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Abstract

T2K is long-baseline accelerator neutrino oscillation experiment using the
high-intensity νµ beam produced at J-PARC. Sitting 295 km away, the giant
Super-Kamiokande detector, a 50 kt water tank instrumented with 11,129 photo-
sensitive detectors, sees a narrow band beam peaked at 600 MeV. The baseline to
energy ratio is finely tuned for studying neutrino oscillations at the atmospheric
neutrino squared-mass splitting. The beam is also sampled 280 m downstream
of the neutrino production target by a series of finely segmented solid scintilla-
tor and time projection chamber detectors. Observing changes in the neutrino
beam between the two detectors allows oscillation parameters to be accurately
extracted.

A νµ-disappearance analysis was performed on the combined T2K Run
1+2+3+4 dataset, corresponding to integrated J-PARC neutrino beam exposure
of 6.57×1020 POT, in a framework of three active neutrino flavour oscillations
including matter effects in constant-density matter. The observed reconstructed
energy spectrum of 1 µ-like ring events was fitted, and separate fits were made
for the normal and the inverted mass hierarchies. In these fits, sin2 θ23 and
either |∆m2

32| (normal mass hierarchy) or |∆m2
31| (inverted mass hierarchy) were

allowed to float. The oscillation parameters sin2 θ13, sin2 θ12, ∆m2
21, δCP , and all

41 systematic parameters considered in this analysis were also allowed to float
in the fit.

This analysis predicts 445.98±23.46(syst) 1 µ-like ring events in SK in the
absence of any oscillation, but only 120 were observed. The observed deficit
has a strong energy dependence; the ratio of observed to expected, under the
no-oscillation hypothesis, is ∼26% < 0.5 GeV, ∼10% between 0.5 and 1 GeV and
∼72% > 1 GeV.

The 68% confidence intervals on the oscillation parameters can be sum-
marised as sin2 θ23 = 0.514+0.049

−0.050 |∆m2
32| = 2.51±0.10 eV2/c4 for the normal mass

hierarchy, and sin2 θ23 = 0.511+0.050
−0.049 |∆m2

31| = 2.48±0.10 eV2/c4 for the inverted
mass hierarchy. This is the most precise measurement of sin2 θ23 to date.
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Chapter 1

Introduction

1.1 A brief history of neutrinos

1.1.1 Postulation and discovery of neutrinos

• Postulation. The neutrino was first postulated by Pauli in 19301 to explain

the continuous electron spectrum and the spin-statistics problem observed

in β-decay experiments.

• Discovery of the electron neutrino. The neutrino (νe) was first directly

detected by experiments performed by Reines and Cowan in 1956 [5], with

a liquid scintillator detector positioned near a nuclear reactor detecting the

inverse β-decay reaction

νe + p→ e+ + n. (1.1)

The event signature was a prompt e+ signal in coincidence with a delayed

signal from n capture on cadmium.

• Discovery of the muon neutrino. The muon neutrino (νµ + νµ) was dis-

1The original German-language letter is translated into English in Ref. [4].

1
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covered in 1962 [6] by observing the interactions of neutrinos produced by

pions decaying in flight,

π± → µ± +
(—)

νµ, (1.2)

in a spark chamber. The
(—)

νµ produced µ±, not e±, indicating that the
(—)

νµ is a

distinct particle to the
(—)

νe.

• Discovery of weak neutral currents. Weak neutral current (NC) inter-

actions were discovered by the Gargamelle experiment in 1973 [7]. The

reaction

(—)

νµ +N → (—)

νµ + hadrons (1.3)

was distinguished from the weak charged current (CC) reaction

(—)

νµ +N → µ± + hadrons, (1.4)

that had been observed by previous experiments, by rejecting events with

a muon track.

• Discovery of the tau neutrino. The tau neutrino (ντ ) was discovered

in 2000 by the DONuT experiment [8] by observing the interactions of

neutrinos, produced by a proton beam incident on a beam dump. The

decay of Ds,

D+
s → νττ

+,

D−s → νττ
−, (1.5)

and subsequent decay of the τ , produce a ντ and ντ within a few millime-

tres. The tau neutrinos were observed in an emulsion detector by searching
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for the characteristic track kink from τ− decay.

1.1.2 Neutrino properties

• Helicity. The helicity of the neutrino (νe) was found to be left handed in

the Goldhaber experiment [9] via electron capture:

152Eu + e− → 152Sm∗ + νe;

152Sm∗ → 152Sm + γ. (1.6)

For resonant-scattered photons, the helicity of the photon is the same as

the neutrino.

• Number of light active neutrinos. The number of light neutrinos which

couple to the Z boson, Nν is measured by subtracting the partial Z widths

for decays to charged leptons and quarks from the total Z width. This

invisible width is then Nν times the partial Z width from neutrinos. A

combination of data from the LEP and SLC e+e− colliders finds Nν =

2.9840±0.0082 [10], consistent with the observations of three generations of

particles in the Standard Model. Cosmological observations are consistent

with this; the number of relativistic degrees of freedom is found to be

3.02±0.27, in agreement with theoretical value of 3.046 [11].

• Mass. Neutrino mass eigenstates νi and neutrino weak eigenstates να are

not the same (see Sec. 1.4.1), therefore a measurement of the neutrino mass

weak eigenstate mass is a measurement of the superposition of the mass

eigenstates. Observations of neutrino oscillations (see Sec. 1.4.3) tell us

that neutrino masses are non-zero2, but they are small and have not been

measured. Current observations give no strong indication of whether ν3

2The lightest neutrino mass eigenstate could be zero.
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is heavier or lighter than ν1 and ν2. These possibilities are known as the

normal and inverted neutrino mass hierarchies, respectively.

Observations of the beta decay of tritium (3H) set limits on the effective

νe mass, meff
νe =

√∑
i |Uei|2 m2

νi
, by observing the end-point of the electron

spectrum; the tightest limit is meff
νe < 2.05 eV/c2 [12] (95% C.L.). Limits on

meff
νµ and meff

ντ , defined in an analogous way, are found by reconstructing

charged pion and hadronic tau decays respectively, to bemeff
νµ < 0.17 MeV/c2

(90% C.L.) [13] and meff
ντ < 18.2 MeV/c2 (95% C.L.) [14].

The neutrino-less double beta decay (0νββ) process,

A
ZN → A

Z+2N
′
+ 2e−, (1.7)

can proceed only if a Majorana neutrino mass exists (see Sec. 1.2.2). The

process can be studied only in nuclear isotopes where 2νββ is allowed and

1νβ is energetically forbidden, leading to a long half-life. The signature

of 0νββ is a peak in the sum of e masses, and the e+ and e− being emitted

with equal and opposite momenta. The 0νββ half-life, T 0νββ
1/2 , is related to

the effective Majorana neutrino mass as

1/T 0νββ
1/2 = G0νββ|M0νββ|2| 〈mββ〉 |2, (1.8)

where G0νββ and M0νββ are the phase space factor and matrix element

of the 0νββ process respectively, and 〈mββ〉 = |
∑

i U
2
eimνi | is the effective

neutrino mass. The best limit on 〈mββ〉 lies in the range 140–380 meV/c2

(90% C.L.), is dependent on the matrix element calculation and uses 136Xe

[15].

Cosmological observations give an upper limit on the sum of neutrino

masses of
∑

imνi < 0.66 eV/c2 (95% C.L.) [11].
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Plotting 〈mββ〉 against the lightest neutrino mass, ml
3, may allow the

neutrino mass hierarchy to be determined. For large values of ml &

10−2 eV/c2, m1 ≈ m2 ≈ m3 and the mass hierarchies are degenerate. For

small values ofml, in the inverted mass hierarchy (IH), 〈mββ〉 is constrained

to a band 10−2 eV/c2 . 〈mββ〉 . 5×10−1 eV/c2, and in the normal mass hier-

archy (NH) 〈mββ〉 . 5×10−3 eV/c2 [16].

• Charge. The neutrino is thought to have zero charge. The tightest con-

straint on this property is qν < 2×10−15 e from observations of neutrinos

from supernova 1987a [17].

• Magnetic moment. The best limit on the neutrino magnetic moment is

from the GEMMA experiment, studying νe cross sections at a nuclear

reactor, and is µν < 3.2×10−11 µb at 90% C.L. [18].

• Charge radius. The best limit on the neutrino charge radius is from

an experiment studying νe cross sections at a nuclear reactor, and is

−2.1×10−32 cm2 < r2
ν < 3.3×10−32 cm2 at 90% C.L. [19].

• Lifetime. The best limit on the neutrino mean lifetime divided by mass is

from an experiment searching for photons from the decay of νe → ν ′ + γ

at a nuclear reactor, where ν ′ is an undetectable neutral particle [20]. The

limit is τν/mν > 3×102 sc2/eV[21].

1.2 Standard Model of particle physics

The Standard Model of particle physics is a quantum field theory describing the

strong, weak, and electromagnetic interactions of all known elementary particles,

as shown in Tab. 1.1. It is a gauge theory based on the local symmetry group

SU(3)C × SU(2)L ×U(1)Y , where C is colour, L is left-handed chirality, and Y is
3ml = m1 and ml = m3 for the normal and inverted mass hierarchies respectively.
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weak hypercharge. There are eight coloured bosons, gluons, g, which mediate

the strong force, arising from SU(3)C . There are four electroweak bosons arising

from SU(2)L×U(1)Y ; after electroweak symmetry breaking (in which the Higgs,

H , acquires a non-zero vacuum expectation value) these are the massive W±

and Z0, and the massless photon, γ.

Vector bosons Higgs boson

+ 2
3
1
2

u
+ 2

3
1
2

c
+ 2

3
1
2

t 0
1g

0
0H

Q
ua

rk
s

− 1
3
1
2

d
− 1

3
1
2

s
− 1

3
1
2

b 0
1γ

−1
1
2

e −1
1
2

µ −1
1
2

τ 0
1Z

Le
pt

on
s

0
1
2

νe
0
1
2

νµ
0
1
2

ντ
±1

1W

Table 1.1: The particles of the Standard model. The preceeding superscript and
subscript are the electric charge and spin respectively.

Fermions can be split into two groups depending on whether they are

coloured: the quarks are coloured and therefore take part in the strong in-

teraction to form hadrons, while the leptons do not. All fermions take part in

electroweak interactions. There are three generations of fermions, each having

identical quantum numbers, but different mass4.

Since leptons are colourless, the symmetry group SU(2)L×U(1)Y determines

the interactions of neutrinos. The three generators of the weak isospin SU(2)L

symmetry group are Ia = σa/2, where σa are the Pauli matrices. The generator

of the hypercharge U(1)Y symmetry group is Y = 2(Q − I3), where Q is the

charge. The vector gauge boson fields are then Aµa and Bµ for SU(2)L and U(1)Y

respectively. Operating with the generators on the lepton fields (arranging
4For example, the e−, µ−, τ− have masses 0.511 MeV/c2, 105.66 MeV/c2, 1776.82 MeV/c2

respectively [21].
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the left-handed fermion fields in doublets, LL and QL, and the right-handed

fermion fields in singlets, fR) fixes the quantum numbers of the particles shown

in Tab. 1.2. Neutrinos therefore only undergo weak interactions. Since the weak

interaction is chiral, right-handed neutrinos (and left-handed antineutrinos) do

not interact by the weak interaction, and so may not exist.

I I3 Y Q

lepton doublet Ll ≡
(
νeL
eL

)
1/2 1/2 -1 0

-1/2 -1
lepton singlet eR 0 0 -2 -1

quark doublet Ql ≡
(
uL
dL

)
1/2 1/2 1/3 2/3

-1/2 -1/3

quark singlets uR 0 0 4/3 2/3
dR -2/3 -1/3

Table 1.2: Quantum numbers of fermion doublets and singlets associated with
the electroweak interaction.

The electroweak Lagrangian is then defined as the most general renormalis-

able Lagrangian, invariant under a local SU(2)L × U(1)Y symmetry:

L = iLL /DLL + iQL /DQL +
∑

f=e,u,d

ifR /DfR (1.9)

− 1

4
AaµνA

aµν − 1

4
BµνB

µν

+ (DµΦ)†(DµΦ)− µ2ΦΦ† − λ(ΦΦ†)2

− ye(LLΦeR + eRΦ†LL)− yd(QLΦdR + dRΦ†QL)− yu(QLΦuR + uRΦ†QL),

where /D = γµDµ, γµ are the gamma matrices, the covariant derivative is defined

asDµ = ∂µ+igAaµI
a+ig′Bµ

Y
2

, and Φ is the Higgs field. The first line describes the

kinetic energy of fermion fields and interactions of fermions and gauge bosons,

the second line describes the kinetic energy and self-interactions of the gauge

bosons, the third line describes the Higgs field, and, the fourth line describes

Higgs-fermion Yukawa couplings, through which generate fermion masses. It is
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through the Higgs mechanism that the W and Z bosons, and fermions acquire

mass.

The interactions of fermions with the physical gauge bosons can be derived

by considering the first line in Eq. 1.9. Defining the physical boson fields

W±µ ≡ Aµ1 ± iA
µ
2√

2
, (1.10)

Aµ ≡ sin θWA
µ
3 + cos θWB

µ, (1.11)

Zµ ≡ cos θWA
µ
3 − sin θWB

µ, (1.12)

the interaction terms for νe and e in the Lagrangian are then5

LCCI = − g√
2
νeLγ

µeLWµ + h.c., (1.13)

LNCI = − g

cos θW

(
gνLνeLγ

µνeL + glLeLγ
µeL + glReRγ

µeR
)
Zµ, (1.14)

LγI = g sin θW eγ
µeAµ. (1.15)

This shows that neutrinos interact with charged leptons via the W bosons,

neutrinos interact with the Z boson with no flavour change, and neutrinos don’t

interact with the γ.

After the Higgs mechanism, fermion mass terms are found in the form

Lfermion mass = −
∑

α=e,µ,τ,u,d,s,c,b,t

yαv√
2
fαfα, (1.16)

= −
∑

α=e,µ,τ,u,d,s,c,b,t

mαfαLfαR +mαfαRfαL, (1.17)

where yα is the Yukawa coupling from the diagonalised matrices, v is the Higgs

5When extending the model to three lepton generations, the terms are similar, with the
addition of mixing (see Sec. 1.4). Terms describing electroweak interactions of quarks are similar
and were omitted for simplicity.
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vacuum expectation value, fα = fαL + fαR are fermion fields of definite mass,

and mα = yα/v
√

2 is the fermion mass. It should be noted that, in the Standard

Model, neutrinos are massless due to the lack of right handed neutrino fields,

νR.

The observation of neutrino oscillations presented in Sec. 1.4.3 is clear evi-

dence of physics beyond the Standard Model, as neutrinos are required to have

mass. There are two proposed mechanisms for providing neutrinos with mass,

Dirac and Majorana [16].

1.2.1 Dirac mass

Extending the Standard model by including right-handed neutrino fields allow-

ing, in analogy with other fermions. These fields are singlets of SU(2)L and

have hypercharge Y = 0, therefore they are invariant under Standard Model

fields, and so are sterile (interact only via gravity). In analogy with Eq. 1.17, the

neutrino Dirac mass term is

LDirac mass =
∑
i=1,2,3

−miνiνi. (1.18)

where mi = yiv/
√

(2), yi is the Yukawa coupling from the diagonalised matrix, v

is the Higgs vacuum expectation value, and νi = νiL + νiR are neutrino fields of

definite mass. Trilinear interactions of fermions with the Higgs, H , of the form

LνH =
∑
i=1,2,3

−mi

v
fifiH, (1.19)

are also possible, in analogy with other fermions. It is unknown why the Yukawa

couplings of the neutrinos (yνe , yνµ , yντ ) are much smaller than the couplings

of the other fermions. It should be noted that the process of diagonalising the
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mass matrix uses the neutrino mixing matrix (Eq. 1.34), therefore the form of the

neutrino mass matrix determines the neutrino mixing parameters.

It is not possible to find a global U(1) gauge transformation of the right-

handed fields of the form

νiR → eiφανiR, (i = 1, 2, 3), (1.20)

that leaves both the Higgs-neutrino coupling (Eq. 1.19) and the neutrino kinetic

term invariant. Therefore lepton flavour violation is allowed, and this has been

observed in neutrino oscillations (see Sec. 1.4.3). The Lagrangian is invariant

under the global transformations

νiL → eiφνiL, νiR → eiφνiR, (i = 1, 2, 3), (1.21)

lαL → eiφlαL, lαR → eiφlαR, (α = e, µ, τ), (1.22)

which leads to the conservation of the total lepton number.

1.2.2 Majorana mass

A Majorana fermion is a fermion that is its own antiparticle6

ν = νL + νCL = νC , (1.23)

which is only possible for a particle whose (additive) quantum numbers are zero.

This leads to a Majorana mass term

LMajorana mass = −1

2
mνCL νL +−1

2
mνLν

C
L . (1.24)

6It is common to use the terminology neutrino and antineutrino to denote a Majorana
neutrino with negative helicity and a Majorana neutrino with positive helicity respectively.



1.2 Standard Model of particle physics 11

It is not possible to find a global U(1) gauge transformation, under which

LMajorana mass is invariant. Total lepton number can therefore be considered as

only an approximate symmetry, holding in all processes that are insensitive to

the Majorana masses. The Majorana mass term can be included as a perturbation,

with

∆L = ±2. (1.25)

This can be seen experimentally in 0νββ.

It should be noted that, although LMajorana mass involves only νL, which is

present in the Standard Model, Majorana mass terms are not allowed in the

Standard Model. This is because LMajorana mass breaks the SU(2) gauge symmetry,

unless a dimension 5 (or greater) operator is introduced in order to generate

it. The simplest possible operator corresponds to 4-point νL–νL–H–H Feynman

diagrams, and is not renormalisable. A new exchange particle7 is therefore

required to restore the renormalisability to the theory. For type I see-saw models

both Dirac and Majorana mass terms are created. Many different assumptions

about the relative sizes of Dirac and Majorana mass scales (m andM) can be

made, one of which (m � M with M ∼ 1014 GeV) gives rise to the known

neutrino states masses of mν ∼ m2/M, and heavy new right handed neutrinos

mR ∼M. Mixing between the known and heavy states will occur, but is typically

small (tan 2θ = 2m/M). This process is therefore a possible explanation of the

naturally very small neutrino masses.

The visible Universe contains an asymmetry between matter and antimat-

ter. In order to generate the small observed baryon asymmetry8, the Sakharov

conditions [23] must be satisfied: baryon number violation; C and CP violation;

7The new particle could be a fermion singlet, a scalar triplet, or a fermion triplet, correspond-
ing to classes of see-saw models labelled type I, II, and III respectively.

8Measurements of the cosmic micro background suggests η ≡ (nB − nB)/nγ = (6.11±0.19)×
10−10 [22].
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and a departure from thermal equilibrium must occur. A possible mechanism

for this is leptogenesis [24], in which the heavy Majorana neutrinos from a type

I see-saw model have decays which violate lepton number due to C and CP

violation. The lepton number asymmetry can then be converted into a baryon

number asymmetry via sphaleron processes.

1.3 Neutrino interactions in matter

A review of neutrino interactions can be found in Ref. [25], and Sec. 3.2.1 sum-

marises the models used in the present work. Here the types of neutrino CC

interactions with nuclei that are important at neutrino energies of ∼1 GeV, as at

the T2K experiment, are introduced.

The neutrino-nucleon scattering dynamics are described by the invariant

amplitude M. The neutrino-nucleon cross-section depends on the squared

amplitude which can be factorised into the hadronic tensor Wµν and the leptonic

tensor Lµν

|M|2 = 4G2
FLµνW

µν , (1.26)

where GF is the Fermi constant. Lµν describes the leptonic vertex, and is known

exactly in the Standard Model. Wµν describes the hadronic vertex. Although

the quark currents are known exactly in the Standard Model, the nucleon is a

complicated composite structure of valence quarks, sea quarks, and gluons and

so Wµν is not known. The most general form is given by:

Wµν =−W1gµν +W2
pµpν
M2

+W3iεµναβ
pαpβ

2M2
+W4

qµqν
M2

+W5
pµqν + pνqµ

M2
+W6

pµqν − pνqµ
M2

(1.27)

where the six structure functions, Wi = Wi(q· , q2), need to be determined by
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experiment. For interactions on nuclear targets, the nucleon itself is bound

within the nucleus and effects arising from the nuclear binding, Fermi motion

and nucleon-nucleon correlations need to be taken into account. In addition, the

so-called final state interactions (FSI), re-interactions in the nuclear medium of

the hadrons emerging from the primary neutrino interactions, have a significant

effect in the phenomenology of neutrino interactions in the few-GeV energy

range and also need to be taken into account.

In quasi-elastic (QE) scattering the neutrino interacts with a nucleon, leaving

it in the ground state:

ν` + n→ `− + p,

ν` + p→ `+ + n, (1.28)

where ` = e, µ, τ . In resonance production (RES) the neutrino interacts with a

nucleon, exciting it into a resonance state:

(—)

ν` +N → `± +N∗, (1.29)

where N is a nucleon and N∗ is a resonant state that will decay. The resonance

most frequently decays to a nucleon and pion (e.g. N∗ = ∆++ → p + π+), but

a variety of mesonic and photonic final states are possible. In coherent pion

production the neutrino interacts with an entire nucleus, transferring negligible

energy to the nucleus, A:

(—)

ν` + A→ `∓ + A+ π±. (1.30)

The nucleus is left in the ground state, and the experimental signature of this

process is a forward-scattered pion. In deep inelastic scattering (DIS) the neutrino



1.3 Neutrino interactions in matter 14

interacts with a single quark resulting in a hadronic shower:

(—)

ν` + q → `± + q′, (1.31)

where q and q′ are initial and final state quarks. The final state quark will

hadronise, producing most frequently pion(s). NC analogues of the processes

above exist, for example the NC-elastic process is

(—)

ν` +N → (—)

ν` +N. (1.32)

Cross sections for νµ and νµ CC interactions, comparing data with a Monte

Carlo (MC) prediction, are shown in Fig. 1.1.
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Figure 1.1: Total νµ (left) and νµ (right) per nucleon CC cross sections divided by
neutrino energy as a function of energy. Also shown are the various contributing
processes QE (dashed), RES (dot-dashed), and DIS (dotted). Example predictions
for each are provided by the NUANCE neutrino MC event generator [26]. Note
that the QE scattering data and predictions have been averaged over neutron
and proton targets and hence have been divided by a factor of 2 for the purposes
of this plot. Figure taken from [25].
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1.4 Neutrino oscillations

1.4.1 Theory of three active neutrino oscillations

In the PMNS9 model for neutrino mixing, neutrino mass eigenstates, νi, and

neutrino weak (flavour) eigenstates, να, are not the same, but are related by a

unitary matrix U 10, called the PMNS matrix:

|να〉 =
∑
i

U∗αi |νi〉 . (1.33)

In general, U can be parameterised by N(N − 1)/2 mixing angles and

(N − 1)(N − 2)/2 physical phases11. For the three-flavour case, the matrix is

commonly expressed as three rotation matrices parameterised by angles θij , with

an additional phase, δCP :

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδCP

0 1 0

−s13e
iδCP 0 c13




c12 s12 0

−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 (1.34)

where sij = sin θij and cij = cos θij .

If the masses of the neutrinos are not the same, neutrino oscillations, as shown

schematically in Fig. 1.2, are possible. The massive neutrino states are eigenstates

9Named after the scientists who proposed neutrino oscillations: Pontecorvo [27, 28], and
Maki, Nagagawa, and Sakata [29].

10This is the lepton equivalent of the CKM mixing matrix in the quark sector.
11For Dirac neutrinos, this is the case. For Majorana neutrinos, extra phases exist (there are

N(N −1)/2 total phases), but are not observable in neutrino oscillations and so are not discussed
further.
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W

νi

W

Source

`+
α

`−β

Target

U∗αi Uβi

Figure 1.2: Schematic of neutrino oscillations. A neutrino mass eigenstate νi
is created in coincidence with a lepton of flavour α, with probability U∗αi. The
neutrino mass eigenstate is then detected at a later time, creating a lepton of
flavour β, with probability Uβi.

of the Hamiltonian, and so have a solution to the Schrödinger equation

|νi(t)〉 = e−iEit |νi〉 . (1.35)

Substituting this into Eq. 1.33 gives

|να(t)〉 =
∑
i

U∗αie
−iEit |νi〉 , (1.36)

the time evolution of a neutrino flavour eigenstate created at t = 0. Using

the unitarity property of U (
∑

i UαiU
∗
βi = δαβ), Eq. 1.33 can be inverted and

substituted into Eq. 1.36 to give

|να(t)〉 =
∑
β

(∑
i

U∗αie
−iEitUβi

)
|νβ〉 . (1.37)

Using the orthonormal property of flavour eigenstates, the amplitude of transi-

tion from να to νβ as a function of time is

Aνα→νβ(t) ≡ 〈νβ|να(t)〉 =
∑
i

U∗αie
−iEitUβi. (1.38)
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If the momentum of the neutrino has a definite value, ~p, and if the neutrino is

ultrarelativistic (|~p|�mi for all i), the energy of each mass eigenstate is Ei =√
|~p|2 +m2

i ' |~p|+
m2
i

2|~p| . The probability of oscillation να → νβ is then

P(να → νβ) =
∣∣Aνα→νβ(L,E)

∣∣2 =
∑
i,j

U∗αiUβiUαjU
∗
βje
−i

∆m2
ijL

2E , (1.39)

where ∆m2
ij = m2

i − m2
j , and the ultrarelativistic approximations L = t and

E = |~p| have been made. This is a formula with amplitude quartic in U , and

phase 2Φij =
∆m2

ijL

2E
. Squaring the unitarity relation gives

δαβ =
∑
i

UαiU
∗
βi

∑
j

UαjU
∗
βj (1.40)

=
∑
i

∣∣U2
αi

∣∣ ∣∣U2
βi

∣∣− 2
∑
i>j

<
[
U∗αiUβiUαjU

∗
βj

]
. (1.41)

Substituting this into Eq. 1.39, after separating the parts i = j and i 6= j and

using trigonometric identities, gives

P(να → νβ) = δαβ − 4
∑
i>j

<
[
U∗αiUβiUαjU

∗
βj

]
sin2

(
∆m2

ijL

4E

)

+ 2
∑
i>j

=
[
U∗αiUβiUαjU

∗
βj

]
sin

(
∆m2

ijL

2E

)
. (1.42)

It has been shown in Ref. [30] that the standard derivation [16] given above gives

an equivalent result to a treatment using wavepackets and no assumption of a

common mass eigenstate momentum.

In order for oscillations to occur (i.e. P(να → νβ) 6= δαβ), Eq. 1.42 requires

that there is a non-zero difference between neutrino masses, implying that at

least one neutrino is massive (oscillations are insensitive to the absolute mass

scale, only to the mass difference). It also requires U not be a diagonal matrix (i.e.

UαiUβ 6=α,i 6= 0). The probabilities obey unitarity, i.e.
∑

β Pνα→νβ =
∑

α Pνα→νβ = 1.
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The probability of disappearance reduces to

P(να → να) = 1− 4
∑
k>j

|Uαi|2|Uαk|2 sin2

(
∆m2

ijL

4E

)
. (1.43)

Using the PMNS matrix in Eq. 1.34, the survival probability of muon neutrinos

is

P(νµ → νµ) =1−
(
c4

13 sin2(2θ23) + s2
23 sin2(2θ13)

)
sin2 Φ31

+ [c2
13(c2

12 − s2
13s

2
12) sin2(2θ23) + s2

12s
2
23 sin2(2θ13)

− s2
23c

2
13 sin(2θ13) sin(2θ23) sin(2θ12)cδ]

×
[

1

2
sin 2Φ21 sin 2Φ31 + 2 sin2 Φ21 sin2 Φ31

]
− [sin2(2θ12)(c2

23 − s2
13s

2
23)2 + s2

13 sin2(2θ23)(1− c2
δ sin2(2θ12))

+ 2s2
13 sin(2θ12) cos(2θ12) sin(2θ23) cos(2θ23)cδ

− 2s2
23s

2
12c

2
13 sin(2θ13) sin(2θ23) sin(2θ12)cδ

+ sin2(2θ23)c2
13(c2

12 − s2
13s

2
12) + s2

12s
2
23 sin2(2θ13)] sin2 Φ21. (1.44)

where cδ = cos δCP .

Experimentally L and E are chosen to maximise either sin2 Φ31 or sin2 Φ21 in

order to maximise the oscillation effect at the point of detection. Experiments

have measured ∆m2
31/∆m2

21 ∼ 30 (see Sec. 1.4.3), therefore the limit ∆m2
31 �

∆m2
21 can be taken to give the dominant terms:

P(νµ → νµ) ' 1−
[
cos4 θ13 sin2(2θ23) + sin2 θ23 sin2(2θ13)

]
sin2 Φ31

= 1− 4 cos2 θ13 sin2 θ23

(
1− cos2 θ13 sin2 θ23

)
sin2 Φ31. (1.45)

From this equation, P(νµ → νµ) is maximised at sin2 θ23 ' 1/(2−2 sin2 θ13). Using

recent measurements of sin2(2θ13) = 0.098 [31], this maximal disappearance



1.4 Neutrino oscillations 19

occurs at sin2 θ23 ≈ 0.513. The oscillation probability is also symmetric about this

maximal point, therefore more information is required to determine the octant

of θ23. The leading order term for electron appearance is

P(νµ → νe) ' sin2 θ23 sin2(2θ13) sin2 Φ31, (1.46)

therefore a joint analysis of νµ → νµ and νµ → νe is required in order to lift the

octant degeneracy.

The above discussion corresponds to neutrinos travelling in a vacuum. As

neutrinos travel through matter, different species can experience different poten-

tials due to coherent scattering12. All species of neutrino propagating through

matter (e−, p, n) undergo virtual interactions via the Z boson, but νe has an

extra tree-level virtual interaction with e− via the W boson. This causes the

Hamiltonian to be altered with respect to the vacuum Hamiltonian, with the

addition of a potential given by

Vα =
√

2GF

(
Neδαe −

1

2
Nn

)
, (1.47)

where GF is the Fermi constant, and Ne and Nn are the number densities of

electrons and neutrons respectively. The oscillation probability in matter can be

derived [16] yielding a probability of oscillation that is again dependent only on

neutrino mass squared differences and independent of Majorana phases. For

12Incoherent scattering does occur, but can be neglected in most instances; the electron
number density must be high (supernova cores, neutron stars, . . . ), or at Earth densities the
neutrino energy be high (>10 TeV).
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the two flavour case, the oscillation parameters are modified as

∆m2
M =

√
(∆m2 cos 2θ − ACC)2 + (∆m2 sin 2θ)2,

tan 2θM =
tan 2θ

1− ACC
∆m2 cos 2θ

, (1.48)

where ACC = 2
√

2EGFNe. This causes the oscillation probability to be modified.

Oscillations in matter do not occur if vacuum mixing does not occur, or in very

dense matter (ACC → ∞). The probability is also dependent on the sign of

∆m2, therefore matter effects are required to allow the mass hierarchy to be

determined. A resonance occurs if ACC = ∆m2 cos 2θ, in which the effective

mixing angle becomes π/4 and a complete transition between two flavours is

possible. All these features persist in the three flavour case.

1.4.2 Three active flavour neutrino oscillation experiments

A wide array of experiments are used to determine neutrino oscillation parame-

ters. Due to the large experimentally-measured difference between ∆m2
21 and

∆m2
32, a single experiment cannot measure all six oscillation parameters.

• θ12 and ∆m2
21 are measured using solar, and L ∼ 100 km reactor neutrino

experiments. They find that θ12 ∼ 33◦, and, using matter effects, ∆m2
21 is

positive.

• θ23 is measured using atmospheric, and long-baseline accelerator neutrino

experiments with Eν ∼ 1 GeV and L ∼ 100 km. θ23 is found to be nearly

maximal, ∼45◦.

• θ13 is measured using L ∼ 1 km reactor, and long-baseline accelerator

neutrino experiments. θ13 is found to be ∼8.5◦.

• |∆m2
32| is measured using atmospheric, long-baseline accelerator, and L ∼
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1 km reactor neutrino experiments. Experiments which study neutrinos

subjected to large matter effects are required to determine the sign (mass

hierarchy).

• δCP will be measured using long-baseline accelerator neutrino experiments.

The major experiments driving the world knowledge of three active flavour

neutrino oscillations are described below. The results of a global fit [32] to these

datasets are shown in Sec. 1.4.3.

Solar neutrino experiments

A standard solar model can be constructed to describe the Sun, using inputs such

as the observed photon flux at Earth, to predict observables including acoustic

pressure waves in the Sun and the solar neutrino flux. Helioseismology, the

study of these pressure waves, is a good test of the models, and sub-percent level

agreement is seen between data and predictions [33]. The Sun burns hydrogen

in thermonuclear fusion, generating 4He from the pp chain (4He production from

protons) and the carbon-nitrogen-oxygen (CNO) cycle (4He production using

12C as a catalyst); electron neutrinos are a product of these processes, and thus

the Sun is a source of νe. A prediction of the neutrino fluxes from the pp chain is

shown in Fig. 1.3, along with approximate thresholds of different solar neutrino

experiments.

The Homestake experiment detected solar neutrinos through the inverse

β-decay reaction

νe + 37Cl→ 37Ar + e−, (1.49)

with a neutrino energy threshold of 0.814 MeV in a tank containing 615 t of tetra-

chloroethylene (C2Cl4), 2.16×1030 atoms of 37Cl. It was a counting experiment

in which the tetrachloroethylene was processed every two months in order to
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Figure 1.3: Predicted solar neutrino energy spectrum from the pp chain. For con-
tinuous sources, the flux is cm−2s−1MeV−1; for line sources, the flux is cm−2s−1.
The percentages indicate the uncertainties in the predictions. The energy thresh-
olds of solar neutrino experiments are shown at the top of the figure. Figure
taken from [34].

extract the 37Ar atoms. The data used corresponds to 25 years of exposure [35].

Gallium experiments (GALLEX/GNO, SAGE) detect solar neutrinos, also

using inverse β-decay

νe + 71Ga→ 71Ge + e−, (1.50)

with a neutrino energy threshold of 0.233 MeV, from gallium targets of 30.3 t and

50 t respectively. Both experiments are counting experiments in which 71Ge are

extracted and counted monthly. The data used corresponds to around 12 years

of exposure for GALLEX/GNO [36], and around 18 years of exposure for SAGE

[37].
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The SNO experiement detected solar neutrinos through three reactions:

CC: νe + d→ p+ p+ e−; (1.51)

NC: ν` + d→ p+ n+ ν`; (1.52)

ES: ν` + e− → ν` + e−, (1.53)

with neutrino energy thresholds of 6.9 MeV, 2.2 MeV, and 5.7 MeV respectively.

The CC reaction is only sensitive to the νe flux, the elastic scattering (ES) reaction

is sensitive to a mix of the νe, νµ, and ντ fluxes, and the NC reaction is sensitive to

all three flavours equally. SNO was a spherical Cherenkov detector with 1 kt of

99.92%-pure heavy water (D2O), shielded by 7 kt of water (H2O). Electrons were

detected directly via their Cherenkov light by photomultiplier tubes (PMTs);

neutrons were detected via their capture on a nucleus. In phase I, neutrons were

detected via neutron capture on deuteron, with a single 6.25 MeV γ-ray product

detected via the Cherenkov light from an electromagnetic shower. In phase II,

the D2O was doped with 2 t of NaCl. Cl has a higher neutron capture cross

section, and produces multiple γ-rays totalling 8.6 MeV, therefore the neutron

detection efficiency was higher. In phase III, an array of proportional counters

filled with 3He were deployed in the D2O, and neutrons were detected via the

reaction

3He + n→ 3H + p (1.54)

whose products have a total kinetic energy of 0.76 MeV. The proton was detected

in the proportional counter via the production of ionisation electrons. The data

used corresponds to 119.9(157.4) days, 176.5(214.9) days, and 176.6(208.6) days of

day(night) exposure for phase I, II, and III respectively [38].

Super-Kamiokande (SK) is a 22.5 kt fiducial volume water Cherenkov detec-

tor, which detects neutrinos via the Cherenkov light from electrons from the ES
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reaction (Eq. 1.53) using PMTs. The data used corresponds to 1496 days in SK-I

(5 MeV recoil electron threshold) [39], 791 days in SK-II (7.5 MeV threshold) [40],

547.9 days and 298.2 days in SK-III (6.5–20.0 MeV and 5.0–6.5 MeV respectively)

[41], and 1069 days in SK-IV (∼4 MeV threshold) [42].

Borexino is a 100 t fiducial volume liquid scintillator detector, which detects

neutrinos via the scintillation light from electrons from the ES reaction (Eq. 1.53)

using PMTs. The data used corresponds to 345.3 days (3 MeV threshold) for a

measurement of the 8B flux [43], and 740.7 days for a measurement of the 7Be

flux (862 keV line source) [44].

Atmospheric neutrino experiments

The SK detector is also used to study neutrinos produced by cosmic rays in-

teracting with the atmosphere. Muon and electron neutrinos are produced in

approximately the ratio 2:1, due to pion decay, and the subsequent decay of

the muon. The complete calculation is more complicated; neutrinos are also

produced from kaons and other exotic mesons, and high-energy muons can be

stopped in the Earth before decaying into high-energy neutrinos. Events are se-

lected at different mean neutrino energies: fully contained events at∼1 GeV start

and stop within the inner detector; partially contained events at ∼10 GeV start

within the inner detector, but escape; upwards-going muon events at ∼100 GeV

start below the detector, and can pass straight through or stop inside. For fully

contained and partially contained events, particle identification is performed

in order to separate νe events from νµ events. The data used corresponds to

1489.2 days, 798.6 days, 518.1 days, and 1097.0 days for SK I, II, III, and IV respec-

tively [45].
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Reactor neutrino experiments

Many experiments have been performed using nuclear reactors as an isotropic

and pure source of electron antineutrinos, which come from nuclear fission,

with an energy of a few MeV. The distance to the reactor therefore determines

which oscillation parameters can be studied; distances of O(1 km) probe θ13 and

∆m2
32, while distances of O(100 km) probe θ12 and ∆m2

21. The νe are detected

via the inverse β-decay reaction (Eq. 1.1); events are selected by requiring the

coincidence between a prompt positron signal, and a delayed signal from γ-ray(s)

from the capture of the neutron on a nucleus.

KamLAND is a 1.0 kt liquid scintillator detector, shielded by 3.2 kt of water.

The e+ and γ-ray are detected using PMTs. The νe flux is dominated by 56

Japanese nuclear power reactors, with an average baseline of ∼180 km. The data

used corresponds to 2135 days of exposure [46].

CHOOZ was a 5 t liquid scintillator detector, 0.09% loaded with gadolinium

(Gd), surrounded by 17 t of undoped scintillator in order to contain the γ-ray

and protect against PMT radioactivity. The detector was shielded by a further

90 t of undoped scintillator, which also acts as a muon veto. The Gd was used

due to its large thermal neutron cross section and total γ-ray energy (∼8 MeV)

in order to maximise the neutron capture efficiency. The νe flux comes from

two reactors, 1115 m and 998 m from the detector. The data used corresponds to

342.1 days of exposure [47].

Palo Verde was a 11.34 t liquid scintillator experiment, 0.1% loaded with Gd,

shielded by 105 t of water. The detector was segmented; 66 9 m-long acrylic cells

are filled with scintillator, at each end there was 0.8 m of oil to protect from PMT

radioactivity, and a PMT. The νe flux comes from three reactors, 890 m, 890 m,

and 750 m from the detector. The data used corresponds to 350 days of exposure

[48].
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Double Chooz is a 10.3 m3 liquid scintillator detector, 0.123% loaded with Gd,

surrounded by a 55 cm layer of undoped scintillator to contain the γ-rays, and

a 105 cm layer of mineral oil, to protect from radioactivity. Outside of this is a

15 cm layer of scintillator, which acts as a muon veto. The νe flux comes from

two reactors, 1050 m from the detector. The data used corresponds to 227.93 days

of exposure [49].

Daya Bay is an experiment utilising liquid scintillator detectors, 0.1% loaded

with Gd. The detector design is modular; eight versions of the detector are

planned. Each module consists of 20 t of Gd-loaded liquid scintillator, sur-

rounded by 20 t of undoped scintillator, surrounded by 37 t of mineral oil. Each

module is shielded by water, which is instrumented with PMTs to provide a

Cherenkov muon veto. The νe flux comes from six reactors, located in pairs

with 88 m core separation. Currently two detector modules are situated at ex-

perimental hall 1 (∼365 m, ∼860 m, and ∼1310 m from the reactor pairs), one

detector module is situated at experimental hall 2 (∼1345 m,∼480 m, and∼530 m

from the reactor pairs), and three detector modules are situated at experimental

hall 3 (∼1910 m, ∼1535 m, and ∼1540 m from the reactor pairs). The data used

corresponds to 217 days of exposure [50].

RENO is an experiment utilising liquid scintillator detectors, 0.1% loaded

with Gd. Two identical detectors are used; a near and far detector. Each detector

consists of 16 t of Gd-loaded liquid scintillator, surrounded by 60 cm of undoped

scintillator, surrounded by 65 t of mineral oil. Each detector is shielded by 1.5 m

of water, which is instrumented with PMTs to provide a Cherenkov muon veto.

The νe flux comes from six reactors, located in roughly equally spaced, 1280 m-

long line. The flux-weighted baseline for the near and far detector are 408.56 m

and 1443.99 m respectively. The data used corresponds to 402 days of exposure

[51].
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Long-baseline accelerator neutrino experiments

Accelerators are used to produce beams of neutrinos, which are predominately

νµ (or νµ). A proton beam is incident with a target, producing secondary hadrons.

Pions are focussed using magnetic horns, in order to produce a more intense

beam, and to select charge and so a νµ- or νµ-dominated beam. Kaons, and other

mesons, produce a background of electron neutrinos. Long-baseline refers to

experiments which have Eν ∼ 1 GeV and L ∼ 100 km, and are therefore sensitive

to ∆m2
32, θ23, θ13, and δCP .

MINOS is an on-axis long-baseline accelerator experiment. It uses near and

far detectors at 1.04 km and 795 km from the beam target, with fiducial masses

of 29 t and 3.8 kt respectively. Both detectors use the same detector technology,

specifically layers of steel and plastic scintillator, forming a tracking calorimeter,

with a toroidal magnetic field in order to measure particle momentum. νµ CC

events are selected based on the presence of a muon, and the neutrino energy is

reconstructed based on the calorimetric energy deposited and shower topology.

νe CC events are selected based on the presence of an electromagnetic shower,

with extra cuts to reject NC and νµ CC events with short muon tracks. The data

used for νµ disappearance (νe appearance) is 10.71(10.6)×1020 POT (protons on

target) in the νµ-dominated beam and 3.36(3.3)×1020 POT in the νµ-dominated

beam [52, 53].

T2K is an off-axis long-baseline accelerator experiment, with a neutrino

flux peaking at ∼600 MeV. It uses the SK detector as the far detector, and a

multi-purpose detector, ND280, as the near detector. The data used for νµ

disappearance is 3.01×1020 POT [2], and for νe appearance is 6.39×1020 POT

[54], both with a νµ-dominated beam.
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1.4.3 Current knowledge

A number of global fits [32, 55, 56] of the neutrino oscillation data described in

Sec. 1.4.2 are performed in order to determine the six oscillation parameters. The

results from Ref. [32] are summarised in Tab. 1.3, the 1-dimensional confidence

regions are shown in Fig. 1.4, and the 2-dimensional confidence regions are

shown in Fig. 1.5. The fits use the experiments and datasets summarised in Sec.

1.4.2.

Best fit ±1σ 3σ range
sin2 θ23 0.444+0.037

−0.031 ⊕ 0.592+0.028
−0.042 0.361→0.665

sin2 θ12 0.313+0.013
−0.012 0.277→0.355

sin2 θ13 0.0244+0.0019
−0.0019 0.0187→0.0303

δCP/◦ 270+77
−67 0→360

∆m2
21/10−5 eV2/c4 7.50+0.18

−0.17 7.03→8.08
∆m2

31/10−3 eV2/c4 (NH) +2.429+0.055
−0.054 +2.249→2.639

∆m2
32/10−3 eV2/c4 (IH) −2.422+0.063

−0.061 −2.614→2.235

Table 1.3: Three-flavour oscillation parameters from Ref. [32]. The flux prediction
from Ref. [57] is adopted. Note that 1σ and 3σ ranges are given with respect to
the global minimum.

The determination of sin2 θ13 is dominated by the recent reactor experiments

(Daya Bay, RENO, Double Chooz), but the choice of reactor flux (leaving it free

and using short-baseline reactor experiments (L < 100 m), or fixing it to the new

prediction [57]) causes a ∼0.7σ shift in best-fit point.

Non-maximal θ23 is favoured at ∼1.5σ and ∼2.2σ for NH and IH respec-

tively. In the NH(IH), the first(second) octant is favoured at ∼1.0σ(1.4σ). The

determination of θ23 comes from a variety of sources:

• νµ → νµ disappearance at long-baseline accelerator experiments is depen-

dent on sin2 θ23 cos2 θ13(1− sin2 θ23 cos2 θ13) to leading order (see Eq. 1.45).

This is degenerate for points either side of maximal disappearance (sin2 θ23

cos2 θ13 = 1);
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Figure 1.4: Three-flavour oscillation parameter 1-dimensional ∆χ2 projections
from Ref. [32]. The red(blue) curves are for NH(IH). For solid curves, the reactor
flux normalisation is a free parameter and data from short-baseline reactor
experiments (L < 100 m) is included. For dashed curves, the flux prediction from
Ref. [57] is adopted, and the short-baseline reactor data is not used. Figure taken
from [32].
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Figure 1.5: Three-flavour oscillation parameter 2-dimensional regions from Ref.
[32], for 1σ, 90%, 2σ, 99%, and 3σ C.L. For filled regions, the reactor flux normal-
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< 100 m) is included. For unfilled regions, the flux prediction from Ref. [57] is
adopted, and the short-baseline reactor data is not used. Figure taken from [32].
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• νµ → νe appearance at long-baseline accelerator experiments is dependent

on sin2 θ23 sin2(2θ13) to leading order (see Eq. 1.46). Therefore using the

accurate measurement of θ13 from reactor experiments allows sin2 θ23 to be

measured in an octant-dependent way;

• The νe e-like excess in atmospheric neutrino events is suppressed (en-

hanced) in multi-GeV (sub-GeV) events for θ23 < 45◦. A resonance also

exists for neutrinos(antineutrinos) for the NH(IH).

There is no significant preference for either mass hierarchy.

The small hint for the octant is dependent on the details of the analysis. For

the NH, the second octant is preferred until atmospheric neutrino data from SK

is included. The analysis presented in [55] prefers the first octant for both NH

and IH. This preference appears when adding SK atmospheric neutrino data in

which the atmospheric best-fit moves from the second to the first octant for the

IH. The NH first octant preference is enhanced by the same addition.

An number of simple lepton mixing patterns have been discussed in recent

years, in order to describe the observed mixing patterns. For example, the tri-

bimaximal mixing pattern [58] assumes sin2 θ13 = 0, sin2 θ23 = cos2 θ23 = 1/
√

2,

sin2 θ12 = 1/
√

3, and cos2 θ12 = 1/
√

2/3, leading to the PMNS matrix having values

UTB
PMNS =


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2

 ≈


0.816 0.577 0

−0.408 0.577 0.707

0.408 −0.577 0.707

 . (1.55)

This pattern was consistent with experimental data, however the recent results

showing that θ13 is non-zero, and hints of θ23 being non-maximal, require devia-
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tions from this simple pattern; the 3σ ranges from Ref. [32] are:

Udata
PMNS =


0.799− 0.844 0.515− 0.581 0.132− 0.170

0.214− 0.526 0.427− 0.706 0.598− 0.805

0.234− 0.537 0.451− 0.721 0.573− 0.787

 . (1.56)

Perturbations around tri-bimaximal mixing provide a good approximation. In

theoretical models these simple patterns can result from discrete symmetries

such as A4 or S4 at leading order, and the deviations seen can be brought about

via higher order terms. For a recent review of these models, see for example Ref.

[59]).

1.4.4 Anomalies

A range of experimental results do not fit in the three active neutrino framework

described above. One possibility to describe the anomalies is to add a number

of neutrinos to the model. Experimentally, the new mass squared splitting is

O(1 eV2/c4). In order to be consistent with results which favour three active

neutrinos (see Sec. 1.4.3) which has mass squared splittings of O(10−3 eV2/c4)

and O(10−5 eV2/c4), and the measurement of the number of neutrinos from the

Z boson decay width of Nν = 2.9840±0.0082, these neutrinos, nus, must be

sterile (do not interact with the Z boson). A brief summary of the anomalies is

presented here; for more details see Ref. [60] and references therein.

The LSND experiment provided the first piece of experimental evidence for

physics beyond the three active flavour model. It was a 167 t liquid scintillator

experiment, with a low concentration of scintillator allowing for Cherenkov

light to also be visible. The neutrinos were created via a 798 MeV proton beam

incident on a target; most of the π− and µ− are mostly absorbed by a beam
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dump 30 m from the detector, while most of the π+ and µ− decay at rest (>95%),

with a small fraction decaying in flight (<5%). Electron antineutrinos are se-

lected by detecting inverse β-decay (Eq. 1.1), and observing νµ → νe. A total

excess of 87.9±23.2 events is seen, consistent with an oscillation probability of

0.264±0.081% [61].

MiniBooNE is a spherical detector filled with 806 t of pure mineral oil (CH2),

reading out scintillation and Cherenkov radiation using PMTs. The neutrinos are

created via horn-focussed pion decay in a 50 m-long decay volume. The detector

is located 541 m from the target. In neutrino mode, the νµ flux peaks at 600 MeV,

while in antineutrino mode, the νµ flux peaks at 400 MeV. 6.5×1020 POT and

11.27×1020 POT of data have been collected in neutrino mode and antineutrino

mode respectively. Using CCQE events, a total excess of 240.3±62.9 events are

seen, consistent with
(—)

νµ →
(—)

νe oscillations and the LSND result [62].

The GALLEX and SAGE experiments used intense 51Cr and 37Ar radioactive

sources, placed inside the detectors, for calibration. The neutrinos produced

are in the energy range 420–820 MeV, and have a path length of O(1 m) before

escaping the detector. The average ratio of measured to predicted rate is

0.86±0.05 or 0.76+0.09
−0.08, depending on cross-section model, a deviation from unity

of ∼2.7σ. The result is consistent with νe → νe oscillations.

A range of short-baseline reactor experiments, with baselines of 9–95 m, have

been performed over the past 50 years, seeing an average ratio of measured

to expected event rates of R = 0.976±0.024. Recent re-evaluations of of the νe

flux prediction have resulted in a net '+3% shift [57], resulting in an increase

of the mean cross section per fission of '6%, which is directly proportional to

the expected event rate. This gives a new value of R = 0.943±0.023, a deviation

from unity at 98.6% C.L. [63]. The result is consistent with νe → νe oscillations.

Various studies of
(—)

νµ →
(—)

νµ oscillations have been performed, including
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at MiniBooNE with a near detector (SciBooNE), at accelerators with higher

neutrino energies (CDHSW, CCFR), and SK atmospheric data. Studies of
(—)

νµ →
(—)

νs

oscillations have also been performed using NC event rates at both SK and

MINOS. No positive signals have been observed.

Using the above data, and constraints from other experiments, fits [60] can

be performed using models in which there are one or more sterile neutrinos

added to the three active neutrino flavour models. The “3+1” model includes

one eV-scale sterile neutrino, and the “3+2” model includes two eV-scale sterile

neutrinos. While there are three anomalies each of around 3σ (LSND, reactor,

gallium) indicating physics beyond three active neutrinos, when performing

sterile neutrino fits to all data, tensions arise. The “3+1” model fails due to

differences in MiniBooNE νµ → νe and νµ → νe data, requiring the addition

of CP violation, therefore multiple sterile neutrinos. The LSND signal predicts

νµ → νs, but this has not been observed, causing tensions in the fit; if LSND is

discarded, hints of
(—)

νe →
(—)

νe oscillations remain without the need for νµ → νs. The

best-fit ∆m2 values require a sum of neutrino masses which is in tension with

limits from cosmological data. More experimental data is required in order to

reconcile the tensions.

1.4.5 Future prospects

Currently there are three major questions in the theory of three active neutrino

oscillations:

• The mass hierarchy: ∆m2
32 > 0 (NH) or ∆m2

32 < 0 (IH);

• The octant of θ23: θ23 < 45◦ or θ23 > 45◦;

• The amount of CP violation: the value of δCP ,
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all requiring the study of neutrino oscillations driven by ∆m2
32. The current

generation of experiments (T2K, NOνA, SK atmospheric analyses, IceCube,

. . . ) will not be able to answer these questions conclusively13, therefore new

experiments are required.

JUNO is a proposed ∼60 km-baseline reactor neutrino experiment, using a

spherical detector with 20 kt of liquid scintillator. It will achieve ∼3σ determi-

nation of the mass hierarchy with 6 years of data taking [64]. RENO-50 is a

∼50 km-baseline using an 18 kt liquid scintillator detector, with similar mass

hierarchy prospects.

IceCube is a ∼1 km3 water-ice Cherenkov experiment, read out using PMTs

on long strings drilled into the Antarctic ice, studying atmospheric neutrinos

with a neutrino energy threshold of ∼20 GeV. PINGU is a proposed extension,

adding new strings to the detector, with smaller spacing, to bring the energy

threshold down to ∼5 GeV. This allows it to study resonance due to matter

effects in the Earth, allowing 3σ(5σ) determination of the mass hierarchy within

2(6) years of data taking [65].

INO is a proposed magnetised calorimeter, with a mass of 50 kt, to study

atmospheric neutrinos. It will achieve 4σ determination of the mass hierar-

chy, for true ∆m2
32 = 2.0×10−3 eV2/c4 and sin2(2θ13) = 0.1 for 1000 kt – years of

atmospheric neutrino exposure [66].

LBNE is a proposed long-baseline accelerator neutrino experiment, using

a 34 kt fiducial mass liquid argon TPC as a far detector, on-axis and ∼1300 km

away from a high-power conventional neutrino beam at Fermilab, with neutrino

energy spectrum peak at ∼3.5 GeV. The long baseline allows the true mass

hierarchy to be determined at 3σ for all values of true δCP , and it will achieve 3σ

determination of sin δCP 6= 0 for 40% of true δCP values. Atmospheric neutrino

13The sensitivity of these experiments is up to ∼90% C.L. for each question, and is dependent
on the true oscillation parameters.
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data can provide complementary information [67].

Hyper-Kamiokande is a proposed long-baseline accelerator neutrino experi-

ment, using a 1 mt water Cherenkov detector as a far detector,∼2.5◦ off-axis from

and ∼295 km away from a high-power upgrade of the conventional neutrino

beam at J-PARC, with neutrino energy spectrum peak at∼0.6 GeV. The relatively

short acclerator-baseline means it is not so sensitive to the mass hierarchy (3σ

determination of mass hierarchy possible for 46% of true δCP values). If the

mass hierarchy is known, it will achieve 3σ determination of sin δCP 6= 0 for

74% of true δCP values. Atmospheric neutrino data can provide complementary

information [68].



Chapter 2

The T2K Experiment

Tokai to Kamioka (T2K) is a long-baseline neutrino oscillation experiment. It

consists of four main components:

1. A muon neutrino beam, generated at the Japan Proton Accelerator Re-

search Complex (J-PARC) located in Tokai on the east coast of Japan.

2. A number of monitors to measure the beam stability, including proton

beam monitors, muon monitors, and the Interactive Neutrino GRID (IN-

GRID), an on-axis neutrino detector located 280 m from the beam target.

3. A near neutrino detector, Near Detector at 280 m (ND280), located at 280 m

from the beam target and 2.5◦ off-axis, to measure the neutrino flux and

cross-section characteristics and to constrain the event rate prediction at

the far detector.

4. A far neutrino detector, SK located at 295 km from the beam target and 2.5◦

off-axis, situated near Kamioka, in the west of Japan.

These components of the T2K experiment are summarised in Secs. 2.1, 2.2,

2.3 and 2.4 respectively. More detailed descriptions can be found in [69] and

references therein.

37
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The primary physics goals of T2K are to measure neutrino oscillation pa-

rameters through measurements of
(—)

νµ →
(—)

νµ and
(—)

νµ →
(—)

νe oscillations. These are

discussed more in Sec. 2.5.

2.1 The neutrino beam

2.1.1 J-PARC accelerator complex

The J-PARC accelerator complex [70] consists of three accelerators: a linear

accelerator (LINAC), a rapid-cycling synchrotron (RCS), and the main ring

synchrotron (MR). The LINAC is designed to accelerate a 50 mA H− beam up to

400 MeV kinetic energy1, with a peak beam power of 20 MW (presently 30 mA

up to 181 MeV at a peak of 5.43 MW). At injection into the RCS, the beam is

converted to a proton beam (H+) by charge-stripping foils. The RCS accelerates

the proton beam to 3 GeV with a 25 Hz cycle and two bunches per cycle, with a

beam power of 1 MW (presently ∼300 kW). Protons are supplied by the RCS to

the MR (∼5%) and to the Material and Life Science Facility at J-PARC (∼95%).

The MR accelerates protons in eight (six prior to June 2010) bunches to 30 GeV,

with a beam power of 750 kW (presently ∼240 kW, see Fig. 2.12). When running

in fast extraction mode for the neutrino beamline, the eight proton bunches are

extracted by a set of five kicker magnets in a single turn. The spill width is∼5µs,

and the bunch spacing is 581 ns. This time structure is important for background

rejection of cosmic ray interactions.

1Throughout this chapter, all accelerator beam energies are given in terms of kinetic energy.
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2.1.2 Neutrino beamline

The neutrino beamline is composed of a primary and secondary beamline, as

shown in Fig. 2.1. The primary beamline directs the proton beam towards

Kamioka; the secondary beamline produces the neutrino beam through the

decay of a focused pion beam generated by the interaction of the primary proton

beam with a graphite target.

0 50 100 m

Main Ring

Secondary beamline

(1) Preparation section

(2) Arc section

(3) Final focusing section

(4) Target station

(5) Decay volume

(6) Beam dump

ND280

(1)

(2)

(3)

(4)(5)(6)

Figure 2.1: Plan view of the T2K beam-
line. Figure taken from [69].

Target station

Beam dump

(1)

(2)

(3)

(4) (5)
(6)

Muon monitor

(1) Beam window

(2) Baffle

(3) OTR

(4) Target and

first horn

(5) Second horn

(6) Third horn

Figure 2.2: Side view of the T2K sec-
ondary beamline. The length of the
decay volume is ∼96 m. Figure taken
from [69].

Primary beamline

The primary beamline consists of preparation (54 m long), arc (147 m), and final

focusing (37 m) sections. The preparation section takes the proton beam extracted

from the MR, and tunes it so that the beam can be accepted by the arc section.

The tuning is done using 11 normal conducting magnets (four steering, two

dipole, five quadrupole). The arc section has a 104 m radius of curvature and

bends the beam towards Kamioka. The bending is done using 14 doublets of

superconducting combined function magnets [71], and there are also three pairs

of horizontal and vertical superconducting steering magnets to correct the beam

orbit. The final focusing section guides and focuses the beam onto the target,
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and also directs the beam downward by 3.637◦ with respect to the horizontal,

to achieve the desired 2.5◦ angle at SK2. The focusing is done using 10 normal

conducting magnets (four steering, two dipole, four quadrupole).

Secondary beamline

The secondary beamline consists of a target station, a decay volume, and a beam

dump, as shown in Fig. 2.2. The target station and decay volume are contained

within a single volume of ∼1500 m3, filled with helium gas at 1 atm. Helium gas

is used to reduce pion absorption and suppress beam-induced tritium and NOX

production. A titanium-alloy beam window separates the vacuum of the primary

beamline with the helium gas volume of the secondary beamline. Protons from

the primary beamline are directed to the target via the beam window.

The target station consists of:

• a baffle (a water-cooled graphite block with a beam hole of 30 mm diameter)

to collimate the proton beam, to protect the magnetic horns;

• an optical transition radiation monitor (OTR) to monitor the proton beam

profile upstream of to the target;

• a target to generate secondary pions. The target core is a 1.9 interaction

lengths long (91.4 cm), 2.6 cm diameter graphite rod. Graphite is used

because it is a low density material, and so is not melted by the pulsed

beam heat load. The core is surrounded by a 2 mm thick graphite tube, and

sealed inside a 0.3 mm titanium case. The target is cooled by helium gas

flowing between the core and the tube, and between the tube and the case;

• three magnetic horns [72] to focus the pions, excited by a 250 kA (designed

for up to 320 kA) current pulse. The horns consist of two coaxial conductors,

2The beam centre is 2.377◦ below SK, and 0.795◦ to the south.
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with a magnetic field of strength 1/r in the volume between the inner and

outer surfaces, where r is the axis; no field is generated within the inner

conductor. When wide-angled secondaries from proton interactions on the

target pass through into the magnetic field, they are focussed, producing a

narrower meson beam. This in turn produces a narrower neutrino beam.

When run at 250 kA (maximum field 1.7 T), the horns increase the flux at

SK by a factor of∼17 (compared to horn off) at the neutrino spectrum peak

energy (∼0.6 GeV).

The decay volume is a ∼96 m long steel tunnel, in which pions and muons

decay into neutrinos. The beam dump sits at the end of the decay volume. It

has a 75 t graphite core, sandwiched by aluminium cooling modules containing

water channels. Seventeen iron plates (two inside the helium vessel, fifteen

outside) provide 2.40 m of further material. The beam dump stops all hadrons

and muons below ∼5 GeV/c. Neutrinos pass through the beam dump, and are

used for physics.

2.1.3 Global alignment and time synchronisation

Global Positioning System (GPS) surveys have been performed at both Tokai

and Kamioka, to allow accurate alignment and positioning to take place. The

primary beamline, target, and horns were aligned to send the neutrino beam

in the right direction, and to reduce irradiation in the high-intensity proton

beamline. The muon monitors and neutrino near detectors were also aligned in

order to monitor the neutrino beam direction. A long-baseline survey measured

the distance from the target to the centre of SK to be 295.3352±0.7 km, with an

off-axis angle of 2.504±0.004◦, well within the required directional accuracy of

0.057◦.
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T2K uses a GPS time synchronisation system which provides an O(50 ns)

scale synchronisation between SK event trigger timestamps and J-PARC beam

spill timestamps. An independent optical fibre link sends J-PARC beam spill

timestamps directly to the ND280 data acquisition system.

2.1.4 Neutrino spectrum at off-axis locations

T2K is the first long-baseline oscillation experiment to employ the off-axis

method [73], to produce a narrow-band neutrino beam to study neutrino oscilla-

tions. The predominant production mechanism of neutrinos is via the two-body

decay of pions and kaons (Eq. 1.2). At an angle away from the parent me-

son direction, the energy of the neutrino, Eν , is only weakly dependent on the

momentum of the parent, following

Eν =
0.43Eπ

1 + γ2θ2
, (2.1)

where Eπ is the parent pion energy, γ is the Lorentz factor of the pion, and θ is

the neutrino angle relative to the parent pions’ momentum. Parent π+ (π−) are

focussed by the magnetic horns to produce the neutrino (antineutrino) beam.

Therefore, if a neutrino detector is placed at an angle relative to this focussing

axis, it will see neutrinos with a narrow energy spread, as illustrated in Fig. 2.3.

T2K uses a 2.5◦ off-axis angle3 which provides a beam flux peak at∼0.6 GeV, near

the first oscillation maximum. This method maximises the flux at the oscillation

maximum thus enhancing the oscillation sensitivity and reduces the rate of

high energy events which contribute mainly to the backgrounds, at the cost of a

reduction in total neutrino flux.

Due to the off-axis angle dependence of the energy spectrum, the neutrino

3The off-axis angle can be changed in the range 2.0◦ to 2.5◦ to vary the position of the
spectrum peak.
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beam must be precisely monitored; a 0.025◦ change in off-axis angle results in

a ∼1% change in the flux prediction at SK [74]. At 295 km from the target, SK

sees a point source from the specific 2.5◦ off-axis angle, while, at 280 m from the

target, ND280 sees a range of off-axis angles4.
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Figure 2.3: T2K fluxes for different off-axis angles (bottom) and muon neutrino
survival probability at 295 km (top). Figure taken from [74].

2.2 On-axis beam monitors

The neutrino beam direction and event rate stability must be well monitored

in order to predict neutrino event rates at SK. First, the proton beam monitors

in the primary and secondary beamlines are described in Sec. 2.2.1. The muon

monitors, located after the beam dump, are described in Sec. 2.2.2. Finally, the

on-axis neutrino detector located at 280 m from the beam target, INGRID, is

described in Sec. 2.2.3.

4ND280 covers a range of off-axis angles ∼0.802◦, while SK covers a solid angle of ∼0.006◦

[75].
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2.2.1 Proton beam monitors

Proton beam monitors in the primary beamline

The proton beam is monitored within the primary beamline to ensure that the

proton beam is well-tuned; a well-tuned proton beam is essential to minimise

beam loss, and so achieve high-power beam operation, and also to give stable

neutrino beam production. Five current transformers (CTs) track the beam in-

tensity, 21 electrostatic monitors (ESMs) follow the beam position, 19 segmented

secondary emission monitors (SSEMs) check the profile of the beam, and 50

beam loss monitors (BLMs) track beam loss.

Each CT consists of a cylindrical ferromagnetic core with a 50-turn toroidal

coil. The proton beam runs through the centre of the cylinder axis, and induces

a current in the coil which is proportional to the beam current. This is a non-

destructive method of measuring the beam intensity. The CTs provide a 2%

uncertainty on absolute proton beam intensity and a 0.5% uncertainty on the

relative intensity. The CTs can also measure the beam timing, with a precision of

better than 10 ns.

Each ESM consists of four segmented cylindrical electrodes surrounding

the proton beam orbit (80◦ coverage per electrode). The beam centre is found

non-destructively using by measuring the top-bottom and left-right asymmetries

of the beam-induced current on the electrodes. The ESMs provide a position

precision of 450µm (500µm is required).

Each SSEM consists of two thin (5µm) titanium foils, segmented horizontally

and vertically, with a HV anode foil between them. The strips produce secondary

electrons, in proportion to the number of protons that pass through the strip,

which drift along the electric field and induce currents on the strips. The SSEMs

are only used during beam tuning due to the 0.005% beam loss they induce;
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during continuous beam operation they are remotely extracted from the beam

orbit. The SSEMs provide a beam width precision of 200µm (700µm is required).

Each BLM is a wire proportional counter, filled with an Ar-CO2 gas mixture.

The signal is integrated during the spill and fires a beam abort interlock signal if

a threshold is reached. The BLMs and beam loss sensitivity down to 16 mW.

Proton beam monitors in the secondary beamline

The proton beam is also measured in the secondary beamline by the OTR just

upstream of the target. The OTR measures light produced in a narrow cone as

the incident proton beam enters and exits a thin foil, placed at 45◦ to the proton

beam. This light is directed out of the high-radiation environment, and a charge

injection device camera is used to produce an image of the proton beam profile.

The OTR has an eight-position carousel, controlled remotely, with four titanium

foils (which produce visible light (transition radiation)), an aluminium foil (with

higher reflectively for a low intensity beam), a ceramic foil (produces high-

intensity florescent light for a very low intensity beam), a calibration foil (for

OTR alignment monitoring), and an empty slot (for mirror transport efficiency

studies).

2.2.2 Muon monitors

Muons with pµ & 5 GeV/c are monitored behind the beam dump. Measuring

muons is a indirect measurement of the neutrino beam, because muons are

mainly produced with neutrinos from the two-body decay of pions (Eq. 1.2).

Using the beam simulation (see Sec. 3.1.1), for 3.3×1014 protons/spill and 320 kA

horn current, there is estimated to be 107 charged particles/cm2/bunch in the

muon monitor at the beam centre. The flux is 87% muons, with the remainder

being delta-rays, and the beam profile is Gaussian-like with width ∼1 m.
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There are two types of detector arrays, each covering an area of 150×150 cm2,

each with 49 sensors. An array of ionisation chambers is located at 117.5 m from

the target. It consists of seven chambers, each with seven sensors. The active

volume of each sensor is made by two parallel plate electrodes, between which

200 V is applied. An array of silicon PIN photodiodes is located at 118.7 m from

the target. 80 V is applied to fully deplete the silicon layer. The muon monitor

can measure the muon profile with precision 2.95 cm (corresponding to a 0.0014◦

precision in neutrino beam direction), and the neutrino beam intensity with a

precision better than 3%.

An emulsion tracker is located downstream of the detector arrays to measure

the absolute flux and momentum distribution of the muons. The flux module

is composed of eight emulsion films, and can measure the muon flux with a

precision of 2%. Downstream of this, the momentum module is composed of 25

emulsion films interleaved with 1 mm lead plates. The muon momentum can be

measured to a precision of 28% at a momentum of 2 GeV/c via multiple Coulomb

scattering.

2.2.3 INGRID

INGRID [76], an on-axis neutrino detector located at 280 m from the beam

target, is made up of iron and plastic scintillator modules arranged in a cross.

It was designed to to monitor the neutrino beam directly, and has sufficient

statistics to measure the neutrino beam intensity daily and the beam direction

monthly, in order to assess the neutrino beam stability. At a beam intensity of

∼1018 POT/day, the neutrino event rate is monitored with 4% precision and the

neutrino beam centre is measured monthly with accuracy better than 0.023◦

(0.057◦ required) [74].

INGRID utilise the same plastic-scintillator-based readout and electronics
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as several ND280 subdetectors, which will be described in Secs. 2.3.2 and 2.3.3.

INGRID is arranged in a cross, with seven modules laid horizontally and seven

modules laid vertically (the two centre modules of each arm overlap, and corre-

spond to the centre of the neutrino beam). A further two modules are located

off-axis and are separate to the main cross, as shown in Fig. 2.4, to study the

axial symmetry of the neutrino beam. The total area sampled is 10 m× 10 m, and

the edge of the detector corresponds to an angle of ∼1.0◦ from the beam centre.

Figure 2.4: INGRID on-axis neutrino detector. Figure taken from [69].

Each INGRID module consists of a sandwich structure of nine 124× 124 cm×

6.5 cm iron plates and eleven tracking scintillator planes5. Each scintillator plane

consists of 24 horizontal and 24 vertical scintillator bars, each with dimensions

of 1.0 cm × 5.0 cm × 120.3 cm. The total iron mass is 7.1 t per module. Each
5There is no iron plate between the 10th and 11th tracking plate, due to weight restrictions;

this does not effect the tracking performance.
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module is surrounded by scintillator veto planes, to reject interactions occurring

outside the module. A veto plane consists of 22 scintillator bars, segmented

transverse to the beam direction, each with dimensions of 1.0 cm × 5.0 cm ×

111.9 cm (bottom sides) or dimensions of 1.0 cm × 5.0 cm × 129.9 cm (top, right,

and left sides). Each module is contained within a dark box, with the front-end

electronics mounted outside the dark box.

The Proton Module is an additional module consisting of scintillator planes

without iron plates, surrounded by veto planes, and is located between the

horizontal and vertical central modules. The Proton Module is designed to see

both the proton and muon track from neutrino-induced CCQE interactions, to

compare with MC simulations of beamline and neutrino interactions.

Events are reconstructed by searching for hits within a 100 ns time window,

where the first hit is within 100 ns of the expected neutrino beam bunch arrival

time. There must be at least three scintillator planes that have hits in both x and

y layers6. Tracks are reconstructed in x-z and y-z separately using a straight line

fit, and then combined into 3-dimensional tracks. Veto and fiducial volume cuts

are then applied. A typical neutrino interaction in the Proton Module is shown

in Fig. 2.5.

2.3 ND280

ND280 is a near neutrino detector, located 280 m from the beam target and

2.5◦ off-axis. It is designed to measure the flux, energy spectrum, and electron

neutrino contamination of the unoscillated 2.5◦ off-axis neutrino beam that will

be seen by SK, in order to predict neutrino interaction rates at SK. It can be

used to constrain the neutrino flux and cross-section systematics used in long-

6All detectors use the following coordinate convention: x is horizontal, y is vertical, and z is
along the nominal beam axis.
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Figure 2.5: A typical neutrino event in the Proton Module. A neutrino enters
from the left and interacts within the module, producing charged particles whose
tracks are shown as the red circles. One of them exits the Proton Module and
enters the central INGRID horizontal module. This event is probably a CCQE
interaction; the heavily ionising track is a proton, and the other track is a muon.
Each of the green cells in this figure is a scintillator, and the size of the red circles
indicates the size of the observed signal in that cell. Blue cells indicate veto
scintillators. Figure taken from [69].

baseline oscillation analyses, as described in Sec. 3.3.4, and can also produce

measurements of cross sections for neutrino-induced interactions.

ND280 is magnetised, with all subdetectors contained within the recycled

UA1 magnet [77], operating with a field of 0.2 T. The layout of the ND280

subdetectors are shown in Fig. 2.6. A π0 detector (PØD) [78] is located at the most

upstream end (closest to the beam production point). It is a plastic-scintillator-

based detector containing water, lead, brass and carbon targets. The tracker

is located downstream of the PØD, and is composed of three time projection

chambers (TPCs) [79] interleaved with two fine grained detectors (FGDs) [80].

The most upstream FGD (FGD1) provides carbon targets, while FGD2 provides
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both water and carbon targets. The downstream electromagnetic calorimeter

(DS-ECal) [81] is located downstream of the tracker. The PØD, tracker and

DS-ECal are contained with a metal “basket” frame, with dimensions 6.5 m ×

2.6 m × 2.5 m. The x and y faces of the PØD and tracker are surrounded by

the PØD-ECal and barrel-ECal respectively. The yoke of the magnet, having

outer and inner dimensions of 7.6 m × 5.6 m × 6.1 m and 7.0 m × 3.5 m × 3.6 m

respectively, is instrumented with plastic scintillator (SMRD) [82].

Figure 2.6: An exploded view of the ND280 off-axis neutrino detector. Figure
taken from [69].

2.3.1 Time projection chambers (TPCs)

The TPCs were designed to perform three key functions. Firstly, their excellent

three-dimensional imaging capabilities (e.g. spatial resolution of ∼1 mm) allow

the trajectories of charged particles traversing the detector to be determined.

Secondly, since they are situated inside a magnetic field, track curvature can

be used to determine the momenta of charged particles. Lastly, by examining

the energy lost by particles due to ionisation as a function of momentum, and
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comparing with the same quantity for known particles, the TPCs can be used to

identify the particle species.

Each of the three TPCs consists of an inner box containing an argon-based

drift gas, contained within an outer box (2.3 m × 2.4 m × 1.0 m) that holds CO2

as an insulating gas. The drift gas, Ar:CF4:iC4H10, in proportion 95:3:2, is used

due to its low diffusion, high speed (∼7.8 cm/µs), and good performance with

the micromegas detectors. The box is designed in such a way that, along with a

central cathode, it provides a uniform electric field in the active drift volume of

the TPC.

Ionisation electrons produced by charged particles passing through the TPCs

drift in the gas away from the central cathode, towards readout planes. Each of

the six (two per TPC) readout planes consists of twelve micromegas modules,

arranged in two vertical columns, offset such that there is no alignment of the

small inactive regions between modules. Each micromegas module consists

of 1728 7.0 mm × 9.8 mm anode pads behind a micromesh connected to a high

voltage. A large electric field O(100 V/cm) is generated in the gap, creating a

region in which charge is amplified with a gain O(1000), before being sampled

by the anode pads.

The 124,416 channels are readout using front-end cards (FECs) which read 288

channels into application specific integrated circuits (“AFTER”), which samples

and digitises the signals, and stores the data in circular buffer containing 511

20 ns-width time bins. This process proceeds continuously until a trigger is

received by the front-end mezzanine (FEM), at which point sampling is halted

and the buffer is read out. Six FECs feed into a FEM which performs zero-

suppression to reduce the data rate.

A photoelectron calibration system has been installed, in order to measure

the transport properties of electrons in the TPCs. A series of 8 mm diameter
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aluminium discs and 4 mm width strips are glued to the copper central cathode.

A Nd:YAG laser shines 266 nm light at the cathode, producing localised photo-

electrons (2 photoelectrons/mm2 on aluminium and 0.03 photoelectrons/mm2 on

copper), which drift towards the micromegas. The drift velocity can be precisely

determined using the photoelectron arrival time relative to the laser trigger time.

The transverse diffusion is found to be 15 mm/
√

cm found by repeated mea-

surements from the same strip target. During neutrino beam data taking, laser

calibration triggers are taken during inter-spill periods. Laser calibration triggers

can also be taken during magnet-off running, and compared with magnet-on

data, to study distortions in the magnetic field.

2.3.2 Fine grained detectors (FGDs)

The FGDs provide 1.1 t of target mass for neutrino interactions, and also provide

tracking of charged particles leaving the interaction vertex. They are composed

of 9.61 mm × 9.61 mm × 1864.3 mm plastic scintillator bars, arranged in alter-

nating x and y layers. FGD1 contains a total of 15 XY modules, which are an x

layer followed by a y layer. FGD2 contains a total of seven XY modules, alternat-

ing with six 2.5 cm thick layers of water target. The difference in composition

between FGD1 and FGD2 allows for the neutrino interaction cross sections on

water to be determined.

The FGD, along with several other ND280 subdetectors (PØD, ECal, SMRD)

and INGRID utilise the same operation and readout principle: scintillation

light is collected by and then carried along the scintillator bar along a wave-

length shifting (WLS) fibre; the light is then transported to a photosensor, which

converts the light into an electrical signal7.

7The DS-ECal, and the side modules of the barrel-ECal have a photosensor on each end of
the fibre. Other detectors have a single photosensor per fibre, in order to minimise detector dead
regions; The other end mirrored with a deposition of aluminium, to increase light-collection
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Scintillator bars and planes are made of polystyrene doped with 1% PPO

and 0.03% POPOP by weight [83]. A thin reflective coating of TiO2-infused

polystyrene surrounds the whole of each scintillator bar, and improves light

collection efficiency by reflecting back escaping light. A 3 mm diameter hole

runs along the centre of each bar, allowing insertion of the WLS fibre, which is

attached to the photosensor.

The WLS fibres used are 1 mm diameter Kuraray double-clad Y-11, which

have an absorption spectrum centred at a wavelength of 430 nm (blue), which is

well matched to the 420 nm (blue) emission peak of the scintillation light. The

WLS fibre emission spectrum is centred at 476 nm (green) and has only a small

overlap with the absorption spectrum, reducing self-absorption effects.

The photosensor used is a Hamamatsu S10362-13-050C multi-pixel photon

counter (MPPC) [84], chosen with the restrictions of having to operate in a 0.2 T

magnetic field, and fit into a limited space inside the magnet. The MPPC is a

multi-pixel avalanche photodiode, consisting of 667 50 × 50µm2 independent

sensitive pixels. The photodiodes are operated in Geiger mode (the reverse bias

voltage is set greater than the breakdown voltage) therefore a photoelectron

can induce an ionisation cascade (“avalanche”), which in turn generates a large

reverse current. The MPPC gain is in the range 0.5–1.5×106. The active area of

the MPPC is 1.3 × 1.3 mm2, providing good acceptance for light detection from

the 1 mm WLS fibres. In total, around 64,000 MPPCs were produced for T2K.

The FGD uses the same AFTER chip described in Sec. 2.3.1 to readout the

signal from the MPPCs. Two readout channels are linked to each MPPC: a

high-gain channel which saturates at about 90 pixel avalanches, but has a good

signal-to-noise ratio for single pixels; and a low-gain channel which extends the

dynamic range. The low-gain channel is used when the high-gain channel mea-

efficiency.
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sures a pulse corresponding to more than about 65 avalanches. This corresponds

to a low-gain signal of about 7 avalanches. The ratio of high- to low-gain signals

is linear and measured using cosmic rays.

The purpose of charge calibration is to convert a digitised signal to a nor-

malised value representing the energy deposited in the scintillator bar. The

charge calibration chain proceeds as follows:

• Normalisation by temperature-dependent single-avalanche gain. The

number of pixels avalanching, Nav, is calculated by normalising the pulse

height, PH, by the average pulse height corresponding to a single-pixel

avalanche, 〈PH1〉, calculated by fitting a truncated Gaussian distribution

to the first dark noise peak. The dark noise spectra are seen in beam trig-

gers, and also in special runs taken with periodic triggers. 〈PH1〉 changes

with MPPC gain, which itself is dependent on the temperature. During

operation, temperature varies within±2◦C, which changes the breakdown

voltage, in turn changing the gain by less than 10%. Temperature and oper-

ating voltage are measured every few minutes, allowing a time-dependent

correction of 〈PH1〉 to be performed.

• Effect of overvoltage on Nav. Changes in the overvoltage can also change

the photodetection efficiency, and the cross talk and after-pulsing probabil-

ities, which change the value of Nav for a given number of photons hitting

the MPPC. Using FGD through-going cosmic events, which have a narrow

energy deposit per unit length, a linear temperature-dependent correction,

the same for each MPPC, has be found to account for this effect.

• MPPC pixel saturation. Each MPPC has a finite number of pixels, there-

fore for larger signals the proportion of photons inducing a pixel avalanche

will fall. A model to take this in account has been formulated assuming

photons are uniformly distributed across the whole MPPC, and a pixel
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cannot avalanche multiple times within the electronic pulse shaping time,

and this model has been verified using test bench measurements. Using

this model, the number of detectable photons, NDPE, is calculated.

• Bar-to-bar variations and light attenuation. Difference between bars in

the number of photons hitting the MPPC are expected from the variations

in fibre-MPPC coupling, variations in scintillator material, variations in

fibre mirroring, variations of the position of the fibre in the bar and the

diameter of this hole, etc. Cosmic ray data is used, and NDPE is calculated

for each bar, normalised by the calculated track length through that bar.

Variations from the mean of all bars, Cbar = 1, of ∼7% are seen.

Attenuation along the bar is calculated by studying the variation of

NDPE/Cbar as a function of hit distance from the MPPC, for cosmic ray

events. The measured attenuation is consistent with test bench measure-

ments, except within 5 cm of either end of the bar due to light leaking out

before it is absorbed by the WLS fibre.

A combined correction is applied to NDPE.

• Conversion from scintillation photons to energy. The corrected NDPE is

assumed to be proportional to the number of scintillation photons, Nscint.

This is converted to the actual energy deposit in the detector using an

empirical normalisation factor (about 21 NDPE/MeV), a correction using

Birks’ formula [85], and an empirical correction in order to bring data and

MC into agreement for the energy distributions of cosmic rays.

The charge calibration chain works well, as can be seen in Fig. 2.8 comparing

data and MC energy loss as a function of momentum.

The AFTER chip has a spare channel for a timing marker, which is received

with triggers. The timing calibration chain proceeds as follows:
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• Pulse fitting. The leading edge of the waveform above 150 ADC (∼4

avalanches) is fit from−240 ns before the peak time to the peak, using either

the high- or low-gain channel using the ∼65 avalanche cut as described

above. Fitting only the leading edge gives better resolution, as the effect of

after-pulsing and late photons (e.g. from reflections at the mirrored end of

the fibre.

• Timing markers. Timing markers are not received by each AFTER chip

simultaneously. A correction is made for each hit that is the time difference

between the hit timing marker relative to the first FGD timing marker.

• FEB-to-FEB (front-end board) corrections. Differences are seen in cosmic

muon data that show residual differences between front-end boards (FEBs).

The correction is constant in time and is calculated using cosmic rays. For

each cosmic ray track, the difference between the hit time and average track

hit time is calculated. The correction used is the residual of this difference

averaged over many tracks.

• FGD hit time for a track. FGD hits are corrected for the light propagation

time down the fibre. The single-hit timing resolution is measured as the

width of the time difference between a given hit and a reference hit in

the first FGD layer as a function of Nav and the reference charge. From

this, a measure of the single-avalanche timing resolution is found to be

12.5±0.6 ns, which is related to the time constants of the scintillator and

WLS fibre, smeared by reflection at the mirrored fibre ends.

The timing calibration performs well. For tracks that pass through both FGD1

and FGD2, two clear peaks of width 1.47 ns, with clear separation between them,

are seen in the FGD1−FGD2 time difference. This allows track direction to be

determined.
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2.3.3 TRIP-t subdetectors (PØD, ECal, and SMRD)

The PØD, ECal, and side muon range detector (SMRD) all use the scintillator-

bar and MPPC readout, as discussed in Sec. 2.3.2. These subdetectors, with

INGRID, also use the same front-end electronics. A TRIP-t front-end board

(TFB) [86], collects the signals from 64 MPPCs. The signal from each MPPC

is split capacitively in the ratio 1:10, resulting in a high-gain (sensitive to low

photoelectron signals) and low-gain (extends the dynamic range, takes over at

∼50 photoelectrons) channels. Charge for each channel is collected in a 480 ns

integration window, and a time stamp is recorded if the integrated charge goes

above a threshold. The integration time is followed by a 100 ns reset period

(dead time). Therefore the time structure closely matches the 581 ns beam bunch

peak spacing.

The PØD was designed to measure NC1π0 interactions8 on a water target,

with the same neutrino beam flux as reaches SK. It is composed of x and y plastic

scintillator bar layers, interleaved with lead and brass sheets, and fillable water

bags. The PØD can be operated with either all bags empty, or all bags full,

enabling analyses to be done utilising a subtraction method to deduce water

target cross sections.

The ECal surrounds the inner detectors (PØD, TPCs, FGDs) and provides

complementary information through direction and energy measurements of

photons, and additional particle identification capabilities (electron-muon-pion

separation). The ECal is split into three sub-modules the DS-ECal is located in

the basket after TPC3, the barrel-ECal surrounds the tracker region, and the PØD-

ECal surrounds the PØD. The ECal is composed of layers of scintillator bars of

cross section 4.0 cm× 1.0 cm interleaved with 1.75 mm (DS-ECal and barrel-ECal)

or 4.0 mm (PØD-ECal) lead layers. The DS-ECal (barrel-ECal) consists of 34(31)

8NC1π0 interactions are defined as NC resonant events with a single π0 in the final state.
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scintillator layers, arranged in two views. The PØD-ECal consists of 6 scintillator

layers, orientated in a single view parallel to the beam axis.

The SMRD consists of 7 mm thick scintillation counters inserted into the

1.7 cm air gaps between 4.8 cm thick steel plates which make up the UA1 magnet

flux return yokes. This allows the momentum of high angle muon tracks to be

measured, as well as helping to identify neutrino interactions in the surrounding

cavity walls, and iron of the magnet.

2.3.4 Reconstruction and Monte Carlo simulation

Neutrino fluxes are estimated from beam MC, as described in Sec. 3.1. These

fluxes are passed to the NEUT [87], GENIE [88] or NUWRO [89] neutrino

MC event generators, as described in Sec. 3.2.1, to simulate neutrino-induced

interactions within ND280. Cosmic interactions are simulated using the Corsika

flux [90]. Tracking of particles and their energy deposits within the detector

are simulated using GEANT4 [91, 92]. The optical and electronics readout is

simulated through custom-written code.

TPC reconstruction is performed in two stages. First, tracks of ionisation are

formed in the TPC from signals in neighbouring pads that are consistent with

originating from the same particle. Clusters are formed from neighbouring pads

with hits above threshold in the same column (for horizontal tracks) or same row

(for vertical tracks). A likelihood fit is performed on these clusters to determine

the track momentum and direction [93]. The spatial resolution of tracks and

clusters has a dependence on drift distance and angle, but is around 1 mm. This

is sufficient to achieve the design momentum resolution of 0.1 p⊥GeV/c. TPC

particle identification (PID) is performed using a truncated mean of energy

loss measurements of charged particles in the gas. Energy loss as a function of

momentum from T2K Run 1 is shown in Fig. 2.7. The measured energy loss per
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unit length is used to define a pull, δE(i), where

δE(i) =
dE/dxmeasured − dE/dxexpected(i)

σdE/dx
, (2.2)

for particle hypothesis i. Using the pull, the probability of misidentifying a

muon as an electron is 0.2% for tracks below 1 GeV/c and −1 < δE(e) < 2.

Figure 2.7: Energy loss as a function of momentum for negatively (left) and
positively (right) charged particles in the TPC, from T2K Run 1 data. Also shown
are the MC expectations for muons, electrons, protons and pions. Figures taken
from [79].

The next reconstruction step is to associate TPC tracks with FGD hits. This

both provides a seed to begin the FGD reconstruction, and a T0 for the TPC track.

Any remaining FGD hits are then reconstructed into tracks using straight line

fitting algorithms (first 2-dimensional tracks are formed, which are combined

into 3-dimensional tracks). The PID performance for FGD-only tracks is shown

in Fig. 2.8.

Reconstruction in the other subdetectors proceeds in a similar way; tracks are

found in 2-dimensional, then converted to 3-dimensional (if that information is

available). Dedicated algorithms also exists in the PØD and ECal to find showers

induced from electrons or photons.

The results of individual subdetector reconstruction are given to an ND280

global reconstruction package. This package refits all tracks and showers, utilis-

ing the RECPACK toolkit [94] which takes into account curvature due to magnetic
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Figure 2.8: Deposited energy as a function of range for charged particles stopping
in FGD1 in neutrino beam (left) and cosmic ray (right) data. Also shown are the
MC expectations for muons, protons and pions. Figures taken from [80].

fields and energy loss along the track.

An example event, showing a neutrino-induced DIS event in FGD1 is shown

in Fig. 2.9.

Figure 2.9: Event display showing the three TPCs, two FGDs, and DS-ECal. A
DIS neutrino interaction occurs in FGD1, producing multiple tracks. Figure
taken from [80].



2.4 Super-Kamiokande 61

2.4 Super-Kamiokande

At 50 kt (22.5 kt fiducial) Super-Kamiokande is currently the worlds’ largest land-

based water Cerenkov detector. It is built below Mt. Ikenoyama, located 295 km

west of the neutrino beam target at J-PARC, with a mean rock overburden of 1 km

(2.7 km water equivalent). SK has been running since 1996 in four run periods:

SK-I (1996–2001) was halted by an accident in which 7877 PMTs imploded, SK-II

(2002–2005) ran with the remaining PMTs redistributed and protected by an

acrylic cover, SK-III (2006–2008) ran with a full complement of PMTs, and SK-IV

(2008–present) uses new front-end electronics and data acquisition. T2K is taking

place in SK-IV.

2.4.1 The Super-Kamiokande detector

SK consists of two volumes, a cylindrical inner detector (ID) separated by the

outer detector (OD) by a ∼50 cm steel scaffold as shown in Fig. 2.10, and with

a diameter of 39 m and height of 42 m. The ID is 36.2 m high with a diameter

of 33.8 m, and 11,129 inward-facing 50 cm-diameter PMTs are housed on its

walls. The ID has a photocathode coverage of 40% and uses Hamamatsu R3600

hemispherical PMTs, with a combined quantum and collection efficiency of

about 20%. The OD is about 2 m thick radially and at both ends, and 1,885

outward-facing 20 cm-diameter PMTs are housed on its inner walls. The OD

uses 611 Hamamatsu R1408 PMTs and 1274 R5912 PMTs and is capable of almost

100% rejection of cosmic muon backgrounds. The structure separating the ID

and OD is a steel scaffold covered by plastic sheets which optically separate the

volumes, and is inactive. The wall facing the ID is covered in a black sheet of

plastic to absorb light and minimise the number of photons reflected back into

the ID or transmitted through into the OD. The walls facing the OD are lined
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with Tyvek®, a highly reflective material, which give photons reflecting off the

OD walls a higher chance of scattering into a OD PMT, to compensate for the

sparse OD instrumentation.

Figure 2.10: Layout of the SK neutrino detector. It is composed of a cylindrical
inner detector volume, surrounded by the outer detector. Figure taken from [95].

Both volumes are filled with highly purified water to minimise background

radiation, using a multi-step system including filtration, reverse osmosis, and

degasification. Water is recirculated through the purification system to maintain

purity. Fresh air from outside the mine, away from the site entrance, is pumped

in to the tank area to reduce the effect of the high radon background in the mine.

Charged particles passing through the water emit Cherenkov radiation in a

cone with angle

cos θ =
1

nβ
, (2.3)

where θ is the opening angle at which the photons are emitted, n is the refrac-

tive index of the medium (1.33 for water), and β is the speed of the charged
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particle. It follows that there is a threshold at β = 0.75; only charged particles

travelling faster than the local speed of light emit Cherenkov radiation. The

threshold for detection is pµ ≥ 120 MeV/c, pπ ≥ 158 MeV/c, pp ≥ 1064 MeV/c, and

pe ≥ 0.57 MeV/c for muons, charged pions, protons, and electrons respectively,

therefore, in interactions induced by the T2K neutrino beam, protons are rarely

visible. There is also a non-negligible possibility of muons and pions being

below Cherenkov threshold, although detection is possible with a ∼90% Michel

electron9 tagging efficiency. It should be noted that no charge separation occurs

in SK.

The oscillation analysis described in Chap. 4 requires a high-purity selection

of
(—)

νµ CCQE events in order to reconstruct the neutrino energy accurately, by

assuming quasi-elastic kinematics (Eq. 3.9). A selection has been developed for

1 µ-like ring events (see Sec. 3.4.2), in which the visible ring is hypothesised to

be the muon and the proton is assumed to be below Cherenkov threshold (i.e.

invisible). The major backgrounds occur due to charged pions from CC events

being below Cherenkov threshold10 or absorbed within the nucleus, or charged

pions from NC events mimicking a muon.

A water Cherenkov detector is a good choice for the T2K beam spectrum, in

which the peak is at ∼0.6 GeV, meaning the majority of events are CCQE, as it

gives excellent PID separation of electrons and muons and good neutrino energy

reconstruction of these CCQE events. SK would not perform as well in a higher

energy beam, in which the majority of events are not CCQE, where the hadronic

system must be visible in order to reconstruct the neutrino energy, and for PID.

9An electron from muon decay.
10Alternatively, the muon can be below Cherenkov threshold, and the ring seen be due to a

charged pion.
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2.4.2 Calibration and detector stability

Various systems are used to calibrate the SK detector, and are described below.

More details can be found in Ref. [96].

Water transparency

To measure water transparency, a diffuser ball which emits laser light at wave-

lengths between 350 nm and 500 nm is lowered into the SK tank, and imaged via

a charge-coupled device (CCD) camera. The measurement is repeated at various

depths and the laser stability is measured using a PMT. Since this measure-

ment cannot be done during normal running, a sample of through-going cosmic

muons is also used. Cosmic muons provide an almost constant ∼2 MeV/cm of

energy deposit, independent of particle energy, giving an in-situ measurement of

transparency, at all wavelengths in the Cherenkov spectrum11. The attenuation

length was 105.4±0.5 m in SK-I.

Attenuation length is dependent on the combined effects of scattering and

absorption. Each effect is measured separately using a combination of lasers

with wavelengths 337 nm, 371 nm, 400 nm, and 420 nm illuminating the detector

from the top, flashing every 6 s during normal data taking. Photons that are not

scattered cause PMT hits on the bottom of the tank, while other PMT hits are

due to scattering and reflection from the bottom PMTs and black liner sheets.

Scattered and reflected photons can be separated by the time distribution of

photon arrival times; reflected photons are delayed. A Gaussian fit is performed

on the bottom PMTs’ charge distribution to adjust the laser beam shape and

direction in the MC. The shape of the time distribution of photon arrival times

at the PMTs is used to tune the MC absorption parameters, and the total number

11The Cherenkov spectrum is continuous, running from 300 nm to 600 nm and peaking at
430 nm [97].



2.4 Super-Kamiokande 65

of scattered photons is used to tune Rayleigh scattering parameters.

PMT relative gain

Each PMT can be set with a different high voltage which changes the gain; the

aim is that all PMTs have approximately equal gain. Light is injected into a

scintillator ball lowered into the SK tank, which emits light at the sensitive

region of the PMTs (at a peak of 440 nm). Each PMT detects a few tens of

photoelectrons. The gain of each PMT is calculated using the pulse height,

taking into account light attenuation, PMT acceptance, and scintillator ball

uniformity. The measurement is repeated for various high voltage values and

scintillator ball positions. After calibration at the start of SK-I (June 1996), the

standard deviation of the gain was 7.0%, and this is corrected for by the offline

software.

PMT relative timing

The relative timing of PMT hits is important for event reconstruction. It is

affected by the cable length between PMT and electronics, and charge collected

due to the discriminator slewing effect. An N2 laser emits an intense pulse of

light, with duration 3 ns. This is converted to 384 nm, passed through an optical

filter (to adjust the pulse height), and emitted in the detector via a diffuser

ball. The measurement is repeated for different pulse heights, and the timing

resolution for each PMT is found to be better than 3 ns for one photoelectron,

increasing to better than 1 ns above 30 photoelectrons.

Stability

SK has performed well and been stable throughout SK-IV. Using a sample

of stopping cosmic muons, both the muon momentum to range ratio, and
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decay-electron momentum are stable within 1%. The misidentification rate of

the stopping cosmic muons and decay electrons have been below 1% and 2%

respectively, both with an RMS of 2%. Finally for stopping cosmic muons, the

decay-electron tagging efficiency is stable, with an RMS/mean of 0.81%.

Stability can also be analysed using atmospheric neutrino events. Using a

sample of fully-contained fiducial-volume (FCFV) events (see Sec. 3.4.1), with a

modified timing cut, the event rate is 8.14±0.37 events/day, and is stable through-

out SK-IV within statistical errors. Comparisons of FCFV sample distributions

including the reconstructed vertex position, visible energy, number of rings, PID

likelihood, momentum, number of Michel electrons, and reconstructed π0 mass

also show good agreement between T2K Run 1+2+3, T2K Run 4, and no T2K

beam periods.

2.4.3 Reconstruction and Monte Carlo simulation

Neutrino events are simulated in SK using NEUT, as described in Sec. 3.2.1.

Tracking of particles and their energy deposits within the detector are simulated

using a GEANT3-based [98] simulation called SKDETSIM. For hadrons in

water, a model based on the NEUT intranuclear rescattering cascade model

(see Sec. 3.2.4) with additions from GCALOR [99] and custom code [100]. Ab-

sorption, Rayleigh scattering, and Mie scattering are simulated in SKDETSIMs’

light propagation, and is tuned to data from laser calibration sources. The agree-

ment between SKDETSIM and cosmic ray data for reconstructed momentum is

within a few percent (see Fig. 31 of Ref. [69]).

Reconstruction is performed using a custom reconstruction package. First,

PMT timing information is used to determine an initial vertex, and the initial

direction and ring edge is determined using the PMT charge pattern. Next, extra

Cherenkov ring candidates are found using a Hough transform [101] of the hit
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PMT distribution. This step is iterative; once a ring is found, more rings are

searched for and a likelihood method is used to determine if the data is more

consistent with the presence of the extra ring. This step is repeated until up to a

maximum of five rings are found. Next, PID is performed on all candidate rings

using the expected PMT charge distributions, analytically calculated (based

on muon energy loss and Cherenkov radiation models) for muons, and MC-

generated for electrons. Finally, all rings are refit, taking into account the particle

identification hypothesis, and the photoelectrons are distributed between the

rings. The momentum of each ring is determined using the total number of

photoelectrons for that ring, in a cone with 70◦ half-angle opening towards the

reconstructed ring direction. This determination corrects for light attenuation,

scattering, PMT gain, and PMT acceptance effects, as well as charge sharing

between rings.

The vertex resolution is 33.5 cm, and 23.7 cm, for 1 e-like ring and 1 µ-like

ring events respectively. The angular resolution is 1.2◦, and 0.8◦, for 1 e-like ring

and 1 µ-like ring events respectively. The reconstructed momentum resolution

is 1.7 + 0.7
√
p/(GeV/c) %, and 0.6 + 2.6

√
p/(GeV/c) %, for electrons and muons

respectively. This leads to an expected resolution in reconstructed neutrino

energy for 1 µ-like ring νµ + νµ CCQE events near the oscillation maximum is

∼0.1 GeV.

Michel electrons are found by looking for time-delayed clusters occurring

in the ID. The tagging efficiency is ∼90%, found by looking at stopping cosmic

muons. This can be used to look for events with charged pions and muons that

were not reconstructed.

Neutral pion events are a dominant background for 1 e-like ring events,

therefore a dedicated maximum likelihood fit, FITQUN, which calculates charge

and time probability density functions (p.d.f.s) for every PMT and for any initial
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condition, is used. FITQUN is based on mathematical formalism developed

by MiniBooNE [102], which was a Cherenkov detector using a νµ beam at a

similar energy to T2K. A 2-dimensional cut is made between the ratio of best-fit

likelihoods of the e and π0 hypotheses, and the π0 mass from the π0 fit. An

alternative established algorithm, POLFIT [103], is used to select control samples

for the νµ systematic analysis, and also as a cross-check. POLFIT assumes there

are two gamma rings in an event that is classified as 1-ring, and iteratively tests

various patterns and energies until the likelihood is maximised. An invariant

mass is calculated, and events with POLFIT mass of more than 105 MeV/c2 are

cut. The FITQUN cut rejects 69% of π0 background from the T2K Run 1+2+3 νe

appearance result (which used POLFIT) with only a 2% loss in efficiency [104].

Examples of 1 µ-like ring and 1 e-like ring events are shown in Fig. 2.11.
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Figure 2.11: Example of reconstructed T2K events in SK for (a) a 1 µ-like ring
and (b) an 1 e-like ring. The cylindrical ID is unrolled onto a plane, with
coloured points representing hits of specific charge in a PMT. The white crosses
indicate the reconstructed vertex, and the diamond marks the intersection of a
ray between the vertex and the neutrino beam and the ID wall. The reconstructed
cone is shown as a white line. The figure in the upper right corner shows the
hit map for the OD. Time distributions are shown in the bottom left and bottom
right for the OD and ID respectively. Figure taken from [69].
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2.5 T2K status and physics goals

T2K has been running in four periods since 2010: Run 112 (January-June 2010),

Run 2 (November 2010–March 2011), Run 3 (January–June 2012), and Run 4

(October 2012–May 2013), collecting a total of 6.57×1020 POT at SK while steadily

increasing the beam power as shown in Fig. 2.12. The ultimate T2K POT goal is

7.80×1021 POT, therefore only 8% of the full T2K dataset has been recorded.

Figure 2.12: The accumulated POT delivered by the J-PARC beam to T2K in four
run periods (blue). Also shown is the beam power (red).

T2K has recently published a discovery of νµ → νe appearance with a mea-

surement rejecting θ13 = 0 at 7.3σ using the Run 1+2+3+4 dataset [104]. This

achieves one of the primary physics goals as laid out in the T2K letter of intent

[105]. Using the same measurement, δCP is excluded at 90% C.L. in the range

0.19π to 0.80π (−1.00π to −0.97π and −0.04π to 1.00π) for NH(IH). T2K has also

recently published a precision measurement of νµ → νµ disappearance [1] with

the design goal precision on δ(∆m2
32) ∼ 10−4 eV2/c4, and the world’s strongest

constraint on sin2 θ23. Therefore updated physics goals have been formulated

[106]:

12The barrel-ECal and PØD-ECal were not installed during Run 1.
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1. an initial measurement of CP violation in neutrinos up to a 2.5σ level of

significance;

2. a precision measurement of νµ disappearance oscillation parameters at

δ(∆m2
32) ∼ 10−4 eV2/c4 and δ(sin2(2θ23)) ∼ 0.01 and determination of the

θ23 octant at 90% C.L. if |θ23 − 45◦| > 4◦; and

3. a contribution to the determination of the mass hierarchy.

These updated goals have been defined using realistic sensitivity studies [106–

108]. The optimal combined sensitivity13 occurs for T2K with around 50% neu-

trino and 50% antineutrino running (despite equal neutrino and antineutrino

statistics occurring at around 20%:80%) and is improved when combined with

other experiments (e.g. NOνA beam or SK atmospheric neutrino measurements).

To achieve these goals, the systematic errors must be reduced to 5–8% and ∼10%

for the νe and νe samples respectively (the error is currently 8.8% for the νe

sample [104]).

T2K also has secondary physics goals, including cross-section measurements

from neutrinos and antineutrinos on a variety of nuclear targets using the near

detectors. A CC inclusive cross-section measurement has been published in

[109], and many other analyses are in progress. The search for sterile neutrinos

is also ongoing with multiple studies being performed, including νe appearance

in a model with one sterile neutrino at both ND280 and SK [110]. Other topics

(both potential or under study) include a test of non-standard interactions, a

measurement of the neutrino time-of-flight, and a test of Lorentz invariance

based on the sidereal time and the concept of preferred directions.

13The combined sensitivity for excluding sin δCP = 0, excluding maximal θ23 mixing, the
ability to reject a θ23 octant, and the ability to determine the mass hierarchy.



Chapter 3

Inputs to the νµ disappearance

analysis

In order to perform the oscillation analysis described in Chap. 4, simulations

must be developed in order to be able to predict the neutrino event rates as seen

in the T2K detectors. The event rate is a combination of flux and cross section,

therefore detailed simulations of both are required.

• The neutrino beam flux simulation models primary interactions of protons

with the target, secondary interactions of particles with the surrounding

material, and particle decays. The model is tuned to external data, mainly

from NA61/SHINE. Systematics are evaluated from uncertainties in the

model itself, and measurements of the geometry of the T2K beamline. This

is presented in Sec. 3.1.

• The neutrino cross section simulation must describe interactions in the

∼1 GeV region. The simulation is tuned to external data, mainly from Mini-

BooNE, and systematics are evaluated using these fits and other external

datasets. This is summarised in Sec. 3.2.

71
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The model is tuned on data collected with the unoscillated 2.5◦ off-axis neu-

trino beam, using semi-inclusive selections of νµ CC events at ND280. This

involves performing a fit to the ND280 datasets, including systematics related to

the flux, the cross sections, and the event selection. Uncertainties which are cor-

related between the near and far detector (flux, and some nucleus-independent

cross-section parameters) are propagated to the oscillation fits in order to tune

the model further, and provide a large reduction in uncertainties. This is pre-

sented in Sec. 3.3.

A selection of 1 µ-like ring events at SK is performed in order to maximise

the purity of charged current quasi-elastic (CCQE) events, which allows the

neutrino energy to be reconstructed using the lepton kinematics. The selection,

and associated systematics, are presented in Sec. 3.4.

The work presented in this chapter corresponds to the official T2K inputs,

which are common to all T2K oscillation analyses.

3.1 Neutrino beam flux prediction & uncertainties

The neutrino beam flux simulation, including tuning to external datasets, is

presented in Sec. 3.1.1. The systematics related to the simulation are presented

in Sec. 3.1.2.

3.1.1 Neutrino flux simulation

The T2K flux prediction is based on a simulation, beginning with the primary

proton beam upstream of the baffle, tracking the secondary hadrons through

the target, horns, and decay volume, and ending with the decay of hadrons and

muons that produce neutrinos. Measurements of the beam profile, intensity, and

position, and the magnetic field of the horns, and external hadron production
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data drive the simulation and its associated uncertainties.

Primary proton interactions in the target and baffle, where the proton beam

first interacts and produces the majority of secondary pions, are modelled using

FLUKA2008 [111, 112]. Kinematics of particles emitted from the target are

passed to the JNUBEAM simulation, based on GEANT3 [98]. JNUBEAM

simulates the baffle, target, horn magnets, helium vessel, decay volume, beam

dump, and muon monitor (with a geometry based on final mechanical drawings

of the beamline) and also the INGRID, ND280, and SK detectors (positioned in

the simulation according to the latest survey results). The GCALOR model [99]

is used to model hadronic interactions in JNUBEAM1. In JNUBEAM, particles

are propagated through the decay volume until they interact or decay.

Particle decays use branching ratios from Ref. [31]. In order to maximise

central processing unit (CPU) efficiency, every neutrino that is generated is

forced to point in the direction of SK, or at a random point in the near detector

planes. This is achieved by forcing the decay kinematics of the parent particle2

to produce the neutrino in that direction, and assigning a weight based on the

probability of those kinematics. Decay kinematics are used to assign neutrino

energy in the centre of mass frame. To move into the laboratory frame, the

neutrino is boosted under the assumption that it points towards the desired

detector, with an event weight stored for the probability of production in the

selected direction.

Flux model tuning

The models are tuned to hadron production data, most notably from the NA61/

SHINE [113] experiment at CERN. The components of the NA61/SHINE de-
1Using both FLUKA and GCALOR to simulate hadronic interaction is not inconsistent;

both are tuned to data.
2For particles which decay to two or more neutrinos, each neutrino is independently forced

to point at a detector.
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tector are: a group of detectors to measure the beam timing, position, and

PID before interacting with the target; five TPCs (two within superconducting

magnets) for charged particle tracking; and three scintillator detectors with a

timing resolution better than 90 ps for time-of-flight (TOF) measurements. Track

reconstruction proceeds by finding tracks in each TPC, matching tracks between

TPCs, determining the interaction vertex, and matching TOF hits with the track.

PID is performed using energy loss (dE/dx) and TOF, and track momenta and

charge are determined via track curvature in a magnetic field. NA61/SHINE has

published measurements of π± [114] and K+ [115] differential production cross

sections using a thin (2 cm) graphite target, at the same proton beam energy as

T2K. As shown in Fig. 3.1, this data covers more than 90% of the π± phase space,

and 60% of the K+ phase space.
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Figure 3.1: The phase space of π+, π−, and K+ contributing to the predicted
neutrino flux at SK (shaded area), and the regions covered by NA61/SHINE
measurements (unfilled box). Figure taken from [74].

In the π± analysis, the dominant systematics are due to uncertainties in

the secondary interaction and strange particle production models, particularly

the highest momenta. In the K+ analysis, the dominant systematic is due to

uncertainties in the proportion of events with K+ tracks not decaying before

reaching the TOF detector, mostly due to uncertainties in the position of the kaon

decay. Both analyses are dominated by statistical error in regions of the phase

space, particularly at pπ. An example differential cross-section measurement is
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shown in Fig. 3.2, for π+ production.
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Figure 3.2: Differential cross section for π+ production in p 12C interactions at pp
= 31 GeV/c. Spectra are shown as a function of momentum in four polar angle
bins. The red squares and black triangles are from analyses using dE/dx and
dE/dx + TOF information respectively. Error-bars are statistical only. Figure
taken from [114].

Other datasets are used to expand the phase space coverage; Eichten et al.

[116] and Allaby et al. [117] datasets cover the forward production of high

energy kaons, and also include K− measurements, while BNL-E910 [116–118]

provides π± data from a lower proton beam momentum that are used to evaluate

tertiary pion production systematics. Inelastic cross-section measurements for

proton, pion, and kaon beams on carbon and aluminium targets are used to tune

particle interactions and absorption within the geometry. For details on the data

used, see Tab. XII of Ref. [74]. T2K replica-target data has also been taken by

NA61/SHINE, but the results are currently only available for a low-statistics

portion of the full dataset [119].

Tuning is performed by reweighting the nominal MC models. Weights for

the mean multiplicity of hadrons produced in nucleon nucleus interactions, are

calculated in each meson p – θ bin using a ratio of data to nominal MC of this
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quantity. This is calculated directly from data in the phase space and nuclei

regions data covers, and is extrapolated to phase space and nuclei not covered

by data. The rate at which hadrons interact is also reweighted, by accounting for

both the change in the cross section, and the attenuation of the particle flux.

Each neutrino event is weighted by all relevant event weights in order to

produce the tuned flux spectra. The ratio of reweighted flux to nominal flux

for νµ and νµ are shown in Fig. 3.3. Pion tuning is the dominant effect at low

neutrino energies (∼8% relative to a total of 10% for νµ), around the flux peak,

while kaon tuning dominates the high energy region (∼15% at 3 GeV, increasing

to a ∼40% at 10 GeV for νµ). Differences are seen between νµ and νµ tunings due

to the different parent particles; the νµ flux is dominated by π+ and K+ decays,

while the νµ flux is dominated by π− and K− decays. The reweighted flux

predictions at SK are shown in Fig. 3.4 for all neutrino species.
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Figure 3.3: Ratio of the reweighted flux over the nominal flux for νµ (left) and νµ
(right) at SK. Figure taken from [74].

3.1.2 Neutrino flux prediction uncertainties

Flux prediction uncertainties are studied by varying the inputs to the flux simu-

lation (the hadron production model, the geometry, the horn currents, etc.) and

evaluating the effect on the predicted flux. A covariance matrix is produced and
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Figure 3.4: The reweighted SK flux predictions for νµ (upper left), νµ (upper
right), νe (lower left), νe (lower right) broken down by the neutrino parent
particle type. Figure taken from [74].

used to evaluate the error due to flux prediction uncertainties in T2K analyses.

The effect of each uncertainty is quantified by calculating a covariance matrix,

with covariances between bins in neutrino energy, neutrino flavour, and neutrino

detector. The total uncertainty is found by summing all covariance matrices.

The flux uncertainties are described in detail in Sec. V of Ref. [74], here is a

summary. The uncertainties can be broken down into four categories:

1. Hadron interaction uncertainties. These arise from uncertainties in the ex-

perimental data from other experiments, uncertainties in scaling between

targets (for example, from NA61/SHINE carbon data to aluminium for

horn interactions), uncertainties in scaling data to lower incident nucleon

momenta, uncertainties in extrapolating data to additional phase space not

covered by its data points, uncertainties in the production of secondary

nucleons, and the production cross section (total interaction rate) of parti-
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cles in a given medium. The dominant errors are from secondary nucleon

production and production cross sections at low neutrino energy including

the beam peak, and experimental data on kaon production at high neutrino

energy.

2. Proton beam and off-axis angle uncertainties. These arise from uncer-

tainties on the position and angle of the primary proton beam on the baffle

front surface (predominately the vertical position and angle, as the beam

is predominately off-axis in the vertical direction), uncertainties on the

primary proton beam intensity (from CT measurements), and uncertainties

in the off-axis angle (from INGRID measurements).

3. Target and horn alignment uncertainties. These arise from uncertainties

in the angles and positions of the target and three horns, as measured in

surveys. The vertical position of the horns and the angular position of the

target are the dominant effects.

4. Horn current and magnetic field uncertainties. These arise from uncer-

tainties on the measurements of the horn current and the magnetic field

strength, and measurements of deviations from the expected field shape.

The total flux uncertainty, as a function of neutrino energy, is shown in Fig. 3.5

for all neutrino species. The flux uncertainty in the beam peak region is ∼15%

(20% for νe). The uncertainty is dominated by hadron interaction uncertainties

across most of the spectrum for all neutrino species. In the peak region, proton

beam and off-axis angle uncertainties are also important for νµ, and the same is

true at higher energies ∼4 GeV for νµ.

3.2 Neutrino interaction modelling and systematics
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Figure 3.5: Fractional flux error including all sources of uncertainties for νµ
(upper left), νµ (upper right), νe (lower left), νe (lower right) at SK. Figure taken
from [74].

The neutrino cross section model must be able to simulate the most likely neu-

trino interaction processes in the Eν ∼ 1 GeV region. This includes CCQE, NC

elastic scattering, resonant particle production, coherent pion production, and

deep inelastic scattering. The initial simulation is described in Sec. 3.2.1. By fit-

ting to external datasets from MiniBooNE, parts of the default model controlling

CCQE and resonant pion production are tuned, as presented in Sec. 3.2.2. Using

the results of these fits, and other external datasets, systematics are assigned to

parameters controlling each interaction process, as discussed in Sec. 3.2.3. The

related topic of FSI systematics is described in Sec. 3.2.4.

3.2.1 NEUT neutrino Monte Carlo event generator

Cross-section modelling is done using the NEUT neutrino MC event generator

[87]. Events are generated using the flux model described in Sec. 3.1.1. The
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processes modelled, which were introduced in Sec. 1.3, are described briefly.

Elastic and quasi-elastic scattering

Neutrino free-nucleon CCQE scattering cross section predictions are based on

the Llewellyn-Smith model [120]. The relativistic Fermi gas (RFG) model by

Smith and Moniz [121] is used to calculate the cross section off bound nucleons

in the nucleus. Different RFG model parameters are used for each nucleus: the

Fermi momentum (pF ) and nuclear binding energy (Eb). In 12C(16O), pF and Eb

are 217(225) MeV/c and 25(27) MeV respectively. The models assume that the

axial-vector form factor has a dipole form, such that

FA(Q2) = FA(Q2 = 0)/(1 +Q2/(MQE
A )2)2, (3.1)

whereMQE
A is the quasi-elastic axial-vector mass parameter. Similar assumptions

are made for the vector form factors. MQE
A is set by default to 1.21 GeV/c2 to give

good agreement with results from MiniBooNE [122], and other experiments in

the few-GeV neutrino energy region experiments on O [123], C [124], and Fe

[125], but is inconsistent with older neutrino-deuterium scattering experiments

[126] and the Eν ∼10 GeV NOMAD experiment [127] that prefer values of MQE
A

closer to 1 GeV/c2.

Neutrino nucleon neutral current elastic scattering cross sections are cal-

culated using scaling relations of the charged current cross sections from Ref.

[128].

Resonant single pion, kaon, eta, and photon production

Charged-current and neutral-current resonance neutrino-production cross sec-

tions are based on Rein and Sehgal’s model [129, 130]. The interaction is handled
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in two steps:

ν +N → l +N∗, (3.2a)

N∗ → N ′ +X, (3.2b)

where N and N ′ are the nucleons and N∗ is an intermediate baryon resonance,

and X is a pion, kaon, eta, or photon. Eighteen resonances below 2 GeV/c2 are

considered3. The model assumes that axial-vector form factor has a dipole form,

andMRES
A , defined in an analogous way to Eq. 3.1, is set to 1.21 GeV/c2 by default.

Cross sections are obtained by multiplying the resonance production amplitude

(i.e. Eq. 3.2a) by the probability of decay to a single pion and single nucleon

(i.e. Eq. 3.2b). Pauli blocking, due to the exclusion principle, is included such

that the nucleon from the resonance decay should have momentum greater than

the Fermi surface momentum, suppressing the cross section by a few percent.

In nuclei, pion-less delta decay occurs in 20% of resonance events; only the

lepton and nucleon are generated (events are generated with no pion, kaon, eta,

photon). Cross sections of single photon, K, and η production are also calculated

in an analogous way.

Deep inelastic scattering and hadronisation

Charged current neutrino nucleus DIS cross sections are computed in the region

of hadronic invariant mass (W ) above 1.3 GeV/c2. To prevent double counting

with the single pion production model (described above) below W = 2 GeV/c2,

in the range 1.3 GeV/c2 <W < 2.0 GeV/c2 only the probability for multiple pion

production is used to construct the cross section. Nucleon structure functions

are taken from the GRV98 parton distribution functions [131], with corrections

3The 2 GeV/c2 limit is imposed to prevent double counting between resonant particle pro-
duction and deep inelastic scattering.
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to improve agreement with data as proposed by Bodek and Yang [132].

Hadronisation is performed using two models. At W > 2.0 GeV/c2, PYTHIA

[133] is used to determine the final state multiplicities and kinematics. For W

below 2.0 GeV/c2, custom code is used utilising KNO scaling [134] to determine

the pion multiplicity. The mean multiplicity of pions is estimated from a ν

+p scattering experiment [135], and the forward-backward asymmetry of pion

multiplicity uses measurements from the BEBC experiment [136]. The concept

of a formation length (the idea that hadronisation is not an instantaneous process)

is used to determine the position of hadrons generated in the nucleus; they are

stepped a distance L away from the neutrino interaction point, where L = p/µ2,

p is the hadron momentum, and µ2 = 0.08 GeV2/~c2 as measured in the SKAT

experiment [137].

Neutrino nucleon neutral current DIS cross sections are calculated using

scaling relations of the charged current cross sections using experimental data

from Ref. [138, 139].

Coherent single pion production

Coherent neutrino nucleus single pion production can be thought of as the

neutrino interacting with the entire nucleus, and, since the nucleus is much

heavier than the neutrino, this gives an enhancement of pion production in the

forward direction. The Rein and Sehgal model [140, 141] is used to calculate

the neutral current cross section. For charged current coherent scattering, the

correction for the lepton mass described in Ref. [142] is used, which causes a

drop off in the cross section at low Q2; the effect is more pronounced for muons

than electrons.
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Intranuclear rescattering cascade model

Hadrons created in neutrino interactions can interact with nucleons in the nu-

cleus as they are ejected from the nucleus. Neutrino experiments can only

observe the particles after they have exited the nucleus. Intranuclear rescatter-

ing, also known as final state interactions (FSI), has a significant impact on the

observed event topologies (for example a CC1π+ event may appear to be CCQE

due to a pion absorption), and degrades the hadron kinetic energy.

A cascade is used to model the FSI. The position of the neutrino interaction

within the nucleus is calculated using a probability based on a Woods-Saxon

type nucleon density distribution. All hadrons4 start at this interaction position.

Each hadron takes an infinitesimal step, the probability of interaction is calcu-

lated using the local nuclear density and hadron-nucleon cross sections, and is

used to determine whether an interaction takes place at that step. The particle is

propagated until it interacts or exits from the nucleus. Pions and kaons can un-

dergo inelastic scattering, charge exchange, absorption, and particle production,

protons can undergo elastic scattering, single and double delta production, and

etas can undergo absorption leading to pion production.

3.2.2 Comprehensive model tuning

External datasets are fitted in order to tune some NEUT model parameters,

and to assign errors to these parameters. External data from the MiniBooNE

experiment [143] is fitted in order to tune the NEUT CCQE and CC1π+ models

[144]. This is a good choice because MiniBooNE is a 4π Cherenkov detector like

SK and so has similar phase space acceptance, it uses similar target nuclei (CH2)

to T2K (mainly 12C at ND280 and 16O at SK), and a wide-band neutrino beam

4Hadrons produced in DIS events are offset due to the formation length.
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covering the T2K energy range [144].

CCQE model tuning

The MiniBooNE CCQE-corrected measurement presented in Ref. [122] is used

in the fit. The distribution fitted is the flux-integrated double-differential cross

section in lepton kinematics (kinetic energy and angle) as this contains the most

information, and uses the same kinematic variables as used in the ND280 fit (see

Sec. 3.3.4).

The data is selected as events with one muon, zero pions, and no proton

requirement, and so is mostly CCQE with a background of predominately CC1π+

events (the π+ is absorbed in FSI or is too low energy for detection). The CC1π+

model in the NUANCE neutrino MC event generator [26] is tuned using a CC1π+

sample. After this tuning, a subtraction is applied to the CCQE-like sample to

remove all non-CCQE events, to create the CCQE-corrected sample from which

the cross section is determined.

The fit was performed by minimising a χ2 function comparing the Mini-

BooNE data with the NEUT CCQE prediction. Two parameters controlling

the MC are varied, the axial mass MQE
A , and the CCQE normalisation (required

due to an 11% MiniBooNE flux uncertainty). The best-fit predictions are shown

in Fig. 3.6, as a function of Q2 (the momentum exchange of the interaction

squared reconstructed from final state kinematics) and EQE
ν (the neutrino en-

ergy reconstructed from final state kinematics and corrected to true Eν assum-

ing the RFG model)5 and are compared with the MiniBooNE data and the

NEUT nominal predictions. The result of the fit is a large value of MQE
A =

1.64±0.03 GeV, significantly larger than the fit MiniBooNE performed them-

selves (MQE
A = 1.35±0.17 GeV). This is mainly due to the fact that there is a

5The 1-dimensional Q2 and EQEν distributions shown here are not the distributions used in
the fit; the 2-dimensional Tµ-cos θµ distribution is fit for.
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large data-MC difference at low Q2, which MiniBooNE varies using an effective

parameter to increase Pauli blocking at low Q2. The use of different neutrino MC

event generators, and the fact that this T2K fit does not have access to correlated

systematic errors, are other factors that contribute to the discrepancy. There are

also large data-MC differences at low and high EQE
ν , but the agreement is good

in the flux peak region.
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Figure 3.6: Differential CCQE cross-section distributions versus Q2 (left) and
EQE
ν (right). MiniBooNE data, the nominal NEUT prediction and the best-fit

NEUT prediction are all shown. Figures are taken from [145].

Single π production model tuning

NEUT has common parameters that control all resonant pion events, therefore a

simultaneous fit of multiple MiniBooNE samples is performed. The distributions

fitted are the CC1π0 Q2 [146], the CC1π+ Q2 [147], and the NC1π0 |pπ0| [148]

cross sections. Six cross-section normalisation parameters are varied in the fit

(CC coherent, CC1π, NC coherent, NC1π0, NC1π±, NC other), along with MRES
A

(which varies the rate and Q2 shape), an empirical parameter, “W shape”, which

allows variation of the NC1π0 |pπ0| shape to improve agreement with data, and

“CC other shape” which modifies CC cross-section channels as a function of
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Eν . The best-fit point is found with the MIGRAD algorithm from MINUIT,

and correlated fit errors are found using the HESSE algorithm. The best-fit

predictions are shown in Fig. 3.7, as a function of the fitted variables, and are

compared with the MiniBooNE data and the NEUT nominal prediction. FSI

uncertainties effect the result of the fit, due to pion absorption, scattering, and

charge exchange in the nucleus. Fits are therefore repeated a further sixteen

times, for different sets of FSI model parameters (see Sec. 3.2.4). The fit is also

repeated with the π-less ∆ decay fraction set to zero.
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Figure 3.7: Differential pion production cross-section distributions for CC1π0

versus Q2 (top left), CC1π+ versus Q2 (top right) and NC1π0 versus p0
π (bot-

tom). MiniBooNE data, the nominal NEUT prediction and the best-fit NEUT
prediction are all shown. Figures are taken from [145].
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3.2.3 Cross-section model systematics

Errors are assigned to the cross-section model in order to cover the uncertainties

in the current knowledge of neutrino scattering. This process is described in

detail in Refs. [144, 149], and is summarised here. The results of the fits to

MiniBooNE data in Sec. 3.2.2 are used. A summary best-fit values and errors of

all cross-section parameters used in ND280 and SK fits are shown in Tab. 3.1.

Name Description Nominal Error ND280 SK
value

CCQE model parameters
fND280

16;t,r MQE
A (GeV/c2) 1.21 0.45 X XC

fND280
18;t CCQE norm Eν < 1.5 GeV 1.00 0.11 X XC
fND280

19;t CCQE norm 1.00 0.30 X XC
1.5 GeV < Eν < 3.5 GeV

fND280
20;t CCQE norm Eν > 3.5 GeV 1.00 0.30 X XC

pF (12C) (MeV/c) 217 30 X ×
fpF ;t,r pF (16O) (MeV/c) 225 30 × X

Eb (12C) (MeV) 25 9 X ×
fbindE;t,r Eb (160) (MeV) 27 9 × X

SF (12C) 0 (RFG) 1 (SF) X ×
fSF ;t,r SF (16O) 0 (RFG) 1 (SF) × X
Single pion production model parameters
fND280

17;t,r MRES
A (GeV/c2) 1.16 0.11 X XC

fND280
20;t CC1π norm Eν < 2.5 GeV 1.63 0.43 X XC
fND280

20;t CC1π norm Eν > 2.5 GeV 1.00 0.40 X XC
NC1π0 norm 1.19 0.43 X ×

fWshape;t,r W shape (MeV/c2) 87.7 45.3 X X
fπ−less∆;t,r π-less ∆ decay 0.00 0.20 X X
Other model parameters
fCCcoh;t CC coh norm 1.00 1.00 X X
fCCothShape;t,r CC other shape (GeV) 0.00 0.40 X X
fNC1π±;t NC1π± norm 1.00 0.30 × X
fNCoth;t NC other norm 1.00 0.30 X X
fCCνe;t νe to νµ ratio 1.00 0.03 × X
fCCν;t ν to ν ratio 1.00 0.20 × X

Table 3.1: Summary of the cross-section errors used in the ND280 fit (see Sec.
3.3.4) and νµ disappearance oscillation fit (see Chap. 4). A Xsymbol denotes
that this systematic with this value and error is used in the fit, C denotes that
this systematic is constrained by the ND280 fit before being used in the SK fit,
and × denotes that this systematic is not used. The name of each parameter
corresponds to the convention used in Chap. 4.
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CCQE constraints

MiniBooNE data constrains MQE
A (the error is the sum of the fit error and the

difference between the NEUT nominal and the fitted value) and the CCQE

normalisation for Eν < 1.5 GeV (the error is the MiniBooNE flux uncertainty).

Two higher energy CCQE cross-section normalisations parameters are included,

with errors assigned from differences seen between MiniBooNE and NOMAD

data [122, 127]. The RFG parameters pF (Fermi momentum) and Eb (binding

energy) are nucleon dependent, and are set to the NEUT nominal with an

error determined by electron scattering data [150]. It should be noted that pF

provides cross-section variations at low Q2. An alternative to the RFG model is

the spectral function (SF) model [151], and an uncertainty is included that is the

difference between these models, as calculated using the NUWRO neutrino MC

event generator [89].

Single π production constraints

The uncertainties on parameters that the MiniBooNE data can constrain (MRES
A ,

the CC1π normalisation for Eν < 2.5 GeV, and the NC1π0 normalisation) are

assigned using the fit to MiniBooNE data. The NEUT model is tuned using the

best-fit values of these parameters (for the fit assuming the nominal parame-

terisation of FSI and the π-less ∆ decay fraction). The covariance of the fitted

parameters is built up of three parts:

• The covariance matrix calculated using the HESSE algorithm from the fit

using the nominal parameterisation of FSI and the π-less ∆ decay fraction.

• The covariance between the best-fit values of the fits with and without

π-less ∆ decay included.

• The covariance between the best-fit values of the fits using the sixteen
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alternative FSI parameter sets (see Sec. 3.2.4) and the best-fit values of the

fit using the nominal FSI model.

The W shape parameter is shifted by a large amount, suggesting that this em-

pirical parameter is acting as a proxy for a more general model change (e.g.

altering sizes of higher resonances, changing the relative fraction of resonant

and DIS events, or the current NEUT cascade model does not alter scattered

pion momenta), therefore the nominal value is used with an error determined as

the difference between the nominal and the best fit.

The CC1π Eν > 2.5 GeV normalisation parameter error is assigned as the

difference between MiniBooNE data and the NEUT nominal prediction, extrap-

olated to higher energy. The CC coherent normalisation is set to 100% due to

the process never being measured by experiments at energies O(1 GeV), and

the best data [152, 153] setting 90% limits significantly below the default model

prediction. The NC coherent normalisation is poorly constrained by the Mini-

BooNE data fit, due to a degeneracy with NC1π0, therefore data is used [154]

which shows a 15% discrepancy with NEUT with a 20% error. The NC1π± and

NC other normalisations are not constrained by the fit, due to small fractions of

these events in the samples.

Other cross-section model constraints

The CC multi-π model has an energy-dependent systematic, fCCothShape, assigned

as 40% / (Eν/GeV). This comes from the data in Ref. [155] which has an un-

certainty of O(10%) at 4 GeV. The multi-π fraction below 1 GeV is small, with a

threshold of ∼0.6 GeV, therefore the convergence of the error towards infinity at

low energy is not a concern.

The NC1π± and NC other normalisation errors are taken from comparing

the NEUT prediction with external datasets at the T2K energies [156, 157].
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Differences between νe and νµ cross sections arise in terms in theoretical

calculations, due to the differences in final state lepton mass. The work presented

in Ref. [158] uses external data to quantify the effect of such terms not included

in NEUT calculations.

Differences between ν and ν cross sections are expected due to angular

momentum conservation. The interaction of a ν (left handed) with a left-handed

quark (as in the valance quarks in nucleons) has a total angular momentum

of 0, therefore decays proceed isotropically, and are flat in the inelasticity, y.

Conversely, the interaction of a ν (right handed) with a left-handed quark has a

total angular momentum of −1 against the neutrino direction, therefore decays

with the lepton emitted against the neutrino direction are forbidden, while other

angles are suppressed, leading to dσ
dy

having a triangular dependence on y. The

total cross section for ν is therefore approximately half of that as for ν. High

quality CCQE scattering data for both neutrinos and antineutrinos have been

released by MINERνA [159, 160] and MiniBooNE [122, 161] and is used to assign

an error on the expected ν/ν cross-section ratio.

3.2.4 Final state interaction systematics

FSI results in modified observable final states, and so is an important systematic

to take into account. External pion-carbon scattering data is used to assign errors

on each of the possible FSI interactions (the data sets are described in Ref. [162]).

At low energy (|pπ| < 500 MeV/c), three parameters control the FSI model by

varying the mean free path of absorption, QE scattering and low energy single

charge exchange. Each of the three parameters is varied from 40% to 160% of

its nominal value in 10% steps to generate 2197 (133) parameter sets. For each

parameter set, a χ2 is calculated comparing the MC for that parameter set with

data. A 68% confidence interval is created in this three-parameter region, and
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the eight (23) parameter sets at the extrema of the confidence interval are chosen

in order to span the uncertainties on the data. The eight parameter sets are

shown in Fig. 3.8 with π+ 12C scattering data.

At high energy (|pπ| > 500 MeV/c), three parameters control the FSI model by

varying the mean free path of pion production, high energy QE scattering, and

high energy single charge exchange. These parameters are not fit, but instead

varied, in two parameter sets, to span the data as shown in Fig. 3.9.

There are therefore sixteen FSI-controlling parameter sets (in addition to

the nominal set). These errors are propagated to the ND280 fit (Sec. 3.3.4) and

oscillation fit (Chap. 4) by constructing a covariance matrix V using the equation

Vij =
1

16

k=16∑
k=1

(pnomi − pki )(pnomj − pkj ), (3.3)

where pi is an observable quantity in bin i (e.g. pµ,θµ or Eν bin), nom denotes the

nominal parameter set, and k denotes the kth parameter set.

3.3 ND280 flux and cross-section constraint

A selection of CC νµ events are made using the ND280, as described in detail in

Ref. [163] and supporting documents. First a CC inclusive selection is performed,

as described in Sec. 3.3.1. The CC inclusive sample is split into CC-0-π, CC-1-π+,

and CC-other samples, as described in Sec. 3.3.2. The systematics related to the

event selections are described in Sec. 3.3.3. These samples are then fitted to

constrain the flux and common cross-section parameters (the so-called ND280

fit), as described in Sec. 3.3.4 [164].
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Figure 3.8: The eight low energy parameter variation 1σ curves from fits to π+

12C scattering data. Shown are cross sections for reactive (total− elastic, top left),
absorption (top right), QE (bottom left), and single charge exchange (bottom
right). The data sets are described in Ref. [162]. Figure taken from [144].

3.3.1 νµ charged current inclusive event selection

A νµ CC inclusive event selection is performed using the ND280 tracker region,

by selecting for the highest momentum negative track, with an FGD1 fiducial

volume and a good TPC track segment. The cuts are as follows:

1. Data quality. The beam spill must be defined as a good spill (e.g. the horn

current is nominal to within ±5 kA). The ND280 must have a good global

data quality flag; all ND280 subdetectors must be functioning (e.g. the
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Figure 3.9: High energy parameter variation ±1σ curves (solid and dashed lines)
compared with π+ 12C (left) and π− 12C (right) scattering data. The low energy
parameters are set to nominal in this figure. The data sets are described in Ref.
[162]. Figure taken from [144].

TPC central cathode high voltage must be within the range 24950 V < V

< 25550 V). The amount of data used in this section is 5.900×1020 POT,

corresponding to the full Run 1+2+3+4 dataset after these data quality cuts.

The MC sample used 9.545×1021 POT of interactions simulated within the

magnet, and 6.643×1021 POT of interactions simulated in the sand and

concrete surrounding the detector pit.

2. Bunching. The beam spill (corresponding to 6 or 8 beam bunches) is

divided by beam bunch using timing information; tracks within 60 ns (four

times the bunch width) are grouped together. This allows spill pile-up to

be handled correctly. Bunch pile-up may still be an issue, but the average

number of expected FGD1 interactions per spill during Run 46 is ∼0.35.

3. Total multiplicity. There must be at least one reconstructed track in the

TPC.

4. Negative track in FGD1 fiducial volume and with good TPC track qual-

ity. There must be at least one negative track that starts in the fiducial

6From [165], there are 2.968±0.005 events/1015 POT after applying low-level cuts, and from
Fig. 2.12 there are a maximum of ∼1.2×1014 protons per pulse.
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volume of FGD1, that also has >18 vertical TPC clusters7. The vertex is

taken as where the 3-dimensional reconstructed track intercepts the ver-

tical plane of the most upstream matched FGD hit. The fiducial volume

requirements are |x| < 874.51 mm, |y − 55| < 874.51 mm and 136.875 mm <

z < 446.955 mm. In x and y, five bars on each end of the layer are excluded

(the 55 mm y offset is due to the coordinate system definition). In z, the

first XY module is excluded. The >18 vertical TPC clusters requirement is

used to exclude short tracks with less reliable reconstruction. If multiple

tracks pass this cut, the muon candidate track is taken to be the track of

highest momentum.

5. Backwards-going tracks and TPC1 veto. If the muon candidate is back-

wards going (start position downstream of end position) the event is re-

jected. The majority of these tracks are misreconstructed forward-going

positive tracks. The highest momentum track with a TPC segment (with

no track quality requirement), that is not the muon candidate, should not

start more than 150 mm upstream (i.e. in z) of the muon candidate. This

rejects events that probably have tracks entering the tracker from the PØD

or magnet regions.

6. Broken track cut. If the muon candidate start position is more than 425 mm

from the upstream edge of FGD1, and there is at least one FGD-only track

with start position outside the FGD fiducial volume, the event is rejected.

This is to reject tracks from backgrounds which start outside of the FGD

fiducial volume, and are misreconstructed such that the track is broken

into two (the second track can start in the FGD1 fiducial volume, and so

can be misidentified as the muon candidate).

7This requirement corresponds to a track length in the z direction of ∼20 cm.
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7. Muon particle identification cut. Likelihood cuts are applied to the dE/dx

distribution8 of the muon candidate track

LMIP =
Lµ + Lπ
1− Lp

> 0.80 if p < 500 MeV/c,

Lµ > 0.05, (3.4)

where the first cut rejects electrons, and the second cut rejects protons and

pions. Lparticle is defined as

Li =
e−pull2i∑
l e
−pull2l

, (3.5)

where l runs over proton, muon, pion and

pulli =
(dE/dxmeasured − dE/dxexpected,i)

σexpected,i
. (3.6)

dE/dxexpected,i is the value of the truncated mean for particle hypothesis i

and σexpected,i is the deposited energy resolution.

The purity of the selection is 90.73%. In this selection 89.8% of negative muon

candidates are true negative muons; the main background is negative pions

(7.5%), due to the TPC PID being unable to distinguish between them.

3.3.2 νµ CC semi-inclusive event selections

The CC inclusive events are divided into three sub-samples designed to optimise

the purity of the following event categories:

1. CC-0-π, defined as events with a true negative muon and with zero pions

after FSI;

8Specifically, the truncated mean of energy deposited in the TPC.
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2. CC-1-π+, defined as events with a true negative muon, exactly one positive

pion, and exactly zero negative and neutral pions after FSI;

3. CC-other, defined as all other CC events (i.e. with true negative muon and

more than one positive pion and/or at least one negative or neutral pion

and/or at least one exotic particle (e.g. kaon, eta) after FSI).

It should be noted that no CC inclusive events are cut by the application of

these extra cuts (i.e. all CC inclusive events are present in exactly one of the

sub-samples). To achieve this, ways of determining the presence of pions in the

event are required.

The TPC is used to reconstruct charged pions, electrons, and positrons; the

presence of a neutral pion is inferred from the presence of electrons and positrons;

FGD1 is used to reconstruct charged pions only. Pions are identified in three

ways:

1. TPC tracks. The extra tracks must satisfy the same bunching, FGD1 fidu-

cial volume, and TPC track quality cuts as the muon candidate. Particle

identification of the track is then performed. If the track is negative with

pion probability >0.8 (found using Eq. 3.5), it is tagged as a negative pion.

Otherwise, it is tagged as an electron. If the track is positive with momen-

tum >900 MeV/c, it is tagged as a proton. Otherwise, it is tagged as the

most probable particle type, found by choosing i such that

Pi =
Li∑
l Ll

(3.7)

is maximised, where Li is the likelihood as defined in Eq. 3.5, and i, l = π+,

p, e+ in the positive case, and i, l = π−, e− in the negative case.

2. Michel electron tagging in FGD1. If there is a time-delayed FGD1 hit

cluster, out of time with a beam bunch window, with a total charge deposit
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of at least 200 photoelectrons, this is taken as a Michel electron, and is

tagged as a positive pion.

3. FGD-only tracks. A track is defined as FGD-only if it doesn’t have a

TPC segment9. The charged pion candidate must satisfy the bunching cut.

In addition, it should be fully contained in FGD1, and pass the angular

cut, with respect to the beam, of |cos θ| > 0.3. The fully contained cut

requires both the start and stop positions lie inside a special fiducial volume

(-887 mm < x < 888 mm, -834 mm < y < 942 mm, z not be in the most

downstream XY module). The angular cut is applied to be consistent with

systematic studies. Charged pion tracks are identified as tracks with -2.0 <

pullπ < 2.5.

To prevent a single charged pion being reconstructed multiple times (e.g. broken

tracks, or an FGD-only track also providing a Michel electron signal), a maxi-

mum of one pion can be found in FGD1; only if no Michel electron is found, a

maximum of one FGD-only track is searched for.

The sub-samples are then defined as:

1. CC-0-π. 0 e± TPC tracks, 0 π± TPC tracks, 0 Michel electrons, 0 π± FGD-

only tracks;

2. CC-1-π+. 0 e± TPC tracks, 0 π− TPC tracks, a total of exactly 1 π+ TPC

track and Michel electron and π± FGD-only track;

3. CC-other. All other events.

The 1-dimensional distributions comparing data and MC are shown in Fig.

3.12 for the reconstructed muon angle. The efficiencies(purities) of the CC-

0-π, CC-1-π+, and CC-other samples are 47.81%(72.43%), 28.37%(49.24%) and

29.71%(73.60%) respectively.
9FGD-only tracks can have ECal and SMRD segments.



3.3 ND280 flux and cross-section constraint 98

Event migration

True CC-1-π+ events are classified as CC-0-π if the charged pion is missed. Four

main reasons for this migration have been found

1. ≈30% of missed π+ undergo a secondary interaction within the FGD. This

causes FGD-only reconstruction to become harder (both tracking and PID);

2. ≈30% of missed π+ have a TPC reconstruction failure;

3. ≈30% of missed π+ go directly from the FGD to the ECal. The cuts are not

designed to tag this π+ topology;

4. ≈10% of missed π+ emit a Michel electron that is not detected (either due

to it being within a subsequent bunch, or below the 200 photoelectrons

threshold).

From the true CC-1-π+ category, 57% of π+ are correctly tagged.

True CC-other events are classified as CC-1-π+ due to the π+ tagging problems

above. An additional reason is that the π0 tagging is not optimal; approximately

half of the true CC-other events in CC-1-π+ have a final state π0.

True CC-0-π events are classified as CC-1-π+ for the following reasons:

1. ≈45% of the time due to p in the TPC misidentified as π. This is due to

reconstruction failures, and dE/dx separation is poor above ≈1 GeV/c;

2. ≈45% of the time due to short p or µ tracks being misreconstructed as π;

3. ≈10% of the time due to Michel electrons from other interactions.

3.3.3 Event selection systematics

Systematics due to the ND280 detector arise from many sources. From the

FGD, the efficiency of detecting tracks and Michel electrons, track PID, and
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the FGD mass contribute. From the TPC, the detection efficiency of clusters

and tracks, tracks properties (charge, momentum, PID), and track matching

contribute. From external backgrounds, cosmic ray events, beam interactions in

the sand and outside of the FGD fiducial volume, and event pile-up contribute.

A final systematic is due to uncertainties in the modelling of pion secondary

interactions. A detailed discussion of each systematic is given in Appendix A.

The effect of each systematic is summarised in Tab. 3.2. The two systematics

which dominate most of the phase space are:

• Pion secondary interactions. GEANT4 is used to simulate the propaga-

tion of particles outside the nucleus. The pion interaction model used

(QGSP BERT) does not agree well with external data (see for example

Ref. [166]), and the datasets contain uncertainties. The most significant

secondary interaction modes are absorption and charge exchanges (can

cause the event to be misclassified), and QE scattering (can cause the

reconstruction to fail).

This systematic dominates the momentum region above pµ = 500 MeV/c.

• Out-of-fiducial-volume events. Out-of-fiducial-volume (OOFV) events

are defined as events in which the true interaction vertex occurred outside

of the fiducial volume. The dominant event categories are high energy neu-

trons from outside the tracker creating a π− in the FGD which is misiden-

tified as a muon (17.6%), and backwards-going π+ misreconstructed as

forwards going µ (18.0%). Uncertainties on each category are defined us-

ing control samples, and extra cross-section uncertainties due to different

interaction nuclei.

This systematic dominates the momentum region below pµ = 500 MeV/c.

The combined effect of the ND280 detector systematics is shown in Fig. 3.10,

for each of the three νµ CC samples, in both pµ and θµ binning. The error in each
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CC-0-π CC-1-π+ CC-other
Michel electron efficiency 0.5%-0.7% 0.1%-0.3% 0.1%-0.3%
FGD track efficiency 0.2%-1.6% 0.2%-1.2% 0.3%-1.0%
FGD PID 0.1% 0.1%-0.3% 0.0%-0.2%
FGD PID bias 0.0%-0.1% 0.1%-0.4% 0.0%-0.2%
FGD mass 0.2%-0.6% 0.4%-0.6% 0.3%-0.6%
TPC track efficiency 0.1%-0.3% 0.2%-0.4% 0.4%-0.7%
TPC track quality <0.1% <0.1% <0.1%
TPC charge confusion 0.1%-1.2% 0.2%-1.2% 1.0%-2.4%
TPC momentum resolution 0.4%-2.2% 0.3%-5.0% 0.5%-3.0%
TPC momentum scale 0.2%-1.8% 0.1%-2.1% 0.2%-2.1%
B field distortion 0.2%-1.4% 0.0%-1.4% 0.2%-2.0%
TPC electron PID 0.0%-0.6% 0.0%-0.3% 0.0%-6.0%
TPC electron PID bias 0.0%-0.1% 0.0%-0.2% 0.1%-1.0%
TPC muon PID 0.0%-0.5% 0.0%-0.5% 0.0%-0.5%
TPC muon PID bias 0.0%-2.0% 0.1%-3.5% 0.1%-2.5%
TPC proton PID 0.1%-0.9% 0.2%-1.8% 0.7%-1.5%
TPC proton PID bias 0.1%-0.6% 0.2%-1.2% 0.4%-0.9%
TPC track übermerging <0.1% <0.1% <0.1%
Sand muon 0.0%-0.5% <0.1% <0.1%
Event pile-up <0.1% <0.1% <0.1%
Out-of-fiducial-volume 1.0%-19% 1.0%-10% 1.0%-12%
Secondary interactions 0.6%-5.0% 1.2%-7.0% 4.0%-10%
Total 2.0%-19% 4.0%-10% 7.0%-13%

Table 3.2: Range of the error on the number of events on pµ bins in the ND280 νµ
CC samples for the detector systematic parameters.

bin, above pµ = 500 MeV/c, ranges from 2%-19%, 4%-10%, and 7%-13% for the

CC-0-π, CC-1-π+, CC-other samples respectively. The total error on the number

of expected events in each sample is shown in Tab. 3.4.

3.3.4 Flux and cross-section constraint

The three CC selections (CC-0-π, CC-1-π+, CC-other) are fit to constrain flux

and cross-section systematics that are common between ND280 and SK. This is

referred to as the ND280 fit. Each of the three samples are binned in reconstructed
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Figure 3.10: Comparison between data and MC for the ND280 νµ CC samples.
The red band corresponds to the error on the number of events in MC due to
the fluctuation of all detector systematics; the effect of flux and cross-section
systematics are not shown.
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muon momentum10 (pµ) and reconstructed muon angle11 (θµ) so there are a total

of 451 bins in the fit. The fit is performed by minimising

χ2 = 2 ·
N−1∑
i=0

(
nobs
i · ln(nobs

i /n
exp
i ) + (n

exp
i − nobs

i )
)

+ (a− a0)T ·C−1 · (a− a0),

(3.8)

where a0 is an 1×Ns - dimensional array with the default values of the systemat-

ics parameters, aT is the transpose of a, C is the systematic parameter covariance

matrix of dimension Ns × Ns, nobs
i is the observed number of events in the ith

bin, and n
exp
i = n

exp
i (a) is the corresponding expected number of events. The fit

is performed using the MIGRAD algorithm in MINUIT [167], and errors on

parameters are found using the HESSE algorithm. A second fit utilising Markov

chain Monte Carlo (MCMC)12 methods is performed as a cross-check, and gives

consistent results.

The fit contains flux parameters using a covariance matrix that correlates the

flux of the four neutrino species (νe, νe, νµ, νµ) at ND280 and SK. The systematics

are binned into energy ranges depending on the neutrino species13 with a total of

50 systematic parameters. All systematics from Sec. 3.1.2 are taken into account,

and the covariance matrix is shown in Fig. 3.11a.

The cross-section errors described in Sec. 3.2.3 are used in the fit. For shape

10Fourteen pµ bins are arranged as follows: 1 0.30-GeV/c bin from 0.0–0.3 GeV/c, 7 0.10-
GeV/c bins from 0.3–1.0 GeV/c, 2 0.25-GeV/c bins from 1.0–1.5 GeV/c, 1 0.50-GeV/c bin from
1.5–2.0 GeV/c, 1 1.00-GeV/c bin from 2.0–3.0 GeV/c, 1 2.00-GeV/c bin from 3.0–5.0 GeV/c, and
1 25.00-GeV/c bin from 5.0–30.0 GeV/c. For the CC-1-π+ sample, the 2.0–3.0 GeV/c and 3.0–
5.0 GeV/c bins are combined.

11Eleven cos θµ bins are arrange as follows: 1 1.40-width bin from −1.00–0.60, 2 0.10-width
bins from 0.60–0.80, 2 0.05-width bins from 0.80–0.90, 4 0.02-width bins from 0.90–0.98, and 2
0.01-width bins from 0.98–1.00.

12An introduction to MCMC can be found in Sec. 37.5 of Ref. [31].
13Eleven νµ energy bins have edges: 0.0, 0.4, 0.5, 0.6, 0.7, 1.0, 1.5, 2.5, 3.5, 5.0, 7.0, 30.0 GeV.

Five νµ energy bins have edges: 0.0, 0.7, 1.0, 1.5, 2.5, 30.0 GeV. Seven νe energy bins have edges:
0.0, 0.5, 0.7, 0.8, 1.5, 2.5, 4.0, 30.0 GeV. Two νe energy bins have edges: 0.0, 2.5, 30.0 GeV.
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Figure 3.11: Correlations of parameters used in the ND280 fit.

parameters14, a spline is created for each MC event which describes the non-

linear response to that parameter, and the event weight is taken as the spline

evaluated at that value of the parameter. For normalisation parameters, the

event is simply weighted by the value of the parameter. The errors shown in

Tab. 3.1 are used and the covariance of MRES
A , CC1π Eν < 2.5 GeV normalisation,

and NC1π0 normalisation parameters is included.

FSI errors are calculated using the method described in Sec. 3.2.4, and the

covariance matrix is shown in Fig. 3.11b.

The fit treats the uncertainties in the ND280 selections as nuisance parameters,

handled in a 210-bin covariance matrix (3 samples × 10 pµ bins × 7 cos θµ bins).

14The shape parameters are MQE
A , pF , EB , SF, MRES

A , π-less ∆ decay, CC other shape.
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Coarser binning is used in this covariance matrix compared with the data to

reduce the number of parameters in the fit (and therefore computation time),

and flux and cross-section errors are usually dominant. All systematics from Sec.

3.3.3 are taken into account, and the covariance matrix is shown in Fig. 3.11c.

The best-fit spectra for each sample are shown in Fig. 3.12 with the data, and

the expectation before the ND280 fit, as a function of cos θµ. The best-fit spectra

for each sample are shown in Figs. 3.13 and 3.14 as a function of pµ, in slices of

cos θµ, broken down by neutrino MC generator interaction mode. The number of

events in each sample is shown in Tab. 3.3. The χ2 per degree of freedom (dof )

is 564.9/451 and the p-value is 0.66 (see Sec. 4.3.4). The total error from groups

of parameters on the number of events at ND280 is shown in Tab. 3.4.

CC inclusive CC-0-π CC-1-π+ CC-other
Prediction (pre-fit) 29476 19980 5037 4729
Prediction (post-fit) 25581 17352 4110 4119
Data 25589 17369 4047 4173

Table 3.3: Number of events in the ND280 νµ CC samples, for data, and prediction
both before and after the ND280 fit.

CC inclusive CC-0-π CC-1-π+ CC-other
Detector 3.3% 2.4% 4.5% 7.3%
Flux 9.7% 9.9% 9.7% 11.6%
Cross section 14.4% 17.7% 16.2% 10.4%
FSI 0.3% 1.0% 3.1% 2.6%
Total 17.7% 20.4% 19.7% 17.4%

Table 3.4: Error on the number of events in the ND280 νµ CC samples from
groups of systematic parameters.

The ND280-constrained flux and cross-section errors that are used by the

νµ disappearance oscillation analysis of Chap. 4 are shown in Tab. 3.5. In this

table, the nominal values are the best-fit values from the ND280 fit and the error

is taken from the square rooting the diagonal of the covariance matrix. The

correlation matrix is shown in Fig. 3.15 and is the inverse of the full HESSE error
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Figure 3.12: The best-fit spectra and data, as a function of cos θµ. The MC
prediction is shown before and after the ND280 fit. Figure taken from [164].
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Figure 3.13: The best-fit spectra and data, as a function of pµ, for the CC-0-π
sample. Histograms are in slides of muon angle, and the highest momentum bin
includes overflow events and is not normalised by the bin width. Figure taken
from [164].
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Figure 3.14: The best-fit spectra and data, as a function of pµ, for the CC-1-π+

(top) and CC-other (bottom) samples. Histograms are in slides of muon angle,
and the highest momentum bin includes overflow events and is not normalised
by the bin width. Figures taken from [164].
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matrix at the best-fit point, with the rows and columns for parameters that are

not constrained by ND280 for SK deleted (e.g. ND280 flux parameters, FSI and

nuclear model parameters, etc.).

Name Description Best-fit Error before
value / after fit

fND280
0;t νµ flux normalisation, Eν = 0.0-0.4 GeV 1.029 0.121 / 0.085
fND280

1;t νµ flux normalisation, Eν = 0.4-0.5 GeV 1.022 0.130 / 0.088
fND280

2;t νµ flux normalisation, Eν = 0.5-0.6 GeV 0.995 0.122 / 0.080
fND280

3;t νµ flux normalisation, Eν = 0.6-0.7 GeV 0.966 0.115 / 0.076
fND280

4;t νµ flux normalisation, Eν = 0.7-1.0 GeV 0.934 0.129 / 0.085
fND280

5;t νµ flux normalisation, Eν = 1.0-1.5 GeV 0.992 0.116 / 0.077
fND280

6;t νµ flux normalisation, Eν = 1.5-2.5 GeV 1.037 0.100 / 0.068
fND280

7;t νµ flux normalisation, Eν = 2.5-3.5 GeV 1.054 0.095 / 0.065
fND280

8;t νµ flux normalisation, Eν = 3.5-5.0 GeV 1.035 0.112 / 0.072
fND280

9;t νµ flux normalisation, Eν = 5.0-7.0 GeV 0.975 0.152 / 0.073
fND280

10;t νµ flux normalisation, Eν = 7.0-30.0 GeV 0.943 0.187 / 0.082
fND280

11;t νµ flux normalisation, Eν = 0.0-0.7 GeV 1.030 0.133 / 0.102
fND280

12;t νµ flux normalisation, Eν = 0.7-1.0 GeV 1.011 0.117 / 0.090
fND280

13;t νµ flux normalisation, Eν = 1.0-1.5 GeV 1.007 0.119 / 0.094
fND280

14;t νµ flux normalisation, Eν = 1.5-2.5 GeV 1.026 0.123 / 0.104
fND280

15;t νµ flux normalisation, Eν = 2.5-30.0 GeV 1.008 0.122 / 0.107
fND280

16;t,r xMAQE = MQE
A (tweaked) / MQE

A (nominal) 1.025 0.372 / 0.059
fND280

17;t,r xMARES = MRES
A (tweaked) / MRES

A (nominal) 0.797 0.183 / 0.056
fND280

18;t CCQE normalisation, Eν = 0.0-1.5 GeV 0.966 0.110 / 0.076
fND280

19;t CCQE normalisation, Eν = 1.5-3.5 GeV 0.931 0.300 / 0.103
fND280

20;t CCQE normalisation, Eν = 3.5-30.0 GeV 0.852 0.300 / 0.114
fND280

21;t CC1π normalisation, Eν = 0.0-2.5 GeV 1.265 0.317 / 0.163
fND280

22;t CC1π normalisation, Eν = 2.5-30.0 GeV 1.122 0.400 / 0.172

Table 3.5: Summary of the ND280-constrained errors used in the νµ disappear-
ance oscillation fit (see Chap. 4). The name of each parameter corresponds to the
convention used in Chap. 4.
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Figure 3.15: Correlations of ND280-constrained flux and cross-section parame-
ters used in the νµ disappearance oscillation fit.

3.4 Super-Kamiokande measurements of 1 µ-like

ring events

Neutrino energy is determined assuming the event was quasi-elastic, the target

nucleon was at rest, and by invoking energy-momentum conservation:

Ereco =
m2
pc

4 − (mnc
2 − Eb)2 −m2

µc
4 + 2(mnc

2 − Eb)Eµ
2(mnc2 − Eb − Eµ + pµccos θµ)

, (3.9)

where pµ, Eµ, cos θµ are the reconstructed muon momentum, energy, and the

angle with respect to the beam direction, respectively, mp, mn, and mµ are the

masses of the proton, neutron, and muon, respectively, and Eb = 27 MeV is the

average binding energy of a nucleon in 16O. Therefore, a high purity sample of

νµ + νµ CCQE events is required, in order to determine the neutrino energy

accurately. In Sec. 3.4.1 a pre-selection of physics events is described. The cuts for

this 1 µ-like ring sample are shown in Sec. 3.4.2, and the associated systematics
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discussed in Sec. 3.4.3.

3.4.1 Fully-contained and fully-contained fiducial-volume se-

lections

The fully-contained (FC) and FCFV samples are high-statistics selections used in

calibration studies. The FC selection is performed using the cuts:

1. Data quality cuts. In the whole of the T2K Run 1+2+3+4 dataset, SK

records good beam spills with an efficiency of 99.07%. The largest inef-

ficiencies are due to pre-activity (the presence of a trigger in the 100µs

preceding a beam spill), and SK data acquisition (DAQ) downtime.

2. Timing cut. The quantity ∆T0 is defined as the timing of the event relative

to the leading edge of the spill, communicated via GPS, accounting for

the travel time of the neutrino from production to detection, including the

photon propagation time in the detector. A timing cut of −2µs < ∆T0 <

10µs is used to cut backgrounds from other neutrino sources; there are

0.0085 such events expected in the T2K Run 1+2+3+4 dataset.

3. Flasher cut. The event should pass cuts designed to reject flasher events.

4. Containment cut. The number of PMT hits in the highest-charge OD

cluster is less than or equal to 15, in order to reject events in which the

particles are not fully-contained within the ID (e.g. events which occur in

the rock surrounding SK, pass through the OD, and stop within the ID).

Events which fail the containment cut are classified as OD events. These events

are not used in this analysis, but have the potential to increase sensitivity to

oscillation parameters due to their high statistics.

The timing distribution of FC events is shown in Fig. 3.16 for T2K Runs 1+2+3

and 4 separately, and clearly shows the eight bunch structure of the beam spill.
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The RMS value of the residual time distribution between each FC event and the

closest bunch centre is 29 ns.

 (nsec)0T∆

1000 0 1000 2000 3000 4000 5000

N
u
m

b
e
r 

o
f 

e
v
e
n
ts

/4
0
n
se

c

0

20

40

60

POT)
20

10×(3.010RUN13 

POT)
20

10×(3.560RUN4     

Figure 3.16: ∆T0 distribution of
FC events observed during T2K
Runs 1+2+3 and 4. The eight
dotted lines represent the 581 ns-
interval bunch centre positions
fitted to the observed FC event
timing. Figure taken from [168].
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served FCFV events in T2K Run 1+2+3+4
as a function of POT. The data (blue) is
shown with a hypothesis of constant event
rate (red). The dotted lines indicate the
boundaries between T2K runs. Figure taken
from [168].

The FCFV selection is a subset of the FC selection, using two extra cuts:

5. Fiducial-volume cut. The reconstructed vertex should be at least 2 m away

from the ID wall.

6. Visible energy cut. The visible energy in the event, Evis, defined as the en-

ergy of an electron required to produce the observed amount of Cherenkov

light, is above 30 MeV.

The cumulative number of FCFV events during T2K Run 1+2+3+4 is shown

in Fig. 3.17. The Kolmogorov–Smirnov probability to obtain a larger vertical

distance between data the hypothesis of constant event rate (red) due to statistical

fluctuations was calculated to be 92.8%.
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3.4.2 1 µ-like ring event selection cuts

The 1 µ-like ring event selection is a subset of the FCFV selection, designed to

give a pure sample of νµ + νµ CCQE events. using the extra cuts:

7. Single ring cut. There is exactly one reconstructed ring in the event, in

order to reject events with multiple final state mesons and charged leptons

(recall that protons have a Cherenkov threshold of pp ≥ 1064 MeV/c, and

are therefore rarely visible in the T2K neutrino beam). This cut rejects

61.85% of νµ + νµ CCnonQE events and 71.74% of NC events (Figs. 3.18a

and 3.18b). The νµ + νµ CCQE efficiency is 94.18%.

8. Muon-like ring cut. The reconstructed ring is µ-like, in order to reject

events with a final state electron or photon (e.g. from π0 decay). This cut

rejects 98.93% of νe + νe events and 69.73% of NC events (Fig. 3.18c). The

νµ + νµ CCQE efficiency is 98.07%.

9. Momentum cut. The reconstructed muon momentum is above 200 MeV/c

(Fig. 3.18d), where the systematic studies are valid. The νµ + νµ CCQE

efficiency is 99.78%.

10. Michel electron cut. There is at most 1 decay e in the event, in order to

reject events with charged pions below Cherenkov threshold. This cut

rejects 29.41% if νµ + νµ CCnonQE events (Fig. 3.18e). The νµ + νµ CCQE

efficiency is 98.85%.

The number of events after each cut is shown in Fig. 3.18f for three flavour

oscillations with sin2(2θ13) = 0.10, sin2(2θ23) = 1.00, and ∆m2
32 = 2.40×10−3 eV2/c4.

The purities and efficiencies of the selection under the oscillation hypothesis

are shown in Tab. 3.6. Also shown are the purities under the no-oscillation

hypothesis. For the T2K Run 1+2+3+4 dataset 120 events pass all cuts.
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Figure 3.18: Distributions of 1 µ-like ring event selection variables at each
selection stage for T2K Run 1+2+3+4 data. Blue arrows indicate the selection
criteria. Three flavour oscillation is simulated with sin2(2θ13) = 0.10, sin2(2θ23) =
1.00, and ∆m2

32 = 2.40×10−3 eV2/c4. Figures taken from [168].
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Efficiency Purity Purity
Oscillations No oscillations

MC total 19.2% - -
νµ + νµ CCQE 69.8% 61.9% 81.0%
νµ + νµ CCnonQE 19.1% 32.4% 17.5%
νe + νe CC 0.8% 0.3% 1.5%
NC 2.4% 5.4% 0.02%

Table 3.6: Efficiencies, relative to the total number of reactions in the SK fiducial
volume (i.e. after cut 5), and purities of the SK 1 µ-like ring event selection
for three flavour oscillations with sin2(2θ13) = 0.10, sin2(2θ23) = 1.00, and ∆m2

32 =
2.40×10−3 eV2/c4. Also shown are the purities for the no oscillation hypothesis.

3.4.3 Event selection systematics

There are uncertainties in the efficiencies of the containment, flasher, fiducial

volume (FV), ring-counting (RC), PID, momentum and Michel-electron cuts

described above. An additional uncertainty comes from the SK energy scale.

These uncertainties have been evaluated by comparing 1412 days of SK-IV

atmospheric data with 500 year equivalent atmospheric neutrino MC, generated

with the HONDA flux model 11 solar minimum [169], and are presented in Ref.

[170]. Some systematics are broken down into six categories, based on the true

reaction mode: νµ+νµ CCQE in three bins (Ereco < 0.4 GeV, 0.4 < Ereco < 1.1 GeV,

Ereco > 1.1 GeV) νµ + νµ CCnonQE, νe + νe CC, and NC. The νe + νe CC category

is assigned a 100% error. Here the methods for calculating the systematics are

discussed briefly, and the effect of each systematic is summarised in Tab. 3.7.

Energy scale

Four samples are used to evaluate the energy scale error, to span the momentum

range 30 MeV/c to 6 GeV/c. For low energy, a sample of Michel electrons from

stopping cosmic muons is used; the difference in peak positions between data

and MC is −0.7±0.2%. The next sample utilises all 2-ring NC atmospheric

events, with a reconstructed π0 mass between 85 MeV/c2 and 185 MeV/c2; the
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νµ CCQE νµ CCnonQE NC
OD activity �1.0%
Flasher rejection 1.0%
FV error 1.0%

RC efficiency 1.84%, 2.21%, 3.25% 8.1% 21.8%
with cov. matrix

PID 0.3% 55%
Momentum uncertainty �1.0%
Michel e efficiency 1.0%
Energy scale 2.4%

Table 3.7: Summary of the systematic errors for the 1 µ-like ring event selection.
νµ + νµ CCQE is split into three Ereco bins. The νe CC efficiency is 100%.

difference in the mean value of Gaussian fits to data and MC is 0.5±0.7%. The

third sample uses cosmic stopping muons in the momentum range 200 MeV/c

to 440 MeV/c, with momentum reconstructed using the Cherenkov angle, to

cross-check the standard photoelectron-based momentum estimate. The ratio

of photoelectron-based and Cherenkov-angle-based momentum estimates is

taken in bins of momentum, and the data-MC difference ranges from 0.6±0.3%

to 2.4±0.3%. For high energy, a multi-GeV sample of stopping cosmic muons is

selected in bins of range, and the ratio of momentum to range is calculated; the

difference between data and MC ranges from 0.2±0.3% to 1.3±0.3%.

The absolute energy scale error is taken as 2.4%, the calculation that deviates

most from zero.

Outer detector activity

The OD activity cut error is assigned by comparing data and MC number of OD

hit distributions of partially-contained atmospheric neutrino events. There is a

5.9% shift in the peak position, which gives a 1σ error on the cut of 15.00±0.89

hits. This shift corresponds to a ±0.06% shift in the number of T2K FC events,

and is negligibly small.
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Flasher rejection

Flasher events are rejected by using PMT hit timing and spatial distribution. The

average value of the flasher cut variable value is 0.10 higher in data than MC.

Applying a 0.10 shift changes the FCFV selection efficiency by 1%, therefore a

1% systematic error is applied.

Fiducial volume error

The FV error for 1-ring events is calculated by comparing the vertex distribution

of stopping cosmic muons (split into different momentum and distance from

wall bins) between data and MC. The sample is defined as events that enter the

ID normal to the wall, 3.1 m from the top/bottom, 5.8 m from the radial wall,

only a 1 ring, only 1 decay electron, and the ring is µ-like. Overall agreement is

good, and a 1% systematic is assigned.

Ring-counting efficiency

Six atmospheric neutrino control samples are defined to evaluate RC efficiencies,

all starting from the FCFV selection:

• νµ CCQE enriched has exactly 1 Michel electron and the distance between

the expected muon stopping point (calculated from the reconstructed

momentum of the brightest ring) to the decay electron is less than 80 cm.

This sample is split into three bins in Evis, with bin edges at 0.13 GeV and

0.7 GeV.

• νµ CCnonQE enriched has more than 1 Michel electrons and the distance

between the expected muon stopping point to the nearest decay electron is

less than 160 cm.
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• νe CC enriched has exactly 0 Michel electrons, visible energy of at least

100 MeV, the brightest ring is e-like, and the POLFIT invariant mass is less

than 105 MeV.

• NC enriched has exactly 0 Michel electrons and is not part of the νe CC

enriched sample.

All samples can be further subdivided into single- and multi-ring events.

The RC efficiency is calculated using a χ2 fit in which the efficiency for each of

the six control samples and six systematic parameters15 are varied to achieve the

best agreement between data and MC. The systematic parameters are not pulled

by more than 1σ away from their default values. Two types of errors are assigned

to each mode, the difference between best-fit MC and nominal MC (σbest-nom),

and the fitting error on the efficiency parameters (σfit). For the νµ CCQE enriched

control sample, a covariance between energy bin is assigned assuming 100%

correlation for σbest-nom and no correlation for σfit
16. No correlations are assigned

between νµ CCQE, νµ CCnonQE, and NC parameters17. The total systematic is

then the sum of the covariance matrices for νµ CCQE, or the sum in quadrature

for other samples.

For the νµ CCQE enriched control sample, a conversion from Evis to Ereco

is required18. A conversion matrix, A, is calculated from MC simulation, and

is used to transform the visible energy RC error matrix V to the reconstructed

energy RC error matrix R = AVAT.

15Three flux errors (normalisation below and above 1 GeV, νe/νµ flux ratio), and three cross-
section errors (CCQE energy dependent, CCnonQE/CCQE ratio, NC/CCQE ratio).

16The correlations from the fit are small and are neglected.
17The choice of 0% or 100% correlation has no effect on the oscillation analysis described in

Chap. 4.
18The νµ CCQE sample is split into three bins in Ereco, with bin edges at 0.4 GeV and 1.1 GeV.
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Particle identification uncertainty

Looking at the difference in the PID probability to be a µ-like ring between

data and MC for the stopping cosmic muon sample described above, there

is very good agreement, to within 0.3% across all momenta. A second study

using atmospheric neutrinos is also performed. Starting with 1-ring events

with one decay electron, the followings cuts are applied: the distance between

the expected muon stopping point to the decay electron is less than 60 cm, the

opening angle between the muon direction and a vector from the muon vertex

to decay electron vertex cosµe > 0.9, the visible energy is more than 0.1 GeV,

and the reconstructed muon momentum is less than 1.2 GeV/c. The sample is

98.6% pure in νµ CC interactions. The PID likelihood is then calculated, and

the misidentification rate is 0.55±0.38% (data) and 0.19% (MC), and agree well

with data and the cosmic muon study. Therefore a 0.3% fully correlated error is

assigned for all νµ + νµ CC events.

For the PID uncertainty for NC events, an enriched sample of NC1π± and

NC1p events is selected from atmospheric neutrinos. The sample is created by

searching for FCFV events with 1-ring, 0 Michel electrons, pµ > 200 MeV/c, and

visible energy < 100 MeV. The efficiency for selecting NC1π± and NC1p is 68.5%

and 94.0% respectively, and the sample is 9.0% and 3.8% pure in each. The main

backgrounds are low energy νµ and νe events, νµ events with Michel electrons,

and multi-pion events. The sample is split into µ-like and e-like events, and a χ2

fit is performed, to determine the NC1π± and NC1p efficiencies. The same six

systematic parameters as used for the RC are included in the fit. The result of the

fit is a constraint on the NC1π± efficiency 0.148 ≤ ε1π ≤ 1.000, and no constraint

on the NC1p efficiency 0.0 ≤ ε1p ≤ 1.0. The systematic is calculated by applying

the upper and lower efficiency limits to the µ-like NC sample, and observing the

change on the total number of NC events in that sample, relative to the nominal
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efficiency. Conservatively, the largest change (upper or lower limit) is taken as

the systematic for each efficiency, and these are added in quadrature with the

nominal efficiency difference between the T2K and NC-enriched samples. The

total NC PID error assigned is 55%.

Momentum uncertainty

At the selection threshold of 200 MeV/c, the energy scale error of 2.4% induces a

4.8 MeV/c uncertainty in the momentum. This corresponds to a less than 0.1%

change in the number of selected events, and is negligible.

Michel electron efficiency

Stopping cosmic muons, with pµ < 1330 MeV/c and distance from reconstructed

stopping position to ID wall, are used to evaluate this uncertainty. In MC, the

expected µ+/µ ratio (1.37) and the probability of µ capture on a 16O nucleus are

taken into account. The overall tagging efficiencies are 88.4±0.2% (data) and

89.1±0.2% (MC), and the difference is taken as the 1% uncertainty.

3.4.4 Combined SK detector and pion interaction modelling

systematics

The SK detector efficiency and energy scale errors (Sec. 3.4.3) are combined with

the errors due to pion interaction modelling. final state interactions (FSI) errors

are calculated using the method described in Sec. 3.2.4. secondary interactions

(SI) errors are calculated in an analogous way, using the difference between an

older SKDETSIM model19 and the nominal MC (NEUT cascade combined with

the old model).

19The older model uses custom code [100] for |pπ| < 0.5 GeV/c, and a GCALOR physics
package elsewhere, due to its good agreement with data at |pπ| ∼ 1 GeV/c [171].
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The combined errors that are used by the νµ disappearance oscillation anal-

ysis of Chap. 4 are shown in Tab. 3.8. In this table the error is taken from the

square rooting the diagonal of the covariance matrix. The correlation matrix is

shown in Fig. 3.19. A 2.4% energy scale systematic is also applied.

Name Description Error
fSK+FSI

0;r νµ + νµ CCQE, Ereco < 0.4 GeV 2.5%
fSK+FSI

1;r νµ + νµ CCQE, 0.4 GeV < Ereco < 1.1 GeV 2.8%
fSK+FSI

2;r νµ + νµ CCQE, Ereco > 1.1 GeV 3.7%
fSK+FSI

3;r νµ + νµ CCnonQE 11.9%
fSK+FSI

4;r νe CC 100.0%
fSK+FSI

5;r NC 60.0%

fSKE;r Energy scale 2.4%

Table 3.8: Summary of the combined SK detector, FSI and SI errors used in the νµ
disappearance oscillation fit (see Chap. 4). The energy scale error is also shown.
The name of each parameter corresponds to the convention used in Chap. 4.
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Chapter 4

νµ disappearance analysis

In this chapter, an analysis is presented to determine the oscillation parameters

driving the disappearance of the T2K νµ flux over a baseline of around 295 km.

This is achieved by measuring θ23 and |∆m2
32| (in the normal mass hierarchy)

or |∆m2
31| (in the inverted mass hierarchy) using the rate and reconstructed

energy (Ereco) spectrum of 1 µ-like ring events at SK. Fits are performed using

the likelihood-ratio method, including 45 systematic parameters, accounting for

the known uncertainties in the other oscillation parameters, the cross-section

parameters uncorrelated with ND280 (see Tab. 3.1), the flux and cross-section

parameters correlated with ND280 (see Tab. 3.5), and the combined SK detector

+ FSI + SI uncertainties (see Tab. 3.8). The full three-flavour oscillation formulae

(e.g. Eq. 1.44), with the addition of matter effects, is used. The results are pre-

sented with confidence regions calculated using the Feldman-Cousins method

[172] for two-dimensional contours, and a new extension to the Feldman-Cousins

method for one-dimensional intervals. The T2K results are compared to other

recent experimental results from MINOS (a combination of neutrino beam and

atmospheric neutrinos) and SK (atmospheric neutrinos), which have both hinted

at a non-maximal value of sin2 θ23.

120
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In Sec. 4.1, the 1 µ-like ring Ereco spectrum prediction is described. Systematic

parameters and their effects are introduced in Sec. 4.2. The fitting procedure and

fitter validation is described in Sec. 4.3. The results of the fit on the T2K Run

1+2+3+4 dataset is shown in Sec. 4.4, and the results are discussed in Sec. 4.5.

4.1 SK 1 µ-like ring spectrum prediction

In this section, the calculation of the expected 1 µ-like ring event rate and spec-

trum, including tunings from both NA61/SHINE and ND280 data, is described.

The methodology is discussed in Sec. 4.1.1. The construction of the reconstructed

energy spectrum based on the nominal T2K MC is presented in Sec. 4.1.2. The

spectrum tuning based on NA61/SHINE hadroproduction data and measure-

ments at ND280 is described in Secs. 4.1.3 and 4.1.4 respectively. The numerical

calculation of the effect of three active flavour oscillation in constant-density

matter is presented in Sec. 4.1.5. Finally, the Run 1+2+3+4 predictions for various

scenarios are presented in Sec. 4.1.6.

4.1.1 Methodology

In this analysis, the oscillation parameters are determined by fitting the re-

constructed energy spectrum of 1 µ-like ring events observed at SK with the

predicted spectrum. The predicted number of 1 µ-like ring events, NSK;r, in the

rth reconstructed energy bin is computed as follows:

NSK;r =
∑
m

∑
t

∑
r′

Pm;t · Tr;r′;fSKE;r
· Sm;t;r′;~f ·N

MC
SK;m;r′;t. (4.1)

In Eq. 4.1, NMC
SK;m;r′;t is the input SK MC template containing the number of

events in the 1 µ-like ring MC sample with true reaction mode m in the true
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energy bin t and the reconstructed energy bin r′. The construction of the nominal

MC templates is discussed in Sec. 4.1.2.

In Eq. 4.1, Sm;t;r′;~f is an overall, multiplicative, systematic error factor depend-

ing on the reaction mode m, the true energy bin t, the reconstructed energy bin

r′ and a vector of nuisance (systematic) parameters ~f . This parameter controls

both the tuning of the nominal MC templates, and deviations from the tuned

templates of the systematic parameters. Both flux-tuning weights based on

NA61/SHINE hadron-production data (see Sec. 4.1.3) and flux and cross-section

tuning weights based on ND280 data (see Sec. 4.1.4) are applied to the nominal

MC templates. A complete description of the nuisance parameters considered in

this analysis is given in Sec. 4.2.

In Eq. 4.1, Tr;r′;fSKE;r
is a transfer function describing the migration of events

between the reconstructed energy bins r and r′ due to uncertainty in the SK

reconstructed energy scale, expressed here in terms of the nuisance parameter

fSKE;r .

In Eq. 4.1, Pm;t is the physics being measured in this analysis. It is the full

three-flavour oscillation probability (e.g. Eq. 1.44), with the addition of matter

effects, applied to the true energy bin t of the SK MC template which corresponds

to mode m. The application of Pm;t is discussed in Sec. 4.1.5.

4.1.2 Construction of nominal SK Monte Carlo templates

The nominal SK 1 µ-like ring MC templates NMC
SK;m;r;t are constructed by apply-

ing the 1 µ-like ring selection cuts to the official SK MC samples. The cuts are

listed in Sec. 3.4.2. In this section, the construction of the MC templates is dis-

cussed, starting with the MC samples used, then moving on to the normalisation

and binning (in true reaction mode, m, binning, true energy, t, binning, and

reconstructed energy, r, binning).
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Input MC samples

This analysis uses the official SK MC samples generated using the JNUBEAM

flux1. Five MC samples were generated. Four of the samples (νµ, νµ, νe and

νe) were generated using the nominal JNUBEAM flux without oscillations. A

fifth sample of νe interactions were also generated with the νµ flux, without

oscillations, corresponding to a νµ → νe oscillation probability of 100%. This

fifth sample will be denoted the “oscillated νe” sample. For completeness, an

“oscillated νµ” sample is also generated corresponding to νe → νµ
2. Since a

separate official oscillated νe → νµ SK sample is not available, it is emulated by

reweighting the νµ SK MC sample with the νe flux (the oscillated νe → νµ are

not statistically independent of the νµ templates). All samples were generated

including the neutrino flux estimates up to 30 GeV. The flux histograms used for

neutrino event generation had 50 MeV bins.

Normalisation of MC samples

The normalisation (integrated exposure in terms of POT) of each event sample

is calculated from the number of events with an MC truth interaction vertex

within the 22.5 kt fiducial volume.

N =

∫
dSdIdE · d3ΦSK

dSdIdEν
· σH2O ·

NA

A
· ρ · L, (4.2)

where d3ΦSK/dSdIdE is the number of flux particles for the given neutrino

species per neutrino energy bin dEν , per unit area dS and per POT, σH2O is

the total interaction cross section in water for the given neutrino species, I is

the beam intensity in terms of POT, NA is Avogadro’s number, A is the mass

1SK MC version 13a, generated with JNUBEAM 11a flux, is used.
2νµ → νe and νe → νµ samples are not used because their effects on the 1 µ-like ring

spectrum are negligible.
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Sample Number of events Number of POT
/22.5 kt fiducial /1021POT events in FV normalisation

νµ 1418.68 634998 4.47598×1023

νµ 48.6039 319640 6.57643×1024

νe 28.312 633715 2.23833×1025

νe 2.98885 319689 1.06961×1026

Osc. νµ → νe 1490.15 320252 2.14913×1023

Table 4.1: Statistics and normalisation of input SK MC samples.

number for water, ρ is the water density and L is the neutrino path length in

the water volume. The results of this calculation are shown in Tab. 4.1 for the

five SK MC samples along with the numbers of events within the 22.5 kt fiducial

volume and the derived POT normalisation of each sample in terms of POT.

The derived POT normalisation of each sample is shown in Tab. 4.1. After being

generated from an MC sample corresponding to a calculated integrated beam

exposure I , each MC template is normalised to the integrated beam exposure

of the Run 1+2+3+4 dataset (6.57×1020 POT) by scaling the bin contents of the

template with 6.57×1020/I .

List of MC templates

For each SK MC sample, a number of different MC templates is constructed

corresponding to different true reaction modes. The template granularity de-

pends on the type of oscillation analysis and the specific systematic parameters

considered in the analysis. This analysis uses 32 MC templates.

For each of the νµ, νµ, νe, and νe samples there are 6 templates:

• CCQE;

• CC single π resonant production;

• CC coherent π production;

• CC other;

• NC single π± resonant production;
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• NC other.

For the oscillated νµ → νe and oscillated νe → νµ samples there are 4 templates

each:

• CCQE;

• CC single π resonant production;

• CC coherent π production;

• CC other.

Binning of MC templates

Each of the 32 MC templates has 6132 2-dimensional bins (84 true energy bins ×

73 reconstructed energy bins). The 84 true energy bins are arranged as follows:

• 6 50-MeV bins from 0.0–0.3 GeV;

• 28 25-MeV bins from 0.3–1.0 GeV;

• 40 50-MeV bins from 1–3 GeV;

• 5 100-MeV bin from 3.0–3.5 GeV;

• 1 bin from 3.5–4.0 GeV;

• 1 bin from 4–5 GeV;

• 1 bin from 5–7 GeV;

• 1 bin from 7–10 GeV;

• 1 bin from 10–30 GeV.

The 73 reconstructed energy bins are the following:

• 60 50-MeV bins from 0–3 GeV;

• 4 250-MeV bins from 3–4 GeV;

• 4 500-MeV bins from 4–6 GeV;

• 4 1000-MeV bins from 6–10 GeV;

• 1 bin from 10–30 GeV3.

3The 10–30 GeV bin includes events with reconstructed energy >30 GeV.
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The same reconstructed neutrino energy binning is used for the fit of the 1 µ-like

ring reconstructed energy spectrum.

It is too CPU intensive to run the fits required for the Feldman-Cousins

method (see Sec. 4.3.7) with an infinite number of bins (or unbinned), therefore

the binning was optimised, while retaining accuracy in the important regions.

For example, the oscillation probability is quickly varying in the oscillation dip

region, therefore many bins are required in this location.

4.1.3 Flux tuning based on NA61/SHINE data

In this analysis, the nominal MC templates are reweighted to a flux tuned on

NA61/SHINE hadron production measurements, as described in Sec. 3.1.1. The

weights are calculated as a function of Etrue, in bins of 50 MeV, for each beam

neutrino species4 separately. The reweighted MC templates are denoted the

NA61-tuned MC templates in this document. The effect of this NA61 tune on the

predicted reconstructed energy spectrum of 1 µ-like ring events is discussed in

Sec. 4.1.6 (see Figs. 4.3 and 4.4, and Tabs. 4.3 and 4.4).

4.1.4 Flux and cross-section tuning based on ND280 data

This analysis uses the ND280-fit flux and cross-section parameter tuning de-

scribed in Sec. 3.3.4 to reweight the NA61-tuned MC templates. The MC tem-

plates obtained after this second reweighting will be denoted the ND280-tuned

MC templates in this document.

A list of ND280-fit parameters and their best-fit values is shown in Tab.

3.5. The tuning is applied to the relevant neutrino mode (see Tab. 4.5) in the

relevant Etrue range, and, in the case of MQE
A and MRES

A , involves Etrue and Ereco

4The oscillated νµ → νe sample is tuned using the νµ NA61-tuning, and the oscillated
νe → νµ sample is tuned using the νe NA61-tuning.
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dependent splines.

The effect of the ND280-tune on the predicted reconstructed energy spectrum

of 1 µ-like ring events is discussed in Sec. 4.1.6 (see Figs. 4.3 and 4.4, and Tabs.

4.3 and 4.4).

4.1.5 Effect of three active neutrino flavour oscillations in con-

stant-density matter

Oscillation probabilities are computed in a 3-flavour framework including matter

effects in constant-density matter (assuming an Earth crust density of 2.6 g/cm3

[173]).

Oscillations are applied as a function of true energy to 24 MC templates: the

CC templates (CCQE, CC1π, CC coherent and CC other) for all six MC samples

(νµ, νµ, νe, νe, oscillated νµ → νe, and oscillated νe → νµ).

The MC templates constructed from the unoscillated MC samples are weight-

ed with the corresponding survival probability: the νµ templates are weighted

with P(νµ → νµ); the νµ templates with P(νµ → νµ); the νe templates with

P(νe → νe); and the νe templates with P(νe → νe). The MC templates made from

the oscillated νµ → νe MC sample are weighted with P(νµ → νe) (the sample

was generated assuming 100% of νµ transform to νe), while the MC templates

made from the oscillated νe → νµ MC sample are weighted with P(νe → νµ) (the

sample was emulated assuming 100% of νe transform to νµ).

In the standard 3-flavour oscillation framework, oscillations of νe and νµ can

yield ντ , while oscillations of νe and νµ can yield ντ . In this analysis, contribu-

tions from ντ -CC and ντ -CC are neglected, as their energy threshold is around

3.5 GeV and their effect is negligible. Accordingly, this analysis uses no ντ -CC

and ντ -CC MC templates (and, in fact, no official ντ and ντ SK MC samples are
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Parameter Best-fit 1σ error
∆m2

21 7.5 × 10−5 eV2/c4 ∼2.7%
sin2 θ12 0.312 ∼5.8%
sin2 θ13 0.0251 ∼13.9%

Table 4.2: The best-fit values and 1σ range for the measured non-23-sector oscilla-
tion parameters [31]. δCP is allowed to float freely in the range [−π, +π] without
penalty.

available).

It should be emphasised here that the νµ NC MC templates for a mode m are

proxies for the NC MC templates for the mixture of νe +νµ +ντ resulting from

3-flavour νµ oscillations for that mode m. The same applies to the νµ, νe and

νe NC MC templates. These NC MC templates are unchanged under standard

3-flavour oscillations.

Also it should be noted that there are no explicit NC MC templates made

from the oscillated νe sample. If they were used, the oscillated νe (i.e. νe coming

from νµ oscillations) would be double counted since they are already included

in the νµ NC MC templates. For the same reason, there are no explicit NC MC

templates made from the oscillated νµ sample.

The same oscillation parameters are used for neutrinos and antineutrinos.

4.1.6 Predictions of MC 1 µ-like ring spectra

In this section, the expected numbers of events and 1 µ-like ring reconstructed

energy spectra in SK for various scenarios is presented. Estimates of the effect

of the NA61 and ND280 tunings and of assumptions made in the 3-flavour

neutrino oscillation framework used in this analysis are also presented. Unless

explicitly stated otherwise, the normal mass hierarchy is assumed, δCP = 0, and

the values shown in Tab. 4.2 are used for sin2 θ13, sin2 θ12 and ∆m2
21. All plots

were generated for an integrated exposure of 6.57×1020 POT.
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The expected number of 1 µ-like ring events is shown in Fig. 4.1 as a function

of the oscillation parameters sin2 θ23 and |∆m2
32|. The expected number of events

ranges from a minimum of ∼122, to more than ∼146 for oscillation parameter

values still within the T2K Run 1+2+3 90% C.L. region [2]. This illustrates the

great sensitivity of the T2K νµ-disappearance analysis in measuring sin2 θ23 with

the Run 1+2+3+4 data.
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Figure 4.1: Predicted number of 1 µ-like ring events, as a function of sin2 θ23

and |∆m2
32|, for an exposure of 6.57×1020 POT. The numbers of events were

calculated using the ND280-tuned MC templates. sin2 θ13, sin2 θ12 and ∆m2
21 have

the values shown in Tab. 4.2 and δCP = 0. The numbers shown were generated
assuming the normal mass hierarchy. The T2K Run 1+2+3 90% C.L. region [2] is
superimposed for reference.

Predicted 1 µ-like ring SK reconstructed energy spectra are shown in Fig.

4.2 for both no oscillations, and oscillations with sin2 θ23 = 0.50 and |∆m2
32| =

2.40×10−3 eV2/c4. The 32 components of the spectrum are calculated separately

in the actual analysis, but, for this plot, are grouped into just five categories:

νµ + νµ CCQE; νµ + νµ CCnonQE; νµ + νµ CC; νe + νe CC; and NC.
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An MC tune derived using NA61/SHINE data is applied to the nominal

MC templates, and another tune derived using the ND280 data is applied to

the NA61-tuned templates, as described in Secs. 4.1.3 and 4.1.4. The fractional

difference in the expected number of 1 µ-like ring events when switching from

the nominal MC to the NA61-tuned MC templates and when switching from

the NA61-tuned MC to the ND280-tuned MC templates is shown in Fig. 4.3 as a

function of the oscillation parameters sin2 θ23 and |∆m2
32|. From this figure it can

be seen that, for oscillation parameters in the T2K Run 1+2+3 90% confidence

region, ∼12.4–13.0% more 1 µ-like ring events are obtained with the NA61-

tuned MC than with the nominal MC. In the same part of the parameter space,

∼7.0–8.2% fewer events are expected with the ND280-tuned MC than with the

NA61-tuned MC. The effects of the NA61 and ND280 tunes on the total expected

number of 1 µ-like ring events and on the numbers in each of the 32 component

interaction modes are shown in Tab. 4.3 for no oscillations, and in Tab. 4.4 for

oscillations with sin2 θ23 = 0.50 and |∆m2
32| = 2.40×10−3 eV2/c4. Finally, the effects

of the NA61 and ND280 tunes on the reconstructed energy spectrum of 1 µ-like

ring events are shown in Fig. 4.4. In each case, spectra are shown for both no

oscillations and for oscillations with sin2 θ23 = 0.50 and |∆m2
32| = 2.40×10−3 eV2/c4.

Also shown in these figures are the ratio of NA61-tuned spectrum to nominal

spectrum, and ND280-tuned spectrum to NA61-tuned spectrum. The NA61

tuning has the effect of increasing the predicted number of events at SK by∼10%

below 2.5 GeV, increasing to ∼35% at 7 GeV. This is mainly due to the default

simulation underestimating the number of νµ-producing pions at SK by ∼8% in

the low energy range, and underestimating the number of νµ-producing kaons

by an increasing factor up to∼35% at 7 GeV, as shown in Fig. 3.3. The tunings for

νµ and νe show similar distributions with smaller magnitude. For the oscillated

case, the ND280 tuning has the effect of reducing the predicted number of events
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at SK by∼2% below 2 GeV, with the effect increasing to∼15% at 7 GeV. An extra

dip with depth ∼5% can also be seen at Ereco ∼ 0.8 GeV. The major components

of the change are:

• fND280
4;t (νµ flux normalisation 0.7 GeV < Etrue < 1.0 GeV). The dip is mainly

due to this parameter.

• fND280
6;t -fND280

8;t (νµ flux 1.5–5.0 GeV). Cause a ∼3% increase in events in the

range 1.5 GeV < Etrue < 5.0 GeV.

• fND280
17;t,r (MRES

A ). Causes a ∼5% decrease in events below 1.5 GeV, with an

effect increasing to a ∼10% decrease above 3 GeV.

• fND280
19;t -fND280

20;t (CCQE normalisation Etrue > 1.5 GeV). Cause a ∼5% de-

crease in events above 1.5 GeV.

• fND280
21;t -fND280

22;t (CC1π normalisation). Cause a ∼5% increase in events

across all Ereco.
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Figure 4.2: Predicted Ereco spectrum of 1 µ-like ring events, and contributions
from various true neutrino reaction modes, for an exposure of 6.57×1020 POT,
generated using the ND280-tuned MC templates. Spectra are shown for
no oscillations (left) and for oscillations with sin2 θ23 = 0.50 and |∆m2

32| =
2.40×10−3 eV2/c4 (right). For the oscillated spectra sin2 θ13, sin2 θ12 and ∆m2

21

have the values shown in Tab. 4.2, δCP = 0, and the normal mass hierarchy is
assumed. Note that the vertical axis of the left is zoomed in by a factor of 51

3

relative to the right plot.
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Figure 4.3: Fractional difference in the predicted number of 1 µ-like ring events
as a result of applying the NA61 flux tuning to the nominal MC templates (left)
and ND280 flux and cross-section tuning to the NA61-tuned MC templates
(right). These numbers are shown as a function of sin2 θ23 and |∆m2

32| for an
exposure of 6.57×1020 POT. sin2 θ13, sin2 θ12 and ∆m2

21 have the values shown in
Tab. 4.2 and δCP = 0. The numbers shown were generated assuming the normal
mass hierarchy. The T2K Run 1+2+3 90% C.L. region [2] is superimposed for
reference.
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NSK NSK NSK

(nominal MC) (NA61-tuned MC) (ND280-tuned MC)
Total 418.131220 464.272533 445.980111

νµ CCQE 332.238749 367.166655 351.657098
νµ CC 1π 56.190220 63.533041 62.227879

νµ CC coherent 1.896444 2.136085 2.108162
νµ CC other 7.963009 9.600253 9.615971

νµ/ντ NC 1π+/− 3.403911 3.888131 2.934821
νµ/ντ NC other 2.912186 3.428374 3.228957
Osc. νµ CCQE 0.000000 0.000000 0.000000
Osc. νµ CC 1π 0.000000 0.000000 0.000000

Osc. νµ CC coherent 0.000000 0.000000 0.000000
Osc. νµ CC other 0.000000 0.000000 0.000000

νµ CCQE 9.008088 9.664244 9.521964
νµ CC 1π 2.909354 3.114170 3.061538

νµ CC coherent 0.428081 0.458785 0.466122
νµ CC other 0.519092 0.553722 0.548210

νµ/ντ NC 1π+/− 0.188316 0.203257 0.143433
νµ/ντ NC other 0.176427 0.188866 0.175090

νe CCQE 0.035370 0.038166 0.037333
νe CC 1π 0.021574 0.023840 0.023994

νe CC coherent 0.001057 0.001158 0.001158
νe CC other 0.005812 0.006914 0.006795
νe NC 1π+/− 0.091432 0.105093 0.075133
νe NC other 0.112184 0.131680 0.121606

Osc. νe CCQE 0.000000 0.000000 0.000000
Osc. νe CC 1π 0.000000 0.000000 0.000000

Osc. νe CC coherent 0.000000 0.000000 0.000000
Osc. νe CC other 0.000000 0.000000 0.000000

νe CCQE 0.002174 0.002187 0.002102
νe CC 1π 0.001376 0.001385 0.001345

νe CC coherent 0.000135 0.000137 0.000137
νe CC other 0.000442 0.000446 0.000432
νe NC 1π+/− 0.012254 0.012354 0.008390
νe NC other 0.013532 0.013592 0.012439

Table 4.3: Calculated numbers of 1 µ-like ring events without oscillations using
the nominal MC templates, the NA61-tuned MC templates and the ND280-tuned
MC templates. The total numbers of events and the numbers of events from each
mode considered in this analysis are shown. These numbers were calculated for
an exposure of 6.57×1020 POT.
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NSK NSK NSK

(nominal MC) (NA61-tuned MC) (ND280-tuned MC)
Total 116.283270 131.048525 124.981851

νµ CCQE 66.133875 73.447588 70.993870
νµ CC 1π 27.733771 31.941870 29.795498

νµ CC coherent 0.777452 0.896207 0.908178
νµ CC other 7.072249 8.586001 8.597815

νµ/ντ NC 1π+/− 3.403911 3.888131 2.934821
νµ/ντ NC other 2.912186 3.428374 3.228957
Osc. νµ CCQE 0.117417 0.129898 0.127451
Osc. νµ CC 1π 0.027388 0.030497 0.030950

Osc. νµ CC coherent 0.000821 0.000913 0.000913
Osc. νµ CC other 0.002344 0.002648 0.002609

νµ CCQE 4.428977 4.745506 4.621408
νµ CC 1π 2.080140 2.219962 2.132869

νµ CC coherent 0.228753 0.244521 0.248227
νµ CC other 0.460554 0.490899 0.485509

νµ/ντ NC 1π+/− 0.188316 0.203257 0.143433
νµ/ντ NC other 0.176427 0.188866 0.175090

νe CCQE 0.032854 0.035470 0.034683
νe CC 1π 0.020475 0.022660 0.022716

νe CC coherent 0.000987 0.001084 0.001084
νe CC other 0.005716 0.006807 0.006690
νe NC 1π+/− 0.091432 0.105093 0.075133
νe NC other 0.112184 0.131680 0.121606

Osc. νe CCQE 0.179722 0.198093 0.190000
Osc. νe CC 1π 0.059387 0.065728 0.070982

Osc. νe CC coherent 0.004749 0.005234 0.005093
Osc. νe CC other 0.001406 0.001578 0.001558

νe CCQE 0.002085 0.002096 0.002014
νe CC 1π 0.001337 0.001345 0.001303

νe CC coherent 0.000130 0.000132 0.000132
νe CC other 0.000438 0.000442 0.000429
νe NC 1π+/− 0.012254 0.012354 0.008390
νe NC other 0.013532 0.013592 0.012439

Table 4.4: Calculated numbers of 1 µ-like ring events using the nominal MC
templates, the NA61-tuned MC templates and the ND280-tuned MC templates.
The total numbers of events and the numbers of events from each mode con-
sidered in this analysis are shown. These numbers were calculated for an
exposure of 6.57×1020 POT and oscillations with sin2 θ23 = 0.50 and |∆m2

32| =
2.40×10−3 eV2/c4. Values shown in Tab. 4.2 are used for sin2 θ13, sin2 θ12 and
|∆m2

21| and δCP = 0. The normal mass hierarchy is assumed.
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Figure 4.4: Reconstructed-energy spectra of 1 µ-like ring events, for an exposure
of 6.57×1020 POT, both with and without the effect of the NA61 flux tuning
of the nominal MC templates (top) and both with and without the effect of
the ND280 tuning of the NA61-tuned MC templates (bottom). The spectra are
shown both for no oscillations (left) and for oscillations with sin2 θ23 = 0.50,
|∆m2

32| = 2.40×10−3 eV2/c4, the 2012 PDG values for sin2 θ13, sin2 θ12 and ∆m2
21,

and δCP = 0 (right). Results shown for the normal mass hierarchy. The ratio of
the NA61-tuned to the nominal MC spectrum, and the ratio of the ND280-tuned
to the flux-tuned spectrum are also shown.
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4.2 Effect of systematics

4.2.1 Input systematic parameters

This analysis considers 45 systematic parameters which can be grouped into

five5 categories:

• SK reconstructed energy scale, fSKE;r , (1 parameter, described in Sec. 3.4.4).

The uncertainty is 2.4%;

• SK detector efficiency and final-state and secondary interactions (hadronic

interactions within the nucleus and in the detector volume), fSK+FSI
i;r , (6

parameters, described in Sec. 3.4.4). The uncertainties are correlated, with

1σ errors are listed in Tab. 3.8, and correlations shown in Fig. 3.19;

• ND280-constrained flux and cross section, fND280
i;t,r , (23 parameters, de-

scribed in Sec. 3.3.4). The uncertainties are correlated, with default values

and 1σ errors are listed in Tab. 3.5, and correlations shown in Fig. 3.15;

• ND280-unconstrained cross section (11 parameters, described in Sec. 3.2.3).

The uncertainties are uncorrelated, and the default values and 1σ errors

are listed in Tab. 3.1;

• Non-23-sector oscillation parameters: sin2 θ13; sin2 θ12; ∆m2
21; δCP (4 param-

eters). The uncertainties are uncorrelated, and the default values and

uncertainties are shown in Tab. 4.2).

The MC templates each systematic can effect is shown in Tab. 4.5.

5For the studies in Sec. 4.2.2 the SK energy scale is combined with the SK detector efficiency
and FSI and SI.
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fSKE;r X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

fSK+FSI
0;r X X X

fSK+FSI
1;r X X X

fSK+FSI
2;r X X X

fSK+FSI
3;r X X X X X X X X X

fSK+FSI
4;r X X X X X X X X X X X X

fSK+FSI
5;r X X X X X X X X

fND280
0;t X X X X X X X X X X

fND280
1;t X X X X X X X X X X

fND280
2;t X X X X X X X X X X

fND280
3;t X X X X X X X X X X

fND280
4;t X X X X X X X X X X

fND280
5;t X X X X X X X X X X

fND280
6;t X X X X X X X X X X

fND280
7;t X X X X X X X X X X

fND280
8;t X X X X X X X X X X

fND280
9;t X X X X X X X X X X

fND280
10;t X X X X X X X X X X

fND280
11;t X X X X X X

fND280
12;t X X X X X X

fND280
13;t X X X X X X

fND280
14;t X X X X X X

fND280
15;t X X X X X X

fND280
16;t,r X X X X X X

fND280
17;t,r X X X X X X X X X X X X X X X X X X X X

fND280
18;t X X X X X X

fND280
19;t X X X X X X

fND280
20;t X X X X X X

fND280
21;t X X X X X X

fND280
22;t X X X X X X

fpF ;t,r X X X X X X

fSF ;t,r X X X X X X

fπ−less∆;t,r X X X X X X X X X X X X X X

fbindE;t,r X X X X X X

fCCothShape;t,r X X X X X X

fWshape;t,r X X X X X X X X

fCCcoh;t X X X X X X

f
NC1π±;t

X X X X

fNCoth;t X X X X

fCCνe;t X X X X X X X X X X X X

fCCν;t X X X X X X X X

sin2 θ13 X X X X X X X X X X X X X X X X X X X X X X X X

sin2 θ12 X X X X X X X X X X X X X X X X X X X X X X X X

∆m2
21 X X X X X X X X X X X X X X X X X X X X X X X X

δCP X X X X X X X X X X X X X X X X X X X X X X X X

Table 4.5: Each row of this table represents one of the 45 systematic parameters
considered in this analysis (as defined in Tabs. 3.1, 3.5, and 3.8) and each
column represents one of the 32 MC templates used to construct the 1 µ-like ring
reconstructed energy spectrum p.d.f.. A Xsymbol denotes that the given MC
template is modified when the given systematic parameter is moved away from
its nominal value.



4.2 Effect of systematics 138

Source of uncertainty δNSK/NSK δNSK/NSK

(no oscillations) (oscillations with
typical parameter values)

SK detector + FSI + SI 3.39% 5.62%
ND280-constrained (pre-ND280-fit) 26.20% 21.92%
ND280-constrained (post-ND280-fit) 2.67% 2.73%
ND280-unconstrained cross section 2.99% 5.00%
Non-23-sector oscillation parameters 0.00% 0.22%

Total (pre-ND280-fit) 26.59% 23.18%
Total (post-ND280-fit) 5.25% 8.01%

Table 4.6: Effect of 1σ systematic parameter variation on the number of 1 µ-like
ring events, computed for no oscillations and for oscillations with sin2 θ23 =
0.50, |∆m2

32| = 2.40×10−3 eV2/c4, the values shown in Tab. 4.2 for sin2 θ13, sin2 θ12,
and ∆m2

21, and δCP = 0. The normal mass hierarchy is assumed. The numbers
shown were calculated for an exposure of 6.57×1020 POT and ND280-tuned MC
templates were used.

4.2.2 Evaluation of effects of systematic parameters on the pre-

dicted 1 µ-like ring reconstructed energy spectrum

In this section, the effects of the systematics described in Sec. 4.2.1 on the pre-

dicted number of 1 µ-like ring events and the predicted reconstructed energy

spectrum in SK are presented. These effects are shown both without oscillations,

and with oscillations with sin2 θ23 = 0.50 and |∆m2
32| = 2.40×10−3 eV2/c4. For

the oscillated case, the values shown in Tab. 4.2 for sin2 θ13, sin2 θ12 and ∆m2
21,

and δCP=0 are used, and the normal mass hierarchy is assumed. All results are

generated for an integrated exposure of 6.57×1020 POT and the ND280-tuned

MC templates are used.

The effects of systematic uncertainties on the predicted number of events

are summarised in Tab. 4.6, both for no oscillations and for oscillations with

the typical parameter values given above. In this table, systematic parameters

are grouped into five categories and all parameter correlations are taken into

account. Estimated uncertainties are given both before and after the ND280 fit.
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The individual effect of each parameter is presented in Tab. 4.7, in which the

correlations between parameters are necessarily ignored. The most important

systematics from this table are:

• fSK+FSI
3;r . The SK detector efficiency and FSI+SI parameter for νµ/νµ CC-

nonQE interactions. A +1σ change causes an increase across the whole

spectrum, with an ∼5% effect in the flux peak region, an ∼2% effect below

the flux peak, and up to ∼9% effect above the flux peak.

• fSK+FSI
5;r . The SK detector efficiency and FSI+SI parameter for NC inter-

actions. A +1σ change causes an ∼30% increase in the 0.25–0.30 GeV bin,

reducing to ∼1% at 1 GeV.

• fND280
16;t,r . MQE

A . A +1σ change causes an ∼2%-4% increases across all Ereco,

peaking at ∼1 GeV.

• fND280
18;t . CCQE normalisation for Ereco < 1.5 GeV. A +1σ change causes an

∼6% increase for Ereco < 1.4 GeV, reducing to a ∼1% increase at 2 GeV.

• fπ−less∆;t,r. Systematic due to the uncertainty in the fraction of π-less ∆

decays in resonance-production events. A +1σ change causes an ∼8%

increase above 0.6 GeV, reducing to ∼2% decrease in at 0.3 GeV.

• δCP . Has the largest effect in the non-23-sector category. A shift by π/2

results in a ∼3% decrease at 0.4 GeV, and a ∼5% increase at 0.7 GeV.

It should be noted that while fSKE;r (the SK energy scale) does not change the

number of events, it does effect the Ereco spectrum by inducing a shift.

The importance of each systematic in the joint determination of νµ disappear-

ance oscillation parameters is shown later in Tabs. 4.9 and 4.10.

The effects of the combined systematic uncertainties on the reconstructed

energy spectrum of 1 µ-like ring events is shown in Fig. 4.5 for the typical

oscillation scenario used. This plot shows the total error envelope for the 1 µ-like
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Source of δNSK/NSK δNSK/NSK

uncertainty (no oscillation) (oscillations with typical params)

pre-ND280-fit post-ND280-fit pre-ND280-fit post-ND280-fit

fSKE;r 0.0 0.0 0.0 0.0

fSK+FSI
0;r 0.090 0.098 0.15 0.18

fSK+FSI
1;r 1.8 1.9 0.68 0.74

fSK+FSI
2;r 0.40 0.43 0.92 1.0

fSK+FSI
3;r 2.4 2.1 4.6 4.0

fSK+FSI
4;r 0.017 0.016 0.25 0.27

fSK+FSI
5;r 1.1 0.90 3.8 3.2

fND280
0;t 0.36 0.27 0.85 0.66

fND280
1;t 1.0 0.74 0.67 0.50

fND280
2;t 1.9 1.3 0.12 0.085

fND280
3;t 2.3 1.6 0.30 0.22

fND280
4;t 3.4 2.4 2.2 1.6

fND280
5;t 1.0 0.66 1.8 1.2

fND280
6;t 0.63 0.39 1.7 1.1

fND280
7;t 0.33 0.20 1.0 0.65

fND280
8;t 0.41 0.22 1.3 0.74

fND280
9;t 0.19 0.077 0.65 0.27

fND280
10;t 0.051 0.019 0.17 0.066

fND280
11;t 0.061 0.050 0.035 0.030

fND280
12;t 0.061 0.049 0.049 0.040

fND280
13;t 0.085 0.067 0.16 0.13

fND280
14;t 0.10 0.080 0.27 0.22

fND280
15;t 0.078 0.060 0.25 0.20

fND280
16;t,r 25. 3.4 18. 2.8

fND280
17;t,r 2.8 1.1 6.7 2.4
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Source of δNSK/NSK δNSK/NSK

uncertainty (no oscillation) (oscillations with typical params)

pre-ND280-fit post-ND280-fit pre-ND280-fit post-ND280-fit

fND280
18;t 7.9 5.9 4.2 3.3

fND280
19;t 1.4 0.55 3.9 1.6

fND280
20;t 0.36 0.16 1.2 0.53

fND280
21;t 3.7 1.5 4.9 2.0

fND280
22;t 1.7 0.47 5.4 1.6

fpF ;t,r 0.063 0.065 0.13 0.13

fSF ;t,r 0.82 0.82 0.24 0.26

fWshape;t,r 0.12 0.072 0.40 0.26

fCCothShape;t,r 0.28 0.30 0.78 0.89

fπ−less∆;t,r 3.2 2.6 5.6 4.5

fbindE;t,r 0.50 0.43 0.24 0.20

fCCcoh;t 0.54 0.58 0.81 0.93

fNC1π±;t 0.31 0.21 1.1 0.75

fNCoth;t 0.25 0.24 0.85 0.85

fCCνe;t 0.00051 0.0005 0.0077 0.0081

fCCν;t 0.61 0.61 1.2 1.2

sin2 θ13 0.0 0.0 0.070 0.078

sin2 θ12 0.0 0.0 0.040 0.036

∆m2
21 0.0 0.0 0.027 0.025

δCP 0.0 0.0 0.21 0.19

Table 4.7: Effects of 1σ systematic parameter variations (as defined in Tabs. 3.1,
3.5, and 3.8) on the number of 1 µ-like ring events, computed for no oscillations
and for oscillations with sin2 θ23 = 0.50, |∆m2

32| = 2.40×10−3 eV2/c4, the values
shown in Tab. 4.2 for sin2 θ13, sin2 θ12, and ∆m2

21, and δCP = 0. The normal mass
hierarchy is assumed. Numbers are quoted to 2 significant figures. Correlations
are ignored for this table. The numbers shown were calculated for an exposure
of 6.57×1020 POT and ND280-tuned MC templates were used.
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ring event reconstructed energy spectrum; this is calculated as the ±1σ spread

of bin contents from 100,000 toy MC experiments generated with randomised

systematic parameters. For the uncorrelated systematics, random numbers

are drawn from a Gaussian distribution6 [174]. For the correlated systematics,

Cholesky decomposition [175] of the covariance matrix is performed to give

the lower triangular matrix, which is multiplied by a vector of uncorrelated

random numbers drawn from a Gaussian distribution, to produce correlated

random variables. In Fig. 4.5, all systematic parameters were considered and

their correlations were taken into account.

Fig. 4.6 shows the effect of the systematic error, relative to the statistical error

at T2K Run 1+2+3+4 exposure, for both the no oscillation and oscillation cases.

It can be seen that the statistical error dominates at most energies; the systematic

error is comparable below 1 GeV for the no-oscillation scenario. It should be

noted that the statistical error is 100% uncorrelated between bins, while the

systematic error is correlated between bins, therefore the effect of the systematics

is more important than is indicated in Fig. 4.6.

Fig. 4.7 shows the effect of the four categories of systematic error, relative to

the total systematic error, for both the no oscillation and oscillation cases. It can

be seen that the SK detector, FSI and SI, and ND280-unconstrained cross-section

systematics dominate the oscillation dip region.

6SF is drawn in the range [0,1] from a Gaussian distribution. δCP is drawn in the range
[−π,π] from a uniform distribution.
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Figure 4.5: Total error envelope of the 1 µ-like ring event reconstructed energy
spectrum, for oscillations with sin2 θ23 = 0.50 and |∆m2

32| = 2.40×10−3 eV2/c4, the
values shown in Tab. 4.2 for sin2 θ13, sin2 θ12 and ∆m2

21, and δCP=0. The normal
mass hierarchy is assumed. The numbers shown were calculated for an exposure
of 6.57×1020 POT. ND280-fit-tuned MC templates were used. The error envelope
was calculated as the ±1σ spread of bin contents using an ensemble of 100,000
toy MC experiments generated with randomised systematic parameters. All
systematic parameters were considered and their correlations were taken into
account.
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Figure 4.6: Comparative size of systematic and statistical error effects per bin.
100,000 toy MC experiments were generated with randomised systematic param-
eters and the 1σ spread of bin contents was calculated. The fractional systematic
error is estimated as the 1σ spread divided by the expected number of events
in each bin. The fractional statistical error is estimated as the inverse square
root of the number of events in each bin at 6.57×1020 POT. ND280-fit-tuned
MC templates were used. All systematic parameters were considered and their
correlations were taken into account. Shown with both no oscillations (left) and
with oscillations for sin2 θ23 = 0.50, |∆m2

32| = 2.40×10−3 eV2/c4, the values shown
in Tab. 4.2 for sin2 θ13, sin2 θ12 and ∆m2

21, and δCP=0. The normal mass hierarchy
is assumed (right).
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Figure 4.7: Ratio of event-per-bin 1σ spread with individual systematic categories
randomised, to the equivalent spread with all systematics randomised. 100,000
toy MC experiments each were generated with different groups of systematics
randomised, and with all systematics randomised, and the 1σ spread of bin
contents was calculated. ND280-fit-tuned MC templates were used. Shown
with both no oscillations (left) and with oscillations for sin2 θ23 = 0.50, |∆m2

32|
= 2.40×10−3 eV2/c4, the values shown in Tab. 4.2 for sin2 θ13, sin2 θ12 and ∆m2

21,
and δCP=0. The normal mass hierarchy is assumed (right).
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4.3 Procedure for the joint determination of νµ dis-

appearance oscillation parameters

In this section, the method of fitting the SK 1 µ-like ring rate and reconstructed

energy spectrum, in order to obtain the values and errors on the 23-sector oscilla-

tion parameters (sin2 θ23 and |∆m2
32| or |∆m2

31|), is discussed. First, the choice of

νµ disappearance parameters to determine is described in Sec. 4.3.1. In Sec. 4.3.2

the χ2 fit statistic is introduced. In Sec. 4.3.3 the fit methodology is described. In

Sec. 4.3.4 a method for obtaining the goodness of fit is presented. In Sec. 4.3.5 the

fitter is validated. In Sec. 4.3.6 the effect of systematics on the fitted values are

presented, in order to determine which systematic parameters have the greatest

impact on the fit. In Sec. 4.3.7 the methods for constructing 2-dimensional (in

sin2 θ23 versus |∆m2
32| or |∆m2

31|) and 1-dimensional (in sin2 θ23 and |∆m2
32| or

|∆m2
31|) confidence regions are presented. Finally, in Sec. 4.3.8 the sensitivity for

the joint determination of νµ disappearance oscillation parameters at a number

of test points is presented.

4.3.1 Choice of νµ disappearance oscillation parameters

Historically, analyses were performed using a two neutrino flavour approxima-

tion

P(νµ → νµ) = 1− sin2(2θ23) sin2

(
∆m2

32L

4Eν

)
(4.3)

to determine νµ disappearance oscillation parameters, fitting for the double

angled parameter sin2(2θ23) parameter (see, for example, Ref. [176]). However,

in the three active neutrino flavour model, there is a dependence on the octant

of θ23 (θ23 ≤ π/4 or θ23 ≥ π/4) which has a large effect on the determination

of sin2(2θ23). This is due to the value of sin2 θ23 giving maximal disappearance
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not being the same as the value giving maximal mixing (sin2 θ23 = 0.50); this

difference is due to the non-zero value of θ13. In the 3-flavour oscillation formula7

P(νµ → νµ) ≈ 1−
(
cos4 θ13 sin2(2θ23) + sin2 θ23 sin2(2θ13)

)
sin2

(
∆m2

31L

4E

)
, (4.4)

the maximum amount of disappearance occurs not at sin2 θ23 = 0.50, but it is

offset slightly due to the next-to-leading order term. The extremum occurs at

sin2 θ23 = 1
2(1−sin2 θ13)

≈ 0.513, when using the value of sin2 θ13 in Tab. 4.2, instead

of at sin2 θ23 = 0.50 as in the 2-flavour approximation. In addition, the oscillation

probability is approximately symmetric about this point, meaning that for every

input value sin2 θ23 6= 0.513, there exists a “mirror point” with a similar oscillation

probability. Therefore, sin2 θ23 is fit by default.

There are also different choices for the mass-squared splitting parameter:

typically |∆m2
32| is used in νµ-disappearance analyses, but this is the largest

mass-squared splitting for the inverted mass hierarchy and the second largest

for the normal mass hierarchy. It is therefore not correct to compare results

in |∆m2
32| obtained under the different mass hierarchy hypotheses. For the

present analysis, it was decided to fit |∆m2
32| for the normal mass hierarchy

and |∆m2
31| for the inverted mass hierarchy (the second largest mass-squared

splitting in each hierarchy). The actual inputs to the calculation of the oscillation

probabilities are +|∆m2
32| for the normal mass hierarchy and −|∆m2

31| for the

inverted mass hierarchy. Fits of |∆m2
32| for the inverted mass hierarchy were

also performed for validation.

7In the fits, the full 3-flavour oscillation formulae including matter effects is used, and not
this approximation.
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4.3.2 Construction of likelihood

The νµ disappearance analysis uses a binned likelihood-ratio method. Measure-

ments of the oscillation parameters sin2 θ23 and |∆m2
32| or |∆m2

31| are obtained

by comparing the observed and predicted SK Ereco event rate and spectrum for 1

µ-like ring events using the likelihood-ratio method.

Let N be the number of reconstructed energy bins and nobs
i be the number

of events observed in the ith bin. The p.d.f. for the total number of events ob-

served in SK, nobs
tot =

∑N−1
i=0 nobs

i , has a Poisson distribution, and the mean of that

distribution is equal to the predicted total number of events nexp
tot =

∑N−1
i=0 n

exp
i ,

where nexp
i = n

exp
i (sin2 θ23, |∆m2

32| or |∆m2
31|; a) is the predicted number of events

in the ith bin. The p.d.f. for the total number of events is

fpoisson =

[
n

exp
tot

]nobs
tot e−n

exp
tot

nobs
tot !

. (4.5)

The reconstructed energies of the observed events are distributed over N

bins. Since there are N possible outcomes for the process of placing an event in

a bin, the p.d.f. of the distribution of those outcomes is multinomial,

fmultinomial = nobs
tot !

N−1∏
i=0

1

nobs
i !

[
n

exp
i

n
exp
tot

]nobs
i

, (4.6)

where n
exp
i

n
exp
tot

is the probability of an event being placed in the ith bin.

The joint p.d.f. fjoint for the outcome of the reconstructed energy distribution

is the product of the Poisson and multinomial distributions shown in Eq. 4.5 and

Eq. 4.6 respectively:

fjoint = e−n
exp
tot

N−1∏
i=0

1

nobs
i !

[
n

exp
i

]nobs
i . (4.7)
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The next step is to divide the p.d.f. in Eq. 4.7 by a factor that does not depend

on the oscillation parameters

f0 = e−n
obs
tot

N−1∏
i=0

1

nobs
i !

[
nobs
i

]nobs
i , (4.8)

which leads to the likelihood ratio

λ = en
obs
tot −n

exp
tot

N−1∏
i=0

(
n

exp
i

nobs
i

)nobs
i

. (4.9)

Best-fit values are obtained by minimising:

−2 lnλ (sin2 θ23, |∆m2
32| or |∆m2

31|; a) =

2 ·
N−1∑
i=0

(
nobs
i · ln(nobs

i /n
exp
i ) + (n

exp
i − nobs

i )
)

+ (a− a0)T ·C−1 · (a− a0), (4.10)

where the second term, the penalty term, penalises the fit for moving the Ns

systematic (nuisance) parameters that effect the SK reconstructed energy spec-

trum prediction (e.g. parameters that control the beam, neutrino interaction

simulations and the detector response) away from their nominal values. a is a

1×Ns-dimensional array of systematic parameters a0 is a 1×Ns-dimensional

array with the default values of the systematics parameters, aT is the transpose

of a, and C is the systematic parameter covariance matrix of dimension Ns ×Ns.

The likelihood-ratio method is equivalent to the extended maximium-like-

lihood method up to Eq. 4.7, where the Poisson term (Eq. 4.5) is equivalent to

Lnorm and the multinominal term (Eq. 4.6) is equivalent to Lshape. The advantage

of the likelihood ratio method is that in the large-sample limit, the quantity

−2 lnλ (sin2 θ23, |∆m2
32| or |∆m2

31|; a) in Eq.4.10 has a χ2 distribution and it can

therefore be used as a goodness-of-fit test. In this thesis, −2 lnλ (sin2 θ23, |∆m2
32|

or |∆m2
31|; a) and χ2 (sin2 θ23, |∆m2

32| or |∆m2
31|; a) are used interchangeably.
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4.3.3 Numerical implementation

Minimisation is performed with MINUIT [167], using the MIGRAD algorithm.

MIGRAD proceeds by first calculating the first derivatives and covariance

matrix of the free parameters in the problem (the six oscillation parameters and

41 systematic parameters in this case). Using this information, a direction to

step is calculated, and a number of calculations of χ2 along this direction are

performed to find the minimum in that direction. The first derivatives and

covariance matrix are then recalculated, and the previous step repeated until

convergence criteria are satisfied. If MIGRAD does not converge, the starting

values of the oscillation parameters are re-initialised: the new initial values

are randomly drawn from uniform distributions in the ranges 1.5×10−3 eV2/c4

≤ |∆m2
32| or |∆m2

31| ≤ 3.5×10−3 eV2/c4 and either 0.35 ≤ sin2 θ23 ≤ 0.50 or 0.53

≤ sin2 θ23 ≤ 0.68 (the new initial value of sin2 θ23 is in the same octant as the

previous initial value, and away from the value of maximal disappearance (a

boundary of the model)). All 45 systematic parameters are thrown within their

errors to provide new initial values. The fit is retried with the new initial values,

and this is repeated up to 10 times. If the fit still fails to converge after 10

attempts, the SIMPLEX algorithm is used. SIMPLEX proceeds by forming a

simplex from the starting point and finding local minima along each parameter.

The simplex is reformed by replacing the highest point with a new minima

along the line between the point and the simplex centroid, until the simplex

contracts at a minimum. SIMPLEX does not use derivatives, and so can perform

better than MIGRAD in certain circumstances (near a parameter limit or for

a fluctuating function). The search for the minimum value of −2 lnλ (sin2 θ23,

|∆m2
32| or |∆m2

31|; a) (see Eq. 4.10) is performed in the range 0 ≤ sin2 θ23 ≤ 1 and

1×10−3 eV2/c4 ≤ |∆m2
32| or |∆m2

31| ≤ 6×10−3 eV2/c4.

After a successful fit, the HESSE algorithm is called to improve the esti-
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mates of the errors on the fitted parameters. HESSE calculates the full second

derivative matrix at the best-fit point by taking finite differences. For systematic

parameters which do not have a Gaussian effect on the spectrum (e.g. fSKE;r ), the

MINOS algorithm is used. MINOS finds asymmetric errors for each parameter

individually by searching for the value of that parameter that gives a ∆χ2 of 1,

relative to the best-fit point. It achieves this by estimating the position of this

point using the covariance matrix, minimising all other free parameters using

MIGRAD and repeating until the point is found.

Each fit is repeated twice8: in the first fit, the initial values are |∆m2
32| or

|∆m2
31| = 2.40 × 10−3 eV2/c4 and sin2 θ23 = 0.60, while the second fit uses as initial

values the best fit of |∆m2
32| or |∆m2

31| and the mirror point in the other octant

of the best fit of sin2 θ23 from the first fit. Two fits are performed because, for

non-maximal mixing, the χ2 surface contains two local minima in sin2 θ23, and

the MIGRAD algorithm is unlikely to be able to cross between them. Although

Eq. 4.4 suggests that values at either side of maximal disappearance have equal

probabilities, Eq. 4.4 is only a leading order approximation and other terms will

alter this. There will also be differences in the spectra due to other probabilities

changing at either side of the mirror point (e.g. P(νµ → νe)). Therefore the value

of χ2 at the local minimum on each side of the mirror point can be different, and

so must be calculated. The fit with the lowest χ2 value is kept.

Parameter ranges

All the systematic parameters are allowed to float in the fit, and are restricted

to the range [-5σs, +5σs] where σs is the one standard deviation error assigned

8For reference, when running on a machine with Scientific Linux 6.4 (Carbon) on an In-
tel®Xeon®CPU X5650 running at a speed of 2.67 GHz, it takes ∼4 minutes to perform a fit to a
single toy MC experiment or data (i.e. to do the fit twice, once in each octant).
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to each systematic parameter9. Values of systematic parameters that give a

negative predicted number of events in any reconstructed energy bin are not

allowed. If this scenario arises, the number of events is changed to +10−8 in that

bin. This is done for the sum of all the interaction modes (rather than for each

mode separately) to prevent the ln term in Eq. 4.10 tending to infinity in the case

where nobs is non-zero and nexp is zero.

In a 3-flavour νµ-disappearance fit, it is also necessary to make a choice for

the treatment of the non-23-sector oscillation parameters. In this analysis, each of

sin2 θ13, sin2 θ12, ∆m2
21 and δCP are allowed to float. Penalty terms are used for

sin2 θ13, sin2 θ12, ∆m2
21, and their central values and uncertainties are shown in

Tab. 4.2; these are taken from the 2012 PDG [31]. There is no penalty term for

δCP , and it is allowed to float freely in the range [−π, +π]10.

4.3.4 Goodness-of-fit tests

While the χ2 defined in Eq. 4.10 can be used as a goodness-of-fit test statistic,

the 73-bin Ereco spectrum cannot be used, as it is too sparsely populated. This is

because −2 lnλ only approaches a χ2 distribution in the large-sample limit of

at least five events in every bin [177] . Therefore in this analysis p-values will

be calculated using the rate and the reconstructed energy distribution, and that

distribution will use a very coarse binning scheme to ensure that there are a

sufficient numbers of events in each bin: 5 bins from 0.0–0.4 GeV, 0.4–0.7 GeV,

0.7–1.0 GeV, 1.0–2.0 GeV and 2.0–30.0 GeV gives sufficient statistics in each bin

(∼15 to ∼35 events).

9Such an error is defined for all but one of the systematic parameters considered in this
analysis. The exception is the systematic parameters fSF which parameterises the uncertainty
on nuclear modelling, switching between the RFG and SF models. The allowed range of the
parameter fSF in the oscillation fit is [0,1].

10The non-23-sector oscillation parameters are allowed to float in the fit in the following ranges:
sin2 θ13 and sin2 θ12 in the range [0,1]; ∆m2

21 in the range [6,9]×10−5 eV2/c4; and δCP in the range
[−π,+π].
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A p-value can be calculated to determine the goodness of fit by using the

results of fits to many toy MC experiments. At the best-fit point (sin2 θ23 and

|∆m2
32| or |∆m2

31|) of the fit to data, 1000 toy MC experiments are generated with

statistical fluctuations and all systematics randomised. These toy experiments

are fitted and the χ2 of each compared to χ2
data. The p-value is the proportion of

experiments in which a value of χ2 > χ2
data is recorded.

4.3.5 Fitter validation

The performance of the fitter was evaluated using ensembles of 5000 toy MC ex-

periments, and these were generated with statistical fluctuations and variations

of all 45 systematic parameters. Ensembles of experiments were generated for

different true input values of sin2 θ23 and |∆m2
32|, and for both 6.57×1020 POT

(Run 1+2+3+4) and 7.80×1021 POT (the ultimate T2K goal). These toy MC ex-

periments were fitted using MIGRAD and the errors were computed using

HESSE11.

Distributions of residuals for sin2 θ23 and |∆m2
32| are shown in Fig. 4.8 for

true input values12 sin2 θ23 = 0.370 and |∆m2
32| = 2.40×10−3 eV2/c4, for both

6.57×1020 POT and 7.80×1021 POT. A clear three-peak structure is seen at Run

1+2+3+4 POT in the distribution of residuals of sin2 θ23, with peaks occurring

at the input value, the mirror of the input value in the other octant, and the

maximum disappearance value. The peak at the mirror value in the other octant

occurs because P(νµ → νµ) is almost identical for the input and mirror values.

11MINOS errors were computed for the SK energy scale systematic because the number of
events in a bin is not a smooth function of fSKE;r . Tweaking this systematic involves migrating
events to and from neighbouring bins, and, although the number of events itself is a continuous
function of fSKE;r , there is a discontinuity in the differential when moving from positive to negative
values of fSKE;r . There is also a discontinuity at large values of fSKE;r since events are also migrated
to and from the next-to-neighbouring bins. For these reasons, HESSE has a problem evaluating
errors for this systematic parameter.

12Chosen as a point away from maximal disappearance.
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Figure 4.8: Distributions of fitter residuals for sin2 θ23 and |∆m2
32| for 5000 toy

MC experiments, generated at sin2 θ23 = 0.370 and |∆m2
32| = 2.40×10−3 eV2/c4,

including statistical fluctuations and with randomised systematic and non-
23 oscillation parameters. The distribution is shown for both 6.57×1020 POT
(Run 1+2+3+4, black histogram) and 7.80×1021 POT (the T2K ultimate goal, red
histogram).

The peak at maximal disappearance (at sin2 θ23 ≈ 0.513) is due to downward

statistical fluctuations in the numbers of events in the bins around the oscillation

maximum in some of the toy datasets. When these datasets are fitted, the best fit

of sin2 θ23 is the value giving the maximum physically-allowed disappearance,

i.e. 0.513. This peak is not seen for 7.80×1021 POT since downward statistical

fluctuations have a smaller effect on the toy datasets at higher statistics.

Distributions of fitter residuals for sin2 θ23 and |∆m2
32| are shown in Fig. 4.9

for true input values13 sin2 θ23 = 0.513 and |∆m2
32| = 2.40×10−3 eV2/c4, for both

6.57×1020 POT and 7.80×1021 POT. The distribution for sin2 θ23 has a large peak

at 0.513 as expected, but also two smaller peaks, with one peak in each octant.

13Chosen as a point at maximal disappearance.
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Figure 4.9: Distributions of fitter residuals for sin2 θ23 and |∆m2
32| for 5000 toy

MC experiments, generated at sin2 θ23 = 0.513 and |∆m2
32| = 2.40×10−3 eV2/c4,

including statistical fluctuations and with randomised systematic and non-
23 oscillation parameters. The distribution is shown for both 6.57×1020 POT
(Run 1+2+3+4, black histogram) and 7.80×1021 POT (the T2K ultimate goal, red
histogram).

This can be explained by considering the effects of statistical fluctuations in the

bins near the oscillation maximum in the toy datasets. If there are no statistical

fluctuations in these bins, the fitted value of sin2 θ23 is the same as the input

value of 0.513, and downward statistical fluctuations also result in a fitted value

of 0.513. However upward statistical fluctuations in these bins in some datasets

mean that νµ disappearance is less than maximal, and this results in a fitted value

of sin2 θ23 that is different from the input value of 0.513. The non-maximal values

of sin2 θ23 returned by the fitter can be quantified by considering the ratio of the

number of events in a single bin at the lowest part of the oscillation dip with

oscillations to that without oscillations, as shown in Fig. 4.10. Examples of this

ratio are shown in Tab. 4.8 for 6.57×1020 POT (Run 1+2+3+4) and 7.80×1021 POT
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(the ultimate T2K goal). As shown in the table, the ratio is 2.672 / 37.93 = 0.070

at 6.57×1020 POT for a dataset without statistical fluctuations. The smallest

upward statistical fluctuation that can be made is to 3 events, and this increases

the ratio to 0.079; this is the ratio that would be obtained in a dataset made with

an input value of sin2 θ23 of 0.463 (first octant) or 0.565 (second octant). These

input values are close to the values of the non-maximal peaks in the fitted values

of sin2 θ23 also shown in Tab. 4.8. At 7.80×1021 POT, it is necessary to consider

upward statistical fluctuations from 31.545 to 32, 33 and 34 events in order to

obtain a ratio of number of events with oscillations to that without oscillations

corresponding to the values of the non-maximal peaks in the fitted values of

sin2 θ23. The effect is more complicated than stated here, because it is not a single

bin fitter.
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Figure 4.10: Ratio of number of events in a single bin at the lowest part of the os-
cillation dip for toy datasets created with different input values of sin2 θ23 to num-
ber without oscillations against the input value of sin2 θ23. Red (blue) lines show
the value corresponding to the ratio found at 6.57×1020 POT (7.80×1021 POT,
the T2K ultimate POT goal) from Gaussian fits of the sin2 θ23 distributions in Fig.
4.9.

Distributions of pulls of the 41 systematic parameters and four non-23 os-
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cillation parameters are shown in Fig. 4.11, for true input values14 of sin2 θ23 =

0.513 and |∆m2
32| = 2.40×10−3 eV2/c4. In these figures, the pulls are calculated as

fbestfit − ftrue

σbf
. (4.11)

For most systematics, the distributions are approximately Gaussian with mean

0, width 1, skewness 0, and kurtosis 0. A summary of the pull mean, RMS,

skewness, and kurtosis is shown in Fig. 4.12.
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Figure 4.11: Systematic pull distributions for all systematic parameters for 5000
toy MC experiments at 6.57×1020 POT generated at sin2 θ23 = 0.513 and |∆m2

32|
= 2.40×10−3 eV2/c4, including statistical fluctuations and with randomised sys-
tematic parameters. A Gaussian distribution of mean 0, width 1 is shown for
reference. The two non-Gaussian parameters are δCP and fSF ;t,r.

No problems were identified with the fitter, which performed as expected.

There are some small biases in the pull distributions for some systematic param-

14sin2 θ23 = 0.370 and |∆m2
32| = 2.40×10−3 eV2/c4 and sin2 θ23 = 0.650 and |∆m2

32| =
2.40×10−3 eV2/c4 have also been studied; there is little dependence on the pull distributions.
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Figure 4.12: Summary of systematic pull distributions for all systematic pa-
rameters for 5000 toy MC experiments at 6.57×1020 POT generated at sin2 θ23

= 0.513 and |∆m2
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Figure 4.13: Pull distributions for δCP , fSF ;t,r, fπ−less∆;t,r, fSKE;r , and fSK+FSI
5;r ,

computed from fits of 5000 toy MC experiments at 6.57×1020 POT, generated at
sin2 θ23 = 0.513 and |∆m2

32| = 2.40×10−3 eV2/c4, including statistical fluctuations
and with randomised systematic parameters.

eters, as shown shown in Fig. 4.13 for input values of sin2 θ23 = 0.513 and |∆m2
32|

= 2.40×10−3 eV2/c4, but these biases are understood:

• δCP . This systematic is thrown uniformly between−π and +π (rather than

with a Gaussian distribution), is constrained between −π and +π in the fit,

and has no penalty term. Therefore a Gaussian distribution is not expected.

• Spectral function: fSF ;t,r. This systematic is limited to the range [0,1],

both for toy experiment generation, and in the fit. It is constrained with a

Gaussian constraint. Therefore a Gaussian distribution with mean 0, width

1 is not expected.

• π-less ∆ decay: fπ−less∆;t,r. The bias is due to the method of calculation

of event weights when this parameter is varied. By default, 20% of ∆ reso-
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nances decay in this way in NEUT, and the uncertainty is 20%. This means

that it is unphysical to change this parameter to be more negative than

−1σ. Consequently there is an asymmetry in weights between positive

tweaks (which change continuously as the parameter moves away from

nominal) and negative tweaks (for which the there is no change in the

weights below −1σ). This leads to a small negative bias.

• SK energy scale: fSKE;r . This systematic is different from the others in

that it migrates events from bin to bin instead of increasing or decreasing

the numbers of events in the bins of reconstructed energy. Its pull is not

expected to be a Gaussian with zero mean since the shape of the predicted 1

µ-like ring energy spectrum is not symmetric, and, consequently, a positive

modification of this parameter has a different effect on that spectrum from

a negative modification, as shown in Fig. 4.14.

• NC SK detector efficiency + FSI + SI: fSK+FSI
5;r . The bias comes from the

low statistics at current POT. When Poisson fluctuations are made of the

bin contents of the Ereco distributions, a downward fluctuation is more

likely than an upward fluctuation. For example, a Poisson distribution

with mean 3 has P(1) = 0.149 and P(2) = 0.224, whereas P(4) = 0.168 and P(5)

= 0.101. The NC events are mainly around the oscillation maximum and

below (as shown in Figs. 4.2 and 4.15) ) where there are few events, and

downward Poisson fluctuations are more likely than upward ones. Fitting

these downward fluctuations involves moving this parameter down from

zero, and this explains the negative bias in its pull. When moving away

from the point of maximal disappearance as input (and so reducing the

depth of the oscillation dip), the NC bin in the SK detector efficiency + FSI

+ SI matrix bias is reduced.
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Figure 4.14: Effect of ±3σ and ±1σ
tweaks of fSKE;r (SK energy scale) on the
SK 1 µ-like ring reconstructed energy
spectrum, for oscillations with sin2 θ23

= 0.50 and |∆m2
32| = 2.40×10−3 eV2/c4

and for an exposure of 6.57×1020 POT.
sin2 θ13, sin2 θ12 and ∆m2

21 have the val-
ues shown in Tab. 4.2 and δCP = 0.
The normal mass hierarchy is assumed.
The effect of the tweaks of fSKE;r are not
symmetric.
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Figure 4.15: Effect of ±3σ and ±1σ
tweaks of fSK+FSI

5;r (NC SK detector
efficiency + FSI + SI) on the SK 1 µ-
like ring reconstructed energy spec-
trum, for oscillations with sin2 θ23 =
0.50 and |∆m2

32| = 2.40×10−3 eV2/c4

and for an exposure of 6.57×1020 POT.
sin2 θ13, sin2 θ12 and ∆m2

21 have the val-
ues shown in Tab. 4.2 and δCP = 0.
The normal mass hierarchy is assumed.
fSK+FSI

5;r has a large effect in the oscil-
lation peak region, and below.

4.3.6 Evaluation of the effects of systematic parameters on the

determination of νµ disappearance oscillation parameters

The effect of each systematic parameter on the best-fit values of sin2 θ23 and

|∆m2
32| for the normal mass hierarchy was quantified by generating a toy MC

experiment with no statistical fluctuations and a +1σ tweak of a single system-

atic parameter. A fit for only sin2 θ23 and |∆m2
32|, with systematics fixed at their

nominal values, was performed on that experiment, and the effect of that sys-

tematic parameter on the best-fit values of sin2 θ23 and |∆m2
32| was taken to be

the difference between the best-fit values from the experiment with the +1σ

tweak and the input values of the oscillation parameters. This was repeated
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with a toy generated with a −1σ tweak. This procedure was repeated for each

systematic parameter in turn. For systematic parameters which are correlated,

this procedure was repeated twice, both respecting and ignoring correlations.

The study was repeated at multiple input points in the sin2 θ23-|∆m2
32| plane.

An estimate of the order of the effect of systematics is given in Tabs. 4.9

and 4.10, ordered by the effect on sin2 θ23 and |∆m2
32| respectively. To make this

estimate, the effect of each systematic is compared with the statistical error for

the specific values of sin2 θ23 and |∆m2
32|. The effect of the statistical error was

evaluated using 10,000 toy MC datasets with no systematic fluctuations at each

input point, with each dataset being fitted for only sin2 θ23 and |∆m2
32|. For each

systematic, the largest fractional effect seen in the study is given in the table,

whether that is from +1σ or −1σ, including or neglecting correlations, and from

any true values of sin2 θ23 and |∆m2
32| in the study.

Parameter δsyst sin2 θ23

δstat sin2 θ23

δsyst|∆m2
32|(eV2/c4)

δstat|∆m2
32|(eV2/c4)

fSK+FSI
5;r 1.1773 0.3993

fSF ;t,r 1.0255 0.3641

fπ−less∆;t,r 0.9775 0.2689

fND280
18;t 0.9734 0.3171

fSK+FSI
3;r 0.7611 0.1014

fND280
21;t 0.7223 0.1277

fbindE;t,r 0.7211 0.4678

fND280
4;t 0.6886 0.2540

fND280
16;t,r 0.6812 0.2096

fSKE;r 0.6529 0.2262

fSK+FSI
1;r 0.6299 0.0681

fSK+FSI
0;r 0.6095 0.0573

fNCoth;t 0.5898 0.1048

fND280
17;t,r 0.5850 0.0810
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Parameter δsyst sin2 θ23

δstat sin2 θ23

δsyst|∆m2
32|(eV2/c4)

δstat|∆m2
32|(eV2/c4)

fNC1π±;t 0.5830 0.1036

fSK+FSI
2;r 0.5701 0.0674

fND280
5;t 0.5277 0.0987

fND280
1;t 0.5266 0.1880

fND280
0;t 0.4829 0.1113

fND280
2;t 0.4372 0.0991

fWshape;t,r 0.4074 0.0549

fND280
11;t 0.3947 0.0722

fND280
3;t 0.3907 0.0684

fND280
9;t 0.3691 0.0373

fND280
13;t 0.3495 0.0333

fND280
7;t 0.3484 0.0291

fND280
6;t 0.3475 0.0471

fND280
14;t 0.3469 0.0238

fND280
8;t 0.3450 0.0267

fND280
12;t 0.3438 0.0333

fCCν;t 0.3421 0.0505

fND280
19;t 0.3364 0.0418

fND280
10;t 0.3297 0.0312

fCCothShape;t,r 0.3283 0.0281

fCCcoh;t 0.3257 0.0460

fSK+FSI
4;r 0.3046 0.0215

fND280
20;t 0.2914 0.0380

fpF ;t,r 0.2873 0.0732

fND280
15;t 0.2683 0.0178

fND280
22;t 0.1797 0.0269

sin2 θ13 0.1339 0.0084
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Parameter δsyst sin2 θ23

δstat sin2 θ23

δsyst|∆m2
32|(eV2/c4)

δstat|∆m2
32|(eV2/c4)

sin2 θ12 0.0568 0.0165

∆m2
21 0.0544 0.0102

δCP 0.0383 0.1308

fCCνe;t 0.0302 0.0006

Table 4.9: Maximum deviations, as a fraction of statistical error at the oscillation
parameter grid point, from the input values of fits for only sin2 θ23 and |∆m2

32|
to datasets with ±1σ individual systematic variations (as defined in Tabs. 3.1,
3.5, and 3.8) at a range of 23-sector oscillation points. |∆m2

32| values of (2.20,
2.50, 2.80)×10−3 eV2/c4 are used with each of sin2 θ23 = 0.370, 0.500, 0.513, 0.650.
sin2 θ13, sin2 θ12 and ∆m2

21 have the values shown in Tab. 4.2 and δCP = 0. The
parameters are sorted by the size of the deviation in sin2 θ23.

Parameter δsyst sin2 θ23

δstat sin2 θ23

δsyst|∆m2
32|(eV2/c4)

δstat|∆m2
32|(eV2/c4)

fbindE;t,r 0.7211 0.4678

fSK+FSI
5;r 1.1773 0.3993

fSF ;t,r 1.0255 0.3641

fND280
18;t 0.9734 0.3171

fπ−less∆;t,r 0.9775 0.2689

fND280
4;t 0.6886 0.2540

fSKE;r 0.6529 0.2262

fND280
16;t,r 0.6812 0.2096

fND280
1;t 0.5266 0.1880

δCP 0.0383 0.1308

fND280
21;t 0.7223 0.1277

fND280
0;t 0.4829 0.1113

fNCoth;t 0.5898 0.1048

fNC1π±;t 0.5830 0.1036

fSK+FSI
3;r 0.7611 0.1014

fND280
2;t 0.4372 0.0991
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Parameter δsyst sin2 θ23

δstat sin2 θ23

δsyst|∆m2
32|(eV2/c4)

δstat|∆m2
32|(eV2/c4)

fND280
5;t 0.5277 0.0987

fND280
17;t,r 0.5850 0.0810

fpF ;t,r 0.2873 0.0732

fND280
11;t 0.3947 0.0722

fND280
3;t 0.3907 0.0684

fSK+FSI
1;r 0.6299 0.0681

fSK+FSI
2;r 0.5701 0.0674

fSK+FSI
0;r 0.6095 0.0573

fWshape;t,r 0.4074 0.0549

fCCν;t 0.3421 0.0505

fND280
6;t 0.3475 0.0471

fCCcoh;t 0.3257 0.0460

fND280
19;t 0.3364 0.0418

fND280
20;t 0.2914 0.0380

fND280
9;t 0.3691 0.0373

fND280
13;t 0.3495 0.0333

fND280
12;t 0.3438 0.0333

fND280
10;t 0.3297 0.0312

fND280
7;t 0.3484 0.0291

fCCothShape;t,r 0.3283 0.0281

fND280
22;t 0.1797 0.0269

fND280
8;t 0.3450 0.0267

fND280
14;t 0.3469 0.0238

fSK+FSI
4;r 0.3046 0.0215

fND280
15;t 0.2683 0.0178

sin2 θ12 0.0568 0.0165

∆m2
21 0.0544 0.0102
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Parameter δsyst sin2 θ23

δstat sin2 θ23

δsyst|∆m2
32|(eV2/c4)

δstat|∆m2
32|(eV2/c4)

sin2 θ13 0.1339 0.0084

fCCνe;t 0.0302 0.0006

Table 4.10: As in Tab. 4.9, but sorted by the size of the deviation in |∆m2
32|.

4.3.7 Construction of confidence regions

Construction of 2-dimensional confidence regions

In this analysis, uncertainties in the jointly measured parameters are quoted using both

the constant-∆χ2 [31] (Sec. 36) and the Feldman-Cousins [172] methods. The work of

Feldman and Cousins uses the freedom which is inherent in the Neyman construction

of confidence regions to address cases (in particular, cases with Poisson processes

with background and Gaussian errors near a physical boundary) where the classical

construction of confidence regions produces over-coverage15, under-coverage16, or in

extreme cases, an empty region.

The methods differ in the calculation of the critical values of ∆χ2, which are used

to identify the areas of the parameter space to be included in the allowed region for a

given confidence level. The constant-∆χ2 method is a fully frequentist treatment using

the Gaussian approximation. One finds the best-fit point and calculates the confidence

regions as lines of constant ∆χ2 from this point17.

The Feldman-Cousins method finds the critical values of ∆χ2 as follows: many

toy MC experiment fits are performed for each point of the (sin2 θ23, |∆m2
32| or |∆m2

31|)

15Part of a confidence region in which the stated confidence level is too low; the experimental
result stated rejects the false hypothesis less powerfully than the data suggests.

16Part of a confidence region in which the stated confidence level is too high; the experimental
result stated rejects the false hypothesis more powerfully than the data suggests.

17For 1 fit parameter, the critical values of ∆χ2 used are 1.00 (68% C.L.), 2.71 (90% C.L.), 3.84
(95% C.L.), 6.63 (99% C.L.). For 2 parameters fitted simultaneously, the critical values of ∆χ2

used are 2.30 (68% C.L.), 4.61 (90% C.L.), 5.99 (95% C.L.), 9.21 (99% C.L.).
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2-dimensional grid18. The value of ∆χ2
MC for each toy MC experiment is calculated as

∆χ2
MC = χ2(MC, true)− χ2(MC, best fit) (4.12)

where “true” means that the χ2 was computed using the true values of the oscillation

parameters at that grid point, and “best-fit” means that the χ2 was computed using

the actual best-fit values for that MC experiment. The χ2 values are calculated using

Eq. 4.10. For each grid point, the critical value of ∆χ2 (∆χ2
critical) is found such that a

fraction α of the toy MC experiments have ∆χ2
MC < ∆χ2

critical, where α is the desired

confidence level.

The principal difference between the Feldman-Cousins and the constant-∆χ2 meth-

ods is that the former determines the value of ∆χ2
critical individually for each grid point,

whereas the latter uses the same value for all grid points.

The procedure for constructing the ∆χ2 (sin2 θ23, |∆m2
32| or |∆m2

31|) surface itself

from data or a toy MC experiment is common to both methods. Assuming that N

nuisance parameters are allowed to float in the oscillation fit, the values of χ2 (sin2 θ23,

|∆m2
32| or |∆m2

31|; a) are calculated via a fit at each point of the (sin2 θ23, |∆m2
32| or

|∆m2
31|) 2-dimensional grid, where only the nuisance parameters are allowed to float

and sin2 θ23, |∆m2
32| or |∆m2

31| are fixed to the true values for the given grid point.

The allowed region in the 2-dimensional oscillation parameter space is then given

by

∆χ2(sin2 θ23, |∆m2
32| or |∆m2

31|) =χ2(sin2 θ23, |∆m2
32| or |∆m2

31|;a)− χ2
min

< ∆χ2
critical (4.13)

where χ2
min is the minimum value of χ2 (sin2 θ23, |∆m2

32| or |∆m2
31|; a) from the fit of the

data or toy MC experiment over the oscillation parameter space considered.

18For 2-dimensional regions, the following grid spacing is used when finding the Feld-
man-Cousins ∆χ2

critical MC estimation: δ(sin2 θ23) = 0.005 and δ(|∆m2
32|) or δ(|∆m2

31|) =
0.05×10−3 eV2/c4.
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The Feldman-Cousins method does not specify how systematics are to be included in

the confidence region construction and different choices exist. This analysis requires the

construction of a 2-dimensional (sin2 θ23, |∆m2
32| or |∆m2

31|) confidence region, where

Ns systematic parameters are included in the p.d.f. and all of these Ns systematics

are allowed to float in the fit. The methodology is to calculate the value of ∆χ2
critical at

each true (sin2 θ23, |∆m2
32| or |∆m2

31|) grid point using an ensemble of 10,000 toy MC

experiments, each one of which is generated with the true oscillation parameters of

that point and with all Ns systematics randomised. For each toy MC experiment, both

sin2 θ23, |∆m2
32| or |∆m2

31| and all Ns nuisance parameters are fitted simultaneously to

obtain the value of χ2(MC, best fit) used in Eq. 4.12. A separate fit, with sin2 θ23, |∆m2
32|

or |∆m2
31| fixed to their true values and with all Ns nuisance parameters allowed to float,

is performed to obtain the value of χ2(MC, true) (i.e. χ2 is independently minimised, for

each toy MC experiment, with respect to the nuisance parameters).

In Fig. 4.16, a MC estimation of the 2-dimensional Feldman-Cousins ∆χ2
critical values

used for calculation of the 68% and 90% C.L. confidence regions for the normal mass

hierarchy is shown19. One-dimensional slices of these ∆χ2
critical surfaces along sin2 θ23

and |∆m2
32| are shown in Figs. 4.17 and 4.18 respectively. The Feldman-Cousins values of

∆χ2
critical are lower than the canonical constant-∆χ2

critical values when the true input value

of sin2 θ23 is near the value of maximal νµ disappearance. Under these circumstances,

the best-fit values of sin2 θ23 pile-up at the value of maximal disappearance, and this

gives lower values of ∆χ2 than would be obtained if that boundary did not exist.

Consequently, the 68% and 90% critical ∆χ2 values are lower than the canonical constant-

∆χ2 values. The equivalent plots for sin2 θ23 and |∆m2
31| in the inverted mass hierarchy

show the same features.

19∆χ2
critical is not calculated at all points on the sin2 θ23 and |∆m2

32| or |∆m2
31| grid for the

Feldman-Cousins method due to CPU constraints. However it is calculated in all places required
to form 68% and 90% C.L. regions.
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Figure 4.16: Difference between the ∆χ2
critical values obtained from the Feldman-

Cousins method [172] and those from the constant-∆χ2 method at confidence
levels of 68% (top) and 90% (bottom), as a function of sin2 θ23 and |∆m2

32|. These
surfaces were generated from an ensemble of toy MC experiments including both
randomised systematic variations and statistical fluctuations. As expected from
[172], the Feldman-Cousins ∆χ2

critical values decrease as maximal νµ disappear-
ance at sin2 θ23 ≈ 0.513 is approached. The normal mass hierarchy is assumed.
∆χ2

critical is not calculated at all points for the Feldman-Cousins method, due to
CPU constraints, but is calculated in all places required to form 68% and 90%
C.L. regions.

Construction of 1-dimensional confidence regions

Confidence regions are also constructed separately for each of sin2 θ23 and |∆m2
32|

(NH) or |∆m2
31| (IH). These can be found in a straightforward way by calculating

the 1-dimensional profile likelihood for each parameter, and finding the values of

each parameter corresponding to the constant-∆χ2 for one parameter and the desired

confidence level (e.g. ∆χ2 = 1.0 for 68% C.L.). Unfortunately, however, there is no

standard procedure in the literature for constructing 1-dimensional Feldman-Cousins

confidence regions from 2-dimensional confidence regions. To find the 1-dimensional



4.3 Procedure for the joint determination of νµ disappearance oscillation
parameters 170

23
θ

2
sin

0.45 0.5 0.55 0.6

6
8

2
χ

∆

0

0.5

1

1.5

2

2.5

3

3.5

4

4
/c

2
| = 0.00270 eV32

2
m∆|

4
/c

2
| = 0.00240 eV32

2
m∆|

4
/c

2
| = 0.00230 eV32

2
m∆|

23
θ

2
sin

0.45 0.5 0.55 0.6

9
0

2
χ

∆

0

1

2

3

4

5

6

7

8

4
/c

2
| = 0.00270 eV32

2
m∆|

4
/c

2
| = 0.00240 eV32

2
m∆|

4
/c

2
| = 0.00230 eV32

2
m∆|

Figure 4.17: One-dimensional slices through the 68% (left) and 90% (right)
2-dimensional surfaces of Feldman-Cousins ∆χ2

critical values as a function of
sin2 θ23 for 3 different values of |∆m2

32| (2.30×10−3 eV2/c4, 2.40×10−3 eV2/c4 and
2.70×10−3 eV2/c4). The ∆χ2

critical values were calculated from an ensemble of toy
MC experiments, for an exposure of 6.57×1020 POT, including both randomised
systematic variations and statistical fluctuations. For comparison, the canonical
value used in the constant-∆χ2 method is also shown as a horizontal line. The
normal mass hierarchy is assumed. ∆χ2

critical is calculated in all places required
to form 68% and 90% C.L. regions.

regions, values of ∆χ2
critical need to be computed, as a function of the corresponding

oscillation parameter, using an ensemble of toy MC experiments. One issue concerns the

choice of the true input value(s) of the other oscillation parameter in those experiments.

For example, the true input values of |∆m2
32| (NH) or |∆m2

31| (IH) must be chosen

for the toy MC experiment ensemble used for constructing the confidence region in

sin2 θ23. One option in this case would be to use the data or toy MC experiment best-fit

value of |∆m2
32| or |∆m2

31| as the true input value for all the toy MC experiments, but

this fails to account for the uncertainty in |∆m2
32| or |∆m2

31|. Alternatively, a uniform

distribution of true input values of |∆m2
32| or |∆m2

31| could be used in some range, say

from 2–3×10−3 eV2/c4, but this ignores the fact that some values of |∆m2
32| or |∆m2

31|

are preferred by the T2K data to others.
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Figure 4.18: One-dimensional slices through the 68% (left) and 90% (right)
2-dimensional surfaces of Feldman-Cousins ∆χ2

critical values as a function of
|∆m2

32| for 3 different values of sin2 θ23 (0.44, 0.50 and 0.60). The ∆χ2
critical values

were calculated from an ensemble of toy MC experiments, for an exposure of
6.57×1020 POT, including both randomised systematic variations and statistical
fluctuations. For comparison, the canonical value used in the constant-∆χ2

method is also shown as a horizontal line. The normal mass hierarchy is assumed.
∆χ2

critical is calculated in all places required to form 68% and 90% C.L. regions.

In this analysis, the true input values of |∆m2
32| or |∆m2

31| are chosen using the

likelihood from the fit from data or a toy MC experiment. At each true value of sin2 θ23,

the numbers of toy MC experiments with a given true input value of |∆m2
32| or |∆m2

31|

are proportional to e−
∆χ2

2 , where ∆χ2 is the value of the 2-dimensional ∆χ2 surface

at those values of sin2 θ23 and |∆m2
32| or |∆m2

31| from the fit of the data or toy MC

experiment. An example of the distribution of true input values of |∆m2
32| is shown

in Fig. 4.19 for a fixed input value of sin2 θ23 = 0.55, using the T2K Run 1+2+3+4 data.

Each toy MC experiment is fitted twice; in one fit, sin2 θ23, |∆m2
32| or |∆m2

31| and all the

nuisance parameters are allowed to float, and, in the other, |∆m2
32| or |∆m2

31| and the

nuisance parameters are allowed to float while sin2 θ23 is fixed to its true value. For each

experiment, ∆χ2
MC is calculated as the difference between the minimum values of χ2
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from the two fits. The critical value of ∆χ2 at each true value of sin2 θ23 is found by

combining all the toy MC experiments with that input value of sin2 θ23 and different

true input values of |∆m2
32| or |∆m2

31|. It is the value of ∆χ2 such that α of the toy

experiments have ∆χ2
MC < ∆χ2

critical, where α is the desired confidence level.

The 1-dimensional Feldman-Cousins confidence regions in |∆m2
32| or |∆m2

31| are

constructed in an analogous way. An example of the distribution of true input values of

sin2 θ23 for a fixed input value of |∆m2
32| = 2.9×10−3 eV2/c4 is given in Fig. 4.20, using

the T2K Run 1+2+3+4 data.

The results of the Feldman-Cousins ∆χ2
critical MC estimation of critical ∆χ2 values

are shown in Sec. 4.4.3.

|2
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Figure 4.19: True input values of
|∆m2

32| to the toy MC experiments
used to find the 1-dimensional criti-
cal value of ∆χ2 for sin2 θ23 = 0.55. The
normal mass hierarchy is assumed.
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Figure 4.20: True input values of
sin2 θ23 to the toy MC experiments
used to find the 1-dimensional crit-
ical value of ∆χ2 for |∆m2

32| =
2.90×10−3 eV2/c4. The normal mass hi-
erarchy is assumed.

4.3.8 Sensitivity for the joint determination of νµ disappear-

ance oscillation parameters

Two-dimensional sensitivity regions were computed for 6.57×1020 POT (the T2K Run

1+2+3+4 POT) by averaging the regions of 300 toy MC experiments generated with

statistical fluctuations and all systematic parameters randomised. The sensitivity has
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been calculated at three points:

1. The MINOS best-fit point in the inverted mass hierarchy, sin2 θ23 = 0.41, |∆m2
31| =

2.33×10−3 eV2/c4 [178], as shown in Fig. 4.21;

2. The SK best-fit point in the normal mass hierarchy, sin2 θ23 = 0.60, |∆m2
32| =

2.82×10−3 eV2/c4 [179], as shown in Fig. 4.22;

3. A test point at maximal mixing in the normal mass hierarchy, sin2 θ23 = 0.50,

|∆m2
32| = 2.40×10−3 eV2/c4, as shown in Fig. 4.23.

Without knowing the MINOS and SK sensitivities, and thus not knowing whether

their results are favourable or unfavourable fluctuations, it is not possible to say which

experiment is the most sensitive with their current data. What can be inferred is that, if

the T2K best-fit point lies away from maximal mixing or maximal disappearance, the

region is expected to cover a similar range in sin2 θ23 as MINOS and SK, and be slightly

looser and tighter in |∆m2
32| than MINOS and SK respectively. If however the T2K

best-fit point lies close to maximal mixing, with current statistics, T2K should provide a

tighter constraint on sin2 θ23 than both MINOS (10.71×1020 POT for νµ-dominated beam

data, 3.36×1020 POT for νµ-dominated beam data, and 37.88 kt – years of atmospheric

data) and SK (over 11 live-years of atmospheric data).
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4.4 Results

Two 3-flavour νµ-disappearance fits were performed on the 6.57×1020 POT T2K Run

1+2+3+4 dataset, using the method described in Sec. 4.3.3. In the first fit, the normal

mass hierarchy was assumed, and sin2 θ23 and |∆m2
32|were allowed to float, while, in

the second fit, the inverted mass hierarchy was assumed and sin2 θ23 and |∆m2
31|were

allowed to float. In both fits, all 41 systematic parameters considered in this analysis and

the oscillation parameters sin2 θ12, sin2 θ13, ∆m2
21 and δCP were also allowed to float.

The best-fit values were sin2 θ23 = 0.514 and |∆m2
32| = 2.51×10−3 eV2/c4 assuming the

normal mass hierarchy, and |∆m2
31| = 2.48×10−3 eV2/c4 and sin2 θ23 = 0.511 assuming

the inverted mass hierarchy.

An identical analysis was also carried out separately on both the 3.01×1020 POT

Run 1+2+3 and 3.56×1020 POT Run 4 T2K datasets for the normal mass hierarchy only.

Similar best-fit values were obtained from these fits of subsets of the full dataset; the run

periods are consistent. The fit to the Run 1+2+3 dataset gave best-fit values of sin2 θ23

= 0.514 and |∆m2
32| = 2.46×10−3 eV2/c4 while a fit to the Run 4 dataset gave sin2 θ23 =

0.514 and |∆m2
32| = 2.55×10−3 eV2/c4 .

The results of these fits are summarised in Tab. 4.11. In this table are the best-fit

oscillation parameters, the observed and expected numbers of 1 µ-like ring events, and

the values of χ2 per dof at the best fit. The stated dof (70) corresponds to the number

of bins used in the fit (73), minus the number of unconstrained parameters (3: sin2 θ23,

|∆m2
32| or |∆m2

31|, and δCP ).

The pull for each systematic parameter f included in the fit was calculated as

fbestfit − fnominal

σ
, (4.14)

where fbestfit is the best-fit value of the systematic parameter, fnominal is the nominal

value of the parameter (corresponding to no systematic variation), and σ is either σinput

(the prefit error)20 or σbf (the HESSE error output from MINUIT).

20For δCP , σinput is taken to be π.
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The pulls of all 45 nuisance parameters allowed to float in the fit are shown in Fig.

4.24, and the ratio of σbf to σinput is shown in Fig. 4.25, assuming the normal mass

hierarchy. From these figures, it is apparent that most systematic parameters barely

move from their nominal values. It should be noted that, although all 45 nuisance

parameters are allowed to float in the fit, only 4(5) of them move by more than ±0.1σbf

for the normal(inverted) mass hierarchy fit. When a systematic parameter that is free to

move stays close to its nominal value, it means that the reduction in χ2 from moving

that parameter is less than the corresponding increase in the penalty term defined in Eq.

4.10 in Sec. 4.3.2. Only certain systematics are able to change the predicted reconstructed

energy spectrum to a sufficient extent to offset the penalty term.

Goodness-of-fit tests were performed as described in Sec. 4.3.4, and the p-values

from the fits of the Run 1+2+3+4 dataset, Run 1+2+3 and Run 4 datasets are shown in

Tab. 4.11. The χ2 distribution from which these p-values were calculated are shown for

the Run 1+2+3+4 data in Figs. 4.26 for the Run 1+2+3+4 fit assuming the normal mass

hierarchy. All fits have a high degree of plausibility.
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4.4.1 Best-fit 1 µ-like ring reconstructed energy spectra

The reconstructed neutrino energy distribution of the 1 µ-like ring events in the Run

1+2+3+4 dataset is shown in Fig. 4.27 along with the best-fit predicted spectrum assum-

ing the normal mass hierarchy and the predicted spectrum under the no-oscillation

hypothesis. Also shown is the ratio of the data to the no-oscillation spectrum and the

ratio of the best-fit spectrum to the no-oscillation spectrum; in both of these ratios, the

characteristic energy-dependent deficit can be clearly seen. Since the reconstructed en-

ergy binning used in the fit is relatively fine, some plots use a coarser binning scheme21

in, rather than the 73-bin scheme in reconstructed neutrino energy that was used in the

fitting procedure (see Sec. 4.1.2), in order to have at least one data event in each bin.

It is interesting to see the components of the best-fit predicted spectrum, and these

are shown in Fig. 4.28 for the normal mass hierarchy. In these plots, the 32 components

of the predicted spectrum are grouped into five categories: νµ/νe→νµ CCQE, νµ/νe→νµ

CCnonQE, νµ CC, νe/νe/νµ → νe CC, and NC (though each of the 32 components

is calculated separately in the actual analysis). It can be seen that νµ/νe→νµ CCQE,

which has the most accurateEreco determination, dominates the region from 0.3–2.0 GeV,

with the largest background coming from NC events below the oscillation peak, and

νµ/νe→νµ CCnonQE events in and above the oscillation peak.

The best-fit predicted spectra for the normal and inverted mass hierarchies are

compared for the Run 1+2+3+4 dataset in Fig. 4.29, using the coarser binning described

above. These two best-fit spectra are nearly identical.

2120 reconstructed energy bins arranged as follows: 10 0.1-GeV bins from 0 - 1.0 GeV, 3 0.2-
GeV bins from 1.0 - 1.6 GeV, 1 0.4-GeV bin from 1.6 - 2.0 GeV, 2 0.5-GeV bins from 2.0 - 3.0 GeV, 1
1-GeV bin from 3.0 - 4.0 GeV, 1 3-GeV bin from 4.0 - 7.0 GeV, 1 bin above 7.0 GeV.
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4.4.2 Confidence regions for the joint determination of the at-

mospheric mass squared splitting and 23-mixing angle

The first step in constructing confidence regions in the 2-dimensional sin2 θ23 - |∆m2
32| or

sin2 θ23 - |∆m2
31| oscillation parameter space is to construct the ∆χ2 surface from the fit

of the data. The oscillation parameter space is divided into a rectangular grid of width

sin2 θ23 = 0.0025, |∆m2
32| or |∆m2

31| = 0.025×10−3 eV2/c4, with a grid point at the centre

of each rectangle. A fit is performed at each grid point with the values of sin2 θ23 and

|∆m2
32| or |∆m2

31| fixed to the true values of the grid point and the 41 systematic and

four non-23 oscillation parameters allowed to float. ∆χ2 is then calculated as the χ2

for the fit done at the grid point22 minus χ2
bf, where χ2

bf is the fit done with sin2 θ23 and

|∆m2
32| or |∆m2

31| free, whose results have been shown previously in Tab. 4.11.
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Figure 4.30: ∆χ2 surface from the fit of the Run 1+2+3+4 dataset. The normal
mass hierarchy is assumed.

This 2-dimensional ∆χ2 surface from the fit of the Run 1+2+3+4 dataset is shown

22χ2 is defined in Eq. 4.10 in Sec. 4.3.2.
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Figure 4.31: Fractional difference between the ∆χ2 surfaces obtained from the fits
to the Run 1+2+3+4 dataset assuming the normal and inverted mass hierarchies.
The fractional difference is calculated as 2 × (∆χ2 (NH)−∆χ2 (IH)) / (∆χ2

(NH)+∆χ2 (IH)). The normal and inverted mass hierarchy best-fit points are
shown as a red star and a black circle respectively.

in Fig. 4.30 as a function of sin2 θ23 and |∆m2
32| for the normal mass hierarchy. A

comparison between the ∆χ2 surfaces from the normal and inverted mass hierarchies

is shown in Fig. 4.31. There are large differences, particularly near the best-fit points.

However, this is mostly an artefact of comparing |∆m2
32|with |∆m2

31|; when applying

an offset such that the best-fit points line up, the fractional difference across the whole

range is reduced to less than 10%.

Confidence regions were constructed in the 2-dimensional parameter space sin2 θ23

and |∆m2
32| or |∆m2

31| using both the constant-∆χ2 method, and the Feldman-Cousins

method [172] (both described in Sec. 4.3.7) for fits of the Run 1+2+3+4 dataset. Regions

constructed using the Feldman-Cousins method are shown in Fig. 4.32 for both the

normal and inverted mass hierarchies. Also shown in this figure is a variation on the

study presented in Sec. 4.3.6 on the importance of each systematic. The study is run at a
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Figure 4.32: 68% C.L. and 90% C.L. allowed regions obtained with the Feldman-
Cousins method from the fit of the Run 1+2+3+4 dataset. The normal (top) and
inverted (bottom) mass hierarchies are assumed. Also shown are the 1σ effect of
each group of systematics (arrows), and the statistical error (dotted elipse) at the
best-fit point.
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single (sin2 θ23, |∆m2
32| or |∆m2

31|) point (the best-fit point), and groups of systematics

are tweaked randomly (respecting correlations) to create 10,000 MC datasets, which

are fit for only sin2 θ23 and |∆m2
32| or |∆m2

31|. The average effect on the best-fit values

of sin2 θ23 and |∆m2
32| or |∆m2

31| is then calculated for each systematic group, which is

shown in the figures as arrows extending from the best-fit point. The statistical error is

shown as a dotted ellipse for comparison. The total error is dominated by the statistical

error. As seen in other estimations of the systematic error effect, the ND280-constrained

and ND280-unconstrained cross-section errors dominate the systematic error.

The Run 1+2+3+4 two-dimensional confidence regions obtained using the constant-

∆χ2 and Feldman-Cousins methods are compared in Fig. 4.33 for the normal mass

hierarchy. The Feldman-Cousins confidence regions are narrower along |∆m2
32| or

|∆m2
31| at maximal disappearance than those made with the constant-∆χ2 method since

the Feldman-Cousins ∆χ2
critical values are lower than the canonical constant-∆χ2 values

as explained in Sec. 4.4.2. The Feldman-Cousins regions are also very slightly narrower

in sin2 θ23 for values of |∆m2
32| or |∆m2

31| near the best fit. This is because the boundary

effect spans the whole region (i.e. the Feldman-Cousins ∆χ2
critical values shown in Fig.

4.16 tend towards, but do not reach the constant-∆χ2 values of ∆χ2
critical at the edge of

the region).

A comparison is shown in Fig. 4.34 between the Run 1+2+3+4 two-dimensional

confidence regions for the normal and inverted mass hierarchies obtained using the

Feldman-Cousins method (the vertical axis is |∆m2
32| for the normal mass hierarchy and

|∆m2
31| for the inverted mass hierarchy).

In Fig. 4.35 the T2K Run 1+2+3+4 90% confidence region is compared with those

from MINOS (2014 3-flavour beam and atmospheric analysis) [178], SK atmospherics

(2013 3-flavour atmospheric zenith-angle analysis) [179], and T2K Run 1+2+3 [2], for

both the normal and inverted mass hierarchies. It should be noted that the confidence

region construction methods differ; MINOS uses the global minimum from both mass

hierarchies (in practice this lies in the inverted mass hierarchy) whereas SK and T2K use

the local minimum in each mass hierarchy. This results in the normal mass hierarchy
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Figure 4.33: Comparison between the 68% C.L. and 90% C.L. allowed regions
obtained using the constant-∆χ2 and Feldman-Cousins methods from the fit of
the Run 1+2+3+4 dataset. The normal mass hierarchy is assumed.
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SK atmospherics [179], T2K Run 1+2+3 [2], and the 90% C.L. allowed region
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inverted mass hierarchy.
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cal+systematic MC toys. The normal mass hierarchy is assumed.

MINOS confidence region being smaller than if it were constructed using the local

minimum. These plots show that T2K now has the world’s best limit in θ23.

In Fig. 4.36 a comparison is shown between the Run 1+2+3+4 allowed region ob-

tained with constant-∆χ2 method and the T2K 6.57×1020 POT sensitivity region pro-

duced at the best-fit point for the Run 1+2+3+4 dataset. The sensitivity regions were

computed by averaging the regions of 300 toy MC experiments generated with statistical

fluctuations and all systematic parameters randomised. As can be seen in the the plot,

the T2K data results in a smaller region than the sensitivity, particularly for the sin2 θ23

region. p-values can be calculated by comparing the data constant-∆χ2 regions with

the regions of the sensitivity fits, and represent the fraction of toy experiments that

provide a tighter allowed region than the data. For sin2 θ23 the p-values are 0.21(0.19) for

68% C.L. and 0.19(0.21) for 90% C.L. for the lower(upper) allowed regions respectively.

For |∆m2
32| the p-values are 0.31(0.20) for 68% C.L. and 0.42(0.27) for 90% C.L. for the

lower(upper) allowed region respectively. This shows that the data are not an extreme
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fluctuation.

Finally, a comparison between the confidence regions obtained by three separate

analyses of the Run 1+2+3+4, Run 1+2+3 and Run 4 datasets is shown in Fig. 4.37. The

allowed regions from the different running periods are consistent. This shows, at a high

level, that the different runs of the T2K experiment are compatible; low level analysis

of event rates in each detector, and also the results of the ND280 fit (see Sec. 3.3.4) also

show consistency.

4.4.3 Confidence regions for the individual determination of

the atmospheric mass squared splitting and 23-mixing an-

gle

The first step in calculating 1-dimensional parameter allowed regions for sin2 θ23, |∆m2
32|,

or |∆m2
31| is to construct the ∆χ2 profile likelihood from the fit of the data. To construct
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the sin2 θ23 profile likelihood, sin2 θ23 is fit at every point in a 1-dimensional grid with

width sin2 θ23 = 0.001. A fit is performed at each grid point with the value of sin2 θ23 fixed

to the true values of the grid point and the 41 systematic parameters, four non-23-sector

oscillation parameters, and |∆m2
32| or |∆m2

31| allowed to float. ∆χ2 is then calculated as

the χ2 for the fit done at the grid point23 minus χ2
bf, where χ2

bf is the fit done with sin2 θ23

and |∆m2
32| or |∆m2

31| free, whose results have been shown previously. The profile

likelihood is shown in Fig. 4.38 (left), along with ∆χ2
critical for both the constant-∆χ2 and

Felman-Cousins methods.
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Figure 4.38: Comparison between the 1-dimensional ∆χ2 from the fit of the Run
1+2+3+4 data and the MC estimation of the 1-dimensional 68% and 90% critical
values of ∆χ2 as a function of sin2 θ23 (left) and |∆m2

32| (right). Each MC critical
value is obtained from 10,000 toy experiments with systematic variations and
statistical fluctuations; these critical values are fitted with cubic splines. The
normal mass hierarchy is assumed. The canonical constant-∆χ2 68% and 90%
critical values for one degree of freedom are shown as dashed lines.

The profile likelihood for |∆m2
32| or |∆m2

31| is done similarly, using a grid step size

of 0.01×10−3 eV2/c4, and is shown in Fig. 4.38 (right), along with ∆χ2
critical for both the

constant-∆χ2 and Felman-Cousins methods.

It is apparent from Fig. 4.38 that the Feldman-Cousins MC critical ∆χ2 values24

are lower than the canonical constant-∆χ2 values when the true input value of sin2 θ23

is near the value of maximal νµ disappearance. As in the 2-dimensional case, this is

due to the best-fit values of sin2 θ23 in the toy MC experiments piling up at the value

23χ2 is defined in Eq. 4.10 in Sec. 4.3.2.
24For 1-dimensional regions, the following step size is used when finding the Feldman-Cous-

ins ∆χ2
critical MC estimation: δ(sin2 θ23) = 0.01 and δ(|∆m2

32|) or δ(|∆m2
31|) = 0.05×10−3 eV2/c4.
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of maximal disappearance; at input values of sin2 θ23 far from the value of maximal νµ

disappearance, the critical ∆χ2 values approach the canonical constant-∆χ2 values as

expected. The MC critical ∆χ2 values for |∆m2
32| are lower than the canonical constant-

∆χ2 values for all input values of that parameter. This is due to the input values

of sin2 θ23 to the toy experiments, many of which are near the value of maximal νµ

disappearance (see Fig. 4.20 for an example). Again the best-fit values of sin2 θ23 pile-up

at the value of maximal disappearance, which results in lower values of ∆χ2 than would

occur if that boundary were not present. The Feldman-Cousins results show that the

constant-∆χ2 method overcovers.

Run 1+2+3+4 profile likelihood distributions are compared with those from the fits

of the Run 1+2+3 and Run 4 datasets for the normal mass hierarchy in Fig. 4.39. The

profile likelihood from the different running periods are consistent.
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Figure 4.39: Profile likelihood, as a function of sin2 θ23 (left) and |∆m2
32| (right),

from the fits of the Run 1+2+3+4, Run 1+2+3 and Run 4 datasets. The normal
mass hierarchy is assumed. An inset shows a zoom of the profile likelihood up
to ∆χ2 = 3.5.

68% and 90% C.L. regions on sin2 θ23 and |∆m2
32|, or |∆m2

31| are shown in Tab. 4.12.

These regions are calculated as the first bin which lies above the critical value of ∆χ2.

For the new procedure, a cubic spline is fit to the calculated values of ∆χ2
critical, to be able

to extrapolate the points where the ∆χ2
critical calculation was not performed. They clearly

show that the confidence regions from the constant-∆χ2 method overcover for both

sin2 θ23 and the mass-squared difference; this over-coverage is caused by the boundary

effects from the value of maximal disappearance in sin2 θ23.
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Also shown in Tab. 4.12 are the MINOS 90% sin2 θ23 and 68% |∆m2
32| or |∆m2

31| C.L.

limits [178]25. It can again be seen that T2K now has the world’s best limit in θ23. The

table also shows that the current limits on |∆m2
32| or |∆m2

31| are comparable.

4.5 Discussion

The results presented in Secs. 4.4.2 and 4.4.3 have shown that using the latest available

results from other experiments, T2K has the world’s best limit in θ23, and has a compa-

rable constraint to MINOS for |∆m2
32| or |∆m2

31|. There are two reasons for T2K having

such a tight constraint on θ23, when the sensitivity regions shown in Figs. 4.21 and 4.22

suggests that a region of comparable size in sin2 θ23 is expected:

• The comparison with the sensitivity at the best-fit point (see Fig. 4.36) shows that

a favourable fluctuation has occurred in data. The fluctuation is not extreme; a

fluctuation providing these regions or better has a 1 in 5 chance.

• The T2K best-fit point lies close to the point of maximal disappearance, whereas

the best-fit points from MINOS and SK lie far away from this point. Being close to

maximal disappearance results in a ∆χ2 profile that has a single minimum, while

being further away results in a naturally wider distribution due to double-peak

structure about the point of maximal disappearance.

The allowed regions shown in Fig. 4.35 show some tension between the MINOS and

SK results; the MINOS and T2K 90% C.L. regions overlap only in a small area, and the

best-fit points are either outside (SK NH and MINOS) or just inside (SK IH) the T2K

90% C.L. region. The level at which the other experiments’ best-fit points are excluded

by the T2K data can be determined by calculating the probability, assuming Gaussian

errors26, using the value of ∆χ2 on the 2-dimensional surface (for example, Fig. 4.30) at

25The latest SK atmospherics result in Ref. [179] does not quote 1-dimensional confidence
regions.

26The MINOS and SK best-fit points lie in an area of Fig. 4.16, away from maximal disappear-
ance, where the constant-∆χ2 and Feldman-Cousins methods are similar. For example, the SK
inverted mass hierarchy exclusion changes from 83.6% when using the constant-∆χ2 method to
86.4% when using the Feldman-Cousins method.
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Experiment Mass hierarchy T2K ∆χ2 T2K exclusion
SK Normal 10.37 99.4%
SK Inverted 3.61 83.6%
MINOS Inverted 6.83 96.7%

Table 4.13: The exclusion of MINOS [178] and SK [179] best-fit points, as calcu-
lated using the T2K 2-dimensional ∆χ2 surface.

the experiments’ best-fit point. The results are shown in Tab. 4.13. It can be seen that the

best-fit points are inconsistent with the T2K result at the ∼1.5–2.5σ level.



Chapter 5

Summary and Outlook

A νµ-disappearance analysis was performed in a framework of three active neutrino

flavour oscillations including matter effects in constant-density matter. The observed

reconstructed energy spectrum of 1 µ-like ring events was fitted, and separate fits were

made for the normal and the inverted mass hierarchies. In these fits, sin2 θ23 and either

|∆m2
32| (normal mass hierarchy) or |∆m2

31| (inverted mass hierarchy) were allowed

to float. The oscillation parameters sin2 θ13, sin2 θ12, ∆m2
21, δCP , and all 41 systematic

parameters considered in this analysis were also allowed to float in the fit.

The 3-flavour νµ-disappearance fit of the combined T2K Run 1+2+3+4 dataset corre-

sponding to integrated J-PARC neutrino beam exposure of 6.57×1020 POT, gives the

1-dimensional 68% confidence intervals in these parameters as sin2 θ23 = 0.514+0.049
−0.050

|∆m2
32| = 2.51±0.10 eV2/c4 for the normal mass hierarchy, and sin2 θ23 = 0.511+0.050

−0.049

|∆m2
31| = 2.48±0.10 eV2/c4 for the inverted mass hierarchy.

The current work has little sensitivity to the octant of θ23, due to P(νµ → νµ) being

symmetric about maximal disappearance, when considering the dominant terms (see

Eq. 1.45). Performing a fit including 1 e-like ring events (in addition to 1 µ-like ring

events), is required due to P(νµ → νe) being octant dependent (see Eq. 1.46). Since the

current work was performed, a joint fit of T2K data has been done [181]. The results

from the joint fit are comparable with the νµ-disappearance only results presented in the

197



198

current work. The joint analysis best-fit point is shifted to larger values of sin2 θ23, due

to the fit preferring larger values of sin2 θ13; maximal disappearance is still preferred.

The 2-dimensional confidence regions are also of comparable size.

Looking towards the future, T2K will take more data, aiming to achieve 7.80×1021

POT (the current dataset corresponds to 8.4% of the expected total). This will improve

the power of the experiment to determine the values of the oscillation parameters as

shown in Fig. 5.1. There is also a possibility of determining the octant of θ23, depending

on the run plan, as shown in Fig. 5.2. Combinations with NOνA should provide hints

of up to ∼90% C.L. on the three major questions in neutrino oscillation physics: the

mass hierarchy, θ23 octant, and value of δCP . It will take new experiments to provide

conclusive answers to these questions.
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Figure 5.1: The precision of sin2 θ23 and |∆m2
32| as a function of T2K POT assum-

ing 100% ν-mode running. Plots were generated assuming sin2(2θ13) = 0.10, δCP
= 0, sin2 θ23 = 0.50, and |∆m2

32| = 2.40×10−3 eV2/c4. The normal mass hierarchy
is assumed. The solid curves include statistical errors only, while the dashed
black(red) curves assume the 2012(projected) T2K systematic errors. A constraint
based on the ultimate reactor precision is included.
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Figure 5.2: 90% allowed regions of |∆m2
32| versus sin2 θ23 for 7.80×1020 POT

assuming 100% ν-mode (left) and 50% ν-mode 50% ν-mode (right) running.
Plots were generated assuming sin2(2θ13) = 0.10, δCP = 0, sin2 θ23 = 0.40, and
|∆m2

32| = 2.40×10−3 eV2/c4. The normal mass hierarchy is assumed. The blue
curves are fit assuming the correct mass hierarchy, while the red are fit assuming
the incorrect mass hierarchy. The solid contours are with statistical error only,
while the dashed contours include current systematic errors. A constraint based
on the ultimate reactor precision is included.
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Appendix A

ND280 νµ CC selection systematics

This appendix gives a brief summary of each of the detector-related systematics consid-

ered in the ND280 νµ CC semi-inclusive event selections described in Sec. 3.3. In Sec.

A.1, systematics relating to the FGD are discussed. In Sec. A.2, systematics relating to

the TPC, and FGD-TPC track matching are discussed. Finally, in Sec. A.2, systematics

relating to out-of-FGD backgrounds, event pile-up and pion secondary interactions are

discussed.

A.1 FGD detector systematics

FGD1-stopping control samples of both muons and protons are selected by searching for

tracks that stop in FGD1 (but not the last layer), with segments in TPC1 but not in TPC2

(or vice versa), and using TPC track quality, charge, momentum and PID information.

• Michel electron efficiency. The uncertainty is assigned by looking as the differ-

ence between data and MC for FGD1-stopping cosmic muons, whose stopping

distance is consistent with the TPC momentum measurement (to reject electrons).

The efficiency is 58.1%±0.8% in Run 4 data and 61.9±1.1% in MC.

• FGD-only track efficiency. Using a FGD1-stopping proton beam sample, the

efficiency is defined as the proportion of tracks that have a FGD-only track (found
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A.1 FGD detector systematics 202

using the FGD-only reconstruction) that starts in the first XY module in z, and

within 10 cm of where the TPC track would have entered the FGD. The systematic,

taken as the ratio of data to MC, ranges from is +12±21% in the |cos θ| = 0.3–0.4

bin to −1±3% in the |cos θ| = 0.9–1.0 bin (no momentum dependence is seen in

the ratio).

• FGD-only hybrid track efficiency. Hybrid events are generated by adding part-

icle-gun hit information to CC-0-π vertices selected from data and MC, with an

extra requirement of exactly zero FGD-only tracks. The purpose is to study the

effect on tracking efficiency of FGD-only reconstruction of the presence of long

muon tracks and an optional long proton track. 100 p and 100 π+ particle-gun

events are created at each of the selected vertices, isotropically and uniformly

in momentum range 0.4 GeV/c < pp < 1.0 GeV/c or 0.1 GeV/c < pπ+ < 0.3 GeV/c.

A hybrid event is generated for each particle gun event that doesn’t create a

TPC-FGD matched track, in which particle gun hit information is added to the

beam MC or data event. The efficiency is defined as the proportion of hybrid

events that contain one or more1 FGD-only tracks; efficiency (compared with

the FGD1-stopping proton study) is due to hits being taken by the pre-existing

track(s) during reconstruction. The systematic, taken as the ratio of data to MC, is

4.4±0.7% for protons and 3.3±0.7% for pions.

• FGD-only track particle identification. Using FGD1-stopping proton and muon

beam samples, that start at z > 3200 mm (rejects sand muons), and have recon-

structed momentum 0.0 GeV/c < pp < 2.0 GeV/c or 0.00 GeV/c < pµ < 0.25 GeV/c.

Pion PID systematics are taken to be the same as muon PID systematics because

it is difficult to select a sample of non-interacting stopping pions. The peaks of

the pull distributions are fitted with a Gaussian function, and MC is corrected to

match data; this correction is the systematic.

1The selection one or more is to accept short tracks that are broken in FGD-only reconstruction.
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• FGD mass uncertainty. The dominant mass uncertainties are the size of the hole

in the scintillator bars for the fibres, and the amount of glue used. The 0.67% total

uncertainty causes a scaling of the event rate.

A.2 TPC detector systematics

• TPC cluster efficiency. The TPC cluster efficiency is the probability to find a

reconstructed cluster in a given column where the particle should have produced

one and effects the track quality cuts2. Cluster efficiency should be dependent

on the amount of charge in a given column, therefore columns at the edge of

micromegas modules are expected to have different efficiencies (presumably

lower) due to edge effects. The CC inclusive sample, without the track quality

cut applied, is used to evaluate the systematic as the difference between the

efficiencies of data and MC. The systematic for inner pads is found by fitting

the number of clusters in the muon candidate (in the high statistics, inner-pad

dominated Ncluster ≥62 region); the systematic is 0.0.97±0.001%. The systematic

for outer pads is found by fitting the TPC2 track start position along z (in the high

statistics zstart < 713 region), which is normally in the outer column, or the first

inner column; the systematic is 2.83±0.02%.

• TPC track-finding efficiency. For events with a single track, two control samples

are used. For long tracks, a straight through muon control sample is used. The

efficiency, for example in TPC2, is found by looking for global tracks with TPC1

and TPC3 segments. For short tracks, a high angle control sample is used. The

efficiency, for example in TPC2, is found by looking for global tracks with TPC1

and barrel-ECal segments which should travel through TPC2, The efficiency is

the proportion of tracks with a TPC segment when one is expected. The efficiency

above 16 TPC clusters is statistically consistent with 100%. The efficiency is taken

2The effects of pattern recognition and micromegas module misalignment are expected to be
small.
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to be the conservative 99.8+0.2
−0.4%, due the two samples to not covering the whole

angle, momentum, track length phase space with high statistics.

Events in which two tracks that are reconstructed as one track can cause

migration of events from e.g. the CC-1-π+ to the CC-0-π sample. Again two

studies are performed. First, events with two TPC2 tracks and an FGD1 fiducial

volume vertex using MC truth information are found and the efficiency is the

proportion of events that have two reconstructed tracks with TPC2 segments. For

Run 1+2+3+4 data, only five events with one reconstructed track instead of two

are expected, and the cause is geometrical, therefore the track-finding efficiency

for two close tracks is negligible. Second, events with two tracks in TPC2 (two

fitted, one fitted and one failed, or two failed tracks), both starting within the

FGD fiducial volume in x and y, and within 100 mm of the TPC upstream wall are

selected. In addition one track should have at least 18 clusters and the beginning

of the second track must overlap with hits from the first track. This overlap

can cause the track fit to fail. The fit likelihood efficiency is calculated as the

proportion of events with two fitted tracks, and is consistent with 100%.

• TPC charge misidentification. A selection of tracks crossing all three TPCs, with

>18 vertical clusters in each TPC, is made. The probability of charge misidentifi-

cation, pCM, is related to the probability that all four charge estimates (three local

and one global) are the same, psame, by the relation

pCM =
1

2

(
1−

√
1

3
(4psame − 1)

)
, (A.1)

which is valid under the assumptions that the charge misidentification rate in

each TPC is the same, and the global reconstructed track is from the same particle.

An MC-only truth study was also performed, with results similar to the above,

meaning the approximations are valid for the event selection used. The charge

misidentification rate is O(1%) in the region 0.3 GeV/c < pµ < 1.5 GeV/c. The sys-

tematic error is given by the difference between MC and data, and is 0.31±3.27%
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for 0.3 GeV/c < pµ < 0.6 GeV/c.

• TPC momentum resolution. A selection of muon tracks crossing multiple TPCs

is made by selecting events with a single negative muon-like track with segments

in TPC1, FGD1 and TPC2, with at least 65 hits in each TPC, and a global track

start position cut to reject sand muons. One can then study the difference between

the TPC1 and the FGD1 energy-loss corrected TPC2 transverse momenta, ∆1/pt,

which has a Gaussian distribution with mean 0 and standard deviation σ∆1/pt ,

which is dominated by the intrinsic TPC momentum resolutions. Similar distribu-

tions can be found by comparing TPC1 momenta with global track momenta (i.e.

TPC1-FGD1-TPC2-FGD2-TPC3 and TPC1-FGD1-TPC2). The systematic error is

calculated by smearing the MC to match data and is 0.24±0.1 for 0.5 GeV/c < pµ

< 1.4 GeV/c.

• TPC momentum scale. An survey of the magnetic field suggests that the TPC

momentum scale error is 0.5%. A cross-check, in which FGD1 momentum-by-

range is compared to TPC2 momenta for FGD1-stopping cosmic muons for both

data and MC. The difference between data and MC is consistent with the field

measurements.

• TPC particle identification. The muon PID systematic is calculated as the differ-

ence between data and MC sand muon track pulls (per TPC and per T2K run); the

MC is shifted and smeared to match data. The proton PID systematic is calculated

in a similar way, using a high purity (98%) proton sample of high charge and

positive tracks in the range 0.3–1.1 GeV/c.

• TPC track übermerging. Track übermerging is a TPC reconstruction bug in

which two TPC segments from two different particles are merged causing the

track multiplicity, track momentum, and track PID to be incorrect. Übermerging

occurs when two TPC segments have identical start and end positions in z, and

so it is rare in MC, and doesn’t occur in data due to micromegas misalignment.

The systematic is calculated by comparing the CC selections using the default
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uncorrected reconstruction with the CC selections using a corrected reconstruction,

and is O(0.1%) or lower, depending on sample and pµ.

• TPC-FGD matching. A selection of through-going muons with long TPC1 and

TPC2 segments is chosen. Under the assumption that two TPC tracks imply that

the track is long and also passes through FGD1, checking for the presence of a

FGD1-TPC2 matched track allows one to compute the matching efficiency for

the TPC2 track to be matched to any FGD1 hit. The efficiency is high (99.9%

above 200 MeV/c), with good agreement between data and MC (within 0.2%

above 200 MeV/c), although the efficiency drops and discrepancies increase below

100 MeV/c.

The same selection is used to compare the position of the upstream-most FGD1

hit in the matched tracks between data and MC. Most FGD1 segments start in the

first or second layer (i.e. the first XY module) and data has a 25% higher failure

rate than MC in this region. Elsewhere, the discrepancy is higher (40%).

A higher failure rate in data is also seen in a high angle muon selection using

cosmic events, without TPC1 or TPC3 segments, but with FGD1, TPC2, and FGD2

segments. This is not understood and a 150% systematic is assigned.

A.3 Other systematics

• Cosmic ray background. The cosmic muon MC sample is normalised in two

ways [182, 183]. A data sample also exists, in which beam triggers are taken when

the neutrino beam was off (“empty spill”). Using the empty spill triggers with a

simple selection (no TPC1 tracks, at least 18 nodes in TPC2 or TPC3), a data MC

normalisation correction is found. The rate of CC inclusive events from cosmics

is then increased from (0.07–0.08)±0.01 Hz to 0.09±0.01 Hz and the Run 1+2+3+4

integrated beam spill data period of 6.9 s implies a negligible effect. Using empty

spill triggers, the TPC1 veto rate due to cosmics is found to be 0.0055%.
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• Sand muon background. A separate MC is generated in which beam neutrino

induced interactions outside the magnet are simulated, and particles which pass

into the magnet reconstructed. The CC event selections are applied, predicting 96

CC inclusive events (0.41% of the total magnet+sand MC prediction).

Data and MC are compared using a selection of events entering the upstream

wall of the PØD; the 10% difference is treated as an uncertainty.

• Event pile-up. The TPC1 veto is used to reject interactions occurring upstream

of the FGD1 fiducial volume and sand muons. Sand muons are not included in

the standard MC, and so coincidences between sand and magnet events must be

corrected for. The procedure is to calculate the number of TPC1 events in a sand

MC sample, and so calculate the average number of events per bunch. The 10%

sand MC uncertainty provides a need for a cross-check, therefore a second method

is also used, comparing the number of TPC1 events per bunch between data and

(sand+magnet) MC. The pile-up is taken as the larger of the two methods.

The effect of TPC1 events being assigned to the wrong bunch is negligible, no

events in data or MC are vetoed if the TPC1 veto cut is extended from vetoing a

bunch to vetoing a spill.

There are a maximum of 0.0005 CC inclusive selected events per bunch in

data, therefore the pile-up is small (0.025%).

The probability of interactions outside the tracker fiducial volume (e.g. in

the ECal or sand) producing extra tracks that cause event misclassification (e.g.

CC-0-π as CC-1-π+) is small (∼10−5%) due to the FGD fiducial volume cut on all

tracks.

• Out-of-fiducial-volume events. OOFV events are defined as events in which

the true interaction vertex occurred outside of the fiducial volume. There are

multiple categories of events that are defined as OOFV; the dominant categories

are high energy neutrons from outside the tracker creating a π− in the FGD which

is misidentified as a muon (17.6%), and backwards-going π+ misreconstructed as
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forwards going µ (18.0%).

For categories involving events outside the tracker, a 20% cross-section rate

systematic is assigned (the interaction is likely to be on a heavier nuclear target;

20% comes from the uncertainty on PØD, ECal, SMRD event rate data/MC ratio

when changing between GENIE and NEUT and the uncertainty on these ratios),

while for categories of events occurring in the tracker (e.g. in the tracker dead

material) no rate systematic is required. For categories where a relevant control

sample exists, additional reconstruction systematics are assigned.

• Pion secondary interactions. GEANT4 is used to simulate the propagation of

particles outside the nucleus. The pion interaction model used (QGSP BERT)

does not agree well with external data (see for example Ref. [166]), and the

datasets contain uncertainties. The most significant secondary interaction modes

are absorption (no πs in the final state), charge exchange (π0 and no other πs

in the final state), and QE scattering (inelastic scatter in which there is a single

π in the final state, of the same charge as the initial π). Absorption and charge

exchange can cause the event to be misclassified (e.g. π+ is absorbed before

it is detected, moving an event from CC-1-π+ to CC-0-π). QE scattering can

cause sudden direction changes complicating reconstruction (an extreme case

is redirecting the particle from TPC2 to the ECal, meaning the track could be

missed), and also produces pions with lower momenta, with a potentially higher

absorption cross section (there is a peak at pπ+ ∼ 300 MeV/c [184]). For each pion

trajectory in the event, the probability of that trajectory occurring is calculated by

checking the momentum and nuclear target dependent cross section at each step

in the trajectory. The cross-section model can be altered, changing the trajectory

probability, resulting in an event weight. A “correction weight” is calculated

to bring data and MC cross sections into agreement; a “variation weight” is

calculated based on the data uncertainty, to be used in the ND280 fit (see Sec.

3.3.4). When no π− data is available, π+ data is used in its place. When no data is

available in the momentum range, the data is extrapolated using tuned GEANT4,
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with a conservative assigned systematic. When no data is available on the nuclear

target, data from the closest element (by atomic number) is used.
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