous

behaviour. This can make it difficult to distinguish first-order from higher-order tran-

sitions. For both first and second-order transitions the peak height of the susceptibility

of the order parameter diverges. However, the susceptibility of the order parameter for

first and second-order transitions diverge with different exponents of the volume, thus

allowing one to distinguish between the two.

Third and higher-order transitions can be difficult to numerically distinguish from

analytic crossovers. This is because as one goes to higher-order transitions the peak

of the susceptibility of the order parameter has an increasingly weak dependence on

volume, and analytic crossovers have no dependence at all [119], and so they become

progressively more difficult to differentiate from one another.

A suitable choice of order parameter for exploring the phase diagram is provided by

the expectation value of the Regge curvature.

〈R〉 ≡
〈
∫
d4x
√
gR〉

〈
∫
d4x
√
g〉

(53)

The average Regge curvature is relatively easy to determine from the bulk variables

N2 and N4, and can be numerically determined via the equation

〈R〉 =
1

ρ
〈N2

N4

〉 − 1. (54)

where ρ = 10 arccos(1/4)
2π

and Ni is the total number of i -simplices. Taking the derivative

of the Regge curvature with respect to κ2 gives the curvature susceptibility χR (N2, N4)

as a function of N2 and N4. The curvature susceptibility χR aids our exploration of the

phase diagram and is given by

χR(N2, N4) =

[〈(
N2

N4

)2
〉
−
〈
N2

N4

〉2
]
N4. (55)

3.6 Code Tests

Since the computer code that allows us to simulate EDT with a non-trivial measure

term was written independently by us it is important to test it against results ob-
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tained in the literature. The original version of our EDT code used combinatorially

unique simplices, however, as discussed above relaxing the constraint of combinatorial

uniqueness to include the large set of degenerate triangulations leads to a factor of ∼10

reduction in finite-size effects. For this reason we also have a second version of the code

using degenerate triangulations. We have therefore made various checks of our code

against the literature using combinatorial triangulations [7], as well as for degenerate

triangulations [100]. In this section I review the non-trivial quantitative checks I made

of our code against the literature.

Using combinatorial triangulations, de Bakker and Smit [7] calculated the average

number of simplices N ′ (r) a geodesic distance r from from a randomly chosen origin

in the ensemble of triangulations. They studied three different points in the parameter

space of couplings, see Fig. 12, namely κ2 = 0.8, 1.22, and 1.5 with β fixed at zero. The

points in parameter space were chosen such that one is in each of two distinct phases,

with the third in close proximity to the transition between the phases. de Bakker

and Smit also calculated the curvature susceptibility, χR, for the same three points

in parameter space. We obtained agreement for both quantities at all three points in

parameter space, within the quoted errors. See Table 2.

κ2 = 0.8 κ2 = 1.22 κ2 = 1.5

χR calculated in Ref. [117] 0.320±0.050 0.595±0.060 0.090±0.001

χR calculated in this work 0.297±0.041 0.692±0.066 0.089±0.001

Table 2: A table comparing the curvature susceptibility χR calculated in Ref. [7] to

our numerical calculations.
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Figure 12: The average number of simplices N ′(r) a geodesic distance r from a randomly

chosen origin for three values of κ2 at β = 0.0. N ′(r) values were calculated using an ensemble

of 16,000 combinatorial triangulations.

We have also checked our combinatorial code against the work of Ref. [100]. We

studied the fluctuations in the order of the three most singular vertices, p0, p1 and p2

when plotted as a function of β for κ2 held constant at 3.0. Simulations were performed

with a lattice volume of 4,000 4-simplices, as in Ref. [100].

The most singular vertex p0 can be defined as the vertex that belongs to the greatest

number of 4-simplices in a given configuration, with p1 and p2 the second and third most

common vertex, respectively. The susceptibility of the order of the most singular vertex,

χp0 , is defined by the equation,

χp0 =
(〈
p2

0

〉
− 〈p0〉2

)
/N4. (56)

Where N4 is the total number of four-simplices [100]. The values of χp0 , χp1 and χp2

were calculated using a code written to extract the three most frequent vertices in a

given configuration of N4 simplices, the data was blocked and a jackknife performed

to give an estimate of the statistical error.8 Ten (κ2, β) coordinates were sampled

in total, namely (3.0, 0.0), (3.0,−0.5), (3.0,−1.5), (3.0,−2.0), (3.0,−3.0), (3.0,−4.0),

(3.0,−4.75), (3.0,−5.0), (3.0,−5.75), and (3.0,−6.5). The thermalization of the lattices

was estimated by choosing an initial sweep number greater than 10000, where a sweep is

8This code was written independently by the author and by J. Laiho so as to provide a cross-check; the results

obtained were found to be in agreement with one another.
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defined as N accepted moves, with N equal to the number of 4-simplices, as suggested

by the definition of thermalization in [7].9 The code used in this comparison was written

independently by the author. Agreement was found with Ref. [100] for all ten points

in parameter space within errors.

We have also checked our degenerate triangulation code against the work presented

in Ref. [117]. The authors of Ref. [117] determine the critical κ2 value at which a first-

order transition is present using degenerate triangulations and for a simplicial volume of

4,000 4-simplices, finding κC2 = 1.673. We obtain a value of κC2 = 1.672 using the same

numerical set-up (i.e. the same simplicial volume, using degenerate triangulations, and

using the same non-trivial measure). The first-order transition at β = 0 and κ2 = 1.672,

for a simplicial volume of 4K, is shown in Figs. 28a and 29.10

3.7 Thermalization Checks

If one measures an observable on an ensemble of lattice configurations then there will

be fluctuations in this observable as a function of Monte Carlo time. An example of

this is shown in Fig. 14. In this context Monte Carlo time is defined as the number

of sweeps, where one sweep is 108 attempted updates to the geometry. The geometry

is updated via a Monte Carlo algorithm, and because the update moves locally alter

the geometry by adding or removing vertices, the number of vertices N0, for example,

will fluctuate as a function of Monte Carlo time. If an ensemble is not thermalized,

observables will have a strong dependence on Monte Carlo time, rather than exhibiting

fluctuations about their equilibrium values. In other words, lattices need to thermalize

before measurements can be made. For example, this can be seen in Fig. 13 for Monte

Carlo times less than ≈ 13000. The time required for the original lattice configuration

to equilibriate is called the thermalization time. For Fig. 13 this occurs for Monte

Carlo times ≈ 13000.

If one calculates an observable using a lattice that is not thermalized one will ob-

tain an erroneous result. The aim, therefore, is to determine the point at which the

observable fluctuates about some constant value, i.e. when the lattice has thermalized.

Once thermalization has been achieved, increasing the number of configurations used

in the calculation of the observable will just result in the mean approaching the correct

value with an increasingly small statistical error.

9This definition, however, was found by us to be somewhat lacking. Our definition of thermalization given in Section

3.7 was found to be more reliable.
10Note that we also observe discontinuous behaviour at κ2 = 1.673 but the value of κC2 = 1.672 gives us a more

symmetric double Gaussian structure, and therefore appears to be the more accurate κC2 value.
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Figure 13: A thermalization check as performed via a plot of the peak in the volume-volume

correlator cN4(x) as a function of Monte Carlo time.
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Figure 14: A thermalization check as performed via a plot of the peak in the volume-volume

correlator cN4(x) as a function of Monte Carlo time.

We output a stochastic quantity from the simulation and plot it as a function of

Monte Carlo time. Different quantities have different sensitivities to thermalization.
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For example, we calculated both the vertex number N0 and the peak in a quantity

called the volume-volume correlator cN4(x) (which is defined and discussed in more

detail in Section 5.2) as a function of Monte Carlo time; finding that cN4(x)peak is much

more sensitive to thermalization than N0. This is because it is a global large scale

quantity, and so is more sensitive to whether the lattice is thermalized. In this work

cN4(x)peak as a function of Monte Carlo time is used as the principle thermalization

indicator.

Figure 14 is a zoomed-in version of Fig. 13, focusing on a configuration range we

believe to be thermalized, namely 13,000-44,000. The configurations are divided into

two equal sets, denoted by Data 1 and Data 2. The reason for dividing the data is to

allow a statistical comparison to be made between the first and second half, therefore

providing a systematic method for verifying the thermalization of any given lattice. In

Fig. 14 the average is calculated for Data 1 and is denoted by the dashed blue line.

The light blue band is 1 standard deviation from the mean of data set 1. The average

of the second data set is given by the dashed black line, and the light grey band is

1 standard deviation from the mean of data set 2. As can be seen in Fig. 14 there

exists no statistical tension between data set 1 and 2, we therefore conclude that there

is statistical agreement over this range of configurations, indicating that the lattice is

most likely thermalized.

A bounding system is used, whereby thermalization for a point in parameter space

with a large value of κ2 is checked, and if the ensemble is thermalized one can assume

that every point in parameter space with a smaller κ2 value is also thermalized, as long

as it has an equal or greater number of configurations and an equal or smaller lattice

volume for fixed β. Extensive checks were performed to verify that thermalization times

increase with increasing κ2 and with simplicial volume for a constant value of β. See

Figs. 15 and 16 for evidence in support of this claim.
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Figure 15: A plot of the peak in the volume-volume correlator cN4(x) as a function of

Monte Carlo time. cN4(x) is calculated for four different volumes 1K, 4K, 8K, and 12K at

κ2 = 2.1 and β = −1.0. This plot provides evidence that the thermalization time increases

with increasing volume.
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Figure 16: A plot of the peak in the volume-volume correlator cN4(x) as a function of

Monte Carlo time. cN4(x) is calculated for κ2=1.4, 2.1, and 2.5 using the 8000 4-simplices.

This plot provides evidence that the thermalization time increases with increasing κ2.

3.8 Systematic Errors

Approximating continuous spacetime with a discrete and finite lattice is inevitably

going to introduce systematic errors. In this subsection I shall review the main sources

of systematic errors, namely finite-size effects and discretisation errors.

One of the main sources of systematic errors are finite-size effects. Quantifying

finite-size effects is of major importance to this work because one of our central aims is

to search the phase diagram of EDT for second-order critical points, which would allow

for the possibility of defining a continuum limit. Since finite-size scaling can be used to

determine the order of the phase transition, estimating systematic errors arising from

finite-size effects is essential.

Due to finite computational power one can only ever hope to simulate with finite

lattice volumes. One can however both quantify and reduce finite-size effects by simu-

lating on large enough volumes and for several volumes, thus allowing one to extrapolate

to the infinite volume limit.

Errors associated with using a discrete lattice to approximate continuum physics,

discretisation errors, can be estimated by using an effective field theory and extrapolat-
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ing down to the continuum.11 One can calculate the absolute lattice spacing in physical

units via a comparison of simulations with physical results in the classical limit. For

example, in the causal approach to dynamical triangulations Ambjorn et al. [103] have

estimated an absolute lattice spacing of a ≈ 2.08 lP via a comparison of the value of

GN inferred from quantum fluctuations about de Sitter space to the physical value.

One estimates discretisation errors by performing numerical simulations at successively

smaller values of the lattice cut-off a, i.e. taking the limit a → 0. In this way one can

estimate discretisation errors associated with the particular lattice regularization via a

comparison of results obtained using a finite lattice spacing with those obtained in the

continuum.

3.9 Statistical Errors

Statistical errors decrease as 1√
N

, where N is the size of the data set, if each measure-

ment N is statistically independent. Typically, however, stochastic measurements are

correlated to some degree and the true statistical error must therefore account for this

correlation in some way. A procedure for estimating the statistical error of a correlated

data set is provided by the jackknife resampling procedure.

Simulations in EDT will typically output some quantity a number of times N , the

idea being that the data set can be used to calculate the expectation value of some

observable q. However, this straightforward approach does not give a statistical error

associated with the measurement with the correct propagation of errors. To obtain such

an error we employ a jackknife re-sampling technique. The single-elimination jackknife

procedure starts by discarding the first value from the data set, leaving a set of N − 1

resampled values. One then calculates the desired quantity q using the reduced sample

size of N−1, resulting in some observable Mj1. A second iteration of resampling is now

performed, this time the second value from the data set is discarded and a new value

for the observable q is obtained, call it Mj2. The process is repeated i times, once for

each member of the data set N , resulting in a new set of observables Mji, i = 1, ..., N ,

where the standard error is given by,

σ2
j (q) = (N − 1)

N∑
i=1

(Mji −M)2 /N, (57)

where M is the result of sampling over the entire set.

An autocorrelation, as the name suggests, is a measure of the extent to which a signal

11Parameters must be tuned to a fixed point for a continuum limit to exist.
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is correlated with itself. The ideal situation when performing stochastic simulations is

to obtain entirely independent measurements of a certain observable, meaning that each

individual measurement is completely uncorrelated with the adjacent measurement in

Monte Carlo time. We estimate the effect of autocorrelations on the measurements

of observables by grouping individual measurements into larger blocks of data. From

this one can estimate the true statistical error for a specific observable accounting for

autocorrelations.

The data set of size N can be divided into equally sized blocks of maximum size N/2.

The block size is increased until the error is maximised such that the correlation between

adjacent blocks is eliminated so that one is not underestimating the true statistical error.

Blocking is used to estimate errors when there are autocorrelations present.

In our simulations this is done in the following way. A data set comprising N

measurements of an observable is divided into blocks of size N/n, where n is an integer,

thus giving the factors of N . The value of the observable is calculated for different values

of n counting upwards from 2, until the error is maximised. At this point the error

originating from the autocorrelations is most accurately reflected in the statistical error.

In other words, the block size is systematically increased until adjacent blocks of data

become uncorrelated. For example, if each individual measurement of the observable

was completely uncorrelated, a block size of one would most accurately reflect the true

statistical error.
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4 The Phase Diagram of EDT

4.1 Overview

This section explores the parameter space of couplings in EDT with a non-trivial mea-

sure term in the gravitational path integral. The parameter κ4 is adjusted to take the

infinite volume limit [101], leaving a two-dimensional parameter space that can be ex-

plored by varying κ2 and β. Results presented in this section are based on calculations

I have performed.

The parameter space of EDT is enlarged via the inclusion of the new parameter

β that is associated with the non-trivial measure term, as given in the discretised

Einstein-Hilbert action of Eq. (37). The result is a phase diagram with three phases;

the branched polymer phase, the collapsed phase, and the crinkled phase. The branched

polymer phase and the collapsed phase are separated by a first-order phase transition

line AB, as shown in Fig. 17. The CD transition, separating the collapsed phase from

the crinkled phase, is a softer transition that is consistent with an analytic crossover or

higher-order transition.

β

Branched
Polymer
Phase

Collapsed
Phase

κ
2

B

A

D

C

Crinkled
 Phase

Figure 17: A schematic of the phase diagram of EDT with a non-trivial measure term.

The collapsed phase exists for sufficiently small values of κ2, or conversely for suf-

ficiently large values of Newton’s constant GN . The collapsed phase is characterised
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by a very large, and possibly infinite, fractal Hausdorff dimension DH . In this phase

the spectral dimension Ds also becomes very large, and possibly infinite in the infinite

volume limit. The collapsed phase is so-called because simplices tend to collapse on

top of one another resulting in a large number of simplices sharing a small number of

vertices. In this scenario the vertices are said to have a large coordination number. The

volume distribution, as measured by the number of simplices within a given geodesic

distance, within the collapsed phase is not well-described by Euclidean de Sitter space.

The geometric properties of the collapsed phase mean that it is generally regarded as

being unphysical in nature.
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Figure 18: The volume-volume correlator cN4(x) as a function of x for κ2 = 1.0 and

β = 0.0 using five different simplicial volumes. The volume-volume correlator for all volumes

is calculated with a Hausdorff dimension of DH = 4.0.

Figure 18 is a plot of the rescaled volume-volume correlator cN4(x) (previously de-

fined in Section 2.1) as a function of the rescaled time variable x for k2 = 1.0 and

β = 0.0, and for five different simplicial volumes. In Fig. 18 cN4(x) is calculated with

for a scaling dimension DH = 4. Note that in this work a simplicial volume quoted

as 4K, for example, is defined to mean a volume of 4000 4-simplices. As discussed

in Section 2.1 the quantity cN4(x) should be volume independent for a constant value

of the Hausdorff dimension. However, as can be seen in Fig. 18 the peak of cN4(x)

grows with increasing simplicial volume, thus indicating that the Hausdorff dimension
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is inconsistent with the integer 4, as expected within the collapsed phase.

 0

 1

 2

 3

 4

 5

 0  50  100  150  200

D
S

σ

0.5K
1K
2K
4K
8K

Figure 19: The spectral dimension as a function of diffusion time for κ2 = 1.0 and β = 0.0

using four different simplicial volumes 8K, 4K, 2K, and 1K.

The spectral dimension at the same point in parameter space, namely k2 = 1.0 and

β = 0.0, is shown in Fig. 19. One can see that the spectral dimension increases beyond

DS = 4 as the simplicial volume is increased. This behaviour is consistent with the

point κ2 = 1.0 and β = 0.0 being in the collapsed phase. As explained in Section

2.1 the probability that a diffusion process returns to the origin after σ diffusion steps

approaches unity for σ � N
2/DS
4 . SinceDS is typically larger in the collapsed phase than

in the two other phases the number of diffusion steps before the condition σ � N
2/DS
4

is met is smaller, resulting in DS being driven to zero sooner in the collapsed phase.

The branched polymer phase exists for sufficiently large values of κ2. Within this

phase the geometry of triangulations undergoes numerous instances of “pinching” in

which the geometry collapses to a minimal neck and branches off into polymer-like

baby universes. This phase has a highly irregular geometry, exhibiting a fractal tree-

like structure even on macroscopic scales.

The Hausdorff dimension of the branched polymer phase is DH = 2, a result that is

confirmed by our calculations, as shown in Fig. 20. Figure 20 is a plot of the rescaled

volume-volume correlator cN4(x) as a function of x for κ2 = 3.0 and β = 0.2, for

four different simplicial volumes 8K, 4K, 2K, and 1K. Here cN4(x) is calculated with
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DH = 2, and statistical agreement can be seen over the entire range of x values. This

provides strong evidence that the point κ2 = 3.0 and β = 0.2 is within the branched

polymer phase because the global Hausdorff dimension is consistent with the theoretical

prediction of DH = 2.

The spectral dimension of the branched polymer phase is Ds = 4/3, a result that is

known analytically [120, 121] and is confirmed by our numerical calculations as shown

in Figs. 21a, 21b, 21c, and 21d. The spectral dimension is calculated for the point

κ2 = 3.0 and β = 0.2 for the 8K, 4K, 2K, and 1K ensembles, as depicted in Figs. 21a,

21b, 21c, and 21d. The large distance spectral dimension is calculated by taking an

average over the range σ = 100− 200, the results are presented in Table 3. The results

for the spectral dimension at κ2 = 3.0 and β = 0.2 are found to be consistent with

the theoretically known value of DS = 4/3 in the branched polymer phase for all four

simplicial volumes.

Neither the collapsed nor the branched polymer phase appears consistent with a

physical 4-dimensional semiclassical phase.
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Figure 20: The volume-volume correlator cN4(x) as a function of x for κ2 = 3.0 and β = 0.2

for 4 different simplicial volumes 8K, 4K, 2K, 1K. The volume-volume correlator is calculated

using a Hausdorff dimension of DH = 2.0.
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Volume (N4) DS(σ →∞) Standard deviations from 4/3

8000 1.330± 0.015 0.2

4000 1.337± 0.005 0.8

2000 1.306± 0.008 3.4

1000 1.288± 0.022 2.0

Table 3: A table of the simplicial volume N4, the macroscopic spectral dimension

DS(σ →∞), and the number of standard deviations from the theoretical prediction of

4/3.
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Figure 21: The spectral dimension DS as a function of diffusion time σ for the bare

parameters κ2 = 3.0, β = 0.2. The theoretical prediction of DS=4/3 is included in each plot

for comparison. DS is calculated as a function of σ for simplicial volumes (a) N4=8000, (b)

N4=4000, (c) N4=2000, and (d) N4=1000.
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It is well-established in the literature [97] that at β = 0 the solid line AB dividing

the branched polymer phase from the collapsed phase (see Fig. 17) is a first-order

critical point for combinatorial triangulations, and Ref. [117] provides evidence that

this is also true for degenerate triangulations. Our simulations support this picture,

finding a first-order phase transition at β = 0 and similar discontinuous behaviour in

the curvature susceptibility for β=0.2, -0.2, -0.4, and -0.6, though it is difficult to study

the transition for more negative values of β because of large finite size effects. Evidence

for the existence of a first-order transition is presented in Section 4.2.

The dashed line CD appears to be a much softer transition than the solid line AB.

Studies of the curvature susceptibility and the average Regge curvature at β = −1.0

show continuous-type behaviour with little or no finite-size scaling, which is indicative of

an analytic cross-over, or higher-order transition. The cross-over type transition divides

the collapsed phase and the crinkled phase. Within the collapsed phase clear finite-size

scaling is observed, suggesting DH → ∞ as one approaches the infinite volume limit.

Within the crinkled phase finite-size effects are much greater, which originally led us

to think that this phase possessed a 4-dimensional extended geometry [109, 111, 110].

However, by simulating with larger volumes the finite-size scaling appears to be similar

to the collapsed phase.

The crinkled region appears to be just a region within the collapsed phase with

very large finite-size effects and long autocorrelation lengths. Thus for small lattice

volumes the geometry can appear 4-dimensional and even de Sitter like. However, with

increasing lattice volume the geometry seems to depart from a 4-dimensional semi-

classical de Sitter-like phase, displaying the usual characteristics of the collapsed phase.

Section 5 discusses various aspects of the crinkled phase in detail.

4.2 Phase Transition Line A-B

In this section I use the order parameter 〈R〉 and its derivative χR to locate the position

of the transition line A-B in EDT. Once the (κ2, β) coordinates of the transition have

been determined to the required precision, it is possible to determine the order of the

phase transition. To do this we plot the number of vertices as a function of Monte

Carlo time, histogramming the data for at least two simplicial volumes. A first-order

phase transition in the infinite volume limit is discontinuous in the first derivative of the

order parameter. Plots of the number of vertices as a function of Monte Carlo time at

a first-order transition typically exhibit a number of discontinuous transitions between

two meta-stable phases (see e.g. Fig. 24). Histogramming this data should give a
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signature double Gaussian distribution if a first order transition is present. Crucially, a

double Gaussian distribution for just one simplicial volume is not sufficient to confirm

a first-order transition; one must observe such a distribution over at least two volumes

and see the peak separation grow with volume. This is because only in the infinite

volume limit does one actually observe a discontinuous transition, and so one must

study finite volumes and extrapolate the approximate finite volume behaviour to the

infinite volume limit.

4.2.1 β = 0.2

In this section I present evidence that a first-order transition exists when β = 0.2. This

is the first time anyone has confirmed that the transition is first-order for β 6= 0 using

4-dimensional degenerate EDT with a non-trivial measure.

We study the order parameter < R > and its derivative χR as defined in Eqs. (54)

and (55), respectively. Figure 22 shows the expectation value of the Regge curvature

as a function of κ2. One observes that the average Regge curvature for κ2 ≤ 0.5 is

a slowly increasing function of κ2 which then undergoes a rapid, almost discontinuous

transition, into another plateau region when κ2 ≥ 2.0. Since the curvature susceptibility

χR is defined as the first-order derivative of the Regge curvature with respect to κ2 one

observes a sharp spike at the discontinuous value of κ2, as shown in Fig. 23.
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Figure 22: The average Regge curvature 〈R〉 as a function of κ2 for 4K and 8K simplicial

volumes at β = 0.2.
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Figure 23: The curvature susceptibility χR as a function of κ2 for 4K and 8K simplicial

volumes at β = 0.2.

The critical value of κ2 at which χR has a peak is located and the Monte Carlo

time history of N0 and the corresponding histogram are produced. A first-order phase

transition has a signature double Gaussian peak in the histogram of N0, with a peak

separation that increases with volume.
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Figure 24: The Monte Carlo time history of N0/N4 for two different simplicial volumes

at β = 0.2. The pseudo-critical κ2 value for the 4K ensemble (top figure) at β = 0.2 is

κ2 = 1.481, and for the 8K ensemble (bottom figure) it is κ2 = 1.513.
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Figure 25: The histogram of N0/N4 including double Gaussian fits for 4K and 8K simplicial

volumes at β = 0.2. The pseudo-critical κ2 value for the 4K ensemble (shown in black) at

β = 0.2 is κ2 = 1.481, and for the 8K ensemble (blue) it is κ2 = 1.513.

Figure 24 shows evidence for discontinuous-type fluctuations between the two metastable

phases for the 4K and 8K ensembles that are characteristic of a discontinuous phase



4.2 Phase Transition Line A-B 61

transition. The transition between the two metastable values of N0/N4, however, only

becomes truely discontinuous in the infinite volume limit, and so for finite volumes as

shown in Figure 24 the transitions will only approximate an actual discontinuity. Fig-

ure 25 shows the histogram of N0 divided by the volume N4, in which a clear double

Gaussian peak is observed for both volumes. The distance between the peaks grows

approximately linearly with volume for a first-order transition and so the peak separa-

tion for N0/N4 should be a constant for a first-order transition. Figure 25 supports this

picture. Comparing the peak seperation of the histogram of N0/N4 via the fit functions

for the 8K and 4K ensembles we find a tension of less than one standard deviation with

a constant. From this we are led to conclude that a first-order transition exists when

β = 0.2 on line A-B.

The critical κ2 values at which the first-order transition occurs are volume depen-

dent, as expected from a first-order transition12, with κc2(4K) = 1.481 and κc2(8K) =

1.583.

4.2.2 β = 0

It is well established in the literature (see Ref. [97] for combinatorial triangulations and

Ref. [124] for degenerate triangulations) that the critical line A-B is a first-order phase

transition when β = 0. The results presented in this section confirm this picture.

12As an example consider a temperature-driven phase transition in a d−dimensional Ising model with volume V = Ld

[122]. From this one finds a power-law behaviour for the transition point pcrit, which is given by |pcrit (∞)−pcrit (V ) | ∝
V −1/ν̃ , with ν̃ = 1 for a first-order transition [105, 123].
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Figure 26: The average Regge curvature χR as a function of κ2 for 4K and 8K simplicial

volumes at β = 0.0.
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Figure 27: The curvature susceptibility χR as a function of κ2 for 4K and 8K simplicial

volumes at β = 0.0.

Figure 26 shows that the expectation value of the Regge curvature becomes discon-

tinuous at some critical κ2 value, as is the case for β = 0.2. The maximum value of the
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curvature susceptibility is used to calculate the Monte Carlo time history of N0 and the

corresponding histogram. Again, the histograms of N0/N4 (see Fig. 29) exhibit a peak

separation that is approximately constant with volume, thus indicating the existence

of a first-order transition along the β = 0.0 line. Comparing the peak seperation of the

histogram of N0/N4 via the fit functions for the 8K and 4K ensembles we find a tension

of less than one standard deviation with a constant. The critical κ2 values at which the

first-order transition occurs are κc2(4K) = 1.672 and κc2(8K) = 1.703.

Figure 28: The Monte Carlo time history of N0/N4 for 4K and 8K simplicial volumes

at β = 0.0. The pseudo-critical κ2 value for the 4K ensemble (top figure) at β = 0.0 is

κ2 = 1.672, and for the 8K ensemble (bottom figure) it is κ2 = 1.703.
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Figure 29: The histogram of N0/N4 including double Gaussian fits for the 4K and 8K

simplicial volumes at β = 0.0.

4.2.3 β = −0.2

Although the critical κ2 values at which a putative first-order transition for β = −0.2

have not been determined with a high enough precision to determine the order of the

transition via a study of N0 as a function of Monte Carlo time, Figs. 32 and 33 show

strong evidence of discontinuous behaviour and heavily constrain the possible location

of the critical κ2 values. Based on Figs. 32 and 33 the critical κ2 values for the 4K

ensemble appear to lie in the range κc2 = 1.863−1.867, and in the range κc2 = 1.79−2.0

for the 8K ensemble.
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Figure 30: The curvature susceptibility χR as a function of κ2 for 4K and 8K simplicial

volumes at β = −0.2.
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Figure 31: The curvature susceptibility χR as a function of κ2 for 4K and 8K simplicial

volumes at β = −0.2.
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4.2.4 β = −0.4

For large negative values of β in the vicinity of the discontinuous transition the number

of accepted moves becomes very low, and therefore it takes very large periods of Monte

Carlo time before thermalization is achieved. This makes it difficult to accurately locate

the κc2 values. However, we can bound their location to κc2(4K) = 2.070 − 2.095 and

κc2(8K) = 2.01− 2.3 based on Figs. 32 and 33.
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Figure 32: The average Regge curvature as a function of κ2 for 4K and 8K simplicial

volumes at β = −0.4.
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Figure 33: The curvature susceptibility χR as a function of κ2 for 4K and 8K simplicial

volumes at β = −0.4.

4.2.5 β = −0.6

It is difficult to establish the existence of a discontinuity at β = −0.6 by studying

the order parameter 〈R〉, however the derivative of the order parameter, namely χR

provides evidence for such a discontinuity in the region κ2 = 2.4− 2.5, as shown in Fig.

35.13

13Note that the order parameter and its derivative are calculated only for the 4K lattice because at present the 8K

lattice for β = −0.6 has not equilibrated, as per the definition in Section 3.7. The inclusion of only one lattice volume

makes it impossible to establish the order of the transition, however the discontinuous behaviour is at least suggestive.
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Figure 34: The average Regge curvature as a function of κ2 for the 4K simplicial volume

at β = −0.6.

For β = −0.6 the number of accepted moves is significantly lower than for larger

values of β, making it difficult to easily locate the position of the critical κ2 value at

which the putative discontinuity is observed. The 8K lattice is omitted for β = −0.6

because it has not yet thermalized.
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Figure 35: The curvature susceptibility χR as a function of κ2 for the 4K simplicial volume

at β = −0.6.

4.2.6 The Location of the Transition Line

In this section I combine all the constraints on the location of the κc2 values at which

the order parameter exhibits discontinuous behaviour. This allows us to form a map of

the location of the first-order transition in parameter space.



4.2 Phase Transition Line A-B 70

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2  2.5

χ R
(N

2,
N

4)

κ2

β=0.2
β=0.0

β=−0.2
β=−0.4
β=−0.6

Figure 36: The curvature susceptibility χR as a function of κ2 for the 4K simplicial volume

at β=0.2, 0.0, -0.2, -0.4, and -0.6.

As can be seen in Fig. 36 as one decreases β the κc2 values, for which the curvature

susceptibility behaves discontinuously, map out a first-order transition line that shifts

slightly to the right. This behaviour is schematically represented in Fig. 17. Figure

37 combines the actual measurements of κc2 and their associated errors to constrain the

location of the first-order transition within the parameter space of couplings. These

measurements, however, do not include an error associated with finite-size effects.
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Figure 37: Constraints on the location of the first-order transition in the parameter space

of EDT with a non-trivial measure term based on the critical κ2 values for the 4K simplicial

volume.

Mean field approaches, finite-size scaling, and renormalization group arguments

based on the method of node decimation [125, 126] for 3-dimensional Euclidean dynam-

ical triangulations with a nontrivial measure all support the claim that the transition

line flattens out for large κ2 values and for sufficiently negative β, and that the tran-

sition remains first-order for all negative values of β. The same mean field arguments

suggest that the AB line remains first-order and turns over in four dimensions as well.

Our results show a slight deviation from linearity that appears to become more pro-

nounced with increasing simplicial volume, however, further work is needed to decide

this issue.

4.3 Cross-over Transition

The behaviour of χR as a function of κ2 for β = −1.0 is consistent with an analytic

cross-over, or higher-order transition, as the peak in the curvature susceptibility does

not appear to change with volume within errors, as shown in Fig. 39. Figure 38

shows the average Regge curvature for two different lattice volumes as a function of

κ2 for β = −1.0. It is possible that the curvature susceptibility for β = −1.0 has a

discontinuous transition for some large κ2 value, however a low acceptance rate coupled
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with large finite-size effects in this region makes its existence difficult to establish.

We study the first-order transition for three different simplicial volumes at β = 0 to

highlight that a first-order transition can be difficult to detect if the simplicial volume

is not large enough. We choose to perform this study for β = 0 because this region has

significantly smaller finite-size effects and a higher acceptance rate than at β = −1.0.

Figure 40 shows that the discontinuous first-order transition observed in the curva-

ture susceptibility at β = 0.0 is difficult to detect when the simplicial volume is too

small. The curvature susceptibility is calculated along the β = 0 line for three different

simplicial volumes, 0.2K, 0.5K, and 4K. The curvature susceptibility for N4 = 0.2K,

and N4 = 0.5K exhibits similar behaviour to a crossover, or higher-order transition,

and the discontinuous behaviour only becomes evident for the 4K ensemble. Finite-size

effects are smaller along the β = 0.0 line than they are for β = −1.0, and so the first-

order transition will only become evident at β = −1.0 for significantly larger simplicial

volumes. It is possible that a first-order transition exists somewhere along the β = −1.0

line but its presence is difficult to detect for the 4K and 8K volumes shown in Fig. 39

due to large finite-size effects. This evidence is suggestive, but further studies would be

needed to verify the existence of a first-order transition at β = −1.0.
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Figure 38: The average Regge curvature as a function of κ2 for the 4K and 8K simplicial

volumes at β = −1.0.
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Figure 39: The curvature susceptibility χR as a function of κ2 for the 4K and 8K simplicial

volumes at β = −1.0.
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Figure 40: The curvature susceptibility χR as a function of κ2 for 0.2K, 0.5K, and 4K

simplicial volumes at β = 0.0. This plot shows that the order of the transition only becomes

evident for sufficiently large lattice volumes.
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5 The Crinkled Phase

5.1 Overview

Our aim in reviving the Euclidean version of dynamical triangulations with a non-trivial

measure term is to investigate the possibility that there was a phase similar to the 4-

dimensional semi-classical de Sitter phase found in Causal dynamical triangulations

[102, 103]. The crinkled region of EDT is a candidate for a phase with extended 4-

dimensional geometry.

In this section I present results for the volume-volume correlator and the running

spectral dimension within the crinkled region of the EDT phase diagram. The results

presented ultimately support the conclusion that the crinkled region behaves similar to

the collapsed phase but with large finite-size effects and long autocorrelation lengths.

5.2 The volume-volume Correlator

The reader is briefly reminded of the definition of the volume-volume correlator given in

Section 2.1, before results are presented and discussed for the volume-volume correlator

within the crinkled phase.

We study the finite volume scaling behaviour of the volume-volume correlator similar

to the one introduced in Ref. [77] to study the scaling of CDT,

CN4 (δ) =
t∑

τ=1

〈
N slice

4 (τ)N slice
4 (τ + δ)

〉
N2

4

. (58)

N slice
4 (τ) is the total number of 4-simplices in a spherical shell a geodesic distance τ from

a randomly chosen simplex. N4 is the total number of 4-simplices and the normalization

of the correlator is chosen such that
∑t−1
δ=0 CN4 (δ) = 1. If we rescale δ and CN4 (δ),

defining x = δ/N
1/DH
4 , then the universal distribution cN4(x) should be independent

of the lattice volume, where cN4 (x) = N
1/DH
4 CN4

(
δ/N

1/DH
4

)
. One can determine the

fractal Hausdorff dimension, DH , as the value that leaves cN4 (x) invariant under a

change in four-volume N4.

Figure 41 is a plot of the rescaled volume-volume correlator cN4(x) as a function of x

for k2 = 2.1 and β = −1.0, for three different simplicial volumes 4K, 8K, and 12K. Here

cN4(x) is calculated with DH = 4.0. The quantity cN4(x) should be volume independent

for a constant value of the Hausdorff dimension. However, as can be seen in Fig. 41 the

peak height of cN4(x) grows with volume, thus indicating that the Hausdorff dimension

is inconsistent with DH = 4, as is symptomatic of the collapsed phase. The crinkled
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phase appears then to be similar to the collapsed phase but with larger finite-size effects

and a lower acceptance rate.
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Figure 41: The volume-volume correlator as a function of the rescaled variable x for the

volumes 4K, 8K, and 12K within the crinkled phase. cNx(x) is calculated with a Hausdorff

dimension DH = 4.0. This plot suggests that the Hausdorff dimension in the crinkled phase

grows with volume, or that DH 6= 4, which is consistent with the collapsed phase.

5.3 The Spectral Dimension

Studies using causal dynamical triangulations [77] and independent studies using func-

tional renormalization group methods [127] report that the spectral dimension exhibits

a dimensional reduction as one probes smaller distance scales. We find that Euclidean

dynamical triangulations with a non-trivial measure term in the path integral also ex-

hibits a smooth dynamical dimensional reduction as a function of decreasing distance.

We report that the spectral dimension DS is greater than 4, and is possibly infinite

in the infinite-volume limit, on large distance scales and runs to DS ∼ 4/3 at short

distances within the crinkled phase. For negligible finite-size effects and lattice discreti-

sation errors it is thought that the spectral dimension might have a universal functional

form, which was originally suggested in Ref. [8] to be Ds = a − b
c+σ

. The spectral di-

mension is determined within the crinkled phase for the 4K ensemble (Fig. 42), the

8K ensemble (Fig. 43), and the 12K ensemble (Fig. 44). The results imply that the
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crinkled phase is unphysical in nature and similar to the collapsed phase, as evidenced

by DS > 4 in the large distance limit for all three volumes.

For the 4K ensemble we analysed ∼ 30, 000 (with the number of attempted moves

set at h = 108) configurations using the average return probability given in Eq. (33).

The statistical errors are determined from a single elimination jackknife procedure, as

detailed in Section 3.9. The fit is to the functional form Ds = a − b
c+σ

, where the

constants a, b, and c are determined by the fit. The results of our preferred fit are

DS (∞) = 4.44± 0.10, and DS (0) = 1.471± 0.014.

For the 8K ensemble we analysed ∼ 70, 000 configurations. The fit to the 8K data

gives DS (∞) = 4.77± 0.10, and DS (0) = 1.464± 0.010.
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Figure 42: The spectral dimension as a function of diffusion time σ calculated for parameters

κ2 = 2.1 and β = −1.0 using an ensemble of 4,000 4-simplices.
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Figure 43: The spectral dimension as a function of diffusion time σ calculated for parameters

κ2 = 2.1 and β = −1.0 using an ensemble of 8,000 4-simplices.
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Figure 44: The spectral dimension as a function of diffusion time σ calculated for parameters

κ2 = 2.1 and β = −1.0 using an ensemble of 12,000 4-simplices.

For the 12K ensemble we analysed ∼ 40, 000 configurations. The fit to the 12K data

gives DS (∞) = 4.87± 0.15, and DS (0) = 1.464± 0.024. The errors quoted for DS(σ)
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for the 4K, 8K, and 12K simplicial volumes include estimations of the statistical error

and not the systematic error.14 The fit function assumes that the spectral dimension

approaches a constant in the σ →∞ limit, and that DS(σ) is monotonic.15

Our conclusion in Ref. [109] that the crinkled phase of EDT is a physical semiclassi-

cal phase with 4-dimensional extended geometry, as based on our calculation of DS(σ)

(see Fig. 47), most likely need to be revised due to improved estimates of finite-size

effects and discretisation errors coming as a result of simulating with larger lattice vol-

umes and over larger diffusion times. However, simulating with larger lattice volumes

would give a clearer picture whether or not this is the case. Combining the 4K, 8K,

and 12K spectral dimension curves into one plot (see Fig. 45) allows us to see that

the spectral dimension increases beyond DS = 4 and continues to grow with increasing

lattice volume. The crinkled phase is therefore more akin to the unphysical collapsed

phase than to a physical 4-dimensional phase.
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Figure 45: The spectral dimension as a function of diffusion time σ calculated for parameters

κ2 = 2.1 and β = −1.0 using 4K, 8K, and 12K 4-simplices.

In a lattice formulation of an asymptotically safe field theory, the fixed point would

appear as a second-order critical point, the approach to which would define a continuum

14The range of σ values over which the fit function is applied is taken over the entire range of σ values and is not

varied.
15Ref. [127] argues using renormalization group methods that there will be a long plateau at ∼4/3 in DS for small

values of σ before DS increases to 2 as σ → 0. This finding questions the validity of the assumption that the running

spectral dimension is monotonic for all σ.
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limit. The divergent correlation length characteristic of a second-order phase transition

would allow one to take the lattice spacing to zero while keeping observable quantities

fixed in physical units. However, this is only possible within an extended semi-classical

phase, which as this work shows probably does not exist for EDT with a non-trivial

measure term.
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Figure 46: The spectral dimension as a function of diffusion time σ for five different values

of κ2 at β = −1.0. This data is calculated using 8,000 4-simplices.

Figure 46 shows the spectral dimension as a function of diffusion time for κ2 =1.7,

1.9, 2.1, 2.3, 2.5, 2.7, and 3.0 with a fixed β value of −1.0. As one increases κ2 along

the β = −1.0 line the spectral dimension curves flatten out. If this were an extended

phase one could conclude that increasing κ2 means decreasing the lattice spacing a,

because for larger κ2 values it takes a greater number of diffusion steps before the same

dimension is obtained. It is possible to rescale the diffusion time by a factor a until all

the DS (σ) curves overlap.

We fit the DS (σ) curves for all seven κ2 values shown in Fig. 46 to the functional

form a− b
c+σ

first suggested in [8], where a, b, and c are determined by the fit. The small

scale spectral dimension determined from the fit-function for each κ2 value is shown

in Table. 4. The errors associated with the DS (σ → 0) measurements include the

statistical error, with no estimation of the systematic error.16 Table 4 suggests that the

small scale spectral dimension tends to decrease as κ2 is increased; possibly approaching

16Because we think the large scale spectral dimension goes to infinity in the collapsed phase it is difficult to estimate

a systematic error.
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κ2 DS(σ → 0)

1.7 1.701± 0.026

1.9 1.327± 0.028

2.1 1.494± 0.010

2.3 1.510± 0.026

2.5 1.421± 0.012

2.7 1.347± 0.008

3.0 1.323± 0.009

Table 4: A table of the short distance spectral dimension DS(σ → 0) for 7 different

κ2 values. DS(σ → 0) is determined from a fit-function of the form a − b
c+σ

as first

proposed in Ref. [8].

a minimum of DS = 4/3 as κ2 is taken to infinity. Figure 46 suggests that the spectral

dimension curves also become weakly dependent on the diffusion time in the large κ2

limit, approaching a constant that is consistent with DS ≈ 4/3. It is interesting to

note that this is precisely the value of the spectral dimension of the branched polymer

phase in EDT, and so it is possible that the value of the spectral dimension in the

branched polymer phase acts as a lower bound for DS within the crinkled phase. We

have performed preliminary calculations using CDT that indicate that the spectral

dimension in the branched polymer phase is consistent with DS = 3/217, and so it is

possible that this value could act as a lower bound on DS in the extended phase of

CDT.

17The value of the spectral dimension in the branched polymer phase of CDT does not necessarily have to be 4/3

because it can consist of branched polymers of a different class.
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6 Asymptotic Safety and Holography

6.1 Short Distance Spectral Dimension in CDT

In four spacetime dimensions gravity is perturbatively nonrenormalizable. However, in

spacetime dimensions of two or less gravity is power-counting renormalizable. If the

dimensionality of spacetime were to decrease as one approaches the Planck scale one

could in principle have a self-renormalizing quantum field theory of gravity.

Over the last decade a number of independent field-theoretic approaches to quan-

tum gravity have reported a scale-dependent dimensionality. Exact renormalization

group methods [79] and Hořava-Lifshitz gravity [80, 81] have both reported evidence

of dynamical dimensional reduction. The two leading approaches to quantum gravity

also report evidence for a dimensional reduction on short distance scales. The method

of loop quantum gravity has reported a short distance scaling of the area spectrum,

resulting in an effective dimension that is four-dimensional on macroscopic scales and

two-dimensional on microscopic scales [82]. Atick and Witten showed in Ref. [83]

that high-temperature string theory also behaves as if spacetime were two-dimensional.

Furthermore, the effective graviton propagator appears to behave two-dimensionally as

one approaches the Planck scale [84, 85, 79, 1]. Individually none of these indepen-

dent approaches constitute substantial evidence in support of dynamical dimensional

reduction; collectively however, they form a compelling argument. See Ref. [128] for

an overview of theories that predict dimensional reduction on short distance scales.

The CDT approach to quantum gravity has produced some of the strongest evidence

for dynamical dimensional reduction on short distance scales. The evidence in support

of a scale-dependent spectral dimension from CDT is reviewed in this subsection.

In Spectral Dimension of the Universe Ambjorn et al. [8] present a result for the

running spectral dimension using a fit to the functional form,

DS (σ) = a− b

c+ σ
. (59)

Where σ is the diffusion time, an effective measure of the distance scale probed by the

diffusion process. The numerical coefficients of this fit were determined to be a = 4.02,

b = 119, and c = 54. The physical significance of the particular fit function chosen by

Ambjorn et al. (Eq. (59)) is not known from first principles, it is simply the functional

form that best describes the dependence of the spectral dimension over the entire range

of their data.18 The work of Refs. [129, 130, 131, 132] have attempted to derive this

18The alternative fit functions considered in Ref. [8] were a− be−cσ and a− b
σc .
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function from first principles using analytical methods.

The large scale spectral dimension for CDT is quoted as

DS (σ →∞) = 4.02± 0.10, (60)

whilst the short distance spectral dimension is quoted as

DS (σ → 0) = 1.80± 0.25. (61)

The authors of [8] correctly claim that the value for DS (σ → 0) is therefore consistent

with the integer value two. However, large discretisation errors are typically associated

with the small scale spectral dimension because for a small number of diffusion steps

the behaviour of DS (σ) can be significantly different when considering an even or odd

number of diffusion steps. This effect can be understood by considering a simplified

diffusion process on a one-dimensional piecewise straight line; in this scenario it is

impossible to begin and end at the origin after an odd number of diffusion steps, whereas

this is not true for an even number of diffusion steps. A similar effect is present in 4-

dimensional triangulations, although in this case the discrepancy between odd and even

integer steps becomes negligible for sufficiently large σ values [8]. The relatively large

error of Eq. (61) leaves some ambiguity in the conclusions that can be drawn from this

result.

6.2 Argument Against Asymptotic Safety

There exists an argument against the possibility of asymptotic safety due to Banks

[49, 50]. The argument compares the density of states at high energies expected for a

theory of gravity to that of a conformal field theory. Since a renormalizable quantum

field theory is a perturbation of a conformal field theory by relevant operators, a renor-

malizable field theory must have the same high energy asymptotic density of states as a

conformal field theory. It follows from dimensional analysis, and the extensive scaling of

the quantities considered, and the fact that a finite temperature conformal field theory

has no dimensionful scales other than the temperature, that the entropy S and energy

E scale as

S ∼ (RT )d−1 , E ∼ Rd−1T d (62)

where R is the radius of the spatial volume under consideration and T is the tempera-

ture. It follows that the entropy of a renormalizable theory must scale as
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S ∼ E
d−1
d . (63)

For gravity, however, one expects that the high energy spectrum will be dominated

by black holes. The 4-dimensional Schwarzschild solution in asymptotically flat space-

time has a black hole with event horizon of radius rS given by,

rS =
2GNM

c2
. (64)

Extending this concept to arbitrary dimension d and defining natural units of h̄ =

c = 1, we find that

rd−3 ∼ GNM ∼ E, (65)

where M is the mass of the black hole 19. The Bekenstein-Hawking entropy in Planck

units for a spherical (non-rotating) black hole is given by

SBH = kB
πr2

S

l2P
, (66)

and again generalising to arbitrary dimension d one obtains

S ∼ rd−2. (67)

From equations (66) and (67) one obtains the following scaling of the entropy S as

a function of the energy E,

S ∼ E
d−2
d−3 . (68)

This scaling disagrees with that of Eq. (63) when d = 4. Assuming the validity of the

assumptions in this argument, one is led to conclude that gravity cannot be formulated

as a renormalizable quantum field theory. This is a potentially serious obstacle for the

asymptotic safety programme.

Perccaci and Vacca in Ref. [73] have called into question the validity of the argument

set forth by Banks [49] (see also Shomer [50]) against the possibility of the asymptotic

safety scenario. They contend that because the argument of Banks and Shomer is

dependent on semiclassical assumptions, particularly the assumptions regarding the

semiclassical treatment of black holes, that a full quantum mechanical treatment in

19An interesting link between the functional renormalization group procedure for gravity in 4-dimensions and the

5-dimensional holographic renormalization group has been suggested in Ref. [133]
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a regime where semiclassical arguments are not valid may lead to either significant

corrections or to the complete invalidation of the argument.

Falls and Litim in Ref. [72] also critique the argument set forth by Banks and Shomer

[49, 50]. They argue that the scaling relations of Eqs. (63) and (68) are incorrect for

the class of black hole considered, due to the fact that R depends on the energy E of

the black hole, whereas to obtain Eqs. (63) and (68) R must be treated as a constant.

This leads to the entropy and energy density relation

S

Rd−1
∼
(

E

Rd−1

)ν
. (69)

For a conformal field theory one then obtains the scaling behaviour

νCFT =
d− 1

d
. (70)

Which is in disagreement with the scaling behaviour S ∼ E
d−1
d reported by Banks and

Shomer [49, 50].20

We wish to highlight the fact that Eqs. (63) and (68) agree if, and only if, the

spacetime dimension d is equal to 3/2. It is interesting to note that the short distance

spectral dimension determined in Ref. [8] to be DS (σ → 0) = 1.80 ± 0.25 is also

consistent with 3/2, with the result being only 1.2 standard deviations from 3/2.21 We

have performed an independent preliminary calculation using CDT, which indicates that

the short-distance spectral dimension of CDT is more consistent with DS(0) = 3/2 than

with DS(0) = 2. If this result is confirmed it may resolve a long-standing argument

against the possibility of the asymptotic safety scenario.

6.3 Short Distance Spectral Dimension in EDT

In our earlier work (Ref. [109]) we presented a result for the running spectral dimension

of EDT in the crinkled phase of the EDT model we have been considering (see Fig. 47).

20For a semiclassical black hole one also obtains the scaling behaviour νBH = 1
2

for any dimension. This shows that

semiclassical blackholes do not behave as conformal field theories, which can be seen from the fact that the Schwarzschild

solution depends on the dimensionful quantity GN . However, νBH = νCFT precisely when GN becomes dimensionless,

i.e. at d = 2 [72].
21This counter-argument relies on the plausible assumption that the relevant dimension in the holographic scaling

argument is also the spectral dimension, which was later shown to be valid in Ref. [134].
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Figure 47: The spectral dimension as a function of diffusion time σ for κ2 = 2.1 and

β = −1.0 using 4,000 4-simplices. The plot includes a fit to Eq. (71). The width of the band

shows the statistical error in the fit.

We obtained this result from an ensemble of degenerate triangulations with a volume

of 4000 four-simplices. The simulation was performed for the bare parameters κ2 = 2.1

and β = −1.0. We analysed ∼ 1000 configurations using the average return probability

of Eq. (33). The errors are determined from a single elimination jackknife procedure,

as described in Subsection 3.9. Fluctuations were reduced by histogramming the data

into bin sizes of two from σ = 2− 80 and in bin sizes of four from σ = 80− 288. The

fit is to the same functional form suggested in Ref. [8], namely

DS (σ) = a− b

c+ σ
, (71)

with a, b, and c determined by the fit. The fit uses the full covariance matrix in the

estimate of χ2 with σ ranging from 10 to 146 in increments of 4, giving a χ2/dof = 35/32

and a confidence level (corrected for finite sample size) of CL=0.37. Variations of the

fit function were used to estimate a systematic error on the asymptotic value of DS,

based on the assumptions that DS (σ) is a monotonic function.22

The results of our preferred fit in the earlier publication [109] are DS (∞) = 4.04±
0.26, and DS (0) = 1.457±0.064, where the errors include both the statistical error and

22Reuter and Saueressig in Ref. [127] use renormalization group methods to show that the spectral dimension should

exhibit a long plateau at ∼ 4/3 for small values of the diffusion time σ, and that as σ → 0 the spectral dimension will

increase again to DS = 2, therefore predicting that the behaviour of the spectral dimension as a function of diffusion

time is not monotonic, although this prediction may not be correct due to the truncation that is used.
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a systematic error associated with varying the fit function and the fit range added in

quadrature.23 Calculations of the spectral dimension with combinatorial triangulations

gave similar results, but required significantly larger lattice volumes.

New results for the spectral dimension at the same point in parameter space are

presented in Section 5.3 for the 4K, 8K, and 12K ensembles. Extending our original

calculation of the spectral dimension to include larger lattice volumes and simulating

over longer periods of Monte Carlo time we observe that this point in parameter space

has a macroscopic spectral dimension that is inconsistent with the integer 4, as discussed

in Section 5.3. Furthermore, the Hausdorff dimension at this point is observed to

increase beyond DH = 4 with increasing simplicial volume, as shown in Fig. 41. This

suggests that the crinkled phase is unphysical in nature and exhibits similar behaviour

to the collapsed phase.

Since the version of EDT considered here does not appear to have a phase with a

good semiclassical limit, it no longer makes sense to interpret the spectral dimension

result as being physical. Section 5.3 presents results for κ2 = 2.1 and β = −1.0 that

give a short distance spectral dimension of DS (σ → 0) ≈ 3/2 for the 4K, 8K, and 12K

simplicial volumes, however DS (σ → 0) can be made as small as 4/3 in our EDT model

by taking κ2 large, as discussed in Section 5.3. Our argument that DS (σ → 0) = 3/2

would resolve the tension between asymptotic safety and the holographic principle is

dependent on the existence of a physical phase24, and not on our particular implemen-

tation of EDT, and so it is interesting to ask what the result for DS (σ → 0) is in the

CDT model; an approach that is known to have a physical phase.

If a suitable modification of EDT could be found that would lead to a semiclassical

phase then an accurate determination of the short distance spectral dimension in this

phase may have something concrete to say about the possibility of realising the asymp-

totic safety scenario. Furthermore, a study using CDT for finer lattices would resolve

the debate over whether the short distance spectral dimension in the extended phase is

more consistent with DS = 3/2, or with the result claimed by the CDT group DS = 2

[8].

23The alternative fit functions considered are those suggested in Ref. [8], namely a− be−cσ and a− b
σc .

24And on the assumption that R is a constant, see Ref. [72].



87

7 Summary and Conclusions

7.1 Summary

The main focus of this thesis is the phase structure and geometric properties of the

parameter space of couplings defined via Euclidean dynamical triangulations with a

non-trivial measure term included in the gravitational path integral.

In Section 1 the reader is introduced to the field of quantum gravity, explaining what

quantum gravity is and some of the challenges that arise when trying to formulate such a

theory. A possible solution is presented in the form of nonperturbative quantum gravity

as defined via the asymptotic safety scenario. The simplicial approach to quantum

gravity is then naturally motivated because of the possibility of testing the asymptotic

safety scenario in a controlled and systematic way.

Simplicial quantum gravity is a viable candidate for a theory of quantum gravity.

The geometrical observables in simplicial quantum gravity are introduced in Chapter 2,

including the determination of the simplicial volume, the spectral dimension, and the

Hausdorff dimension. Chapter 2 then focuses on Euclidean dynamical triangulations

(EDT), which is also the central focus of this thesis. The approach of EDT is introduced

via the Euclidean path integral and simplicial Einstein-Regge action, where the inclu-

sion of a non-trivial measure term in our model is motivated. Some of the difficulties

encountered in EDT are discussed before introducing causal dynamical triangulations

(CDT) as a possible resolution. The essentials of CDT are introduced and the phase

diagram discussed. The chapter ends with a brief discussion about generalising the

approach of simplicial gravity to 4-dimensions.

Chapter 3 is devoted to the numerical implementation of EDT. The chapter discusses

the Metropolis algorithm and the set of local update moves that update the simplicial

geometry. The set of degenerate and combinatorial triangulations are introduced and

their relative merits are discussed. The average Regge curvature is introduced as an

order parameter for studying the phase diagram of EDT. An important aspect of any

type of numerical implementation is checks of the code and testing the data output.

Quantitative tests of our code against the literature are presented in Chapter 3, along

with a discussion and analysis of how we check that our ensembles are thermalized.

Sources of systematic and statistical errors are also discussed.

Chapter 4 focuses on the phase diagram of EDT, presenting evidence for the exis-

tence of a collapsed phase and branched polymer phase via a calculation of the volume-

volume correlator and the running spectral dimension. For the point κ2 = 1.0 and
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β = 0.0 in parameter space the Hausdorff dimension and spectral dimension are found

to increase beyond four as the simplicial volume increases, thus supporting the conclu-

sion that this point lies within the collapsed phase of EDT. The Hausdorff dimension

and the spectral dimension are also studied for κ2 = 3.0 and β = 0.2; the results are

consistent with the theoretically predicted values of the branched polymer phase. The

first-order transition separating the branched polymer phase from the collapsed phase

is studied by varying κ2 for five different values of β. The existence of a first-order

transition is demonstrated for β = 0.2 and β = 0.0, and evidence of a phase transi-

tion is also reported for 3 additional β values. This work is the first to demonstrate

the existence of a first-order transition for β 6= 0 using degenerate triangulations in 4-

dimensional EDT. In this work we also present the first ever constraints on the location

of the first-order transition line in 4-dimensional EDT with a nontrivial measure. For

sufficiently negative β the first-order transition line is seen to have a slight deviation

from linearity for the 4K ensemble, which appears to become more pronounced with the

larger 8K simplicial volume. Evidence for the existence of a crossover, or higher-order

transition, separating the collapsed phase from the crinkled phase is presented, with

the transition appearing to be a cross-over at β = −1.0.

Chapter 5 explores the crinkled phase of EDT. The volume-volume correlator and

spectral dimension are calculated for the point κ2 = 2.1 and β = −1.0, where DH

appears to grow with increasing volume, as does the spectral dimension. This indi-

cates that the crinkled phase is unlikely to be a semiclassical phase with extended

4-dimensional geometry, and is more akin to the collapsed phase but with larger finite-

size effects. However, it is difficult to determine whether or not this is the case because

of large finite-size effects.

Chapter 6 focuses on a possible resolution of the argument by Banks [49] against

the possibility of the asymptotic safety scenario. We argue that the tension between

asymptotic safety and the holographic principle may be resolved by the dynamical

dimensional reduction of the spectral dimension to 3/2 on small distance scales.

7.2 Conclusions

We have presented evidence that EDT with a non-trivial measure term has three phases;

the branched polymer phase, the collapsed phase, and the crinkled phase. The branched

polymer phase of EDT is found to have a spectral dimension that is consistent with

DS = 4/3 and a Hausdorff dimension that is consistent with DH = 2. The collapsed

phase of EDT is found to be consistent with DS → ∞ and DH → ∞ in the infinite
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volume limit. The crinkled phase also appears consistent with DS →∞ and DH →∞
in the infinite volume limit, only in this phase the finite-size effects are significantly

greater and it is therefore harder to demonstrate that this is the case.

This work constitutes the first detailed study of the phase diagram of EDT with

a non-trivial measure term using degenerate triangulations. From this study we have

demonstrated that EDT with a non-trivial measure does not contain a semiclassical

phase with 4-dimensional extended geometry similar to that of CDT.

We have demonstrated the existence of a first-order phase transition for EDT with

a non-trivial measure term using degenerate triangulations. Prior to this work no one

has observed a first-order transition in EDT for β 6= 0 using degenerate triangulations.

We have presented an original resolution to the argument put forward by Banks

and Shomer against the possibility of the asymptotic safety scenario, by noting that

the tension between holographic entropy scaling and asymptotic safety is resolved if the

spectral dimension undergoes a dynamical reduction to 3/2 on short distance scales. Al-

though our EDT results are no longer compatible with this, preliminary results suggest

that CDT may be.

This work demonstrates that EDT with a non-trivial measure does not contain a

semiclassical 4-dimensional extended phase. However, such a phase does exist in CDT.

It is therefore tempting to attribute the emergence of an extended phase to the causality

condition itself. However, we ask whether there exists an alternative way of removing

the unphysical degrees of freedom present in EDT? Or is there something unique about

the causality condition? Unphysical degrees of freedom can typically be removed by

introducing fictitious fields, called ghost fields [135, 136]. It is at least possible that

EDT contains unphysical degrees of freedom that can be removed via the introduction

of such ghost terms. The ghost terms may constrain the unphysical geometries presently

observed in EDT in such a way as to allow an extended semiclassical phase to emerge.

We emphasise that this is highly speculative, and that significant amounts of work are

necessary to decide this issue.
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8 Appendices

8.1 Code to Calculate χR and < R > and Errors

The order parameter < R > and its derivative χR are dependent on the variables N2 and

N4 (see Eqs. (54) and (55)). The first step in the numerical calculation of < R > and

χR is to extract N2 and N4 for each sweep (where a sweep is defined as 108 attempted

update moves), and send them to the respective arrays N2sus[m] and N4sus[m].

infile input1(file[nfiles-1]);

for(int j(initConfig[nfiles-1]); j<finalConfig; j++)

{if(j==initConfig[nfiles-1])

{input1.find("update");}

input1 >> N4sus[m];

input1 >> N2sus[m];

m++;}

The ratio of N2 to N4 (Ravg[sus]) and its square R2avg[sus] are then determined.

for(int j(initConfig[0]); j<nConfig + initConfig[0]; j++)

{int sus(j-initConfig[0]);

R2avg[sus] = (N2sus[sus]/N4sus[sus])*(N2sus[sus]/N4sus[sus]);

Ravg[sus] = N2sus[sus]/N4sus[sus];}

In order to accurately estimate the statistical errors associated with a measurement

we block the data to reduce statistical correlations and then apply a jackknife to the

data via an imported library.

for(int j(0); j<nConfig/block; j++)

{for(int lblock(0); lblock<block; lblock++)

{R2avg_b[j] += R2avg[block*j+lblock];

Ravg_b[j] += Ravg[block*j+lblock];}

R2avg_b[j] = R2avg_b[j]/block;

Ravg_b[j] = Ravg_b[j]/block;}

jackknife(R2avg_b);

jackknife(Ravg_b);

The average Regge curvature R[sus] and the curvature susceptibility Suscept[sus]

are then calculated via,
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R[sus] = 0.47668*Ravg_b[sus]-1.0;

Suscept[sus]=N4f*(R2avg_b[sus]-(Ravg_b[sus])*(Ravg_b[sus]));

where the multiplicative constant factor in the expression is just 1
ρ

as defined by Eq.

(54), and N4f is the number of 4-simplices.

As discussed in Section 3.9 the data is blocked into bins of size N/n, where N is the

total number of configurations and n is some positive integer greater than or equal to 2,

thus giving the factors of N . It is necessary to calculate < R > and χR for all possible

factors of N so as to determine the block size at which the statistical error is maximised,

meaning that the correlation between blocks of data is minimised. To achieve this

I determine the difference between the final configuration number finalConfigNoP

and the initial configuration number startnofrst and divide by an integer n that is

incrementally increased inside a while loop.25

frst=$(head -n22 /scratch/tenon/dcoumbe/logfiles_${volume}_k${k2}_h${k6}/logdeg_${volume}_k${k2}_h${k6}_v${StartVersion} | grep sweep)

filefrst=${frst%.*}

startnofrst=${filefrst#*:}

block=$((($finalConfigNoP-$startnofrst)/(1+$n)))

echo "${block}" > Block.dat

For each blocking value a different value of < R > and χR are output by the code.

The value of < R > and χR for which the statistical error is maximised is accepted as

the value with the most reliable estimate of the statistical error.

8.2 Code to Determine Histogram and Monte Carlo Evolution

of N0

A useful procedure in determining the order of a phase transition in dynamical triangu-

lations is to determine how the number of vertices changes as a function of Monte Carlo

time tMC . A discontinuous transition between two metastable phases, for example, is

characterised by the discontinuous transition between two values of N0. For a first-order

transition these meta-stable transitions lead to a double Gaussian in the histogram of

N0 whose peak separation grows with volume. This section discusses the code that is

used to determine N0(tMC) and its histogram.

25The code determining the blocking factor N/n is a shell script written in the bash programming language. This

shell script enables the extraction and insertion of parameters into the C++ script without the need for recompiling and

is thus faster to implement.
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Firstly, N0 is extracted from the generated lattice configuration, and sent to an

array N0(nConfig).

for(int j(initConfig); j<nConfig + initConfig; j++)

{input1 >> dumb1;

for(int i(0); i<9; i++)

{input1 >> dumb2;}

input1 >> N0[j-initConfig];

}

For a first-order transition the peak separation should grow approximately linearly

with simplicial volume. Therefore, by dividing the number of vertices N0 by the number

of 4-simplices N4 the peak separation should remain constant as a function of volume

if a first-order transition is present. A for-loop is implemented to cycle over the entire

number of configurations nConfig and the ratio of the number of vertices N0[j] to the

simplicial volume Vol is output as a function of configuration number.

for(int j(0); j<nConfig; j++)

{outdat1 << j+initConfig << " " << N0[j]/Vol << endl;}

The histogram of N0 is determined by first defining an array of bins bin[i] with

a number of elements equal to the total number of configurations to be analysed, thus

giving a bin size of unity. The extracted values of N0 are cycled through in a for-loop

and the frequency with which each value of N0 appears is counted by incrementing the

array bin[i].

for (int i=nBinsMin; i<nBins; i++)

{for(int z(initConfig); z<nConfig + initConfig; z++)

{if(N0[z-initConfig]==i)

{bin[i]+=1;}}

}

For a first-order transition the peak separation in the histogrammed data should

grow approximately linearly with simplicial volume, therefore by dividing the number of

vertices N0 by the number of 4-simplices N4 the peak separation should remain constant

as a function of volume if a first-order transition is present. A for-loop is implemented

to cycle over the entire number of configurations nConfig and the frequency with which

the particular value of N0 appears bin[i] is output along with the ratio of the number

of vertices to the simplicial volume z/Vol.
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for(int z=nBinsMin, i=nBinsMin ; z<nBinsMin + nConfig + initConfig

&& i<nBins; z++, i++ )

{outdat1<<z/Vol<<" "<<bin[i]<<endl;}

8.3 Conformal Instability of the Euclidean Action

One of the major obstacles to formulating a Euclidean theory of quantum gravity is

that the Euclidean action for Einstein gravity is unbounded from below. This section

will outline this problem and discuss some of the ideas that have been proposed to

resolve this issue.

To motivate the desire to Euclideanize the Lorentzian Einstein action and to high-

light the fact that it is unbound from below we take a simple interacting scalar field

theory as an example. The expectation value of an observable O for a scalar field theory

is given by the path integral

〈O〉 =
1

Z

∫
O[φ]eiS[φ][dφ] (72)

Where the action is the functional

S[φ] =
∫
dt
∫
d3x

(∂φ
∂t

)2

− (∇φ)2 − V (φ)

 . (73)

When performing computations it is not clear how one would directly evaluate the

observableO numerically using the path integral of Eq. (72) because it contains complex

oscillatory factors eiS. In order to make computations tractable one typically performs

a change of variables of the type t → −iτ such that the Lorentzian action transforms

into the Euclidean action,

SEucl[φ] =
∫
dτ
∫
d3x

(∂φ
∂τ

)2

+ (∇φ)2 + V (φ)

 . (74)

The oscillatory factor eiS appearing in the path integral is then transformed into

e−SE , giving a path integral that is damped as opposed to being oscillatory, in addition

to being amenable to numerical simulations. The Euclidean action given in Eq. (74)

is positive definite for positive definite interaction potentials V (φ) [137]. However, the

problem arises due to the gravitational interaction potential being negative in general

relativity. The reason is that although gravitational waves have a positive energy, the

gravitational potential is always negative because gravity is always attractive [138].
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The fundamental degrees of freedom in general relativity are given by the metric

gµν . General relativity is diffeomorphism invariant and so one is free to transform the

metric gµν via a conformal transformation. Any two metrics gµν and hµν are said to

be conformally equivalent if gµν = Ωhµν where Ω is some positive conformal factor.

Following Ref. [138] we make a conformal transformation gµν = Ω2hµν , where once

again Ω is some positive conformal factor. The Einstein action then becomes

SE (hµν) = − 1

16πG

∫
d4x

√
det (gµν)

(
Ω2R + 6gµν∂µΩ∂νΩ

)
. (75)

One can see from Eq. (75) that the Einstein action can be made arbitrarily negative

if the conformal factor Ω is rapidly varying.

This means that the Euclidean Einstein action is unbounded from below and that

the path integral of Eq. (75) could be divergent, depending on the behaviour of the

gravitational measure in the strong field limit and in the regime of rapidly varying

conformal factors Ω [139].

The positive energy conjecture outlined in Refs. [140, 141] seems to suggest that

the total energy of an asymptotically flat gravitational field as measured at infinity is

always positive, and that the formation of black holes in regions of arbitrarily negative

potentials prevents such scenarios from being physically realised [138]. If Euclidean

general relativity is to accurately describe reality one would need to mathematically

prevent the conformal instability appearing in the Euclidean action. A number of pos-

sible solutions to the unboundedness problem of the gravitational action have been put

forward, most notably those of Gibbons, Hawking and Perry [142, 143]. The conformal

instability of the Euclidean gravitational action was shown in Refs. [144, 145] to cancel,

at least to one-loop in perturbation theory [139], and possibly nonperturbatively [140].

Because the Euclidean path integral is unbounded from below one may ask whether

Euclidean dynamical triangulations is a well defined theory at all. This is a legitimate

concern because the partition function can become dominated by lattice configurations

with arbitrarily large curvature. However, the hope is that by introducing an appropri-

ate measure term into the Euclidean action one can suppress the contributions coming

from configurations with arbitrarily large curvature, thus making the gravitational path

integral convergent.
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