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Abstract

In recent years it has become increasingly clear that our universe is far more
intricate than we might ever have imagined. While theoretical formulations of the
fundamental aspects of Nature have, for many years, hinted at its vast and elusive
complexity, suggesting that our known world is but a tiny facet of the greater re-
ality in which it is embedded, it has only been within the last several decades that
observations have really begun to confirm this. Indeed, while deep-field surveys
of the universe have uncovered myriads of galaxies, constituting an untold number
of gravitationally bound microcosms such as ours, precision cosmological measure-
ments have revealed that all of this luminous baryonic matter is a near negligible
fraction of the total energy and matter in the universe. The vast majority of our
cosmos is a dark universe, comprised of some kind of invisible substances or dark
fluids that only interact gravitationally with visible matter.

Even among the objects that are visible to us, there are many mysterious entities
which are predicted by theory and which may or may not as yet have been glimpsed
in the cosmos. In the first part of this thesis we will study the interactions between
two such entities, namely cosmic strings and rotating black holes. In the latter part,
we will turn to the invisible sector and explore whether or not the dark phenomena
in the universe could in fact be the shadows of fundamental objects moving in higher

dimensions beyond our own.
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Preface

Impermanent are all component things,
They arise and cease, that is their nature:
They come into being and pass away,
Release from them is bliss supreme.

~Mahaa-Parinibbaana Sutta

THE physical universe in which we find ourselves is a vast flux of fleeting forms
of energy, where as time progresses, objects arise, interact with other objects, and
then dissolve away again in apparently tireless succession. In this sense, what we
call time is a measure of the changefulness of the universe.

Hot gases can give birth to stars, a temporary home for planets and lifeforms such
as ourselves, which may eventually collapse into black holes, which may themselves
ultimately evaporate into radiation. As conscious lifeforms, we are observers of the
flux while at the same time, components of it.

From observations we have made of our cosmic environment, we now know that
our world of baryonic stars and galaxies is but a small island floating on a sea
of more subtle, “dark” forms of energy that are apparently not in communication
with our visible world. Visible matter clusters in halos of dark matter, an invisible,
gravitating substance whose existence is an inference we have made based on the
dynamical and structure-forming behaviour of visible matter. On even larger scales,
the dark halos themselves are diluting away within an elusive substance known as
dark energy, as is infered from the redshifting of light emitted from the structures

contained in the haloes.



Preface 2

The principle of impermanence persists at the quantum level, where quantum
particles, tiny packages of energy, are also in a state of flux. As time progresses,
particles appear, interact with other particles, and then may either decay into lighter
particles, or leave behind a relic density that fades as the universe expands. Thus the
particle spectrum of the universe evolves dynamically over time, with its symmetry
forged by a series of phase transitions occuring at different cosmological epochs.
The changing of microscopic, quantum symmetry at these transitions can result in
the formation of macroscopic, classical objects known as cosmic strings, which enter
the flux of forms and ultimately interact with other forms that exist at that energy
scale.

In the pages that follow, we will theoretically study a subset of interactions that
could occur within both the visible sector and the invisible sector of the cosmic flux.
We will first examine the possible configurations which can arise from interactions
between cosmic strings and rotating black holes in the visible sector, extending this
study to the more abstract case of the interactions taking place within a spacetime
containing negative vacuum energy. We will then turn to the invisible sector, and
explore the possible interactions between the dark fluids in the universe, which will
take us into higher dimensions of spacetime and fundamental theories of the natural

world.



Chapter 1

Theories of Gravity

WE begin with a discussion of the fundamental interaction which governs the
behaviour of the universe on cosmological scales, namely the force of gravity. The
paradigmatic theory which describes this force is Einstein’s classical general theory
of relativity. Gravity sculps the cosmic landscape by endowing it with a geometry,
along which matter moves. Looking at smaller and smaller scales however, the
other fundamental interactions of nature, namely the strong, the weak, and the
electromagnetic force, which all have a description as quantum field theories, begin to
become more and more relevant for describing the behaviour of matter. On the other
hand, the gravitational interaction retreats into the background, becoming irrelevant
at the typical energy scales associated with particle physics. In order to smoothly
connect these regimes, one must find a deeper theory of nature that contains both
general relativity and quantum field theory in suitable limits, but that goes beyond
these limits and adequately describes the physics in between, and underpinning,
them. The theory that has made the most progress in this regard is string theory, a
quantum theory of gravity that unifies all of the known fundamental forces of nature
as arising from the vibrations of fundamental strings in a ten dimensional spacetime.
Starting from a theory of gravity in ten dimensions, the four dimensional description
can contain new couplings between gravity and other fundamental fields which are
part of the spectra of the oscillating strings. In this way, general relativity in four

dimensions becomes modified by the presence of these fields. Interestingly, these
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new interactions can in principle provide a context for understanding some aspects
of the most elusive of the cosmological phenomena that have yet been observed,
namely the dark sector of the universe.

In Section 1.1 we will discuss general relativity in some detail, beginning with an
exposition of the theory in ts Lagrangian formulation in Section 1.1.1, and then de-
scribing some important solutions in Sections 1.1.2 and 1.1.3. In Section 1.2 we will
then discuss gravity in higher dimensions, outlining some of the key developments
in Section 1.2.1 before discussing string theory in Section 1.2.2. Finally, having
provided a motivation, in Section 1.3 we will move back to the effective four dimen-
sional description of gravity, and discuss the scalar-tensor class of modified gravity

theories.

Units and Conventions

Nature exhibits three fundamental dimensionful constants which are the the speed of
light ¢, Planck’s constant h, which sets the scale at which the quantum uncertainty
principle becomes important, and Newton’s constant GG, which sets the strength of
the gravitational field. In what follows, we will work with natural units such that
c=h=1,and 817G = M ? = K where M, is the reduced Planck mass, which defines
a mass scale of M, ~ 2 x 10®*GeV. We will choose the metric to be of (—,+,+,+)

signature.

1.1 General Relativity

1.1.1 Lagrangian formulation

The intricate structural patterns in the large scale structure are produced by lu-
minous galactic fluids that are tracing out the intrinsic curvature of spacetime as
they freefall under gravity. Freefalling objects follow paths of minimum distance
called geodesics, which are straight lines in a curved space. Formally, spacetime
is described by a four dimensional Riemannian manifold with a metric g,,, which

allows for a notion of distance in the spacetime. Choosing a path parameterised by
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an affine parameter A, the distance along it is

s:/d)\\/gw,t“t”, (1.1.1)

where t# = dz# /d) is a tangent vector to the path. Extremising this distance gives
the geodesic equation,

V=0, (1.1.2)

where the covariant derivative V, is the generalisation of the partial derivative in a
curved space, V" = 9yt + T, 17, and the connection I'7 is built from the metric

and its derivatives,

1
Lo0 = 59"(0900 + Op9vo = 0u9op) - (1.1.3)

The intrinsic curvature of the manifold is characterised by a quantity known
as the Riemann curvature tensor, R s, which is constructed from the connection
and its derivatives, giving rise to an object which is second order in the metric
derivatives,

R%505 = D5 = Uiy + Doy — T, T - (1.1.4)
As a clump of matter freefalls under gravity, in addition to its changes in position
and velocity, it can also experience changes in its shape and volume as a result of
these second order geometrical effects. Changes in volume are quantified by the
trace component of the Riemann tensor, known as the Ricci tensor, R, = R,
while changes in shape are quantified by the traceless component, known as the
Weyl tensor. If the Riemann tensor vanishes identically, the spacetime is said to
be flat, and is thus endowed with a Minkowskian geometry. However, even in the
presence of globally non-trival curvature, Riemannian manifolds admit a tangent
space at each point where the geometry is locally Minkowskian.

Thus, in a Riemannian spacetime, all geometrical information stems from a single
quantity, the metric g, .

The great insight of Einstein, formalised into the general theory of relativity that
constitutes the modern understanding of the gravitational force, is that the intrinsic
curvature of spacetime is itself created by the various forms of matter and energy
that move along it. The gravitational force that is sourced by matter and energy

may then be identified with spacetime geometry, namely the metric g,,. Rather
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than fixed and immutable, spacetime then becomes dynamical, thus the metric may
be treated as a dynamical field from a classical field theoretic point of view.

Einstein’s theory may then be formulated as an action principle for the dynamical
field g,,. The action functional is constructed in the standard way, namely from
invariant quantities that are formed from the dynamical field and its derivatives.
While other quantities are possible, the simplest invariant quantity that can be
constructed from the metric and its derivatives is the trace of the Ricci tensor,
called the Ricci scalar, R = g"”R,,,,. One must then construct an invariant measure
on the space. As usual, this is achieved by the invariant volume element, \/—gd*z,
which in this case, most unlike all other field theory cases, depends itself upon the
dynamical field being described by the theory.

Putting these quantities together yields the Einstein-Hilbert action,

1
SE.H. = ﬁ/dzlx \/—gR, (115)

which expresses the geometrical content of the theory. To specify the dynamics of
guv in terms of general equations of motion, one must then write down an action for

the matter fields, which act as sources for the geometry. The total action is
S =Spgu + Sn, (1.1.6)

where
S, = /d%\/—gcw,-,auwi) (1.1.7)
is a general action for the matter fields ;. We may now obtain the equations of

motion for the gravitational force by a variation of (1.1.6) with respect to a general

perturbation of the contravariant metric d¢g"”, which yields

1 4 1 " 4 0Sm o
0S8 = 2m/d T4/ g(RW 2gWR>5g —|—/d xéguv gt . (1.1.8)

Defining the stress energy tensor as

2 0Sn

Tw=——es—w, 1.1.9
H /_g 591111 ( )
the action principle 0.5 = 0 yields the Einstein field equations,
1
G,u,l/ = R/,Ll/ - _g/,LVR — /{T/_u/, (1110)

2
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where G, is known as the Einstein tensor.

The geometrical quantities on the left hand side of the field equation (1.1.10)
are only those which pertain to the trace part of the Riemann tensor. Thus, we
see that non-gravitational® matter fields only source the Ricci tensor, R,,. On the
other hand, in the case that 7}, = 0, and in the absence of a cosmological constant,
the field equations read

R, =0, (1.1.11)

which describe the dynamics of the gravitational field in a spacetime devoid of all
but geometry. These are known as the vacuum equations. A trivial solution is
flat Minkowski spacetime, for which, as we have mentioned, the Riemann curvature
tensor vanishes identically. However, more generally, (1.1.11) is simply the statement
that the equations of motion do not force the traceless component of the Riemann
tensor, namely the Weyl tensor, to vanish. There are in fact many non-trivial
solutions to (1.1.11), the most notable of which are the black hole solutions which
describe the empty spacetime outside of gravitationally collapsed objects. As there
are no matter sources about, the fact that there are non-trivial solutions to (1.1.11)
implies that gravity itself can generate gravitational effects, and produce a non-
vanishing Weyl tensor. This is a consequence of the non-linearity of the theory,
which entails that even in the absence of gravitating matter fields, spacetime may
be non-trivially curved because the gravitational field itself contains energy, and
thus can produce more gravity.

Going back to our clumps of matter freefalling under gravity, we see that in an
empty spacetime, the clumps may experience changes to their shape, while only in
the presence of distinct sources for the gravitational field will they experience changes
in volume. An example for the latter is an expanding spacetime in cosmology:
probe matter is diluted by the expansion, which is sourced by the presence of the
cosmological fluid, or by a cosmological constant. An example for the former is the

behaviour of matter in the vicinity of black holes, where strong tidal forces act to

!By “non-gravitational” we mean that they do not form part of the gravitational sector. This

distinction will become important when we discuss modifications of general relativity.
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distort the morphology of nearby objects, sourced purely by the non-linear effects
of gravity.

Having derived the field equation for g,,,, we require further information in order
to specify the dynamics of the system, because at this stage we do not have an

equation for the non-gravitational degrees of freedom 1); which are packaged into

T,

w- 1t turns out that by virtue of the properties of Riemannian geometry, this

equation is already implicit in the Einstein equations. An important property of the

Riemann tensor is the so-called Bianchi identity,

RO’

pluvsal

=0, (1.1.12)
and contraction of this identity yields a constraint on the Einstein tensor,
V.G" =0. (1.1.13)

From the field equations (1.1.10), this implies that V, 7" = 0, which gives us an
equation for v; in the form of a conservation equation for the collective stress-energy
of the non-gravitational fields.

From a variational point of view, the contracted Bianchi identity emerges as
a natural consequence of general covariance, which is the principle that the laws
of physics should be invariant under diffeomorphisms, which are general coordi-
nate transformations. General covariance requires that the action functionals, from
which the laws may be derived as equations of motion, are coordinate invariant
by construction. Symmetries in the action correspond to conservation laws, thus
the Bianchi identity, expressing the conservation of stress-energy, appears as the
conservation law associated with the symmetry of .S, under diffeomorphisms.

To derive the conservation law, we perform a general variation of (1.1.7) with

respect to the field perturbations d; and dg,,, yielding

5S, 55,
_ 4 m sl 4,20 . 1.1.14
55’”_0_/dxéwiéler/dx(Sgw(ng ( )

Variation of the matter action with respect to the covariant metric g, allows us to

define the stress energy tensor with raised indices as

2 0S5,

T — —_27m
vV —9 5guu

(1.1.15)



1.1. General Relativity 9

which features the opposite sign to (1.1.9) due to the variational identity dg"” =
_ga,ugpv(ggap.
For an infinitesimal diffeomorphism z'* = z# + (#(x®), the infinitesimal changes

in the fields ¢; and g, are given by the Lie derivative, which acts on a general tensor

K. as
£cKap = KasC s+ Ksp(’f + Kaga(7 (1.1.16)

yielding
py = Loy = CHOubi (1.1.17)
0w = Lcguw = VG + V(. (1.1.18)

In the case that the second equation (1.1.18) vanishes, the vector (* is called a
Killing vector, and represents a symmetry of the metric, which we will discuss in
greater detail in Section 1.1.2.
With these specific expressions for the field perturbations, one may use the sym-
metries of 7" to obtain
/ d%(gi . vu%i)gawi . / d*2¢, Y, T" = 0. (1.1.19)

The term in parentheses is the equation of motion for ;, which vanishes identi-

cally. Thus, for an arbitrary vector (*, the stress-energy tensor is constrained to be
divergence-free, V, 7" = 0.

Let us now discuss the general form of the stress-energy tensor. The metric
guv 18 a symmetric tensor, thus to reflect the symmetries of spacetime, one usually

considers the stress-energy tensor to take the form of a perfect fluid,

T = puyy, + P(gu + u,u,) (1.1.20)

where p is the energy density of the fluid, P is its pressure, and u® is a timelike
vector utu, = —1, which represents the four-velocity of the individual particles
which comprise the fluid. Going back to the action 1.1.1, the four-velocity is the
tangent vector to a path which is parameterised by the proper time 7.

The equation of motion for the fluid, V, 7" = 0, then yields the following two
equations:

u'Vup+ (p+ P)V,u" =0, (1.1.21)
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(P + p)u"V, u” + (¢" +u'u”)V,P =0. (1.1.22)

For a perfect fluid, (1.1.21) and (1.1.22) completely specify the motion of the fluid,
thus the Einstein equations contain all the information about how spacetime and
stress-energy behave under the influence of each other. For the case of “dust”
particles, P = 0 and (1.1.22) then tells us that the individual particles move on
geodesics,

u'Vyu” =0. (1.1.23)

This is a very important result as it implies that all test particles, namely particles
upon which no other external forces are acting, are constrained by energy conserva-

tion to follow geodesics of g, .

1.1.2 Black holes

Among the most exotic solutions to Einsteins equations are most certainly the black
hole solutions, which showcase some of the most interesting and varied ways in
which the gravitational field can manipulate the behaviour of matter. In general,
these are solutions which describe the empty spacetime outside of gravitationally
collapsed objects, but they can also describe the spacetime around very massive
objects that totally dominate their local gravitational environment. As with all
solutions to Einstein’s equations, they are characterised by the various symmetries
of the gravitational field, or equivalently, by spacetime symmetries. As mentioned
above, such symmetries are described by Killing vectors.

For a general vector k*, one can find local coordinates such that k* = (9/9¢)",
where £ is one of the coordinates. k* is a Killing vector in the case that the Lie

derivative acting on the metric satisfies

0

Jgom =0, (1.1.24)

£kguu =

thus the metric coefficients are independent of &.

For example, spherical symmetry of the spacetime entails that the solution ad-
mits an SO(3) rotational symmetry. Then, for the spacetime to be stationary, the
solution should possess a time-translation symmetry, t — ¢ + to, while static space-

times require in addition that time is symmetric under reversal, t — —t. Therefore,
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a static solution should admit a timelike Killing vector that is orthogonal to all
spacelike surfaces, meaning that there can be no cross terms that mix the timelike
and spacelike directions in the metric. On the other hand, stationary spacetimes
feature a mixing of the timelike and spacelike directions. In fact, as originally shown
by Hawking and Wald, stationarity implies that instead of spherical symmetry, the
spacetime is axisymmetric. Working in coordinates {t,r,0, ¢}, there are in general

two Killing vectors associated with these symmetries, namely
(00)", (9p)", (1.1.25)

where an additional two Killing vectors are present for full spherical symmetry.
These symmetries of the spacetime have corresponding conserved quantities. Each

Killing vector k* leads to a constant of motion for a particle moving in the spacetime,

dzt

R v

= const. (1.1.26)

For the Killing vectors in (1.1.25), this leads to the conservation of energy and of

angular momentum.

Schwarzschild

Let us now discuss the particular solutions. The Schwarzschild solution is the unique
static and spherically symmetric solution to the vacuum Einstein equations. It de-
scribes the gravitational field outside of a static, spherically symmetric body of mass
M, such as a star. Within our solar system, where the planets may be considered as
test particles moving in the gravitational field exterior to our home star, the sun, it
correctly predicts deviations from Newtonian orbital motion, as well as inherently
relativistic effects, such as gravitational redshift, time delay and the bending of light.

The Schwarzschild solution is described by the metric

ds? = —(1 - QGTM)dtQ v (1 - 2(7;M>_1dr2 4 r2d0? (1.1.27)

where d2? = df? +sin® d¢? is the metric on a 2-sphere. This solution asymptotes to
flat space at large r, therefore the gravitational effect of a massive object dimishes

if one moves far enough away from the object, as one would expect.
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The solution becomes singular at the points r = 2GM and r = 0. The first of

these points defines the Schwarzschild radius,

2GM M
rg = ~ 3<ﬁ) km | (1.1.28)
©

2
where M., is the mass of the sun. In the case of a typical star, this radius is well
within the interior of the star, where the vacuum solution is not expected to be
valid. However, very massive stars that undergo complete gravitational collapse will
fall well within their Schwarzschild radii, eventually forming a black hole centred
at r = 0. In this case, the Schwarzschild radius becomes an event horizon, a null
surface separating regions of spacetime which may and may not causally interact
with one another.

A spacetime is said to be geodesically complete if all geodesics are extendable
to arbitrarily large values of their affine parameters. A spacetime containing a gen-
uine singularity is geodesically incomplete, meaning that geodesics terminate at the
singularity for some finite value of their affine parameter. In the case of the space-
time which is described by (1.1.27), this appears to occur at rg, because geodesics
can reach this singularity at a finite value of their affine parameters. However the
Schwarzschild spacetime may be maximally analytically extended beyond rg by
choosing appropriate coordinates. One then sees that rg is a mere coordinate sin-
gularity, and there is no obstruction in continuing the paths of particles beyond this
surface. All infalling particles will then travel onwards to » = 0, which is a true,
irremovable singularity of the spacetime, where the geodesics terminate. However,
looking at (1.1.27) one can see that for r < rg, the radial direction becomes timelike.
This means that the particles can only move in one direction along the radial path,
so that all future-directed paths are in the direction of decreasing r. Therefore no
particles or signals of any kind may leave the interior region of the black hole, and

no information may be glimpsed from beyond rg.

Reissner-Nordstrom

We mentioned earlier that the Schwarzschild solution is unique. This is a conse-

quence of Birkhoff’s theorem, which states that any spherically symmetric vacuum
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spacetime solution must be static. In other words, such a solution must be the
Schwarzschild solution.

More generally, one can consider spacetimes that contain non-trivial electromag-
netic fields. Such spacetimes are no longer vacuum spacetimes, but are sometimes
refered to as electrovacuum spacetimes, and are solutions of the coupled Einstein-
Maxwell equations. One may then generalise Birkoff’s theorem to the electrovac-
uum case, for which it stipulates that the only spherically symmetric solution is the
Reissner-Nordstrom solution describing a charged black hole.

The Reissner-Nordstrom solution is the unique spherically symmetric solution to

the Einstein-Maxwell system, described by the action

_ 1 4 Uy
S = ﬂ/d x\/—g<R—FuyF ) , (1.1.29)

where F' = dA is the field strength for the Maxwell potential A. The metric is

ds? = — 22 + ier + 72d§)? (1.1.30)
= A 1.
and the gauge field is
A= (1.1.31)
r

In these expressions, A = r?> — 2GMr + ¢?, where ¢ = GQ and Q is the electric
charge of the black hole. The metric function A = (r —r,)(r — r_) has two distinct

roots,
ry =GM £+ +/(GM)? — ¢?, (1.1.32)

corresponding to the inner and outer event horizons of the charged black hole. In the
case that the two horizons coincide, r, = r_, the black hole is said to be extremal.

This occurs when GM = ¢ and thus r, = GM. Under a change of coordinates
p=r—GM, (1.1.33)

the extremal metric takes the isotropic form

GM\ 2 GM\?2
ds? = —(1 + —) dt* + (1 + —) (dp? + p2dP?). (1.1.34)
p P
In these coordinates, the metric becomes singular when p = 0, thus there is an event

horizon located at this point. In the near-horizon region where p — 0, the metric
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becomes

2

M 2
ds* ~ — (G’])W)th? + (Gp2 ) dp?* + (GM)*dQ? (1.1.35)

which, compared with (1.1.43) below, is the line element for AdS; x Sy, where the

2-sphere has radius GM. For an observer at a radial point p = pg, we learn that the
event horizon p, is at an infinite proper distance away,
Po

1
s = lim —dp = lim
py P p+=0

In(po) — In(p)] = oo, (1.1.36)
located at the end of an infinite throat-like region in the spacetime.

While the Schwarzschild solution contains only one parameter, the mass of the
black hole M, the Reissner-Nordstrom spacetime is then a two parameter family

of solutions, where the parameters are M and (). Together they form the static,

spherically symmetric class of black hole solutions.

Kerr and Kerr-Newman

Let us now consider stationarity. As we have mentioned, this implies that the
spacetime is axisymmetric, which means that there is a Killing vector d, which
is spacelike near infinity, and for which all orbits are closed. As we will elucidate
upon, stationary spacetimes are rotating spacetimes. In the presence of pure gravity
and no other fields, the unique stationary solution is the Kerr solution, with two
parameters, M and J, where J is the total angular momentum of the black hole.

The Kerr geometry in Boyer-Linquist coordinates reads

12 A—a? sin29dt2 4G Mar sin*0
ST = _—__—

r )Y
2 29 g 9 2
v S dtde + Xdo” + 5 sin 0dp” + —dr”,

A
(1.1.37)
where a = J/M and

Y =12 1a2cos?0, A =r%—2GMr+a? I = (r*+a®)?*— Ad’sin®0. (1.1.38)

The geometry has a coordinate singularity when A = 0. As for the Reissner-
Nordstrom case, writing A = (r —r, )(r — r_) we find that there are in general two

distinct event horizons, this time given by

re = GM 4 /(G —a. (1.1.39)
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For the extremal Kerr, these horizons coincide when GM = a. As with the Reissner-
Norstrom case above, one can consider the metric in the extremal limit, and show
that the spatial distance to the extremal horizon is infinite.

The geometry has a genuine curvature singularity when ¥ = 0, therefore at
r =0 and 6 = 7/2. Moving to a different coordinate system, one can show that the
singularity in fact takes the form of a “ring”, meaning that particles following ingoing
radial geodesics on the equator will hit the singularity at » = 0, however particles on
radial geodesics along the polar axis will instead pass through the ring into another
region of the spacetime that can be obtained by analytic continuation. However,
just inside the ring singularity the spacetime exhibits closed time-like curves, as the
gss component of the metric (1.1.37) can change sign, such that a vector dy can
become timelike in this region. These curves imply a global violation of causality,
which makes this region unphysical.

Let us now discuss the rotational features of the spacetime. Due to the fact that
the timelike and azimuthal spacelike directions are mixed in the Kerr spacetime, a
particle falling towards the black hole on a radial geodesic will aquire non-vanishing
angular momentum and start to rotate, even though no non-gravitational forces are
acting on it. This is known as frame-dragging, and is a result of the fact that a
test particle cannot move in time without also moving in the ¢-direction. For static
spacetimes on the other hand, a particle on a radial geodesic will simply remain on
this geodesic as it plummets towards the black hole.

A “non-test” particle falling towards the black hole could however remain sta-
tionary with respect to infinity by a way of a sufficient amount of propulsion. This
is also true for the static black holes considered above, everywhere outside of the
event horizon. However, for the Kerr case, it turns out that even outside of the
event horizon, a particle may enter a region within which it is impossible to remain
stationary with respect to asymptotic infinity, as remaining stationary would require
superluminal propulsion. This occurs within the ergoregion.

We mentioned above that within the ring singularity, the gs¢ component of the
metric can change sign. Even outside of r, in this spacetime, another component

of the metric may change sign, this time the g;; component. The g;; component in
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(1.1.37) is negative only if
A —a*sin® 60 > 0, (1.1.40)

which implies that

r>GM +\/(GM)? — a2 cos2 6. (1.1.41)

The boundary of this region is known as the ergosphere. Between this boundary
and the horizon r,, in the ergoregion, the vector 0; becomes spacelike, meaning
that physical particles, which must follow timelike paths, can no longer move in
time only relative to an asymptotic observer. Instead, regardless of their state of
propulsion, they are forced to rotate with the black hole.

As with the static families of solutions, the Kerr spacetime is also subject to a
uniqueness theorem. The Carter-Robinson theorem states that any asymptotically-
flat stationary and axisymmetric spacetime is a member of the Kerr family. This can
be generalised to the stationary electrovacuum case, for which the rotating black hole
acquires an extra parameter, namely a charge, (). The resulting spacetime, known
as the Kerr-Newman spacetime, may be described in Boyer-Lindquist coordinates

by the metric (1.1.37), but now the metric function A becomes

A=7r?+a*-2GMr+GQ*. (1.1.42)

The “no-hair” theorems

As it involves no changes in time and thus no evolution is taking place, a stationary
configuration is a steady-state configuration that a system could settle down into
after gravitational collapse. The uniqueness theorems mentioned above then seem
to insist that gravitational collapse to a stationary state leads to the formation of
a black hole endowed with mass M, charge (), and angular momentum J only. In
other words, it appears that the black hole cannot pick up any other parameters,
which implies that all other information is destroyed during the collapse. These
considerations gave rise to a body of classical results known as the black hole “no-
hair” theorems, which state that the only long-range information that a black hole

can support is its mass, charge, and angular momentum (see [1-4] for a review).
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The logic is that the black hole will absorb everything it can absorb. However,
M, J and @) are “special” because they are conserved quantities associated with
the exact local symmetries of the spacetime, such as U(1) symmetry and Poincaré
symmetry. Indeed, as we mentioned above, the presence of the Killing vectors d; and
0y, which correspond to symmetries of the gravitational field for stationary space-
times, give rise to the conservation of energy and of angular momentum respectively.
Furthermore, in an electrovacuum spacetime, local U(1) symmetry implies the con-
servation of charge. In fact, the presence of the electrovacuum can itself be viewed as
deeply linked to spacetime geometry. As we will review in Chapter 4, Killing vectors
can act as a 4-vector potential for an electromagnetic field on Ricci flat backgrounds,
which can lead to an initially electrically neutral black hole picking up a charge.

These conserved quantities cannot be destroyed during gravitational collapse.
Instead they appear as charges or parameters of the collapsed object that can be

measured at spatial infinity by Gauss’s law.

Black holes in AdS

Finally, we will briefly mention the non-asymptotically flat classes of black hole
solutions. One example is the generalisation of black hole spacetimes to include a
non-vanishing cosmological constant.

A spacetime containing a negative cosmological constant is known as an Anti de
Sitter (AdS) spacetime. In static coordinates, a general AdS spacetime is described

by the line element

2 _ ﬁ 2 ﬁ 1o 2 7002
ds® = 1—|—€2 dt® + 1+€2 dr® 4+ r<dQ”, (1.1.43)

where £ is the AdS length. The simplest AdS black hole solution is the Schwarzschild-

AdS solution,
ds? = —(1 _M ﬁ)dtQ + (1 M T—2>_1dr2 +r2d0?, (1.1.44)
r 2 r 2
which is the unique spherically symmetric solution to the Einstein equations in
the presence of a negative cosmological constant. This spacetime looks like a
Schwarzschild black hole spacetime at low r, but approaches an AdS spacetime

at large r.
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In Chapter 5 we will look in detail at the spacetime of a rotating, charged black
hole in AdS.

1.1.3 Cosmology

When matter is present to source it, the gravitational field acts to change the vol-
ume of spacetime. This very simple fact, that the volume of spacetime changes due
to the matter distribution it contains, allows for the energy scale of the universe
to progressively decrease, and thus for a myriad of physical processes to take place
within that volume, which ultimately shape the universe in all its complexity into es-
sentially everything which we observe today. Indeed, this process allows for galaxies
to grow from quantum fluctuations, for the standard model gauge group to emerge,
and for atoms to form and combine so as to eventually enable complex lifeforms to
develop.

The geometry of the universe is characterised by various symmetries in the pres-
ence of a matter distribution, which expands the spacetime while respecting the
symmetries. The symmetries are large-scale homogeneity and isotropy of the spa-
tial hypersurfaces, meaning that on the largest scales, the universe looks the same
at every point, and in every direction. These symmetries, which imply that there is
no special place in the universe, are manifest in the cosmic microwave background
(CMB), a thermal background of free-streaming photons against which the evolu-
tion of all structure takes place, and which may be considered the oldest “object”
in the universe.

The scale at which the clustering of matter becomes dominant is about 10 Mpc,
where 1 Mpc = 3.3 x 10° light years. Above this scale, the universe is mostly smooth,
with the clumpy matter distribution appearing as a perturbation. Below this scale,
the non-linear clustering effects of matter become more and more important.

The line element that reflects the large-scale symmetries of the universe is the
Friedmann-Robertson-Walker (FRW) metric,

2

ds? = —dt* + () |7 +17d) | (1.1.45)

where symmetry restricts the allowable changes in volume to express themselves as a
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Figure 1.1: A visualisation of the large-scale structure from the Millennium-XXL
Stmulation, on a scale of a few hundred Mpc. The bright regions are very dense

clusters of galaxies which form where the filaments intersect each other.

single time dependent scale factor a(t) acting on the spatial hypersurfaces, and K is
a constant that quantifies the curvature of the universe. Combining this ansatz with
the perfect fluid form for the energy-momentum tensor, and including a cosmological

constant A, the Einstein equations become
(1.1.46)

and

a K A
- = —= 3P —. 1.1.47
b Eprap et (1.1.47)

These two equations are known as the Friedmann equations. They determine the
dynamics of the scale factor a(t), where we have defined the Hubble parameter, H =
a/a, which quantifies the rate of the cosmic expansion. They may be supplemented
by the (non-independent) conservation equation for matter (1.1.21), arising from

the Bianchi identities V,T*" = 0, which for this background becomes
p+3H(p+P)=0. (1.1.48)

The relation between the energy density and pressure of the cosmological fluid is
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expressed by its equation of state,
P =wp. (1.1.49)

Measurements of the CMB indicate that the universe is spatially flat on large scales.
For a flat universe, K = 0, one can broadly categorise the components of the fluid
in (1.1.46) as radiation, defined as particles which are either massless, or are moving
sufficiently relativistically such that their rest mass is significantly smaller than their
kinetic energy, and non-relativistic particles or matter. Matter or “dust” particles,
in the absence of kinetic energy and thus of pressure, simply follow geodesics of
the spacetime, as we saw in Section 1.1.1. In addition, the universe may contain
non-trivial vacuum energy A, which may also be categorised by its equation of state.

From (1.1.48) one sees that a cosmological constant, for which p is constant,
implies p = —P. For pressureless particles, w = 0 and thus p,,, ~ a2 from (1.1.48),
therefore the dust particles simply dilute with the expanding three dimensional
volume. For radiation, the theory of electromagnetism yields w = 1/3, leading to

4

p ~ a~*, which implies that the radiation particles lose energy quicker than dust

particles due to an additional redshifting of their wavelengths or momenta.

Cosmic inflation

From (1.1.47) we see that the expansion rate of the universe will increase with time
if w < —1/3, therefore if the cosmological constant dominates the energy of the
universe, it will inflate. This behaviour may seem an usual curiosity associated with
the vacuum, however it turns out that certain dynamical fields in the spacetime can
produce a similar effect. For example, a canonical scalar field that is moving very
slowly along a flat potential can emulate, for a while, the behaviour of a cosmological

constant. From the general action

S = —% / d4x\/—_g[au¢53“¢ + 2V(¢)] , (1.1.50)

one can compute the energy momentum tensor

1
T/u/ = u¢au¢ - Guwv [58a¢8a¢ + V(¢):| ) (1151)
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thus the energy density and pressure of the scalar field in a flat, FRW background
are

po= T3 =3B TV(), P=Ti=H-V(). (1.152)
The equation of state for the scalar field is

Py

1.1.53
P ( )

’LU¢:

for which one finds that w, — —1 in the case that ¢* < V(¢). This can occur for
a very flat potential, V' < V thus V ~ const. Instead of a cosmological constant,
we then find that the universe can inflate due to the constant potential energy of a
suitable scalar field.

From the Hubble parameter H one may define the inverse quantity, H !, which
is a time scale or length scale, ¢!, known as the Hubble radius. One can then
compare the timescale for particle interactions, ¢t; = 1/I" where T" is the rate of

interactions, with the timescale for expansion, ty = 1/H. As long as
tr Lty (1.1.54)

the particles have plenty of time to interact before the expansion acts to dilute them,
thus the expansion does not impact microphysical processes such as thermalisation of
particles. Equivalently, the length scale for particle interactions is then much smaller
than the Hubble radius, thus at the scale relevant for microphysical processes to take

place, the expansion of the universe is negligible. On the other hand, for
tr >ty (1155)

the interactions of particles are negligible compared to the expansion, with the
universe expanding profusely before the particles have had time to interact.

To explain the observed flatness, homogeneity and isotropy of the universe, it is
believed that a period of exponential growth took place at very early times. Com-
pellingly, such a paradigm can also explain how the initial conditions for structure
formation, the so-called “seeds” of cosmic structure, were originally generated.

The observable universe is thought to have began as a small, causally connected

patch within a larger universe. Two regions of spacetime can causally affect each
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other if a photon can pass between them, and such regions are said to be within each
other’s particle horizons. For an observer at a time ¢y, the particle horizon is the
future light cone emitted from their position at ty,. Therefore, the particle horizon
separates regions which have already been observed at ty from regions which have
not yet been observed at t;.

The story of cosmology goes that at some very early point in its history, the
universe entered a phase of superluminal expansion that drove all scales in this
original patch, including quantum scales, outside of the Hubble radius. This period
of expansion, known as cosmic inflation, could have been sourced by the presence of
a cosmological scalar field as outlined above, as such fields are ubiquitious in high-
energy particle theories. During inflation, all particle horizons in the observable
patch were expanded enormously, allowing regions of the universe that appear today
to have been out of causal contact at the time the CMB was formed, to have had
plenty of time to interact and thermalise in the past, thus accounting for the observed
homogeneity and isotropy of the CMB.

The expansion was so rapid that a process known as gravitational particle pro-
duction, a manifestation of Hawking radiation in cosmology, was able to take place.
Due to the enormous expansion rate, the timescale associated with quantum fluc-
tuations, t,, became much longer than the Hubble time during inflation, ¢, > tg,
such that virtual particle pairs which usually bubble in and out of the vacuum could
no longer annihilate. Equivalently, the length scale of these fluctuations became
much larger than the Hubble radius, which is sometimes called the Hubble horizon.
Such fluctuations are then said to be driven to “superhorizon scales” by the expan-
sion. Thus the expanding background “radiates” much like the event horizon of a
black hole, when one virtual particle slips beneath the event horizon and its partner
accelerates away into the universe. In cosmology, these quantum fluctuations seed
the gravitational overdensities that provide the initial conditions for gravitational
collapse, and thus for all structure formation in the universe.

At the same time, as mentioned, the expansion smoothed out all inhomogeneities
and anisotropies originally present in the observable patch. In addition, the universe

become so large that it appears spatially flat at the scales upon which we can observe
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it.

At the end of inflation, the universe would have been empty and cold, as other
than the tiny density of gravitationally produced particles, all forms of matter that
might originally have been present have been diluted away. It is believed that the
universe was then reheated by the inflaton field itself, which decayed into a sea of
hot thermalised radiation. Stippled across this sea were the quantum fluctuations,
producing tiny gravitational perturbations in the uniform energy density of the

cosmological fluid, seeding the initial condition for structure growth.

The evolution of particles

As the universe evolves, so it expands and cools, and it does so at various rates
depending upon the dominant contribution to the cosmological fluid at a given
energy scale. Tracking the expansion backwards in time to the highest possible
energy scale permissible by our current understanding of physics, we may reconstruct
the full history of the universe up to that scale.

The very earliest times that we can theoretically envisage, earlier than inflation,
correspond to a universe in a state of such high curvature that classical general
relativity breaks down, and we enter the realm of quantum gravity. The quantum
effects of gravity become important at the energy scale M, this is the Planck epoch,
about which very little is known. At this scale, general relativity must be replaced
by an inherently quantum theory of nature. We will return to this in Section 1.2.

Below the Planck scale but above about 10*® GeV, which is known as the grand
unified theories or GUT scale, it is believed that the electromagnetic, strong and
weak interactions are unified, as the coupling constants associated with these in-
teractions, which are energy-scale dependent, appear to meet at this energy. If one
includes supersymmetry, a theory which exchanges bosonic and fermionic states, the
unification of the gauge couplings is precise, although evidence for supersymmetry
has not yet been observed in nature. Due to the fact that the strong and electroweak
interactions are unified into a single interaction at energies above the GUT scale,
there are additional gauge bosons at this scale which can change quarks into leptons

and vice versa, violating the quantum baryon number B. The universe exhibits a
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large asymmetry with respect to the number of baryons versus anti-baryons which
it contains. It is possible that the physical process which created the asymmetry,
known as barogenesis, took place at this energy scale, as this process requires baryon
number to be violated.

As the energy of the universe fell below the GUT scale, a phase transition occured
during which the additional GUT bosons acquired masses, making them too heavy
to be excited in the cosmological fluid. The removal of a number of gauge bosons
from the particle spectrum of the universe corresponds to a breaking of a particle
gauge group into smaller subgroups that have less bosons, thus the grand unified
interaction was broken apart into the strong and the electroweak interactions. As
we will discuss in detail in Chapter 2, this is accomplished by a process known
as spontaneous symmetry breaking, for which a natural consequence in cosmology
is the production of topological defects, such as cosmic strings, domain walls and
monopoles. Monopoles and domain walls are problematic for cosmology as they
totally dominate the energy density, giving rise to a universe with a very different
expansion and structure formation history than the one we observe today. However,
if cosmic inflation takes place around the GUT scale, then they too will be diluted
away by the expansion. From observations of the density perturbations generated
during inflation, which are etched into the CMB, one can discern the energy scale
of the universe at the time that these perturbations crossed the Hubble horizon. It
turns out that for most viable inflation models, this scale is consistent with the scale
of grand unified theories.

At around 100 GeV, a second phase transition occured during which the elec-
troweak interaction split up into the weak and electromagnetic interactions, and
the standard model particles received their masses via the Higgs mechanism, which
we will review for the abelian case in Section 2.3. There may also have been a
production of cosmic strings at this scale.

The interaction between electrically charged particles becomes stronger at shorter
separation distances. The opposite turns out to be true for quarks, which are charged
under the strong force, mediated by gluons. At energies above 50 GeV, the interac-

tion between quarks and gluons is very weak, and they form a quark-gluon plasma.
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At around 50 GeV however, a further phase transition took place, the QCD phase
transition, which led to the confinement of the quarks and gluons into bound states,
and thus baryons and mesons were born.

At around 1 MeV, neutrinos decoupled from the thermal sea of particles. This
was followed by the annihilation of electrons and positrons into photons exclusively,
causing the photon temperature to become slightly higher than the termperature of
the decoupled neutrinos. Finally, at energies of 100 keV, Big Bang Nucleosynthesis
took place, and all the light nuclei were formed as protons and neutrons were able
to combine. The energy density in radiation and matter then became equal at 0.75
keV, with matter, or non-relativistic particles, starting to dominate the cosmolog-
ical fluid as the energies decreased further. Neutral hydrogen then formed during
Recombination at 0.26-0.33 eV, when protons and electrons combined. The free
electron density then rapidly declined, meaning that Thompson scattering between
electrons and photons, the dominant process which couples photons to the primor-
dial plasma, became inefficient and the photons decoupled at around 0.23-0.28 eV.
These photons free-stream towards us today in the form of the cosmic microwave
background. Without the pressure of the coupled photons around to prevent the
baryonic fluid from gravitationally collapsing into the overdensitiies, matter then be-
gan to cluster, and over time grew linearly and then non-linearly into stars, galaxies,
and eventually entire clusters of galaxies that are knotted across the universe as we

observe it today.

The cosmological dark sector

We will now discuss the particular quantities that appear in the Friedmann equation
(1.1.46) which govern the dynamics of the universe today. As we have mentioned,
observations indicate that we live in a flat universe, K = 0, so there is no curvature-
driven contribution to the cosmological expansion. On the other hand, it is now
widely accepted that a cosmological constant A, or a mysterious unknown fluid that
behaves very much like one, is strongly influencing the evolution of the universe
today.

At the closing of last century, astronomers discovered, from observations of high



1.1. General Relativity 26

redshift Type Ia supernovae, that the universe is currently entering an accelerating
epoch [5,6]. Type la supernovae are produced when white dwarf stars undergo grav-
itational collapse, a process which is believed to be independent of the environment
of the white dwarf, thus the light emitted from the resulting explosion, the super-
novae, is considered to be a “standard candle”. This means that these objects have
the same intrinsic brightness regardless of their redshift z. The observed brightness
as a function of redshift then probes the geometry of spacetime. The observations of
these objects turned out to be consistent only with those cosmological models which
include a cosmological constant that constitutes about 70 percent of the total energy
in the universe today, in other words, with models which describe an accelerating
universe.

Further evidence for cosmic acceleration comes in the form of the estimates for
the age of the universe. Based on a cosmological model for which the universe
is matter dominated today, which would be the case if there were only matter
and radiation species about, the age of the universe is found to be less than the
age of the oldest stars. This paradox is resolved if one instead considers that the
universe is accelerating, as then it would take longer for the expansion to slow
down to the observed rate, thus lengthening the calculated age of the universe.
Finally, observations of the shape of the CMB power spectrum [7] and of the matter
power spectrum in the large-scale structure [8] are all consistent with an accelerating
cosmological model.

However, it should be mentioned that there are alternative ways to interpret the
data, which have been widely explored. The most popular rival hypothesis to cosmic
acceleration is the idea that our universe constains large-scale inhomogeneities, and
our galaxy happens to be situated in the centre of a very large cosmic void [9)].

The simplest way to explain the acceleration is to attribute it to the presence of
a cosmological constant, as this is already present in general relativity and does not
invoke the presence of new fields. However as we will see, there are good reasons
to go beyond this simple picture. More generally, one can describe the acceleration
as being driven by an unidentified and possibly unknown source of energy in the

cosmological fluid for which w < —1/3 today, which we refer to as dark energy
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(see [10] for a review). The cosmological constant case, for which w = —1, is then a
candidate for dark energy, but there are many alternatives. In what follows we will
focus on a particular brand of dark energy models known as quintessence models.
Note however that the latest observations from the Planck satellite constrain the
equation of state of dark energy to be w = 1.006 £ 0.045 [11], which is consistent
with a cosmological constant, or with a field that very closely mimics one.

Let us now discuss p in the Friedmann equation (1.1.46). It turns out that if p
were comprised entirely of visible “baryonic” matter at the time that the CMB was
formed, then the photon-baryon fluid in the early universe would not be sufficient to
account for early structure formation. In order to adequately explain the observed
spectrum of primordial fluctuations in the CMB, the gravitational overdensities must
be enhanced by a pressureless or “cold”, non-interacting or “dark” fluid, which is
present in a greater quantity than, and couples only gravitationally, to baryonic
matter. Matter will then naturally cluster in the gravitational potential wells of
this fluid, and eventually stars and galaxies will form there. Indeed, measurements
of the rotation curves of galaxies have revealed that, if the Newtonian =2 law for
the gravitational force is correct, then these luminous structures must be freefalling
under the influence of a gravitational field that is largely external to their own.
If this were not the case, then the large momenta of stars in the galaxies would
cause the galaxies to fly apart. However, as with the cosmic acceleration there are
alternative interpretations of the data in this case, the most widely studied being
the possibility that our law of gravity for galaxies should be modified [12,13], but
one must then still account somehow for the observed spectrum of overdensities in
the CMB.

Perhaps the greatest direct evidence for the existence of a large quantity of
collisionless, dark matter in galaxy structures comes from the 1E0657-56 “Bullet
Cluster” of galaxies [14]. Observations clearly indicate that within this cluster, a
smaller galaxy has collided with a larger galaxy, causing a separation of the mass
components of the two galaxies. In particular, due to the collisionless nature of
dark matter, the dark mass appears to have simply passed through the locus of

the collision, while the hot X-ray gas experienced drag forces which caused it to
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slow down relative to the dark mass, thus producing the separation. Gravitational
lensing of the cluster has indeed revealed that most of the gravitating mass is off-set
from the X-ray gas, which believed to be the most dominant baryonic contribution
to the gravitational wells of clusters.

Finally, if there are dark, non-relativistic particles in the universe, it is plau-
sible that there are also relativistic dark particles, or “dark radiation”, although
compelling observational evidence for such a species has not yet been found.

With p consisting mainly then of cold dark matter (CDM), and strong evidence
for a cosmological constant A or dark energy, our universe today is almost entirely
a dark universe, and thus our modern standard model of cosmology has been ap-
propriately christened ACDM.

Let us now discuss the reasons to go beyond A. The cosmological constant
corresponds to a non-vanishing vacuum energy, whose magnitude should be deriv-
able from quantum field theory calculations based on an accurate model of particle
physics. The vacuum energy arises from the zero-point energies of the fields in the
theory, and depends upon the cut-off scale at which the theory is expected to no
longer be reliable. For the standard model of particle physics, one would derive the
vacuum energy density to be at least of order the electroweak symmetry-breaking
scale, p~1/* ~ TeV | if supersymmetry replaces the standard model above that scale.
In fact, if supersymmetry were an exact symmetry of nature, the zero-point energies
would cancel out, leading to A = 0. However, we do not see superparticles accompa-
nying particles, therefore the symmetry must be broken, making the superparticles
too massive to be observed. Therefore the vacuum energy is not cancelled by super-
symmetry. Rather, the observed value is p~'/* ~ 1073eV/, a disparity between the
theoretical prediction and the observed value of 10%° orders of magnitude. This is
in fact a best case scenario, for if one extends the theory up to the Planck scale, the
discrepancy becomes O(10'?°). If we use renormalisation to cancel the divergences
by counter terms, the disparity of energy scales translates into a fine-tuning of the
same severity.

A second problem with the cosmological constant picture is that it comprises 70%

of the energy budget today, not effectively 100% or 0%. Given the vastly different
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dilution rates of the various fluids, this percentage is highly unnatural.
To illustrate this, it is useful to reformulate the Friedmann equation into a di-

mensionless constraint, by introducing the energy density parameters

Kpx A K
X7 spr M T 3m2 R T g

(1.1.56)
where X denotes matter m and radiation r. Using these quantities, the Friedmann

equation (1.1.46) becomes
S Ox+Qa+Qx =1, (1.1.57)
X

The behaviour of the various energy densities with the scale factor a for the ACDM
model is plotted in Figure 1.2. We see that while €2y and 2x are vastly different
in magnitude as we look into the past and into the future, with 2, being totally
negligible at all times in the past while totally dominant at all times in the future,
they happen to be of the same order of magnitude today, right when we happen to
measure them. This seems to be an uncanny coincidence. Another way to phrase this
is that the energy density of the cosmological constant, albeit really tiny, eventually
catches up with the cosmological fluid, and the fact that the initial conditions in the
early universe were such that A could catch up today is quite remarkable.

The two problems mentioned above can be addressed, or ameliorated, by con-
sidering a dynamical form of dark energy. In what follows, as mentioned, we will
look in detail at quintessence models of dynamical dark energy.

A quintessence field is a scalar field that drives late-time cosmic expansion in an
analogous way to scalar field models of early universe inflation, namely by evolving
along a suitable potential that allows its energy density to become close to time
independent for some portion of its evolution. In the simplest case, the theory could
take precisely the same form as (1.1.50). For quintessence fields, the potential could
be such that the field experiences a large degree of time dependence early on in its
history, but approaches a regime in which the time dependence drops away at late
times. Thus, such a field could evolve over a large range of scales during its history,
making it less of a surprise that it appears to take on such a tiny value today, easing

the cosmological constant or fine-tuning problem. In particular, for models that
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Figure 1.2: Coincidence problem: €2, and 2x, the fractional energy of the cosmo-
logical constant and the fractional energy of the cosmological fluid, are of the same
order of magnitude only during a tiny window of the cosmological evolution, yet we

happen to measure them to be right within that window today.

exhibit tracker behaviour [15,16], the potential is such that at late times, dark energy
will always evolve towards a tiny magnitude, independently of initial conditions.
This allows for dark energy to eventually catch up with the cosmological fluid and
ultimately come to dominate the energy density of the universe. Tracker behaviour
occurs for certain exponential and inverse power law potentials. For models that do
not exhibit this behaviour, the fine-tuning problem of the cosmological constant can
translate into the problem of fine-tuning the mass of the quintessence field.
However, there is still the problem of explaining why the field happened to catch
up with the cosmological fluid today, precisely when we are around to measure
it. Quintessence models can address this coincidence problem if they possess so-
called scaling solutions [17-19], for which the energy density of the quintessence

field becomes proportional to that of the cosmological fluid,

Q
% = const, (1.1.58)

allowing these fluids to dilute at the same rate for some part of their evolution. On

the other hand, for ACDM,

Y ~a’. (1.1.59)

m

One way that this scaling behaviour can arise is if the quintessence field is coupled
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to the cosmological fluid in such a way as to allow for an energy exchange between
them?. For example, dark energy could lose energy to the cosmological fluid, giving
it less accelerating power, while the cosmological fluid would be boosted by the
exchange, making it dilute slower. This could lead to a regime in which the effective
equations of state for each of the fluids, which take into account the energy exchange,
become equal for some part of the evolution, allowing the energy densities to be
proportional over a range of efolds, rather than at a point in cosmological time.
Therefore, while a simple cosmological constant A is consistent with observations,
it seems to require some kind of magical fine-tuning in both its magnitude as well as
in the initial conditions of the universe for it to manifest to us in the precise way it
does today. On the other hand, moving to dynamical dark energy can in principle
allow for this precise manifestation to become more natural. In practise however,
it is not easy to find suitable candidates for dark energy in realistic particle and
high-energy theories. Instead of focussing on finding a candidate within a complete
theory, another approach is to consider an effective theory, such as a theory of
modified gravity in which scalar fields are abundant, and construct a model for dark
energy from this purely phenomenological point of view. In Chapter 6 we will discuss
a naturally unified picture of the cosmological dark sector which in fact connects

these two independent approaches.

1.2 Quantum gravity in higher dimensions

We will now take a glimpse into the inner workings of the universe, which give rise
to the vast and varied physical phenomena that we observe on the surface of nature.
As we have mentioned, general relativity, as a classical theory of the gravitational
field in a four dimensional spacetime, cannot be reconciled with quantum theory.
While these theories may appear to be disconnected in four dimensions, we will
see in what follows that they may turn out to be naturally connected in higher
dimensions. After reviewing some important developments in the theory of gravity in

higher dimensions, we will discuss a particularly successful fundamental theory of the

2Coupled quintessence models have been studied in Refs. [20-28].



1.2. Quantum gravity in higher dimensions 32

gravitational field, and of all other known fields, which is the theory of superstrings

oscillating in a ten dimensional spacetime.

1.2.1 A history of extra dimensions

While it may seem a step in the direction away from simplicity, naturalness and
uniqueness, which are three of the most highly valued guiding principles in theoret-
ical physics, the driving philosophy behind the introduction of new dimensions into
some kind of invisible sector is to seek a deeper context in which all the four di-
mensional phenomena may turn out to be unified. Therefore, the idea is that while
the physics may appear to be unnecessarily complicated in the four dimensional
description, this complexity is merely a projection arising from a more fundamental
description which is simple, natural and unique.

The concept that spacetime may admit an extra, hidden dimension made its de-
vut in the early part of the twentieth century when Kaluza [29] demonstrated that
general relativity in five dimensions contains four dimensional general relativity as
well as an electromagentic field, although a scalar field with unusual couplings also
emerges, preventing the four dimensional theory from being straight-forwardly in-
terpretable as general relativity plus electromagnetism. While the idea that one can
obtain a spectrum of matter fields in four dimensions from pure gravity in higher
dimensions is a very compelling one, this has to be reconciled with the fact that our
universe does not appear to contain an extra dimension. Kaluza’s idea was to impose
that all derivatives of the fields with respect to the extra coordinate are vanishing,
meaning that the four dimensional laws of physics do not notice the extra dimension,
except for the emergence of the new fields themselves. This is known as the cylindri-
cal condition. One can imagine for example that our four dimensional universe is a
hypersurface in five dimensions, where all the particles and their various interactions
are bound by some mechanism to the hypersurface. While the cylindrical condition
found a different interpretation in terms of compactification, the idea that certain
fields and gauge groups are confined to a hypersurface in spacetime has found a
realisation within string theory. These hypersurfaces are known as D-branes, which

we will review in detail in what follows.
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Electromagnetism in four dimensions is known to arise from a local U(1) gauge
symmetry. From the five dimensional point of view, there are only spacetime sym-
metries, and the U(1) symmetry can be interpreted as arising from diffeomorphism
invariance with respect to the fifth dimension. This suggests that what we view
as “internal symmetries” in four dimensions could all in fact descend from purely
geometrical symmetries in a higher dimensional spacetime, and prompts the search
for the ultimate unification of all the fundamental forces in higher dimensions rather
than simply at higher energies.

The cylindrical condition remained a puzzle until Klein [30] was able to show
that if the extra dimension had a circular topology, this condition would naturally
arise. This entails that while the other spacetime dimensions are extended, the fifth
dimension is compactified. If this is so, then the fields will be periodic functions of
the fifth dimension, and one can expand them into a series of Fourier modes. If the
radius of the compact dimension is small enough, the energies of all modes except
the zero mode will be very high, thus acquire large masses and are not dynamical in
the low energy universe. For example, a scalar field ¢(z#, y), where y is the compact

dimension, may be expanded as

Sat y) = Y a(a)e™ (1.2.60)

n=—oo

From the equation of motion V2¢ = 0, one sees that the masses are M, = n/R,
therefore for R < 1 all modes except the zero mode n = 0 will be too heavy to be
observed. Unfortunately, for general higher dimensional theories one cannot simply
impose compactification on which ever directions one chooses. A spacetime with four
large dimensions and one or more curved compact dimensions must be a solution
of the higher dimensional Einstein equations. It often occurs that to obtain such a
spacetime, one must add in other non-gravitational fields to the higher dimensional
Lagrangian, which spoils the principle that all physics in four dimensions descends
fundamentally from higher dimensional gravity. Nevertheless, a natural way to
obtain extra matter fields along with gravity in higher dimensions is to consider
supergravity theories, which are theories with local supersymmetry. This has the

added benefit of adding fermions to the theory, thus making it phenomenologically
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viable, as Kaluza-Klein reduction of pure gravity only gives rise to bosons.

Although one has now incorporated more structure into the initially purely grav-
itational theory, this in fact turns out to endow the higher dimensional theory with
uniqueness. While it would appear that one can add an arbitrary number of extra
dimensions in this way, for the special case of eleven dimensional supergravity, the
combination of supersymmetry and Kaluza-Klein theory conspire to uniquely fix
the number of spacetime dimensions. Namely, the maximum number of dimensions
which are consistent with a single graviton in a supergravity theory is eleven [31],
while at the same time, the minimum number of dimensions which allow for a
Kaluza-Klein theory to unify all of the Standard model interactions into a single
gauge group is eleven [32]. Furthermore, compactification of the eleven dimensional
supergravity theory to an extended four dimensional spacetime and a compact seven
dimensional spacetime is a solution of the equations of motion, therefore the theory
decomposes naturally down to four dimensions.

While all of these successes indicated that at the classical level, eleven di-
mensional supergravity must be the long sought-after fundamental theory of na-
ture which unifies all physical phenomena, it unfortunately does not contain chiral
fermions, and therefore cannot give rise to the Standard model. Chirality can be
obtained by switching down to ten dimensions, however the special uniqueness of
the number of spacetime dimensions is then lost. In addition, the ten dimensional
theory does not split up naturally into the desired structure of four large dimensions
and six compact dimensions, but instead one must add new fields to obtain this
structure. Finally, the ten dimensional chiral theory contains anomalies.

It seems then that all of the appeal of seeking unification in higher dimensional
theories is lost, as the ten dimensional theory is not natural nor unique. Much to
the contrary however, Green and Schwartz [34] were able to show that there are
in fact only two ten dimensional supergravity theories which are free of anomalies,
these being precisely those theories that are based on the gauge groups SO(32) and
Es x Eg. One must also include additional fields, however this is not ad hoc if
these theories arise as low energy limits of superstring theories, which include all

the desired fields that are missing in the supergravity theories. These fields must be
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there in that case. There are five string theories, however, these all arise as different
limits of a single deeper theory, which is eleven dimensional M-theory, for which the
low energy limit is eleven dimensional supergravity. Therefore, quite miraculously,
we are lead once again to the special case of eleven dimensions where not only are
the forces unifiable, but the underlying theory admits naturalness and uniqueness,
in the sense described above.

String theory makes much use of the mechinary developed for purely gravitational
theories in higher dimensions, such as Kaluza-Klein theory and braneworld theories.
Therefore, it will be very useful and instructive to recapitulate some of the features of
these theories before moving on to discussing string theory, where the simple physics
can be eclipsed in the presence of a large number of extra fields and mathematical

structure associated with all their various properties and dynamics.

Kaluza Klein theory

Let us consider the case of adding just one more dimension to our four dimensions,
and let us assume that we have pure gravity in five dimensions. The action then
takes the form of a five dimensional Einstein-Hilbert action,

1

S —
2/‘1’;5

R/ —gsd’z . (1.2.61)

Projected into four dimensions, the five dimensional metric g,, may be decomposed

into four-dimensional fields {g,.,, A,, ¢} as
Japdrdz’ = g, datdx” + ¢*(dy + kA,dz")? (1.2.62)

Solving the five dimensional vacuum equations using the ansatz (1.2.62), and
compactifying the fifth dimension, we can compute the precise interactions between
the fields that would emerge in the four dimensional theory. The four dimensional
action turns out to be

R 1 2 0,0
5= [ oo — g0 Far g
4

W (1.2.63)

where we have integrated over the extra dimension and absorbed it into the definition

of K4,

(1.2.64)
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Upon a conformal rescaling of the metric g,, — ¢ 'g,, and a redefinition of the
scalar field, this can be brought into the more familiar form, where the gravitational
part of the action is a pure Einstein-Hilbert term, and the scalar field has a canonical

kinetic term. The new action is

R 1 1
= 4 of fe
S /d T/ 9[2114 4¢(0)FaﬁF — —28a08 ol. (1.2.65)

We see then that starting with pure gravity in five dimensions, we have obtained
a theory of gravity plus matter fields in four dimensions. The gauge symmetry of
the vector field A, can then be understood as descending from higher dimensional
spacetime symmetry, namely diffeomorphism invariance with respect to the fifth
dimension. The trade-off is that there is now an additional scalar field, which couples
to the gauge field such that standard electrodynamics can only be obtained in the
case that ¢ = const. However, there is no potential for ¢, indeed it is a massles scalar
field which parameterises geometric deformations of the extra dimension. Thus one

cannot fix the value of ¢.

Braneworlds

Another very compelling mechanism to conceal the presence of an extra dimension
without compactifying it arises in the context of braneworld scenarios. A braneworld
is a physical universe or “world” that is confined to a hypersurface, known as a brane,
embedded in higher dimensions. In a braneworld scenario, the reason we do not see
the extra dimension is because spacetime is warped.

A p-brane is then a p-dimensional object that generalises the concept of a point
particle, a 0-brane, to higher dimensions. The action for a point particle is the

dimensionless integral over the one dimensional particle worldline,

S = —m/ds = —m/ V —Guatardr . (1.2.66)

In flat space, choosing to set 7 = t, this may be written as
S——m/\/l—'ﬁgdt, (1.2.67)

where a timelike particle must obey v < 1, where ¢ is the velocity of the particle,

and thus the Lorentz factor v = 1/4/1 — ¥? is always real.
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Analogously, the action for a p-brane is given by the dimensionless integral over

the (p + 1)-dimensional worldvolume,

Sy = —Tp/ /—det v dPE, (1.2.68)

where £* are coordinates on the brane, z%(£%) are spacetime embedding functions.
The induced metric on the brane is given by the pullback of the spacetime metric
onto the brane worldvolume,

Ox® Ox®

Yap = gabﬁ_faa_fﬁ ; (1.2.69)

where the derivatives are generalisations of the four-velocity of the point particle.
Let us consider a stationary 3-brane in a five dimensional spacetime with a
cosmological constant A5. Analogously to setting 7 = t for the point particle in four
dimensions, in five dimensions one can choose to align the coordinates on the brane
with the four dimensional space-time coordinates, £* = z#. Positioning the brane

at 2% = 0, where 2° extends to postive and negative infinity, the action is

R
S = —/d% . [2—%+A5] —T3/d4:L‘\/_—g4, (1.2.70)

where Tj is the tension of the 3-brane. The Einstein equations derived from this

action admit a warped solution of the form
ds* = h™ Y2 (2%, do"da” + da’ds® (1.2.71)

where h is the warp factor. For the solution to be static, it is required that the
cosmological constant must be negative. The resulting five dimensional spacetime
on either side of the brane at is AdSs.

Because of the warp factor, four dimensional gravity is localised on the brane
at z° = 0. One can add a second brane that contains the standard model gauge
fields, which is located at a certain distance from the original brane at x5 = 0,
and the warping will then have the effect of redshifting the energies associated with
interactions on the standard model brane relative to the “Planck” brane at 2° = 0.
This amounts to introducing a gauge hierarchy, offering a solution to the hierarchy

problem of particle physics in extra dimensions of spacetime.
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1.2.2 Superstring theory

General relativity is a classical theory of the gravitational force. In keeping with all
other known fundamental forces of Nature, gravity is believed to be mediated by a
quantum particle, the spin-2 graviton. One would hope to then write down a sensible
quantum theory for gravitons. There are a number of conceptual puzzles which make
it really difficult, if not impossible, to extraplote the theoretical framework of general
relativity all the way down to the quantum realm. The main issue is that quantum
corrections to the Einstein-Hilbert action are suppressed by powers of the Planck
mass, Mp, therefore one would have to access regimes in which the energies are of
order 10*® GeV to see the quantum effects of gravity play themselves out in the
world. For a particle with a Planck scale mass, the Schwarzschild radius is of order
the Compton wavelength, i/mc. Therefore, at ambient energies around the Planck
scale, which we expect to be present at the birth of the universe, spacetime could
become a sea of quantum black holes, and even wirtual black holes [35], objects
which general relativity cannot help us to understand. Furthermore, the quantum
fluctuations of light cones would make it very difficult to understand causality. Even
the concept of spacetime becomes ambiguous, because while we usually think of
spacetime as a smooth manifold, if the energies of quantum fluctuations become
high enough, they could turn the small scale structure of spacetime into a foam-
like substance [36]. The only way forward in such a context is to seek out a new
quantum description of gravity which allows us to meaningfully reformulate the laws
of physics and carry out reliable computations at high energies, and which smoothly
connects with general relativity as the energies are lowered.

A second more practical issue which makes it impossible to write down a quan-
tum version of general relativity is its lack of renormalisability. In quantum field
theory, loop momentum integrals are divergent in the ultraviolet, as the momenta
of virtual particles in the loops are able to grow without bound. For quantum
scattering process involving fundamental interactions other than gravity, we know
how to deal with these infinities by redefining or renormalising parameters in the
theory. However, in the case of gravitational scattering process, the momenta di-

verge so badly that we cannot control the theory using renormalisation techniques.
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Therefore, one cannot compute gravitational scattering amplitudes using the tools
of quantum field theory.

As mentioned, the hope is that we find out that Nature is better described at
high energies by a deeper theory, for which general relativity emerges as a low energy
limit. There are many interesting proposals for such a theory, however, the theory
which has made the most progress in incorporating gravity along with all the other
fundamental interactions into a unified quantum framework is string theory.

String theory, as the name is suggests, is a theory for which the fundamen-
tal constituents of Nature are one-dimensional strings, instead of zero-dimensional
point-particles, with a fundamental length scale /,. The strings can have their
endpoints free, or they can form closed loops. As they move through spacetime,
they oscillate in various ways, and the oscillation modes produce a rich spectrum
of bosonic quantum fields with masses that are integer multiples of the string scale,
M; = 1/t; < M,. For the low energy universe, the only dynamical degrees of
freedom are the massless modes, among which is a rank-2 symmetric tensor field,
which may naturally be identified with the graviton of general relativity. In addi-
tion, there are scalar and vector fields, which are essential for building the Standard
model of particle physics. Realistic particle theories contain fermions in addition to
bosons. For the case of oscillating strings, bosons can be paired with fermions via
supersymmetry. The resulting theory is known as a superstring theory.

A very exotic aspect of string theory is the appearance of extra dimensions
of space, which we reviewed in Section 1.2.1 above. For superstrings, worldsheet
conformal invariance demands that the theory is formulated in a ten dimensional
spacetime.

As one dimensional objects, strings trace out a two-dimensional surface, the
string worldsheet, as they move through spacetime. This has surprising consequences
for one of the long-standing problems of gravity, namely the lack of renormalisability.

For point particles, divergent behaviour at loop level in scattering processes
arises because interactions can take place at a point. The uncertainty principle
relates distances to momenta,

h

AL =~ 1.2.72
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thus as AL — 0, the momentum diverges. In string theory on the other hand, inter-
actions take place over a smooth 2D surface, the string worldsheet, thus preventing
the divergence of momenta. Therefore, simply increasing the dimensionality of the
fundamental object to one dimension higher has the effect of removing one of the
major obstructions in formulating a quantum theory of gravitational interactions.

We will now briefly mention what string theory has to say about gravity at the
Planck scale. Instead of appearing as a final force to be unified with the forces of
particle physics at a high enough energy scale, string theory suggests that gravity
should instead be viewed as a dual description of a gauge theory living in one
dimension lower. This constitutes a significant paradigm shift in the way we view
gravity and particle physics, and is currently the subject of very active research
worldwide. In fact, it turns out the duality is such that weakly coupled gauge
theories correspond to strongly coupled gravity theories and vice versa, allowing the
difficult non-perturbative regions of both gravity and gauge theories to be probed
on the other side of the duality, in a much more controlled perturbative regime. To
date, the exploration of the physics of quantum gravity at the Planck scale using
the correspondence is still in its infancy, however significant progress has been made
in our understanding of strongly coupled gauge theories.

We will now describe the theory in more detail. We have mentioned that strings
can be open or closed, producing different vibrational spectra. This in fact leads
to a variety of different types of string theories, which corresponds to the various
limits of M-theory, existing in eleven dimensions. It has been shown that the various
superstring theories, or M-theory limits, can be related to one another via a system
of dualities. The topology of the closed string worldsheet can either preserve or
reverse the orientation of a closed string as it moves through spacetime, leading to
oriented and unoriented closed string theories respectively. Further distinct classes
then arise from adding open strings. Type II and heterotic string theories contain
only closed, oriented strings, whereas Type I theories contain unoriented strings
which may be open or closed. In fact, Type I theory is really an open string theory,
but open strings can form loops by joining their endpoints and thus turn into closed

strings, which may split open again. On the other hand, pure closed strings cannot
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split open into open strings. When supersymmetry is included, the Type II theories
can be subdivided into Type ITA, which is a non-chiral theory, and Type IIB, which

is chiral.

Type IIB flux compactifications

We will now focus exclusively on Type IIB theory. Distinct closed string sectors arise
when boundary conditions are imposed for the left and right moving oscillations
along the string. States with periodic boudary conditions are are classified as being
in the Neveu-Schwarz sector, while states with antiperiodic boundary conditions are
in the Ramond sector. The massless bosonic spectrum includes a rank-2 symmetric
tensor which we identify with the ten dimensional graviton, G. There are two scalar
fields, the dilaton ¢ which parameterises the string coupling, g; = e?, and a second
scalar Cy. There are two antisymmetric 2-form fields, Cy and B, and finally, an
antisymmetric 4-form Cy. The n-forms C,, constitute the Ramond sector, while the
remaining fields constitute the Neveu-Schwarz sector.

The closed string spectrum does not contain any gauge fields, which are essential
for building the Standard model of particle physics. On the other hand, the massless
open string spectrum contains a U(1) gauge boson, therefore one can introduce gauge
theories into Type IIB by adding in open strings. There is a subtlety to this, as one
must specify boundary conditions for the end points of the open string. Imposing
boudary conditions in fact amounts to introducing entirely new (p + 1)-dimensional
objects into string theory, known as Dp-branes, which can be thought of in terms
of their primary task, namely as surfaces upon which open strings can end, or as
new solitonic objects that have a life and story of thier own. We already encoun-
tered these sorts of objects in Section 1.2.1 in the context higher dimensional gravity
theories: they are the branes of string theory. With the open strings attached to
them, one can now split up the degrees of freedom of the ten dimensional U(1) gauge
boson into those that propagate along, and those that propagate transverse to, the
Dp-brane worldvolume. The former combine into a (p+ 1)-dimensional worldvolume
gauge field, while the latter are a collection of 9 — p scalars. These scalars parame-

terise the motion of the brane in the directions tranverse to its worldvolume. Having
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introduced D-branes into the theory, we now have a useful way to think about the
other form fields in the spectrum. As we have mentioned, branes can be thought
of as higher dimensional generalisations of point particles. Therefore, a Dp-brane
can couple electrically to a (p + 1)-form potential in the same way as a charged
particle couples to a vector field. For example, the 4-form Cy can be interpreted as
the charge of a D3-brane.

The action for a D-brane contains two pieces, namely the DBI action and the
Wess-Zumino action, where the first encodes the couplings of the open strings to the
Neveu-Schwarz sector closed strings, and the second, the couplings to the Ramond

sector closed string fields in the background,
S = SDB[[G,¢, B] + Swz[Cn] . (1273)

The DBI action takes the form

(r=3)

Sper = —Mp/dp+15e 7 ¢\/— det(Yap + €2 Fup) , (1.2.74)

(p+1) (p—3) ¢
Y

pp = (2m)77(a) , Ty = ppe 7 (1.2.75)
with 7}, being the tension of the brane, where o/ = (2, 7, is the induced metric, and
Fap = Bap + 2ma’ Fyy, is the gauge invariant combination of the pullback of By and
the field strength of the world-volume U(1) gauge field.

The Wess-Zumino (WZ) action takes the form

Swz = iy > cane, (1.2.76)
Wrt1
where W), is the world-volume of the brane, and C, are the pullbacks of the C,
forms to which the brane couples. In this expression, the wedge product picks out
the relevant terms in the exponential.

With open strings included, we now have a theory that includes U (1) gauge fields,
but still no higher gauge groups that could accommodate the Standard model. In
Type IIB theory, gauge groups can be enhanced by stacking or intersecting the
branes together in various ways.

To make contact with the real world, six of the ten space-time dimensions must

now be concealed. In string theory, this is accomplished by compactification, much
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like in Kaluza-Klein theory. However, instead of a circle, we now have a six dimen-
sional compact space, which can admit a huge variety of cycles. The ten-dimensional
graviton gives rise to a four-dimensional graviton plus a collection of massless scalar
fields which descend from its compact components, and which parameterise changes
in the shape and volume of the compact dimensions.

In order to stabilise these scalar moduli fields, one must in fact encorporate the

braneworld picture and compactify on a warped geometry, with the general ansatz
ds* = h= Y2 (a™) g, datds” + hY2 (™) grnda™da™ (1.2.77)

where h is the warp factor, g, is the four dimensional metric and gy, is the compact
metric. Non-trivial warping can arise in the compact dimensions only when there are
sources of positive as well as negative tension about, as for positive tension sources
alone, the warped regions are always non-compact. In Type IIB theory, negative
tension sources are present in the form of solitonic objects called orientifold planes.
The stabilisation of geometric moduli occurs because in a warped compactification,
the flux lines of the various form fields can be non-vanishing, and they thread through
the cycles in the compact space. The compact flux lines are quantised, thus once
they settle into a minimum energy configuration, any further deformations of the
geometry will come with an energy cost.

With a warped geometry in the compact space, Type IIB string theory is natu-
rally endowed with a gauge hierarchy, making it even more attractive as a theory of
particle physics. Furthermore, D-branes can move as probes in the warped geometry,

which has interesting implications for cosmology in the four-dimensional universe.

D-brane inflation and cosmic strings

In Chapter 6, we will look in detail at the cosmology of moving D-branes in strongly
warped regions of the compact space. However, we will briefly mention here how
cosmic inflation can arise in such a context. The mechanism can be illustrated by
simply considering the restrictions on the motion of the branes. In particular, just
like point-particles, D-branes can move relativistically, and as they do so, they must

obey causality in the compact dimensions. As we have discussed, the motion of a



1.2. Quantum gravity in higher dimensions 44

D-brane gives rise to a scalar fields in four dimensions which parameterise its motion
in the compact space. For a cosmological background in four dimensions, a D-brane
moving in a single compact direction in a warped region has a Lorentz factor of the

form
1

7:—,1——]@2’

where h is the warp factor and ¢(t) is the scalar position field. The brane must move

(1.2.78)

on a timelike trajectory, therefore h¢? < 1 such that ~ is always real. For strongly
warped regions where h > 1, the brane is thus forced to slow down, ¢32 < 1, in order
to remain on a timelike trajectory. Therefore, even though the potential may be very
steep, the brane moves very slowly along it, as its velocity is strongly suppressed
by the warping. This leads to a nearly constant energy density for the scalar field,
and hence the field may drive cosmic acceleration. This type of D-brane inflation
is known as DBI inflation [37,38], which is distinct from slow-roll inflation because
even though the brane is moving very slowly, it is still moving relativistically, as
~v > 1. Slow-roll inflation can then be realised in the D-brane context as the non-
relativistic limit of DBI inflation?.

Another interesting aspect of D-brane inflation is the production of cosmic strings
[44-46]. We will see in Chapter 2 that cosmic strings can be formed during symmetry
breaking processes such as the abelian Higgs mechanism, when a U(1) gauge field
obtains a mass due to the Higgs field acquiring a vacuum expectation value. In
the context of string theory, brane inflation as outlined above can arise when a D-
brane is attracted to an anti-D-brane situated at the tip of a warped region, which
ultimately ends in the annihilation of the two objects. The annihilation of the pair
of branes corresponds to a symmetry breaking process, analogous to the abelian
Higgs mechanism, that can produce cosmic strings. In this simple example of a pair
of branes, the gauge group is U(1) x U(1), and the scalar field, which is tachyonic,
and which parameterises the motion of one of the branes, is charged under a linear
combination of the two gauge fields associated with the branes. When the branes

annihilate, the tachyon acquires a vacuum expectation value, thus giving a mass to

3For reviews on D-brane inflation along with other aspects of string cosmology, see Refs. [39-43]



1.3. Scalar-tensor theories 45

the gauge field combination under which it is charged, and breaking the original

symmetry of the system.

1.3 Scalar-tensor theories

In general relativity, there are no non-minimal couplings between gravity and the
other fields in the spacetime, thus we may write down, in a completely unambigious
way, a gravitational action which is purely geometrical, and a matter action which
constrains the matter fields to freefall along that geometry. However, things are
not so simple once GR appears as a low energy limit of more UV-complete theory,
or as a reduction from a gravitational theory in higher dimensions. As we have
discussed in detail, these theories generically unleash a plethora of new fields into
the four dimensional description, which may introduce a direct coupling of a scalar
field to R, or influence the geodesics of matter fields. Inspired by these deeper
descriptions of nature are the so-called scalar-tensor class of gravitational theories,
which, due to the new interactions with gravity, choose to incorporate scalar degrees
of freedom into the gravitational sector of the universe. For the simplest case of a
single additional degree of freedom, the gravitational sector is then a doublet of

fields, (g, ¢). The prototypical action takes the form

o= i/d4xﬁ(f(¢)3 o L(6,6,) )+ S (G Vi Vi) (1.3.79)

where a Langrangian for the dynamical scalar field £4 has been added to the grav-
itational part of the action. The matter action is, as before, a functional of g,, and
the fields v; and their derivatives, and does not contain the scalar field. Featuring
a direct coupling of a scalar field to R, such an action is said to be in the Jordan
frame.

Since the scalar field does not couple to matter in this frame, variation of (1.3.79)
with respect to g"” will lead to a stress-energy tensor for matter that has the same
form as (1.1.9), and one can further show that this stress-energy tensor is conserved,
following precisely the same procedure as for the purely GR case. However, both

sides of the Einstein equation are modified in this frame.
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To make contact with general relativity, one can choose to transform the grav-
itational sector to the so-called Einstein frame, (g, ®) — (G, ®), in which the
gravitational action assumes the Einstein-Hilbert form. This is accomplished by a

conformal transformation of the metric,

f_]m/ = f(¢)g;w> (1380)

and a canonical redefinition of the scalar field ¢ — ¢. The action is then

1

5211

[ o= (R o+ £6(6.6,0) 4500 @ tibi) . (138D

We have seen an explicit example of this in Section 1.2.1 above, in the context of
Kaluza-Klein theory. Thus these theories are conformally equivalent to GR. How-
ever, this does not mean that they are the same as GR, as the matter fields now
couple to an effective metric which depends upon the scalar field ¢.

This has consequences for the conservation of energy-momentum. Variation of
this action with respect to g yields the familiar quantities in the new frame, GW
and T, but the conservation equation for matter is now modified. This is due to

the fact that, as ¢ now appears in S,,, a general variation yields

58 6Sm - - S
§Sy, =0= [ d'z—"5; dz—=45 /d4 5, 1.3.82
/ TP +/ 50 0T ] g, (1:3:52)

while the equation of motion for ¢ reads
_ 0Ly 0Ly - 0L, 0L,
LAT T an T Vear T Y
90, 09 b, 09

Therefore, whereas the first term in (1.3.82) vanishes by virtue of the equation of

=0. (1.3.83)

motion for 1;, the second term is just one part of the equation of motion for ¢, thus

does not vanish. This leads to a modified conservation equation of the form
I _ 0Ly 0L\ ., -
v, T = (VH% - 8—¢)a 3. (1.3.84)
It should be noted however that the total stress-energy, namely the sum of the
stress energy tensors for the scalar and matter fields, is conserved in this frame, a
consequence of the diffeomorphism invariance of Sz and S,
We see then that theories with extra fields in the gravitational sector lead to

new effective metrics for matter fields in the Einstein frame, which implies the
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emergence of two geometries that are conformally related to one another. One
geometry determines the curvature of spacetime, the other controls how matter
moves in the spacetime.

While this is different from general relativity, which treats spacetime as be-
ing endowed with a single Riemannian geometry, it is still in accordance with the
foundations of general relativity. Absolutely central to general relativity is the Fin-
stein equivalence principle, according to which all test particles freefall in the same
way once an initial position and velocity has been specified, and in local freefalling
frames, the laws of special relativity are recoverable. As long as the geometry is
Riemannian, we may locally choose coordinates which place us in an inertial frame,
in which the laws of special relativity may be retrieved. Then, as long as all of
the matter fields couple to the same Riemannian metric, one can derive geodesic
equations for the test particles and show that all such particles freefall in the same
way. This is because in the case of Riemannian geometry, the contracted Bianchi
identity ensures that matter is conserved, and thus test particles follow geodesics,

as we have seen in Section 1.1.1.

The disformal relation

The example above features a spacetime-dependent conformal relation between the
physical metric and the effective metric in the Einstein frame. Keeping things as
general as possible, one could write down an Einstein-frame formulation of a scalar-
tensor theory schematically as

1

52/<o

/ B2 =GR + So(Gurs 616 2) + Son (s s i) (13.85)

where the matter fields couple to some unspecified effective metric,

g,uu = f(g,uw ¢7 a¢) . (1386)

One could then ask, what would be the most general and physically consistent
relation between g, and g,, that could be given by the scalar field and its deriva-
tives? This question was originally addressed in Ref. [49], but here we will follow

the argument in Ref. [47]. Constructing a rank (0,2) symmetric tensor out of g,,,, ¢
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and its derivatives restricts us to three possible terms,

g,uzz = f1<¢7 Xa D¢'-')guu + f2<¢7 Xa D¢)au¢au¢ + f3(¢7 Xa D(b"')auau(ba (1387)

where the functions f; must not contain any non-contracted indices, but may contain
all possible coordinate invariants that can be contructed from g,,, ¢ and its deriva-
tives. Physical consistency then demands that we set f; = fi(¢, X) and f3 = 0,
in order to avoid instabilities in the equations of motion via Ostrogradski’s theo-

rem? [48]. We are thus left with the disformal relation [49],

Guw = C(¢, X) g + D(¢, X)0,0 0,6, (1.3.88)

where the first term is the familiar spacetime-dependent conformal transformation
of the physical metric, and the second term involving first derivatives of the scalar
field is the purely “disformal” contribution. For clarity, the scalar factors have been
relabelled as C' and D to indicate the conformal and disformal factors respectively.

The purely conformal transformation, for which D = 0, characterises the Brans-
Dicke class of scalar-tensor theories, for which the f(R) gravity theories are a widely
studied example [50,51]. On the other hand, the disformal transformation in (1.3.88)
is generic in extensions of general relativity. In fact, it must appear in the Einstein
frame formulation of any more general Horndeski-type scalar-tensor theory [52—
54]. Another very active area of study in which the disformal coupling makes an
appearance is in the field of non-linear massive gravity theories [55,56]. Finally,
studies of disformal couplings in a variety of contexts have demonstrated that these
couplings exhibit a diverse phenomenology®.

We have seen that the purely conformal coupling may be understood as arising
from fundamental scalar fields that couple to four-dimensional gravity due to com-

pactification effects from a higher dimensional theory. While the disformal coupling

4Note that for f3 # 0, it might still be possible to avoid instabilities due to a cancellation of
terms in the equations of motion, however, we will restrict ourselves to the simpler case f3 = 0

which is trivially instability-free.
SFor applications in relativistic MOND theories, see for example Refs. [13,57-60]. For varying-

speed-of-light theories, see Refs. [61-63]. For cosmological and astrophysical applications, see for

example Refs. [64-71].
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may appear to be more abstract, it can in fact also be interpreted as arising due
to the four-dimensional projection of a higher dimensional theory. Indeed, it may
be realised in the higher dimensional context as the induced metric on a brane that
is moving in the extra dimensions. We will see this explicitly in Chapter 6 in the

context of Type IIB string theory.



Chapter 2

Cosmic Strings

IN the early universe, while most of the matter is in the form of a coupled cosmo-
logical fluid of fundamental particles that hasn’t yet had time to form macroscopic
structures, macroscopic objects called topological defects can emerge from cosmo-
logical phase transitions. These objects, which we mentioned briefly in Section 1.1.3,
can be in the form of cosmic strings, domain walls and monopoles'. In this Chapter,
we will discuss these objects in more detail, focussing in particular on cosmic strings.

We will begin with a review in Section 2.1 of the symmetry breaking process
that can lead to the formation of these objects, and will then describe the objects
themselves in more detail in Section 2.2. Following this, we will focus exclusively on
cosmic strings. Realistic strings may be composed of a scalar Higgs condensate core
threaded with magnetic flux lines. In Section 2.3 will review the abelian Higgs model
which describes these sorts of strings, and discuss the most simple topologically non-
trivial solution, the Nielsen—Olesen vortex solution [77], in Section 2.4.

Defect objects can have a significant gravitational influence on the spacetime
through which they are traversing. Domain walls can act as a spacetime “mirror”
[75,76], while cosmic strings can produce a conical deficit effect in the spacetime
[77-81]. Even more exotic spacetimes can arise when a defect object comes into
contact with black holes, as in that case, the features of the spacetimes associated

with each object essentially blend into each other, producing a new spacetime that

IFor a thorough review on the subject of topological defects, see [72, 73]

20
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reflects the gravitational impact of the combined objects.

In Section 2.4 we will review the gravitational effect of the Nielsen—Olesen string
in isolation, demonstrating how the conical effect arises. We will then go on to
discuss strings and black holes in Section 2.5, wherein we will review some aspects of

cosmic string phenomenology in Schwarzschild and Reissner-Nordstrom spacetimes.

2.1 Symmetry breaking in the universe

Perhaps some of the earliest scientific observations of Nature were that it appears
to contain four basic “elements”, which were classified as air, water, earth and fire.
In the modern context we can understand the first three of these elements as the
various phases of matter, namely the gaseous, liquid and solid phases, as a function
of the fourth element, energy. Naively, as energy decreases, a substance undergoing
changes in its phase appears to progressively acquire a definite, fixed shape. In
the gaseous phase at high energy, we cannot assign any kinds of spatial relations
or proportions to the substance, whereas by the time it reaches the solid phase at
low energy, these sorts of structural properties are distinctly definable. At a more
fundamental level, where the substance is undergoing changes to its intermolecular
structure, a similar principle is in fact operating.

Take the example of water, which is composed of the molecule HO. In its
steam phase, neighbouring molecules are not bound to one another in any way, thus
a volume filled with steam consists of many individual molecules with completely
random orientations. In the liquid phase, the hydrogen atoms on the water molecule
point towards the oxygen molecules on neighbouring molecules, such that the overall
structure is based on a tetrahedral shape. However, this is simply a time-averaged
approximate structure, as the molecules in the liquid phase of water are continuously
rotating and moving, causing these hydrogen bonds between neighbouring molecules
to break apart and form again in quick succession. When water boils, these bonds
are broken completely. When water freezes on the other hand, the intermolecu-
lar hydrogen bonds cause the molecules to align themselves into a fixed hexagonal

lattice structure, which, for example, produces the hexagonal, 6-fold symmetry of
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snowflakes.

We can then think about the phases of water, and matter in general, as sim-
ply being different states of symmetry. The high temperature state has the most
symmetry, as the individual molecules have not chosen any particular directions to
point towards and are, collectively, invariant under the SO(3) rotation group. As the
temperature cools, the substance undergoes a phase transition during which some
of the symmetry is lost, as the new phase exhibits some tendancies of the molecules
to align in certain ways. During the final phase transition to the solid phase, even
more symmetry is lost, as now all of the molecules have chosen a definite, fixed
alignment.

Now lets take this principle to the level of fundamental particles. The water
example is in fact a microcosmic manifestation of a process known as spontaneous
symmetry breaking that takes place macroscopically as the whole universe evolves
towards a low energy state. We saw in Section 1.1.3 that the universe undergoes
a series of phase transitions in its early history, during which a large gauge group
with enough symmetry to unify the strong, weak and electromagnetic interactions is
believed to be progressively broken down to subgroups with a lower degree of sym-
metry, eventually evolving dynamically to the symmetries of the standard model.
The symmetries that are broken by the phase transitions are therefore internal par-
ticle symmetries. The loss of symmetry manifests itself as the disappearance of a
number of gauge bosons from the particle spectrum of the universe, as during the
phase transition, these gauge bosons acquire masses that correspond to the energy
scale of the universe at the time of the phase transition. Therefore, at energies below
the phase transition scale, they are too heavy to be excited. The remaining mass-
less gauge bosons correspond to those symmetries that were preserved during the
transition, and these mediate the interactions associated with the smaller subgroups.

One phase can transform smoothly into another phase, just like water turning
into ice, or the phase transition can occur discontinuously via the formation of
bubbles containing the new phase, just like water boiling into steam. The latter is
described as being a first-order phase transition, and the former, as a second-order

phase transition.
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The gauge bosons acquire masses due to the presence of scalar Higgs field in the
symmetry group which obtains a vacuum expectation value during the phase tran-
sition. Symmetry breaking occurs when the Higgs field migrates from an unstable

vacuum to a true vacuum along a potential of the form

V(o) = A(lof — ) . 2.11)

where |¢?| = ¢'¢. The true vacuum corresponds to the minimum of this potential,

where ¢ aquires a vacuum expectation value

|60l =1 (2.1.2)

On the other hand, the unstable vacuum corresponds to ¢ = 0. The Higgs field
can move smoothly between the two phases, giving rise to a second-order phase
transition. Interactions with other particles can however contribute new effective
terms to the Higgs potential, possibly changing the nature of the phase transition.

If the theory is Z, invariant, and therefore ¢ € R such that |¢|?> = ¢? in (2.1.1),
the vacuum configuration is discrete, and can only be one of two values, ¢y = +£7.
On the other hand, if the theory is U(1) invariant, ¢ € C and thus the vacuum
configuration is a continuous circle manifold defined by ¢y = ne’®, where o € R is
an arbitrary phase. The potential (2.1.1) for a U(1) invariant theory is depicted in
figure 2.1. In both cases, the symmetry of the theory is spontaneously broken at
the level of the vacuum, meaning that while the theory respects the symmetry, the
vacuum configuration does not.

One can consider excitations around the vacuum expectation value of the Higgs
in the true vacuum. For the case of a vacuum manifold defined by ¢y = ne'®,
perturbations in the radial direction are massive, as the potential curves upwards,
V" > 0, in this direction. An excitation would thus require energy, or mass, to move
along it. On the other hand, excitations along the vacuum manifold are massless, as
the potential is flat in this direction, V" = 0, meaning that these excitations require
no energy to move along it.

This gives rise to a massive scalar Higgs excitation mode and a massless Gold-
stone mode. The latter always appear when a continuous symmetry is spontaneously

broken, as note that for a discrete symmetry, there is no massless direction in the
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Figure 2.1: Potential for the Higgs field: When the Higgs field sits at ¢ = 0, the
unstable vacuum state respects the U(1) symmetry of the potential, as rotations
about the z-axis do not change the location of the Higgs field. Once the Higgs field
rolls down into the true vacuum, the symmetry is broken, as rotations about the

z-axis now “move” the Higgs field around the circle.

vacuum state. The Goldstone mode is the additional degree of freedom that can

give a mass to a gauge boson that is coupled to the theory.

2.2 Topological defects

An interesting possibility arises when the topology of the vacuum is non-trivial.
This implies that there can be field configurations that contain regions or domains
in which the symmetry is left unbroken, namely, in which ¢ = 0 locally, even when
the true vacuum state is attained globally. These regions correspond to localised
concentrations or clumps of energy, called topological defects, where the energy of
the metastable vacuum is trapped and cannot dissipate away.

The objects that are formed depend upon the type of symmetry that is sponta-
neously broken. In three dimensional space, one can form codimension one defects,
known as domain walls, if a discrete symmetry is broken. In that case, ¢ € R and
therefore ¢(x) = 0 defines a two-dimensional hypersurface, which is the wall. On the
other hand, one can obtain codimension two defects, known as vortex lines or cos-

mic strings, if a U(1) symmetry is broken. We then have ¢ € C, and thus ¢(x) =0
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reduces to two equations for three spatial coordinates, te = 0 and Im ¢ = 0, thus
the solution is the intersection between the two-dimensional hypersurfaces defined
by these equations, a one-dimensional object. Finally, a codimension three object,
called a monopole, can arise if an SO(3) symmetry is broken. In that case, ¢ is a
three-dimensional vector and thus ¢ = 0 is a set of three equations defining three
two-dimensional hypersurfaces. The solution is thus the intersection of these, which
defines a point.

In a cosmological context, topological defects can be produced by the co-called
Kibble mechanism [74], which generically predicts the formation of these objects
during all phase transitions in the universe. The idea behind this mechanism is that
different regions of spacetime can only know about each other at a given timescale if
a photon can pass between them on that timescale. During a phase transition, the
Higgs field chooses one particular vacuum state out of the set of all possible vacuum
states, which is the vacuum manifold. Regions of the universe which are outside of
causal contact with one another during the phase transition will acquire different
vacuum states, as the choice of state picked out in one region cannot be communi-
cated to all neighbouring regions on the timescale of the transition. The boundaries
between regions with different vacua appear as defects. At these boundaries, no
choice of vacuum is made, and the universe is instead trapped in the symmetric,
“old” phase.

Returning to the topology of the vacuum, a domain wall defect can arise if the
vacuum manifold is disconnected, whereas cosmic strings and monopoles can form if
the vacuum manifold contains non-contractable loops or spheres respectively. This
implies that the boundary between different vacua, namely the defect, cannot be
deformed away. As we have seen, for a vortex line, corresponding to a broken U(1)
symmetry, the vacuum manifold corresponds to all the possible directions in which
the phase of the Higgs field can point, which form a circle. After a phase transition,
the Higgs field will thus point in all sorts of different directions across all different
regions of the universe. Joining up different regions by loops, along each loop the
phase of the Higgs will vary randomly. However, if there is a loop along which the
phase of the Higgs happens to vary by an integer multiple n of 27, then such a
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Figure 2.2: Formation of vortices: The Kibble mechanism for the simple cases of
n = 0 and n = 1. If around a closed loop the phase of the Higgs does not vary
(n = 0), then one can contract that loop to a point by defining a phase at that
point. On the other hand, for n = 1 the phase is not definable at the central point.
This means that the Higgs field must vanish at that point, which then corresponds

to a vortex.

loop winds around a vortex, and cannot be contracted to a point. This is because
contracting the loop to a point means contracting the phase to a point, but if the
phase varies by 27n around the loop, then there is no way to smoothly deform it to
a particular, average value at the point. To avoid a singularity at that point, the
Higgs field must vanish there, which means it is in the metastable vacuum state.
The integer n is then called the winding number of the vortex. This situation is
illustrated in figure 2.2.

Cosmic strings are amoung the most interesting of topological defects in a cos-
mological context, as their emergence does not pose any problems for the evolution
of the universe. On the other hand, the energy of domain walls and monopoles can
over-close the universe, thus if these defects are produced during a phase transition
they must be diluted away by cosmic inflation. Cosmic strings on the other hand
are able to break apart into smaller and smaller loops, which radiate and eventu-
ally disappear. The loops form because strings that cross each other exchange their
end-points, a process known as intercommutation. In this way, if a large network of
strings is produced in the early universe, it will naturally dilute itself by breaking

up into small loops that decay away into gravitational radiation, leaving only a few
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—~ 0

Figure 2.3: Intercommutation of strings: Two strings cross and exchange end-points,

leading to the formation of a loop and two smaller strings.

complete strings. Eventually, the string density evolves into a scale-invariant state,

such that the network no longer changes as time progresses.

2.3 Abelian Higgs model

As we have seen, cosmic strings or vortices can be produced when a U(1) symmetry is
spontaneously broken in the presence of non-trivial topology. For global symmetries
the core of the string is composed of a Higgs condensate. If the theory is gauged,
and hence the string forms from the breaking of a local U(1) symmetry, the Higgs-
condensate core will be threaded with magnetic flux lines associated with the gauge
boson that couples to the Higgs. The latter case is typical in realistic symmetry
breaking schemes such as grand unification and electroweak breaking, where the
symmetry breaking process is invoked to break large particle gauge groups by giving
masses to gauge bosons.

In what follows we will consider only gauged strings. We begin by reviewing the
Abelian Higgs theory.

The Abelian-Higgs action in the full four-dimensional theory is
S = —/d4x\/—g [D,;DTDWI) + i P V(D) (2.3.3)

where the potential is

V() = }IA(@@ . 772)2, (2.3.4)

matching (2.1.1) up to a numerical prefactor. The fields in the theory are the
complex Higgs field &, with two degrees of freedom, and the massless gauge field
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A, with field strength FW, and two degrees of freedom. The covariant derivative is

D, =V, +ieA,, and the action is invariant under the U(1) gauge transformation
A, (z) = Au(z) — 0,(x) (2.3.5)

B(x) — @ (x). (2.3.6)

It is useful to express the theory in terms of the physical degrees of freedom in the
broken symmetric phase. Using the radial decomposition for the Higgs field, we

extract these degrees of freedom as

O(zY) = nX(z*)eX=) (2.3.7)
A () = %[PH(IQ)—VHX(Q;&)}, (2.3.8)

where X is the massive Higgs boson, x is the Goldstone boson, and P, is the massive

gauge boson. In terms of these fields, the Lagrangian becomes

L=-n*V,XV'X —*X°P,P" — 4i€2FWFW — %”4(X2 —1)%, (2.3.9)
thus it is explicit that the Goldstone degree of freedom has been removed from
the theory, and the gauge boson has obtained a mass. Namely, we now have a
massive Higgs field with one degree of freedom, and a massive gauge boson with
three degrees of freedom. Note that although we are casting the theory in terms
of the dynamical variables in the broken phase, we do not set X = 1 which would
amount to the Higgs field being in the true vacuum, as for a vortex, X has a spatial
profile from the metastable vacuum in the core of the string out to the true vacuum
at some distance away from the core. This is most unlike the topologically trivial
Higgs theory, where the symmetric phase and broken symmetric phase do not exist
simultaneously.

In terms of these variables, the equations of motion are

)\ 2
V,VAX — P,PPX — %X(W 1) = o0, (2.3.10)
X2p
S (2.3.11)

where 8 = \/2¢? is the Bogomol'nyi parameter [108], and F),, is the field strength
of P,.
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The inverse masses of the Higgs and gauge bosons determine the width of the

scalar and magnetic core of the string respectively. These widths are

1 1
Wy =my = —— w, =m,' = (2.3.12)

\/X’r]’ g [l :\/5677

In general, the two cores have different widths, and the ratio determines whether

the vortex is type I, II, or supersymmetric (Bogomolnyi limit, [108]).

2.4 The Nielsen—Olesen vortex

The Nielsen-Olesen vortex [77] is the simplest topologically non-trivial solution of the
Abelian Higgs system. It represents a static, cylindrically symmetric vortex solution
in flat space, where the core of the vortex is aligned with the z-axis. Therefore, the
four dimensional problem can be reduced to determining the profiles of the fields in
the {r, ¢} plane, where symmetry restricts them to depend on the radial direction
only, and then extending these trivially along the z-direction. In the plane, the
gauge field has two components, A, and A,. For the Nielsen-Olesen solution, the
gauge field has only one component, A, which gives rise to a constant magnetic field
in the z-direction. While this is all that is required for the static straight vortex,

starting with both components, rotational invariance implies that
0,A, = 0,A, =0, (2.4.13)

therefore one may always perform an r-dependant gauge transformation to set A,
to zero, without introducing any dependence upon ¢.
Working with the degrees of freedom in the broken symmetric phase, the Nielsen—

Olesen vortex solution may be expressed in cylindrical polar coordinates by the fields
X = Xo(R), P, =nPy(R) 0., X =np, (2.4.14)

where R = rv/A7 is a rescaled radial coordinate, and n is the winding number of the
string. The functions X, and Fy satisfy the vortex equations (2.3.10) and (2.3.11),

which for n = 1 become

X, X,P?
X -Rt R

_Pé’_|_

+1iXo(X5—-1) = 0, (2.4.15)
By N X2P,
R g

0. (2.4.16)
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One must now specify boundary conditions which capture the effects of the non-
trivial topology, namely that there is finite energy trapped in the core that cannot
dissipate to the vacuum which surrounds it. For the Higgs field ®, we then require
that it vanishes in the core and lies in vacuum at spatial infinity. These conditions
are met if X(0) = 0 and X (oco) = 1, for then ®(0) = 0 and |®(c0)| = 1. For the
gauge field A, we have

1

A _
e

1
e

[P, — Vx| ==[P(R) — 1], (2.4.17)

P

where we require that A,(0) = 0 for the energy of the vortex to be finite in the
core. Therefore, we set FPy(0) = 1. Finally, in order for the energy of the vortex to
be minimised at spatial infinity, we require that Py(co) = 0. Then all the terms in
the Lagrangian (2.3.9) vanish individually, and the true vacuum state for all fields
is attained. If instead the Higgs field were to be in vacuum at spatial infinity but
Py(c0) # 0, one would be able to measure energy arbitrarily far away from the
vortex, implying that its total energy is infinite.

With these boundary conditions, the solutions to the Nielsen—Olesen equations
(2.4.15) must be found numerically. However, the fields do admit the following

asymptotic behaviour:

1— 2o, for 5 < 4.
Xo(R = 00) = VR y (2.4.18)
Be2R/VB
1—p2 CEN for g >4,

Py(R — o00) = ooV Re VP

where po, and x, are constants of O(1). Therefore we see that the fields fall off
exponentially fast to the vacuum state.

Figure 2.4 displays the numerically obtained profiles of X, and F, for the case of
B = 1. We see that the fields are highly localized around R = 0, as expected from
their asymptotic behaviour.

So far, we have considered the vortex to be a probe configuration in a flat back-
ground. However, we know that it is composed of energy, therefore we should

consider its gravitational effects. To couple the Abelian-Higgs system to gravity, we
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Figure 2.4: Numerical solution of the Nielsen-Olesen vortex: X (blue) and Py (red).

may write the total action as

1
S = ﬁ/\/—ng‘lx—i—/\/—gEd‘lx, (2.4.19)

where £ is given by (2.3.9). Setting the Higgs mass to unity, An*> = 1, the Einstein
equation takes the form

1
R, — §R G = k0> Ty (2.4.20)
where the energy-momentum tensor for the vortex is
Ty = —2V, XV, X —2X*P,P, — 2B F,,FJ — Lg . (2.4.21)
Thus we see that the gravitational coupling of the vortex is determined by

e =81 Gn?, (2.4.22)

which will typically be of order 1077 — 1072 for cosmic strings of cosmological
relevance.
To compute the gravitational effect of the string, we will therefore use a pertur-

bative technique, where we expand the Ricci curvature to first order in € as
Ry — Ry +0R,,, (2.4.23)

where 0, is linear in e. We will solve the Einstein equations in trace-reversed

form, namely

1
By = (T - §Tgw,> . (2.4.24)
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At zeroth order in ¢, the Einstein equations are then just the vaccum equations,
R, =0. (2.4.25)
At linear order on the other hand, they become

6By = (T %Tgm,> , (2.4.26)

therefore the energy momentum of the flat-space vortex gives rise to a gravitational
correction to the curvature at linear order in e.

We will therefore solve the Einstein equations up to linear order in €, where the
energy-momentum tensor is built from the Nielsen—Olesen fields.

To compute these leading order corrections to the curvature, we need to select
a convenient set of coordinates, which reflect the axial symmetry of the vortex. An

appropriate set is the Weyl system, with metric
ds? = —e?dt? 4 2= [d2? + dR?] + e dyp? . (2.4.27)
The Ricci curvature is

V=g(R; + R%) =", (2.4.28)
V—gR; = [N, ( )
V—gR: = [a(v-)N)], (2.4.30)
V—gRE =" +a(" = X') — ' (N +) +2a)\?, (2.4.31)

2.4.29

where /— "= and for the background vacuum spacetime, & = R and

A =v = 0. The components of the energy-momentum tensor (2.4.21) are given by

X2P? P’2 1
TN =T7 = XP + 72 5 (X2 —1)? =€, (2.4.32)
X2P2 P'2 1
TR =X 400 5 4(X§ —1)? = —Pxg, (2.4.33)
X2P2 Pl2 1
— 2 0 2
T? = X§ - o ﬁ + (X0 - 1)?=-P,. (2.4.34)

Due to the fact that T} = T7 in the above, we can see immediately that Rl = R?

and thus we deduce that v = 2\, up to a possible constant.
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To compute the leading order correction to «, we see from (2.4.28) that we simply

need to solve
% = —e(E —Pg), (2.4.35)
leading to
a=R-— e//R(E — Pr)dR (2.4.36)
= [1 — e/R(é’ - PR)dR] R+ 6/32(5 — Pr)dR, (2.4.37)

where we have integrated by parts to obtain the second line.

Turning to A, for which the background value vanishes, (2.4.29) yields

Nt % = %(PR +P,). (2.4.38)
which is solved by
A= g/%/R(PR-F’P@)dR. (2.4.39)
Then, using the equations of motion for Xy and F,, one can show that
i(RPR) =P,, (2.4.40)
dR

and upon inserting this identity into (2.4.39) and integrating by parts, we find
A= % / RPrdR. (2.4.41)

Inserting (2.4.41) into (2.4.30) then yields v = 2.

We will now demonstrate that these corrections to the flat-space metric functions
give rise to an asymptotically conical spacetime. As can be seen from the asymptotic
behaviour of the fields, Xy and P, fall off rapidly to their constant vacuum values
outside of the core, and indeed from figure 2.4 we see they have already settled into
the vacuum state at a radial distance of R < O(10). Thus the integrals in the metric
functions above converge rapidly to their asymptotic, constant values. Let us then

define these constant forms of the integrals as
G/R(S — Pr)dR = A, e/RQ(E —Pr)dR = B, e/RPRdR =C, (2.4.42)
such that asymptotically,

a—R(1—-A+B/R), A=2v—-C. (2.4.43)
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The asymptotic form of the metric then becomes
ds? = e“[—dt* + dR* + dZ*) + R*(1 — A+ B/R)%*e “dy?, (2.4.44)

and upon a rescaling of the coordinates such that £ = e©/%t, 2 = ¢“/?z and R =

e“’?2(R+ B/(1 — A)), the conical nature of the metric is made explicit,
ds? = —di* + dR® + dz* + R*(1 — A)%e™29qy? (2.4.45)
where we may write g,, to linear order as
R(1—(A+QC))?. (2.4.46)

This gives a conical deficit angle in the azimuthal direction which may be expressed
as

A=21(A+C) = QWE/Rng =81Gu, (2.4.47)

where p is the energy per unit length of the string.

We see then that radial stresses Pr do not contribute to the deficit angle, as the
sum of A and C' cancels them out. However, they may lead to a red or blue-shifting
of spacetime at infinity relative to the core of string, as the values of the integrals
are different in these regions. For the so-called Bogomolyni limit for 5§ = 1, one may

write the vortex equations succintly as

X, P, R
X;==02,  B= 5(){3 - 1) , (2.4.48)

and one can easily show that the radial stresses vanish identically.

To summarise, we see that an isolated, self-gravitating vortex affects the ambi-
ent spacetime around it by asymptotically inducing a conical deficit angle in the
azimuthal direction.

The physical effect is that photons travelling around the string from a distant
source will not experience a gravitational attraction towards the string, as locally the
spacetime around the string is Minkowskian, however, due to the global properties
of the spacetime which is conical, such photons will form two images on either side
of the string due to gravitational lensing [72,78]. Thus the presence of a cosmic

string may be distinguished observationally by a gravitational lensing signature.
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2.5 Strings and black holes

In addition to defects, the universe contains other exotic, classical objects, most
notably black holes. It is interesting then to examine how these objects might
interact with one another. Indeed, as galaxies are believed to host supermassive
black holes in their centres, if a vortex were to drift into a galaxy it would no doubt
soon come into contact with a black hole.

In Section 1.1.2 we briefly discussed the black hole “no hair” conjecture. To
summarise the discussion therein, the idea is that the only long-range information
that a black hole can support is its mass M, charge (), and angular momentum .J.
While all else is believed to be destroyed or lost during the accretion process, these
particular properties cannot be destroyed because they correspond to conserved
quantities associated with the exact symmetries of the spacetime. Therefore, the
only allowable black hole spacetimes are the Kerr-Newman family, no other charge
or new parameter can be associated with a black hole.

To show that the conjecture is false, one simply has to provide a counter-example.
Taking black hole hair to then refer to a long-range, stable property or charge of
the black hole spacetime?, we will see shortly that hair in this very sense can indeed
arise when a vortex pierces through a black hole.

The history of vortices and black holes cohabiting the same spacetime began with
a study of the gravitational impact of an infinitely thin string threading through a
black hole [80], however the first example of a realistic, finite-width string threading
through a black hole was given in [83,84]. We will review some aspects of this
work in Section 2.5.1. These early studies were later generalised to the case of a
vortex ending on a black hole [85-88], as well as to spacetimes containing positive
and negative cosmological constants [89-91]. When the charged black hole case was

considered, it was discovered that such a black hole exhibits a phenomenon known

2Sometimes the no-hair theorems are taken to mean that a black hole cannot support a non-
trivial field configuration on the event horizon. However, this has turned out to be too restrictive,
and indeed many physically interesting field configurations have in fact been studied in the litera-

ture. See for example [99-105].
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as flux-expulsion [92-96], more commonly referred to as the Meissner effect. This
interesting effect will be reviewed in Section 2.5.2. However, the rotating black hole
case remained elusive, as the conventional field ansatz for the vortex seemed to
be inconsistent with angular momentum, while at the same time, the conventional
conical gravitational effect of the string, in the presence of rotation, seemed to lead
to a divergence of energy-momentum [97].

Understanding the behaviour of vortices in rotating spacetimes is a primary
focus of the research which is detailed in this thesis. We will return to this topic in

Chapters 3 and 4.

2.5.1 Vortex in a Schwarzschild spacetime

We will first consider the simplest species of black hole, namely the Schwarzschild
family. We will review the work of [83], in which it is conclusively demonstrated
that a vortex can coexist in a state of static equilibrium with a Schwarzschild black
hole, where the vortex pierces through the poles of black hole, and does not become
accreted by the black hole. As a stable, long-range field configuration in a black hole
spacetime, the vortex amounts to a “property” of the black hole that is measurable
at spatial infinity, therefore it qualifies as genuine black hole hair. This is confirmed
by the fact that the parameters associated with the presence of the vortex, namely
the masses of the Higgs field and gauge field, cannot be absorbed into the one
parameter that characterises the Schwarzschild black hole, its mass M.
Corresponding to the three parameters of the Schwarzschild vortex spacetime
are three length scales, the width of the scalar core wy, the width of the gauge core,

wy, and the black hole horizon radius,
ry =2GM. (2.5.49)

To obtain the field profiles for the composite vortex and black hole system, one
follows the same protocol as for the Nielsen—Olesen vortex, and solves the vortex
equations on the background spacetime, treating the vortex as a probe. This ap-
proach is sensible because as we have seen, the gravitational effect of the vortex is

given by the parameter €, which is very small for physical cosmic strings.
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™~ Vortex

Figure 2.5: A vortex piercing a Schwarzschild black hole, illustrating the alignment

of the two objects.

We once again consider the vortex to be static and cylindrically symmetric, how-
ever the background is spherically symmetric. Thus the ordinary differential equa-
tions that arose for the Nielsen-Olesen vortex become partial differential equations

in the Schwarzschild context. The Schwarzschild metric is

ds? = —(1 _ 2GM)dt2 v (1 _aM

r

-1
> dr? +r*(d9? + sin* 0d¢?) . (2.5.50)

r

In this background, the vortex equations (2.3.10)-(2.3.11) become

Ty 27‘—T’+ ng COt9X9 1 2 XPQ%
_ 1——)XW——XT— 00 _ S IX(XP—1) 42—,
< r/ r? ’ r2 r? * 2 ( )+ 72 sin?f
7’+> 1 T cot 0 X?P,
1-"Y 0,0,P, + ~0,0,P, + 20,2, — °Ca,p, — _0. (2551
( " o 200 Fs + 50 P — —50Fy — —3 (2.5.51)

In order to proceed analytically, we may then approximate the width of the string
as being very small compared to the radius of curvature of the event horizon. This
is the “thin string” limit. Having set the Higgs mass to unity, this limit implies that
r. > 1. Furthermore, we will restrict ourselves to the region within and very near
to the core of the vortex, as we expect the fields to fall off rapidly to their vacuum
values, based on the behaviour of the vortex in flat space. These simplifcations mean
that we are in a regime where the curvature is not significantly felt by the vortex

fields as they fall from the core to their vacuum values. Within these limits, we
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thus expect the Schwarzschild vortex to closely resemble the Nielsen-Olesen vortex,
which depends only upon the radial direction in cylindrical coordinates. Thus we

may try an ansatz of the form
X =Xo(R), P,=PF(R), R=rsinf (2.5.52)

where X, and P, are the Nielsen-Olesen fields, and R is the radial distance that is
orthogonal to the axis of the vortex in Schwarzschild coordinates (see figure 2.5 for

a depiction). With this ansatz, the vortex equations become

X, 1

X P? r.sin’#f X/
XM 20 S (X2 )4 20 I <X” —0> — 0,(25.53
0 R + 2 0( 0 ) + R(Q) + 0 + R Y ( )
P, X2P, r,.sin’# P
pr_to_ Aaoth Ty <_p" —0> = 0.(2.5.54
0T R 3 + . ot R ( )

We see then that the Schwarzschild vortex equations have a very good approximate
solution of the form (2.5.52), as long as “* sin”f < 1. Now, since rsinf = R ~ O(1)
in (and very near to) the core of the vortex, sin @ ~ O(1/r). Therefore the corrections
are O(ry/r*) < O(1/r1) < 1 for the thin string limit.

For the thin, probe vortex, we see that the fields do not mind touching the
event horizon of a black hole, indeed the presence of the horizon is a higher-order
effect that can be suitably diluted away. While one may suspect this to be a mere
artefact of the thin string limit, full numerical solutions also suggest that the vortex
remains largely indifferent to the presence of the horizon. Figure 2.6 depicts the
numerical solution for a vortex piercing through a black hole of mass GM = 5. The
morphology of the vortex seems unaffected by the black hole, indeed the contour
lines remain very straight as they approach and intersect the horizon.

While the probe vortex has no apparent problem in piercing the horizon, this can
become a more delicate issue when the energy of the vortex is taken into account.
For a stable and static solution, the vortex should not disturb the structure of the
horizon, a null surface which is free of shear stresses. We saw in (2.4.32) that for
the flat-space vortex, the energy and the tension along the core balance each other,
T? = T{. This means that as the core touches the horizon at § = 0 and 7, the
horizon feels no energy-momentum and thus is undisturbed. However, the physical

vortex is not infinitely thin, therefore one must address what happens at the horizon
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X Sch P Sch
GM=5

Figure 2.6: The equipotentials of the vortex in the Schwarzschild background. The
Higgs contours are in blue, and the Py contours are in red. In each case contours

are shown for X, Py = 0.1,0.3,0.5,0.7,0.9.

as we move off of the poles. In fact, the authors of [83] were able to show that this
same balance is also maintained on the horizon, therefore there is no backreaction as
the vortex touches the null surface, and no obstruction, in this sense, to it remaining
there in a static fashion.

So then, what happens gravitationally when a string sits through a Schwarzschild
black hole? We saw in Section 2.4 above that the presence of the vortex in flat
space induces a conical effect in the azimuthal direction. Considering the case of an

infinitely thin vortex, the metric for the string and black hole system becomes [80]

2GM 2G M\ -1
ds? = —<1——>dt2+<1——> dr? 2 d92 +r2(1—4Gu)? sin® 0de? , (2.5.55)
r r
namely, a conical deficit angle is removed from the azimuthal direction in the
Schwarzschild spacetime. The authors of [83] demonstrated conclusively that the
geometry described by (2.5.55) does indeed correspond to the infinitely-thin string
limit of a physical vortex piercing through a Schwarzschild black hole.
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2.5.2 Flux expulsion in Reissner-Nordstrom

As with the Schwarzschild black hole, the vortex has no trouble entering into a
state of static equilibrium with the charged black hole, where it pierces through the
poles of the black hole. A very important difference between the two cases is that
the Reissner-Nordstrom black hole admits two horizons r, and r_, which coincide
only in the extremal limit. In the context of extremality, a very interesting effect
arises for the vortex: if the black hole is small enough, then instead of piercing
through it, the flux lines of the vortex sweep over the horizon and regroup again
at the other side. This phenomenon is known as flux expulsion, or the Meissner
effect. Rather than doing so exclusively at the poles, the fields in the flux-expelling
state remain in their metastable vacuum states, X = 0, P = 1, across the full two-
dimensional surface of the extremal horizon, and fall to the vacuum only away from
the horizon. Therefore, the gauge field is long-range all across the horizon, allowing
the corresponding magnetic flux lines to engulf it.

Energetically, this implies that there are regimes in which it is favourable for the
fields approaching the black hole along the z-direction to veer off track and avoid
the black hole. We will return to the physics of the flux-expelled state in Chapter 4
when we discuss rotating black holes.

An analytic proof for the existence of expulsion for low mass black holes, as well
as a derivation of the precise bounds on the mass required for this phenomenon,
was presented in [95], and we will now review their work. Therefore, we will leave
the physics aside for now, and look in detail at the mathematics underlying this
phenomenon.

As is reviewed in Section 1.1.2, the Reissner-Nordstrom geometry is described
by the metric

A 2
ds? = —=dt? + L dr® + r2[d6? + sin? 0de?), (2.5.56)

2 A

where A = r2 —2mr +¢*> = (r —r,)(r — r_), and ¢ is proportional to the charge
of the black hole. For extremal black holes the inner and outer horizons coincide,
and thus the metric function A has a double root, A = (r — r,)?, leading to the

vanishing of A as well as A’ on the horizon.
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The vortex field equations in the Reissner-Nordstrom background read

Laax) - L aenexy Lo lva oy o255
2" 7 2 in g P T N0 T 9 T

A sin 6 89P¢) X2P¢ .
N CTA I UN AT

To study flux expulsion we need to look at the fields on, and in the close vicinity of,

the extremal horizon r,. We therefore expand the fields near the horizon as
X=&0)+ (r—ri)&(0), Py=mo(0)+ (r—ry)m(d), (2.5.59)

where & and m; are bulk fields. With these expansions, we see that due to the fact

that A’ = A = 0, the horizon equations in fact decouple from the exterior geometry,

yielding
2 7,.2
0+ cot 0 — 507;00 + %50(1 -&)=0,
St 2 (2.5.60)
m, — cot Oy — %f’gﬂo =0.

The constraints on the field are that they must be in the unstable vacuum state in
the core, & = 0,19 = 1 for § = 0,7, and they must be symmetric around 7 /2. It
is then obvious that the flux-expelled state, £,(0) = 0 and mo(f) = 1 VO € (0,7),
solves the horizon equations?®, regardless of the value of 7, and hence of the black
hole mass. However, it must be demonstrated that this solution extends to the bulk.
Following the argument in [95] closely, we see that this is only possible for horizon
radii below a certain critical value, r, < r..

To find the value of r., let us suppose that expulsion occurs, therefore on the
horizon, X = 0 and P, = 1, with X increasing and P, decreasing towards their
vacuum values away from the horizon. Now consider a region very close to the
horizon such that X? < 1, P < 1, and 9,(AX,) > 0. Then from (2.5.57) we see
that

X > XPQ% > sinf0p(sin 60X ) + %ri sin®6.X . (2.5.61)

3Note that for a Schwarzschild black hole, for which A’ # 0 on the horizon, the bulk quantities
&1 and m would appear in the horizon equations, thus the flux expelled solutions & = 0, g = 1
obviously would not solve the horizon equations. Therefore we see that the double root structure

of A, namely the existence of an extremal limit, is crucial for flux-expelled states to arise.
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This condition must hold for a flux-expelled solution. Now, since sinff = 0 at
6 =0 and Xy = 0 at § = m/2 where it reaches its maximum value, the product
sinf Xy =0 at § = 0,7/2. In addition, it is positive for small 6, as both X and
sin @ are increasing. Therefore, its derivative must have at least one zero on (0, 7/2).
Let us then define 6y < 7/2 as the first value of § at which Jy(sin6X y9) = 0. From
(2.5.61) we then find that

%ri sin®fy < 1, (2.5.62)

which is manifestly true for r, < v/2.
Let us now consider a larger black hole with 7, > /2, and define o > 6, by

r? sina = 2. Then, integrating (2.5.61) on the range (,7/2), for 6 > « gives

1 [ r? 1 X)) ™2 (r? 1
d'X(0) (= sing - / a0 (= sing —
Sin@/e ( )(2 s sinef) ~ 5o J, (2 Y Sne

where we have obtained a lower bound on the integral by using the fact that X (0) <
X (0"). This gives

Xo(0) >

I} M} . (2.5.63)

Xg(0) > X(6) [% cot 0 +

sin 0
We can further bound this expression by using the fact that because Jy(sin 60X g9) =
cos0X g+ sin0X g9 = 0 at 6y and < 0 on (0y, /2], X 99 < 0 on [fy, 7/2] and hence

Xo(0) < X(inf(a) < ;(_(i), leading to

(2.5.64)

1> (0 a) {Cote lntan(9/2)]

sina sin 0

over the range 6 € («,7/2). One finds this is violated for r3 > 8.5. Hence for
r. > /8.5 & 2.92 the vortex must pierce the horizon. This gives us an upper bound
on 7.

We can in fact also derive a lower bound on r,. We know that flux expulsion
is always a solution on the horizon. Therefore, to find this lower bound, we will
instead assume that a piercing solution exists for equations (2.5.60), and derive a
minimum requirement on 7 for this solution. Turning this bound around will give
the parameter space for which a piercing solution cannot exist on the horizon, and
thus flux expulsion must happen: this will give us the lower bound.

Thus we begin by assuming that a piercing solution exists, namely that &, and

7o have non-trivial profiles on the horizon, where &, increases from its zero value at
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the poles to its maximum at the equator, while 7y decreases from unity at the poles
to its minimum value at the equator.

At /2, we then have

I ) T3 o _ 1% 2 i
0= &m— 5 b(l-&) =0=m < - (1-§) < o, (2.5.65)
therefore
2 r3 €2 V2
al = Leln, < L2201 —2 < 2.5.66
0 B 010 = \/56 0o = 3\/§ 5 ( )

where in the final step we have maximised over &,, with the maximum occurring at
& = \/2/_3 This gives us an upper bound on 7] at the equator. We will now find a
lower bound on the same quantity, and later we will match these bounds to obtain
the domain in r, for which a piercing solution can exist.

From the horizon equations (2.5.60), we see that finiteness requires that 7((0) =
0. Given that 7j(7/2) = 0 as well, there must exist a 6y for which 7((6y) = 0. This

is where 7(,, which is negative on (0, 7/2), takes its largest value:

2 2 2
/ T—&- 2 " / T+ 2 T—l—
e i < . . .
UK tan@( 3 50”0 ”0) = |710(90)| tan 90< 5 5071()) tan 90 (2 5 67)

Then, we note that the value of 7y at its minimum must be larger than it would
be if my were able to decrease linearly from unity at the poles, with the highest

possible slope, which is |7((6p)|. Thus we may estimate,
™ /
mo(r/2) > 1— §|7T0(90>| , (2.5.68)

and combining this result with (2.5.66) gives
2

r? ™ 2 r
= > mo(m/2) > 1= Zmi(00)] = Inh(60)] > ;( - %) (2.5.60)

Then, assuming r, < v/2 such that the bound is meaningful, and using (2.5.67), we

obtain
2
Lﬁ_ﬁ > cot 90 > z — 90, (2570)
25(1 _ \/_+§> 2

where in the last step we have simply expanded around tan(w/2 — 6y). We are now

ready to write down a lower bound on 7(j(7/2). Noting that 7(j(6y) = 0 where 7, is
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maximally negative, while n(j(7/2) = r3&m/5 > 0, we see that 7 on [0y, /2] is

maximum at the equator, thus

ll(r/2) > ”6(”7{/2;:;?(90) = 7(7/2) > (%)2%(1 - %>2 (2.5.71)

Combining the bounds, we arrive at

B 33

> 7l(n/2) > (%)2%(1 . %)2 (2.5.72)

and finally,
5
(B) _sve g

_7«_+2 2m2 4
V2

Turning this bound around, we conclude that the flux lines must expel if

(2.5.73)

r2/(V2—r)? > B2/V2, (2.5.74)

which gives r. ~ 0.7 for § = 1.
Therefore, following [95], we see that small mass extremal charged black holes
can support a Meissner effect. In particular, for f = 1, the flux can be expelled

from the interior of the black hole if
0.7 <71, <V85. (2.5.75)

In summary, cosmic strings and black holes can form very interesting systems.
From a gravitational point of view, the conical effect of the string can be woven into
the deep potential well of the black hole, such that the light from stars and other
objects in these wells could potentially exhibit an additional lensing effect due to
the presence of the string. From a field theoretic point of view, when a charge is
added to the black hole, a new class of phenomena opens up for small mass black
holes, in which they may experience two separate phases of cosmic string hair.

While these arguments paint a compelling picture, it remains to be seen whether
or not this picture may indeed be realised in natural systems. Most notably, natural,
astrophysical black holes are rotating objects, which, as mentioned earlier, turns out

to add quite a level of subtlety and complexity to the study of these systems.



Chapter 3

Rotating Black Hole Hair

Astrophysically, black holes are formed when very massive stars collapse under their
own gravity. A gravitationally collapsed object can only settle down into a static final
state if the collapse is completely spherical, which is very unrealistic for gargantuan,
hugely energetic astrophysical objects. Physical black holes are then much more
likely to be stationary objects, which are described by the Kerr family of black hole
spacetimes, parameterised by M and J.

In this Chapter, we will discuss the possible interacting states of cosmic strings
with rotating black holes, therefore we make contact with cosmology. As we have
discussed in detail in Section 2.5, previous studies involving static black holes have
demonstrated that in these simple cases, vortices and black holes can form stable
configurations [83,95]. While this points to the fact that physical, videlicet rotat-
ing, black hole vortices could exist in Nature, it turns out that the conventional
field ansatz {X, P;} is inconsistent with the presence of rotation. This is because
the timelike Killing vector is not orthogonal to the spacelike hypersurfaces for a
stationary spacetime, indeed, the time and azimuthal directions are mixed.

For the vortex, this implies that the usual azimuthal form of the gauge vector
field P, is coupled to the zeroth component P, and the two cannot be considered
independently. We will see in what follows that the norm of the gauge boson cannot
in fact be finite on the horizon unless a P, component is present to counter the P,
component. Taking this into account, we will show that a vortex with three non-

trivial spatially varying fields, X, Py and P,, has the correct structure to form a

75
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stable, composite state with a black hole. We will explore this system in both the
nonextremal and extremal cases, and show that a Meissner effect arises for the low
mass extremal Kerr vortex. The physics of the phase transition is however quite
different to the Reissner-Nordstrom case, once again due to the presence of an addi-
tional field required for the description. The presence of P; leads to a discontinuity
between the piercing and expelling phases, such that a first order phase transition
takes place, and the black hole bubbles its way down to expulsion as the horizon
radius shrinks.

Most interesting, however, is the way in which the non-trivial mixing of ¢ and
¢ expresses itself gravitationally in the Kerr vortex spacetime. We have seen that
a self-gravitating vortex induces a conical deficit angle in the azimuthal direction,
and that this effect is preserved when one threads the vortex through the centre of
a static spacetime. In the stationary case, we will show in what follows that the
azimuthal conical effect is itself twisted into the timelike direction by the rotation:
the angle that is removed by the string is from the perspective of an azimuthal
coordinate that is co-rotating with the black hole. Asymptotic observers therefore
see a spacetime in which both the timelike and azimuthal directions, as well as their
intersection, are reshaped by a conical effect.

This Chapter is based on the work done in Ref. [98].

3.1 Higgs hair for the Kerr black hole

We begin by expressing the vortex equations in the Kerr geometry, treating the
vortex as a probe.
The geometry reads

A—a? sinQG(h2 _ 4GMarsin®f

ds? = —
iy > >

r )
ﬁ@w&W+§mﬁmw%Kw% (3.1.1)

where a = J/M and

Y =r’+a’cos’d, A=r*—-2GMr+a* ['=(r*+a*)? - Ad*sin® 6. (3.1.2)

We will align the vortex in such a way as to respect the symmetries of the spacetime.

This means that as with the Schwarzschild and Reissner-Nordstrom cases, the core
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of the vortex is aligned along the polar axis of the black hole. The system is thus
symmetric with respect to a reflection about the equatorial plane. The string is
considered to be straight and extends along the polar axis to spatial infinity, where
the ambient spacetime is asymptotically flat.

As we see in the metric (3.1.1), the ¢ and ¢ directions are mixed due to rotation,
thus we expect a mixing between the t and ¢ degrees of freedom in the gauge field, as
we have discussed. Therefore we consider an ansatz which includes a nonzero P, and
P,. Indeed, inserting an azimuthal gauge field component Py into the equation for
the gauge field (2.3.11), we see that this equation implies that a second component,

P,, is automatically generated:

X2p? X2g%p,
V4 =V, " P F+ =2 0. (3.1.3)
B B
The vortex equations thus become
X? A 2G M p?
?P¢ = 8 0, Py + (99(99P¢ + = SE P (r? — a® cos?0)0, P,
cot 0 , 4a3GMr ,
53 (2?2 4 4G Mra? 81n29)89P¢ — s cos 0 sin®00, P, (3.1.4)
2G'Masin®@
+$ [2r*% + p*(r* — a® cos®0)] 0, P,
X? A 1 4G t 0
Fpt = E&&Pt + i@g@gpt ¢ ot (89P¢ + asin 989Pt) «© 09Pt
2GMa 1 .
3 (X —2r%0, P, — 58 [2GM(27’ p? — a?sin?0%) — 27“22]0TP,5 . (3.1.5)
A A/ X 09 cot (9X9 1 9 2
= =X —X : : -X(1-X XP 1.
0 > ”"”LZ -+ > + > +2 ( )+ XPy, (3.1.6)

where p? = r? +a? has been introduced for visual clarity, and the gauge boson norm
is
P (P°Pi+aPy)?*  (Py+ asin’P;)?
# LA ¥ sin?0 '

We now see explicitly why we needed to introduce the P, field (indeed, this was

(3.1.7)

first noted by Wald [109] who found an expression for constant probe magnetic flux
field through a Kerr black hole). For non-vanishing P,, the P, equation (3.1.5) does
not allow P, = 0 unless a = 0. Furthermore, setting P, = 0, the gauge field norm

becomes

P? /a2sin%20 — A
P2 _ ¢ R .
" by < Asin® 0 >’ (3.1.8)
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which is divergent on the horizon where A — 0. Therefore, consistency imposes

that in a rotating spacetime, the vortex always picks up an extra component, P;.

3.1.1 Approximate solution

The vortex equations (3.1.4)-(3.1.6) must be solved numerically, however as for the
static case, one can search for an approximate analytic solution to these equations,
using the flat-space vortex as a blueprint. The idea is that in a suitable limit in
which the effects of curvature are largely negligible, the vortex in the black hole
spacetime should strongly resemble the flat-space vortex. The corollary in the Kerr
case, however, is that in general there will always be a P, component of the gauge
field, as the discussion above implies that the only consistent limit in which P, — 0
is the limit in which a — 0.

At spatial infinity, the ambient spacetime becomes locally flat and therefore in the
limit that one is very far away from the black hole, one can expect the vortex to be
well approximated by the flat-space vortex. Indeed, in that case, a — 0 and thus we
expect the P, component of the gauge field to be strongly suppressed. However, this
limit is not very interesting as it doesn’t capture any of the distinguishing features
of the black hole spacetime. As discussed in Section 2.5.1, the other sensible limit
which allows one to remain right in the heart of the black hole spacetime, is the
limit in which the string width is much smaller than the black hole. In this case, at
the scale relevant for the fields to transition from their core to their vacuum values,
the effects of curvature are not yet felt, and the horizon appears to be flat as the
string touches it.

The Nielsen-Olesen fields depend only upon the radial distance in cylindrical
coordinates, namely the distance orthogonal to the core of the vortex. Therefore, in

the Kerr case, we can consider the function
R = psind, (3.1.9)

which gives the radial distance which is orthogonal to the polar axis in Boyer-
Lindquist coordinates. For our approximate solution, we will consider the fields to

depend upon this precise combination of r and 6.
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We will now make further simplifications based on the discussion above. The first
is that we will treat the vortex as being much thinner than the black hole horizon
r.. Having set the Higgs mass and thus the core width to unity, this entails that
ry > 1. This “thin string limit” implies that p > 1, as the smallest value that p
can take is when r = r; and a = 0, then p,,;,, = 4 > 1. The second simplification
is that we only consider the region within and close to the core of the string, as we
can expect the fields to fall off rapidly to their vacuum values outside of the string,
based on the behaviour of the vortex in flat space. Thus we consider the region
R < O(10). This implies that sind = R/p < 1, whereas cosf ~ 1.

Using these simplifications, we can expand the functions ¥ and I' as

a’R?
2:p2<1— )sz, F:p4<1— p6 >2p4. (3.1.10)
Furthermore, the derivatives become
o~ p2dr’ 00 P°Var T Par-
0? R? 2 R Rr*\ d R? d?
== —2+(—2——Z>—g—2—2, (3.1.11)
or pt dR p p* /JdR  p*dR
2 2. g2
0_2p2<1_i>d__3i
00? p?/ dR? dR
Using these expressions, the derivative operator becomes
A9? 107 AR\ d? R?* d
ST 2T Ly )————. 1.12
Y or? * ¥ 00? ( + pt JdR?  p?dR 3 )

We may now expand equation (3.1.6) for the Higgs field, keeping terms only up to
order O(r;?), remembering that A = O(p?) away from the horizon, and R ~ O(1).
This yields

AR? R? rRANX X
1 >X” (1—— )— 21— X+ XP?, 3.1.13
(+p4 ) )+ X P? (3.1.13)
where
2 2
s PP, AGMar Py

Comparing this with the equation of motion for the Nielsen-Olesen Higgs field in
(2.4.15), we see that at leading order, this equation is solved by fields of the form

2GMar

XZX()(R), P¢2PQ(R), Ptz p4

Py(R), R=psinf.  (3.1.15)
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where to obtain the form of P; we set the sum of the first two terms in (3.1.14)
to zero, so as to obtain the Nielsen—Olesen gauge boson norm at leading order. In
figure 3.1, the approximation is compared to the numerical solution for the same
values of the parameters. For low mass black holes, the discrepancies between the
solutions should become more pronounced, as the thin string limit r, > 1 is then
starting to break down. The figure shows black holes with masses just three times
the string scale, and still the corrections are only dicernable close to the horizon,
where the vortex contour lines of the full solution exhibit slight curvature. Therefore
one can appreciate that the approximate solution is in fact only mildly approximate,
and is in excellent agreement with the full solution across almost all working scales
of the problem.

We see from the figure that the P, field remains close to the horizon, thus there
is no electric field asymptotically far from the black hole. On the other hand, the
Higgs field X and gauge field component P, retain the same behaviour here as they

exhibited for the static case.

3.1.2 Numerical solution

We have seen that in the thin string limit, the vortex equations may be solved
to leading order by the functions (3.1.15). We would now like to obtain general
solutions to these equations. In this case, the fields will no longer be functions of a
single combination of r and 6, and the full non-linear coupled system must be solved
numerically.

The vortex equations (3.1.4)-(3.1.6) form an elliptic system. To solve them, we
implement a gradient flow technique on a two-dimensional polar grid, for which
r € [ri, 7] and 0 € [0, 7]. The basic idea is that we begin by assigning a value of
each of the three fields to each grid point, using the approximate analytic solutions
for the fields, (3.1.15). We then evolve these values using the equations of motion
on the grid, and use the result to update the values of the fields at each grid point.
We repeat this procedure until the updated values are no longer changing, thus we
have reached a steady-state configuration and the equations of motion are satisfied.

The principle behind this method is that energy in a non-minimal configuration will
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Figure 3.1: A comparison of the approximate and exact numerical solutions for an
extremal GM = a = 3 Kerr black hole. In spite of the low value of black hole
mass, (3.1.15) is still an extremely good approximation to the actual result. Here,
the Higgs contours are in blue, the P, contours in red, the P, contours in grey, and
all the corresponding approximate solution contours in dashed black. Contours are

shown for X, P, =0.1, 0.3, 0.5, 0.7, 0.9, and for P,= -0.099, -0.077, -0.055, -0.033,
-0.011.
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dissipate until it attains a minimal, steady-state configuration. For our system, the
minimum energy configuration corresponds to the state in which the equations of
motion are satisfied, but the actual system has no time-dependance. Therefore, to
implement this process numerically, we introduce a fictitious time variable, with the
“rate of change” of our fields being proportional to the actual elliptic equations we

wish to solve:

Yi=AY'+ F(Y,VY), (3.1.16)

where A’ represents a second order (linear) elliptic operator and F' is a (possibly
nonlinear) function of the variables Y* = (X, P4, P,) and their gradients, such that
the right hand side is our system of elliptic equations. Therefore, our equations are
now in the form of diffusion equations. Solutions to these new equations eventually
“relax” to a steady state in which the variables are no longer changing with each
time step, thus Y = 0, and the solutions Y satisfy our elliptic equations.

The presence of the event horizon makes this treatment a little more subtle,
as our elliptic system then has one boundary upon which the equations become
parabolic. To deal with this, the fields on the horizon are updated as well, using the
equations on the horizon supplemented by the constraint

_aP¢(T+)

P, =
t(r‘i’) 7“_2;’_ i CL2 )

(3.1.17)

which is necessary for the gauge field to have a finite norm on the horizon as per
equation (3.1.7). As we have explained, we use the approximate analytic solution
for the fields as an initial condition for the integration. The approximate solution is
accurate to O(r;?), therefore we choose our outer radial boundary r., to be suffi-
ciently far from the horizon such that the analytic approximation can be extremely
well trusted. On axis we impose the standard vortex boundary conditions, X = 0
and P, = 1, however these conditions do not restrict the form of P;. Indeed, we
have seen that P, is in fact “generated” or conjured into the vortex equations by
the rotation, and thus represents a dyonic degree of freedom that is introduced to
the vortex solution by the presence of the black hole. In the case of a Schwarzschild
black hole on the other hand, the electric and magnetic degrees of freedom of the

gauge boson, if both are present, are decoupled, and only the latter is relevant for
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the static vortex solution. Taking this into account, it is not surprising that P,
cannot be constrained by the standard, static vortex boundary conditions. Since we
do not wish to pick up a spurious charge of the black hole, we allow the P, field to
relax freely across the grid, and update it along the axis by continuity.

A sample of solutions for GM = 5 are displayed in figure 3.2, showing both the

nonextremal and extremal cases.

3.2 Extremal Kerr black holes

As we reviewed in Section 2.5, previous studies have shown that a vortex may coexist
in a state of static equilibrium with a black hole [83,95]. In the present work, we
have, at this stage, proven the principle that a vortex can coexist in a state of
stationary equilibrium with a black hole, at the cost of introducing some electric
flux close to the black hole horizon. We will now examine in detail the extremal
limit of the composite Kerr-vortex system.

As we saw in Section 2.5.2, for the case of Reissner-Nordstrom black holes of
small mass, the vortex flux can be expelled from the interior of the black hole [95].
We would now like to explore whether or not this phenomenon of flux expulsion
can occur for the extremal Kerr vortex. There is in fact good reason to believe
that this phenomenon can be expected, based on the work of Wald pertaining to
the behaviour of uniform magnetic fields around rotating black holes. In fact, the
physics behind the expelling of vortex flux lines by an extremal horizon, rotating or
not, is made particularly transparent by Wald’s construction.

Wald demonstrated that Killing vectors can generate electromagnetic fields on

Ricci flat backgrounds [109]. A Killing vector k* satisfies
K + Ky = 0. (3.2.18)

After differentiating and commuting the derivatives several times, and making use

of the Einstein equation R, = 0, this equation can be reduced to the expression

K =0, (3.2.19)



3.2. Extremal Kerr black holes

84

X—contours P—contours
25 25
20 GM=5 20%] GM=5
a=45 \ a=45
“\
15 15+ \
- \
\ \)
NI
10 10LNY IS
SRR
AN \
oy
5 5F
5 10 15 5 10 15
X—contours P—contours
20 GM=5 200 GM=5
a=5 ‘.‘ a=5
\
15 I5H[ |y
J N
‘\ n
1
SR
10 10t A \ “
1 ‘\ \
NN Y
u\ :“‘ “ 3\
by wl
sl ] ail
\]
5 10 15 5 10

Figure 3.2: Numerical solution for a Kerr black hole with the values of GM and
a indicated. On the left, the X = 0.1,0.3,0.5,0.7,0.9 contours are plotted in
blue. On the right, the P, = 0.1,0.3,0.5,0.7,0.9 contours are in red, and the
P =

—0.045, —0.035, —0.025, —0.015, —0.005 contours are in dashed black. The
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horizon is shown in black, and the edge of the ergosphere in grey.
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which is precisely the equation for the 4-vector potential A* of an electromagnetic

field in the Lorentz gauge A" , = 0, namely
A = Fr = ). (3.2.20)

Therefore, each Killing vector, which characterises a symmetry of the gravitational
field, has a corresponding electromagnetic field, which is then intricately linked to
spacetime geometry.

For the Kerr spacetime, the potential is then a linear combination of the Killing

vectors 0, " and 9,". Wald’s solution is
A" o (2a0, + )" | (3.2.21)

which represents a constant axial magnetic field B, threading a rotating black hole,
and an electic field that sweeps down the axes and out along the equator of the black
hole [109]. The black hole thus acquires an electric charge () = 2JB as measured

by Gauss’s law,
47Q = 55 P S, = # E-fhdS (3.2.22)
S S
and hence this mechanism can provide a way to “charge up” a black hole.
Physically, we can understand the appearance of the electric field as a conse-
quence of Faraday’s law in a cosmological setting: rotation in the presence of a
magnetic field induces an electric field. This field may then give rise to an isolated
electric charge. For the magnetic field on the other hand, Gauss’s law for magnetism
states that the magnetic field B is divergence-free, VB, = 0. In integral form this
1s
# B.n*dS =0, (3.2.23)
S
so the net flux of the magnetic field out of the surface S should vanish, otherwise
the surface contains an isolated magnetic charge, namely, a magnetic monopole. To
respect this law, the extremal black hole must exhibit a Meissner effect, and expel
the magnetic flux from its interior. In the case of the Wald solution, the flux lines
then cross the horizon for nonextremal black holes, while for all extremal black holes,

the flux is expelled.
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The Meissner effect for extremal black holes can be understood as follows. In the
special case of the extremal limit, we saw in Section 1.1.2 that in the near-horizon

region of a black hole the proper distance along a radial geodesic becomes infinite,

T++€ r++e€ 1

\/gffdf ~ / —dr — oo, (3224)

T4 T4 r

where 7 = r —r,. Now, as a simple example, consider a disc in the equatorial plane
extending outwards from 7, to 7. + €. As a result of (3.2.24), such a surface has
infinite area. If the constant magnetic field lines in the z-direction were to cross this
surface, then the magnetic flux leaving the disc would be infinite. To obey Gauss’s
law in (3.2.23), and thus avoid producing a magnetic monopole, the magnetic field
must then vanish on the horizon, giving rise to a Meissner effect. Specifically we
require that B, — 0 faster than A — 0. The effect is depicted in figure 3.3.

Note that for a vortex rather than a uniform magnetic field, the magnetic flux
is also set to zero when the gauge field goes to vacuum, P, — 0. Therefore, if the
fields are already in vacuum at the equator, or before, such as is the case for larger
mass black holes, then the magnetic flux cannot sweep over the horizon as P, = 0
along sections of it. The vacuum is the lowest energy state, thus the fields cannot
be pulled out of vacuum so that the flux lines can engulf the horizon. The field lines
have then nowhere to go unless they pierce the black hole.

The Wald solution (3.2.21) thus provides a hint of what we might expect for the
Kerr vortex in the limit that the horizon is well below the scale of the string. In that
case, the black hole would be situated sufficiently deep within the core that it feels
only a uniform magnetic field B, around its exterior, associated with the massless
gauge boson. However, we cannot simply use the Wald solution as an approximate
solution in the core, because the electric field is very different. In particular, due to
the fact that the photon is massless throughout the whole of spacetime for the Wald
solution, the field lines can sweep outwards from the equator, whereas our photon is
massive beyond the core, thus these lines must be contained within the core. That
is why our approximate solution for P, in (3.1.15) does not converge to the Wald
solution in the appropriate small mass limit.

In what follows we will show, using analytic arguments, that the Meissner effect

indeed arises for the Kerr vortex. This effect, as for the Reissner-Nordstrom case,
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Figure 3.3: The Meissner effect for an extremal black hole: The net magnetic flux
leaving the surface S must vanish. Therefore, the magnetic field B, must vanish
on the horizon such that the flux passing through a near-horizon equatorial surface

(upper purple disc), which has infinite area, does not diverge.

only occurs for sufficiently small black holes, which makes perfect sense in the light
of Wald’s construction. As for the Reissner-Nordstrom case in Section 2.5.2, we will

derive the limits on the masses required for expulsion and penetration.

3.2.1 Near horizon expansion

We see from the form of the gauge boson norm P in (3.1.7) that one combination
of P, and P, must vanish on the horizon in order for the system to remain finite,
while another combination does not vanish. To study the near horizon limit, it is
then useful to rewrite the vector field in terms of the alternative variables P and @),

where
P=P,+ asin®éPp,,
(3.2.25)
Q = p2P1€ + apgo )
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giving
P2 Q2 A 2(7" — GM) ng cot 9X9
— X==X —X ’ ’ 2.2
3 sin?f ZA] yo + Y r by + )y (3:2.26)
+%X(1 - X%,
X2pP A Py cotOPy 2a? sin’f 2P,
= —P . — : 1-— . 2 - M - A
g DREURES ol SER R RURICIDRL
2a sin?f
a;;q (rQ}r —cot0Q p + aP — Q) , (3.2.27)
XQQ A Qﬁg cot QQ’Q AGMr
5 = oo (- )
2A
tse [cot0(Q o — aPp) — r(Q, — aP,) + Q — aP)]. (3.2.28)

For the extremal Kerr black hole the metric function A has a double root, A =
(r —r4)?, and so as with the Riessner-Nordstrom case in Section 2.5.2, we expand

the fields near the horizon as

X = 50(0)+<T—T+)€1(9)+ R
= m(0)+ (r—ro)m@) +..., (3.2.29)
= Po(0)+ (r—r)vi(0)+....
Eq. (3.2.27) (or finiteness of energy on horizon) then implies that 1)y = 0. To leading

order, the equations then read

2 2

! 4 cot 0€ + %*(1 +cos20)&(1 — €2) — [ 'W(;Q . w%] & = 0,(3.2.30)
sin
3cos?f — 1 25sin?6 r?
Ty — cot 0 T cos0 T + T 00820(1/;1 + o) — E*égﬂo(l +cos’d) = 0,(3.2.31)
3 — cos?0 r2
1, + cot QWQﬁi — %531/)1(1 + COS29) = 0 . (3232)

Note that although the expansion does not in general decouple from the bulk (be-
cause of the appearance of the bulk field ; in the equation for &) it does form a
closed system in this extremal case, as we have an equation for each of the three
fields, &y, mp and ;. The constraints on the solutions are that they must be sym-

metric around = 7/2, and obey £, =0, mp = 1 at § = 0, 7.
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3.2.2 Flux penetration and expulsion

Let us first show that for large black holes, a string will always penetrate the black
hole horizon. Similar to the extremal Reissner-Nordstrom case, we proceed by
contradiction. Returning to the full bulk equation (3.2.27), let us assume that
flux expulsion occurs, ie. at ry = a = GM we have X = 0 and P, = 1 (with
P, = —1/2r, from (3.1.17)) leading to P = my = (1 + cos?#)/2, and hence (3.2.31)
yields ¥ = Q'(ry) = —1.

Therefore near r, where X > 0, P < 1 and X? < 1, both 9,(A9,X) > 0 and
(Q*/AY — X?/2) > 0. Hence Eq. (3.2.27) implies
%ri sin®0X 4+ sin00,(sin 095 X)

1

< iri(l + c0s?0) sin®0.X + sin 00, (sin 00, X ) < X P* < X .(3.2.33)

However, this is the same equation as the one obtained for the Reissner-Nordstrom
black hole in (2.5.61), which is extensively discussed in Section 2.5.2, and the dis-
cussion therein therefore applies. Hence we conclude that for any r, > /8.5 ~ 2.92
the vortex must pierce the extremal Kerr black hole.

Let us now look more closely at what happens on the horizon. An inspection of
(3.2.32) shows that if £ # 0, then ¢); = 0. Specifically, at the turning points ¢/} = 0,
we find

2

| = gfﬁ%(l + cos? ). (3.2.34)

All quantites on the right hand side of this expression are always positive except
for ¢, thus we see that ¢; has a maximum ¢} > 0 (minimum ¢} < 0) only when
it is negative (positive). Now, if # = 0, the second term in (3.2.32) is divergent
unless it corresponds to a turning point, ¥} (0) = 0. As &(0) = 0, we then find that!
] (0) = 0. Then, as we move away from 6 = 0, if 1;(0) is negative then ¢] < 0,

thus 1y is always decreasing and can never reach a minimum, as this would require

ITo confirm that the second term does not diverge, we could use ’'Hopital’s rule to show that

@) _ o wi0)
gl—% sing gl—rf(l) cosf o), (8:2:35)

then (3.2.32) yields 1" (0) = 0.
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11 to be positive. The reverse occurs for positive 11, namely it aways stays positive.
The fields should be symmetric around 7 /2, and this is only possible if ¥; can have
a turning point there. However we have shown this to be impossible, as long as
& # 0, which it isn’t as long as 8 # 0. Therefore we see that ¢; = 0 as long as

§o # 0.
Egs. (3.2.30) and (3.2.31) now read

I , 7’3_ 2 2 7T(2)€0 _
o +cot & + —-(1 4 cos™0)&(1 — &) — —= =0,
2 sin“¢ (3.2.36)
3cos?0) —1 2sin’0 B i

7y — cot f Emo(1 4 cos®d) = 0,

1 + cos?0 o+ 1+ o520 ° 5
and form a pair of coupled equations for the two purely horizon fields &, and g,
decoupled from the bulk. Based on energetic considerations, let us assume that these
fields have only one turning point on the horizon. In this case, the field & would
start from zero at # = 0 and monotonically increase to reach its first maximum at
0 = 7/2, {&(m/2) < 1, while the value of my would monotonically decrease to reach
its first minimum my(7/2) < 1. Since 7} (7/2) > 0, the second equation at § = /2
implies that 75 &y(7/2)* — 26 > 0, and therefore, 73 > 25. Thus we see that for
r, < v/2f the penetrating solution cannot exist and the black hole must expel the
flux.

We will now demonstrate that flux expulsion is indeed a solution of our near
horizon equations (3.2.30)—(3.2.32). Consider the flux-expelling case for which & =
0. Using the boundary condition }(0) = 0, (3.2.32) solves to 11 = const., and
(3.2.31) has the general solution 7y = Asin*( + cos 6 — ;. Applying the boundary
condition my(0) = 1, and using the fact that the solution must be symmetric around
7/2, then yields v = 0, ¢; = —1. Then, using the fact that P(ry) = mp = (1 +
cos?6)/2, we find that A = —1/2. Therefore the solution reads 7o = —3 sin®0 + 1

and ¥y = 0. In the original variables this corresponds to

1
P, = 1 P=——— 3.2.37
@ ) t 2T+ 9 ( )

on the horizon and hence represents a flux-expelled solution. Let us point out

that if there is a phase transition between the flux penetration and expulsion, the

value of ¥ on the horizon necessarily suffers from a discontinuity: ¢; = 0 for flux
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penetration, for which & > 0, whereas for £, = 0, the case of expulsion, ¢, jumps

to ’g[)l = —1. Therefore
lim 7£ . 3.2.38
501 ot wl wl ¢ ( )

0=0

Our analytic arguments suggest that similar to the Reissner-Nordstrom case,
there exists a critical radius 7., 1.41 < r. < 2.92 for g = 1, below which the flux is
necessarily expelled. Numerical investigations actually indicate r. ~ 1.912.

Figure 3.4 displays a comparison between the Kerr and Reissner-Nordstrom
phase transitions for several values of 3, where the maximum value of the Higgs
field, £y (m/2), which is the order parameter for the transition, is plotted against the
horizon radius r,. We see that the nature of the phase transition is different for
the two black holes, and furthermore, the two cases exhibit a different response to a
variation of the Bogomolyni parameter 3. The Bogomolyni paramater governs the
ratio between the Higgs and gauge field masses, therefore a drop in [ corresponds
to a narrowing of the gauge core. This leads to a lowering of the critical radius for
flux expulsion, which both black holes exhibit. However, the Kerr black hole has a
higher critical radius when f increases. In fact, we see from (3.2.36) that my now
has two contributions to its effective mass that come with opposite signs, while the
Reissner-Nordstrom Higgs field has only a single, negative contribution. For Kerr,
the positive contribution is purely geometric, and disappears at § = 0 as it should.
The negative contribution comes from the Higgs field &,, and this contribution must
dominate to prevent the flux of 7y from being expelled. Due to the fact that this
contribution includes a factor of the form 73 /3, it is clear that an increase in § will

dampen this term and thus increase the critical radius at which expulsion happens.

3.3 Backreaction of the vortex on the black hole

We have seen that while the spacetime around a cosmic string is locally flat, globally
it is not Euclidean: instead, the string cuts out an azimuthal deficit angle at infinity.
When a cosmic string is threaded through a black hole, one must essentially combine
the spacetimes associated with the two objects in some appropriately stable way.

For static black holes, intuitively it is easy to imagine that the conical effect of the
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Figure 3.4: Phase plots for the RN and Kerr extremal black holes. The maximum
value of the Higgs field, X,, = &(n/2), is plotted against the horizon radius 7.
The transition is shown for different values of the Bogomolnyi parameter: 5 = 10

in dotted black, 8 =1 in solid blue, and § = 0.1 in dashed red.

string is simply centred on the black hole, and this is precisely what studies have
revealed [80,83]. However, in the Kerr spacetime such a conical effect could not
be consistently quarantined away from the time direction, as this direction is not
orthogonal to the azimuthal direction. Nevertheless, in the literature it is often
simply assumed that the effect of a cosmic string in a rotating background is to
induce the usual azimuthal deficit angle at infinity [97,110].

In fact, what occurs in the Kerr spacetime is much more interesting: we will show
in what follows that the string induces a conical deficit angle from the perspective
of an azimuthal coordinate that is co-rotating with the black hole. This means that
the black hole horizon, a rotating 2-sphere, will feel an azimuthal section cut out
of it as a result of the string.. Seeing as the horizon is rotating with respect to an
asymptotic observer, such an observer sees a deficit angle in the union of the time
and azimuthal directions. Only at spatial infinity, where the rotation is no longer
felt, will the deficit angle emerge entirely in the azimuthal direction.

We will now derive this effect concretely. We have demonstrated above that
the analytic approximations for the fields (3.1.15) are in excellent agreement with
their numerical counterparts, therefore, in order to proceed analytically, we will
henceforth make use of these approximate solutions. Our approach is then to follow

the perturbative procedure which we used for the self-gravitating vortex in Section
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Figure 3.5: The black hole horizon shown with a wedge removed as a result of the

gravitational effect of the string.

2.4, namely, we expand the Einstein equations in powers of € = 8wGn?, and use the
probe vortex solution to compute the leading order gravitational correction to the
Kerr spacetime.

We first need to select an appropriate set of coordinates for the problem, which
reflects the axial symmetry of the Kerr-string system. A convenient choice for the

metric is (see e.g. [111])
ds* = e*dt* — o’e” > [dyp + Bdt] g 2N (da? + dy?) (3.3.39)

where the functions «, B, v and A are functions of the x and y coordinates only. The
Ricci tensor of this metric is given by:

2(A—v) Via

R, = %e—w“) [—3va VB +4aVB -V — av2B] , (3.3.41)
Ry = —5e |07 (VB)? + 2V - 2Va - VA - 2aV2)] (3.3.42)
2(A—v)
Ry + R} = ¢ 50 [2V2a —a’e™NVB)? +4e'V - (aVe™?)
+4aV2u] , (3.3.43)
1
Ry, = o [a?’e—MBg;By — dad Ay + 2(ouy + o) — QOzxy] , (3.3.44)
2(A—v)
Ry = < 50, [—a3e’4)‘B§ +2aV2 (v — ) = 2(av, — Q)

—~2Va - VA + 4002 + 2ay, | (3.3.45)
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In the above, /=g = a e**~Y | the two-dimensional gradient operator V = (9,,d,),

and the Laplace operator V* =V -V = 97 + 0. In particular, defining’

T = y=20,

dr
VA’
the background (Kerr) solution can be written as

2aGMr oo _ AY? 2o _ g

aOZ\/Zsine, By =— T T T

The Einstein equations take the form

1
R, = e(TW - §Tgm,> ,

(3.3.46)

(3.3.47)

(3.3.48)

where the Ricci tensor is expanded as R, — R,,+0R,, around the background Kerr

solution, which is given by the Weyl expressions (3.3.47), and the energy momentum

tensor is built from the energy of the probe vortex. The components of the energy

2Note this is not the usual Weyl gauge, in which the « variable is typically equal to one of x

or y, however, this choice proves easier to analyse, and is closer to the standard Boyer Lindquist

Kerr gauge.
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momentum tensor take the form

1

1, 9 ,  X?
St TCSERVRE

4 A
[D(PZ + AP?) + QPS4+ AP )]

X5+AX2) +

s

N
2

T = Aﬂz D(PuoPog + AP Pyy) + 2GMar(P2y + AFZ,)|

2X? 2

+ 55 (TPP, +2GMarP}),

L3+ AX2) 422 - 12— 2 [rp2 4 op]

SR AY

g

_AZQ [F(Pt% + APtQ,r) + Q(Pja + AP27T):| )
T — l(XQ—AXz)—l-l(XQ—l) —X—2[FP2 QP2—|—
T ) 0 2 4 AY ¢
p
+ 5 [F(APﬁT — P2)+ Q(P2, — AP2)
+4GMar(AP, Py, — B&,&P¢,0)i| ,

2/
T, = 2AX,X, — 2
v ’ VAY

—QPyPoy|
1 1 X?

[TP? + QP}]

T = —5(X}—AX2) + (X* - 1) = TS TP - QP2+ — ==

AY

s
D(APZ = P2,)+Q(P, — APL,)

CAY2
+4GMar(AP, . Py, — Pt,0P¢>,9):| 5

where for compactness we have introduced the function

A — a?sin?60

sin’ @

0=

4G M ar
AY

[FPt,gPt,r + 2GMar(PogPy, + PsyPi)

(3.3.49)

(3.3.50)

(3.3.51)
PP,

(3.3.52)

(3.3.53)

In the thin string limit, using the approximate solution (3.1.15), these become

X2P2 P’2 1
+ﬂ +4(
X2P2 PP 1
%20— R2 (X2—1) = —Pxr,
X3P} P2 o1
PRt

R(E + Pgr),

p
4G Mra
e

T~ T ~ X2+ X;-1)?=¢,

TY ~ — X[ +

Y
T@zX’Q—
\/_r

(X2 - 1) _P¢?

Ty ~

T, ~ — [(p° — 4r*)RPP' — &’ R*(X*P* + P?)] ~ 0,

(3.3.55)
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where & etc. denote the energy-momentum components of the Nielsen-Olesen vortex,
defined in (2.4.32), which are simply functions of R = psinf. Because these com-
ponents are functions of R only, this leads to a modification of the Kerr geometry
which is also dependent on R.

Note that far away from the black hole in the polar direction r cos#f, the per-
turbed Kerr metric should asymptote towards the metric of the self-gravitating
vortex. Thus we expect the corrections to take the form that da = eapai(R),

O\ = dv/2 = e\ (R). We will therefore consider general perturbations of the form
a = oz0<1 +eap(R) + 0(62)> , a= B <1 +eBi(R) + 0(62)> : (3.3.56)

A= X+ e (R) + O(e?), v =1y +ev(R) + O(?). (3.3.57)

Using these expressions, we find for the curvature:

62(/\0—1/0)

SRS+ RY) = e— [QVao-v@1+aov2a1] (3.3.58)
0

e2(Ao—r0)

O(Ry) = —e

- [age*%va) - (3Vay — 4V
0

+ade VB, - VB, + V- (age—“OBOVBl)] (3.3.59)

0606_2110

2
+2VBO . V<BOB1)) - 20&0V0[1 . V>\0 - 2VC¥0 . V)\l

0(Rypp) = —€ [age_4’\°((VBo)2(2a1—4)\1)

+4V0&1 : VOC(] + 2040V2a1 — 2a0V2)\1] (3360)

e?(z\g—yo)

S(RT+RY) = ¢ [anv%q +4Vag - Vay + 4agV2i,

20(0
—ade ™ ((VBy)?(2a1 — 4\) + 2V By - V(ByBy))

14 (agVay - Ve — V. (aoe*ovxl))} (3.3.61)
1
5(ny) == Eg |:OZS€74)\O (BOx(BOBl)y + BOy(BOBl>:E + (20{1 — 4)\1)BOIBOy)
0

_4050()\050)\13/ + /\1:(3)\0y) + Aoz lV1y + Qoyl1g + Qo012 Voy

QoO1ylVoz — 2(0[01,(1/17; + Aoy A1y + O{[)O[lxy)i| (3362)
62()\071/0) 5 )
O(RY) = e ——|=aje (a1 = 4N)(By,)* + 2Bo,(BoB1),)
0

+20£0(V21/1 — v2>\1) — 2@0(0&19V0y — Oéleox)

—Q(Oégyl/ly — Olonlx) — 2((1/0V011 : V)\() + VO./O : V)\l)} (3363)
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Notice that the perturbations of the B function always come with prefactors of the

derivatives of By, which is O(p~3). Given that the overall prefactor
I sin’ 0
adeo = Z T _ g, (3.3.64)
VAY?

we see that B; terms are always subdominant.

To expand the equations, we make use of the derivatives given in (3.1.11) to

obtain the following expressions:

0 0 VArR d  d
V= (%, a_y) - (—p2 = pﬁ%> , (3.3.65)
2 AR? 2 A 92 R2\ 2 d
v AR & rRA 4 —’:p2(1——>—— & (3.3.66)
Ox? p? dR?>  2p? dR oy? p?/ dR? dR
AR\ d? rRA' d
2 a2 92 ., 2 _R)
VI= 02+ 02 g1+ p4 )dR2+( 7 R>dR' (3.3.67)
First, consider the Einstein equation (3.3.40),
S(RE+ R?) = —€(£ —Pr). (3.3.68)
Expanding (3.3.58), the right-hand-side becomes
2 AR? R?*  3rR2AN o
t © — P_ = " o -1
6(R; + RY) ez[(1+ i >a1+<2 p2+ 2 )R}
2
— ¢ [0/1' +=af+ O(p—ﬂ , (3.3.69)
yielding a simple ordinary differential equation for o at leading order,
/
o + 2% = —(E—Pp), (3.3.70)
which is solved by
R 1 R
o] = — / R(g — PR)dR—F E / R2<5 — PR)dR (3371)
0 0

At leading order, this is in fact identical in form to the self-gravitating correction
(2.4.36).
Next, recalling that B and its derivatives are subdominant, we obtain for the

Einstein equations (3.3.42), (3.3.43) and (3.3.45)

1
0R,, = —eR[Ra+2a}— RN/ —\|] = R? {5 +5(Ps - ’PR)} , (3.3.72)
/ A/
S(R:+RY) = e {a’{ + % + 20 — 20 — 251} = —€[&—Py] (3.3.73)

“o_ A_'l} _ {5 - %(m - PR)](3.3.74)

a/
OR) = e{a’{—l—ﬁl—kvf—)\f—}% B
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Inserting (3.3.71) into the first of the above equations yields precisely the expression
(2.4.38) which we obtained for the self-gravitating vortex,

Nl
PURS El = 5(Ps+ Pn), (3.3.75)

and thus as we have seen, is solved by

1 R
0

Finally, subtracting (3.3.75) from both sides of (3.3.73) yields
2a/ 3N 1
€ Oé” + E + 2V” - 3)\” — E] = —€ [5 — 5(73(75 - PR)] 5 (3377)
and consistency with (3.3.74) then implies that vy = 2\, just as we found for the
self-gravitating case.

We can now check the remaining equations:

SRy, = —eVA % [Ra] + 20/, — 4N] = eVA % €+ Pl , (3.3.78)
GMra / /
0R, = ¢ > (p* — 41 + 2a°) R® [3c — 4X]] (3.3.79)
B AGMra

=~ [(p* — 4r*)RPP' — > R*(X*P? + P?)| = O(r? /1°).

Pulling all the details together, and looking outside the core of the vortex, we

see the leading order asymptotic form of the Kerr-vortex is

2GM Mar sin 6)? 5
ds? = (1 _ 2GMr | 8(GMarsing) e,&) At —xdf* — i

> > (3.3.80)
r AGMar sin? -
- E(l — 2¢f1) sin6) dp* + W(l — 2ef1)dtdyp,
where
o= / REAR (3.3.81)
0

is the renormalised energy per unit length of the string.

Thus we see that in Boyer-Lindquist coordinates, the conical effect of the string
emerges in the time and azimuthal directions. On the other hand, transforming to
a to a frame co-rotating with the black hole, oy = ¢ — Qut = ¢ — B(r,), we see
that the conical effect is then indeed confined to a purely angular direction, namely

the azimuthal direction in the co-rotating frame, such as on the horizon. Note that



3.4. Discussion 99

this is not inconsistent with the conical effect in the static case, as in that case,
there is simply no difference between the azimuthal coordinate at infinity and on

the horizon.

3.4 Discussion

In this Chapter we have seen that a vortex in a rotating spacetime necessarily
picks up a time component P;, and this significantly enhances the phenomenology
of these composite vortex and black hole systems compared to their purely static
counterparts. Importantly, including rotation has enabled the interactions between
vortices and black holes to become relevant for cosmology and astrophysics. As we
have shown, a vortex is quite able to form a stable state with a rotating black hole,
which implies that these objects do not repel one another, nor does a black hole
accrete a string that pierces it axially. Therefore, it would be interesting to look for
signs of these composite objects in galactic systems, now that we know that they
are possible.

While conventional strings do not feature an electric field, as even if one con-
siders a time component of the gauge field to be present, it is not relevant for the
description of the static vortex, we see that in the rotating context, an electric field
is necessarily generated. That this is a genuine electric flux, and not some frame

dragging transformation effect is easily verified by computing

8GMaPy(R)P}(R)(3r? — a?)
RpS

IFAF|~E-B~ (3.4.82)

for the approximate solution, which is clearly a nonvanishing quantity. The emer-
gence of electric flux is thus a frame-independent effect, and as we mentioned earlier,
can be viewed as a manifestation of Faraday’s law in astrophysical systems.

Given that a Kerr black hole admits an extremal limit, we explored the possible
emergence of a Meissner effect for low mass black holes, as such an effect is known
to arise for low mass extremal Reissner-Nordstrom black holes [95]. We confirmed
that the Meissner effect appears for the Kerr black hole, however in contrast to the
Reissner-Nordstrom case, the transition between piercing and expelling phases is

discontinuous.
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It is worth mentioning that a large degree of sensitivity arose in the numerics
for the extremal Kerr black hole at low mass, which points to a possible physical
instability in the system for these regions of the parameter space. We conjecture
that this could be due to a super-radiant instability analogous to the instability in
Kerr-AdS [106,107]. For the latter case, perturbations can be amplified due to the
confinement of the AdS spacetime, which our system in some sense replicates as a
result of the confining nature of the core of the string, which is the only massless
region in our spacetime along which perturbations can freely propagate.

Finally, we explored the gravitational backreaction of the Kerr vortex, which
revealed perhaps the most important implications of these systems for cosmology.
We found that the rotation mixes the azimuthal conical effect of the string into the
time direction. This is particularly interesting because it implies that the ergosphere
is shifted, as well as, possibly, the innermost stable circular orbits of objects close
to the black hole. The behaviour of test objects around this system is still to be
explored, however based on the above, such a study is indeed compelling.

To summarise, the Kerr vortex system has turned out to be quite surprising in its
degree of phenomenological intricacy. Coupled with the fact that it is precisely the
rotating system which is physically relevant, this certainly warrants further study

of these objects in the light of the observations made herein.



Chapter 4

Vortex Hair for AdS Black Holes

In Chapter 4 we studied the composite Kerr-vortex system, and saw that not only
can a stable, time-independent configuration of the two objects exist, but further-
more, the addition of cosmic string hair to the rotating black hole opens up a new
branch of phenomenology in these spacetimes.

Formally, we saw that a rotating black hole can only consistently accommodate
a cosmic string piercing through it if the gauge field picks up a time component.
This component produces an electric field close to the horizon. One can think about
this as a cosmological manifestation of Faraday’s law, namely that rotation in the
presence of an external magnetic field produces an electric field. Indeed, the timelike
direction is not orthogonal to the azimuthal spacelike direction in the Kerr spacetime,
therefore one cannot think about quantities associated with the azimuthal direction
independently from those associated with the time direction. Another consequence
of this emerged in the way that the cosmic string perturbs the Kerr spacetime. In
a static background, it is well known that a cosmic string produces a conical deficit
angle in the azimuthal direction. However, in the Kerr spacetime, we demonstrated
that the metric is conical with respect to a local co-rotating frame, which includes the
time direction. Finally, an exploration of low mass extremal black holes confirmed
that these black holes are able to expel the vortex flux from their cores, exhibiting
a Meissner effect. Unlike Reissner-Nordstrom black holes, the transition between
expulsion and piercing turns out to be first order, once again due to the presence of

the additional degree of freedom in the gauge field.
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We will now investigate the impact of a negative cosmological constant on the
black hole and vortex system. To be completely general, we will consider Kerr-
Newman AdS black holes, therefore we cover all previously studied cases in various
limits when the AdS length is taken to infinity.

While the inclusion of a negative cosmological constant may not be relevant
for cosmology, from a theoretical perspective the system is very interesting: In
holography, a vortex in the bulk has an interpretation as a defect in the dual CFT
[91,112], corresponding in the dual superfluid to heavy pointlike excitations around
which the phase of the condensate winds.

In the current work, we will treat the vortex as a probe, and obtain approximate
analytic as well as full numerical forms for the profiles of the vortex fields. We will
then study the Meissner effect in detail.

This Chapter is based on the work done in Ref. [116].

4.1 Vortices in AdS

We have thus far been discussing vortices in black hole backgrounds which are
asymptotically flat. Therefore, far away from the black hole, the system will closely
resemble the Nielsen—Olesen vortex in flat space. For the AdS black hole, the back-
ground is not asymptotically flat, but rather far away from the black hole, one will
feel a negative cosmological constant in an otherwise empty spacetime. Therefore,
before discussing black holes, our first task is to understand what the vortex would
look like in a pure AdS geometry.
The AdS background may be described by

2
ds? = — (1 n ;—Q)dtZ n + r2d6? + 12 sin?0d?

dr?
142
2+ R? ( ;i )32 2dR? Ly
= — dt? dz? + ——— 2do? .
i tas e terp T

By writing the AdS metric in this second, cylindrical, form it becomes clear that if
we align the vortex in the {R, ¢} plane, the equations of motion will be independent
of Z, and hence as with the case in flat space, our vortex (2.3.10)-(2.3.11) can be

represented by a set of ordinary differential equations.
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Figure 4.1: AdS-NO vortex: The values of X and P for the AdS NO vortex are

depicted as functions of R.

Employing the Nielsen-Olesen ansatz for the fields in (2.4.14), these equations
take the form
R? 4R 1 P2X, 1
(1+£—2> X+ (ﬁ—i—ﬁ) X(;—OR—2—§XO(X§—1) =0,

R? 2R? P, X2PR
1+— | P+ (1) 20 =200
() e () 75

(4.1.2)

For R — 0, we see that the effects of the negative cosmological constant on the
vortex drop away, and the equations in the AdS background resemble the Nielsen-
Olesen vortex equations in (2.4.15). Therefore, the innermost core region of the
string does not notice the effects of ¢. For R 2 ¢ however, the functions X, and
Py are modified by the cosmological constant. In particular, one can see that their
asymptotic profiles become power law rather than exponential.

Figure 4.1 displays the profiles of the Higgs and gauge fields for the AdS vortex,
across two orders of magnitude for the AdS length ¢. At large ¢, the vortex closely
resembles the flat-space Nielsen—Olesen vortex, whereas as ¢ drops down towards
the scale of the vortex, we see that the profiles become much more narrow, with

the power law fall-off to vacuum becoming more pronounced. Note that while it is
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possible to solve the equations at a scale of ¢ < 1, in this region a physical vortex
might not in fact arise. This is due to the fact that the false vacuum of the Higgs
field becomes stable for Compton wavelengths above the AdS scale [113].

4.2 Vortices in Kerr-AdS

We will now study two limits of the vortex and black hole system analytically. The
first is the thin string limit, which should allow us to obtain an analytic approxi-
mation to the full vortex solution that can only be found numerically. The second
is the extremal limit, which should allow us to investigate the Meissner effect, and
construct a proof for its existence.

We begin by writing down the charged rotating black hole solution [114]

A 20 D) ) in?0
as? = -5 ldt— asin d¢} e osin [adt— rtd dqb] (4.2.3)
where
2 2
Y = r*+a’cos’d, == 1—;—2, S = 1—2—2(30829,
2 2 r? 2
A = (Pt (1+75) - 2mr+ g, (4.2.4)
and the U(1) potential is
2
a=% <dt - 9d¢) . (4.2.5)

The mass M, the charge Q, and the angular momentum J are related to the pa-

rameters m, ¢, and a as follows:
aM=2, co=21 aqr=2.. (4.2.6)

The ergosphere is located at A = a?Ssin?#, and the horizon at A = 0. Note that
there is a restriction on the values of a, namely that they should always lie below
the scale of ¢. This restriction impacts the ¢ direction, and, on the equator, the
0 direction. Furthermore, it affects all parameters associated with the spacetime
as defined above, as well as the U(1) gauge potential. Solving A = 0, which is a

quartic function of r, the outer horizon r, corresponds to the largest real root. The
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Figure 4.2: Behaviour of the horizons: The behaviour of the non-extremal hori-
zon (Left) for m = 5, a = 1 and ¢ = 0, and of the extremal horizon (Right) for

a =1 and ¢ = 5, as functions of ¢.

functional form of r(m, a, ¢, ¢) is complicated, however in the extremal limit where
r, = r_ it reduces to a more tractable form, r(a, g, ¢), namely

1/2 1/2
/ a2\ ? a? + ¢? a?
= — 1+ — 12 —— — |14+ — . 4.2.
Y; ((*ﬁ)* ( r ) (*ﬂ) 427

The extremal horizon shrinks significantly as ¢ falls to low values, and in the presence
of a charge ¢ asymptotes to \/q_/f This is also true for the outer horizon radius
(which asymptotes to m!'/3¢%/3 in the absence of a charge). Finally, for large ¢ the
outer and extremal horizons asymptote to their Kerr-Newman counterparts. The
generic behaviour of the horizons is illustrated in figure 4.2.

Due to the presence of rotation, there are three degrees of freedom that are

relevant for the description of the vortex in this background, namely X, P, and F;.
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The equations for these fields become
2

2a
0 = AX, +A'X, ~|—SX99+Cot9<S—|——sm 9)

62
)y
+YP2X — §X(X2 -1), (4.2.8)
X? A S 2a= cot 0
Fpt = EPW«T + Eptﬁo + T( 25 A + 2 ESID 9) P(b’g
~55 (2r(Sa?sin®0 — A) + 24 Py,

cot 0 DY
=3 <S(p4 + a*sin'f) — 2a® sm29<A /762 )) Pig
sin?f 9 2rp? A
— (a*(erets + za) - = )P (4.2.9)
X2 A S p?
7P¢ = §P¢7rr + §P¢’99 + ﬁ(QrSa SlIl26 + EA, — 27’A)P¢7r
—|—COt0 2a* sm20<A - —Z sm29) S(aQ sin*f(p® — ¥) + 4) P
3 02 P P .0
2 cot fa® siné ) r2
e (A—p (1+ 62)) o
asin®0
t %3 (27’ (0'S = A(Z+p?)) + pZEA’) Py, (4.2.10)

where p? = r? + a? has been introduced for visual clarity, A’ = dA/dr, and
P2 _ (0*P; + a=Py)* (2P, + asin®§P,)”
o LA .S sin%6 '

(4.2.11)

4.2.1 Approximate solution

As with the asymptotically flat black hole spacetimes, at small enough scales the
effects of curvature are expected to be irrelevant for the vortex. In this thin string
limit, one can find an appropriate combination of r and € that acts as a radial
distance from the core of the vortex in cylindrical coordinates, such that the vortex
equations may be written as ordinary differential equations at leading order.

For the AdS black hole background, consider the function

R= —sm0 (4.2.12)

N

which tends to the Kerr expression psinf as ¢ — oo. Then, assuming that the

vortex is much thinner than the black hole horizon radius implies that p > 1,
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and restricting attention to the core region of the vortex [R < O(10)] implies that

sinf < 1. The metric functions may then be expanded as

2 P2— 2 P2
o a“R°= 2 = a‘R =
Y=p (1— i )_p, S—H(1+£2p2)_u, (4.2.13)
and derivatives as
o _ Rrd 0 _ p (, ERN"d _ pd
or  p2dR’ 00 = p? dR ~ /ZdR
o2 o2 AR>?] 2 Aa? d

A—+S— = — R? — S|R— (4.2.14
ar? " g [( Pz }dR2+<p4 )R (219

12

)+

) < AR2>
dR?"

Following the same procedure as for the Kerr case in Section 3.1.1, one can then

extract approximate analytic forms for the fields by expanding the vortex equations

out to order O(p~2). This procedure suggests the following forms for the approxi-

mate analytic solution:

X~ Xo(R), P,~Py(R), P~2(= - E)PO(R) , (4.2.15)

which to leading order give the approximate equations:

AR? AR\ X}  P2X, X
o:<1+ i )X{{+(1+ i )——0—0——0()(3—1),
X2 AR? (2A — rA") R?\ P!
Ip=(1 P'— (1 =0
50T ( " p4> " ( B R

There are several things to notice about the forms of the corrections in these equa-

tions. For the Kerr case, the metric function A = O(p?) to leading order, therefore
we did not retain the terms that were proportional to A, and we recovered the
Nielsen—Olesen vortex equations (2.4.15) at leading order. However, in the presence
of a negative cosmological constant, we instead find that away from the horizon,
A ~ p*/0? to leading order. Retaining the terms proportional to A, we then recover
the AdS Nielsen-Olesen equations (4.1.2) at leading order. On the other hand, bear-
ing in mind that the horizon radius shrinks rapidly for low values of ¢, we see that
retaining terms proportional to R?/¢?, which only makes sense if £ < R, could take
us outside of the realm of validity of the thin string limit, which relies on the string
being much smaller than the black hole horizon. To remain safely within the ap-

proximation, we require ¢ > (O(10), which allows us to drop these correction terms.
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Finally, we also see that on (or near) the horizon, the O(R?/¢?) corrections to the
Nielsen-Olesen equations fail to have the precise AdS form. As a consequence, while
the approximate analytic solution is reliable to good precision away from the horizon
of the black hole, near the horizon we would expect corrections to this solution at
order O(£72).

Note that asymptotically, P in (4.2.15) becomes proportional to Ps; and the

gauge potential becomes
a
P = Pydé + Pdt ~ Py(R) (d¢> + ﬁdt) , (4.2.17)

implying the presence of an electric field at large r along the string. This is in fact
an artifact of the Boyer-Lindquist style coordinates we have used in (4.2.3), which
asymptote to AdS, in a rotating frame with angular momentum ., = a/¢* [115].
Employing new variables,

a
p=d+pt, T=t, (4.2.18)
the asymptotic rotation is removed, and P becomes

a(2mr — ¢%)
Pz

P = Py(R) (dgp - dT) , (4.2.19)

which exhibits the appropriate fall-off at large r.

Figure 4.2.1 shows a comparison of this pseudo-analytic approximation with a
numerically obtained solution for an extremal low mass lowish ¢ black hole. We
take the values m = 3,/ = 20,q = 0, and with a ~ 2.939 at its extremal value
in order to draw a parallel with the plot in [98]. What is clearly shown is that
the approximation is extremely good almost everywhere, the only slight discrepancy
appearing near the event horizon — as expected given the structure of the corrections

to the approximation there.

4.2.2 Extremal black holes

We have seen that in the presence of an axisymmetric cosmic string, small black holes
with extremal horizons are able to exhibit a Meissner effect and expel the magnetic
flux of the string from their interiors. For the Reissner-Nordstrom case, we saw

immediately that the vortex equations on the horizon decouple from the bulk, and
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Figure 4.3: Approximate vs. numerical solution: In each case the numerical
solution is shown in solid colour, and the approximation in dashed black. Contours
of 0.1 — 0.9 (in steps of 0.2) of the range of each field are shown. From left to right:
The Higgs field in blue, the P, field in red, and Pr (the component with respect to
the nonrotating frame at infinity) in brown. For Pr, we show contours of 0.1 — 0.9
of the maximal negative value, which is attained on the poles of the horizon. The

outer grey curve represents the boundary of the ergosphere.
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admit a flux expelled solution, where the fields remain in the false vacuum uniformly
across the horizon. In the case of Kerr, the two components of the gauge field can be
written into linear combinations P and (), where finiteness on the horizon imposes
Q(r5) = 0. The horizon equations do not decouple in general, however in the special
case of flux expulsion, namely X (r;) = 0, P(ry) = 1, the decoupling takes place.
These flux expelled solutions were shown to be extendable into the bulk for both
Reissner-Nordstrom [95] and Kerr [98] black holes.

In the case of Kerr, one finds that the field @) is discontinuous between piercing
and expulsion. This leads to a first order phase transition, whereas for Reissner-
Nordstrom, the phase transition is second order, where the order parameter for the
transition is the magnitude of the Higgs field X measured at the equator.

We will now investigate the possible existence of a Meissner effect in the case of
AdS-Kerr-Newman black holes. Given that these black holes have extremal limits,
and are extensions of the Kerr-Newman family to one more parameter ¢, it is to
be expected that they too will exhibit a flux-expelling phase. We begin by defining

new variables P and (), where finiteness implies Q(r;) = 0:
SP =ZP,+asin®0P,, Q= p°P;+aZ=P;. (4.2.20)

The field equations (4.2.8)-(4.2.9) become

0 — %XW +%/X,T +ﬁ (S sin ex,g),g
+(2QZ - 2521129))(_%()(2_1)’ (4.2.21)
X;P _ %PM +§p’99 _i_EA/E;QQTART + % (46;—22 sin%0 — %(Z — 2a? sin29))P,9
2ai;l2 o ((TQJ —cot0Qy - Q) +aP(1- 7;_22> N TQ) , (4.2.22)
XL = L0+ 5w+ S a0+ )+ S)Q

+2Z—A2(a(rSRT —ScotfPy—(2—-S)P)—rQ, + Q) : (4.2.23)
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Expanding these equations using the expansions

X = &0)+ (r—r)&a@) +...,
P = m@)+(r—ry)m@) +..., (4.2.24)

Q = vo(0)+ (r—r)(0)+...,

as for the Kerr case, in the extremal limit and on the horizon they reduce to

2
ST

/ _ )Y
(Ssinfg)) = &sind Lmze —F — 7*(1 —53)} , (4.2.25)

S%r) ' ) £ 2a° i
(Z+Sin9) = Modsing [ﬁsinQH a Z_i (1 B 6_2)}

2ar S sinf
¥z

(4.2.26)

<SSLW1) _ &t sin 6, (4.2.27)

SN
Note that these equations feature two extra parameters compared to the Kerr case in
(3.2.30)-(3.2.32), namely ¢ and a. This is due to the fact that for extremal Kerr we
have r, = a, which also leads to a particularly simple factorization of >, , that is no
longer possible in the present case. However, we see that setting a = 0, ¢; = 0, and
S =1, these equations reduce to the Reissner-Nordstrom horizon equations studied
in [95], or setting @ = ry and S = 1, they reduce to the Kerr case. Therefore we
expect essentially the same analytic arguments for the existence of expulsion to hold
here.

Let us look first at the behaviour of the function ¢, as this will give us the order
of the phase transition. For the case of Kerr, we saw that ¢; = 0 if & # 0. We
will now show succintly that the same applies in the presence of . For a piercing

solution, & is nontrivial on the horizon, hence

0
SBsin Oy (0) = =, /0 21y sin 0df (4.2.28)

upon integrating (4.2.27). However, this cannot be true unless ¥; = 0. Indeed,
evaluating (4.2.28) at the first point at which 1] = 0 tells us that foe &2y sinf = 0.
But just as we argued for the Kerr case, 1 is either positive and increasing on
this range, or negative and decreasing. FEither way, the integrand is positive or

negative definite, thus cannot be zero. Therefore ¢; = 0 for a piercing solution
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& # 0. On the other hand, an expelling solution has §, = 0, with P,(r;) = 1 and
Pi(ry) = —aZ/p?, hence

= 2ar =2
e Qry) =1, = ———=, (4.2.29)

Pry)=m=—+,
(re) S P

where we use (4.2.26) to determine v in the above. Thus we see that 1 is dis-
continuous between expulsion and penetration, giving rise to a first order phase
transition.

Having demonstrated that an expelling solution exists on the horizon, we must
now extend this to the bulk. Namely, if the flux is expelled such that X(ry) =0
and P(r,) =1, then near r, where X >0, P <1 and X? < 1, both 9,(A9,X) >0
and (Q*/AY — X?/2) > 0. Referring to (4.2.21), this implies

2 2 2 2
(i +atcos’ )X g 3y X (4.2.30)
2 sin 6 sin 6

(S sin 9X79)79 +

which we take as a condition for a flux expelling solution to exist. Integrating on

[0, /2] then yields

w/2 2 2 2& in@
SSin90X790>/ ((T++a C;)S )Sln _ S >Xd9 (4231)
P sin 6

Defining « so that ¥, sin?a/S = 2, by taking §, > o we can bound this integral

from below using X (0) > X (6). We can also bound the derivative of X by X g, <
X(Bo)—X(a) X(90

Oo—a

, leading to

w/2
S'sin Oy ——=% X (6) > Ssin 6y X g, > X(@o)/ (

(r3 4+ a®cos?0) sin @ S )d@
00 — 0o ’

2 ~ sind
(4.2.32)
which implies

(6o — ) (7‘3_ cosfy  a?cos® B g a?

=1 BAUR I 1 (4.2,
S(@y)sinfy \ 2 6 Ogtan(2> 2 COS‘90>< (42.33)

on the interval [o,7/2]. If this inequality is violated, then we cannot have flux
expulsion, and the vortex must pierce the black hole. Note, if a = 0, then (4.2.33)
is independent of ¢, and reduces to the previously explored Reissner-Nordstrom
relation [95], giving the same upper bound on the horizon radius for flux expulsion
of v/8.5. For a # 0, we must explore the {a, ¢} phase plane (having ensured that a

solution « exists) to determine the upper bound on the horizon radius. Clearly if ¢
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Figure 4.4: Meissner effect: An illustration of the analytic bounds on the critical
horizon radius for the Meissner effect for ¢ = 0. In the shaded regions, the vortex
should either pierce the horizon, or be expelled as indicated. The critical radius
therefore lies between these two bounds. For sufficiently low ¢, flux is always ex-
pelled. Numerically obtained transition radii are indicated. The solid r, = £//3

line on the left indicates the a = ¢ singular limit.

drops too low, we require a large charge to allow for a solution to a. Hence for a
given ¢, we expect a minimal value of ¢ for this upper bound to exist. This is shown
most clearly for ¢ = 0, in figure 4.4.

To argue that a Meissner effect should exist for sufficiently low horizon scales,
we assume a piercing solution to (4.2.25)-(4.2.27) exists, in which X and P will have
nontrivial profiles symmetric around 6 = 7/2, with X maximised and P minimised
(at least for large ¢ or small a < ¢) at /2. If a = 0, the argument of [95] can be
used to deduce that for r, < 0.7 the flux must be expelled, and this argument can
be extended to include small a.

Following [95], assume a piercing solution exists, then (4.2.25) and (4.2.26) have

smooth solutions for & and 7y in which & increases from zero at the poles to a
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maximum at the equator, and my decreases from unity at the poles to a minimum

at the equator. Evaluating (4.2.25) and (4.2.26) at the equator gives the relations:

s r2 r2 r2
6’(5) =& [w8+7+(53—1)] <0 =m< 7+ (1-&) < 7* (4.2.34)
2
™o (9 =[S -2 (1-%)] 20 = ri =gt >20(1- Z—;) (4.2.35)

Since my < 1, the first relation gives no new information unless 7, < v/2, so we
will assume this from now on. The second relation clearly gives no information if
a = 0. For a # 0, we know that the size of the horizon cannot exceed the size of the
Kerr-Newman horizon,

7°2 < a2 + 27 4.2.36
+ q

therefore we see that

4a* > (a® +¢*)?* > 2d°B = a > /)2, (4.2.37)

thus for /8 = O(1), the bound (4.2.35) is violated at all ¢ for ¢ < a < 0.6. On the
other hand, finiteness of the metric requires that at all times we must have a < ¢,

therefore for small ¢ we have from (4.2.7)
r? ~ql, (4.2.38)

so the bound is violated for sufficiently small ¢ and ¢.

We will now generalise the argument for the Reissner-Nordstrom case in Section
2.5.2 to find a lower bound on r,, given that a is too small to give any useful
information in (4.2.35). We begin by assuming a piercing solution. Using (4.2.34),
at @ = /2 (4.2.35) becomes

@)= G -Fe-R)aEm (- 0-8)
(4.2.39)

where we maximise over &, in the second inequality. We now have an upper bound
on 7, at the equator. To obtain a lower bound, we use the fact that at some
0 € (0p,7/2), we must have 7(j(6y) = 0, which is where 7 will be maximally
negative. Using that 7(j(7w/2) > —n((6y), /(7/2 — by) (4.2.26), yields

motanf  X2& —2a?Bsin® 0 (1 — 12 /(?)
B S(Z, —2a%sin®6) — 43 (a2/42) sin? 0 oo
=vo

7 () = — (4.2.40)
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Therefore we can write
! (00)] < 7o(0o) tan 6y 32 (0o) — 2(1.25 sin® 0 (1 — 12 /0?) |
B S(00) (24 (60) — 2a2 sin® 0y) — 431 (0) (a2 /£2) sin® 6,
(ri — 24?8 (1 —r2 /%)) tan6y
(r3 (1 — 4a2/0?) — 2a2) 8

(4.2.41)
We see that this bound is only meaningful in the case that 73 (1 — 4a?/¢?) > 242, so

we will assume this holds. Thus we find
iy —2a2B (1 —r2 /%)
(r2 (1 — 4a?/0?) — 2a2) B |mo(6o)'|

On the other hand, the value of 7y at its minimum must be larger than it would

g — 0y < cotfy < (4.2.42)

have been if 7y had decreased linearly from the poles with slope |7((6p)|, which is

the largest possible slope. This allows us to write

L= Zpmy(60)] < mo(m/2) < S (0] > %(1 ST, e

v v

leading to

o (T 7} (6 , r2 (1 — 4a®/0%) — 24>
o (—) > Imol®o)l > ﬁ|7r0(60)]2r4+( /f) (4.2.44)
+

2) — w/2—6 —2a28(1—r2/02)"
Combining the upper and lower bounds, we see that for a piercing solution to exist

we must have

6632 ry\2 2a°3 r2\\ 2 r? (1 — 4a?/0%) — 2a?
(1) (1)

ry ri
with 2 > 72 > 2a?/(1—4a?/¢?) and r} 4+ 2a*r2 /¢* > 2a?. The running of the lower

<1, (4.2.45)

bound (4.2.45) with a is depicted in figure 4.2.2.

For low ¢ and ¢, an alternate argument must be used, as we can no longer show
that mo is minimised at /2. This argument is detailed in Ref. [116].

All of the various features of the phase transition are depicted in figure 4.4, which
shows the numerically obtained critical horizon radius as a function of ¢ for ¢ = 0

together with the analytic lower and upper bounds on 7 .

4.2.3 Numerical solution

The full solutions to the vortex equations (4.2.8)-(4.2.10) must be solved numerically.
The numerical method employed is the gradient flow technique, just as for the

vacuum Kerr case.
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Figure 4.5: Expulsion bound: An illustration of the running of the lower bound
with a. The bound is plotted for £ = 0.5, 1, 2,10, 0o as labeled. For £ > 5, the curve
changes very little, as can be seen by the infinite ¢ curve depicted by a thin red line.
The value at a = 0 is the RN value obtained in [95], and is shown as the horizontal

solid black line.
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Figure 4.6: AdS-Kerr vortex: A depiction of the numerical solution for the AdS-

Kerr vortex for an extremal uncharged rotating black hole. The upper plots have

¢ = 100, the lower plots £ = 10. In each case, the contours of the Higgs field are

shown on the left in blue (X = 0.1 — 0.9 in steps of 0.2), and on the right, the

angular component of the gauge field, P, in red (with the same contour steps as for

X), and Pr in dashed black with contours of 0.1 — 0.9 of Pr,, =

for the £ = 100 and ¢ = 10 cases respectively.
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Figure 4.7: AdS-Kerr-Newman vortex: Numerical solutions for the AdS-Kerr-

Newman vortex with ¢ = 50 and ¢ = 0, (upper) and ¢ = 5 (lower) with the same

contour conventions as for figure 4.2.3, with Pr,,,, = —0.0569 for ¢ = 0, and

Pr min, = —0.0563 for ¢ = 5.
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Figures 4.2.3 and 4.2.3 show a selection of the solutions obtained from the inte-
gration method above which highlight the effects of the parameters ¢ and ¢ on the
rotating black hole vortex. In all plots, we have chosen to illustrate the solution by
plotting contour lines for each field of 0.1 — 0.9 of the full range of the field in steps
of 0.2. Thus, for the X and P, fields, we have shown the 0.1,0.3,0.5,0.7, and 0.9
contours, but for the Pr field (note — this is the gauge field component with respect
to a non-rotating frame at infinity) the maximally negative value of Pr is attained
on the horizon at the poles. The numerical values of these contours therefore vary
from plot to plot. The actual value of Pr,, is given in the captions.

Figure 4.2.3 shows the vortex solution for the case of £ = 100 and ¢ = 10
respectively, at the extremal limit with the charge parameter ¢ set to zero. The
solution away from the extremal limit is similar (see [98]), the main difference being
that the actual numerical values of the Pr contours are lower. For ¢ = 100, the
plots are almost indistinguishable from the vacuum Kerr vortex solution analysed
in [98], however, for £ = 10, the effect of the cosmological constant can be easily seen.
Comparing the figures, one notes that dropping the value of ¢ strongly impacts the
size of both the black hole horizon as well as the vortex, causing the vortex width to
tighten, the Pr fields to shrink closer to the horizon, which itself shrinks significantly.

Figure 4.2.3 then demonstrates the effect of adding a non-zero charge to the
AdS-Kerr vortex. As can be seen, this does not significantly impact the vortex, and
appears to merely shift the horizon and ergosphere inwards, while slightly causing
the Pr contour lines to creep closer to the horizon, as is expected since the rotation

parameter a = a., will be lower with the charged black hole at the same mass.

4.3 Discussion

In this chapter we have explored the behaviour of the probe Abelian Higgs vortex
in the background of an asymptotically AdS charged and rotating black hole.

We first obtained solutions for the vortex profiles in a pure AdS background.
Compared to the flat-space case for which ¢ — oo, we found that the effects of the

negative cosmological constant are to tighten the vortex fields inwards near the core,
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while asymptotically they fall towards the vacuum more gradually. Profiles for the
AdS vortex fields over a range of ¢ are given in figure 4.1.

We then examined the vortex equations in the presence of the black hole. In the
thin string limit, we were able to extract a very good approximate analytic solution
to these equations, which we implemented as an initial condition for the numerical
solution. A comparison between the approximate solution and the numerical solu-
tion is given in figure 4.2.1, for a low mass black hole with GM = 3. Given that the
approximation is valid up to O(GM~?%), at this mass range one would expect the
deviations to be apparent. Nevertheless, the solutions are in very good agreement,
with the discrepancies only starting to show very close to the horizon.

Finally, we investigated the extremal behaviour of the vortex and black hole
system. As with the Kerr and Reissner-Nordstrom cases, the asymptotically AdS
black hole has an extremal limit, therefore as can be expected, the Meissner effect
arises in this context. To expel the flux, the black hole must be small enough such
that it effectively sees only a massless gauge boson. For the AdS black hole, the
shrinking of the horizon does not only occur for low mass black holes, but also for
low values of the AdS length ¢. However, in the latter case, the width of the vortex
is also contracted, essentially making the mass of the gauge boson appear larger. To
determine the implications of ¢ we explored the phase transition analytically and
then confirmed the results numerically. The results are detailed in figure 4.8, which
displays the numerical results for the phase transition at several values of ¢ and f.
Firstly, we demonstrated that in the presence of rotation and hence a second gauge
field component, the transition is first order, as with the pure Kerr case. Next, we
found that the effect of £ is to lower the critical value of r, at which the transition
occurs, as well as to lower the bounds for the transition.

Figure 4.8 shows the order parameter, namely the value of the Higgs field at
the equator, plotted against the horizon radius r,. We see in the right figure that
the order parameter increases as ¢ decreases. The left figure displays the effects of
varying the Bogomolnyi parameter S for £ = 10. As with the Kerr case, increasing

[ has the effect of increasing the critical value of r, at which the transition occurs.
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Figure 4.8: Flux expulsion behavior: Plots illustrating features of the flux ex-

pulsion phase transition on the event horizon of the black hole. The maximal value

of the Higgs field X, = X (7/2) is shown as a function of r;' for varying 3 (left)
and ¢ (right).



Chapter 5

Dark D-brane Cosmology

The cosmological dark sector, as we have seen, does not appear to interact directly
with standard model particles, but instead makes its presence known only gravita-
tionally. In addition, we have seen that fundamental theories such as string theory
posit the existence of extra dimensions which can contain all kinds of fundamental
matter fields, which may coexist with our world of standard model particles in four
dimensions, but yet be spatially separated from visible matter in higher dimensions.

In the light of these theories, in this Chapter we will examine the hypothesis
that the dark fluids in the universe may be due to the presence of another four-
dimensional “world”, which is separated from our own by additional dimensions of
space.

In addition to the dark fluids themselves, there is the question of the possible
interactions between them. It is often simply assumed that the components of the
dark sector are independent and do not interact directly with one another, however
there is no fundamental principle nor convincing observational evidence which for-
bids or suppresses such an interaction. Indeed, whereas interactions between dark
energy and visible matter particles are heavily constrained by observations (e.g. by
solar system tests as well as gravitational experiments on Earth), this is not the case
for dark matter particles. In other words, it is possible that the dark components in-
teract with each other, while not being coupled to standard model particles. Several
phenomenological interacting dark sector models have been proposed in the litera-

ture (see e.g. [20] for a recent review with several references therein), however, these
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models typically lack a compelling fundamental origin for the form of the proposed
couplings.

In what follows we will propose a unified picture of the dark phenomena in the
universe in which dark matter and dark energy are naturally interacting. Specifically,
we will suggest that the cosmological dark sector, namely dark energy, dark matter
and any possible dark radiation, may be naturally unified as distinct phenomena
arising from a single object, which we call the Dark D-brane, moving in a higher
dimensional space-time.

The Dark D-brane world scenario we propose can arise from “hidden sector
branes”, which are ubiquitous in string theoretic D-brane constructions. Hidden
sector D-branes are those branes which have no intersection with the stack of D-
branes responsible for the visible sector, and therefore they interact with the visible
sector only gravitationally or via very massive states that do not play a role in the
low energy theory. Thus the matter fields on these branes are dark by construction.
For a single D-brane, the matter fields are U(1) gauge fields which may be massive
or massless. Hence they can simultaneously provide candidates for a dark matter
species and a dark radiation species in the universe. Then, if these hidden branes
are currently moving in the warped extra dimensions, their motion can cause other
degrees of freedom to appear in our world, which could act as dark energy and thus
complete the dark spectrum in four dimensions.

As a geometrical framework for describing the dark sector, it is compelling that
the dark fluids in this scenario turn out to be non-minimally coupled in a very
particular way: the coupling is precisely a realisation of the disformal transformation
(1.3.88) which we discussed in Section 1.3 in the context of scalar-tensor theories of

gravity, repeated here:

G = C(¢, X) g + D(¢, X)0,6 0,0 . (5.0.1)

Therefore, this picture creates a direct link between fundamental theory and
phenomenological theories of modified gravity, and provides a robust motivation for
the disformal coupling. As we will see, in the present context the general relation

in Eq. (5.0.1) has a concrete interpretation as the induced metric on a probe D-
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brane moving in a warped higher dimensional spacetime!, such that ¢ is the scalar
field associated with the position of the brane, and C' and D are both functions of
the warp factor h. In addition, the matter fields which are disformally coupled are
precisely those fields which are localised on the moving D-brane. In our scenario
we will associate ¢ with dark energy, and the disformally coupled matter with dark
matter.

In the context of string phenomenology, Eq. (5.0.1) has been widely exploited in
cosmological applications. Indeed the so-called Dirac-Born-Infeld (DBI) inflationary
scenarios [37,38] are based on this relation?, where the scalar field ¢ plays the role of
the inflaton. As we described briefly in Section 1.2.2, DBI inflation can arise when
a D-brane is moving relativistically in a strongly warped region of the compact
space. The vast majority of D-brane inflation models deal exclusively with scalar
fields, while any other open string fields localised on the brane are usually not
considered: apart from the inflaton, the branes are “empty”, despite the fact that
these additional fields are naturally present, and can indeed give rise to interesting
cosmology®. In the current work we will instead consider DBI quintessence [130,131],
where matter fields on the brane are taken into account. To study the homogenous
cosmology, we will use the method of dynamical system analysis and numerical
integration?.

A primary reason for considering an interacting dark sector scenario is that it

allows for a possible alleviation of the cosmic coincidence problem, due to the energy

LOur proposal does not need to be restricted to string theory, but could be in principle realised

in a ‘pure’ brane world scenario [118-121].
2More specifically, single field models in which the brane moves along a single compact direction

are based on Eq. (5.0.1). While in the standard scenarios the D-brane moves only radially in a
warped region, the generalisation to allow motion in all six of the compact directions has been
studied, and there it was found that motion in all directions other than the radial is rapidly

damped by the cosmological expansion [122-124]
3In the early universe context, it has been shown that such matter fields may play the role of

Wilson-line inflatons in both the warped and unwarped cases [126,127], and that they may act as

vector curvatons on both stationary as well as moving branes [128,129].
4Previously these methods have been applied for DBI scalar field cosmologies in Refs. [130,131,

159-162]. For some other works on DBI dark energy see Refs. [150-158].
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exchange between the dark components. This exchange can lead to so-called “scaling
solutions” [17-19] discussed in Section 1.1.3, where the effective equations of state
for dark matter and dark energy take on the same value, allowing the two fluids to
dilute at the same rate across several efolds of the cosmological evolution. We will
show in what follows that these scaling solutions do indeed arise in our disformal
Dark D-brane scenario.

Thus our Dark D-brane world scenario, a realisation of coupled quintessence
cosmology, is a naturally unified picture of the cosmological dark sector in which
dark energy arises from the motion of a hidden sector brane in the warped internal
space and is disformally coupled to the dark matter fields on its world-volume?®.
The scalar and matter fields appearing in our scenario then have clear geometric
interpretation and their properties and interactions can be explicitly derived from
the higher dimensional fundamental theory®.

This Chapter is based on the work done in Ref. [117].

5.1 The general set-up

In this Section we will first discuss how the disformal coupling arises from D-branes
in the context of Type IIB string theory warped compactifications [166-168]. This
comprises Section 5.1.1. Then in Section 5.1.2 we will present the set-up for disfor-
mally interacting massive particles (DIMPs) on the moving brane and discuss some

general physical implications of the disformal coupling.

SExtra dimensional dark matter has also been proposed in the brane world context where the
fluctuations of our brane give rise to “branon” particles [141-143]. In addition, Kaluza-Klein
modes in universal extra dimensions have been widely studied as viable candidates for dark matter

[144-146], see [147,148] for reviews.
SA string inspired coupled quintessence model was presented in [149] in terms of closed string

moduli.
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5.1.1 Disformal coupling from moving D-branes

Consider a warped flux compactification of Type IIB string theory , where the higher
dimensional generalisations of gauge fields, the RR-forms, F,,;; = dC,, forn =0,2,4
and their duals n = 6,8, as well as the NSNS-form H3 = dB5 are turned on in the
internal six dimensional space. These fluxes back-react on the geometry, warping
it. In addition, it has been shown that they generate a potential for most of the
geometric moduli present in the compactification, which allows these moduli to be
stabilised [166].

Assigning the coordinates z* to the noncompact dimensions, where p = (0, ..., 3),
and the coordinates y? to the compact dimensions, with A = (4,...,9), the ten

dimensional metric takes the form
Gundz™dz™ = b2 (yN) g, datde” + B (y*)gapdydy®, (5.1.2)

where g4p is the metric of the internal six dimensional Calabi-Yau manifold, and in
order to preserve Lorentz symmetry in the noncompact four dimensions, the warp
factor h is a function of only the internal coordinates, h = h(y?).

We now want to consider probe Dp-branes embedded in this background. Defin-
ing the coordinates £* on the world-volumes of the D-branes, where a = (0, ..., p), we
can embed them into the spacetime by the mapping 2 (£?). This is simply a higher
dimensional generalisation of the familiar point-particle worldline in four dimen-
sions, z#(7), where 7 is usually taken to be the proper time. As spatially extended
objects, D-branes will also break Lorentz symmetry, and thus should be space-filling
in the noncompact dimensions. We are then free to align the four-dimensional world-
volume coordinates with the four-dimensional spacetime coordinates, by choosing
the static gauge £* = x*. In the compact dimensions on the other hand, the D-
branes will naturally tend to move about as they search for the minima of their
potentials, and thus the embedding functions are kept general, y4(£9).

The matter fields that live on the world-volume of a D-brane will naturally follow
geodesics of the induced metric, which we denote as g,,. For a D3-brane that is

moving along a single compact direction r for example, this is given by

G = Gun0,2™0,2™ = h=2(r)g,, + W2 (r)0,ro,r, (5.1.3)
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where the first term arises because we are in the static gauge, and r(z*) is propor-
tional to the scalar field associated to the brane’s position parameterising its motion
in the r direction. We see then that the induced metric on a D-brane moving along
a single direction in the compact space is precisely a realisation of the disformal re-
lation, Eq. (5.0.1), where we can readily identify the form of the couplings in terms
of the warp factor C(r)~' = D(r) = h(r)"/? and the scalar field with the brane’s
position ¢ oc . On the other hand, the metric g,, describes the geometry of the
bulk spacetime.

In order to see how the disformal coupling arises from the Dp-brane action, we
will now look in more detail at the full action describing its dynamics. In the Einstein

frame”, the DBI action of a Dp-brane is given by®

(p—3)

Sppr = —Mp/def@ 1 <p\/_ det(Gap + €72 Fop) (5.1.4)

where

_ (+1) (p—3)
2

pp = (2m) 77 () ’ T) = e+ %, (5.1.5)

with 7}, being the tension of the brane, where o/ = 2 with ¢ the string scale and the
vacuum expectation value of the dilaton field ¢ gives the string coupling as e?° = g;.
The pullback of the ten dimensional metric onto the Dp-brane world-volume takes

the form (5.1.3)

_ oy Oy’ _ in
G = G & 5 ggo Cs = 0 P2 + 20,50, gy (5.1.6)
for the four dimensional components, whereas
oyt oy”
Gmn = G T 5.1.7
Jmn = Hem gen ! (5.1.7)

"In D dimensions the Einstein frame and string frame are related by G,y = eiﬁwawN

where ¢ is the dilaton.
8We use the following indices for the various coordinates:

M,N=0,...,9 for 10D coordinates

w,v=0,..3 for 4D coordinates

A, B=4,..9 for 6D coordinates

a,b=0,...,p for world-volume coordinates
m,n==4,...p internal (p - 3) world-volume coordinates

i,wj=p+1,...,9 internal transverse to brane coordinates



5.1. The general set-up 128

for the internal ones. Moreover, F,, = B, +27a’ F;, is the gauge invariant combina-
tion of the pullback of the NSNS 2-form B; and the field strength of the world-volume
U(1) gauge field.
The coupling of the brane and its world-volume fields to the bulk RR-fields is
described by the Wess-Zumino (WZ) action, which is given by
Swz = p > Cuone” (5.1.8)
Wpt1 g
where W, is the world-volume of the brane, and C,, are the pullbacks of the bulk
RR-C),, forms to which the brane couples. In this expression, the wedge product
picks out the relevant terms in the exponential. The total action for a Dp-brane is

then given by the sum of the DBI and WZ actions, namely

SDp = SDBI + Swz. (519)

The scalar sector

The four-dimensional induced metric in Eq. (5.1.6), which gives the kinetic terms for
the brane’s position fields in the DBI action (5.1.4), is precisely of the disformal type.
We will from now on consider the simplest case of a D3-brane. For such a brane,
there are no compact coordinates, and we may define the canonically normalised
position field ¢ = /T3 with corresponding warp factor h(¢) = Ty 'h(r), for the
radial direction r in a warped throat region of the compactification. The brane
acquires a potential which is Coulomb-like in the vicinity of an anti-brane, but more
generally receives a variety of contributions from “compactification effects” such as
fluxes and other objects present in the bulk. For the case of the D3-brane in a
warped throat, these effects have been explicitly computed in [169].

Finally, the D3-brane is charged under the four-form Cy, which appears as the
first term in (5.1.8) for the case of the D3-brane. We may write this charge as
Cy = h™ty/=gdaz® ANdx' Ndx?® Adx3, and thus it is given in terms of the warp factor.
Ignoring for the moment the brane gauge field, after computing the determinant in

the DBI action, the scalar action for a D3-brane then takes the form

Sy = — / A/ =g [hl(qb) (\/1 - h()D 00 — 1) + v<¢)} C (51.10)
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This action then gives us the scalar part of the action. We now take into account

the matter fields living on the brane.

The matter sector

Let us now focus on the kinetic terms for matter on the brane, namely the U(1) gauge
field, which is encoded in the DBI action (5.1.4) above. Matter fields that live on D-
branes naturally feel the induced metric g,,,. Indeed, we will see in Section 5.1.2 that
their associated particles follow geodesics of g,,. Thus, these fields see a disformal
metric. To see this concretely, we can rewrite the determinant in Eq. (5.1.4) as

follows (p = 3)
— det[g,, + e_g}",w] = —det[g,4] det[éf + 6_“0/2]:"6], (5.1.11)

leading to

Sppr = T / d4x\/—g\/det(5f + 2 FR). (5.1.12)
Here we have denoted F to make it clear that here F is contracted with g,, and not
with g,,. On the other hand, from the point of view of g,,, the DBI action takes

the form

Sppr = —Ts / d*z/—g h—l\/ det (8] + h3PyAd,yBgap + e~¢/2hV/2F)).  (5.1.13)

Therefore, observers living in the background spacetime see the world-volume fields
following geodesics of g,, but new scalar fields have appeared, namely the fields
associated with the position of the brane in the compact space. In addition, the warp
factor now appears in the action as the function which gives both the conformal and
disformal factors, C'(¢) = (T3 h(¢))~/? and D(¢) = (h(¢)/T3)"/? respectively, when
restricted to motion in a single direction ¢ = /15 7.

Expanding the square root in the DBI action we can rewrite (5.1.13) as

. e—?/2
SpBI = —T3/d T\ —g (1 +

F2+ ) , (5.1.14)

where the first term corresponds to the kinetic term for the scalar, which appeared
in (5.1.10), above and the dots correspond to higher order terms in F.
In Type IIB string theory, vector fields can acquire masses via the familiar Higgs

mechanism or via a stringy Stiickelberg mechanism (see appendix of [128] for a
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detailed discussion). This stringy mechanism takes place whenever the vector field
couples to a two-form field in the 4D theory. Therefore if the coupling is present,
the vector will acquire a mass. Depending upon the details of the compactification,
the various two-forms which give rise to vector masses may be projected out of
the spectrum: this is due to the action of objects known as orientifold planes: O-
planes. In compactifications with O3/0O7 planes, the coupling for a D3-brane vector
field vanishes because the associated 2-form field is projected out of the spectrum.
This entails that D3-brane vector fields remain massless or acquire a Higgs mass
for these compactifications. On the other hand, vector fields on branes of lower
codimension, such as wrapped D5 and D7-branes, can acquire Stiickelberg masses
in these compactifications, because the 4D two-form to which they couple remains in
the spectrum. In what follows we consider D3-branes with pressureless, i.e. massive
particles on their world-volumes, as the simplest scenario one can build. It should be
clear that our study can readily be generalised to include matter fields with pressure,
or branes of lower codimension.

For a D3-brane we can then collect the vector terms into a general action of the

form
Su) = /d4Iv —9 Loy (Guv), (5.1.15)

where we have chosen to write the action in the disformal frame to highlight that the
matter field couples to the induced metric g,,. Above we have illustrated explicitly
the case where the matter living on the brane is a vector field. However, the coupling
of the induced metric will be also there for more general matter fields living on the
brane. Therefore below we model a generic type of Dark D-brane matter in terms
of a coupled gas of particles, our DIMPs, which will serve to illustrate the effects of

the “disformal” coupling.

The geometry

The prototype warped compactification, which is smooth all the way to the tip of the
throat, is given by the compact version of the Klebanov-Strassler geometry [166,170].
It arises due to the presence of fluxes sourced by wrapped D3 and D5-branes, and is

an exact non-singular supergravity solution. Such a geometry is rather complicated,
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however it features an interior region which may be approximated by the simpler
AdSsx S® geometry, which corresponds to the near horizon limit of a stack of N
D3-branes. This is cut off in the infra-red which corresponds to the tip of the throat.

The warp factor in this case is given by

Aads
h = o Aaas = 4ma’?gs N, (5.1.16)

where g,/N > 1 for the supergravity approximation to be valid, while g5 < 1 for
string perturbation theory approximation to hold, so that the t’Hooft coupling,
Aaas > 1. For the Klebanov-Srassler (KS) geometry, the AdSs; approximation
breaks down near the tip of the throat. Very near the tip of the KS throat the
warp factor approaches a constant value h — const.(O(1)) with corrections of order
O(r?).

In what follows we study the D-brane dynamics in the mid-throat region as well
as near the tip. For the former we use the AdSs approximation with the warp
factor given in (5.1.16) above, and for the latter, we will simply take h to be a
constant. This should capture the predominant behaviour of the system in the
regions of interest. Furthermore, in large-volume scenarios [171] the effect of the
warping is washed away and thus these type of compactifications are also explored

when h — const.

5.1.2 Disformally Interacting Massive Particles (DIMPs)

To outline the essential implications of the disformal coupling for particles on a
moving brane, we will now adopt a classical point-particle description in place of
the usual field theory description. This approach can also be justified as we would
eventually want to describe a fluid comprised of galaxies, which can be viewed as
point particles moving in the universe.

Consider the effective action for massive particles evolving in a p+ 1-dimensional

disformal geometry g,,. For a D3-brane (p = 3) as we are considering, the brane
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actions is entirely four-dimensional and it is simply given by

N
Spom = — Y _ / d*z miy/ —Guita? 8 (xi(r) — m), (5.1.17)
=1

where we have used that dr = d*z 6 (z;(7) — ;) and the dot denotes the derivative
with respect to the affine parameter 7. Moreover, the disformal metric g, is the

induced metric on the brane in Eq. (5.1.3).

Causality

Let us discuss how causality arises in this context. Firstly, motion in the higher
dimensional spacetime must also obey causality, and as objects with tension or
mass per unit volume, D-branes follow timelike trajectories. In particular, for a
scalar field which parameterises the motion of a brane in a single compact direction,

we may define a Lorentz factor

1
V1+h(9)g"9.90,¢

which must always be real. In the four dimensional disformal spacetime, a necessary

g (5.1.18)

condition for causality is that the metric g,, preserves Lorentzian signature for all
values of the scalar field and its derivatives; and then physical particles must follow
trajectories for which ds?> < 0. Note that in four dimensions, there are now two
invariant speeds and indeed two copies of the Lorentz group, one associated with
the background spacetime and the other with the disformal spacetime. Writing the
disformal metric as

G = —5 158 4+ h() 9% 8,0, 5.1.19
Gu 3h(¢)[”+ (¢)9°¢0,9] ( )

we see that for a time-dependent scalar field in a cosmological background, the

components are just

Goo = —o2_[1+ h($) P Do) = —m2—y 2, gy = —L . (5.1.20
goo Tgh(¢>[ + h(9) 9" D] T3h<¢)’7 9ij Toh(0) ( )

9For branes of lower codimension we extra factors arise from the integration over the compact

directions.



5.1. The general set-up 133

The warp factor h > 0 always and due to causality in the higher dimensions, y~2 > 0
always. Therefore the signature of the disformal metric is simply given by that of

the four dimensional metric g, and so causality is never violated.'?

Geodesics

Extremising the action (5.1.17), we see that particles on the D-brane naturally follow

geodesics of the disformal metric and thus the geodesic equation becomes
it + Thiti’ =0, (5.1.22)

where the disformal Levi-Civita connection I'} 5 1s torsion-free, and can be expressed

in terms of the usual connection Fgﬁ associated with g, as follows:

B h/ 2 h/
[hy = Tty — 506 + 0" (zgaﬁ +4hV o V6 + 31 aaqsaﬁqs) . (5.1.23)

The connection Fgﬁ is the unique connection that is metric-compatible with the
induced metric g,, on the moving brane.

Note that while the extra terms in Eq. (5.1.23) could in principle lead to danger-
ous fifth forces if visible matter follows geodesics of g, in the present construction
only dark matter lives on the moving brane and therefore such forces, if they arise,
would not impact the visible sector directly, and are not a problem for local gravity

tests.

ONote that this coincides with the standard constraints given in [172] for a general disformal

metric as in (5.0.1), namely
C(¢,X) >0, C(¢,X)+ D(¢, X)X >0, (5.1.21)

where X = ¢g"0,¢0,¢, and for our case the first condition amounts to 2 > 0 and the second to
7=2 > 0, where C(r) = D(r)~! = h(r)~*/2. In [172] it is argued that if C' does not depend on
X, then the second constraint can only be met if D depends on X. In our case, neither C' nor D

depend on X, and yet the second constraint is ensured dynamically as outlined above.
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Stress energy tensor

Let us consider now the energy density on the brane which will be important for
cosmology. The stress-energy tensor for disformally coupled matter is defined in the

usual manner by

2 6(\/_g£DDM>
T, =— . 1.24
nv /__g é‘gl“/ (5 )

For the point particle action (5.1.17), the stress-energy tensor is found to be

T, = puyu, , (5.1.25)
where the four velocity, normalized as u? = —1, is
, = —t (5.1.26)

12 /—i'2 )
and the energy density is given as

p= Zmzﬁ“)(:f —'(7)) <T3 ;(gb)) \/% [1— h(6) (0,02 . (5.1.27)

Comparing Eq. (5.1.27) with the standard expression for the energy density of pres-

NI

sureless matter, the “bare” energy density,

. . .2
Py = Zmié(‘l)(af —2'(7)) %, (5.1.28)

we might indeed expect that the disformally coupled fluid behaves quite unlike a
standard pressureless fluid. We will see in what follows that this is certainly the
case. In particular, the inherent coupling of dark matter to dark energy in (5.1.27)
leads to a non-conservation of the dark matter energy density, which modifies its

time evolution as the universe expands.

5.2 Disformal Dark D-brane Cosmology

We will now study the cosmology of the Dark D-brane system in detail. We will
begin by deriving the relevant equations, then we will obtain solutions numerically
as well as by way of a dynamical systems analysis technique, which will be reviewed

briefly in what follows.
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5.2.1 Field equations

Since we are interested in cosmology, we will now follow the usual effective field
theoretic approach and couple our probe Dark D-brane as described in Section 5.1
to four dimensional gravity. The total action we consider, collecting together the

pieces derived Section 5.1.1, is thus

S = i / d'v/=g R — / d'z/=g {h‘%)W L+ ()0, 90"¢ — 1) + V<¢>>]
+ [ devTg Lonu(an) (5229

where the first term is the ordinary four-dimensional Einstein-Hilbert action, which
arises from dimensional reduction of the ten dimensional closed string sector action,
k = Mp? = 871G is the reduced Planck mass in four dimensions, which is related to
the internal volume as M3 = 2\/;3(1”)/((2#)70/4) = M?Vs/((27)%7g?), where V6(w) =
[ d%y /g6 h, Ve = V§* /L8 and M, = £,

The Einstein equations derived from (5.2.29) are

1
Ryy = 59k = & (T, +1T7) (5.2.30)

where the energy momentum tensors are defined as:

po 2 9% o 2 9(V=9Lopw) (5.2.31)

pv \/__g(;glﬂl ’ pv \/__g 5gﬂl/ '

Furthermore, the equation of motion for the scalar field becomes

, ,.y h/ _1 2 5 T[LV h/ h/
V. [yt — V' + 378 (v'=1)" =V, [hT"0,¢] + 5 259 5

0up0,9| -
(5.2.32)

The energy momentum tensor for pressureless matter on the brane takes the form
T = puyty, (5.2.33)

where for the point particle action in (5.1.17), u,, is given by (5.1.26) and the energy
density p by (5.1.27). For the scalar field the energy momentum tensor turns out to
be:

T3, = Py G + (ps + Ps)uguy (5.2.34)
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where
0
uf) = h (5.2.35)
0,9, 019
and we have defined
-1 1—~1
p(z,:VTJrV, P, = h’V v, (5.2.36)

with 7 being the Lorentz factor for the brane’s motion, given in (5.1.18).

Due to the non-minimal coupling, the individual conservation equations for the
two energy momentum tensors are modified. The conservation equation for the full
system is given in the usual fashion as V(7. (;f Y+ TH) =0, and we have

/

’ W ) )
V. = Vﬂ(Wa“@—V/—i—th (v =1)*] 06 = Q0o (5.2.37)

where we use (5.2.32) to define the non-conservation coupling,

Q=V,[hT"8,] + %TW (9w — h0,00,0) . (5.2.38)

Cosmological equations

In order to study cosmology we will now consider a flat Friedmann-Lamaitre-Robertson-

Walker (FLRW) spacetime, with metric
ds® = —dt* + a*(t) (dz”® + dy* + d2?) . (5.2.39)

Since the field must be homogeneous in this background, the Lorentz v-factor be-

comes
1

e

The Friedmann equations and the Klein-Gordon equation for the scalar field become,

(5.2.40)

respectively
/{2
H* = = lpo+ 7], (5.2.41)
i 2
H+ H? = —% (06 + 3P + p] (5.2.42)
N A .
O+ —=(1=37y2+29) +73(V' + Qo) + 3Hy ?p=0. (5.2.43)

2h?



5.2. Disformal Dark D-brane Cosmology 137

We further have the continuity equation for the scalar field and matter

po+3H(ps+ Py) = —Qod,  p+3Hp=Quo. (5.2.44)

Finally, the non-conservation coupling for the background, @)y, is given by

3n
4h

Qo = hp { e

F L (SH + g) + é} . (5.2.45)

Solving away the leading derivative terms for ¢ and p using Eqs. (5.2.43), (5.2.44),

this becomes .
h(V'+3yHS) + 5 (1 37)

= — . 5.2.46
Qo ~+ hp P ( )

Let us now consider some implications of this coupling.

The effects of the coupling

In order to gain some intuition regarding the interaction between dark matter and
dark energy in this picture, we can compute )y in an alternative way. In an FRW
background, the energy density for pressureless particles on the brane given in

(5.1.27) is:

p=(Tsh)™* pyy, (5.2.47)

where the bare energy density p; solves the standard continuity equation for uncou-
pled matter yielding
pp=poa > (5.2.48)

Taking the first derivative of (5.2.47) using (5.2.48), we obtain the equation

P VL
- +3H=—-——— 5.2.49
which exactly matches the second of Eqgs. (5.2.44) with Q) defined by (5.2.45). This

also allows us to write )y in a particularly compact form

Qo d ( i ) (5.2.50)

PR AV

In conformally coupled theories, the bare energy density is modified by a field de-

pendent conformal factor [22]: we see quite neatly here that new disformal effect is
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simply to modulate the bare energy density by an additional factor v that involves
the kinetic term of field as well.

We can gain some additional useful insight into the dynamics of the system by
rewriting (5.2.49) in terms of an effective equation of state for the disformal dark
matter (DDM),

p eff eff 1 v n' 1 Qo¢.
- +3H(1+ =0 =——-—— = ————_ (5.2.51
P ( WHHr) ) Wppm 3H < P ( )

The effective equation of state simply quantifies how the dark matter dilutes with
the expansion. In particular we see clearly that if '/, < 0, the dark matter will
redshift slower than a3, and faster in the opposite case, wé// > 0.

In a completely analogous way, we can consider an effective equation of state for

the DBI field,

) P
Lo psHO+w!) =0,  wi zw,—Lwidl,  wo==2.  (52.52)

P¢ Pe P¢

If the energy in dark matter is boosted such that wifg v <0, w;f 7 will corre-

spondingly receive a positive contribution from the coupling term, having then less

accelerating power. On the other hand, if wg}; v > 0, then dark energy is draining

/T receives a negative contribution from the

energy from dark matter and thus w
coupling term, having thus more accelerating power.

As can be seen from (5.2.51), the sign of the effective equation of state parameter
depends on the behaviour of 4, h’ and ¢. Note that % will always start off as positive
as the brane starts moving down the throat. In the case of a smooth throat such as
the Klebanov-Strassler one, the brane will eventually start slowing down till v — 0.
Now, the warp factor is always positive and it grows as we reach the tip of the throat
at ¢ = 0, therefore the contribution from the warp factor is always negative. On
the other hand, the sign of ¢ depends on whether the brane is moving down or up
the throat.

Let us consider more explicitly the case we will be mostly interested in, an
AdS-like throat, such that h o< ¢~*. In this case the time-dependent combination
h~1/4~ which appears in (5.2.50) is simply ¢v. The general solution to the continuity

equation in Eq. (5.2.51) is then p a=30+vF5) . Due to the fact that py o< a3,
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we see that ¢y o a~3vBb in Eq. (5.2.47). Thus the disformal coupling may either
quicken or slow the dilution of dark matter, depending on whether wg}; s 1S positive
or negative, as explained above. Now, despite the fact that ¢ — 0 as the brane moves
towards the tip of the throat, the Lorentz factor may in fact grow rapidly enough
such that the overall effect is that ¢ is growing with time. This would imply that
will , in Eq. (5.2.51) becomes negative due to the presence of the coupling term,
so that the dark matter energy density dilutes slower with the expansion due to
its energy interchange with dark energy. So, interestingly, while the the conformal
contribution ~ dlog ¢/dt in Eq. (5.2.51) tends to quicken the dilution of dark matter
particles, the disformal effect ~ dlog~/dt can act against the dilution and could, if
it dominates, serve to boost the energy density residing in dark matter.

In the following it will be useful to define the total equation of state parameter

w which characterises the expansion rate as

2H P,
Wp = ———— — 0

BHE  pytp

This is the quantity that is relevant for observations. It is the ratio between the

(5.2.53)

total pressure content of the universe and its total energy density.

In a so-called scaling solution, where w;f I — ¥l the scaling components
dilute at the same rate and their fractional energy densities maintain a constant
ratio. In this case, wZJ;fD o = Ps/(ps +p) = wr as we see from the second equation
in (5.2.52). Accelerating scaling solutions then occur when wsz = will,, < —1/3.
In the following we will show, using the method of dynamical system analysis, that
such solutions arise for the model at hand due to the presence of the disformal
coupling. Obviously, in the absence of the coupling, there can be no accelerating
scaling solutions, since then w/ = wepy = 0 as seen in Bq. (5.2.51).

In a DBI scenario where matter on the brane is not taken into account, wr = wy
becomes negative when the brane is relativistic and warping is strong, because in
that case the pressure p, — —V in (5.2.36), and acceleration is attained when
wy < —1/3. Expansion is of the power law type, while quasi de Sitter expansion, for
which w ~ —1, can usually only arise in the slow-roll limit of DBI, for then v ~ 1

and so py ~ V ~ —P, in Eqs. (5.2.36). In this case the DBI dark energy field is

almost constant as the universe expands.
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On the other hand, in the present case where matter on the brane is taken into
account, wy is given by Eq. (5.2.53), which reduces to wys only when matter is di-
luted away and thus p — 0. One consequence of this is that if w// , is positive,
wzf ! can be pushed to —1 even when wy > —1, i.e., dark energy can be constant as
the universe expands. This occurs if the purely conformal contribution ~ dlog ¢/dt
in Eq. (5.2.51) is dominating over the disformal contribution ~ dlog~y/dt. As men-
tioned above, the other possibility is if the growth of the Lorentz factor is rapid
enough, the disformal effect can dominate and thus the energy density in matter
can be boosted, resulting in wg};  becoming negative. For a brane moving towards
the tip of a warped throat, we expect that the Lorentz factor will grow very rapidly
at first. This could result in w/,, < —1/3, i.e. the disformally coupled matter
could contribute to driving the expansion of the universe: this is the emergence of
a scaling solution. Then, once the strong warping forces the growth of v to become
less rapid, the disformal dark matter will be less boosted and might be diluted away,
eventually giving rise to a standard DBI epoch.

So here we see the emergence of a new aspect to the usual DBI scenarios: the
Lorentz factor acts on p, to slow down its usual dilution by a=3, allowing for the
possibility of a new epoch of accelerated expansion that is driven in part by the
disformally coupled dark matter on the brane. This could eventually evolve into the
standard scenario in which matter does not contribute to the expansion. In this way,
the accelerated expansion of the current universe can begin in a matter dominated
era, during which the disformally coupled dark matter fluid is active in initiating the
acceleration of the expansion, due to its non-minimal coupling to dark energy. This
early accelerating era featuring an interplay between dark matter and dark energy
eventually gives way to a fully dark energy dominated era. In what follows, these

various regimes will be explored using both dynamical systems analysis as well as

numerical examples.

5.2.2 Phase space analysis

In this section we make use of a dynamical system approach to solve the equations

of motion. In this approach one considers a system of coupled differential equations
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in first order form:

x = f(x). (5.2.54)

The vector x may have any integer dimension and its components span the phase
space of the same dimension. The evolution of the system is described by trajectories
in this phase space. The fixed points (or equilibrium points or critical points as they
are sometimes called), are those points in the phase space where the trajectories may

stay constant. At a fixed point x = x.. then,
x. =f(x.)=0. (5.2.55)

For example, if one of the components of x was H, all the fixed points would
correspond to de Sitter solutions with different constants H = H.. This illustrates
two basic points: the fixed points do not need to describe static situations (in the
de Sitter example the scale factor is evolving with time), and secondly how one sets
up the phase space, i.e. chooses the variable combinations that define x, determines
very crucially whether the fixed points correspond to interesting situations of the
system at hand or not (if one would have chosen aH as the variable instead of H, the
fixed points would correspond to turnarounds or trivial solutions instead of de Sitter
ones). The linear stability of each fixed point with respect to small perturbations

defined by x = x. + 0%, can be studied from the first order perturbed equations:
% = f(x. + 0x) = f(x,) + F - 0x + - -- = 6x = F - 0x, (5.2.56)

where F is a matrix with the components Fy;n = dfy/0xy and the equality holds
up to the linear order. Now, in an orthogonal basis, F(®) is just a diagonal matrix con-
sisting of the eigenvalues, and the above equation has the solution 5:105\‘;) ~ exp (An),
where Ay is the eigenvalue corresponding to the orthogonal basis vector 59553). Since
the eigenvalues are independent of the basis, we can compute them directly from F.
Stability is then determined from the eigenvalues as follows: a) if all the Ay < 0 are
negative, all the perturbations decay, that is the fixed point is stable and we call
it an attractor. b) If all Ay > 0 are positive, any fluctuation away from the fixed
point will grow and take the system away from the solution x = x.. This point is

thus unstable and can be called a repellor. ¢) Finally, if some of the eigenvalues are
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positive and at least one negative, the system is unstable when disturbed in some
direction in the phase space, while stable to disturbances in some other directions.
Such a solution is called a saddle point.

Let us then consider our specific system of cosmological equations in Section
5.2.1. The phase space is then two-dimensional: we can formulate the equations
as three coupled first order differential equations (for the dark energy scalar field,
its derivative, and the matter density), subject to one constraint (given by the

Friedmann equation). A convenient choice of variables turns out to be

. % )
xELﬂ, zzi, QEK—'Z. (5.2.57)
3(y+1)H V3H 3H
The Friedmann constraint (5.2.41) allows us to then to eliminate 2 as
Q=1—a2%—22, (5.2.58)

leaving us with physical space spanned by!! —1 < 2 <1, 0 < z < 1. Furthermore,

it is convenient to use, instead of ~, the variable

=2+

==, 0<7<1. (5.2.59)

The expansion rate corresponding to each parameter value is described then by the

total equation of state defined in (5.2.53),
wy = z* — 2%, (5.2.60)

In fact, to close the system of equations, we will also need to specify 7, and in this
sense we have a three-dimensional phase space. However, as seen from (5.2.58), it
is only x (roughly speaking, the kinetic energy contribution) and z (the potential
energy contribution), that determine the expansion rate. For this reason, it is useful
to view the phase space in terms of these variables, considering 7 as a parameter.
This kind of approach was also implemented in Refs. [160, 161].

After some algebra, using the equations of the previous section together with the

definitions above, the evolution equations for the three dimensionless variables, in

11We assume positive potential energies for the field in the following. However, the formulas

would apply also for negative potentials when extended to imaginary z.
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terms of the e-folding time N = loga, can be brought into the following form:

dr 3v(  (F+1)(27—1)?
dN 2 (’Ny(x2+22—1)—z2+1
LV 3Y(% + Da® [ (105 — 3)2® — 27 +3) + 2*((4 = 89)A + (29 — 3)p)]
8(F (22 +22—-1)—22+1) ’
= = g (3 43727 — 322 — /305 + 1))\x> , (5.2.62)

day 3y (1—75%)a?

+A2% — 2% + 1) (5.2.61)

dN (2?2 +22—-1)—22+1
4(y(x2422-1)—2241) ' o
To close the system, we define the following quantities:
n V!
In general, their evolution equations are
du _ _ W —hW'h
d_N = F#\/ 3’}/(1 + ")/) , Fu = W , (5265)
d\ RRI vV —vy

Our system can be closed, i.e. put into an autonomous form when the factors I',,
and I'y can be expressed in terms of the other quantities. If the functions A and
V' were exponential, these factors would vanish and thus both p and A would be
constants. However, this simplification is not motivated by the geometries discussed
above in Section 5.1.1, though it might arise in some suitable brane-world scenario.
In the following we study the case in which the warp factor and the potential both
have a power-law form. We will then focus specifically on the cases in which the

powers are those corresponding to an adSs and constant-warped geometries.

Power-law evolution

In this section, we take power law forms for the warp factor and the potential, which

include adS5 and a mass term potential:

V(g) = Vor" o™ (5.2.67)
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The parameters V;, and hg are dimensionless numbers and n and m are constants.
A restriction we need to impose is that n # m; then we can solve for p and X in

terms of the other variables as

1

p=m (M) o L A =-n (M) o (5.2.68)

’71—‘0,%2 ’?F0$2

where we have defined

FO = ho‘/o, (5269)

which turns out to be a very useful parameter. Here and in the following we take

¢ > 0, since the field corresponds to the brane’s position in the internal space.
Using the equations (5.2.62)-(5.2.63) above, together with the definitions (5.2.67,

5.2.69), the evolution equations for the three dimensionless phase space variables,

in terms of the e-folding time N = log a, turn out to be

dr z
AN — 8(F(22+22—1)—22+1)

12(’?2:(;4—1—’?:62((’? —2)224543) —(§ —1)( — 1)2—x2>

A 2 n—lm
+v/37(7 + 1) 2(2*(29m + 830 — 3m — 4n)+ m((105 — 3)z° — 2i+3))<(1i—7%22) ] |
(5.2.70)
d> 2 — AT gz = <2 2
dz = 1 ~oz” B 2.71
AN 2[ i )m<<1—%)22) KR e
1

5 09 x{ T+ Bmat —mz? 4 m ot dn?) (§555) 77+ 120+ m]

AN ~ 4(7 (22 +22 = 1) =22+ 1)

Interestingly, the structure of the phase space depends solely upon the product of
the parameters defined in (5.2.67) which quantifies the energy scales of the potential
and the warp factor, I'y defined in equation (5.2.69).

General behaviour

Before considering particular values for the exponents in the warp factor and po-
tential, we can make some general statements about the possible fixed points of the

system (5.2.70)-(5.2.72). Indeed, the equations (5.2.70)=(5.2.71)=(5.2.72)=0, can

be solved in various ways:

(5.2.72)
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(A)

Standard matter dominated solution: in this case ryp = zyp = 0= wyp =0
and Qyp = 1. This is valid for all values of n,m and . The eigenvalues
corresponding to small perturbations around this solution are (2, 2). Therefore

this solution is always unstable.

Potential dominated de Sitter solution: in this case 49 = 49 = 0 so that
245 = 1 and thus wgs = —1. From (5.2.70) and (5.2.71) one can check that in

order for it to be a solution, n and m must satisfy:
n—m< —2, (5.2.73)

and the solutions have 435 = 1. The eigenvalues corresponding to this solution

are (—3,3), and therefore the solution is always a saddle point.

Kinetic dominated solution: in this case xp;,, = %1, Zpim = Quin = 0. From
(5.2.70) and (5.2.71) we see that in order for this to be a solution to these
equations we need

n—m <0 (5.2.74)

and therefore the only solutions have 7 = wy;, = 0. The eigenvalues corre-

sponding to this solution are 3(%, —1), thus this solution is a saddle point.

For more general solutions with 0 < z < 1, which will be the most interesting
ones, we can make some general statements and will look into two concrete

examples below. Solving (5.2.71) =0 gives rise to the following equation:

1 5 g2)
3(1+7 22) zmm —3 22055 ) 4n T /3(7 + 1) 3 M =0. (5.2.75)

(1 -3

One can check that if the last term in this equation vanishes, then we are back
at one of the previous solutions. Therefore, non-trivial solutions arise when

the last term does not vanish. We can then have the following situations
(i) @ =0 or 4 = 0. This case requires that
n—m=—2 (5.2.76)

and the solution to (5.2.75) can be easily found (see below).



5.2. Disformal Dark D-brane Cosmology 146

(ii) For general values of z and 4, the solution to (5.2.75) is more complicated

depending on the precise values of n and m.

In what follows we consider two explicit examples of the classes of solutions
above, corresponding to a brane moving down an AdS; throat along a mass term
potential, and a constant warp factor with an inverse law potential, where the brane
moves towards the bulk geometry. This latter case can be seen as an example of a

moving brane in a large volume scenario.

The AdS; warp factor

Let us consider first the AdS case where the warp factor goes like h ~ ¢~*. For the
potential we consider a mass term, that is we set m =4, n =2, son —m = —2.
From the general discussion above we see that the system contains classes (a), (b),

(c) of fixed points. Furthermore, within class (d) we have the following fixed points:

Class (d): 0 < z < 1. In this example, the condition dz/dN = 0 from Eq. (5.2.75)

reduces to

3(14792*—2%) +22 —>S(x) =0, (5.2.77)

where S(z) = sign(x). The solutions to this equation are

o = \/;_Fo [S(m)\/l — A2+ /152 +30 (1 + '73:2)] . (5.2.78)

Thus we see that physical solutions exist only when the field is rolling down the

throat, S(z) = —1, for the positive branch, since otherwise either z < 0 or the
matter energy density is negative, since z > 1. It is difficult to find the most general
solution for . However, we can focus on the special case ¥ = 0, corresponding to
an ultra relativistic regime, (d)(i) above. In this case we obtain the following fixed

points:

e Matter scaling solution with zppy, = 0. For this solution we have

0 —1+ /1 + 3T, 2
X = s v = s = -
DDM DDM \/3—F0 DDM 1+ 1+ 3F0

(5.2.79)
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The total equation of state parameter approaches minus unity as one increases

FO,

1—I+30,)°
WppM = —( 3F0 0) . (5280)

The eigenvalues for this fixed points are

<_ 1+30 — I +30, 3(1+T—VI+ 3r_0)>

5.2.81
Iy 2T ( )

Requiring these to be negative, we find that this solution is stable for 0 < I'y <
1. Otherwise it is a saddle point. Moreover, we are interested in accelerating
solutions, which means that the total effective equation of state parameter
(5.2.80) for this solution should satisfy wppy < —1/3. This requires I'g > 1.
Therefore we see that the solution is not an accelerating attractor for 0 <
[y < 1, however it could be a viable matter scaling attractor when I'j is small
enough, such that w ~ 0. The reason this needs to be small is that large-
scale structure would be too different from the ACDM case if dark matter was
not effectively nearly pressureless during the structure formation era. As we
will see in the numerical study below, this fixed point is typically reached as
an intermediate stage for a cosmological evolution which is close to ACDM

cosmology.

e Kinetic solution with Qpg; = 0. For this ultra-relativistic solution the matter
contribution vanishes and

2 _ —1+/1+3T,

x =y, Z = , Q =0.
DBI 1+ VIt DBI /3T, DBI

(5.2.82)

The total equation of state is the same as for the matter-scaling solution above,

(1 - VTF3Ty)°

- — 5.2.83
WpBI 3T, ( )
Now we obtain for the eigenvalues of this fixed points:
14300 — VI 43Ty 3(2—V1+30) (5.2.84)
Ly T 14+ /1+ 30 ' o

From this we see that this solution is a saddle point when the previous one is

an attractor, that is when 0 < I'y < 1. Moreover, when I'y > 1, the solution
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is an accelerating attractor with wpp; < —1/3, while the previous one is a

saddle point for these values of I'y.

In summary, for the AdS case with a mass term potential we have found two ac-
celerating attractors for the system: a nonrelativistic potential-dominated de Sitter

solution (class (c)), and an ultra-relativistic DBI solution (class (d)-(i)).

Constant warp factor

In regions both asymptotically far into the bulk and very near to the tip of a
Klebanov-Strassler throat, the warp factor can be approximated by a constant.
This provides the simplest example of a nontrivial disformal relation, where both C
and D are constants. In this case m = 0. Following the general discussion above,
we know that this case has class (a) of fixed points. Furthermore, it possesses an
accelerated saddle point, class (b) of solutions, only for n = —2, that is, an inverse
power law potential. Moreover, for all n < 0 it possesses class (c) of fixed points as

well. Regarding class (d), we have the following fixed points:

Class (d): 0 < z < 1. Focusing again in class (d)-(i), we need n = —2. Then Eq.

(5.2.75) yields for z
1
— _ __ A2 _ A2 S
zy = \/ﬁ[ S(z)\/1 =42 4+/1—732 430 (1 + 7z )]. (5.2.85)

From here we can see that now the physical solutions correspond to a brane moving

towards the bulk geometry, that is S(x) = +1, and furthermore, we should pick the
+-branch of the solution such that z > 0. Focusing again in the ultra-relativistic
limit 4 = 0 we consider the cases when either the matter contribution or the kinetic

contribution to the expansion are negligible.

e Matter scaling solution xppy, = 0. This fixed point and its total equation
of state are given by the expressions (5.2.79) and (5.2.80). However, now the

eigenvalues of the perturbation matrix turn out to be

(—1 — 3l + 1+ 3l §>
Ty 2 )

(5.2.86)

thus this solution is never an attractor when I'y is positive, but always a saddle

point.
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Fixed point Stability when Stability for w
m=4n=2 m=0,n=-2

(a) Matter domination Unstable Unstable 0

(b) de Sitter solution Saddle Saddle -1

(¢) Kinetic domination Saddle Saddle 1
(d) Matter scaling solution | Attractor iff 0 < I'y < 1 Saddle —@
(d) Kinetic scaling solution |  Attractor iff I'y > 1 Attractor —07%@

Table 5.1: Summary of the fixed points in the two examples considered.

e Kinetic scaling solution with Qpg; = 0. In analogy with the above, this fixed
point and its total equation of state are given by the expressions (5.2.79) and
(5.2.80), but now the stability properties differ because of the different warp
factor and potential. From the eigenvalues

<_1 + 3l — /1 + 3T _3)
1—10 7 9

(5.2.87)

we see that this solution is always an attractor. The difference with the m = 4,
n = 2 case is that in that case, the matter scaling solution is a saddle point
and the kinetic solution an attractor in the accelerating case I'y > 1, while in
the present case, we find that for all I'j > 0 the matter scaling solution is a

saddle point, while the kinetic scaling solution is an attractor.

The fixed points and their stability properties in the two examples considered

above are summarised in Table 5.1.

In the dynamical system analyses of DBI cosmologies, scaling solutions have

been found in the literature [130,131,159-162]. However these solutions described

non-accelerating expansion with wr = 0. The possibility of scaling with wp # 0

appears only when a coupling is taken into account (recall our discussion in Section

5.2.1).
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5.2.3 Numerical solutions

In this section we will investigate the system of equations (5.2.70)-(5.2.72) numeri-
cally, in order to confirm the expectations from the analytic arguements in Section
5.2.1, and from the dynamical system analysis in Section 5.2.2 above. In addition,
this will enable us to uncover some of the typical details of the evolution as the
system converges to its asymptotic state described by the attracting fixed points.
Our aim is to construct realistic cosmological scenarios which start from a standard
matter dominated era and end in an accelerating era, where as we are only inter-
ested in late-time cosmology, we have omitted any contribution from radiation to
the expansion. For purposes of illustration we consider an AdS geometry for the
warp factor and a quadratic potential for the scalar field. Thus we set m = 4 and
n = 2 in what follows.

Let us describe the generic behaviour. Upon integration of the equations of
motion with matter dominated initial conditions, the system is naturally ends up
in a regime where the DBI field has a significant impact on the dynamics. This is
indeed expected given that the matter dominated solution is a repeller. We also
find that the universe quickly enters an accelerating phase described by the DBI
scaling fixed points when I'g > 1. Specifically, for the quadratic AdS model at hand,
a typical evolution is such that the universe evolves via the matter scaling saddle
point (5.2.79) into the kinetic scaling attractor (5.2.82). Examples are shown in
figure 5.1, for two values of the parameter I'y. Since the universe typically spends
a few e-folds in the saddle point stage and in a realistic case the acceleration has
begun only recently, the prediction is that our universe is currently entering the
accelerating scaling saddle point. Interestingly, the equations of state (5.2.80) and
(5.2.83) for these two physically distinct fixed points coincide, which means that
judging from the expansion of the universe alone, they cannot be observationally
distinguished. For the fixed point (5.2.79) there is a non-negligible contribution from
the disformally coupled dark matter, and for the fixed point (5.2.82) a non-negligible

contribution from the kinetic energy of the scalar field!?.

12The reason that they still can have identical expansion rates is that from Eq. (5.2.60) one sees
that for relativistic motion of the brane, neither kinetic energy nor dark matter density but only



5.2. Disformal Dark D-brane Cosmology 151

1.0 prormmmmrm oo T 10 pammmgapapemam L S A

s i ] s i
eee e e, o e e ] I ]
-.-"‘ 1 r I-
¥ ] Y S U
00 o, N 00 s N

-05} [ 4 -os5b |

~10 I I I I I ] ~10 L I I I I I
-10 -5 0 5 10 15 20 25 -10 -5 0 5 10 15 20 25

Figure 5.1: The evolution of the fractional energy densities and the total equation
of state as functions of the e-folding time N = loga for I'y = 10 (left panel) and
[y = 100 (right panel). The equation of state is the dash-dotted purple line that
settles to its attractor value given by Eq. (5.2.80). The black dotted line is the
matter contribution 2, that drops first from the matter-dominated value 2 = 1
to the saddle point solution value given by Eq. (5.2.79), and then to zero as the
universe eventually reaches the attractor described by Eq. (5.2.82). At the latter
transition, the kinetic energy contribution of the field, 22, plotted as the blue dashed
line, becomes important. The potential energy contribution 22, plotted as the red

solid line, retains its value through the two latter stages.
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The various equations of state defined in Section 5.2.1 provide another perspec-
tive from which to explore the workings of the disformal coupling. In addition to
the total equation of state in (5.2.60), one has the usual definitions for the equations
of state of the individual fluids, given in terms of our phase space variables as

At 52

_ 5.2.88
T2 + 22 ( )

wppm =0, wy =

In the presence of the non-minimal coupling however, the scaling of the energy
components is defined by the effective equations of state which may now be written
as

5 _ 2 22

Wil = % }ngf = —3<1F07 S . k. x;: S—wih (5:2.89)
where the positive sign should be chosen in the former equation, and the derivative
of 4 is given by Eq. (5.2.72). The time evolution for these quantities is shown in
figure 5.2. Because y¢ grows with time, there is energy transfer from the scalar
field to dark matter that makes the latter dilute slower, as is discussed in Section
5.2.1. During the scaling era, by definition, wy = w$},,, = w;f ! Even when this
era ends, the coupling continues to slow down the dilution of the dark matter energy
density, such that wf)fl}; » emains at a constant negative value. In the right panel of
figure 5.2, we display an example of a case wherein initially the energy density of the
field is not potential-dominated. In that case the kinetic scaling era begins shortly
after the coupling becomes important, and the scaling behaviour never quite takes
place. Such initial conditions require the coupling and the kinetic contribution to
both become significant around the present epoch, and are thus less generic than
the initial conditions that allow some e-folds of scaling. An interesting detail to
observe is that due to the fact that we have set the scalar field evolving as an initial
condition, the coupling is effective from early on: in particular, as suggested in
Section 5.2.1, it forces the energy density of the DBI field to remain constant, i.e.
wj)f I = _1 even though wy > —1. This is because the effect of the coupling is to
produce an energy flow from dark matter to dark energy, which contributes a very

tiny positive w7, - when w/ = =1, wil},, = (14 wy)py/p as seen from (5.2.52).

the scalar potential energy determines the total equation of state.
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Figure 5.2: The time evolution for the various equations of state as functions of
the e-folding time N = loga when I'y = 50. In the left panel the kinetic energy x
is initially small and the equation of state w, = ps/ps (purple dash-dotted line),
as well as the effective equation of state for the field wzf ! (blue dashed line), are
essentially w, = —1 until the coupling begins to modify the dynamics. The effect of
the coupling is to increase w7 and to lower the effective equation of state for dark
matter w7 . (black dotted line), so that they both track the total equation of state
w (red thick line) during the scaling epoch. When this epoch ends, the dark matter
dilutes faster than dark energy, but as seen from the plot, the coupling continues to
have an effect on the DDM-component. In the right panel, initial conditions are set
such that the kinetic energy z is significant and thus ws > —1. In such a case the

universe evolves to the kinetic attractor soon after the coupling kicks in, before the

scaling solution is reached.
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To gain a better understanding of the dynamics behind this evolution and the
role of initial conditions, we plot the variable x and the Lorenz factor v as functions
of the scale factor in figure 5.3 for different initial values of v. We start with a small
x and z: for a fixed +, the initial value of z determines when we enter into the saddle
point, and the initial value of z, into the attractor. We see that the transition from
the accelerating fixed point to another point occurs when z reaches its critical value
given by Eq. (5.2.82). The more nonrelativistic v is, the longer this will take. If
the brane starts moving very slowly from a virtually non-warped region in the early
universe, after reaching the matter scaling fixed point the universe can stay there
for, in principle, an arbitrary number of e-folds before the brane has moved close
enough to the tip of the throat to end the matter scaling behaviour. On the other
hand, if the initial conditions are relativistic enough, the xz-variable also grows with
a “saturated” rate during the matter dominated epoch, and there is no difference in
the observational predictions. In the right panel of figure 5.3 we see that the scaling
of the ~-factor, which is identical for all initial values during the matter epochs,
changes only when the attractor is reached. The scaling is such that v¢ ~ a=3vT,
as expected already from the considerations in Section 5.2.1.

Finally we check how the cosmology depends upon the parameter I'y, which is
the sole theoretical quantity that controls the evolution. We illustrate this in figure
5.4 by plotting x and €2 as functions of the scale factor for a few different values of
['o. In complete agreement with the results of the analytic study in Section 5.2.2,
we find that 'y = 1 is the dividing value above which the universe accelerates and
eventually ends with 2 = 0, and below which the universe decelerates forever and

) retains a constant finite value.

5.3 Discussion

In this Chapter we have proposed an inherently unified and fundamental origin
for the observed cosmological dark sector in four dimensions. Specifically, we have
suggested that the dark fluids in the universe may be due to the presence of a hidden

sector D-brane moving in the warped extra dimensions. We have named this object
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Figure 5.3: The evolution of the “kinetic term” x (left panel) and the brane Lorenz
factor in the form of log# (right panel) as functions of the scale factor a when
[y = 30. The results are presented for five different initial conditions (set at
a = 10712?) as given in the legend of the right panel. We see that z, initially set to
a small value, grows until it reaches the attractor value given by Eq. (5.2.82). For
sufficiently non-relativistic initial conditions (¥ very close to unity), « can be frozen
during the matter dominated era but starts growing as the universe enters into the
accelerating scaling saddle point solution Eq. (5.2.79). For sufficiently relativistic
initial conditions (¥ very close to zero) this does not occur. During the matter dom-
inated era -y is constant, but begins to evolve at a constant rate towards relativistic
values v — oo as the accelerating era begins. When the attractor is reached, this

3w where w is

rate changes. The rate is given by I'y in such a way that y¢ ~ a~
the equation of state parameter in Eq. (5.2.80), as expected from considerations in

Section 5.2.1.
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Figure 5.4: The evolution of the “kinetic term” x (left panel) and  (right panel)
as functions of the scale factor a for different values of T’y (as given in the legend of
the right panel). For 'y larger than unity, the evolution of x is similar to that which
is depicted in figure 5.3, and €2 behaves as depicted in figure 5.1. For the limiting
value Ty = 1, for which the attractor value of the equation of state is w = —1/3,
the z-term freezes, while the matter scaling persists. When 'y < 1, the attractor
value of the equation of state parameter is non-accelerating, w > —1/3, and instead
of growing the xz-term begins to decay when the matter scaling solution is reached.

The solution is now an attractor and 2 remains as the constant given in Eq. (5.2.79).
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the “Dark D-brane”.

In this scenario, dark energy descends from the brane’s motion in the compact
space, which manifests in the four-dimensional theory as a scalar field with non-
standard (DBI) kinetic terms. In addition, dark matter, and possibly dark radiation,
are associated with the matter fields which are localised on this brane. Due to the
form of the induced metric on the brane, the dark fluids interact with one another
via a disformal coupling, which then provides an explicit realisation of this coupling
within a fundamental theory.

Due to the particular form of the energy exchange between the dark fluids, we
have demonstrated that the Dark D-brane scenario proposed herein exhibits scaling
solutions, and thus can alleviate the “cosmic coincidence” problem by allowing the
energy densities in dark energy and dark matter to be proportional across several
efolds of the cosmological evolution. Furthermore, since the Dark D-brane is a
hidden brane, this scenario can naturally account for the observational fact that the
coupling between dark matter and standard model fields is strongly suppressed.

For the purpose of illustration we have herein considered the simplest Dark D-
brane model, which features a probe D3-brane moving in a warped region of a Type
1B flux compactification, and have explored the resulting homogeneous cosmological
evolution.

To study the dynamics we have implemented a dynamical systems analysis, in
which we focused on a power law form for the warp factor h as well as for the
brane’s potential V. We derived four classes of fixed points, which correspond to
matter domination, a de Sitter solution, kinetic domination, and the scaling solutions
respectively. Among these, only the matter dominated fixed point is independent of
the values of the parameters, while the other fixed points depend upon the values
of the exponents in the power law expressions for h and V.

The most interesting class of fixed points are the scaling accelerating solutions,
as these can resolve the coincidence problem. Within this class of fixed points, we
have studied explicitly two representative cases. Firstly, we considered a Dark D-
brane moving in an AdSs geometry, which can be seen as an approximation to the

mid-region of a realistic Klebnov-Strassler geometry, along a quadratic potential.
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Secondly, we considered a constant warp factor, which can arise in a very near-
tip Klebanov-Strassler region, or simply as an unwarped region in a large volume
scenario, with an inverse power law potential. In the ultra-relativistic limit, we
found two different types of disformal scaling fixed points for the two cases, namely
a matter scaling and a kinetic scaling fixed point. At the matter scaling point, the
disformally coupled dark matter contributes a constant fraction to the expansion
rate. At the kinetic scaling point on the other hand, the matter sources contribute
negligibly to the energy density, and yet this fixed point exhibits precisely the same
total equation of state as the matter scaling fixed point.

Finally, we numerically confirmed all of the results for the AdSs5 case which were
expected from analytic considerations as well as from the dynamical system analysis.
While we focussed more on this case, it is worth mentioning that inverse power law
potentials of precisely the type considered in our second case, namely for which
n = —2, can alleviate the fine-tuning problem of the scale of dark energy [174,175].
However, it remains to be seen whether such potentials can be realised robustly in
Type IIB flux compactifications. Therefore, while our scenario is able to address one
of the two long-standing problems of dark energy, there is much that still needs to
be understood in relation to how this scenario might address the remaining problem.
Furthermore, in the current work we considered only the background expansion. In
order to fully access the viability of this model, an obvious next step is to study the
perturbations.

In summary, we found that the expansion can generically begin with an acceler-
ating scaling regime which eventually gives way to a purely dark energy dominated
regime with the same expansion rate. Therefore, the simplest Dark D-brane sce-
nario can give rise to very viable late-time cosmology, which motivates the study
of more realistic and concrete models within this framework, as well as the search
for observational signatures that could distinguish the presence of a Dark D-brane

world from other dark sector scenarios.



Chapter 6

Concluding Remarks

In this thesis we have explored a variety of exotic cosmological phenomena in the
late-time universe, when structures such as black holes and galaxy clusters have
formed. In particular, we have focussed on the interactions between the theoretically
well-motivated but physically mysterious entities that may populate the cosmologi-
cal landscape today.

Cosmic strings are objects which are believed to be formed in the early universe
during the symmetry breaking processes that allow the particle spectrum to evolve
into its present form, namely the standard model of particle physics. In addition,
they can be formed at the end of D-brane inflation scenarios in string theoretic
descriptions of the early universe. In this way, their existence is motivated by and
expected from both pure field theory models as well as fundamental high-energy
models of cosmology. Furthermore, while their existence remains hypothetical in
cosmology, there are in fact strong indications from observations of other natural
systems that they may indeed be someday glimpsed in the cosmos. Namely, string-
like defects have indeed been observed to arise in condensed matter systems such as
liquid crystals. The physics underpinning the formation of these objects is precisely
the same as that which predicts defects in the cosmological fluid.

While most studies of the cosmological journey of these objects have focussed
on their formation and evolution into networks of strings and loops, in the present
study we have instead addressed the question of their ultimate fate in the universe.

The evolution of cosmic strings is such that once they have formed in the early

159
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universe, the individual strings are stretched by the expanding background, while at
the same time loops are formed during the intercommutation process, which dilutes
the initial density of the strings. Eventually however the string network enters a
regime during which the density of the network becomes scale-invariant. The overall
result is that a small number of strings are expected to be present today, amid a
gas of oscillating loops.

So, what happens to these strings? This is a very pertinent question as its answer
determines whether or not, and where or where not, we might actually concretely
observe them. As the strings drift through the universe, we can expect that they
will naturally move into gravitationally dense regions much like all other physical
objects which traverse the cosmos. Therefore, along with other forms of visible
matter, they will trace the dark matter density, and collect in dark haloes along
side galaxies and clusters, eventually journeying towards the dense cores of these
regions, which are strongly believed to harbour supermassive black holes. Thus the
question of what happens to the strings may ultimately be the question of how the
strings might interact with black holes. Can a black hole “catch” a cosmic string?
Or are strings somehow repelled by black holes, such that they must avoid regions
of dense matter entirely, and thus can be expected to end up collecting in voids?

In order to address this, in Chapter 3 we have considered the interaction between
an astrophysical black hole, namely a black hole that is rotating, and a single cosmic
string. We focussed on the end state of the interaction, namely the intersection or
composite configuration of the two objects that could form once the objects meet.
Employing the abelian Higgs vortex model for the string, we solved the vortex
equations in the Kerr background, treating the string as a probe in the spacetime
of the black hole, and aligning it in such a way as to respect the symmetries of the
spacetime. From this probe analysis, we found that it is quite possible to form a
stable, composite state consisting of a cosmic string piercing through the poles of
a rotating black hole. Indeed, due to the fact that the energy and tension balance
one another in the core of the string, the string does not feel a gravitational force
through its interior and thus does not become swallowed by the black hole, but

instead threads through it.
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Having verified that such a configuration can exist, we went on the explore its
phenomenology, which turns out to be diverse and abundant. Firstly, in the presence
of rotation, the constant axial magnetic flux lines of the string become accompanied
by electric flux lines which emerge in the close vicinity of the event horizon. Thus
the gauge field of the string naturally picks up a time component, which is in fact
generated by the rotating background due to the non-trivial mixing between the
time and azimuthal directions, and so the standard duet of string degrees of freedom
becomes a trio, {X, Py, P;}.

Secondly, upon examination of the extremal limit of the system for a variety
of black hole masses, we found that the Kerr string system exhibits a Meissner
effect, in which the flux lines of the string become expelled from the black hole
and thus the fields remain in their vacuum states across the entirety of the horizon.
This flux-expelling behaviour occurs for extremal black holes of lower mass relative
to the width of the string. Specifically, as one lowers the mass of the extremal
black hole, a first-order phase transition takes place during which the piercing fields
become expelled, such that the black hole essentially sits within the core of the
string, enveloped by the scalar condensate and gauge flux lines.

Thirdly, taking into account the gravitational effects of the string on the Kerr
spacetime, we uncovered another striking consequence of the non-trivial mixing be-
tween the time and azimuthal directions in this spacetime. Whereas in a static or
flat background, the gravitational effect of the string is to induce an azimuthal con-
ical deficit at spatial infinity, in a stationary background, we verified herein that the
deficit is blended in with the time direction. Another way to phrase this is that the
purely conical effect is with respect to a local co-rotating frame, rather than with
respect to an observer at infinity, thus an asymptotic observer sees a conical effect in
the intersection of the time and azimuthal directions. The physical consequences of
this rotationally blended deficit are that the ergosphere and possibly the innermost
stable circular orbits of objects near to the black hole are shifted by the presence
of the string. While this avenue remains to be explored, it provides a potential
direct signal for the composite string and black hole system through studies of the

perturbations of geodesic motion in the close vicinity of galactic black holes.
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In Chapter 4, we then took this line of research into a more theoretical direction,
and examined the effects of a negative cosmological constant on the Kerr vortex
system. Such a system is not realised in nature, at least not in our four-dimensional
universe, however derives its motivation from holography and higher dimensional
theories such as string theory.

For the purposes of this study, we considered the vortex to be a probe in the AdS
black hole spacetime. We began by exploring the effect of the cosmological constant
on the string fields in a purely AdS background, and found that shortening the AdS
length ¢ tends to tighten the core of the string while at the same time causes the
fields to fall off more gradually towards their vacuum values. We then addressed
the physics of the full vortex and black hole system, including a black hole charge
for completeness. In this way, we were able to extract a detailed picture of the roles
played by all the various parameters which can be contained in such a system.

As with the pure Kerr case, the rotation generated a time component for the
gauge field, and thus electric flux lines near the horizon. In addition, small mass
black holes exhibited a Meissner effect, once again governed by a first-order phase
transition. The effect of decreasing ¢ on the transition is to lower to ciritical radius
of the horizon at which the transition takes place. On the other hand, the charge
of the black hole does not appear to impact the physics of the composite system
studied herein.

Thus the work in Chapters 3 and 4 provides an insight into the interactions be-
tween two notable classical objects in cosmology, namely cosmic strings and rotating
black holes, with the studies in Chapter 3 being of interest for physical cosmology
while those in Chapter 4 being instead relevant for purely theoretical constructions.

These objects form part of the visible sector of the cosmological phenomena, in
that they are made from standard model particles, with a black hole originating
from a collapsed star composed of baryonic material, and a cosmic string consisting
of a Higgs condensate core threaded with magnetic flux.

However, as we have reviewed in detail, the late-time universe is in fact domi-
nated by some kind of invisible or dark sector, with dark matter and dark energy in

fact completely governing the cosmological behaviour of visible matter. Dark energy
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is the elusive fluid which is currently causing visible galaxies and clusters to fly apart
from one another, while dark matter dominates the gravity inside the galaxies and
clusters, and thus determines their internal structural and dynamical properties.

In Chapter 5, we trace the possible origins for the observed cosmological dark
sector into higher dimensions of spacetime, and propose a unified model for this
sector as a “Dark D-brane world” moving in these higher dimensions. In this sense,
what we observe as dark phenomenology in four dimensions descends in fact from the
dynamics of fundamental objects in the higher dimensional geometry. Compellingly,
while the Dark D-brane world is constructed purely from the point of view of string
theory, it turns out that the dark fluids associated with this object are exchanging
energy with one another via a disformal coupling, which has been widely studied
in the context of phenomenological theories of modified gravity. Thus our scenario
forms a connection point between phenomenological and fundamental approaches
to cosmology.

The Dark D-brane matter fields, which we associate with dark matter, are nat-
urally and necessarily distinct from the visible sector, providing at once a concrete
explanation for why these sectors are observed to be non-interacting. Furthermore, a
study of the cosmological evolution in the Dark D-brane scenario, where the motion
of the brane is associated with dark energy, revealed the presence of accelerating
scaling solutions which can then address the cosmic coincidence problem. It remains
to be seen however whether or not the observed scale of the vacuum energy can be
robustly derived from this picture, and this might involve constructing the Dark
D-brane from branes of lower codimension.

Therefore, at the level of the homogenous background studied herein, it seems at
least plausible that the dark fluids could in fact be telling us something about what
is going on in the higher dimensional spacetime. If so, then these fields provide a

tantalising means for us to glimpse into worlds beyond our own.
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Figure 6.1: Tibetan Cosmology: The “Wheel of Life”, containing the six realms
into which beings are reborn, held in the claws of Mara, who represents death and
impermanence. In the centre are the three poisons, and an individual’s response to

these poisons determines the realm into which he or she will be reborn.

You are the formless within all forms, the silence and stillness inside all
movements of time and manifestation.
Arise into the fullness of your real nature, as the unchanging self, the goal and
source of all being.

—Mooji
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