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Abstract

In recent years it has become increasingly clear that our universe is far more

intricate than we might ever have imagined. While theoretical formulations of the

fundamental aspects of Nature have, for many years, hinted at its vast and elusive

complexity, suggesting that our known world is but a tiny facet of the greater re-

ality in which it is embedded, it has only been within the last several decades that

observations have really begun to confirm this. Indeed, while deep-field surveys

of the universe have uncovered myriads of galaxies, constituting an untold number

of gravitationally bound microcosms such as ours, precision cosmological measure-

ments have revealed that all of this luminous baryonic matter is a near negligible

fraction of the total energy and matter in the universe. The vast majority of our

cosmos is a dark universe, comprised of some kind of invisible substances or dark

fluids that only interact gravitationally with visible matter.

Even among the objects that are visible to us, there are many mysterious entities

which are predicted by theory and which may or may not as yet have been glimpsed

in the cosmos. In the first part of this thesis we will study the interactions between

two such entities, namely cosmic strings and rotating black holes. In the latter part,

we will turn to the invisible sector and explore whether or not the dark phenomena

in the universe could in fact be the shadows of fundamental objects moving in higher

dimensions beyond our own.
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Preface

Impermanent are all component things,

They arise and cease, that is their nature:

They come into being and pass away,

Release from them is bliss supreme.

–Mahaa-Parinibbaana Sutta

The physical universe in which we find ourselves is a vast flux of fleeting forms

of energy, where as time progresses, objects arise, interact with other objects, and

then dissolve away again in apparently tireless succession. In this sense, what we

call time is a measure of the changefulness of the universe.

Hot gases can give birth to stars, a temporary home for planets and lifeforms such

as ourselves, which may eventually collapse into black holes, which may themselves

ultimately evaporate into radiation. As conscious lifeforms, we are observers of the

flux while at the same time, components of it.

From observations we have made of our cosmic environment, we now know that

our world of baryonic stars and galaxies is but a small island floating on a sea

of more subtle, “dark” forms of energy that are apparently not in communication

with our visible world. Visible matter clusters in halos of dark matter, an invisible,

gravitating substance whose existence is an inference we have made based on the

dynamical and structure-forming behaviour of visible matter. On even larger scales,

the dark halos themselves are diluting away within an elusive substance known as

dark energy, as is infered from the redshifting of light emitted from the structures

contained in the haloes.

1



Preface 2

The principle of impermanence persists at the quantum level, where quantum

particles, tiny packages of energy, are also in a state of flux. As time progresses,

particles appear, interact with other particles, and then may either decay into lighter

particles, or leave behind a relic density that fades as the universe expands. Thus the

particle spectrum of the universe evolves dynamically over time, with its symmetry

forged by a series of phase transitions occuring at different cosmological epochs.

The changing of microscopic, quantum symmetry at these transitions can result in

the formation of macroscopic, classical objects known as cosmic strings, which enter

the flux of forms and ultimately interact with other forms that exist at that energy

scale.

In the pages that follow, we will theoretically study a subset of interactions that

could occur within both the visible sector and the invisible sector of the cosmic flux.

We will first examine the possible configurations which can arise from interactions

between cosmic strings and rotating black holes in the visible sector, extending this

study to the more abstract case of the interactions taking place within a spacetime

containing negative vacuum energy. We will then turn to the invisible sector, and

explore the possible interactions between the dark fluids in the universe, which will

take us into higher dimensions of spacetime and fundamental theories of the natural

world.



Chapter 1

Theories of Gravity

We begin with a discussion of the fundamental interaction which governs the

behaviour of the universe on cosmological scales, namely the force of gravity. The

paradigmatic theory which describes this force is Einstein’s classical general theory

of relativity. Gravity sculps the cosmic landscape by endowing it with a geometry,

along which matter moves. Looking at smaller and smaller scales however, the

other fundamental interactions of nature, namely the strong, the weak, and the

electromagnetic force, which all have a description as quantum field theories, begin to

become more and more relevant for describing the behaviour of matter. On the other

hand, the gravitational interaction retreats into the background, becoming irrelevant

at the typical energy scales associated with particle physics. In order to smoothly

connect these regimes, one must find a deeper theory of nature that contains both

general relativity and quantum field theory in suitable limits, but that goes beyond

these limits and adequately describes the physics in between, and underpinning,

them. The theory that has made the most progress in this regard is string theory, a

quantum theory of gravity that unifies all of the known fundamental forces of nature

as arising from the vibrations of fundamental strings in a ten dimensional spacetime.

Starting from a theory of gravity in ten dimensions, the four dimensional description

can contain new couplings between gravity and other fundamental fields which are

part of the spectra of the oscillating strings. In this way, general relativity in four

dimensions becomes modified by the presence of these fields. Interestingly, these

3



1.1. General Relativity 4

new interactions can in principle provide a context for understanding some aspects

of the most elusive of the cosmological phenomena that have yet been observed,

namely the dark sector of the universe.

In Section 1.1 we will discuss general relativity in some detail, beginning with an

exposition of the theory in ts Lagrangian formulation in Section 1.1.1, and then de-

scribing some important solutions in Sections 1.1.2 and 1.1.3. In Section 1.2 we will

then discuss gravity in higher dimensions, outlining some of the key developments

in Section 1.2.1 before discussing string theory in Section 1.2.2. Finally, having

provided a motivation, in Section 1.3 we will move back to the effective four dimen-

sional description of gravity, and discuss the scalar-tensor class of modified gravity

theories.

Units and Conventions

Nature exhibits three fundamental dimensionful constants which are the the speed of

light c, Planck’s constant ~, which sets the scale at which the quantum uncertainty

principle becomes important, and Newton’s constant G, which sets the strength of

the gravitational field. In what follows, we will work with natural units such that

c = ~ = 1, and 8πG = M−2
p = κ where Mp is the reduced Planck mass, which defines

a mass scale of Mp ≈ 2× 1018GeV. We will choose the metric to be of (−,+,+,+)

signature.

1.1 General Relativity

1.1.1 Lagrangian formulation

The intricate structural patterns in the large scale structure are produced by lu-

minous galactic fluids that are tracing out the intrinsic curvature of spacetime as

they freefall under gravity. Freefalling objects follow paths of minimum distance

called geodesics, which are straight lines in a curved space. Formally, spacetime

is described by a four dimensional Riemannian manifold with a metric gµν , which

allows for a notion of distance in the spacetime. Choosing a path parameterised by



1.1. General Relativity 5

an affine parameter λ, the distance along it is

s =

ˆ
dλ
√
gµνtµtν , (1.1.1)

where tµ = dxµ/dλ is a tangent vector to the path. Extremising this distance gives

the geodesic equation,

tµ∇µt
ν = 0 , (1.1.2)

where the covariant derivative ∇µ is the generalisation of the partial derivative in a

curved space, ∇µt
ν = ∂µt

ν + Γνµσt
σ, and the connection Γµσρ is built from the metric

and its derivatives,

Γµσρ =
1

2
gµν(∂σgνρ + ∂ρgνσ − ∂νgσρ) . (1.1.3)

The intrinsic curvature of the manifold is characterised by a quantity known

as the Riemann curvature tensor, Rα
βγδ, which is constructed from the connection

and its derivatives, giving rise to an object which is second order in the metric

derivatives,

Rα
βγδ = Γαβδ,γ − Γαβγ,δ + ΓµβδΓ

α
µγ − ΓµβγΓ

α
µδ . (1.1.4)

As a clump of matter freefalls under gravity, in addition to its changes in position

and velocity, it can also experience changes in its shape and volume as a result of

these second order geometrical effects. Changes in volume are quantified by the

trace component of the Riemann tensor, known as the Ricci tensor, Rσ
µσν = Rµν ,

while changes in shape are quantified by the traceless component, known as the

Weyl tensor. If the Riemann tensor vanishes identically, the spacetime is said to

be flat, and is thus endowed with a Minkowskian geometry. However, even in the

presence of globally non-trival curvature, Riemannian manifolds admit a tangent

space at each point where the geometry is locally Minkowskian.

Thus, in a Riemannian spacetime, all geometrical information stems from a single

quantity, the metric gµν .

The great insight of Einstein, formalised into the general theory of relativity that

constitutes the modern understanding of the gravitational force, is that the intrinsic

curvature of spacetime is itself created by the various forms of matter and energy

that move along it. The gravitational force that is sourced by matter and energy

may then be identified with spacetime geometry, namely the metric gµν . Rather
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than fixed and immutable, spacetime then becomes dynamical, thus the metric may

be treated as a dynamical field from a classical field theoretic point of view.

Einstein’s theory may then be formulated as an action principle for the dynamical

field gµν . The action functional is constructed in the standard way, namely from

invariant quantities that are formed from the dynamical field and its derivatives.

While other quantities are possible, the simplest invariant quantity that can be

constructed from the metric and its derivatives is the trace of the Ricci tensor,

called the Ricci scalar, R = gµνRµν . One must then construct an invariant measure

on the space. As usual, this is achieved by the invariant volume element,
√
−gd4x,

which in this case, most unlike all other field theory cases, depends itself upon the

dynamical field being described by the theory.

Putting these quantities together yields the Einstein-Hilbert action,

SE.H. =
1

2κ

ˆ
d4x
√
−g R , (1.1.5)

which expresses the geometrical content of the theory. To specify the dynamics of

gµν in terms of general equations of motion, one must then write down an action for

the matter fields, which act as sources for the geometry. The total action is

S = SE.H. + Sm , (1.1.6)

where

Sm =

ˆ
d4x
√
−gL(ψi, ∂µψi) (1.1.7)

is a general action for the matter fields ψi. We may now obtain the equations of

motion for the gravitational force by a variation of (1.1.6) with respect to a general

perturbation of the contravariant metric δgµν , which yields

δS =
1

2κ

ˆ
d4x
√
−g
(
Rµν −

1

2
gµνR

)
δgµν +

ˆ
d4x

δSm
δgµν

δgµν . (1.1.8)

Defining the stress energy tensor as

Tµν ≡ −
2√
−g

δSm
δgµν

, (1.1.9)

the action principle δS = 0 yields the Einstein field equations,

Gµν ≡ Rµν −
1

2
gµνR = κTµν , (1.1.10)
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where Gµν is known as the Einstein tensor.

The geometrical quantities on the left hand side of the field equation (1.1.10)

are only those which pertain to the trace part of the Riemann tensor. Thus, we

see that non-gravitational1 matter fields only source the Ricci tensor, Rµν . On the

other hand, in the case that Tµν = 0, and in the absence of a cosmological constant,

the field equations read

Rµν = 0 , (1.1.11)

which describe the dynamics of the gravitational field in a spacetime devoid of all

but geometry. These are known as the vacuum equations. A trivial solution is

flat Minkowski spacetime, for which, as we have mentioned, the Riemann curvature

tensor vanishes identically. However, more generally, (1.1.11) is simply the statement

that the equations of motion do not force the traceless component of the Riemann

tensor, namely the Weyl tensor, to vanish. There are in fact many non-trivial

solutions to (1.1.11), the most notable of which are the black hole solutions which

describe the empty spacetime outside of gravitationally collapsed objects. As there

are no matter sources about, the fact that there are non-trivial solutions to (1.1.11)

implies that gravity itself can generate gravitational effects, and produce a non-

vanishing Weyl tensor. This is a consequence of the non-linearity of the theory,

which entails that even in the absence of gravitating matter fields, spacetime may

be non-trivially curved because the gravitational field itself contains energy, and

thus can produce more gravity.

Going back to our clumps of matter freefalling under gravity, we see that in an

empty spacetime, the clumps may experience changes to their shape, while only in

the presence of distinct sources for the gravitational field will they experience changes

in volume. An example for the latter is an expanding spacetime in cosmology:

probe matter is diluted by the expansion, which is sourced by the presence of the

cosmological fluid, or by a cosmological constant. An example for the former is the

behaviour of matter in the vicinity of black holes, where strong tidal forces act to

1By “non-gravitational” we mean that they do not form part of the gravitational sector. This

distinction will become important when we discuss modifications of general relativity.
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distort the morphology of nearby objects, sourced purely by the non-linear effects

of gravity.

Having derived the field equation for gµν , we require further information in order

to specify the dynamics of the system, because at this stage we do not have an

equation for the non-gravitational degrees of freedom ψi which are packaged into

Tµν . It turns out that by virtue of the properties of Riemannian geometry, this

equation is already implicit in the Einstein equations. An important property of the

Riemann tensor is the so-called Bianchi identity,

Rσ
ρ[µν;α] = 0 , (1.1.12)

and contraction of this identity yields a constraint on the Einstein tensor,

∇µG
µν = 0 . (1.1.13)

From the field equations (1.1.10), this implies that ∇µT
µν = 0, which gives us an

equation for ψi in the form of a conservation equation for the collective stress-energy

of the non-gravitational fields.

From a variational point of view, the contracted Bianchi identity emerges as

a natural consequence of general covariance, which is the principle that the laws

of physics should be invariant under diffeomorphisms, which are general coordi-

nate transformations. General covariance requires that the action functionals, from

which the laws may be derived as equations of motion, are coordinate invariant

by construction. Symmetries in the action correspond to conservation laws, thus

the Bianchi identity, expressing the conservation of stress-energy, appears as the

conservation law associated with the symmetry of Sm under diffeomorphisms.

To derive the conservation law, we perform a general variation of (1.1.7) with

respect to the field perturbations δψi and δgµν , yielding

δSm = 0 =

ˆ
d4x

δSm
δψi

δψi +

ˆ
d4x

δSm
δgµν

δgµν . (1.1.14)

Variation of the matter action with respect to the covariant metric gµν allows us to

define the stress energy tensor with raised indices as

T µν =
2√
−g

δSm
δgµν

, (1.1.15)
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which features the opposite sign to (1.1.9) due to the variational identity δgµν =

−gσµgρνδgσρ.

For an infinitesimal diffeomorphism x′µ = xµ + ζµ(xα), the infinitesimal changes

in the fields ψi and gµν are given by the Lie derivative, which acts on a general tensor

Kαβ as

£ζKαβ = Kαδζ
δ
,β +Kδβζ

δ
,α +Kαβ,γζ

γ , (1.1.16)

yielding

δψi = £ζψi = ζµ∂µψi , (1.1.17)

δgµν = £ζgµν = ∇µζν +∇νζµ . (1.1.18)

In the case that the second equation (1.1.18) vanishes, the vector ζµ is called a

Killing vector, and represents a symmetry of the metric, which we will discuss in

greater detail in Section 1.1.2.

With these specific expressions for the field perturbations, one may use the sym-

metries of T µν to obtain

ˆ
d4x
( ∂L
∂ψi
−∇µ

∂L
∂ψi,µ

)
ζν∂

νψi −
ˆ
d4xζν∇µT

µν = 0 . (1.1.19)

The term in parentheses is the equation of motion for ψi, which vanishes identi-

cally. Thus, for an arbitrary vector ζµ, the stress-energy tensor is constrained to be

divergence-free, ∇µT
µν = 0.

Let us now discuss the general form of the stress-energy tensor. The metric

gµν is a symmetric tensor, thus to reflect the symmetries of spacetime, one usually

considers the stress-energy tensor to take the form of a perfect fluid,

Tµν = ρuµuν + P (gµν + uµuν) (1.1.20)

where ρ is the energy density of the fluid, P is its pressure, and uα is a timelike

vector uµuµ = −1, which represents the four-velocity of the individual particles

which comprise the fluid. Going back to the action 1.1.1, the four-velocity is the

tangent vector to a path which is parameterised by the proper time τ .

The equation of motion for the fluid, ∇µT
µν = 0, then yields the following two

equations:

uµ∇µρ+ (ρ+ P )∇µu
µ = 0 , (1.1.21)
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(P + ρ)uµ∇µu
ν + (gµν + uµuν)∇µP = 0 . (1.1.22)

For a perfect fluid, (1.1.21) and (1.1.22) completely specify the motion of the fluid,

thus the Einstein equations contain all the information about how spacetime and

stress-energy behave under the influence of each other. For the case of “dust”

particles, P = 0 and (1.1.22) then tells us that the individual particles move on

geodesics,

uµ∇µu
ν = 0 . (1.1.23)

This is a very important result as it implies that all test particles, namely particles

upon which no other external forces are acting, are constrained by energy conserva-

tion to follow geodesics of gµν .

1.1.2 Black holes

Among the most exotic solutions to Einsteins equations are most certainly the black

hole solutions, which showcase some of the most interesting and varied ways in

which the gravitational field can manipulate the behaviour of matter. In general,

these are solutions which describe the empty spacetime outside of gravitationally

collapsed objects, but they can also describe the spacetime around very massive

objects that totally dominate their local gravitational environment. As with all

solutions to Einstein’s equations, they are characterised by the various symmetries

of the gravitational field, or equivalently, by spacetime symmetries. As mentioned

above, such symmetries are described by Killing vectors.

For a general vector kµ, one can find local coordinates such that kµ = (∂/∂ξ)µ,

where ξ is one of the coordinates. kµ is a Killing vector in the case that the Lie

derivative acting on the metric satisfies

£kgµν =
∂

∂ξ
gµν = 0 , (1.1.24)

thus the metric coefficients are independent of ξ.

For example, spherical symmetry of the spacetime entails that the solution ad-

mits an SO(3) rotational symmetry. Then, for the spacetime to be stationary, the

solution should possess a time-translation symmetry, t→ t+ t0, while static space-

times require in addition that time is symmetric under reversal, t→ −t. Therefore,



1.1. General Relativity 11

a static solution should admit a timelike Killing vector that is orthogonal to all

spacelike surfaces, meaning that there can be no cross terms that mix the timelike

and spacelike directions in the metric. On the other hand, stationary spacetimes

feature a mixing of the timelike and spacelike directions. In fact, as originally shown

by Hawking and Wald, stationarity implies that instead of spherical symmetry, the

spacetime is axisymmetric. Working in coordinates {t, r, θ, φ}, there are in general

two Killing vectors associated with these symmetries, namely

(∂t)
µ , (∂φ)µ , (1.1.25)

where an additional two Killing vectors are present for full spherical symmetry.

These symmetries of the spacetime have corresponding conserved quantities. Each

Killing vector kµ leads to a constant of motion for a particle moving in the spacetime,

kµ
dxµ

dλ
= const. (1.1.26)

For the Killing vectors in (1.1.25), this leads to the conservation of energy and of

angular momentum.

Schwarzschild

Let us now discuss the particular solutions. The Schwarzschild solution is the unique

static and spherically symmetric solution to the vacuum Einstein equations. It de-

scribes the gravitational field outside of a static, spherically symmetric body of mass

M , such as a star. Within our solar system, where the planets may be considered as

test particles moving in the gravitational field exterior to our home star, the sun, it

correctly predicts deviations from Newtonian orbital motion, as well as inherently

relativistic effects, such as gravitational redshift, time delay and the bending of light.

The Schwarzschild solution is described by the metric

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2 (1.1.27)

where dΩ2 = dθ2 +sin2 θdφ2 is the metric on a 2-sphere. This solution asymptotes to

flat space at large r, therefore the gravitational effect of a massive object dimishes

if one moves far enough away from the object, as one would expect.
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The solution becomes singular at the points r = 2GM and r = 0. The first of

these points defines the Schwarzschild radius,

rS =
2GM

c2
≈ 3

( M
M�

)
km , (1.1.28)

where M� is the mass of the sun. In the case of a typical star, this radius is well

within the interior of the star, where the vacuum solution is not expected to be

valid. However, very massive stars that undergo complete gravitational collapse will

fall well within their Schwarzschild radii, eventually forming a black hole centred

at r = 0. In this case, the Schwarzschild radius becomes an event horizon, a null

surface separating regions of spacetime which may and may not causally interact

with one another.

A spacetime is said to be geodesically complete if all geodesics are extendable

to arbitrarily large values of their affine parameters. A spacetime containing a gen-

uine singularity is geodesically incomplete, meaning that geodesics terminate at the

singularity for some finite value of their affine parameter. In the case of the space-

time which is described by (1.1.27), this appears to occur at rS, because geodesics

can reach this singularity at a finite value of their affine parameters. However the

Schwarzschild spacetime may be maximally analytically extended beyond rS by

choosing appropriate coordinates. One then sees that rS is a mere coordinate sin-

gularity, and there is no obstruction in continuing the paths of particles beyond this

surface. All infalling particles will then travel onwards to r = 0, which is a true,

irremovable singularity of the spacetime, where the geodesics terminate. However,

looking at (1.1.27) one can see that for r < rS, the radial direction becomes timelike.

This means that the particles can only move in one direction along the radial path,

so that all future-directed paths are in the direction of decreasing r. Therefore no

particles or signals of any kind may leave the interior region of the black hole, and

no information may be glimpsed from beyond rS.

Reissner-Nordstrom

We mentioned earlier that the Schwarzschild solution is unique. This is a conse-

quence of Birkhoff’s theorem, which states that any spherically symmetric vacuum
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spacetime solution must be static. In other words, such a solution must be the

Schwarzschild solution.

More generally, one can consider spacetimes that contain non-trivial electromag-

netic fields. Such spacetimes are no longer vacuum spacetimes, but are sometimes

refered to as electrovacuum spacetimes, and are solutions of the coupled Einstein-

Maxwell equations. One may then generalise Birkoff’s theorem to the electrovac-

uum case, for which it stipulates that the only spherically symmetric solution is the

Reissner-Nordstrom solution describing a charged black hole.

The Reissner-Nordstrom solution is the unique spherically symmetric solution to

the Einstein-Maxwell system, described by the action

S =
1

2κ

ˆ
d4x
√
−g
(
R− FµνF µν

)
, (1.1.29)

where F = dA is the field strength for the Maxwell potential A. The metric is

ds2 = −∆

r2
dt2 +

r2

∆
dr2 + r2dΩ2 (1.1.30)

and the gauge field is

A =
q

r
dt . (1.1.31)

In these expressions, ∆ = r2 − 2GMr + q2, where q ≡ GQ and Q is the electric

charge of the black hole. The metric function ∆ = (r− r+)(r− r−) has two distinct

roots,

r± = GM ±
√

(GM)2 − q2, (1.1.32)

corresponding to the inner and outer event horizons of the charged black hole. In the

case that the two horizons coincide, r+ = r−, the black hole is said to be extremal.

This occurs when GM = q and thus r+ = GM . Under a change of coordinates

ρ = r −GM , (1.1.33)

the extremal metric takes the isotropic form

ds2 = −
(

1 +
GM

ρ

)−2

dt2 +
(

1 +
GM

ρ

)2

(dρ2 + ρ2dΩ2) . (1.1.34)

In these coordinates, the metric becomes singular when ρ = 0, thus there is an event

horizon located at this point. In the near-horizon region where ρ → 0, the metric
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becomes

ds2 ≈ − ρ2

(GM)2
dt2 +

(GM)2

ρ2
dρ2 + (GM)2dΩ2 , (1.1.35)

which, compared with (1.1.43) below, is the line element for AdS2 × S2, where the

2-sphere has radius GM . For an observer at a radial point ρ = ρ0, we learn that the

event horizon ρ+ is at an infinite proper distance away,

s = lim
ρ+→0

ˆ ρ0

ρ+

1

ρ
dρ = lim

ρ+→0
[ln(ρ0)− ln(ρ+)] =∞ , (1.1.36)

located at the end of an infinite throat-like region in the spacetime.

While the Schwarzschild solution contains only one parameter, the mass of the

black hole M , the Reissner-Nordstrom spacetime is then a two parameter family

of solutions, where the parameters are M and Q. Together they form the static,

spherically symmetric class of black hole solutions.

Kerr and Kerr-Newman

Let us now consider stationarity. As we have mentioned, this implies that the

spacetime is axisymmetric, which means that there is a Killing vector ∂φ which

is spacelike near infinity, and for which all orbits are closed. As we will elucidate

upon, stationary spacetimes are rotating spacetimes. In the presence of pure gravity

and no other fields, the unique stationary solution is the Kerr solution, with two

parameters, M and J , where J is the total angular momentum of the black hole.

The Kerr geometry in Boyer-Linquist coordinates reads

ds2 = −∆−a2 sin2θ

Σ
dt2 − 4GMar sin2θ

Σ
dtdϕ+ Σdθ2 +

Γ

Σ
sin2θ dϕ2 +

Σ

∆
dr2 ,

(1.1.37)

where a = J/M and

Σ = r2 +a2 cos2θ , ∆ = r2−2GMr+a2 Γ = (r2 +a2)2−∆a2 sin2 θ . (1.1.38)

The geometry has a coordinate singularity when ∆ = 0. As for the Reissner-

Nordstrom case, writing ∆ = (r− r+)(r− r−) we find that there are in general two

distinct event horizons, this time given by

r± = GM ±
√

(GM)2 − a2 . (1.1.39)
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For the extremal Kerr, these horizons coincide when GM = a. As with the Reissner-

Norstrom case above, one can consider the metric in the extremal limit, and show

that the spatial distance to the extremal horizon is infinite.

The geometry has a genuine curvature singularity when Σ = 0, therefore at

r = 0 and θ = π/2. Moving to a different coordinate system, one can show that the

singularity in fact takes the form of a “ring”, meaning that particles following ingoing

radial geodesics on the equator will hit the singularity at r = 0, however particles on

radial geodesics along the polar axis will instead pass through the ring into another

region of the spacetime that can be obtained by analytic continuation. However,

just inside the ring singularity the spacetime exhibits closed time-like curves, as the

gφφ component of the metric (1.1.37) can change sign, such that a vector ∂φ can

become timelike in this region. These curves imply a global violation of causality,

which makes this region unphysical.

Let us now discuss the rotational features of the spacetime. Due to the fact that

the timelike and azimuthal spacelike directions are mixed in the Kerr spacetime, a

particle falling towards the black hole on a radial geodesic will aquire non-vanishing

angular momentum and start to rotate, even though no non-gravitational forces are

acting on it. This is known as frame-dragging, and is a result of the fact that a

test particle cannot move in time without also moving in the φ-direction. For static

spacetimes on the other hand, a particle on a radial geodesic will simply remain on

this geodesic as it plummets towards the black hole.

A “non-test” particle falling towards the black hole could however remain sta-

tionary with respect to infinity by a way of a sufficient amount of propulsion. This

is also true for the static black holes considered above, everywhere outside of the

event horizon. However, for the Kerr case, it turns out that even outside of the

event horizon, a particle may enter a region within which it is impossible to remain

stationary with respect to asymptotic infinity, as remaining stationary would require

superluminal propulsion. This occurs within the ergoregion.

We mentioned above that within the ring singularity, the gφφ component of the

metric can change sign. Even outside of r+ in this spacetime, another component

of the metric may change sign, this time the gtt component. The gtt component in
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(1.1.37) is negative only if

∆− a2 sin2 θ > 0 , (1.1.40)

which implies that

r > GM +
√

(GM)2 − a2 cos2 θ . (1.1.41)

The boundary of this region is known as the ergosphere. Between this boundary

and the horizon r+, in the ergoregion, the vector ∂t becomes spacelike, meaning

that physical particles, which must follow timelike paths, can no longer move in

time only relative to an asymptotic observer. Instead, regardless of their state of

propulsion, they are forced to rotate with the black hole.

As with the static families of solutions, the Kerr spacetime is also subject to a

uniqueness theorem. The Carter-Robinson theorem states that any asymptotically-

flat stationary and axisymmetric spacetime is a member of the Kerr family. This can

be generalised to the stationary electrovacuum case, for which the rotating black hole

acquires an extra parameter, namely a charge, Q. The resulting spacetime, known

as the Kerr-Newman spacetime, may be described in Boyer-Lindquist coordinates

by the metric (1.1.37), but now the metric function ∆ becomes

∆ = r2 + a2 − 2GMr +GQ2 . (1.1.42)

The “no-hair” theorems

As it involves no changes in time and thus no evolution is taking place, a stationary

configuration is a steady-state configuration that a system could settle down into

after gravitational collapse. The uniqueness theorems mentioned above then seem

to insist that gravitational collapse to a stationary state leads to the formation of

a black hole endowed with mass M , charge Q, and angular momentum J only. In

other words, it appears that the black hole cannot pick up any other parameters,

which implies that all other information is destroyed during the collapse. These

considerations gave rise to a body of classical results known as the black hole “no-

hair” theorems, which state that the only long-range information that a black hole

can support is its mass, charge, and angular momentum (see [1–4] for a review).
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The logic is that the black hole will absorb everything it can absorb. However,

M , J and Q are “special” because they are conserved quantities associated with

the exact local symmetries of the spacetime, such as U(1) symmetry and Poincaré

symmetry. Indeed, as we mentioned above, the presence of the Killing vectors ∂t and

∂φ, which correspond to symmetries of the gravitational field for stationary space-

times, give rise to the conservation of energy and of angular momentum respectively.

Furthermore, in an electrovacuum spacetime, local U(1) symmetry implies the con-

servation of charge. In fact, the presence of the electrovacuum can itself be viewed as

deeply linked to spacetime geometry. As we will review in Chapter 4, Killing vectors

can act as a 4-vector potential for an electromagnetic field on Ricci flat backgrounds,

which can lead to an initially electrically neutral black hole picking up a charge.

These conserved quantities cannot be destroyed during gravitational collapse.

Instead they appear as charges or parameters of the collapsed object that can be

measured at spatial infinity by Gauss’s law.

Black holes in AdS

Finally, we will briefly mention the non-asymptotically flat classes of black hole

solutions. One example is the generalisation of black hole spacetimes to include a

non-vanishing cosmological constant.

A spacetime containing a negative cosmological constant is known as an Anti de

Sitter (AdS) spacetime. In static coordinates, a general AdS spacetime is described

by the line element

ds2 = −
(

1 +
r2

`2

)
dt2 +

(
1 +

r2

`2

)−1

dr2 + r2dΩ2 , (1.1.43)

where ` is the AdS length. The simplest AdS black hole solution is the Schwarzschild-

AdS solution,

ds2 = −
(

1− 2M

r
+
r2

`2

)
dt2 +

(
1− 2M

r
+
r2

`2

)−1

dr2 + r2dΩ2 , (1.1.44)

which is the unique spherically symmetric solution to the Einstein equations in

the presence of a negative cosmological constant. This spacetime looks like a

Schwarzschild black hole spacetime at low r, but approaches an AdS spacetime

at large r.
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In Chapter 5 we will look in detail at the spacetime of a rotating, charged black

hole in AdS.

1.1.3 Cosmology

When matter is present to source it, the gravitational field acts to change the vol-

ume of spacetime. This very simple fact, that the volume of spacetime changes due

to the matter distribution it contains, allows for the energy scale of the universe

to progressively decrease, and thus for a myriad of physical processes to take place

within that volume, which ultimately shape the universe in all its complexity into es-

sentially everything which we observe today. Indeed, this process allows for galaxies

to grow from quantum fluctuations, for the standard model gauge group to emerge,

and for atoms to form and combine so as to eventually enable complex lifeforms to

develop.

The geometry of the universe is characterised by various symmetries in the pres-

ence of a matter distribution, which expands the spacetime while respecting the

symmetries. The symmetries are large-scale homogeneity and isotropy of the spa-

tial hypersurfaces, meaning that on the largest scales, the universe looks the same

at every point, and in every direction. These symmetries, which imply that there is

no special place in the universe, are manifest in the cosmic microwave background

(CMB), a thermal background of free-streaming photons against which the evolu-

tion of all structure takes place, and which may be considered the oldest “object”

in the universe.

The scale at which the clustering of matter becomes dominant is about 10 Mpc,

where 1 Mpc = 3.3×106 light years. Above this scale, the universe is mostly smooth,

with the clumpy matter distribution appearing as a perturbation. Below this scale,

the non-linear clustering effects of matter become more and more important.

The line element that reflects the large-scale symmetries of the universe is the

Friedmann-Robertson-Walker (FRW) metric,

ds2 = −dt2 + a2(t)
[ dr2

1−Kr2
+ r2dΩ2

]
, (1.1.45)

where symmetry restricts the allowable changes in volume to express themselves as a
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Figure 1.1: A visualisation of the large-scale structure from the Millennium-XXL

Simulation, on a scale of a few hundred Mpc. The bright regions are very dense

clusters of galaxies which form where the filaments intersect each other.

single time dependent scale factor a(t) acting on the spatial hypersurfaces, and K is

a constant that quantifies the curvature of the universe. Combining this ansatz with

the perfect fluid form for the energy-momentum tensor, and including a cosmological

constant Λ, the Einstein equations become

H2 =
κ

3
ρ− K

a2
+

Λ

3
, (1.1.46)

and
ä

a
= −κ

6
(ρ+ 3P ) +

Λ

3
. (1.1.47)

These two equations are known as the Friedmann equations. They determine the

dynamics of the scale factor a(t), where we have defined the Hubble parameter, H =

ȧ/a, which quantifies the rate of the cosmic expansion. They may be supplemented

by the (non-independent) conservation equation for matter (1.1.21), arising from

the Bianchi identities ∇µT
µν = 0, which for this background becomes

ρ̇+ 3H(ρ+ P ) = 0 . (1.1.48)

The relation between the energy density and pressure of the cosmological fluid is
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expressed by its equation of state,

P = wρ . (1.1.49)

Measurements of the CMB indicate that the universe is spatially flat on large scales.

For a flat universe, K = 0, one can broadly categorise the components of the fluid

in (1.1.46) as radiation, defined as particles which are either massless, or are moving

sufficiently relativistically such that their rest mass is significantly smaller than their

kinetic energy, and non-relativistic particles or matter. Matter or “dust” particles,

in the absence of kinetic energy and thus of pressure, simply follow geodesics of

the spacetime, as we saw in Section 1.1.1. In addition, the universe may contain

non-trivial vacuum energy Λ, which may also be categorised by its equation of state.

From (1.1.48) one sees that a cosmological constant, for which ρ is constant,

implies ρ = −P . For pressureless particles, w = 0 and thus ρm ∼ a−3 from (1.1.48),

therefore the dust particles simply dilute with the expanding three dimensional

volume. For radiation, the theory of electromagnetism yields w = 1/3, leading to

ρ ∼ a−4, which implies that the radiation particles lose energy quicker than dust

particles due to an additional redshifting of their wavelengths or momenta.

Cosmic inflation

From (1.1.47) we see that the expansion rate of the universe will increase with time

if w < −1/3, therefore if the cosmological constant dominates the energy of the

universe, it will inflate. This behaviour may seem an usual curiosity associated with

the vacuum, however it turns out that certain dynamical fields in the spacetime can

produce a similar effect. For example, a canonical scalar field that is moving very

slowly along a flat potential can emulate, for a while, the behaviour of a cosmological

constant. From the general action

S = −1

2

ˆ
d4x
√
−g
[
∂µφ∂

µφ+ 2V (φ)
]
, (1.1.50)

one can compute the energy momentum tensor

Tµν = ∂µφ∂νφ− gµν
[1

2
∂αφ∂αφ+ V (φ)

]
, (1.1.51)
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thus the energy density and pressure of the scalar field in a flat, FRW background

are

ρφ ≡ −T 0
0 =

1

2
φ̇2 + V (φ) , Pφ ≡ T ii =

1

2
φ̇2 − V (φ) . (1.1.52)

The equation of state for the scalar field is

wφ =
Pφ
ρφ

, (1.1.53)

for which one finds that wφ → −1 in the case that φ̇2 � V (φ). This can occur for

a very flat potential, V ′ � V thus V ' const. Instead of a cosmological constant,

we then find that the universe can inflate due to the constant potential energy of a

suitable scalar field.

From the Hubble parameter H one may define the inverse quantity, H−1, which

is a time scale or length scale, cH−1, known as the Hubble radius. One can then

compare the timescale for particle interactions, tI ≡ 1/Γ where Γ is the rate of

interactions, with the timescale for expansion, tH ≡ 1/H. As long as

tI � tH , (1.1.54)

the particles have plenty of time to interact before the expansion acts to dilute them,

thus the expansion does not impact microphysical processes such as thermalisation of

particles. Equivalently, the length scale for particle interactions is then much smaller

than the Hubble radius, thus at the scale relevant for microphysical processes to take

place, the expansion of the universe is negligible. On the other hand, for

tI � tH , (1.1.55)

the interactions of particles are negligible compared to the expansion, with the

universe expanding profusely before the particles have had time to interact.

To explain the observed flatness, homogeneity and isotropy of the universe, it is

believed that a period of exponential growth took place at very early times. Com-

pellingly, such a paradigm can also explain how the initial conditions for structure

formation, the so-called “seeds” of cosmic structure, were originally generated.

The observable universe is thought to have began as a small, causally connected

patch within a larger universe. Two regions of spacetime can causally affect each
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other if a photon can pass between them, and such regions are said to be within each

other’s particle horizons. For an observer at a time t0, the particle horizon is the

future light cone emitted from their position at t0. Therefore, the particle horizon

separates regions which have already been observed at t0 from regions which have

not yet been observed at t0.

The story of cosmology goes that at some very early point in its history, the

universe entered a phase of superluminal expansion that drove all scales in this

original patch, including quantum scales, outside of the Hubble radius. This period

of expansion, known as cosmic inflation, could have been sourced by the presence of

a cosmological scalar field as outlined above, as such fields are ubiquitious in high-

energy particle theories. During inflation, all particle horizons in the observable

patch were expanded enormously, allowing regions of the universe that appear today

to have been out of causal contact at the time the CMB was formed, to have had

plenty of time to interact and thermalise in the past, thus accounting for the observed

homogeneity and isotropy of the CMB.

The expansion was so rapid that a process known as gravitational particle pro-

duction, a manifestation of Hawking radiation in cosmology, was able to take place.

Due to the enormous expansion rate, the timescale associated with quantum fluc-

tuations, tq, became much longer than the Hubble time during inflation, tq � tH ,

such that virtual particle pairs which usually bubble in and out of the vacuum could

no longer annihilate. Equivalently, the length scale of these fluctuations became

much larger than the Hubble radius, which is sometimes called the Hubble horizon.

Such fluctuations are then said to be driven to “superhorizon scales” by the expan-

sion. Thus the expanding background “radiates” much like the event horizon of a

black hole, when one virtual particle slips beneath the event horizon and its partner

accelerates away into the universe. In cosmology, these quantum fluctuations seed

the gravitational overdensities that provide the initial conditions for gravitational

collapse, and thus for all structure formation in the universe.

At the same time, as mentioned, the expansion smoothed out all inhomogeneities

and anisotropies originally present in the observable patch. In addition, the universe

become so large that it appears spatially flat at the scales upon which we can observe
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it.

At the end of inflation, the universe would have been empty and cold, as other

than the tiny density of gravitationally produced particles, all forms of matter that

might originally have been present have been diluted away. It is believed that the

universe was then reheated by the inflaton field itself, which decayed into a sea of

hot thermalised radiation. Stippled across this sea were the quantum fluctuations,

producing tiny gravitational perturbations in the uniform energy density of the

cosmological fluid, seeding the initial condition for structure growth.

The evolution of particles

As the universe evolves, so it expands and cools, and it does so at various rates

depending upon the dominant contribution to the cosmological fluid at a given

energy scale. Tracking the expansion backwards in time to the highest possible

energy scale permissible by our current understanding of physics, we may reconstruct

the full history of the universe up to that scale.

The very earliest times that we can theoretically envisage, earlier than inflation,

correspond to a universe in a state of such high curvature that classical general

relativity breaks down, and we enter the realm of quantum gravity. The quantum

effects of gravity become important at the energy scale Mp, this is the Planck epoch,

about which very little is known. At this scale, general relativity must be replaced

by an inherently quantum theory of nature. We will return to this in Section 1.2.

Below the Planck scale but above about 1016 GeV, which is known as the grand

unified theories or GUT scale, it is believed that the electromagnetic, strong and

weak interactions are unified, as the coupling constants associated with these in-

teractions, which are energy-scale dependent, appear to meet at this energy. If one

includes supersymmetry, a theory which exchanges bosonic and fermionic states, the

unification of the gauge couplings is precise, although evidence for supersymmetry

has not yet been observed in nature. Due to the fact that the strong and electroweak

interactions are unified into a single interaction at energies above the GUT scale,

there are additional gauge bosons at this scale which can change quarks into leptons

and vice versa, violating the quantum baryon number B. The universe exhibits a
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large asymmetry with respect to the number of baryons versus anti-baryons which

it contains. It is possible that the physical process which created the asymmetry,

known as barogenesis, took place at this energy scale, as this process requires baryon

number to be violated.

As the energy of the universe fell below the GUT scale, a phase transition occured

during which the additional GUT bosons acquired masses, making them too heavy

to be excited in the cosmological fluid. The removal of a number of gauge bosons

from the particle spectrum of the universe corresponds to a breaking of a particle

gauge group into smaller subgroups that have less bosons, thus the grand unified

interaction was broken apart into the strong and the electroweak interactions. As

we will discuss in detail in Chapter 2, this is accomplished by a process known

as spontaneous symmetry breaking, for which a natural consequence in cosmology

is the production of topological defects, such as cosmic strings, domain walls and

monopoles. Monopoles and domain walls are problematic for cosmology as they

totally dominate the energy density, giving rise to a universe with a very different

expansion and structure formation history than the one we observe today. However,

if cosmic inflation takes place around the GUT scale, then they too will be diluted

away by the expansion. From observations of the density perturbations generated

during inflation, which are etched into the CMB, one can discern the energy scale

of the universe at the time that these perturbations crossed the Hubble horizon. It

turns out that for most viable inflation models, this scale is consistent with the scale

of grand unified theories.

At around 100 GeV, a second phase transition occured during which the elec-

troweak interaction split up into the weak and electromagnetic interactions, and

the standard model particles received their masses via the Higgs mechanism, which

we will review for the abelian case in Section 2.3. There may also have been a

production of cosmic strings at this scale.

The interaction between electrically charged particles becomes stronger at shorter

separation distances. The opposite turns out to be true for quarks, which are charged

under the strong force, mediated by gluons. At energies above 50 GeV, the interac-

tion between quarks and gluons is very weak, and they form a quark-gluon plasma.
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At around 50 GeV however, a further phase transition took place, the QCD phase

transition, which led to the confinement of the quarks and gluons into bound states,

and thus baryons and mesons were born.

At around 1 MeV, neutrinos decoupled from the thermal sea of particles. This

was followed by the annihilation of electrons and positrons into photons exclusively,

causing the photon temperature to become slightly higher than the termperature of

the decoupled neutrinos. Finally, at energies of 100 keV, Big Bang Nucleosynthesis

took place, and all the light nuclei were formed as protons and neutrons were able

to combine. The energy density in radiation and matter then became equal at 0.75

keV, with matter, or non-relativistic particles, starting to dominate the cosmolog-

ical fluid as the energies decreased further. Neutral hydrogen then formed during

Recombination at 0.26-0.33 eV, when protons and electrons combined. The free

electron density then rapidly declined, meaning that Thompson scattering between

electrons and photons, the dominant process which couples photons to the primor-

dial plasma, became inefficient and the photons decoupled at around 0.23-0.28 eV.

These photons free-stream towards us today in the form of the cosmic microwave

background. Without the pressure of the coupled photons around to prevent the

baryonic fluid from gravitationally collapsing into the overdensitiies, matter then be-

gan to cluster, and over time grew linearly and then non-linearly into stars, galaxies,

and eventually entire clusters of galaxies that are knotted across the universe as we

observe it today.

The cosmological dark sector

We will now discuss the particular quantities that appear in the Friedmann equation

(1.1.46) which govern the dynamics of the universe today. As we have mentioned,

observations indicate that we live in a flat universe, K = 0, so there is no curvature-

driven contribution to the cosmological expansion. On the other hand, it is now

widely accepted that a cosmological constant Λ, or a mysterious unknown fluid that

behaves very much like one, is strongly influencing the evolution of the universe

today.

At the closing of last century, astronomers discovered, from observations of high
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redshift Type Ia supernovae, that the universe is currently entering an accelerating

epoch [5,6]. Type Ia supernovae are produced when white dwarf stars undergo grav-

itational collapse, a process which is believed to be independent of the environment

of the white dwarf, thus the light emitted from the resulting explosion, the super-

novae, is considered to be a “standard candle”. This means that these objects have

the same intrinsic brightness regardless of their redshift z. The observed brightness

as a function of redshift then probes the geometry of spacetime. The observations of

these objects turned out to be consistent only with those cosmological models which

include a cosmological constant that constitutes about 70 percent of the total energy

in the universe today, in other words, with models which describe an accelerating

universe.

Further evidence for cosmic acceleration comes in the form of the estimates for

the age of the universe. Based on a cosmological model for which the universe

is matter dominated today, which would be the case if there were only matter

and radiation species about, the age of the universe is found to be less than the

age of the oldest stars. This paradox is resolved if one instead considers that the

universe is accelerating, as then it would take longer for the expansion to slow

down to the observed rate, thus lengthening the calculated age of the universe.

Finally, observations of the shape of the CMB power spectrum [7] and of the matter

power spectrum in the large-scale structure [8] are all consistent with an accelerating

cosmological model.

However, it should be mentioned that there are alternative ways to interpret the

data, which have been widely explored. The most popular rival hypothesis to cosmic

acceleration is the idea that our universe constains large-scale inhomogeneities, and

our galaxy happens to be situated in the centre of a very large cosmic void [9].

The simplest way to explain the acceleration is to attribute it to the presence of

a cosmological constant, as this is already present in general relativity and does not

invoke the presence of new fields. However as we will see, there are good reasons

to go beyond this simple picture. More generally, one can describe the acceleration

as being driven by an unidentified and possibly unknown source of energy in the

cosmological fluid for which w < −1/3 today, which we refer to as dark energy



1.1. General Relativity 27

(see [10] for a review). The cosmological constant case, for which w = −1, is then a

candidate for dark energy, but there are many alternatives. In what follows we will

focus on a particular brand of dark energy models known as quintessence models.

Note however that the latest observations from the Planck satellite constrain the

equation of state of dark energy to be w = 1.006 ± 0.045 [11], which is consistent

with a cosmological constant, or with a field that very closely mimics one.

Let us now discuss ρ in the Friedmann equation (1.1.46). It turns out that if ρ

were comprised entirely of visible “baryonic” matter at the time that the CMB was

formed, then the photon-baryon fluid in the early universe would not be sufficient to

account for early structure formation. In order to adequately explain the observed

spectrum of primordial fluctuations in the CMB, the gravitational overdensities must

be enhanced by a pressureless or “cold”, non-interacting or “dark” fluid, which is

present in a greater quantity than, and couples only gravitationally, to baryonic

matter. Matter will then naturally cluster in the gravitational potential wells of

this fluid, and eventually stars and galaxies will form there. Indeed, measurements

of the rotation curves of galaxies have revealed that, if the Newtonian r−2 law for

the gravitational force is correct, then these luminous structures must be freefalling

under the influence of a gravitational field that is largely external to their own.

If this were not the case, then the large momenta of stars in the galaxies would

cause the galaxies to fly apart. However, as with the cosmic acceleration there are

alternative interpretations of the data in this case, the most widely studied being

the possibility that our law of gravity for galaxies should be modified [12, 13], but

one must then still account somehow for the observed spectrum of overdensities in

the CMB.

Perhaps the greatest direct evidence for the existence of a large quantity of

collisionless, dark matter in galaxy structures comes from the 1E0657-56 “Bullet

Cluster” of galaxies [14]. Observations clearly indicate that within this cluster, a

smaller galaxy has collided with a larger galaxy, causing a separation of the mass

components of the two galaxies. In particular, due to the collisionless nature of

dark matter, the dark mass appears to have simply passed through the locus of

the collision, while the hot X-ray gas experienced drag forces which caused it to
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slow down relative to the dark mass, thus producing the separation. Gravitational

lensing of the cluster has indeed revealed that most of the gravitating mass is off-set

from the X-ray gas, which believed to be the most dominant baryonic contribution

to the gravitational wells of clusters.

Finally, if there are dark, non-relativistic particles in the universe, it is plau-

sible that there are also relativistic dark particles, or “dark radiation”, although

compelling observational evidence for such a species has not yet been found.

With ρ consisting mainly then of cold dark matter (CDM), and strong evidence

for a cosmological constant Λ or dark energy, our universe today is almost entirely

a dark universe, and thus our modern standard model of cosmology has been ap-

propriately christened ΛCDM.

Let us now discuss the reasons to go beyond Λ. The cosmological constant

corresponds to a non-vanishing vacuum energy, whose magnitude should be deriv-

able from quantum field theory calculations based on an accurate model of particle

physics. The vacuum energy arises from the zero-point energies of the fields in the

theory, and depends upon the cut-off scale at which the theory is expected to no

longer be reliable. For the standard model of particle physics, one would derive the

vacuum energy density to be at least of order the electroweak symmetry-breaking

scale, ρ−1/4 ∼ TeV , if supersymmetry replaces the standard model above that scale.

In fact, if supersymmetry were an exact symmetry of nature, the zero-point energies

would cancel out, leading to Λ = 0. However, we do not see superparticles accompa-

nying particles, therefore the symmetry must be broken, making the superparticles

too massive to be observed. Therefore the vacuum energy is not cancelled by super-

symmetry. Rather, the observed value is ρ−1/4 ∼ 10−3eV , a disparity between the

theoretical prediction and the observed value of 1060 orders of magnitude. This is

in fact a best case scenario, for if one extends the theory up to the Planck scale, the

discrepancy becomes O(10120). If we use renormalisation to cancel the divergences

by counter terms, the disparity of energy scales translates into a fine-tuning of the

same severity.

A second problem with the cosmological constant picture is that it comprises 70%

of the energy budget today, not effectively 100% or 0%. Given the vastly different
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dilution rates of the various fluids, this percentage is highly unnatural.

To illustrate this, it is useful to reformulate the Friedmann equation into a di-

mensionless constraint, by introducing the energy density parameters

ΩX =
κρX
3H2

ΩΛ =
Λ

3H2
ΩK = − K

H2a2
, (1.1.56)

where X denotes matter m and radiation r. Using these quantities, the Friedmann

equation (1.1.46) becomes ∑
X

ΩX + ΩΛ + ΩK = 1 . (1.1.57)

The behaviour of the various energy densities with the scale factor a for the ΛCDM

model is plotted in Figure 1.2. We see that while ΩΛ and ΩX are vastly different

in magnitude as we look into the past and into the future, with ΩΛ being totally

negligible at all times in the past while totally dominant at all times in the future,

they happen to be of the same order of magnitude today, right when we happen to

measure them. This seems to be an uncanny coincidence. Another way to phrase this

is that the energy density of the cosmological constant, albeit really tiny, eventually

catches up with the cosmological fluid, and the fact that the initial conditions in the

early universe were such that Λ could catch up today is quite remarkable.

The two problems mentioned above can be addressed, or ameliorated, by con-

sidering a dynamical form of dark energy. In what follows, as mentioned, we will

look in detail at quintessence models of dynamical dark energy.

A quintessence field is a scalar field that drives late-time cosmic expansion in an

analogous way to scalar field models of early universe inflation, namely by evolving

along a suitable potential that allows its energy density to become close to time

independent for some portion of its evolution. In the simplest case, the theory could

take precisely the same form as (1.1.50). For quintessence fields, the potential could

be such that the field experiences a large degree of time dependence early on in its

history, but approaches a regime in which the time dependence drops away at late

times. Thus, such a field could evolve over a large range of scales during its history,

making it less of a surprise that it appears to take on such a tiny value today, easing

the cosmological constant or fine-tuning problem. In particular, for models that
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Figure 1.2: Coincidence problem: ΩΛ and ΩX , the fractional energy of the cosmo-

logical constant and the fractional energy of the cosmological fluid, are of the same

order of magnitude only during a tiny window of the cosmological evolution, yet we

happen to measure them to be right within that window today.

exhibit tracker behaviour [15,16], the potential is such that at late times, dark energy

will always evolve towards a tiny magnitude, independently of initial conditions.

This allows for dark energy to eventually catch up with the cosmological fluid and

ultimately come to dominate the energy density of the universe. Tracker behaviour

occurs for certain exponential and inverse power law potentials. For models that do

not exhibit this behaviour, the fine-tuning problem of the cosmological constant can

translate into the problem of fine-tuning the mass of the quintessence field.

However, there is still the problem of explaining why the field happened to catch

up with the cosmological fluid today, precisely when we are around to measure

it. Quintessence models can address this coincidence problem if they possess so-

called scaling solutions [17–19], for which the energy density of the quintessence

field becomes proportional to that of the cosmological fluid,

ΩDE

Ωm

= const , (1.1.58)

allowing these fluids to dilute at the same rate for some part of their evolution. On

the other hand, for ΛCDM,
ΩΛ

Ωm

∼ a3 . (1.1.59)

One way that this scaling behaviour can arise is if the quintessence field is coupled
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to the cosmological fluid in such a way as to allow for an energy exchange between

them2. For example, dark energy could lose energy to the cosmological fluid, giving

it less accelerating power, while the cosmological fluid would be boosted by the

exchange, making it dilute slower. This could lead to a regime in which the effective

equations of state for each of the fluids, which take into account the energy exchange,

become equal for some part of the evolution, allowing the energy densities to be

proportional over a range of efolds, rather than at a point in cosmological time.

Therefore, while a simple cosmological constant Λ is consistent with observations,

it seems to require some kind of magical fine-tuning in both its magnitude as well as

in the initial conditions of the universe for it to manifest to us in the precise way it

does today. On the other hand, moving to dynamical dark energy can in principle

allow for this precise manifestation to become more natural. In practise however,

it is not easy to find suitable candidates for dark energy in realistic particle and

high-energy theories. Instead of focussing on finding a candidate within a complete

theory, another approach is to consider an effective theory, such as a theory of

modified gravity in which scalar fields are abundant, and construct a model for dark

energy from this purely phenomenological point of view. In Chapter 6 we will discuss

a naturally unified picture of the cosmological dark sector which in fact connects

these two independent approaches.

1.2 Quantum gravity in higher dimensions

We will now take a glimpse into the inner workings of the universe, which give rise

to the vast and varied physical phenomena that we observe on the surface of nature.

As we have mentioned, general relativity, as a classical theory of the gravitational

field in a four dimensional spacetime, cannot be reconciled with quantum theory.

While these theories may appear to be disconnected in four dimensions, we will

see in what follows that they may turn out to be naturally connected in higher

dimensions. After reviewing some important developments in the theory of gravity in

higher dimensions, we will discuss a particularly successful fundamental theory of the

2Coupled quintessence models have been studied in Refs. [20–28].
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gravitational field, and of all other known fields, which is the theory of superstrings

oscillating in a ten dimensional spacetime.

1.2.1 A history of extra dimensions

While it may seem a step in the direction away from simplicity, naturalness and

uniqueness, which are three of the most highly valued guiding principles in theoret-

ical physics, the driving philosophy behind the introduction of new dimensions into

some kind of invisible sector is to seek a deeper context in which all the four di-

mensional phenomena may turn out to be unified. Therefore, the idea is that while

the physics may appear to be unnecessarily complicated in the four dimensional

description, this complexity is merely a projection arising from a more fundamental

description which is simple, natural and unique.

The concept that spacetime may admit an extra, hidden dimension made its de-

vut in the early part of the twentieth century when Kaluza [29] demonstrated that

general relativity in five dimensions contains four dimensional general relativity as

well as an electromagentic field, although a scalar field with unusual couplings also

emerges, preventing the four dimensional theory from being straight-forwardly in-

terpretable as general relativity plus electromagnetism. While the idea that one can

obtain a spectrum of matter fields in four dimensions from pure gravity in higher

dimensions is a very compelling one, this has to be reconciled with the fact that our

universe does not appear to contain an extra dimension. Kaluza’s idea was to impose

that all derivatives of the fields with respect to the extra coordinate are vanishing,

meaning that the four dimensional laws of physics do not notice the extra dimension,

except for the emergence of the new fields themselves. This is known as the cylindri-

cal condition. One can imagine for example that our four dimensional universe is a

hypersurface in five dimensions, where all the particles and their various interactions

are bound by some mechanism to the hypersurface. While the cylindrical condition

found a different interpretation in terms of compactification, the idea that certain

fields and gauge groups are confined to a hypersurface in spacetime has found a

realisation within string theory. These hypersurfaces are known as D-branes, which

we will review in detail in what follows.
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Electromagnetism in four dimensions is known to arise from a local U(1) gauge

symmetry. From the five dimensional point of view, there are only spacetime sym-

metries, and the U(1) symmetry can be interpreted as arising from diffeomorphism

invariance with respect to the fifth dimension. This suggests that what we view

as “internal symmetries” in four dimensions could all in fact descend from purely

geometrical symmetries in a higher dimensional spacetime, and prompts the search

for the ultimate unification of all the fundamental forces in higher dimensions rather

than simply at higher energies.

The cylindrical condition remained a puzzle until Klein [30] was able to show

that if the extra dimension had a circular topology, this condition would naturally

arise. This entails that while the other spacetime dimensions are extended, the fifth

dimension is compactified. If this is so, then the fields will be periodic functions of

the fifth dimension, and one can expand them into a series of Fourier modes. If the

radius of the compact dimension is small enough, the energies of all modes except

the zero mode will be very high, thus acquire large masses and are not dynamical in

the low energy universe. For example, a scalar field φ(xµ, y), where y is the compact

dimension, may be expanded as

φ(xµ, y) =
∞∑

n=−∞

φn(xµ)einy/R . (1.2.60)

From the equation of motion ∇2φ = 0, one sees that the masses are Mn = n/R,

therefore for R � 1 all modes except the zero mode n = 0 will be too heavy to be

observed. Unfortunately, for general higher dimensional theories one cannot simply

impose compactification on which ever directions one chooses. A spacetime with four

large dimensions and one or more curved compact dimensions must be a solution

of the higher dimensional Einstein equations. It often occurs that to obtain such a

spacetime, one must add in other non-gravitational fields to the higher dimensional

Lagrangian, which spoils the principle that all physics in four dimensions descends

fundamentally from higher dimensional gravity. Nevertheless, a natural way to

obtain extra matter fields along with gravity in higher dimensions is to consider

supergravity theories, which are theories with local supersymmetry. This has the

added benefit of adding fermions to the theory, thus making it phenomenologically
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viable, as Kaluza-Klein reduction of pure gravity only gives rise to bosons.

Although one has now incorporated more structure into the initially purely grav-

itational theory, this in fact turns out to endow the higher dimensional theory with

uniqueness. While it would appear that one can add an arbitrary number of extra

dimensions in this way, for the special case of eleven dimensional supergravity, the

combination of supersymmetry and Kaluza-Klein theory conspire to uniquely fix

the number of spacetime dimensions. Namely, the maximum number of dimensions

which are consistent with a single graviton in a supergravity theory is eleven [31],

while at the same time, the minimum number of dimensions which allow for a

Kaluza-Klein theory to unify all of the Standard model interactions into a single

gauge group is eleven [32]. Furthermore, compactification of the eleven dimensional

supergravity theory to an extended four dimensional spacetime and a compact seven

dimensional spacetime is a solution of the equations of motion, therefore the theory

decomposes naturally down to four dimensions.

While all of these successes indicated that at the classical level, eleven di-

mensional supergravity must be the long sought-after fundamental theory of na-

ture which unifies all physical phenomena, it unfortunately does not contain chiral

fermions, and therefore cannot give rise to the Standard model. Chirality can be

obtained by switching down to ten dimensions, however the special uniqueness of

the number of spacetime dimensions is then lost. In addition, the ten dimensional

theory does not split up naturally into the desired structure of four large dimensions

and six compact dimensions, but instead one must add new fields to obtain this

structure. Finally, the ten dimensional chiral theory contains anomalies.

It seems then that all of the appeal of seeking unification in higher dimensional

theories is lost, as the ten dimensional theory is not natural nor unique. Much to

the contrary however, Green and Schwartz [34] were able to show that there are

in fact only two ten dimensional supergravity theories which are free of anomalies,

these being precisely those theories that are based on the gauge groups SO(32) and

E8 × E8. One must also include additional fields, however this is not ad hoc if

these theories arise as low energy limits of superstring theories, which include all

the desired fields that are missing in the supergravity theories. These fields must be
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there in that case. There are five string theories, however, these all arise as different

limits of a single deeper theory, which is eleven dimensional M -theory, for which the

low energy limit is eleven dimensional supergravity. Therefore, quite miraculously,

we are lead once again to the special case of eleven dimensions where not only are

the forces unifiable, but the underlying theory admits naturalness and uniqueness,

in the sense described above.

String theory makes much use of the mechinary developed for purely gravitational

theories in higher dimensions, such as Kaluza-Klein theory and braneworld theories.

Therefore, it will be very useful and instructive to recapitulate some of the features of

these theories before moving on to discussing string theory, where the simple physics

can be eclipsed in the presence of a large number of extra fields and mathematical

structure associated with all their various properties and dynamics.

Kaluza Klein theory

Let us consider the case of adding just one more dimension to our four dimensions,

and let us assume that we have pure gravity in five dimensions. The action then

takes the form of a five dimensional Einstein-Hilbert action,

S =
1

2κ5

ˆ
R
√
−g5 d

5x . (1.2.61)

Projected into four dimensions, the five dimensional metric gab may be decomposed

into four-dimensional fields {gµν , Aµ, φ} as

gabdx
adxb = gµνdx

µdxν + φ2(dy + kAµdx
µ)2 . (1.2.62)

Solving the five dimensional vacuum equations using the ansatz (1.2.62), and

compactifying the fifth dimension, we can compute the precise interactions between

the fields that would emerge in the four dimensional theory. The four dimensional

action turns out to be

S =

ˆ
d4x
√
−gφ

[ R
2κ2

4

− 1

4
φ2FαβF

αβ − 2

3k2

∂αφ∂
αφ

φ2

]
, (1.2.63)

where we have integrated over the extra dimension and absorbed it into the definition

of κ4,

κ2
4 ≡

κ2
5´
dy

. (1.2.64)
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Upon a conformal rescaling of the metric gµν → φ−1gµν and a redefinition of the

scalar field, this can be brought into the more familiar form, where the gravitational

part of the action is a pure Einstein-Hilbert term, and the scalar field has a canonical

kinetic term. The new action is

S =

ˆ
d4x
√
−g
[ R

2κ4

− 1

4
φ(σ)FαβF

αβ − 1

2
∂ασ∂

ασ
]
. (1.2.65)

We see then that starting with pure gravity in five dimensions, we have obtained

a theory of gravity plus matter fields in four dimensions. The gauge symmetry of

the vector field Aµ can then be understood as descending from higher dimensional

spacetime symmetry, namely diffeomorphism invariance with respect to the fifth

dimension. The trade-off is that there is now an additional scalar field, which couples

to the gauge field such that standard electrodynamics can only be obtained in the

case that φ = const. However, there is no potential for φ, indeed it is a massles scalar

field which parameterises geometric deformations of the extra dimension. Thus one

cannot fix the value of φ.

Braneworlds

Another very compelling mechanism to conceal the presence of an extra dimension

without compactifying it arises in the context of braneworld scenarios. A braneworld

is a physical universe or “world” that is confined to a hypersurface, known as a brane,

embedded in higher dimensions. In a braneworld scenario, the reason we do not see

the extra dimension is because spacetime is warped.

A p-brane is then a p-dimensional object that generalises the concept of a point

particle, a 0-brane, to higher dimensions. The action for a point particle is the

dimensionless integral over the one dimensional particle worldline,

S = −m
ˆ
ds = −m

ˆ √
−gµν ẋµẋνdτ . (1.2.66)

In flat space, choosing to set τ = t, this may be written as

S = −m
ˆ √

1− ~v2 dt , (1.2.67)

where a timelike particle must obey ~v < 1, where ~v is the velocity of the particle,

and thus the Lorentz factor γ = 1/
√

1− ~v2 is always real.
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Analogously, the action for a p-brane is given by the dimensionless integral over

the (p+ 1)-dimensional worldvolume,

Sp = −Tp
ˆ √

− det γαβ d
pξ , (1.2.68)

where ξα are coordinates on the brane, xa(ξα) are spacetime embedding functions.

The induced metric on the brane is given by the pullback of the spacetime metric

onto the brane worldvolume,

γαβ = gab
∂xa

∂ξα
∂xb

∂ξβ
, (1.2.69)

where the derivatives are generalisations of the four-velocity of the point particle.

Let us consider a stationary 3-brane in a five dimensional spacetime with a

cosmological constant Λ5. Analogously to setting τ = t for the point particle in four

dimensions, in five dimensions one can choose to align the coordinates on the brane

with the four dimensional space-time coordinates, ξµ = xµ. Positioning the brane

at x5 = 0, where x5 extends to postive and negative infinity, the action is

S = −
ˆ
d5x
√
−g5

[ R
2κ5

+ Λ5

]
− T3

ˆ
d4x
√
−g4 , (1.2.70)

where T3 is the tension of the 3-brane. The Einstein equations derived from this

action admit a warped solution of the form

ds2 = h−1/2(x5)ηµνdx
µdxν + dx5dx5 , (1.2.71)

where h is the warp factor. For the solution to be static, it is required that the

cosmological constant must be negative. The resulting five dimensional spacetime

on either side of the brane at is AdS5.

Because of the warp factor, four dimensional gravity is localised on the brane

at x5 = 0. One can add a second brane that contains the standard model gauge

fields, which is located at a certain distance from the original brane at x5 = 0,

and the warping will then have the effect of redshifting the energies associated with

interactions on the standard model brane relative to the “Planck” brane at x5 = 0.

This amounts to introducing a gauge hierarchy, offering a solution to the hierarchy

problem of particle physics in extra dimensions of spacetime.
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1.2.2 Superstring theory

General relativity is a classical theory of the gravitational force. In keeping with all

other known fundamental forces of Nature, gravity is believed to be mediated by a

quantum particle, the spin-2 graviton. One would hope to then write down a sensible

quantum theory for gravitons. There are a number of conceptual puzzles which make

it really difficult, if not impossible, to extraplote the theoretical framework of general

relativity all the way down to the quantum realm. The main issue is that quantum

corrections to the Einstein-Hilbert action are suppressed by powers of the Planck

mass, MP , therefore one would have to access regimes in which the energies are of

order 1018 GeV to see the quantum effects of gravity play themselves out in the

world. For a particle with a Planck scale mass, the Schwarzschild radius is of order

the Compton wavelength, ~/mc. Therefore, at ambient energies around the Planck

scale, which we expect to be present at the birth of the universe, spacetime could

become a sea of quantum black holes, and even virtual black holes [35], objects

which general relativity cannot help us to understand. Furthermore, the quantum

fluctuations of light cones would make it very difficult to understand causality. Even

the concept of spacetime becomes ambiguous, because while we usually think of

spacetime as a smooth manifold, if the energies of quantum fluctuations become

high enough, they could turn the small scale structure of spacetime into a foam-

like substance [36]. The only way forward in such a context is to seek out a new

quantum description of gravity which allows us to meaningfully reformulate the laws

of physics and carry out reliable computations at high energies, and which smoothly

connects with general relativity as the energies are lowered.

A second more practical issue which makes it impossible to write down a quan-

tum version of general relativity is its lack of renormalisability. In quantum field

theory, loop momentum integrals are divergent in the ultraviolet, as the momenta

of virtual particles in the loops are able to grow without bound. For quantum

scattering process involving fundamental interactions other than gravity, we know

how to deal with these infinities by redefining or renormalising parameters in the

theory. However, in the case of gravitational scattering process, the momenta di-

verge so badly that we cannot control the theory using renormalisation techniques.



1.2. Quantum gravity in higher dimensions 39

Therefore, one cannot compute gravitational scattering amplitudes using the tools

of quantum field theory.

As mentioned, the hope is that we find out that Nature is better described at

high energies by a deeper theory, for which general relativity emerges as a low energy

limit. There are many interesting proposals for such a theory, however, the theory

which has made the most progress in incorporating gravity along with all the other

fundamental interactions into a unified quantum framework is string theory.

String theory, as the name is suggests, is a theory for which the fundamen-

tal constituents of Nature are one-dimensional strings, instead of zero-dimensional

point-particles, with a fundamental length scale `s. The strings can have their

endpoints free, or they can form closed loops. As they move through spacetime,

they oscillate in various ways, and the oscillation modes produce a rich spectrum

of bosonic quantum fields with masses that are integer multiples of the string scale,

Ms = 1/`s . Mp. For the low energy universe, the only dynamical degrees of

freedom are the massless modes, among which is a rank-2 symmetric tensor field,

which may naturally be identified with the graviton of general relativity. In addi-

tion, there are scalar and vector fields, which are essential for building the Standard

model of particle physics. Realistic particle theories contain fermions in addition to

bosons. For the case of oscillating strings, bosons can be paired with fermions via

supersymmetry. The resulting theory is known as a superstring theory.

A very exotic aspect of string theory is the appearance of extra dimensions

of space, which we reviewed in Section 1.2.1 above. For superstrings, worldsheet

conformal invariance demands that the theory is formulated in a ten dimensional

spacetime.

As one dimensional objects, strings trace out a two-dimensional surface, the

string worldsheet, as they move through spacetime. This has surprising consequences

for one of the long-standing problems of gravity, namely the lack of renormalisability.

For point particles, divergent behaviour at loop level in scattering processes

arises because interactions can take place at a point. The uncertainty principle

relates distances to momenta,

∆L =
~
p
, (1.2.72)
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thus as ∆L→ 0, the momentum diverges. In string theory on the other hand, inter-

actions take place over a smooth 2D surface, the string worldsheet, thus preventing

the divergence of momenta. Therefore, simply increasing the dimensionality of the

fundamental object to one dimension higher has the effect of removing one of the

major obstructions in formulating a quantum theory of gravitational interactions.

We will now briefly mention what string theory has to say about gravity at the

Planck scale. Instead of appearing as a final force to be unified with the forces of

particle physics at a high enough energy scale, string theory suggests that gravity

should instead be viewed as a dual description of a gauge theory living in one

dimension lower. This constitutes a significant paradigm shift in the way we view

gravity and particle physics, and is currently the subject of very active research

worldwide. In fact, it turns out the duality is such that weakly coupled gauge

theories correspond to strongly coupled gravity theories and vice versa, allowing the

difficult non-perturbative regions of both gravity and gauge theories to be probed

on the other side of the duality, in a much more controlled perturbative regime. To

date, the exploration of the physics of quantum gravity at the Planck scale using

the correspondence is still in its infancy, however significant progress has been made

in our understanding of strongly coupled gauge theories.

We will now describe the theory in more detail. We have mentioned that strings

can be open or closed, producing different vibrational spectra. This in fact leads

to a variety of different types of string theories, which corresponds to the various

limits of M-theory, existing in eleven dimensions. It has been shown that the various

superstring theories, or M-theory limits, can be related to one another via a system

of dualities. The topology of the closed string worldsheet can either preserve or

reverse the orientation of a closed string as it moves through spacetime, leading to

oriented and unoriented closed string theories respectively. Further distinct classes

then arise from adding open strings. Type II and heterotic string theories contain

only closed, oriented strings, whereas Type I theories contain unoriented strings

which may be open or closed. In fact, Type I theory is really an open string theory,

but open strings can form loops by joining their endpoints and thus turn into closed

strings, which may split open again. On the other hand, pure closed strings cannot
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split open into open strings. When supersymmetry is included, the Type II theories

can be subdivided into Type IIA, which is a non-chiral theory, and Type IIB, which

is chiral.

Type IIB flux compactifications

We will now focus exclusively on Type IIB theory. Distinct closed string sectors arise

when boundary conditions are imposed for the left and right moving oscillations

along the string. States with periodic boudary conditions are are classified as being

in the Neveu-Schwarz sector, while states with antiperiodic boundary conditions are

in the Ramond sector. The massless bosonic spectrum includes a rank-2 symmetric

tensor which we identify with the ten dimensional graviton, G. There are two scalar

fields, the dilaton φ which parameterises the string coupling, gs = eφ, and a second

scalar C0. There are two antisymmetric 2-form fields, C2 and B2, and finally, an

antisymmetric 4-form C4. The n-forms Cn constitute the Ramond sector, while the

remaining fields constitute the Neveu-Schwarz sector.

The closed string spectrum does not contain any gauge fields, which are essential

for building the Standard model of particle physics. On the other hand, the massless

open string spectrum contains a U(1) gauge boson, therefore one can introduce gauge

theories into Type IIB by adding in open strings. There is a subtlety to this, as one

must specify boundary conditions for the end points of the open string. Imposing

boudary conditions in fact amounts to introducing entirely new (p+ 1)-dimensional

objects into string theory, known as Dp-branes, which can be thought of in terms

of their primary task, namely as surfaces upon which open strings can end, or as

new solitonic objects that have a life and story of thier own. We already encoun-

tered these sorts of objects in Section 1.2.1 in the context higher dimensional gravity

theories: they are the branes of string theory. With the open strings attached to

them, one can now split up the degrees of freedom of the ten dimensional U(1) gauge

boson into those that propagate along, and those that propagate transverse to, the

Dp-brane worldvolume. The former combine into a (p+1)-dimensional worldvolume

gauge field, while the latter are a collection of 9− p scalars. These scalars parame-

terise the motion of the brane in the directions tranverse to its worldvolume. Having
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introduced D-branes into the theory, we now have a useful way to think about the

other form fields in the spectrum. As we have mentioned, branes can be thought

of as higher dimensional generalisations of point particles. Therefore, a Dp-brane

can couple electrically to a (p + 1)-form potential in the same way as a charged

particle couples to a vector field. For example, the 4-form C4 can be interpreted as

the charge of a D3-brane.

The action for a D-brane contains two pieces, namely the DBI action and the

Wess-Zumino action, where the first encodes the couplings of the open strings to the

Neveu-Schwarz sector closed strings, and the second, the couplings to the Ramond

sector closed string fields in the background,

S = SDBI [G, φ,B] + SWZ [Cn] . (1.2.73)

The DBI action takes the form

SDBI = −µp
ˆ
dp+1ξe

(p−3)
4

φ

√
− det(γab + e−

φ
2Fab) , (1.2.74)

where

µp = (2π)−p(α′)−
(p+1)

2 , Tp = µpe
(p−3)

4
φ, (1.2.75)

with Tp being the tension of the brane, where α′ = `2
s, γab is the induced metric, and

Fab = Bab + 2πα′Fab is the gauge invariant combination of the pullback of B2 and

the field strength of the world-volume U(1) gauge field.

The Wess-Zumino (WZ) action takes the form

SWZ = µp

ˆ
Wp+1

∑
n

Cn ∧ eF , (1.2.76)

where Wp+1 is the world-volume of the brane, and Cn are the pullbacks of the Cn

forms to which the brane couples. In this expression, the wedge product picks out

the relevant terms in the exponential.

With open strings included, we now have a theory that includes U(1) gauge fields,

but still no higher gauge groups that could accommodate the Standard model. In

Type IIB theory, gauge groups can be enhanced by stacking or intersecting the

branes together in various ways.

To make contact with the real world, six of the ten space-time dimensions must

now be concealed. In string theory, this is accomplished by compactification, much
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like in Kaluza-Klein theory. However, instead of a circle, we now have a six dimen-

sional compact space, which can admit a huge variety of cycles. The ten-dimensional

graviton gives rise to a four-dimensional graviton plus a collection of massless scalar

fields which descend from its compact components, and which parameterise changes

in the shape and volume of the compact dimensions.

In order to stabilise these scalar moduli fields, one must in fact encorporate the

braneworld picture and compactify on a warped geometry, with the general ansatz

ds2 = h−1/2(xm)gµνdx
µdxν + h1/2(xm)gmndx

mdxn , (1.2.77)

where h is the warp factor, gµν is the four dimensional metric and gmn is the compact

metric. Non-trivial warping can arise in the compact dimensions only when there are

sources of positive as well as negative tension about, as for positive tension sources

alone, the warped regions are always non-compact. In Type IIB theory, negative

tension sources are present in the form of solitonic objects called orientifold planes.

The stabilisation of geometric moduli occurs because in a warped compactification,

the flux lines of the various form fields can be non-vanishing, and they thread through

the cycles in the compact space. The compact flux lines are quantised, thus once

they settle into a minimum energy configuration, any further deformations of the

geometry will come with an energy cost.

With a warped geometry in the compact space, Type IIB string theory is natu-

rally endowed with a gauge hierarchy, making it even more attractive as a theory of

particle physics. Furthermore, D-branes can move as probes in the warped geometry,

which has interesting implications for cosmology in the four-dimensional universe.

D-brane inflation and cosmic strings

In Chapter 6, we will look in detail at the cosmology of moving D-branes in strongly

warped regions of the compact space. However, we will briefly mention here how

cosmic inflation can arise in such a context. The mechanism can be illustrated by

simply considering the restrictions on the motion of the branes. In particular, just

like point-particles, D-branes can move relativistically, and as they do so, they must

obey causality in the compact dimensions. As we have discussed, the motion of a
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D-brane gives rise to a scalar fields in four dimensions which parameterise its motion

in the compact space. For a cosmological background in four dimensions, a D-brane

moving in a single compact direction in a warped region has a Lorentz factor of the

form

γ =
1√

1− hφ̇2

, (1.2.78)

where h is the warp factor and φ(t) is the scalar position field. The brane must move

on a timelike trajectory, therefore hφ̇2 < 1 such that γ is always real. For strongly

warped regions where h� 1, the brane is thus forced to slow down, φ̇2 � 1, in order

to remain on a timelike trajectory. Therefore, even though the potential may be very

steep, the brane moves very slowly along it, as its velocity is strongly suppressed

by the warping. This leads to a nearly constant energy density for the scalar field,

and hence the field may drive cosmic acceleration. This type of D-brane inflation

is known as DBI inflation [37,38], which is distinct from slow-roll inflation because

even though the brane is moving very slowly, it is still moving relativistically, as

γ � 1. Slow-roll inflation can then be realised in the D-brane context as the non-

relativistic limit of DBI inflation3.

Another interesting aspect of D-brane inflation is the production of cosmic strings

[44–46]. We will see in Chapter 2 that cosmic strings can be formed during symmetry

breaking processes such as the abelian Higgs mechanism, when a U(1) gauge field

obtains a mass due to the Higgs field acquiring a vacuum expectation value. In

the context of string theory, brane inflation as outlined above can arise when a D-

brane is attracted to an anti-D-brane situated at the tip of a warped region, which

ultimately ends in the annihilation of the two objects. The annihilation of the pair

of branes corresponds to a symmetry breaking process, analogous to the abelian

Higgs mechanism, that can produce cosmic strings. In this simple example of a pair

of branes, the gauge group is U(1)× U(1), and the scalar field, which is tachyonic,

and which parameterises the motion of one of the branes, is charged under a linear

combination of the two gauge fields associated with the branes. When the branes

annihilate, the tachyon acquires a vacuum expectation value, thus giving a mass to

3For reviews on D-brane inflation along with other aspects of string cosmology, see Refs. [39–43]
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the gauge field combination under which it is charged, and breaking the original

symmetry of the system.

1.3 Scalar-tensor theories

In general relativity, there are no non-minimal couplings between gravity and the

other fields in the spacetime, thus we may write down, in a completely unambigious

way, a gravitational action which is purely geometrical, and a matter action which

constrains the matter fields to freefall along that geometry. However, things are

not so simple once GR appears as a low energy limit of more UV-complete theory,

or as a reduction from a gravitational theory in higher dimensions. As we have

discussed in detail, these theories generically unleash a plethora of new fields into

the four dimensional description, which may introduce a direct coupling of a scalar

field to R, or influence the geodesics of matter fields. Inspired by these deeper

descriptions of nature are the so-called scalar-tensor class of gravitational theories,

which, due to the new interactions with gravity, choose to incorporate scalar degrees

of freedom into the gravitational sector of the universe. For the simplest case of a

single additional degree of freedom, the gravitational sector is then a doublet of

fields, (gµν , φ). The prototypical action takes the form

S =
1

2κ

ˆ
d4x
√
−g
(
f(φ)R + Lφ(φ, φ,µ)

)
+Sm(gµν , ψi, ψi,µ) , (1.3.79)

where a Langrangian for the dynamical scalar field Lφ has been added to the grav-

itational part of the action. The matter action is, as before, a functional of gµν and

the fields ψi and their derivatives, and does not contain the scalar field. Featuring

a direct coupling of a scalar field to R, such an action is said to be in the Jordan

frame.

Since the scalar field does not couple to matter in this frame, variation of (1.3.79)

with respect to gµν will lead to a stress-energy tensor for matter that has the same

form as (1.1.9), and one can further show that this stress-energy tensor is conserved,

following precisely the same procedure as for the purely GR case. However, both

sides of the Einstein equation are modified in this frame.



1.3. Scalar-tensor theories 46

To make contact with general relativity, one can choose to transform the grav-

itational sector to the so-called Einstein frame, (gµν , φ) → (ḡµν , φ̄), in which the

gravitational action assumes the Einstein-Hilbert form. This is accomplished by a

conformal transformation of the metric,

ḡµν = f(φ)gµν , (1.3.80)

and a canonical redefinition of the scalar field φ→ φ̄. The action is then

S =
1

2κ

ˆ
d4x
√
−ḡ
(
R̄ + Lφ̄(φ̄, φ̄,µ)

)
+Sm(f−1(φ̄)ḡµν , ψi, ψi,µ) . (1.3.81)

We have seen an explicit example of this in Section 1.2.1 above, in the context of

Kaluza-Klein theory. Thus these theories are conformally equivalent to GR. How-

ever, this does not mean that they are the same as GR, as the matter fields now

couple to an effective metric which depends upon the scalar field φ.

This has consequences for the conservation of energy-momentum. Variation of

this action with respect to ḡµν yields the familiar quantities in the new frame, Ḡµν

and T̄µν , but the conservation equation for matter is now modified. This is due to

the fact that, as φ now appears in Sm, a general variation yields

δSm = 0 =

ˆ
d4x

δSm
δψi

δψi +

ˆ
d4x

δSm
δφ̄

δφ̄+

ˆ
d4x

δSm
δgµν

δgµν , (1.3.82)

while the equation of motion for φ̄ reads

∇̄µ

∂Lφ̄
∂φ̄,µ

−
∂Lφ̄
∂φ̄

+ ∇̄µ
∂Lm
∂φ̄,µ

− ∂Lm
∂φ̄

= 0 . (1.3.83)

Therefore, whereas the first term in (1.3.82) vanishes by virtue of the equation of

motion for ψi, the second term is just one part of the equation of motion for φ̄, thus

does not vanish. This leads to a modified conservation equation of the form

∇̄µT̄
µν =

(
∇̄µ

∂Lφ̄
∂φ̄,µ

−
∂Lφ̄
∂φ̄

)
∂νφ̄ . (1.3.84)

It should be noted however that the total stress-energy, namely the sum of the

stress energy tensors for the scalar and matter fields, is conserved in this frame, a

consequence of the diffeomorphism invariance of Sφ̄ and Sm.

We see then that theories with extra fields in the gravitational sector lead to

new effective metrics for matter fields in the Einstein frame, which implies the
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emergence of two geometries that are conformally related to one another. One

geometry determines the curvature of spacetime, the other controls how matter

moves in the spacetime.

While this is different from general relativity, which treats spacetime as be-

ing endowed with a single Riemannian geometry, it is still in accordance with the

foundations of general relativity. Absolutely central to general relativity is the Ein-

stein equivalence principle, according to which all test particles freefall in the same

way once an initial position and velocity has been specified, and in local freefalling

frames, the laws of special relativity are recoverable. As long as the geometry is

Riemannian, we may locally choose coordinates which place us in an inertial frame,

in which the laws of special relativity may be retrieved. Then, as long as all of

the matter fields couple to the same Riemannian metric, one can derive geodesic

equations for the test particles and show that all such particles freefall in the same

way. This is because in the case of Riemannian geometry, the contracted Bianchi

identity ensures that matter is conserved, and thus test particles follow geodesics,

as we have seen in Section 1.1.1.

The disformal relation

The example above features a spacetime-dependent conformal relation between the

physical metric and the effective metric in the Einstein frame. Keeping things as

general as possible, one could write down an Einstein-frame formulation of a scalar-

tensor theory schematically as

S =
1

2κ

ˆ
d4x
√
−gR + Sφ(gµν , φ, φ,µ) + Sm(ḡµν , ψi, ψi,µ) , (1.3.85)

where the matter fields couple to some unspecified effective metric,

ḡµν = f(gµν , φ, ∂φ...) . (1.3.86)

One could then ask, what would be the most general and physically consistent

relation between gµν and ḡµν that could be given by the scalar field and its deriva-

tives? This question was originally addressed in Ref. [49], but here we will follow

the argument in Ref. [47]. Constructing a rank (0,2) symmetric tensor out of gµν , φ
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and its derivatives restricts us to three possible terms,

ḡµν = f1(φ,X,2φ...)gµν + f2(φ,X,2φ...)∂µφ∂νφ+ f3(φ,X,2φ...)∂µ∂νφ , (1.3.87)

where the functions fi must not contain any non-contracted indices, but may contain

all possible coordinate invariants that can be contructed from gµν , φ and its deriva-

tives. Physical consistency then demands that we set fi = fi(φ,X) and f3 = 0,

in order to avoid instabilities in the equations of motion via Ostrogradski’s theo-

rem4 [48]. We are thus left with the disformal relation [49],

ḡµν = C(φ,X)gµν +D(φ,X)∂µφ ∂νφ , (1.3.88)

where the first term is the familiar spacetime-dependent conformal transformation

of the physical metric, and the second term involving first derivatives of the scalar

field is the purely “disformal” contribution. For clarity, the scalar factors have been

relabelled as C and D to indicate the conformal and disformal factors respectively.

The purely conformal transformation, for which D = 0, characterises the Brans-

Dicke class of scalar-tensor theories, for which the f(R) gravity theories are a widely

studied example [50,51]. On the other hand, the disformal transformation in (1.3.88)

is generic in extensions of general relativity. In fact, it must appear in the Einstein

frame formulation of any more general Horndeski-type scalar-tensor theory [52–

54]. Another very active area of study in which the disformal coupling makes an

appearance is in the field of non-linear massive gravity theories [55, 56]. Finally,

studies of disformal couplings in a variety of contexts have demonstrated that these

couplings exhibit a diverse phenomenology5.

We have seen that the purely conformal coupling may be understood as arising

from fundamental scalar fields that couple to four-dimensional gravity due to com-

pactification effects from a higher dimensional theory. While the disformal coupling

4Note that for f3 6= 0, it might still be possible to avoid instabilities due to a cancellation of

terms in the equations of motion, however, we will restrict ourselves to the simpler case f3 = 0

which is trivially instability-free.
5For applications in relativistic MOND theories, see for example Refs. [13,57–60]. For varying-

speed-of-light theories, see Refs. [61–63]. For cosmological and astrophysical applications, see for

example Refs. [64–71].
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may appear to be more abstract, it can in fact also be interpreted as arising due

to the four-dimensional projection of a higher dimensional theory. Indeed, it may

be realised in the higher dimensional context as the induced metric on a brane that

is moving in the extra dimensions. We will see this explicitly in Chapter 6 in the

context of Type IIB string theory.



Chapter 2

Cosmic Strings

In the early universe, while most of the matter is in the form of a coupled cosmo-

logical fluid of fundamental particles that hasn’t yet had time to form macroscopic

structures, macroscopic objects called topological defects can emerge from cosmo-

logical phase transitions. These objects, which we mentioned briefly in Section 1.1.3,

can be in the form of cosmic strings, domain walls and monopoles1. In this Chapter,

we will discuss these objects in more detail, focussing in particular on cosmic strings.

We will begin with a review in Section 2.1 of the symmetry breaking process

that can lead to the formation of these objects, and will then describe the objects

themselves in more detail in Section 2.2. Following this, we will focus exclusively on

cosmic strings. Realistic strings may be composed of a scalar Higgs condensate core

threaded with magnetic flux lines. In Section 2.3 will review the abelian Higgs model

which describes these sorts of strings, and discuss the most simple topologically non-

trivial solution, the Nielsen–Olesen vortex solution [77], in Section 2.4.

Defect objects can have a significant gravitational influence on the spacetime

through which they are traversing. Domain walls can act as a spacetime “mirror”

[75, 76], while cosmic strings can produce a conical deficit effect in the spacetime

[77–81]. Even more exotic spacetimes can arise when a defect object comes into

contact with black holes, as in that case, the features of the spacetimes associated

with each object essentially blend into each other, producing a new spacetime that

1For a thorough review on the subject of topological defects, see [72,73]

50
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reflects the gravitational impact of the combined objects.

In Section 2.4 we will review the gravitational effect of the Nielsen–Olesen string

in isolation, demonstrating how the conical effect arises. We will then go on to

discuss strings and black holes in Section 2.5, wherein we will review some aspects of

cosmic string phenomenology in Schwarzschild and Reissner–Nordstrom spacetimes.

2.1 Symmetry breaking in the universe

Perhaps some of the earliest scientific observations of Nature were that it appears

to contain four basic “elements”, which were classified as air, water, earth and fire.

In the modern context we can understand the first three of these elements as the

various phases of matter, namely the gaseous, liquid and solid phases, as a function

of the fourth element, energy. Naively, as energy decreases, a substance undergoing

changes in its phase appears to progressively acquire a definite, fixed shape. In

the gaseous phase at high energy, we cannot assign any kinds of spatial relations

or proportions to the substance, whereas by the time it reaches the solid phase at

low energy, these sorts of structural properties are distinctly definable. At a more

fundamental level, where the substance is undergoing changes to its intermolecular

structure, a similar principle is in fact operating.

Take the example of water, which is composed of the molecule H2O. In its

steam phase, neighbouring molecules are not bound to one another in any way, thus

a volume filled with steam consists of many individual molecules with completely

random orientations. In the liquid phase, the hydrogen atoms on the water molecule

point towards the oxygen molecules on neighbouring molecules, such that the overall

structure is based on a tetrahedral shape. However, this is simply a time-averaged

approximate structure, as the molecules in the liquid phase of water are continuously

rotating and moving, causing these hydrogen bonds between neighbouring molecules

to break apart and form again in quick succession. When water boils, these bonds

are broken completely. When water freezes on the other hand, the intermolecu-

lar hydrogen bonds cause the molecules to align themselves into a fixed hexagonal

lattice structure, which, for example, produces the hexagonal, 6-fold symmetry of
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snowflakes.

We can then think about the phases of water, and matter in general, as sim-

ply being different states of symmetry. The high temperature state has the most

symmetry, as the individual molecules have not chosen any particular directions to

point towards and are, collectively, invariant under the SO(3) rotation group. As the

temperature cools, the substance undergoes a phase transition during which some

of the symmetry is lost, as the new phase exhibits some tendancies of the molecules

to align in certain ways. During the final phase transition to the solid phase, even

more symmetry is lost, as now all of the molecules have chosen a definite, fixed

alignment.

Now lets take this principle to the level of fundamental particles. The water

example is in fact a microcosmic manifestation of a process known as spontaneous

symmetry breaking that takes place macroscopically as the whole universe evolves

towards a low energy state. We saw in Section 1.1.3 that the universe undergoes

a series of phase transitions in its early history, during which a large gauge group

with enough symmetry to unify the strong, weak and electromagnetic interactions is

believed to be progressively broken down to subgroups with a lower degree of sym-

metry, eventually evolving dynamically to the symmetries of the standard model.

The symmetries that are broken by the phase transitions are therefore internal par-

ticle symmetries. The loss of symmetry manifests itself as the disappearance of a

number of gauge bosons from the particle spectrum of the universe, as during the

phase transition, these gauge bosons acquire masses that correspond to the energy

scale of the universe at the time of the phase transition. Therefore, at energies below

the phase transition scale, they are too heavy to be excited. The remaining mass-

less gauge bosons correspond to those symmetries that were preserved during the

transition, and these mediate the interactions associated with the smaller subgroups.

One phase can transform smoothly into another phase, just like water turning

into ice, or the phase transition can occur discontinuously via the formation of

bubbles containing the new phase, just like water boiling into steam. The latter is

described as being a first-order phase transition, and the former, as a second-order

phase transition.
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The gauge bosons acquire masses due to the presence of scalar Higgs field in the

symmetry group which obtains a vacuum expectation value during the phase tran-

sition. Symmetry breaking occurs when the Higgs field migrates from an unstable

vacuum to a true vacuum along a potential of the form

V (φ) = λ
(
|φ|2 − η2

)2

, (2.1.1)

where |φ2| ≡ φ†φ. The true vacuum corresponds to the minimum of this potential,

where φ aquires a vacuum expectation value

|φ0|2 = η2 . (2.1.2)

On the other hand, the unstable vacuum corresponds to φ = 0. The Higgs field

can move smoothly between the two phases, giving rise to a second-order phase

transition. Interactions with other particles can however contribute new effective

terms to the Higgs potential, possibly changing the nature of the phase transition.

If the theory is Z2 invariant, and therefore φ ∈ R such that |φ|2 = φ2 in (2.1.1),

the vacuum configuration is discrete, and can only be one of two values, φ0 = ±η.

On the other hand, if the theory is U(1) invariant, φ ∈ C and thus the vacuum

configuration is a continuous circle manifold defined by φ0 = ηeiα, where α ∈ R is

an arbitrary phase. The potential (2.1.1) for a U(1) invariant theory is depicted in

figure 2.1. In both cases, the symmetry of the theory is spontaneously broken at

the level of the vacuum, meaning that while the theory respects the symmetry, the

vacuum configuration does not.

One can consider excitations around the vacuum expectation value of the Higgs

in the true vacuum. For the case of a vacuum manifold defined by φ0 = ηeiα,

perturbations in the radial direction are massive, as the potential curves upwards,

V ′′ > 0, in this direction. An excitation would thus require energy, or mass, to move

along it. On the other hand, excitations along the vacuum manifold are massless, as

the potential is flat in this direction, V ′′ = 0, meaning that these excitations require

no energy to move along it.

This gives rise to a massive scalar Higgs excitation mode and a massless Gold-

stone mode. The latter always appear when a continuous symmetry is spontaneously

broken, as note that for a discrete symmetry, there is no massless direction in the
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Figure 2.1: Potential for the Higgs field: When the Higgs field sits at φ = 0, the

unstable vacuum state respects the U(1) symmetry of the potential, as rotations

about the z-axis do not change the location of the Higgs field. Once the Higgs field

rolls down into the true vacuum, the symmetry is broken, as rotations about the

z-axis now “move” the Higgs field around the circle.

vacuum state. The Goldstone mode is the additional degree of freedom that can

give a mass to a gauge boson that is coupled to the theory.

2.2 Topological defects

An interesting possibility arises when the topology of the vacuum is non-trivial.

This implies that there can be field configurations that contain regions or domains

in which the symmetry is left unbroken, namely, in which φ = 0 locally, even when

the true vacuum state is attained globally. These regions correspond to localised

concentrations or clumps of energy, called topological defects, where the energy of

the metastable vacuum is trapped and cannot dissipate away.

The objects that are formed depend upon the type of symmetry that is sponta-

neously broken. In three dimensional space, one can form codimension one defects,

known as domain walls, if a discrete symmetry is broken. In that case, φ ∈ R and

therefore φ(x) = 0 defines a two-dimensional hypersurface, which is the wall. On the

other hand, one can obtain codimension two defects, known as vortex lines or cos-

mic strings, if a U(1) symmetry is broken. We then have φ ∈ C, and thus φ(x) = 0
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reduces to two equations for three spatial coordinates, <eφ = 0 and =mφ = 0, thus

the solution is the intersection between the two-dimensional hypersurfaces defined

by these equations, a one-dimensional object. Finally, a codimension three object,

called a monopole, can arise if an SO(3) symmetry is broken. In that case, φ is a

three-dimensional vector and thus φ = 0 is a set of three equations defining three

two-dimensional hypersurfaces. The solution is thus the intersection of these, which

defines a point.

In a cosmological context, topological defects can be produced by the co-called

Kibble mechanism [74], which generically predicts the formation of these objects

during all phase transitions in the universe. The idea behind this mechanism is that

different regions of spacetime can only know about each other at a given timescale if

a photon can pass between them on that timescale. During a phase transition, the

Higgs field chooses one particular vacuum state out of the set of all possible vacuum

states, which is the vacuum manifold. Regions of the universe which are outside of

causal contact with one another during the phase transition will acquire different

vacuum states, as the choice of state picked out in one region cannot be communi-

cated to all neighbouring regions on the timescale of the transition. The boundaries

between regions with different vacua appear as defects. At these boundaries, no

choice of vacuum is made, and the universe is instead trapped in the symmetric,

“old” phase.

Returning to the topology of the vacuum, a domain wall defect can arise if the

vacuum manifold is disconnected, whereas cosmic strings and monopoles can form if

the vacuum manifold contains non-contractable loops or spheres respectively. This

implies that the boundary between different vacua, namely the defect, cannot be

deformed away. As we have seen, for a vortex line, corresponding to a broken U(1)

symmetry, the vacuum manifold corresponds to all the possible directions in which

the phase of the Higgs field can point, which form a circle. After a phase transition,

the Higgs field will thus point in all sorts of different directions across all different

regions of the universe. Joining up different regions by loops, along each loop the

phase of the Higgs will vary randomly. However, if there is a loop along which the

phase of the Higgs happens to vary by an integer multiple n of 2π, then such a
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Figure 2.2: Formation of vortices: The Kibble mechanism for the simple cases of

n = 0 and n = 1. If around a closed loop the phase of the Higgs does not vary

(n = 0), then one can contract that loop to a point by defining a phase at that

point. On the other hand, for n = 1 the phase is not definable at the central point.

This means that the Higgs field must vanish at that point, which then corresponds

to a vortex.

loop winds around a vortex, and cannot be contracted to a point. This is because

contracting the loop to a point means contracting the phase to a point, but if the

phase varies by 2πn around the loop, then there is no way to smoothly deform it to

a particular, average value at the point. To avoid a singularity at that point, the

Higgs field must vanish there, which means it is in the metastable vacuum state.

The integer n is then called the winding number of the vortex. This situation is

illustrated in figure 2.2.

Cosmic strings are amoung the most interesting of topological defects in a cos-

mological context, as their emergence does not pose any problems for the evolution

of the universe. On the other hand, the energy of domain walls and monopoles can

over-close the universe, thus if these defects are produced during a phase transition

they must be diluted away by cosmic inflation. Cosmic strings on the other hand

are able to break apart into smaller and smaller loops, which radiate and eventu-

ally disappear. The loops form because strings that cross each other exchange their

end-points, a process known as intercommutation. In this way, if a large network of

strings is produced in the early universe, it will naturally dilute itself by breaking

up into small loops that decay away into gravitational radiation, leaving only a few
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Figure 2.3: Intercommutation of strings: Two strings cross and exchange end-points,

leading to the formation of a loop and two smaller strings.

complete strings. Eventually, the string density evolves into a scale-invariant state,

such that the network no longer changes as time progresses.

2.3 Abelian Higgs model

As we have seen, cosmic strings or vortices can be produced when a U(1) symmetry is

spontaneously broken in the presence of non-trivial topology. For global symmetries

the core of the string is composed of a Higgs condensate. If the theory is gauged,

and hence the string forms from the breaking of a local U(1) symmetry, the Higgs-

condensate core will be threaded with magnetic flux lines associated with the gauge

boson that couples to the Higgs. The latter case is typical in realistic symmetry

breaking schemes such as grand unification and electroweak breaking, where the

symmetry breaking process is invoked to break large particle gauge groups by giving

masses to gauge bosons.

In what follows we will consider only gauged strings. We begin by reviewing the

Abelian Higgs theory.

The Abelian-Higgs action in the full four-dimensional theory is

S = −
ˆ
d4x
√
−g
[
DµΦ†DµΦ + 1

4
F̃µνF̃

µν + V (Φ)
]
, (2.3.3)

where the potential is

V (Φ) =
1

4
λ
(

Φ†Φ− η2
)2

, (2.3.4)

matching (2.1.1) up to a numerical prefactor. The fields in the theory are the

complex Higgs field Φ, with two degrees of freedom, and the massless gauge field
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Aµ, with field strength F̃µν , and two degrees of freedom. The covariant derivative is

Dµ = ∇µ + ieAµ, and the action is invariant under the U(1) gauge transformation

Aµ(x)→ Aµ(x)− ∂µα(x) , (2.3.5)

φ(x)→ eieα(x)φ(x). (2.3.6)

It is useful to express the theory in terms of the physical degrees of freedom in the

broken symmetric phase. Using the radial decomposition for the Higgs field, we

extract these degrees of freedom as

Φ(xα) = ηX(xα)eiχ(xα) , (2.3.7)

Aµ(xα) =
1

e

[
Pµ(xα)−∇µχ(xα)

]
, (2.3.8)

where X is the massive Higgs boson, χ is the Goldstone boson, and Pµ is the massive

gauge boson. In terms of these fields, the Lagrangian becomes

L = −η2∇µX∇µX − η2X2PµP
µ − 1

4e2
FµνF

µν − λη4

4
(X2 − 1)2 , (2.3.9)

thus it is explicit that the Goldstone degree of freedom has been removed from

the theory, and the gauge boson has obtained a mass. Namely, we now have a

massive Higgs field with one degree of freedom, and a massive gauge boson with

three degrees of freedom. Note that although we are casting the theory in terms

of the dynamical variables in the broken phase, we do not set X = 1 which would

amount to the Higgs field being in the true vacuum, as for a vortex, X has a spatial

profile from the metastable vacuum in the core of the string out to the true vacuum

at some distance away from the core. This is most unlike the topologically trivial

Higgs theory, where the symmetric phase and broken symmetric phase do not exist

simultaneously.

In terms of these variables, the equations of motion are

∇µ∇µX − PµP µX − λη2

2
X(X2 − 1) = 0 , (2.3.10)

∇µF
µν − X2P ν

β
= 0 , (2.3.11)

where β = λ/2e2 is the Bogomol’nyi parameter [108], and Fµν is the field strength

of Pµ.



2.4. The Nielsen–Olesen vortex 59

The inverse masses of the Higgs and gauge bosons determine the width of the

scalar and magnetic core of the string respectively. These widths are

wH = m−1
H ≡

1√
λη

, wg = m−1
g ≡

1√
2eη

. (2.3.12)

In general, the two cores have different widths, and the ratio determines whether

the vortex is type I, II, or supersymmetric (Bogomolnyi limit, [108]).

2.4 The Nielsen–Olesen vortex

The Nielsen-Olesen vortex [77] is the simplest topologically non-trivial solution of the

Abelian Higgs system. It represents a static, cylindrically symmetric vortex solution

in flat space, where the core of the vortex is aligned with the z-axis. Therefore, the

four dimensional problem can be reduced to determining the profiles of the fields in

the {r, ϕ} plane, where symmetry restricts them to depend on the radial direction

only, and then extending these trivially along the z-direction. In the plane, the

gauge field has two components, Ar and Aϕ. For the Nielsen-Olesen solution, the

gauge field has only one component, Aϕ, which gives rise to a constant magnetic field

in the z-direction. While this is all that is required for the static straight vortex,

starting with both components, rotational invariance implies that

∂ϕAr = ∂ϕAϕ = 0 , (2.4.13)

therefore one may always perform an r-dependant gauge transformation to set Ar

to zero, without introducing any dependence upon ϕ.

Working with the degrees of freedom in the broken symmetric phase, the Nielsen–

Olesen vortex solution may be expressed in cylindrical polar coordinates by the fields

X = X0(R) , Pµ = nP0(R) ∂µϕ , χ = nϕ , (2.4.14)

where R = r
√
λη is a rescaled radial coordinate, and n is the winding number of the

string. The functions X0 and P0 satisfy the vortex equations (2.3.10) and (2.3.11),

which for n = 1 become

−X ′′0 −
X ′0
R

+
X0P

2
0

R2
+ 1

2
X0(X2

0 − 1) = 0 , (2.4.15)

−P ′′0 +
P ′0
R

+
X2

0P0

β
= 0 . (2.4.16)
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One must now specify boundary conditions which capture the effects of the non-

trivial topology, namely that there is finite energy trapped in the core that cannot

dissipate to the vacuum which surrounds it. For the Higgs field Φ, we then require

that it vanishes in the core and lies in vacuum at spatial infinity. These conditions

are met if X(0) = 0 and X(∞) = 1, for then Φ(0) = 0 and |Φ(∞)| = η. For the

gauge field Aµ we have

Aϕ ≡
1

e

[
Pϕ −∇ϕχ

]
=

1

e

[
P0(R)− 1

]
, (2.4.17)

where we require that Aϕ(0) = 0 for the energy of the vortex to be finite in the

core. Therefore, we set P0(0) = 1. Finally, in order for the energy of the vortex to

be minimised at spatial infinity, we require that P0(∞) = 0. Then all the terms in

the Lagrangian (2.3.9) vanish individually, and the true vacuum state for all fields

is attained. If instead the Higgs field were to be in vacuum at spatial infinity but

P0(∞) 6= 0, one would be able to measure energy arbitrarily far away from the

vortex, implying that its total energy is infinite.

With these boundary conditions, the solutions to the Nielsen–Olesen equations

(2.4.15) must be found numerically. However, the fields do admit the following

asymptotic behaviour:

X0(R→∞) =

1− x∞ e−R√
R
, for β . 4.

1− p2
∞
βe−2R/

√
β

R(β−4)
, for β > 4 ,

(2.4.18)

P0(R→∞) = p∞
√
Re−R/

√
β

where p∞ and x∞ are constants of O(1). Therefore we see that the fields fall off

exponentially fast to the vacuum state.

Figure 2.4 displays the numerically obtained profiles of X0 and P0 for the case of

β = 1. We see that the fields are highly localized around R = 0, as expected from

their asymptotic behaviour.

So far, we have considered the vortex to be a probe configuration in a flat back-

ground. However, we know that it is composed of energy, therefore we should

consider its gravitational effects. To couple the Abelian-Higgs system to gravity, we
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P0HRL

X0HRL

Figure 2.4: Numerical solution of the Nielsen-Olesen vortex: X0 (blue) and P0 (red).

may write the total action as

S =
1

2κ

ˆ √
−gRd4x+

ˆ √
−gLd4x , (2.4.19)

where L is given by (2.3.9). Setting the Higgs mass to unity, λη2 = 1, the Einstein

equation takes the form

Rµν −
1

2
Rgµν = κη2 Tµν , (2.4.20)

where the energy-momentum tensor for the vortex is

Tµν = −2∇µX∇νX − 2X2PµPν − 2β FµσF
σ
ν − Lgµν . (2.4.21)

Thus we see that the gravitational coupling of the vortex is determined by

ε ≡ 8π Gη2 , (2.4.22)

which will typically be of order 10−7 − 10−12 for cosmic strings of cosmological

relevance.

To compute the gravitational effect of the string, we will therefore use a pertur-

bative technique, where we expand the Ricci curvature to first order in ε as

Rµν → Rµν + δRµν , (2.4.23)

where δRµν is linear in ε. We will solve the Einstein equations in trace-reversed

form, namely

Rµν = ε
(
Tµν −

1

2
Tgµν

)
. (2.4.24)
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At zeroth order in ε, the Einstein equations are then just the vaccum equations,

Rµν = 0 . (2.4.25)

At linear order on the other hand, they become

δRµν = ε
(
Tµν −

1

2
Tgµν

)
, (2.4.26)

therefore the energy momentum of the flat-space vortex gives rise to a gravitational

correction to the curvature at linear order in ε.

We will therefore solve the Einstein equations up to linear order in ε, where the

energy-momentum tensor is built from the Nielsen–Olesen fields.

To compute these leading order corrections to the curvature, we need to select

a convenient set of coordinates, which reflect the axial symmetry of the vortex. An

appropriate set is the Weyl system, with metric

ds2 = −e2λdt2 + e2(ν−λ)
[
dz2 + dR2

]
+ α2e−2λdϕ2 . (2.4.27)

The Ricci curvature is

√
−g(Rt

t +Rϕ
ϕ) = α′′ , (2.4.28)

√
−gRt

t = [αλ′]′ , (2.4.29)

√
−gRz

z = [α(ν − λ)′]′ , (2.4.30)

√
−gRR

R = α′′ + α(ν ′′ − λ′′)− α′(λ′ + ν ′) + 2αλ′2 , (2.4.31)

where
√
−g = α e2(ν−λ) and for the background vacuum spacetime, α = R and

λ = ν = 0. The components of the energy-momentum tensor (2.4.21) are given by

T tt = T zz = X ′20 +
X2

0P
2
0

R2
0

+ β
P ′20

R2
+

1

4
(X2 − 1)2 = E , (2.4.32)

TRR = −X ′20 +
X2

0P
2
0

R2
− βP

′2
0

R2
+

1

4
(X2

0 − 1)2 = −PR , (2.4.33)

Tϕϕ = X ′20 −
X2

0P
2
0

R2
− βP

′2
0

R2
+

1

4
(X2

0 − 1)2 = −Pϕ . (2.4.34)

Due to the fact that T tt = T zz in the above, we can see immediately that Rt
t = Rz

z

and thus we deduce that ν = 2λ, up to a possible constant.
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To compute the leading order correction to α, we see from (2.4.28) that we simply

need to solve
α′′

R
= −ε(E − PR), (2.4.35)

leading to

α = R− ε
ˆ ˆ

R(E − PR)dR (2.4.36)

=

[
1− ε

ˆ
R(E − PR)dR

]
R + ε

ˆ
R2(E − PR)dR , (2.4.37)

where we have integrated by parts to obtain the second line.

Turning to λ, for which the background value vanishes, (2.4.29) yields

λ′′ +
λ′

R
=
ε

2
(PR + Pϕ) , (2.4.38)

which is solved by

λ =
ε

2

ˆ
1

R

ˆ
R(PR + Pϕ)dR . (2.4.39)

Then, using the equations of motion for X0 and P0, one can show that

d

dR
(RPR) = Pϕ , (2.4.40)

and upon inserting this identity into (2.4.39) and integrating by parts, we find

λ =
ε

2

ˆ
RPRdR . (2.4.41)

Inserting (2.4.41) into (2.4.30) then yields ν = 2λ.

We will now demonstrate that these corrections to the flat-space metric functions

give rise to an asymptotically conical spacetime. As can be seen from the asymptotic

behaviour of the fields, X0 and P0 fall off rapidly to their constant vacuum values

outside of the core, and indeed from figure 2.4 we see they have already settled into

the vacuum state at a radial distance of R < O(10). Thus the integrals in the metric

functions above converge rapidly to their asymptotic, constant values. Let us then

define these constant forms of the integrals as

ε

ˆ
R(E − PR)dR ≡ A, ε

ˆ
R2(E − PR)dR ≡ B, ε

ˆ
RPRdR ≡ C, (2.4.42)

such that asymptotically,

α→ R(1− A+B/R), λ = 2ν → C. (2.4.43)
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The asymptotic form of the metric then becomes

ds2 = eC [−dt2 + dR2 + dZ2] +R2(1− A+B/R)2e−Cdϕ2, (2.4.44)

and upon a rescaling of the coordinates such that t̃ = eC/2t, z̃ = eC/2z and R̃ =

eC/2(R +B/(1− A)), the conical nature of the metric is made explicit,

ds2 = −dt̃2 + dR̃2 + dz̃2 + R̃2(1− A)2e−2Cdϕ2 (2.4.45)

where we may write gϕϕ to linear order as

R̃2(1− (A+ C))2 . (2.4.46)

This gives a conical deficit angle in the azimuthal direction which may be expressed

as

∆ = 2π(A+ C) = 2πε

ˆ
REdR = 8πGµ , (2.4.47)

where µ is the energy per unit length of the string.

We see then that radial stresses PR do not contribute to the deficit angle, as the

sum of A and C cancels them out. However, they may lead to a red or blue-shifting

of spacetime at infinity relative to the core of string, as the values of the integrals

are different in these regions. For the so-called Bogomolyni limit for β = 1, one may

write the vortex equations succintly as

X ′0 =
X0P0

R
, P ′0 =

R

2

(
X2

0 − 1
)
, (2.4.48)

and one can easily show that the radial stresses vanish identically.

To summarise, we see that an isolated, self-gravitating vortex affects the ambi-

ent spacetime around it by asymptotically inducing a conical deficit angle in the

azimuthal direction.

The physical effect is that photons travelling around the string from a distant

source will not experience a gravitational attraction towards the string, as locally the

spacetime around the string is Minkowskian, however, due to the global properties

of the spacetime which is conical, such photons will form two images on either side

of the string due to gravitational lensing [72, 78]. Thus the presence of a cosmic

string may be distinguished observationally by a gravitational lensing signature.
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2.5 Strings and black holes

In addition to defects, the universe contains other exotic, classical objects, most

notably black holes. It is interesting then to examine how these objects might

interact with one another. Indeed, as galaxies are believed to host supermassive

black holes in their centres, if a vortex were to drift into a galaxy it would no doubt

soon come into contact with a black hole.

In Section 1.1.2 we briefly discussed the black hole “no hair” conjecture. To

summarise the discussion therein, the idea is that the only long-range information

that a black hole can support is its mass M , charge Q, and angular momentum J .

While all else is believed to be destroyed or lost during the accretion process, these

particular properties cannot be destroyed because they correspond to conserved

quantities associated with the exact symmetries of the spacetime. Therefore, the

only allowable black hole spacetimes are the Kerr-Newman family, no other charge

or new parameter can be associated with a black hole.

To show that the conjecture is false, one simply has to provide a counter-example.

Taking black hole hair to then refer to a long-range, stable property or charge of

the black hole spacetime2, we will see shortly that hair in this very sense can indeed

arise when a vortex pierces through a black hole.

The history of vortices and black holes cohabiting the same spacetime began with

a study of the gravitational impact of an infinitely thin string threading through a

black hole [80], however the first example of a realistic, finite-width string threading

through a black hole was given in [83, 84]. We will review some aspects of this

work in Section 2.5.1. These early studies were later generalised to the case of a

vortex ending on a black hole [85–88], as well as to spacetimes containing positive

and negative cosmological constants [89–91]. When the charged black hole case was

considered, it was discovered that such a black hole exhibits a phenomenon known

2Sometimes the no-hair theorems are taken to mean that a black hole cannot support a non-

trivial field configuration on the event horizon. However, this has turned out to be too restrictive,

and indeed many physically interesting field configurations have in fact been studied in the litera-

ture. See for example [99–105].
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as flux-expulsion [92–96], more commonly referred to as the Meissner effect. This

interesting effect will be reviewed in Section 2.5.2. However, the rotating black hole

case remained elusive, as the conventional field ansatz for the vortex seemed to

be inconsistent with angular momentum, while at the same time, the conventional

conical gravitational effect of the string, in the presence of rotation, seemed to lead

to a divergence of energy-momentum [97].

Understanding the behaviour of vortices in rotating spacetimes is a primary

focus of the research which is detailed in this thesis. We will return to this topic in

Chapters 3 and 4.

2.5.1 Vortex in a Schwarzschild spacetime

We will first consider the simplest species of black hole, namely the Schwarzschild

family. We will review the work of [83], in which it is conclusively demonstrated

that a vortex can coexist in a state of static equilibrium with a Schwarzschild black

hole, where the vortex pierces through the poles of black hole, and does not become

accreted by the black hole. As a stable, long-range field configuration in a black hole

spacetime, the vortex amounts to a “property” of the black hole that is measurable

at spatial infinity, therefore it qualifies as genuine black hole hair. This is confirmed

by the fact that the parameters associated with the presence of the vortex, namely

the masses of the Higgs field and gauge field, cannot be absorbed into the one

parameter that characterises the Schwarzschild black hole, its mass M .

Corresponding to the three parameters of the Schwarzschild vortex spacetime

are three length scales, the width of the scalar core wH , the width of the gauge core,

wg, and the black hole horizon radius,

r+ = 2GM . (2.5.49)

To obtain the field profiles for the composite vortex and black hole system, one

follows the same protocol as for the Nielsen–Olesen vortex, and solves the vortex

equations on the background spacetime, treating the vortex as a probe. This ap-

proach is sensible because as we have seen, the gravitational effect of the vortex is

given by the parameter ε, which is very small for physical cosmic strings.
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Vortex

R = r sin Θ

Φ

rΘ

r+

Figure 2.5: A vortex piercing a Schwarzschild black hole, illustrating the alignment

of the two objects.

We once again consider the vortex to be static and cylindrically symmetric, how-

ever the background is spherically symmetric. Thus the ordinary differential equa-

tions that arose for the Nielsen-Olesen vortex become partial differential equations

in the Schwarzschild context. The Schwarzschild metric is

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2) . (2.5.50)

In this background, the vortex equations (2.3.10)-(2.3.11) become

−
(

1− r+

r

)
X,rr −

2r−r+

r2
X,r −

X,θθ

r2
− cot θX,θ

r2
+

1

2
X(X2−1) +

XP 2
φ

r2 sin2θ
= 0 ,(

1− r+

r

)
∂r∂rPφ +

1

r2
∂θ∂θPφ +

r+

r2
∂rPφ −

cot θ

r2
∂θPφ −

X2Pφ
β

= 0 , (2.5.51)

In order to proceed analytically, we may then approximate the width of the string

as being very small compared to the radius of curvature of the event horizon. This

is the “thin string” limit. Having set the Higgs mass to unity, this limit implies that

r+ � 1. Furthermore, we will restrict ourselves to the region within and very near

to the core of the vortex, as we expect the fields to fall off rapidly to their vacuum

values, based on the behaviour of the vortex in flat space. These simplifcations mean

that we are in a regime where the curvature is not significantly felt by the vortex

fields as they fall from the core to their vacuum values. Within these limits, we
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thus expect the Schwarzschild vortex to closely resemble the Nielsen-Olesen vortex,

which depends only upon the radial direction in cylindrical coordinates. Thus we

may try an ansatz of the form

X = X0(R) , Pφ = P0(R) , R ≡ r sin θ (2.5.52)

where X0 and P0 are the Nielsen-Olesen fields, and R is the radial distance that is

orthogonal to the axis of the vortex in Schwarzschild coordinates (see figure 2.5 for

a depiction). With this ansatz, the vortex equations become

−X ′′0 −
X ′0
R

+
1

2
X0(X2

0 − 1) +
X0P

2
0

R2
0

+
r+ sin2 θ

r

(
X ′′0 +

X ′0
R

)
= 0 , (2.5.53)

P ′′0 −
P ′0
R
− X2

0P0

β
+
r+ sin2 θ

r

(
−P ′′0 +

P ′0
R

)
= 0 . (2.5.54)

We see then that the Schwarzschild vortex equations have a very good approximate

solution of the form (2.5.52), as long as r+
r

sin2θ � 1. Now, since r sin θ = R ∼ O(1)

in (and very near to) the core of the vortex, sin θ ∼ O(1/r). Therefore the corrections

are O(r+/r
3) < O(1/r2

+)� 1 for the thin string limit.

For the thin, probe vortex, we see that the fields do not mind touching the

event horizon of a black hole, indeed the presence of the horizon is a higher-order

effect that can be suitably diluted away. While one may suspect this to be a mere

artefact of the thin string limit, full numerical solutions also suggest that the vortex

remains largely indifferent to the presence of the horizon. Figure 2.6 depicts the

numerical solution for a vortex piercing through a black hole of mass GM = 5. The

morphology of the vortex seems unaffected by the black hole, indeed the contour

lines remain very straight as they approach and intersect the horizon.

While the probe vortex has no apparent problem in piercing the horizon, this can

become a more delicate issue when the energy of the vortex is taken into account.

For a stable and static solution, the vortex should not disturb the structure of the

horizon, a null surface which is free of shear stresses. We saw in (2.4.32) that for

the flat-space vortex, the energy and the tension along the core balance each other,

T zz = T tt . This means that as the core touches the horizon at θ = 0 and π, the

horizon feels no energy-momentum and thus is undisturbed. However, the physical

vortex is not infinitely thin, therefore one must address what happens at the horizon
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GM=5

X Sch P Sch

GM=5

Figure 2.6: The equipotentials of the vortex in the Schwarzschild background. The

Higgs contours are in blue, and the Pφ contours are in red. In each case contours

are shown for X,Pφ = 0.1, 0.3, 0.5, 0.7, 0.9.

as we move off of the poles. In fact, the authors of [83] were able to show that this

same balance is also maintained on the horizon, therefore there is no backreaction as

the vortex touches the null surface, and no obstruction, in this sense, to it remaining

there in a static fashion.

So then, what happens gravitationally when a string sits through a Schwarzschild

black hole? We saw in Section 2.4 above that the presence of the vortex in flat

space induces a conical effect in the azimuthal direction. Considering the case of an

infinitely thin vortex, the metric for the string and black hole system becomes [80]

ds2 = −
(

1−2GM

r

)
dt2+

(
1−2GM

r

)−1

dr2+r2dθ2+r2(1−4Gµ)2 sin2 θdφ2 , (2.5.55)

namely, a conical deficit angle is removed from the azimuthal direction in the

Schwarzschild spacetime. The authors of [83] demonstrated conclusively that the

geometry described by (2.5.55) does indeed correspond to the infinitely-thin string

limit of a physical vortex piercing through a Schwarzschild black hole.
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2.5.2 Flux expulsion in Reissner-Nordstrom

As with the Schwarzschild black hole, the vortex has no trouble entering into a

state of static equilibrium with the charged black hole, where it pierces through the

poles of the black hole. A very important difference between the two cases is that

the Reissner-Nordstrom black hole admits two horizons r+ and r−, which coincide

only in the extremal limit. In the context of extremality, a very interesting effect

arises for the vortex: if the black hole is small enough, then instead of piercing

through it, the flux lines of the vortex sweep over the horizon and regroup again

at the other side. This phenomenon is known as flux expulsion, or the Meissner

effect. Rather than doing so exclusively at the poles, the fields in the flux-expelling

state remain in their metastable vacuum states, X = 0, P = 1, across the full two-

dimensional surface of the extremal horizon, and fall to the vacuum only away from

the horizon. Therefore, the gauge field is long-range all across the horizon, allowing

the corresponding magnetic flux lines to engulf it.

Energetically, this implies that there are regimes in which it is favourable for the

fields approaching the black hole along the z-direction to veer off track and avoid

the black hole. We will return to the physics of the flux-expelled state in Chapter 4

when we discuss rotating black holes.

An analytic proof for the existence of expulsion for low mass black holes, as well

as a derivation of the precise bounds on the mass required for this phenomenon,

was presented in [95], and we will now review their work. Therefore, we will leave

the physics aside for now, and look in detail at the mathematics underlying this

phenomenon.

As is reviewed in Section 1.1.2, the Reissner-Nordstrom geometry is described

by the metric

ds2 = −∆

r2
dt2 +

r2

∆
dr2 + r2[dθ2 + sin2 θdφ2], (2.5.56)

where ∆ = r2 − 2mr + q2 = (r − r+)(r − r−), and q is proportional to the charge

of the black hole. For extremal black holes the inner and outer horizons coincide,

and thus the metric function ∆ has a double root, ∆ = (r − r+)2, leading to the

vanishing of ∆ as well as ∆′ on the horizon.
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The vortex field equations in the Reissner-Nordstrom background read

− 1

r2
∂r(∆X,r)−

1

r2 sin θ
∂θ(sin θX,θ) +

XP 2
φ

r2 sin2θ
− 1

2
X(1−X2) = 0 ,(2.5.57)

∂r

(
∆

r2
∂rPφ

)
+

sin θ

r2
∂θ

(
∂θPφ
sin θ

)
− X2Pφ

β
= 0 .(2.5.58)

To study flux expulsion we need to look at the fields on, and in the close vicinity of,

the extremal horizon r+. We therefore expand the fields near the horizon as

X = ξ0(θ) + (r − r+)ξ1(θ) , Pφ = π0(θ) + (r − r+)π1(θ) , (2.5.59)

where ξ1 and π1 are bulk fields. With these expansions, we see that due to the fact

that ∆′ = ∆ = 0, the horizon equations in fact decouple from the exterior geometry,

yielding

ξ′′0 + cot θξ′0 −
ξ0π

2
0

sin2θ
+
r2

+

2
ξ0(1− ξ2

0) = 0 ,

π′′0 − cot θπ′0 −
r2

+

β
ξ2

0π0 = 0 .

(2.5.60)

The constraints on the field are that they must be in the unstable vacuum state in

the core, ξ0 = 0, π0 = 1 for θ = 0, π, and they must be symmetric around π/2. It

is then obvious that the flux-expelled state, ξ0(θ) = 0 and π0(θ) = 1 ∀ θ ∈ (0, π),

solves the horizon equations3, regardless of the value of r+ and hence of the black

hole mass. However, it must be demonstrated that this solution extends to the bulk.

Following the argument in [95] closely, we see that this is only possible for horizon

radii below a certain critical value, r+ < rc.

To find the value of rc, let us suppose that expulsion occurs, therefore on the

horizon, X ≡ 0 and Pφ ≡ 1, with X increasing and Pφ decreasing towards their

vacuum values away from the horizon. Now consider a region very close to the

horizon such that X2 � 1, P < 1, and ∂r(∆X,r) > 0. Then from (2.5.57) we see

that

X > XP 2
φ > sin θ∂θ(sin θX,θ) +

1

2
r2

+ sin2θX . (2.5.61)

3Note that for a Schwarzschild black hole, for which ∆′ 6= 0 on the horizon, the bulk quantities

ξ1 and π1 would appear in the horizon equations, thus the flux expelled solutions ξ0 = 0, π0 = 1

obviously would not solve the horizon equations. Therefore we see that the double root structure

of ∆, namely the existence of an extremal limit, is crucial for flux-expelled states to arise.
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This condition must hold for a flux-expelled solution. Now, since sin θ = 0 at

θ = 0 and X,θ = 0 at θ = π/2 where it reaches its maximum value, the product

sin θ X,θ = 0 at θ = 0, π/2. In addition, it is positive for small θ, as both X and

sin θ are increasing. Therefore, its derivative must have at least one zero on (0, π/2).

Let us then define θ0 < π/2 as the first value of θ at which ∂θ(sin θX,θ) = 0. From

(2.5.61) we then find that
1

2
r2

+ sin2θ0 < 1 , (2.5.62)

which is manifestly true for r+ <
√

2.

Let us now consider a larger black hole with r+ >
√

2, and define α > θ0 by

r2
+ sin2α = 2. Then, integrating (2.5.61) on the range (θ, π/2), for θ > α gives

X,θ(θ) >
1

sin θ

ˆ π/2

θ

dθ′X(θ′)

(
r2

+

2
sin θ′ − 1

sin θ′

)
>
X(θ)

sin θ

ˆ π/2

θ

dθ′
(
r2

+

2
sin θ′ − 1

sin θ′

)
,

where we have obtained a lower bound on the integral by using the fact that X(θ) <

X(θ′). This gives

X,θ(θ) > X(θ)

[
r2

+

2
cot θ +

ln tan(θ/2)

sin θ

]
. (2.5.63)

We can further bound this expression by using the fact that because ∂θ(sin θX,θ) =

cos θX,θ + sin θX,θθ = 0 at θ0 and < 0 on (θ0, π/2], X,θθ < 0 on [θ0, π/2] and hence

X,θ(θ) <
X(θ)−X(α)

θ−α < X(θ)
θ−α , leading to

1 > (θ − α)

[
cot θ

sin2α
+

ln tan(θ/2)

sin θ

]
(2.5.64)

over the range θ ∈ (α, π/2). One finds this is violated for r2
+ > 8.5. Hence for

r+ ≥
√

8.5 ≈ 2.92 the vortex must pierce the horizon. This gives us an upper bound

on rc.

We can in fact also derive a lower bound on r+. We know that flux expulsion

is always a solution on the horizon. Therefore, to find this lower bound, we will

instead assume that a piercing solution exists for equations (2.5.60), and derive a

minimum requirement on r+ for this solution. Turning this bound around will give

the parameter space for which a piercing solution cannot exist on the horizon, and

thus flux expulsion must happen: this will give us the lower bound.

Thus we begin by assuming that a piercing solution exists, namely that ξ0 and

π0 have non-trivial profiles on the horizon, where ξ0 increases from its zero value at
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the poles to its maximum at the equator, while π0 decreases from unity at the poles

to its minimum value at the equator.

At π/2, we then have

ξ′′0 = ξ0π
2
0 −

r2
+

2
ξ0(1− ξ0) ≤ 0 ⇒ π2

0 ≤
r2

+

2
(1− ξ2

0) ≤
r2

+

2
, (2.5.65)

therefore

π′′0 =
r2

+

β
ξ2

0π0 ≤
r3

+√
2

ξ2
0

β

√
1− ξ2

0 ≤
√

2

3
√

3

r3
+

β
, (2.5.66)

where in the final step we have maximised over ξ0, with the maximum occurring at

ξ0 =
√

2/3. This gives us an upper bound on π′′0 at the equator. We will now find a

lower bound on the same quantity, and later we will match these bounds to obtain

the domain in r+ for which a piercing solution can exist.

From the horizon equations (2.5.60), we see that finiteness requires that π′0(0) =

0. Given that π′0(π/2) = 0 as well, there must exist a θ0 for which π′′0(θ0) = 0. This

is where π′0, which is negative on (0, π/2), takes its largest value:

π′0 = − tan θ
(r2

+

β
ξ2

0π0 − π′′0
)
⇒ |π′0(θ0)| = tan θ0

(r2
+

β
ξ2

0π0

)
≤

r2
+

β
tan θ0 . (2.5.67)

Then, we note that the value of π0 at its minimum must be larger than it would

be if π0 were able to decrease linearly from unity at the poles, with the highest

possible slope, which is |π′0(θ0)|. Thus we may estimate,

π0(π/2) > 1− π

2
|π′0(θ0)| , (2.5.68)

and combining this result with (2.5.66) gives

r2
+

2
≥ π0(π/2) > 1− π

2
|π′0(θ0)| ⇒ |π′0(θ0)| > 2

π

(
1−

r2
+

2

)
. (2.5.69)

Then, assuming r+ <
√

2 such that the bound is meaningful, and using (2.5.67), we

obtain
πr2

+

2β
(

1− r2+√
2

) > cot θ0 >
π

2
− θ0, (2.5.70)

where in the last step we have simply expanded around tan(π/2− θ0). We are now

ready to write down a lower bound on π′′0(π/2). Noting that π′′0(θ0) = 0 where π′0 is
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maximally negative, while π′′0(π/2) = r2
+ξ

2
0π0/β ≥ 0, we see that π′′0 on [θ0, π/2] is

maximum at the equator, thus

π′′0(π/2) ≥ π′0(π/2)− π′0(θ0)

π/2− θ0

⇒ π′′0(π/2) >
( 2

π

)2 β

r2
+

(
1− r+√

2

)2

. (2.5.71)

Combining the bounds, we arrive at

r3
+

β

√
2

3
√

3
> π′′0(π/2) >

( 2

π

)2 β

r2
+

(
1− r+√

2

)2

, (2.5.72)

and finally, (
r+√

2

)5

(
1− r+√

2

)2 >
3
√

3β2

2π2
≈ β2

4
. (2.5.73)

Turning this bound around, we conclude that the flux lines must expel if

r5
c/(
√

2− rc)2 > β2/
√

2 , (2.5.74)

which gives rc ' 0.7 for β = 1.

Therefore, following [95], we see that small mass extremal charged black holes

can support a Meissner effect. In particular, for β = 1, the flux can be expelled

from the interior of the black hole if

0.7 < r+ <
√

8.5 . (2.5.75)

In summary, cosmic strings and black holes can form very interesting systems.

From a gravitational point of view, the conical effect of the string can be woven into

the deep potential well of the black hole, such that the light from stars and other

objects in these wells could potentially exhibit an additional lensing effect due to

the presence of the string. From a field theoretic point of view, when a charge is

added to the black hole, a new class of phenomena opens up for small mass black

holes, in which they may experience two separate phases of cosmic string hair.

While these arguments paint a compelling picture, it remains to be seen whether

or not this picture may indeed be realised in natural systems. Most notably, natural,

astrophysical black holes are rotating objects, which, as mentioned earlier, turns out

to add quite a level of subtlety and complexity to the study of these systems.



Chapter 3

Rotating Black Hole Hair

Astrophysically, black holes are formed when very massive stars collapse under their

own gravity. A gravitationally collapsed object can only settle down into a static final

state if the collapse is completely spherical, which is very unrealistic for gargantuan,

hugely energetic astrophysical objects. Physical black holes are then much more

likely to be stationary objects, which are described by the Kerr family of black hole

spacetimes, parameterised by M and J .

In this Chapter, we will discuss the possible interacting states of cosmic strings

with rotating black holes, therefore we make contact with cosmology. As we have

discussed in detail in Section 2.5, previous studies involving static black holes have

demonstrated that in these simple cases, vortices and black holes can form stable

configurations [83, 95]. While this points to the fact that physical, videlicet rotat-

ing, black hole vortices could exist in Nature, it turns out that the conventional

field ansatz {X,Pφ} is inconsistent with the presence of rotation. This is because

the timelike Killing vector is not orthogonal to the spacelike hypersurfaces for a

stationary spacetime, indeed, the time and azimuthal directions are mixed.

For the vortex, this implies that the usual azimuthal form of the gauge vector

field Pφ is coupled to the zeroth component Pt, and the two cannot be considered

independently. We will see in what follows that the norm of the gauge boson cannot

in fact be finite on the horizon unless a Pt component is present to counter the Pφ

component. Taking this into account, we will show that a vortex with three non-

trivial spatially varying fields, X, Pφ and Pt, has the correct structure to form a

75
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stable, composite state with a black hole. We will explore this system in both the

nonextremal and extremal cases, and show that a Meissner effect arises for the low

mass extremal Kerr vortex. The physics of the phase transition is however quite

different to the Reissner-Nordstrom case, once again due to the presence of an addi-

tional field required for the description. The presence of Pt leads to a discontinuity

between the piercing and expelling phases, such that a first order phase transition

takes place, and the black hole bubbles its way down to expulsion as the horizon

radius shrinks.

Most interesting, however, is the way in which the non-trivial mixing of t and

φ expresses itself gravitationally in the Kerr vortex spacetime. We have seen that

a self-gravitating vortex induces a conical deficit angle in the azimuthal direction,

and that this effect is preserved when one threads the vortex through the centre of

a static spacetime. In the stationary case, we will show in what follows that the

azimuthal conical effect is itself twisted into the timelike direction by the rotation:

the angle that is removed by the string is from the perspective of an azimuthal

coordinate that is co-rotating with the black hole. Asymptotic observers therefore

see a spacetime in which both the timelike and azimuthal directions, as well as their

intersection, are reshaped by a conical effect.

This Chapter is based on the work done in Ref. [98].

3.1 Higgs hair for the Kerr black hole

We begin by expressing the vortex equations in the Kerr geometry, treating the

vortex as a probe.

The geometry reads

ds2 = −∆−a2 sin2θ

Σ
dt2− 4GMar sin2θ

Σ
dtdϕ+Σdθ2 +

Γ

Σ
sin2θ dϕ2+

Σ

∆
dr2 , (3.1.1)

where a = J/M and

Σ = r2 + a2 cos2θ , ∆ = r2 − 2GMr+ a2 Γ = (r2 + a2)2 −∆a2 sin2 θ . (3.1.2)

We will align the vortex in such a way as to respect the symmetries of the spacetime.

This means that as with the Schwarzschild and Reissner-Nordstrom cases, the core
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of the vortex is aligned along the polar axis of the black hole. The system is thus

symmetric with respect to a reflection about the equatorial plane. The string is

considered to be straight and extends along the polar axis to spatial infinity, where

the ambient spacetime is asymptotically flat.

As we see in the metric (3.1.1), the t and φ directions are mixed due to rotation,

thus we expect a mixing between the t and φ degrees of freedom in the gauge field, as

we have discussed. Therefore we consider an ansatz which includes a nonzero Pφ and

Pt. Indeed, inserting an azimuthal gauge field component Pφ into the equation for

the gauge field (2.3.11), we see that this equation implies that a second component,

Pt, is automatically generated:

∇µF
µφ +

X2P φ

β
= ∇µg

µαgφβFαβ +
X2gφαPα

β
= 0 . (3.1.3)

The vortex equations thus become

X2

β
Pφ =

∆

Σ
∂r∂rPφ +

1

Σ
∂θ∂θPφ +

2GMρ2

Σ3
(r2 − a2 cos2θ)∂rPφ

−cot θ

Σ3
(Σ2 + 4GMra2 sin2θ)∂θPφ −

4a3GMr

Σ3
cos θ sin3θ∂θPt (3.1.4)

+
2GMa sin2θ

Σ3

[
2r2Σ + ρ2(r2 − a2 cos2θ)

]
∂rPt ,

X2

β
Pt =

4
Σ
∂r∂rPt +

1

Σ
∂θ∂θPt +

4GMra

Σ3
cot θ

(
∂θPφ + a sin2θ∂θPt

)
+

cot θ

Σ
∂θPt

+
2GMa

Σ3
(Σ− 2r2)∂rPφ −

1

Σ3

[
2GM(2r2ρ2 − a2 sin2θΣ)− 2rΣ2

]
∂rPt , (3.1.5)

0 =
∆

Σ
X,rr +

∆′

Σ
X,r +

X,θθ

Σ
+

cot θX,θ

Σ
+

1

2
X(1−X2) +XP 2

µ , (3.1.6)

where ρ2 = r2 +a2 has been introduced for visual clarity, and the gauge boson norm

is

P 2
µ =

(ρ2Pt + aPφ)2

Σ∆
− (Pφ + a sin2θPt)

2

Σ sin2θ
. (3.1.7)

We now see explicitly why we needed to introduce the Pt field (indeed, this was

first noted by Wald [109] who found an expression for constant probe magnetic flux

field through a Kerr black hole). For non-vanishing Pφ, the Pt equation (3.1.5) does

not allow Pt = 0 unless a = 0. Furthermore, setting Pt = 0, the gauge field norm

becomes

P 2
µ =

P 2
φ

Σ

(a2 sin2 θ −∆

∆ sin2 θ

)
, (3.1.8)
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which is divergent on the horizon where ∆ → 0. Therefore, consistency imposes

that in a rotating spacetime, the vortex always picks up an extra component, Pt.

3.1.1 Approximate solution

The vortex equations (3.1.4)-(3.1.6) must be solved numerically, however as for the

static case, one can search for an approximate analytic solution to these equations,

using the flat-space vortex as a blueprint. The idea is that in a suitable limit in

which the effects of curvature are largely negligible, the vortex in the black hole

spacetime should strongly resemble the flat-space vortex. The corollary in the Kerr

case, however, is that in general there will always be a Pt component of the gauge

field, as the discussion above implies that the only consistent limit in which Pt → 0

is the limit in which a→ 0.

At spatial infinity, the ambient spacetime becomes locally flat and therefore in the

limit that one is very far away from the black hole, one can expect the vortex to be

well approximated by the flat-space vortex. Indeed, in that case, a→ 0 and thus we

expect the Pt component of the gauge field to be strongly suppressed. However, this

limit is not very interesting as it doesn’t capture any of the distinguishing features

of the black hole spacetime. As discussed in Section 2.5.1, the other sensible limit

which allows one to remain right in the heart of the black hole spacetime, is the

limit in which the string width is much smaller than the black hole. In this case, at

the scale relevant for the fields to transition from their core to their vacuum values,

the effects of curvature are not yet felt, and the horizon appears to be flat as the

string touches it.

The Nielsen-Olesen fields depend only upon the radial distance in cylindrical

coordinates, namely the distance orthogonal to the core of the vortex. Therefore, in

the Kerr case, we can consider the function

R = ρ sin θ , (3.1.9)

which gives the radial distance which is orthogonal to the polar axis in Boyer-

Lindquist coordinates. For our approximate solution, we will consider the fields to

depend upon this precise combination of r and θ.
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We will now make further simplifications based on the discussion above. The first

is that we will treat the vortex as being much thinner than the black hole horizon

r+. Having set the Higgs mass and thus the core width to unity, this entails that

r+ � 1. This “thin string limit” implies that ρ � 1, as the smallest value that ρ

can take is when r = r+ and a = 0, then ρmin = r+ � 1. The second simplification

is that we only consider the region within and close to the core of the string, as we

can expect the fields to fall off rapidly to their vacuum values outside of the string,

based on the behaviour of the vortex in flat space. Thus we consider the region

R < O(10). This implies that sin θ = R/ρ� 1, whereas cos θ ' 1.

Using these simplifications, we can expand the functions Σ and Γ as

Σ = ρ2
(

1− a2R2

ρ4

)
' ρ2 , Γ = ρ4

(
1− ∆a2R2

ρ6

)
' ρ4 . (3.1.10)

Furthermore, the derivatives become

∂

∂r
=
rR

ρ2

d

dR
,

∂

∂θ
= ρ cos θ

d

dR
' ρ

d

dR
,

∂2

∂r2
=
r2R2

ρ4

d2

dR2
+
(R
ρ2
− Rr2

ρ4

) d

dR
' R2

ρ2

d2

dR2
, (3.1.11)

∂2

∂θ2
' ρ2

(
1− R2

ρ2

) d2

dR2
−R d

dR
.

Using these expressions, the derivative operator becomes

∆

Σ

∂2

∂r2
+

1

Σ

∂2

∂θ2
'
(

1 +
∆R2

ρ4

) d2

dR2
− R2

ρ2

d

dR
. (3.1.12)

We may now expand equation (3.1.6) for the Higgs field, keeping terms only up to

order O(r−2
+ ), remembering that ∆ = O(ρ2) away from the horizon, and R ' O(1).

This yields(
1 +

∆R2

ρ4

)
X ′′ +

(
1− R2

ρ2
+
rR2∆′

ρ4

)X ′
R

+
X

2
(1−X2) +XP 2

µ , (3.1.13)

where

P 2
µ =

ρ2

∆
P 2
t +

4GMar

ρ2∆
Pt Pφ −

P 2
φ

R2
. (3.1.14)

Comparing this with the equation of motion for the Nielsen-Olesen Higgs field in

(2.4.15), we see that at leading order, this equation is solved by fields of the form

X ' X0(R) , Pφ ' P0(R) , Pt ' −
2GMar

ρ4
P0(R) , R ≡ ρ sin θ. (3.1.15)
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where to obtain the form of Pt we set the sum of the first two terms in (3.1.14)

to zero, so as to obtain the Nielsen–Olesen gauge boson norm at leading order. In

figure 3.1, the approximation is compared to the numerical solution for the same

values of the parameters. For low mass black holes, the discrepancies between the

solutions should become more pronounced, as the thin string limit r+ � 1 is then

starting to break down. The figure shows black holes with masses just three times

the string scale, and still the corrections are only dicernable close to the horizon,

where the vortex contour lines of the full solution exhibit slight curvature. Therefore

one can appreciate that the approximate solution is in fact only mildly approximate,

and is in excellent agreement with the full solution across almost all working scales

of the problem.

We see from the figure that the Pt field remains close to the horizon, thus there

is no electric field asymptotically far from the black hole. On the other hand, the

Higgs field X and gauge field component Pφ retain the same behaviour here as they

exhibited for the static case.

3.1.2 Numerical solution

We have seen that in the thin string limit, the vortex equations may be solved

to leading order by the functions (3.1.15). We would now like to obtain general

solutions to these equations. In this case, the fields will no longer be functions of a

single combination of r and θ, and the full non-linear coupled system must be solved

numerically.

The vortex equations (3.1.4)-(3.1.6) form an elliptic system. To solve them, we

implement a gradient flow technique on a two-dimensional polar grid, for which

r ∈ [r+, r∞] and θ ∈ [0, π]. The basic idea is that we begin by assigning a value of

each of the three fields to each grid point, using the approximate analytic solutions

for the fields, (3.1.15). We then evolve these values using the equations of motion

on the grid, and use the result to update the values of the fields at each grid point.

We repeat this procedure until the updated values are no longer changing, thus we

have reached a steady-state configuration and the equations of motion are satisfied.

The principle behind this method is that energy in a non-minimal configuration will
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Figure 3.1: A comparison of the approximate and exact numerical solutions for an

extremal GM = a = 3 Kerr black hole. In spite of the low value of black hole

mass, (3.1.15) is still an extremely good approximation to the actual result. Here,

the Higgs contours are in blue, the Pϕ contours in red, the Pt contours in grey, and

all the corresponding approximate solution contours in dashed black. Contours are

shown for X,Pϕ =0.1, 0.3, 0.5, 0.7, 0.9, and for Pt= -0.099, -0.077, -0.055, -0.033,

-0.011.
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dissipate until it attains a minimal, steady-state configuration. For our system, the

minimum energy configuration corresponds to the state in which the equations of

motion are satisfied, but the actual system has no time-dependance. Therefore, to

implement this process numerically, we introduce a fictitious time variable, with the

“rate of change” of our fields being proportional to the actual elliptic equations we

wish to solve:

Ẏ i = ∆Y i + F i(Y,∇Y) , (3.1.16)

where ∆i represents a second order (linear) elliptic operator and F is a (possibly

nonlinear) function of the variables Y i ≡ (X,Pφ, Pt) and their gradients, such that

the right hand side is our system of elliptic equations. Therefore, our equations are

now in the form of diffusion equations. Solutions to these new equations eventually

“relax” to a steady state in which the variables are no longer changing with each

time step, thus Ẏ i = 0, and the solutions Y i satisfy our elliptic equations.

The presence of the event horizon makes this treatment a little more subtle,

as our elliptic system then has one boundary upon which the equations become

parabolic. To deal with this, the fields on the horizon are updated as well, using the

equations on the horizon supplemented by the constraint

Pt(r+) = −aPφ(r+)

r2
+ + a2

, (3.1.17)

which is necessary for the gauge field to have a finite norm on the horizon as per

equation (3.1.7). As we have explained, we use the approximate analytic solution

for the fields as an initial condition for the integration. The approximate solution is

accurate to O(r−2
+ ), therefore we choose our outer radial boundary r∞ to be suffi-

ciently far from the horizon such that the analytic approximation can be extremely

well trusted. On axis we impose the standard vortex boundary conditions, X = 0

and Pφ = 1, however these conditions do not restrict the form of Pt. Indeed, we

have seen that Pt is in fact “generated” or conjured into the vortex equations by

the rotation, and thus represents a dyonic degree of freedom that is introduced to

the vortex solution by the presence of the black hole. In the case of a Schwarzschild

black hole on the other hand, the electric and magnetic degrees of freedom of the

gauge boson, if both are present, are decoupled, and only the latter is relevant for
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the static vortex solution. Taking this into account, it is not surprising that Pt

cannot be constrained by the standard, static vortex boundary conditions. Since we

do not wish to pick up a spurious charge of the black hole, we allow the Pt field to

relax freely across the grid, and update it along the axis by continuity.

A sample of solutions for GM = 5 are displayed in figure 3.2, showing both the

nonextremal and extremal cases.

3.2 Extremal Kerr black holes

As we reviewed in Section 2.5, previous studies have shown that a vortex may coexist

in a state of static equilibrium with a black hole [83, 95]. In the present work, we

have, at this stage, proven the principle that a vortex can coexist in a state of

stationary equilibrium with a black hole, at the cost of introducing some electric

flux close to the black hole horizon. We will now examine in detail the extremal

limit of the composite Kerr-vortex system.

As we saw in Section 2.5.2, for the case of Reissner-Nordstrom black holes of

small mass, the vortex flux can be expelled from the interior of the black hole [95].

We would now like to explore whether or not this phenomenon of flux expulsion

can occur for the extremal Kerr vortex. There is in fact good reason to believe

that this phenomenon can be expected, based on the work of Wald pertaining to

the behaviour of uniform magnetic fields around rotating black holes. In fact, the

physics behind the expelling of vortex flux lines by an extremal horizon, rotating or

not, is made particularly transparent by Wald’s construction.

Wald demonstrated that Killing vectors can generate electromagnetic fields on

Ricci flat backgrounds [109]. A Killing vector kµ satisfies

kµ;ν + kν;µ = 0 . (3.2.18)

After differentiating and commuting the derivatives several times, and making use

of the Einstein equation Rµν = 0, this equation can be reduced to the expression

kµ;ν
;ν = 0 , (3.2.19)
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Figure 3.2: Numerical solution for a Kerr black hole with the values of GM and

a indicated. On the left, the X = 0.1, 0.3, 0.5, 0.7, 0.9 contours are plotted in

blue. On the right, the Pϕ = 0.1, 0.3, 0.5, 0.7, 0.9 contours are in red, and the

Pt = −0.045,−0.035,−0.025,−0.015,−0.005 contours are in dashed black. The

horizon is shown in black, and the edge of the ergosphere in grey.
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which is precisely the equation for the 4-vector potential Aµ of an electromagnetic

field in the Lorentz gauge Aν ;ν = 0, namely

Aµ;ν
;ν ≡ F µν

;ν = 0 . (3.2.20)

Therefore, each Killing vector, which characterises a symmetry of the gravitational

field, has a corresponding electromagnetic field, which is then intricately linked to

spacetime geometry.

For the Kerr spacetime, the potential is then a linear combination of the Killing

vectors ∂ µ
t and ∂ µ

φ . Wald’s solution is

Aµ ∝ (2a∂t + ∂ϕ)µ , (3.2.21)

which represents a constant axial magnetic field Bz threading a rotating black hole,

and an electic field that sweeps down the axes and out along the equator of the black

hole [109]. The black hole thus acquires an electric charge Q = 2JB as measured

by Gauss’s law,

4πQ =

˛
S

F µν d2Sµν ≡
‹
S

E · n̂ dS (3.2.22)

and hence this mechanism can provide a way to “charge up” a black hole.

Physically, we can understand the appearance of the electric field as a conse-

quence of Faraday’s law in a cosmological setting: rotation in the presence of a

magnetic field induces an electric field. This field may then give rise to an isolated

electric charge. For the magnetic field on the other hand, Gauss’s law for magnetism

states that the magnetic field B is divergence-free, ∇zBz = 0. In integral form this

is ‹
S

Bzn̂
zdS = 0 , (3.2.23)

so the net flux of the magnetic field out of the surface S should vanish, otherwise

the surface contains an isolated magnetic charge, namely, a magnetic monopole. To

respect this law, the extremal black hole must exhibit a Meissner effect, and expel

the magnetic flux from its interior. In the case of the Wald solution, the flux lines

then cross the horizon for nonextremal black holes, while for all extremal black holes,

the flux is expelled.
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The Meissner effect for extremal black holes can be understood as follows. In the

special case of the extremal limit, we saw in Section 1.1.2 that in the near-horizon

region of a black hole the proper distance along a radial geodesic becomes infinite,ˆ r++ε

r+

√
gr̃r̃dr̃ ∼

ˆ r++ε

r+

1

r̃
dr̃ → ∞ , (3.2.24)

where r̃ = r− r+. Now, as a simple example, consider a disc in the equatorial plane

extending outwards from r+ to r+ + ε. As a result of (3.2.24), such a surface has

infinite area. If the constant magnetic field lines in the z-direction were to cross this

surface, then the magnetic flux leaving the disc would be infinite. To obey Gauss’s

law in (3.2.23), and thus avoid producing a magnetic monopole, the magnetic field

must then vanish on the horizon, giving rise to a Meissner effect. Specifically we

require that Bz → 0 faster than ∆→ 0. The effect is depicted in figure 3.3.

Note that for a vortex rather than a uniform magnetic field, the magnetic flux

is also set to zero when the gauge field goes to vacuum, Pφ → 0. Therefore, if the

fields are already in vacuum at the equator, or before, such as is the case for larger

mass black holes, then the magnetic flux cannot sweep over the horizon as Pφ = 0

along sections of it. The vacuum is the lowest energy state, thus the fields cannot

be pulled out of vacuum so that the flux lines can engulf the horizon. The field lines

have then nowhere to go unless they pierce the black hole.

The Wald solution (3.2.21) thus provides a hint of what we might expect for the

Kerr vortex in the limit that the horizon is well below the scale of the string. In that

case, the black hole would be situated sufficiently deep within the core that it feels

only a uniform magnetic field Bz around its exterior, associated with the massless

gauge boson. However, we cannot simply use the Wald solution as an approximate

solution in the core, because the electric field is very different. In particular, due to

the fact that the photon is massless throughout the whole of spacetime for the Wald

solution, the field lines can sweep outwards from the equator, whereas our photon is

massive beyond the core, thus these lines must be contained within the core. That

is why our approximate solution for Pt in (3.1.15) does not converge to the Wald

solution in the appropriate small mass limit.

In what follows we will show, using analytic arguments, that the Meissner effect

indeed arises for the Kerr vortex. This effect, as for the Reissner-Nordstrom case,
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Figure 3.3: The Meissner effect for an extremal black hole: The net magnetic flux

leaving the surface S must vanish. Therefore, the magnetic field Bz must vanish

on the horizon such that the flux passing through a near-horizon equatorial surface

(upper purple disc), which has infinite area, does not diverge.

only occurs for sufficiently small black holes, which makes perfect sense in the light

of Wald’s construction. As for the Reissner-Nordstrom case in Section 2.5.2, we will

derive the limits on the masses required for expulsion and penetration.

3.2.1 Near horizon expansion

We see from the form of the gauge boson norm P 2
µ in (3.1.7) that one combination

of Pφ and Pt must vanish on the horizon in order for the system to remain finite,

while another combination does not vanish. To study the near horizon limit, it is

then useful to rewrite the vector field in terms of the alternative variables P and Q,

where

P = Pϕ + a sin2θPt ,

Q = ρ2Pt + aPϕ ,
(3.2.25)
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giving[ P 2

Σ sin2θ
− Q2

Σ∆

]
X =

∆

Σ
X,rr +

2(r −GM)

Σ
X,r +

X,θθ

Σ
+

cot θX,θ

Σ
(3.2.26)

+
1

2
X(1−X2) ,

X2P

β
=

∆

Σ
P,rr +

P,θθ
Σ
− cot θP,θ

Σ

(
1− 2a2 sin2θ

Σ

)
+

2P,r
Σ2

[
Σ(r −GM)− r∆

]
+

2a sin2θ

Σ2

(
rQ,r − cot θQ,θ + aP −Q

)
, (3.2.27)

X2Q

β
=

∆

Σ
Q,rr +

Q,θθ

Σ
− cot θQ,θ

Σ

(
1− 4GMr

Σ

)
+

2∆

Σ2

[
cot θ(Q,θ − aP,θ)− r(Q,r − aP,r) +Q− aP

]
. (3.2.28)

For the extremal Kerr black hole the metric function ∆ has a double root, ∆ =

(r − r+)2, and so as with the Riessner-Nordstrom case in Section 2.5.2, we expand

the fields near the horizon as

X = ξ0(θ) + (r − r+)ξ1(θ) + . . . ,

P = π0(θ) + (r − r+)π1(θ) + . . . , (3.2.29)

Q = ψ0(θ) + (r − r+)ψ1(θ) + . . . .

Eq. (3.2.27) (or finiteness of energy on horizon) then implies that ψ0 = 0. To leading

order, the equations then read

ξ′′0 + cot θξ′0 +
r2

+

2
(1 + cos2θ)ξ0(1− ξ2

0)−
[ π2

0

sin2θ
− ψ2

1

]
ξ0 = 0 , (3.2.30)

π′′0 − cot θ
3 cos2θ − 1

1 + cos2θ
π′0 +

2 sin2θ

1 + cos2θ
(ψ1 + π0)−

r2
+

β
ξ2

0π0(1 + cos2θ) = 0 , (3.2.31)

ψ′′1 + cot θ
3− cos2θ

1 + cos2θ
ψ′1 −

r2
+

β
ξ2

0ψ1(1 + cos2θ) = 0 . (3.2.32)

Note that although the expansion does not in general decouple from the bulk (be-

cause of the appearance of the bulk field ψ1 in the equation for ξ0) it does form a

closed system in this extremal case, as we have an equation for each of the three

fields, ξ0, π0 and ψ1. The constraints on the solutions are that they must be sym-

metric around θ = π/2, and obey ξ0 = 0, π0 = 1 at θ = 0, π.
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3.2.2 Flux penetration and expulsion

Let us first show that for large black holes, a string will always penetrate the black

hole horizon. Similar to the extremal Reissner-Nordstrom case, we proceed by

contradiction. Returning to the full bulk equation (3.2.27), let us assume that

flux expulsion occurs, i.e. at r+ = a = GM we have X = 0 and Pϕ = 1 (with

Pt = −1/2r+ from (3.1.17)) leading to P ≡ π0 = (1 + cos2 θ)/2, and hence (3.2.31)

yields ψ1 ≡ Q′(r+) = −1.

Therefore near r+ where X > 0, P < 1 and X2 � 1, both ∂r(∆∂rX) > 0 and

(Q2/∆Σ−X2/2) > 0. Hence Eq. (3.2.27) implies

1

2
r2

+ sin2θX + sin θ∂θ(sin θ∂θX)

≤ 1

2
r2

+(1 + cos2θ) sin2θX + sin θ∂θ(sin θ∂θX) < XP 2 < X . (3.2.33)

However, this is the same equation as the one obtained for the Reissner-Nordstrom

black hole in (2.5.61), which is extensively discussed in Section 2.5.2, and the dis-

cussion therein therefore applies. Hence we conclude that for any r+ >
√

8.5 ≈ 2.92

the vortex must pierce the extremal Kerr black hole.

Let us now look more closely at what happens on the horizon. An inspection of

(3.2.32) shows that if ξ0 6= 0, then ψ1 = 0. Specifically, at the turning points ψ′1 = 0,

we find

ψ′′1 =
r2

+

β
ξ2

0ψ1(1 + cos2 θ) . (3.2.34)

All quantites on the right hand side of this expression are always positive except

for ψ1, thus we see that ψ1 has a maximum ψ′′1 > 0 (minimum ψ′′1 < 0) only when

it is negative (positive). Now, if θ = 0, the second term in (3.2.32) is divergent

unless it corresponds to a turning point, ψ′1(0) = 0. As ξ0(0) = 0, we then find that1

ψ′′1(0) = 0. Then, as we move away from θ = 0, if ψ1(0) is negative then ψ′′1 < 0,

thus ψ1 is always decreasing and can never reach a minimum, as this would require

1To confirm that the second term does not diverge, we could use l’Hopital’s rule to show that

lim
θ→0

ψ′1(θ)

sin θ
= lim
θ→0

ψ′′1 (θ)

cos θ
= ψ′′(0) , (3.2.35)

then (3.2.32) yields ψ′′(0) = 0.
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ψ1 to be positive. The reverse occurs for positive ψ1, namely it aways stays positive.

The fields should be symmetric around π/2, and this is only possible if ψ1 can have

a turning point there. However we have shown this to be impossible, as long as

ξ0 6= 0, which it isn’t as long as θ 6= 0. Therefore we see that ψ1 = 0 as long as

ξ0 6= 0.

Eqs. (3.2.30) and (3.2.31) now read

ξ′′0 + cot θξ′0 +
r2

+

2
(1 + cos2θ)ξ0(1− ξ2

0)− π2
0ξ0

sin2θ
= 0 ,

π′′0 − cot θ
3 cos2θ − 1

1 + cos2θ
π′0 +

2 sin2θ

1 + cos2θ
π0 −

r2
+

β
ξ2

0π0(1 + cos2θ) = 0 ,

(3.2.36)

and form a pair of coupled equations for the two purely horizon fields ξ0 and π0,

decoupled from the bulk. Based on energetic considerations, let us assume that these

fields have only one turning point on the horizon. In this case, the field ξ0 would

start from zero at θ = 0 and monotonically increase to reach its first maximum at

θ = π/2, ξ0(π/2) < 1, while the value of π0 would monotonically decrease to reach

its first minimum π0(π/2) < 1. Since π′′0(π/2) > 0, the second equation at θ = π/2

implies that r2
+ξ0(π/2)2 − 2β > 0, and therefore, r2

+ > 2β. Thus we see that for

r+ <
√

2β the penetrating solution cannot exist and the black hole must expel the

flux.

We will now demonstrate that flux expulsion is indeed a solution of our near

horizon equations (3.2.30)–(3.2.32). Consider the flux-expelling case for which ξ0 ≡

0. Using the boundary condition ψ′1(0) = 0, (3.2.32) solves to ψ1 = const., and

(3.2.31) has the general solution π0 = λ sin2θ+ γ cos θ−ψ1. Applying the boundary

condition π0(0) = 1, and using the fact that the solution must be symmetric around

π/2, then yields γ = 0, ψ1 = −1. Then, using the fact that P (r+) ≡ π0 = (1 +

cos2 θ)/2, we find that λ = −1/2. Therefore the solution reads π0 = −1
2

sin2θ + 1

and ψ0 = 0. In the original variables this corresponds to

Pφ = 1 , Pt = − 1

2r+

, (3.2.37)

on the horizon and hence represents a flux-expelled solution. Let us point out

that if there is a phase transition between the flux penetration and expulsion, the

value of ψ1 on the horizon necessarily suffers from a discontinuity: ψ1 = 0 for flux
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penetration, for which ξ0 > 0, whereas for ξ0 = 0, the case of expulsion, ψ1 jumps

to ψ1 = −1. Therefore

lim
ξ0→0+

ψ1 6= ψ1

∣∣∣
ξ0=0

. (3.2.38)

Our analytic arguments suggest that similar to the Reissner-Nordstrom case,

there exists a critical radius rc, 1.41 < rc < 2.92 for β = 1, below which the flux is

necessarily expelled. Numerical investigations actually indicate rc ≈ 1.912.

Figure 3.4 displays a comparison between the Kerr and Reissner-Nordstrom

phase transitions for several values of β, where the maximum value of the Higgs

field, ξ0(π/2), which is the order parameter for the transition, is plotted against the

horizon radius r+. We see that the nature of the phase transition is different for

the two black holes, and furthermore, the two cases exhibit a different response to a

variation of the Bogomolyni parameter β. The Bogomolyni paramater governs the

ratio between the Higgs and gauge field masses, therefore a drop in β corresponds

to a narrowing of the gauge core. This leads to a lowering of the critical radius for

flux expulsion, which both black holes exhibit. However, the Kerr black hole has a

higher critical radius when β increases. In fact, we see from (3.2.36) that π0 now

has two contributions to its effective mass that come with opposite signs, while the

Reissner-Nordstrom Higgs field has only a single, negative contribution. For Kerr,

the positive contribution is purely geometric, and disappears at θ = 0 as it should.

The negative contribution comes from the Higgs field ξ0, and this contribution must

dominate to prevent the flux of π0 from being expelled. Due to the fact that this

contribution includes a factor of the form r2
+/β, it is clear that an increase in β will

dampen this term and thus increase the critical radius at which expulsion happens.

3.3 Backreaction of the vortex on the black hole

We have seen that while the spacetime around a cosmic string is locally flat, globally

it is not Euclidean: instead, the string cuts out an azimuthal deficit angle at infinity.

When a cosmic string is threaded through a black hole, one must essentially combine

the spacetimes associated with the two objects in some appropriately stable way.

For static black holes, intuitively it is easy to imagine that the conical effect of the
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Figure 3.4: Phase plots for the RN and Kerr extremal black holes. The maximum

value of the Higgs field, Xm = ξ0(π/2), is plotted against the horizon radius r+.

The transition is shown for different values of the Bogomolnyi parameter: β = 10

in dotted black, β = 1 in solid blue, and β = 0.1 in dashed red.

string is simply centred on the black hole, and this is precisely what studies have

revealed [80, 83]. However, in the Kerr spacetime such a conical effect could not

be consistently quarantined away from the time direction, as this direction is not

orthogonal to the azimuthal direction. Nevertheless, in the literature it is often

simply assumed that the effect of a cosmic string in a rotating background is to

induce the usual azimuthal deficit angle at infinity [97,110].

In fact, what occurs in the Kerr spacetime is much more interesting: we will show

in what follows that the string induces a conical deficit angle from the perspective

of an azimuthal coordinate that is co-rotating with the black hole. This means that

the black hole horizon, a rotating 2-sphere, will feel an azimuthal section cut out

of it as a result of the string.. Seeing as the horizon is rotating with respect to an

asymptotic observer, such an observer sees a deficit angle in the union of the time

and azimuthal directions. Only at spatial infinity, where the rotation is no longer

felt, will the deficit angle emerge entirely in the azimuthal direction.

We will now derive this effect concretely. We have demonstrated above that

the analytic approximations for the fields (3.1.15) are in excellent agreement with

their numerical counterparts, therefore, in order to proceed analytically, we will

henceforth make use of these approximate solutions. Our approach is then to follow

the perturbative procedure which we used for the self-gravitating vortex in Section
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Figure 3.5: The black hole horizon shown with a wedge removed as a result of the

gravitational effect of the string.

2.4, namely, we expand the Einstein equations in powers of ε = 8πGη2, and use the

probe vortex solution to compute the leading order gravitational correction to the

Kerr spacetime.

We first need to select an appropriate set of coordinates for the problem, which

reflects the axial symmetry of the Kerr-string system. A convenient choice for the

metric is (see e.g. [111])

ds2 = e2λdt2 − α2e−2λ
[
dϕ+Bdt

]2 − e2(ν−λ)(dx2 + dy2) , (3.3.39)

where the functions α,B, ν and λ are functions of the x and y coordinates only. The

Ricci tensor of this metric is given by:

Rϕ
ϕ +Rt

t = e2(λ−ν)∇2α

α
, (3.3.40)

Rt
ϕ =

α

2
e−2(λ+ν)

[
−3∇α · ∇B + 4α∇B · ∇λ− α∇2B

]
, (3.3.41)

Rϕϕ = −α
2
e−2ν

[
α3e−4λ(∇B)2 + 2∇2α− 2∇α · ∇λ− 2α∇2λ

]
,(3.3.42)

Rx
x +Ry

y =
e2(λ−ν)

2α

[
2∇2α− α3e−4λ(∇B)2 + 4eλ∇ ·

(
α∇e−λ

)
+4α∇2ν

]
, (3.3.43)

Rxy =
1

2α

[
α3e−4λBxBy − 4αλxλy + 2(αxνy + αyνx)− 2αxy

]
, (3.3.44)

Ry
y =

e2(λ−ν)

2α

[
−α3e−4λB2

y + 2α∇2(ν − λ)− 2(αyνy − αxνx)

−2∇α · ∇λ+ 4αλ2
y + 2αyy

]
, (3.3.45)
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In the above,
√
−g = α e2(ν−λ), the two-dimensional gradient operator ∇ = (∂x, ∂y),

and the Laplace operator ∇2 = ∇ · ∇ = ∂2
x + ∂2

y . In particular, defining2

x =

ˆ
dr√
∆
, y = θ , (3.3.46)

the background (Kerr) solution can be written as

α0 =
√

∆ sin θ , B0 = −2aGMr

Γ
, e2ν0 =

∆Σ2

Γ
, e2λ0 =

∆Σ

Γ
. (3.3.47)

The Einstein equations take the form

Rµν = ε
(
Tµν −

1

2
Tgµν

)
, (3.3.48)

where the Ricci tensor is expanded as Rµν → Rµν+δRµν around the background Kerr

solution, which is given by the Weyl expressions (3.3.47), and the energy momentum

tensor is built from the energy of the probe vortex. The components of the energy

2Note this is not the usual Weyl gauge, in which the α variable is typically equal to one of x

or y, however, this choice proves easier to analyse, and is closer to the standard Boyer Lindquist

Kerr gauge.
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momentum tensor take the form

T tt =
1

Σ
(X2

,θ + ∆X2
,r) +

1

4
(X2 − 1)2 +

X2

∆Σ

[
ΓP 2

t + ΩP 2
φ

]
+

β

∆Σ2

[
Γ(P 2

t,θ + ∆P 2
t,r) + Ω(P 2

φ,θ + ∆P 2
φ,r)
]
, (3.3.49)

T tφ =
2β

∆Σ

[
Γ(Pt,θPφ,θ + ∆Pt,rPφ,r) + 2GMar(P 2

φ,θ + ∆P 2
φ,r)
]

+
2X2

∆Σ
(ΓPtPφ + 2GMarP 2

φ) , (3.3.50)

T φφ =
1

Σ
(X2

,θ + ∆X2
,r) +

1

4
(X2 − 1)2 − X2

∆Σ

[
ΓP 2

t + ΩP 2
φ

]
− β

∆Σ2

[
Γ(P 2

t,θ + ∆P 2
t,r) + Ω(P 2

φ,θ + ∆P 2
φ,r)
]
, (3.3.51)

T xx =
1

Σ
(X2

,θ −∆X2
,r) +

1

4
(X2 − 1)2 − X2

∆Σ

[
ΓP 2

t − ΩP 2
φ +

4GMar

∆Σ
PtPφ

]
+

β

∆Σ2

[
Γ(∆P 2

t,r − P 2
t,φ) + Ω(P 2

φ,θ −∆P 2
φ,r) (3.3.52)

+4GMar(∆Pt,rPφ,r − Pt,θPφ,θ)
]
,

Txy = 2
√

∆XθXr −
2β√
∆Σ

[
ΓPt,θPt,r + 2GMar(Pt,θPφ,r + Pφ,θPt,r) (3.3.53)

−ΩPφ,θPφ,r

]
,

T yy = − 1

Σ
(X2

,θ −∆X2
,r) +

1

4
(X2 − 1)2 − X2

∆Σ

[
ΓP 2

t − ΩP 2
φ +

4GMar

∆Σ
PtPφ

]
− β

∆Σ2

[
Γ(∆P 2

t,r − P 2
t,φ) + Ω(P 2

φ,θ −∆P 2
φ,r) (3.3.54)

+4GMar(∆Pt,rPφ,r − Pt,θPφ,θ)
]
,

where for compactness we have introduced the function

Ω =
∆− a2 sin2 θ

sin2 θ
.

In the thin string limit, using the approximate solution (3.1.15), these become

T tt ≈ T xx ≈ X ′20 +
X2

0P
2
0

R2
+ β

P ′0
2

R2
+

1

4
(X2

0 − 1)2 ≡ E ,

T yy ≈ −X ′20 +
X2

0P
2
0

R2
− βP

′2
0

R2
+

1

4
(X2

0 − 1)2 ≡ −PR ,

Tϕϕ ≈ X ′20 −
X2

0P
2
0

R2
− βP

′2
0

R2
+

1

4
(X2

0 − 1)2 ≡ −Pφ ,

Txy ≈
√

∆r

ρ
R(E + PR) ,

T tϕ ≈ −
4GMra

ρ8

[
(ρ2 − 4r2)RPP ′ − a2R2(X2P 2 + P ′2)

]
≈ 0 ,

(3.3.55)
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where E etc. denote the energy-momentum components of the Nielsen-Olesen vortex,

defined in (2.4.32), which are simply functions of R = ρ sin θ. Because these com-

ponents are functions of R only, this leads to a modification of the Kerr geometry

which is also dependent on R.

Note that far away from the black hole in the polar direction r cos θ, the per-

turbed Kerr metric should asymptote towards the metric of the self-gravitating

vortex. Thus we expect the corrections to take the form that δα = εα0α1(R),

δλ = δν/2 = ελ1(R). We will therefore consider general perturbations of the form

α = α0

(
1 + εα1(R) +O(ε2)

)
, α = B0

(
1 + εB1(R) +O(ε2)

)
, (3.3.56)

λ = λ0 + ελ1(R) +O(ε2) , ν = ν0 + εν1(R) +O(ε2) . (3.3.57)

Using these expressions, we find for the curvature:

δ(Rφ
φ +Rt

t) = ε
e2(λ0−ν0)

α0

[
2∇α0 · ∇α1 + α0∇2α1

]
(3.3.58)

δ(Rt
φ) = −εe

2(λ0−ν0)

2α0

[
α3

0e
−4λ0∇B0 · (3∇α1 − 4∇λ1)

+α3
0e
−4λ0∇B0 · ∇B1 +∇ · (α3

0e
−4λ0B0∇B1)

]
(3.3.59)

δ(Rφφ) = −εα0e
−2ν0

2

[
α3

0e
−4λ0((∇B0)2(2α1 − 4λ1)

+2∇B0 · ∇(B0B1))− 2α0∇α1 · ∇λ0 − 2∇α0 · ∇λ1

+4∇α1 · ∇α0 + 2α0∇2α1 − 2α0∇2λ1

]
(3.3.60)

δ(Rx
x +Ry

y) = ε
e2(λ0−ν0)

2α0

[
2α0∇2α1 + 4∇α0 · ∇α1 + 4α0∇2ν1

−α3
0e
−4λ0((∇B0)2(2α1 − 4λ1) + 2∇B0 · ∇(B0B1))

+4eλ0(α0∇α1 · ∇e−λ0 −∇ · (α0e
−λ0∇λ1))

]
(3.3.61)

δ(Rxy) = ε
1

2α0

[
α3

0e
−4λ0(B0x(B0B1)y +B0y(B0B1)x + (2α1 − 4λ1)B0xB0y)

−4α0(λ0xλ1y + λ1xλ0y) + α0xν1y + α0yν1x + α0α1xν0y

α0α1yν0x − 2(α0xα1y + α0yα1x + α0α1xy)
]

(3.3.62)

δ(Ry
y) = ε

e2(λ0−ν0)

2α0

[
−α3

0e
−4λ0((2α1 − 4λ1)(B0y)

2 + 2B0y(B0B1)y)

+2α0(∇2ν1 −∇2λ1)− 2α0(α1yν0y − α1xν0x)

−2(α0yν1y − α0xν1x)− 2(α0∇α1 · ∇λ0 +∇α0 · ∇λ1)
]

(3.3.63)
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Notice that the perturbations of the B function always come with prefactors of the

derivatives of B0, which is O(ρ−3). Given that the overall prefactor

α3
0e
−4λ0 =

Γ2 sin3 θ√
∆Σ2

= O(1) , (3.3.64)

we see that B1 terms are always subdominant.

To expand the equations, we make use of the derivatives given in (3.1.11) to

obtain the following expressions:

∇ ≡
( ∂
∂x
,
∂

∂y

)
=
(√∆rR

ρ2

d

dR
, ρ

d

dR

)
, (3.3.65)

∂2

∂x2
' ∆R2

ρ2

d2

dR2
+
rR∆′

2ρ2

d

dR
,

∂2

∂y2
' ρ2

(
1− R2

ρ2

) d2

dR2
−R d

dR
, (3.3.66)

∇2 ≡ ∂2
x + ∂2

y ' ρ2
(

1 +
∆R2

ρ4

) d2

dR2
+
(rR∆′

2ρ2
−R

) d

dR
. (3.3.67)

First, consider the Einstein equation (3.3.40),

δ(Rt
t +Rϕ

ϕ) = −ε (E − PR) . (3.3.68)

Expanding (3.3.58), the right-hand-side becomes

δ(Rt
t +Rϕ

ϕ) = ε
ρ2

Σ

[(
1 +

∆R2

ρ4

)
α′′1 +

(
2− R2

ρ2
+

3rR2∆′

2ρ4

)α′1
R

]
= ε

[
α′′1 +

2

R
α′1 +O(ρ−2)

]
, (3.3.69)

yielding a simple ordinary differential equation for α1 at leading order,

α′′1 + 2
α′1
R

= −(E − PR) , (3.3.70)

which is solved by

α1 = −
ˆ R

0

R(E − PR)dR +
1

R

ˆ R

0

R2(E − PR)dR . (3.3.71)

At leading order, this is in fact identical in form to the self-gravitating correction

(2.4.36).

Next, recalling that B and its derivatives are subdominant, we obtain for the

Einstein equations (3.3.42), (3.3.43) and (3.3.45)

δRϕϕ = −εR [Rα′′1 + 2α′1 −Rλ′′1 − λ′1] = R2

[
E +

1

2
(Pφ − PR)

]
, (3.3.72)

δ(Rx
x +Ry

y) = ε

[
α′′1 +

α′1
R

+ 2ν ′′1 − 2λ′′1 − 2
λ′1
R

]
= −ε [E − Pφ] , (3.3.73)

δRy
y = ε

[
α′′1 +

α′1
R

+ ν ′′1 − λ′′1 −
ν ′1
R
− λ′1
R

]
= −ε

[
E − 1

2
(Pφ − PR)

]
.(3.3.74)
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Inserting (3.3.71) into the first of the above equations yields precisely the expression

(2.4.38) which we obtained for the self-gravitating vortex,

λ′′1 +
λ′1
R

=
1

2
(Pφ + PR) , (3.3.75)

and thus as we have seen, is solved by

λ1 =
1

2

ˆ R

0

RPRdR . (3.3.76)

Finally, subtracting (3.3.75) from both sides of (3.3.73) yields

ε
[
α′′ +

2α′

R
+ 2ν ′′ − 3λ′′ − 3λ′

R

]
= −ε

[
E − 1

2
(Pφ − PR)

]
, (3.3.77)

and consistency with (3.3.74) then implies that ν1 = 2λ1, just as we found for the

self-gravitating case.

We can now check the remaining equations:

δRxy = −ε
√

∆
r

ρ
[Rα′′1 + 2α′1 − 4λ′1] = ε

√
∆
r

ρ
[E + PR] , (3.3.78)

δRt
ϕ = ε

GMra

ρ8

(
ρ2 − 4r2 + 2a2

)
R3 [3α′1 − 4λ′1] (3.3.79)

= −ε4GMra

ρ8

[
(ρ2 − 4r2)RPP ′ − a2R2(X2P 2 + P ′2)

]
= O(r2

+/r
5) .

Pulling all the details together, and looking outside the core of the vortex, we

see the leading order asymptotic form of the Kerr-vortex is

ds2 =

(
1− 2GMr

Σ
+

8(GMar sin θ)2

ΓΣ
εµ̂

)
dt2 −Σdθ2 −Σ

∆
dr2

− Γ

Σ
(1− 2εµ̂) sin2θ dϕ2+

4GMar sin2θ

Σ
(1− 2εµ̂)dtdϕ ,

(3.3.80)

where

µ̂ =

ˆ ∞
0

REdR (3.3.81)

is the renormalised energy per unit length of the string.

Thus we see that in Boyer-Lindquist coordinates, the conical effect of the string

emerges in the time and azimuthal directions. On the other hand, transforming to

a to a frame co-rotating with the black hole, ϕH = ϕ − ΩHt = ϕ − B(r+), we see

that the conical effect is then indeed confined to a purely angular direction, namely

the azimuthal direction in the co-rotating frame, such as on the horizon. Note that
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this is not inconsistent with the conical effect in the static case, as in that case,

there is simply no difference between the azimuthal coordinate at infinity and on

the horizon.

3.4 Discussion

In this Chapter we have seen that a vortex in a rotating spacetime necessarily

picks up a time component Pt, and this significantly enhances the phenomenology

of these composite vortex and black hole systems compared to their purely static

counterparts. Importantly, including rotation has enabled the interactions between

vortices and black holes to become relevant for cosmology and astrophysics. As we

have shown, a vortex is quite able to form a stable state with a rotating black hole,

which implies that these objects do not repel one another, nor does a black hole

accrete a string that pierces it axially. Therefore, it would be interesting to look for

signs of these composite objects in galactic systems, now that we know that they

are possible.

While conventional strings do not feature an electric field, as even if one con-

siders a time component of the gauge field to be present, it is not relevant for the

description of the static vortex, we see that in the rotating context, an electric field

is necessarily generated. That this is a genuine electric flux, and not some frame

dragging transformation effect is easily verified by computing

|F ∧ F | ∼ E ·B ∼ 8GMaP0(R)P ′0(R)(3r2 − a2)

Rρ6
(3.4.82)

for the approximate solution, which is clearly a nonvanishing quantity. The emer-

gence of electric flux is thus a frame-independent effect, and as we mentioned earlier,

can be viewed as a manifestation of Faraday’s law in astrophysical systems.

Given that a Kerr black hole admits an extremal limit, we explored the possible

emergence of a Meissner effect for low mass black holes, as such an effect is known

to arise for low mass extremal Reissner-Nordstrom black holes [95]. We confirmed

that the Meissner effect appears for the Kerr black hole, however in contrast to the

Reissner-Nordstrom case, the transition between piercing and expelling phases is

discontinuous.
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It is worth mentioning that a large degree of sensitivity arose in the numerics

for the extremal Kerr black hole at low mass, which points to a possible physical

instability in the system for these regions of the parameter space. We conjecture

that this could be due to a super-radiant instability analogous to the instability in

Kerr-AdS [106, 107]. For the latter case, perturbations can be amplified due to the

confinement of the AdS spacetime, which our system in some sense replicates as a

result of the confining nature of the core of the string, which is the only massless

region in our spacetime along which perturbations can freely propagate.

Finally, we explored the gravitational backreaction of the Kerr vortex, which

revealed perhaps the most important implications of these systems for cosmology.

We found that the rotation mixes the azimuthal conical effect of the string into the

time direction. This is particularly interesting because it implies that the ergosphere

is shifted, as well as, possibly, the innermost stable circular orbits of objects close

to the black hole. The behaviour of test objects around this system is still to be

explored, however based on the above, such a study is indeed compelling.

To summarise, the Kerr vortex system has turned out to be quite surprising in its

degree of phenomenological intricacy. Coupled with the fact that it is precisely the

rotating system which is physically relevant, this certainly warrants further study

of these objects in the light of the observations made herein.



Chapter 4

Vortex Hair for AdS Black Holes

In Chapter 4 we studied the composite Kerr-vortex system, and saw that not only

can a stable, time-independent configuration of the two objects exist, but further-

more, the addition of cosmic string hair to the rotating black hole opens up a new

branch of phenomenology in these spacetimes.

Formally, we saw that a rotating black hole can only consistently accommodate

a cosmic string piercing through it if the gauge field picks up a time component.

This component produces an electric field close to the horizon. One can think about

this as a cosmological manifestation of Faraday’s law, namely that rotation in the

presence of an external magnetic field produces an electric field. Indeed, the timelike

direction is not orthogonal to the azimuthal spacelike direction in the Kerr spacetime,

therefore one cannot think about quantities associated with the azimuthal direction

independently from those associated with the time direction. Another consequence

of this emerged in the way that the cosmic string perturbs the Kerr spacetime. In

a static background, it is well known that a cosmic string produces a conical deficit

angle in the azimuthal direction. However, in the Kerr spacetime, we demonstrated

that the metric is conical with respect to a local co-rotating frame, which includes the

time direction. Finally, an exploration of low mass extremal black holes confirmed

that these black holes are able to expel the vortex flux from their cores, exhibiting

a Meissner effect. Unlike Reissner-Nordstrom black holes, the transition between

expulsion and piercing turns out to be first order, once again due to the presence of

the additional degree of freedom in the gauge field.

101
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We will now investigate the impact of a negative cosmological constant on the

black hole and vortex system. To be completely general, we will consider Kerr-

Newman AdS black holes, therefore we cover all previously studied cases in various

limits when the AdS length is taken to infinity.

While the inclusion of a negative cosmological constant may not be relevant

for cosmology, from a theoretical perspective the system is very interesting: In

holography, a vortex in the bulk has an interpretation as a defect in the dual CFT

[91,112], corresponding in the dual superfluid to heavy pointlike excitations around

which the phase of the condensate winds.

In the current work, we will treat the vortex as a probe, and obtain approximate

analytic as well as full numerical forms for the profiles of the vortex fields. We will

then study the Meissner effect in detail.

This Chapter is based on the work done in Ref. [116].

4.1 Vortices in AdS

We have thus far been discussing vortices in black hole backgrounds which are

asymptotically flat. Therefore, far away from the black hole, the system will closely

resemble the Nielsen–Olesen vortex in flat space. For the AdS black hole, the back-

ground is not asymptotically flat, but rather far away from the black hole, one will

feel a negative cosmological constant in an otherwise empty spacetime. Therefore,

before discussing black holes, our first task is to understand what the vortex would

look like in a pure AdS geometry.

The AdS background may be described by

ds2 = −
(

1 +
r2

`2

)
dt2 +

dr2(
1 + r2

`2

) + r2dθ2 + r2 sin2θdφ2

= − `2 +R2

`2(1− Z2)
dt2 +

`2 +R2

(1− Z2)2
dZ2 +

`2dR2

`2 +R2
+R2dφ2 .

(4.1.1)

By writing the AdS metric in this second, cylindrical, form it becomes clear that if

we align the vortex in the {R, φ} plane, the equations of motion will be independent

of Z, and hence as with the case in flat space, our vortex (2.3.10)-(2.3.11) can be

represented by a set of ordinary differential equations.
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Figure 4.1: AdS-NO vortex: The values of X and P for the AdS NO vortex are

depicted as functions of R.

Employing the Nielsen–Olesen ansatz for the fields in (2.4.14), these equations

take the form(
1 +

R2

`2

)
X ′′0 +

(
4R

`2
+

1

R

)
X ′0 −

P 2
0X0

R2
− 1

2
X0(X2

0 − 1) = 0 ,(
1 +

R2

`2

)
P ′′0 +

(
2R2

`2
− 1

)
P ′0
R

=
X2

0P0

β
.

(4.1.2)

For R → 0, we see that the effects of the negative cosmological constant on the

vortex drop away, and the equations in the AdS background resemble the Nielsen-

Olesen vortex equations in (2.4.15). Therefore, the innermost core region of the

string does not notice the effects of `. For R & ` however, the functions X0 and

P0 are modified by the cosmological constant. In particular, one can see that their

asymptotic profiles become power law rather than exponential.

Figure 4.1 displays the profiles of the Higgs and gauge fields for the AdS vortex,

across two orders of magnitude for the AdS length `. At large `, the vortex closely

resembles the flat-space Nielsen–Olesen vortex, whereas as ` drops down towards

the scale of the vortex, we see that the profiles become much more narrow, with

the power law fall-off to vacuum becoming more pronounced. Note that while it is
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possible to solve the equations at a scale of ` . 1, in this region a physical vortex

might not in fact arise. This is due to the fact that the false vacuum of the Higgs

field becomes stable for Compton wavelengths above the AdS scale [113].

4.2 Vortices in Kerr-AdS

We will now study two limits of the vortex and black hole system analytically. The

first is the thin string limit, which should allow us to obtain an analytic approxi-

mation to the full vortex solution that can only be found numerically. The second

is the extremal limit, which should allow us to investigate the Meissner effect, and

construct a proof for its existence.

We begin by writing down the charged rotating black hole solution [114]

ds2 = −∆

Σ

[
dt− a sin2θ

Ξ
dφ

]2

+
Σ

∆
dr2+

Σ

S
dθ2+

S sin2θ

Σ

[
adt− r2 + a2

Ξ
dφ

]2

, (4.2.3)

where

Σ = r2 + a2 cos2θ , Ξ = 1− a2

`2
, S = 1− a2

`2
cos2θ ,

∆ = (r2 + a2)
(

1 +
r2

`2

)
− 2mr + q2 , (4.2.4)

and the U(1) potential is

A =
qr

Σ

(
dt− a sin2θ

Ξ
dφ

)
. (4.2.5)

The mass M , the charge Q, and the angular momentum J are related to the pa-

rameters m, q, and a as follows:

GM =
m

Ξ2
, GQ =

q

Ξ
, GJ =

am

Ξ2
. (4.2.6)

The ergosphere is located at ∆ = a2S sin2 θ, and the horizon at ∆ = 0. Note that

there is a restriction on the values of a, namely that they should always lie below

the scale of `. This restriction impacts the φ direction, and, on the equator, the

θ direction. Furthermore, it affects all parameters associated with the spacetime

as defined above, as well as the U(1) gauge potential. Solving ∆ = 0, which is a

quartic function of r, the outer horizon r+ corresponds to the largest real root. The
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Figure 4.2: Behaviour of the horizons: The behaviour of the non-extremal hori-

zon (Left) for m = 5, a = 1 and q = 0, and of the extremal horizon (Right) for

a = 1 and q = 5, as functions of `.

functional form of r+(m, a, q, `) is complicated, however in the extremal limit where

r+ = r− it reduces to a more tractable form, r+(a, q, `), namely

r+ =
`√
6

((1 +
a2

`2

)2

+ 12

(
a2 + q2

`2

))1/2

−
(

1 +
a2

`2

)1/2

. (4.2.7)

The extremal horizon shrinks significantly as ` falls to low values, and in the presence

of a charge q asymptotes to
√
q/`. This is also true for the outer horizon radius

(which asymptotes to m1/3`2/3 in the absence of a charge). Finally, for large ` the

outer and extremal horizons asymptote to their Kerr-Newman counterparts. The

generic behaviour of the horizons is illustrated in figure 4.2.

Due to the presence of rotation, there are three degrees of freedom that are

relevant for the description of the vortex in this background, namely X, Pφ and Pt.
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The equations for these fields become

0 = ∆X,rr + ∆′X,r + SX,θθ + cot θ
(
S +

2a2

`2
sin2 θ

)
X,θ

+ΣP 2
µX −

Σ

2
X(X2 − 1) , (4.2.8)

X2

β
Pt =

4
Σ
Pt,rr +

S

Σ
Pt,θθ +

2aΞ cot θ

Σ3

(
ρ2S −∆ +

a2

`2
Σ sin2θ

)
Pφ,θ

−aΞ

Σ3

(
2r(Sa2 sin2θ −∆) + Σ∆′

)
Pφ,r

+
cot θ

Σ3

(
S
(
ρ4 + a4 sin4θ

)
− 2a2 sin2θ

(
∆− ρ2Σ

`2

))
Pt,θ

−sin2θ

Σ3

(
a2
(
2rρ2S + Σ∆′

)
− 2rρ2∆

sin2θ

)
Pt,r , (4.2.9)

X2

β
Pφ =

∆

Σ
Pφ,rr +

S

Σ
Pφ,θθ +

ρ2

Σ3

(
2rSa2 sin2θ + Σ∆′ − 2r∆

)
Pφ,r

+
cot θ

Σ3

(
2a2 sin2θ

(
∆− a2

`2
Σ sin2θ

)
− S

(
a2 sin2θ(ρ2 − Σ) + ρ4

))
Pφ,θ

+
2 cot θa3 sin4θ

ΞΣ3

(
∆− ρ2

(
1 +

r2

`2

))
Pt,θ

+
a sin2θ

ΞΣ3

(
2r
(
ρ4S −∆(Σ + ρ2)

)
+ ρ2Σ∆′

)
Pt,r , (4.2.10)

where ρ2 = r2 + a2 has been introduced for visual clarity, ∆′ = d∆/dr, and

P 2
µ =

(ρ2Pt + aΞPφ)2

Σ∆
− (ΞPφ + a sin2θPt)

2

ΣS sin2θ
. (4.2.11)

4.2.1 Approximate solution

As with the asymptotically flat black hole spacetimes, at small enough scales the

effects of curvature are expected to be irrelevant for the vortex. In this thin string

limit, one can find an appropriate combination of r and θ that acts as a radial

distance from the core of the vortex in cylindrical coordinates, such that the vortex

equations may be written as ordinary differential equations at leading order.

For the AdS black hole background, consider the function

R ≡ ρ√
Ξ

sin θ , (4.2.12)

which tends to the Kerr expression ρ sin θ as ` → ∞. Then, assuming that the

vortex is much thinner than the black hole horizon radius implies that ρ � 1,
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and restricting attention to the core region of the vortex [R < O(10)] implies that

sin θ � 1. The metric functions may then be expanded as

Σ = ρ2

(
1− a2R2Ξ

ρ4

)
' ρ2 , S = Ξ

(
1 +

a2R2

`2ρ2

)
' Ξ , (4.2.13)

and derivatives as

∂

∂r
=

Rr

ρ2

d

dR
,

∂

∂θ
=

ρ√
Ξ

(
1− ΞR2

ρ2

)1/2
d

dR
' ρ√

Ξ

d

dR
,

∆
∂2

∂r2
+ S

∂2

∂θ2
=

[
S
(ρ2

Ξ
−R2

)
+

∆R2r2

ρ4

]
d2

dR2
+
(∆a2

ρ4
− S

)
R
d

dR
(4.2.14)

' ρ2
(

1 +
∆R2

ρ4

) d2

dR2
.

Following the same procedure as for the Kerr case in Section 3.1.1, one can then

extract approximate analytic forms for the fields by expanding the vortex equations

out to order O(ρ−2). This procedure suggests the following forms for the approxi-

mate analytic solution:

X ' X0(R) , Pφ ' P0(R) , Pt '
a

ρ2

(∆

ρ2
− Ξ

)
P0(R) , (4.2.15)

which to leading order give the approximate equations:

0 =

(
1 +

∆R2

ρ4

)
X ′′0 +

(
1 +

4R2

`2

)
X ′0
R
− P 2

0X0

R2
− X0

2
(X2

0 − 1) ,

X2
0

β
P0 =

(
1 +

∆R2

ρ4

)
P ′′0 −

(
1 +

(2∆− r∆′)R2

ρ4

)
P ′0
R
.

(4.2.16)

There are several things to notice about the forms of the corrections in these equa-

tions. For the Kerr case, the metric function ∆ = O(ρ2) to leading order, therefore

we did not retain the terms that were proportional to ∆, and we recovered the

Nielsen–Olesen vortex equations (2.4.15) at leading order. However, in the presence

of a negative cosmological constant, we instead find that away from the horizon,

∆ ∼ ρ4/`2 to leading order. Retaining the terms proportional to ∆, we then recover

the AdS Nielsen-Olesen equations (4.1.2) at leading order. On the other hand, bear-

ing in mind that the horizon radius shrinks rapidly for low values of `, we see that

retaining terms proportional to R2/`2, which only makes sense if ` . R, could take

us outside of the realm of validity of the thin string limit, which relies on the string

being much smaller than the black hole horizon. To remain safely within the ap-

proximation, we require ` > O(10), which allows us to drop these correction terms.
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Finally, we also see that on (or near) the horizon, the O(R2/`2) corrections to the

Nielsen-Olesen equations fail to have the precise AdS form. As a consequence, while

the approximate analytic solution is reliable to good precision away from the horizon

of the black hole, near the horizon we would expect corrections to this solution at

order O(`−2).

Note that asymptotically, Pt in (4.2.15) becomes proportional to Pφ and the

gauge potential becomes

P = Pφdφ+ Ptdt ∼ P0(R)
(
dφ+

a

`2
dt
)
, (4.2.17)

implying the presence of an electric field at large r along the string. This is in fact

an artifact of the Boyer-Lindquist style coordinates we have used in (4.2.3), which

asymptote to AdS4 in a rotating frame with angular momentum Ω∞ = a/`2 [115].

Employing new variables,

ϕ = φ+
a

l2
t , T = t , (4.2.18)

the asymptotic rotation is removed, and P becomes

P = P0(R)
(
dϕ− a(2mr − q2)

ρ4
dT
)
, (4.2.19)

which exhibits the appropriate fall-off at large r.

Figure 4.2.1 shows a comparison of this pseudo-analytic approximation with a

numerically obtained solution for an extremal low mass lowish ` black hole. We

take the values m = 3, ` = 20, q = 0, and with a ' 2.939 at its extremal value

in order to draw a parallel with the plot in [98]. What is clearly shown is that

the approximation is extremely good almost everywhere, the only slight discrepancy

appearing near the event horizon – as expected given the structure of the corrections

to the approximation there.

4.2.2 Extremal black holes

We have seen that in the presence of an axisymmetric cosmic string, small black holes

with extremal horizons are able to exhibit a Meissner effect and expel the magnetic

flux of the string from their interiors. For the Reissner-Nordstrom case, we saw

immediately that the vortex equations on the horizon decouple from the bulk, and
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Figure 4.3: Approximate vs. numerical solution: In each case the numerical

solution is shown in solid colour, and the approximation in dashed black. Contours

of 0.1− 0.9 (in steps of 0.2) of the range of each field are shown. From left to right:

The Higgs field in blue, the Pφ field in red, and PT (the component with respect to

the nonrotating frame at infinity) in brown. For PT , we show contours of 0.1− 0.9

of the maximal negative value, which is attained on the poles of the horizon. The

outer grey curve represents the boundary of the ergosphere.
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admit a flux expelled solution, where the fields remain in the false vacuum uniformly

across the horizon. In the case of Kerr, the two components of the gauge field can be

written into linear combinations P and Q, where finiteness on the horizon imposes

Q(r+) = 0. The horizon equations do not decouple in general, however in the special

case of flux expulsion, namely X(r+) = 0, P (r+) = 1, the decoupling takes place.

These flux expelled solutions were shown to be extendable into the bulk for both

Reissner-Nordstrom [95] and Kerr [98] black holes.

In the case of Kerr, one finds that the field Q is discontinuous between piercing

and expulsion. This leads to a first order phase transition, whereas for Reissner-

Nordstrom, the phase transition is second order, where the order parameter for the

transition is the magnitude of the Higgs field X measured at the equator.

We will now investigate the possible existence of a Meissner effect in the case of

AdS-Kerr-Newman black holes. Given that these black holes have extremal limits,

and are extensions of the Kerr-Newman family to one more parameter `, it is to

be expected that they too will exhibit a flux-expelling phase. We begin by defining

new variables P and Q, where finiteness implies Q(r+) = 0:

SP = ΞPφ + a sin2θPt , Q = ρ2Pt + aΞPφ . (4.2.20)

The field equations (4.2.8)-(4.2.9) become

0 =
∆

Σ
X,rr +

∆′

Σ
X,r +

1

Σ sin θ

(
S sin θX,θ

)
,θ

+

(
Q2

Σ ∆
− P 2

ΣS sin2 θ

)
X − X

2
(X2 − 1), (4.2.21)

X2P

β
=

∆

Σ
P,rr +

S

Σ
P,θθ +

Σ∆′ − 2r∆

Σ2
P,r +

cot θ

Σ

(
4
a2

l2
sin2θ − S

Σ

(
Σ− 2a2 sin2θ

))
P,θ

+
2a sin2 θ

Σ2

(
(rQ,r − cot θ Q,θ −Q) + aP

(
1− r2

l2

)
+ rQ

)
, (4.2.22)

X2Q

β
=

∆

Σ
Q,rr +

S

Σ
Q,θθ +

cot θ

Σ2
(2a2 sin2 θ(1 +

r2

`2
) + S Σ)Q,θ

+
2∆

Σ2

(
a(rSP,r − S cot θP,θ − (2− S)P )− rQ,r +Q

)
. (4.2.23)
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Expanding these equations using the expansions

X = ξ0(θ) + (r − r+)ξ1(θ) + . . . ,

P = π0(θ) + (r − r+)π1(θ) + . . . , (4.2.24)

Q = ψ0(θ) + (r − r+)ψ1(θ) + . . . ,

as for the Kerr case, in the extremal limit and on the horizon they reduce to

(S sin θξ′0)
′

= ξ0 sin θ

[
Sπ2

0

sin2 θ
− ψ2

1 −
Σ+

2
(1− ξ2

0)

]
, (4.2.25)(

S2π′0
Σ+ sin θ

)′
= π0S sin θ

[
ξ2

0

β sin2 θ
− 2a2

Σ2
+

(
1−

r2
+

`2

)]
−2ar+Sψ1 sin θ

Σ2
+

, (4.2.26)(
S sin θψ′1

Σ+

)′
=

ξ2
0ψ1

β
sin θ , (4.2.27)

Note that these equations feature two extra parameters compared to the Kerr case in

(3.2.30)-(3.2.32), namely ` and a. This is due to the fact that for extremal Kerr we

have r+ = a, which also leads to a particularly simple factorization of Σ+, that is no

longer possible in the present case. However, we see that setting a = 0, ψ1 ≡ 0, and

S ≡ 1, these equations reduce to the Reissner-Nordstrom horizon equations studied

in [95], or setting a ≡ r+ and S ≡ 1, they reduce to the Kerr case. Therefore we

expect essentially the same analytic arguments for the existence of expulsion to hold

here.

Let us look first at the behaviour of the function ψ1, as this will give us the order

of the phase transition. For the case of Kerr, we saw that ψ1 = 0 if ξ0 6= 0. We

will now show succintly that the same applies in the presence of `. For a piercing

solution, ξ0 is nontrivial on the horizon, hence

Sβ sin θψ′1(θ) = Σ+

ˆ θ

0

ξ2
0ψ1 sin θdθ , (4.2.28)

upon integrating (4.2.27). However, this cannot be true unless ψ1 = 0. Indeed,

evaluating (4.2.28) at the first point at which ψ′1 = 0 tells us that
´ θ

0
ξ2

0ψ1 sin θ = 0.

But just as we argued for the Kerr case, ψ1 is either positive and increasing on

this range, or negative and decreasing. Either way, the integrand is positive or

negative definite, thus cannot be zero. Therefore ψ1 ≡ 0 for a piercing solution
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ξ0 6= 0. On the other hand, an expelling solution has ξ0 ≡ 0, with Pφ(r+) = 1 and

Pt(r+) = −aΞ/ρ2
+, hence

P (r+) ≡ π0 =
ΞΣ+

ρ2
+S

, Q′(r+) ≡ ψ1 = −2ar+Ξ

ρ2
+

, (4.2.29)

where we use (4.2.26) to determine ψ1 in the above. Thus we see that ψ1 is dis-

continuous between expulsion and penetration, giving rise to a first order phase

transition.

Having demonstrated that an expelling solution exists on the horizon, we must

now extend this to the bulk. Namely, if the flux is expelled such that X(r+) ≡ 0

and P (r+) ≡ 1, then near r+ where X > 0, P < 1 and X2 � 1, both ∂r(∆∂rX) > 0

and (Q2/∆Σ−X2/2) > 0. Referring to (4.2.21), this implies

(S sin θX,θ),θ +
(r2

+ + a2 cos2 θ)X

2
sin θ <

SP 2

sin θ
X <

SX

sin θ
, (4.2.30)

which we take as a condition for a flux expelling solution to exist. Integrating on

[θ0, π/2] then yields

S sin θ0X,θ0 >

ˆ π/2

θ0

(
(r2

+ + a2 cos2 θ) sin θ

2
− S

sin θ

)
Xdθ . (4.2.31)

Defining α so that Σ+ sin2 α/S = 2, by taking θ0 > α we can bound this integral

from below using X(θ) > X(θ0). We can also bound the derivative of X by X,θ0 <

X(θ0)−X(α)
θ0−α < X(θ0)

θ0−α , leading to

S sin θ0
X(θ0)

θ0 − α
> S sin θ0X,θ0 > X(θ0)

ˆ π/2

θ0

(
(r2

+ + a2 cos2 θ) sin θ

2
− S

sin θ

)
dθ ,

(4.2.32)

which implies

(θ0 − α)

S(θ0) sin θ0

(
r2

+ cos θ0

2
+
a2 cos3 θ0

6
+ Ξ log tan

(θ0

2

)
− a2

l2
cos θ0

)
< 1 (4.2.33)

on the interval [α, π/2]. If this inequality is violated, then we cannot have flux

expulsion, and the vortex must pierce the black hole. Note, if a = 0, then (4.2.33)

is independent of `, and reduces to the previously explored Reissner-Nordstrom

relation [95], giving the same upper bound on the horizon radius for flux expulsion

of
√

8.5. For a 6= 0, we must explore the {a, `} phase plane (having ensured that a

solution α exists) to determine the upper bound on the horizon radius. Clearly if `
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Figure 4.4: Meissner effect: An illustration of the analytic bounds on the critical

horizon radius for the Meissner effect for q = 0. In the shaded regions, the vortex

should either pierce the horizon, or be expelled as indicated. The critical radius

therefore lies between these two bounds. For sufficiently low `, flux is always ex-

pelled. Numerically obtained transition radii are indicated. The solid r+ = `/
√

3

line on the left indicates the a = ` singular limit.

drops too low, we require a large charge to allow for a solution to α. Hence for a

given q, we expect a minimal value of ` for this upper bound to exist. This is shown

most clearly for q = 0, in figure 4.4.

To argue that a Meissner effect should exist for sufficiently low horizon scales,

we assume a piercing solution to (4.2.25)-(4.2.27) exists, in which X and P will have

nontrivial profiles symmetric around θ = π/2, with X maximised and P minimised

(at least for large ` or small a < q) at π/2. If a = 0, the argument of [95] can be

used to deduce that for r+ . 0.7 the flux must be expelled, and this argument can

be extended to include small a.

Following [95], assume a piercing solution exists, then (4.2.25) and (4.2.26) have

smooth solutions for ξ0 and π0 in which ξ0 increases from zero at the poles to a
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maximum at the equator, and π0 decreases from unity at the poles to a minimum

at the equator. Evaluating (4.2.25) and (4.2.26) at the equator gives the relations:

ξ′′0

(π
2

)
= ξ0

[
π2

0 +
r2+
2

(ξ2
0 − 1)

]
≤ 0 ⇒ π2

0 ≤
r2

+

2

(
1− ξ2

0

)
≤
r2

+

2
, (4.2.34)

π′′0

(π
2

)
= π0

[
ξ20r

2
+

β
− 2a2

r2+

(
1− r2+

`2

)]
≥ 0 ⇒ r4

+ ≥ ξ2
0r

4
+ ≥ 2a2β

(
1−

r2
+

`2

)
(4.2.35)

Since π0 ≤ 1, the first relation gives no new information unless r+ <
√

2, so we

will assume this from now on. The second relation clearly gives no information if

a = 0. For a 6= 0, we know that the size of the horizon cannot exceed the size of the

Kerr-Newman horizon,

r2
+ ≤ a2 + q2 , (4.2.36)

therefore we see that

4a4 > (a2 + q2)2 ≥ 2a2β ⇒ a >
√
β/2 , (4.2.37)

thus for
√
β = O(1), the bound (4.2.35) is violated at all ` for q < a . 0.6. On the

other hand, finiteness of the metric requires that at all times we must have a < `,

therefore for small ` we have from (4.2.7)

r2
+ ' q` , (4.2.38)

so the bound is violated for sufficiently small ` and q.

We will now generalise the argument for the Reissner-Nordstrom case in Section

2.5.2 to find a lower bound on r+, given that a is too small to give any useful

information in (4.2.35). We begin by assuming a piercing solution. Using (4.2.34),

at θ = π/2 (4.2.35) becomes

π′′0

(π
2

)
≤ r+√

2

[
ξ2

0r
2
+

β
− 2a2

r2
+

(
1−

r2
+

`2

)]√
1− ξ2

0 ≤
√

2r3
+

3
√

3β

(
1− 2a2β

r4
+

(
1−

r2
+

`2

))3/2

,

(4.2.39)

where we maximise over ξ0 in the second inequality. We now have an upper bound

on π′′0 at the equator. To obtain a lower bound, we use the fact that at some

θ ∈ (θ0, π/2), we must have π′′0(θ0) = 0, which is where π′0 will be maximally

negative. Using that π′′0(π/2) ≥ −π′0(θ0), /(π/2− θ0) (4.2.26), yields

π′0 (θ0) = −π0 tan θ

β

Σ2
+ξ

2
0 − 2a2β sin2 θ

(
1− r2

+/`
2
)

S(Σ+ − 2a2 sin2 θ)− 4Σ+(a2/`2) sin2 θ

∣∣∣∣∣
θ=θ0

. (4.2.40)
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Therefore we can write

|π′0 (θ0)| ≤ π0(θ0) tan θ0

β

Σ2
+(θ0)− 2a2β sin2 θ0

(
1− r2

+/`
2
)

S(θ0)(Σ+(θ0)− 2a2 sin2 θ0)− 4Σ+(θ0)(a2/`2) sin2 θ0

≤
(
r4

+ − 2a2β
(
1− r2

+/`
2
))

tan θ0(
r2

+(1− 4a2/`2)− 2a2
)
β

.

(4.2.41)

We see that this bound is only meaningful in the case that r2
+(1− 4a2/`2) > 2a2, so

we will assume this holds. Thus we find

π

2
− θ0 < cot θ0 ≤

r4
+ − 2a2β

(
1− r2

+/`
2
)(

r2
+(1− 4a2/`2)− 2a2

)
β |π0(θ0)′|

. (4.2.42)

On the other hand, the value of π0 at its minimum must be larger than it would

have been if π0 had decreased linearly from the poles with slope |π′0(θ0)|, which is

the largest possible slope. This allows us to write

1− π

2
|π′0(θ0)| < π0(π/2) <

r+√
2

⇒ |π′0(θ0)| > 2

π

(
1− r+√

2

)
, (4.2.43)

leading to

π′′0

(π
2

)
≥ |π

′
0(θ0)|

π/2− θ0

≥ β|π′0(θ0)|2
r2

+(1− 4a2/`2)− 2a2

r4
+ − 2a2β (1− r2

+/`
2)
. (4.2.44)

Combining the upper and lower bounds, we see that for a piercing solution to exist

we must have

6
√

6β2

π2

(
1− r+√

2

)2
(

1− 2a2β

r4
+

(
1−

r2
+

`2

))−5/2
r2

+(1− 4a2/`2)− 2a2

r7
+

< 1 , (4.2.45)

with 2 > r2
+ > 2a2/(1−4a2/`2) and r4

+ +2a2r2
+/`

2 > 2a2β. The running of the lower

bound (4.2.45) with a is depicted in figure 4.2.2.

For low ` and q, an alternate argument must be used, as we can no longer show

that π0 is minimised at π/2. This argument is detailed in Ref. [116].

All of the various features of the phase transition are depicted in figure 4.4, which

shows the numerically obtained critical horizon radius as a function of ` for q = 0

together with the analytic lower and upper bounds on r+,crit.

4.2.3 Numerical solution

The full solutions to the vortex equations (4.2.8)-(4.2.10) must be solved numerically.

The numerical method employed is the gradient flow technique, just as for the

vacuum Kerr case.
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Figure 4.5: Expulsion bound: An illustration of the running of the lower bound

with a. The bound is plotted for ` = 0.5, 1, 2, 10,∞ as labeled. For ` > 5, the curve

changes very little, as can be seen by the infinite ` curve depicted by a thin red line.

The value at a = 0 is the RN value obtained in [95], and is shown as the horizontal

solid black line.
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Figure 4.6: AdS-Kerr vortex: A depiction of the numerical solution for the AdS-

Kerr vortex for an extremal uncharged rotating black hole. The upper plots have

` = 100, the lower plots ` = 10. In each case, the contours of the Higgs field are

shown on the left in blue (X = 0.1 − 0.9 in steps of 0.2), and on the right, the

angular component of the gauge field, Pϕ in red (with the same contour steps as for

X), and PT in dashed black with contours of 0.1− 0.9 of PT,min = −0.0519,−0.116

for the ` = 100 and ` = 10 cases respectively.
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Figure 4.7: AdS-Kerr-Newman vortex: Numerical solutions for the AdS-Kerr-

Newman vortex with ` = 50 and q = 0, (upper) and q = 5 (lower) with the same

contour conventions as for figure 4.2.3, with PT,min = −0.0569 for q = 0, and

PT,min = −0.0563 for q = 5.
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Figures 4.2.3 and 4.2.3 show a selection of the solutions obtained from the inte-

gration method above which highlight the effects of the parameters ` and q on the

rotating black hole vortex. In all plots, we have chosen to illustrate the solution by

plotting contour lines for each field of 0.1− 0.9 of the full range of the field in steps

of 0.2. Thus, for the X and Pφ fields, we have shown the 0.1, 0.3, 0.5, 0.7, and 0.9

contours, but for the PT field (note – this is the gauge field component with respect

to a non-rotating frame at infinity) the maximally negative value of PT is attained

on the horizon at the poles. The numerical values of these contours therefore vary

from plot to plot. The actual value of PT,min is given in the captions.

Figure 4.2.3 shows the vortex solution for the case of ` = 100 and ` = 10

respectively, at the extremal limit with the charge parameter q set to zero. The

solution away from the extremal limit is similar (see [98]), the main difference being

that the actual numerical values of the PT contours are lower. For ` = 100, the

plots are almost indistinguishable from the vacuum Kerr vortex solution analysed

in [98], however, for ` = 10, the effect of the cosmological constant can be easily seen.

Comparing the figures, one notes that dropping the value of ` strongly impacts the

size of both the black hole horizon as well as the vortex, causing the vortex width to

tighten, the PT fields to shrink closer to the horizon, which itself shrinks significantly.

Figure 4.2.3 then demonstrates the effect of adding a non-zero charge to the

AdS-Kerr vortex. As can be seen, this does not significantly impact the vortex, and

appears to merely shift the horizon and ergosphere inwards, while slightly causing

the PT contour lines to creep closer to the horizon, as is expected since the rotation

parameter a = aex will be lower with the charged black hole at the same mass.

4.3 Discussion

In this chapter we have explored the behaviour of the probe Abelian Higgs vortex

in the background of an asymptotically AdS charged and rotating black hole.

We first obtained solutions for the vortex profiles in a pure AdS background.

Compared to the flat-space case for which `→∞, we found that the effects of the

negative cosmological constant are to tighten the vortex fields inwards near the core,
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while asymptotically they fall towards the vacuum more gradually. Profiles for the

AdS vortex fields over a range of ` are given in figure 4.1.

We then examined the vortex equations in the presence of the black hole. In the

thin string limit, we were able to extract a very good approximate analytic solution

to these equations, which we implemented as an initial condition for the numerical

solution. A comparison between the approximate solution and the numerical solu-

tion is given in figure 4.2.1, for a low mass black hole with GM = 3. Given that the

approximation is valid up to O(GM−2), at this mass range one would expect the

deviations to be apparent. Nevertheless, the solutions are in very good agreement,

with the discrepancies only starting to show very close to the horizon.

Finally, we investigated the extremal behaviour of the vortex and black hole

system. As with the Kerr and Reissner-Nordstrom cases, the asymptotically AdS

black hole has an extremal limit, therefore as can be expected, the Meissner effect

arises in this context. To expel the flux, the black hole must be small enough such

that it effectively sees only a massless gauge boson. For the AdS black hole, the

shrinking of the horizon does not only occur for low mass black holes, but also for

low values of the AdS length `. However, in the latter case, the width of the vortex

is also contracted, essentially making the mass of the gauge boson appear larger. To

determine the implications of ` we explored the phase transition analytically and

then confirmed the results numerically. The results are detailed in figure 4.8, which

displays the numerical results for the phase transition at several values of ` and β.

Firstly, we demonstrated that in the presence of rotation and hence a second gauge

field component, the transition is first order, as with the pure Kerr case. Next, we

found that the effect of ` is to lower the critical value of r+ at which the transition

occurs, as well as to lower the bounds for the transition.

Figure 4.8 shows the order parameter, namely the value of the Higgs field at

the equator, plotted against the horizon radius r+. We see in the right figure that

the order parameter increases as ` decreases. The left figure displays the effects of

varying the Bogomolnyi parameter β for ` = 10. As with the Kerr case, increasing

β has the effect of increasing the critical value of r+ at which the transition occurs.
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pulsion phase transition on the event horizon of the black hole. The maximal value

of the Higgs field Xm = X(π/2) is shown as a function of r−1
+ for varying β (left)
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Chapter 5

Dark D-brane Cosmology

The cosmological dark sector, as we have seen, does not appear to interact directly

with standard model particles, but instead makes its presence known only gravita-

tionally. In addition, we have seen that fundamental theories such as string theory

posit the existence of extra dimensions which can contain all kinds of fundamental

matter fields, which may coexist with our world of standard model particles in four

dimensions, but yet be spatially separated from visible matter in higher dimensions.

In the light of these theories, in this Chapter we will examine the hypothesis

that the dark fluids in the universe may be due to the presence of another four-

dimensional “world”, which is separated from our own by additional dimensions of

space.

In addition to the dark fluids themselves, there is the question of the possible

interactions between them. It is often simply assumed that the components of the

dark sector are independent and do not interact directly with one another, however

there is no fundamental principle nor convincing observational evidence which for-

bids or suppresses such an interaction. Indeed, whereas interactions between dark

energy and visible matter particles are heavily constrained by observations (e.g. by

solar system tests as well as gravitational experiments on Earth), this is not the case

for dark matter particles. In other words, it is possible that the dark components in-

teract with each other, while not being coupled to standard model particles. Several

phenomenological interacting dark sector models have been proposed in the litera-

ture (see e.g. [20] for a recent review with several references therein), however, these

122
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models typically lack a compelling fundamental origin for the form of the proposed

couplings.

In what follows we will propose a unified picture of the dark phenomena in the

universe in which dark matter and dark energy are naturally interacting. Specifically,

we will suggest that the cosmological dark sector, namely dark energy, dark matter

and any possible dark radiation, may be naturally unified as distinct phenomena

arising from a single object, which we call the Dark D-brane, moving in a higher

dimensional space-time.

The Dark D-brane world scenario we propose can arise from “hidden sector

branes”, which are ubiquitous in string theoretic D-brane constructions. Hidden

sector D-branes are those branes which have no intersection with the stack of D-

branes responsible for the visible sector, and therefore they interact with the visible

sector only gravitationally or via very massive states that do not play a role in the

low energy theory. Thus the matter fields on these branes are dark by construction.

For a single D-brane, the matter fields are U(1) gauge fields which may be massive

or massless. Hence they can simultaneously provide candidates for a dark matter

species and a dark radiation species in the universe. Then, if these hidden branes

are currently moving in the warped extra dimensions, their motion can cause other

degrees of freedom to appear in our world, which could act as dark energy and thus

complete the dark spectrum in four dimensions.

As a geometrical framework for describing the dark sector, it is compelling that

the dark fluids in this scenario turn out to be non-minimally coupled in a very

particular way: the coupling is precisely a realisation of the disformal transformation

(1.3.88) which we discussed in Section 1.3 in the context of scalar-tensor theories of

gravity, repeated here:

ḡµν = C(φ,X)gµν +D(φ,X)∂µφ ∂νφ . (5.0.1)

Therefore, this picture creates a direct link between fundamental theory and

phenomenological theories of modified gravity, and provides a robust motivation for

the disformal coupling. As we will see, in the present context the general relation

in Eq. (5.0.1) has a concrete interpretation as the induced metric on a probe D-
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brane moving in a warped higher dimensional spacetime1, such that φ is the scalar

field associated with the position of the brane, and C and D are both functions of

the warp factor h. In addition, the matter fields which are disformally coupled are

precisely those fields which are localised on the moving D-brane. In our scenario

we will associate φ with dark energy, and the disformally coupled matter with dark

matter.

In the context of string phenomenology, Eq. (5.0.1) has been widely exploited in

cosmological applications. Indeed the so-called Dirac-Born-Infeld (DBI) inflationary

scenarios [37,38] are based on this relation2, where the scalar field φ plays the role of

the inflaton. As we described briefly in Section 1.2.2, DBI inflation can arise when

a D-brane is moving relativistically in a strongly warped region of the compact

space. The vast majority of D-brane inflation models deal exclusively with scalar

fields, while any other open string fields localised on the brane are usually not

considered: apart from the inflaton, the branes are “empty”, despite the fact that

these additional fields are naturally present, and can indeed give rise to interesting

cosmology3. In the current work we will instead consider DBI quintessence [130,131],

where matter fields on the brane are taken into account. To study the homogenous

cosmology, we will use the method of dynamical system analysis and numerical

integration4.

A primary reason for considering an interacting dark sector scenario is that it

allows for a possible alleviation of the cosmic coincidence problem, due to the energy

1Our proposal does not need to be restricted to string theory, but could be in principle realised

in a ‘pure’ brane world scenario [118–121].
2More specifically, single field models in which the brane moves along a single compact direction

are based on Eq. (5.0.1). While in the standard scenarios the D-brane moves only radially in a

warped region, the generalisation to allow motion in all six of the compact directions has been

studied, and there it was found that motion in all directions other than the radial is rapidly

damped by the cosmological expansion [122–124]
3In the early universe context, it has been shown that such matter fields may play the role of

Wilson-line inflatons in both the warped and unwarped cases [126,127], and that they may act as

vector curvatons on both stationary as well as moving branes [128,129].
4Previously these methods have been applied for DBI scalar field cosmologies in Refs. [130,131,

159–162]. For some other works on DBI dark energy see Refs. [150–158].
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exchange between the dark components. This exchange can lead to so-called “scaling

solutions” [17–19] discussed in Section 1.1.3, where the effective equations of state

for dark matter and dark energy take on the same value, allowing the two fluids to

dilute at the same rate across several efolds of the cosmological evolution. We will

show in what follows that these scaling solutions do indeed arise in our disformal

Dark D-brane scenario.

Thus our Dark D-brane world scenario, a realisation of coupled quintessence

cosmology, is a naturally unified picture of the cosmological dark sector in which

dark energy arises from the motion of a hidden sector brane in the warped internal

space and is disformally coupled to the dark matter fields on its world-volume5.

The scalar and matter fields appearing in our scenario then have clear geometric

interpretation and their properties and interactions can be explicitly derived from

the higher dimensional fundamental theory6.

This Chapter is based on the work done in Ref. [117].

5.1 The general set-up

In this Section we will first discuss how the disformal coupling arises from D-branes

in the context of Type IIB string theory warped compactifications [166–168]. This

comprises Section 5.1.1. Then in Section 5.1.2 we will present the set-up for disfor-

mally interacting massive particles (DIMPs) on the moving brane and discuss some

general physical implications of the disformal coupling.

5Extra dimensional dark matter has also been proposed in the brane world context where the

fluctuations of our brane give rise to “branon” particles [141–143]. In addition, Kaluza-Klein

modes in universal extra dimensions have been widely studied as viable candidates for dark matter

[144–146], see [147,148] for reviews.
6A string inspired coupled quintessence model was presented in [149] in terms of closed string

moduli.
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5.1.1 Disformal coupling from moving D-branes

Consider a warped flux compactification of Type IIB string theory , where the higher

dimensional generalisations of gauge fields, the RR-forms, Fn+1 = dCn for n = 0, 2, 4

and their duals n = 6, 8, as well as the NSNS-form H3 = dB2 are turned on in the

internal six dimensional space. These fluxes back-react on the geometry, warping

it. In addition, it has been shown that they generate a potential for most of the

geometric moduli present in the compactification, which allows these moduli to be

stabilised [166].

Assigning the coordinates xµ to the noncompact dimensions, where µ = (0, ..., 3),

and the coordinates yA to the compact dimensions, with A = (4, ..., 9), the ten

dimensional metric takes the form

GMNdx
MdxN = h−1/2(yA)gµνdx

µdxν + h1/2(yA)gABdy
AdyB, (5.1.2)

where gAB is the metric of the internal six dimensional Calabi-Yau manifold, and in

order to preserve Lorentz symmetry in the noncompact four dimensions, the warp

factor h is a function of only the internal coordinates, h = h(yA).

We now want to consider probe Dp-branes embedded in this background. Defin-

ing the coordinates ξa on the world-volumes of the D-branes, where a = (0, ..., p), we

can embed them into the spacetime by the mapping xM(ξa). This is simply a higher

dimensional generalisation of the familiar point-particle worldline in four dimen-

sions, xµ(τ), where τ is usually taken to be the proper time. As spatially extended

objects, D-branes will also break Lorentz symmetry, and thus should be space-filling

in the noncompact dimensions. We are then free to align the four-dimensional world-

volume coordinates with the four-dimensional spacetime coordinates, by choosing

the static gauge ξµ = xµ. In the compact dimensions on the other hand, the D-

branes will naturally tend to move about as they search for the minima of their

potentials, and thus the embedding functions are kept general, yA(ξa).

The matter fields that live on the world-volume of a D-brane will naturally follow

geodesics of the induced metric, which we denote as ḡµν . For a D3-brane that is

moving along a single compact direction r for example, this is given by

ḡµν = GMN∂µx
M∂νx

N = h−1/2(r)gµν + h1/2(r)∂µr∂νr , (5.1.3)
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where the first term arises because we are in the static gauge, and r(xµ) is propor-

tional to the scalar field associated to the brane’s position parameterising its motion

in the r direction. We see then that the induced metric on a D-brane moving along

a single direction in the compact space is precisely a realisation of the disformal re-

lation, Eq. (5.0.1), where we can readily identify the form of the couplings in terms

of the warp factor C(r)−1 = D(r) = h(r)1/2 and the scalar field with the brane’s

position φ ∝ r. On the other hand, the metric gµν describes the geometry of the

bulk spacetime.

In order to see how the disformal coupling arises from the Dp-brane action, we

will now look in more detail at the full action describing its dynamics. In the Einstein

frame7, the DBI action of a Dp-brane is given by8

SDBI = −µp
ˆ
dp+1ξe

(p−3)
4

ϕ

√
− det(ḡab + e−

ϕ
2Fab) (5.1.4)

where

µp = (2π)−p(α′)−
(p+1)

2 , Tp = µpe
(p−3)

4
ϕ, (5.1.5)

with Tp being the tension of the brane, where α′ = `2
s with `s the string scale and the

vacuum expectation value of the dilaton field ϕ gives the string coupling as eϕ0 = gs.

The pullback of the ten dimensional metric onto the Dp-brane world-volume takes

the form (5.1.3)

ḡµν = Gµν +
∂yi

∂ξµ
∂yj

∂ξv
Gij = h−1/2gµν + h1/2∂µy

i∂νy
jgij, (5.1.6)

for the four dimensional components, whereas

ḡmn =
∂yl

∂ξm
∂yr

∂ξn
Glr. (5.1.7)

7In D dimensions the Einstein frame and string frame are related by GEMN = e−
4

D−2ϕGsMN

where ϕ is the dilaton.
8We use the following indices for the various coordinates:

M,N = 0, ..., 9 for 10D coordinates

µ, ν = 0, ..., 3 for 4D coordinates

A,B = 4, ..., 9 for 6D coordinates

a, b = 0, ..., p for world-volume coordinates

m,n = 4, ..., p internal (p - 3) world-volume coordinates

i, j = p+ 1, ..., 9 internal transverse to brane coordinates
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for the internal ones. Moreover, Fab = Bab+2πα′Fab is the gauge invariant combina-

tion of the pullback of the NSNS 2-form B2 and the field strength of the world-volume

U(1) gauge field.

The coupling of the brane and its world-volume fields to the bulk RR-fields is

described by the Wess-Zumino (WZ) action, which is given by

SWZ = µp

ˆ
Wp+1

∑
n

Cn ∧ eF (5.1.8)

where Wp+1 is the world-volume of the brane, and Cn are the pullbacks of the bulk

RR-Cn forms to which the brane couples. In this expression, the wedge product

picks out the relevant terms in the exponential. The total action for a Dp-brane is

then given by the sum of the DBI and WZ actions, namely

SDp = SDBI + SWZ. (5.1.9)

The scalar sector

The four-dimensional induced metric in Eq. (5.1.6), which gives the kinetic terms for

the brane’s position fields in the DBI action (5.1.4), is precisely of the disformal type.

We will from now on consider the simplest case of a D3-brane. For such a brane,

there are no compact coordinates, and we may define the canonically normalised

position field φ ≡
√
T3r with corresponding warp factor h(φ) ≡ T−1

3 h(r), for the

radial direction r in a warped throat region of the compactification. The brane

acquires a potential which is Coulomb-like in the vicinity of an anti-brane, but more

generally receives a variety of contributions from “compactification effects” such as

fluxes and other objects present in the bulk. For the case of the D3-brane in a

warped throat, these effects have been explicitly computed in [169].

Finally, the D3-brane is charged under the four-form C4, which appears as the

first term in (5.1.8) for the case of the D3-brane. We may write this charge as

C4 = h−1
√
−g dx0∧dx1∧dx2∧dx3, and thus it is given in terms of the warp factor.

Ignoring for the moment the brane gauge field, after computing the determinant in

the DBI action, the scalar action for a D3-brane then takes the form

Sφ = −
ˆ
d4x
√
−g
[
h−1(φ)

(√
1 + h(φ)∂µφ∂µφ− 1

)
+ V (φ)

]
. (5.1.10)
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This action then gives us the scalar part of the action. We now take into account

the matter fields living on the brane.

The matter sector

Let us now focus on the kinetic terms for matter on the brane, namely the U(1) gauge

field, which is encoded in the DBI action (5.1.4) above. Matter fields that live on D-

branes naturally feel the induced metric ḡµν . Indeed, we will see in Section 5.1.2 that

their associated particles follow geodesics of ḡµν . Thus, these fields see a disformal

metric. To see this concretely, we can rewrite the determinant in Eq. (5.1.4) as

follows (p = 3)

− det[ḡµν + e−
ϕ
2Fµν ] = − det[ḡµβ] det[δβν + e−ϕ/2F̄βν ], (5.1.11)

leading to

SDBI = −T3

ˆ
d4x
√
−ḡ
√

det(δβν + e−ϕ/2F̄βν). (5.1.12)

Here we have denoted F̄ to make it clear that here F is contracted with ḡµν and not

with gµν . On the other hand, from the point of view of gµν , the DBI action takes

the form

SDBI = −T3

ˆ
d4x
√
−g h−1

√
det(δβν + h ∂βyA∂νyBgAB + e−ϕ/2h1/2Fβν). (5.1.13)

Therefore, observers living in the background spacetime see the world-volume fields

following geodesics of gµν but new scalar fields have appeared, namely the fields

associated with the position of the brane in the compact space. In addition, the warp

factor now appears in the action as the function which gives both the conformal and

disformal factors, C(φ) ≡ (T3 h(φ))−1/2 and D(φ) ≡ (h(φ)/T3)1/2 respectively, when

restricted to motion in a single direction φ =
√
T3 r.

Expanding the square root in the DBI action we can rewrite (5.1.13) as

SDBI = −T3

ˆ
d4x
√
−ḡ

(
1 +

e−ϕ/2

4
F̄2 + · · ·

)
, (5.1.14)

where the first term corresponds to the kinetic term for the scalar, which appeared

in (5.1.10), above and the dots correspond to higher order terms in F̄ .

In Type IIB string theory, vector fields can acquire masses via the familiar Higgs

mechanism or via a stringy Stückelberg mechanism (see appendix of [128] for a
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detailed discussion). This stringy mechanism takes place whenever the vector field

couples to a two-form field in the 4D theory. Therefore if the coupling is present,

the vector will acquire a mass. Depending upon the details of the compactification,

the various two-forms which give rise to vector masses may be projected out of

the spectrum: this is due to the action of objects known as orientifold planes: O-

planes. In compactifications with O3/O7 planes, the coupling for a D3-brane vector

field vanishes because the associated 2-form field is projected out of the spectrum.

This entails that D3-brane vector fields remain massless or acquire a Higgs mass

for these compactifications. On the other hand, vector fields on branes of lower

codimension, such as wrapped D5 and D7-branes, can acquire Stückelberg masses

in these compactifications, because the 4D two-form to which they couple remains in

the spectrum. In what follows we consider D3-branes with pressureless, i.e. massive

particles on their world-volumes, as the simplest scenario one can build. It should be

clear that our study can readily be generalised to include matter fields with pressure,

or branes of lower codimension.

For a D3-brane we can then collect the vector terms into a general action of the

form

SU(1) =

ˆ
d4x
√
−ḡLU(1) (ḡµν), (5.1.15)

where we have chosen to write the action in the disformal frame to highlight that the

matter field couples to the induced metric ḡµν . Above we have illustrated explicitly

the case where the matter living on the brane is a vector field. However, the coupling

of the induced metric will be also there for more general matter fields living on the

brane. Therefore below we model a generic type of Dark D-brane matter in terms

of a coupled gas of particles, our DIMPs, which will serve to illustrate the effects of

the “disformal” coupling.

The geometry

The prototype warped compactification, which is smooth all the way to the tip of the

throat, is given by the compact version of the Klebanov-Strassler geometry [166,170].

It arises due to the presence of fluxes sourced by wrapped D3 and D5-branes, and is

an exact non-singular supergravity solution. Such a geometry is rather complicated,
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however it features an interior region which may be approximated by the simpler

AdS5× S5 geometry, which corresponds to the near horizon limit of a stack of N

D3-branes. This is cut off in the infra-red which corresponds to the tip of the throat.

The warp factor in this case is given by

h =
λAdS
r4

, λadS = 4πα′2gsN, (5.1.16)

where gsN � 1 for the supergravity approximation to be valid, while gs < 1 for

string perturbation theory approximation to hold, so that the t’Hooft coupling,

λAdS � 1. For the Klebanov-Srassler (KS) geometry, the AdS5 approximation

breaks down near the tip of the throat. Very near the tip of the KS throat the

warp factor approaches a constant value h→ const.(O(1)) with corrections of order

O(r2).

In what follows we study the D-brane dynamics in the mid-throat region as well

as near the tip. For the former we use the AdS5 approximation with the warp

factor given in (5.1.16) above, and for the latter, we will simply take h to be a

constant. This should capture the predominant behaviour of the system in the

regions of interest. Furthermore, in large-volume scenarios [171] the effect of the

warping is washed away and thus these type of compactifications are also explored

when h→ const.

5.1.2 Disformally Interacting Massive Particles (DIMPs)

To outline the essential implications of the disformal coupling for particles on a

moving brane, we will now adopt a classical point-particle description in place of

the usual field theory description. This approach can also be justified as we would

eventually want to describe a fluid comprised of galaxies, which can be viewed as

point particles moving in the universe.

Consider the effective action for massive particles evolving in a p+1-dimensional

disformal geometry ḡµν . For a D3-brane (p = 3) as we are considering, the brane
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actions is entirely four-dimensional and it is simply given by9

SDDM = −
N∑
i=1

ˆ
d4x mi

√
−ḡµν ẋµi ẋνi δ(4)(xi(τ)− xi), (5.1.17)

where we have used that dτ = d4x δ(4)(xi(τ)−xi) and the dot denotes the derivative

with respect to the affine parameter τ . Moreover, the disformal metric ḡµν is the

induced metric on the brane in Eq. (5.1.3).

Causality

Let us discuss how causality arises in this context. Firstly, motion in the higher

dimensional spacetime must also obey causality, and as objects with tension or

mass per unit volume, D-branes follow timelike trajectories. In particular, for a

scalar field which parameterises the motion of a brane in a single compact direction,

we may define a Lorentz factor

γ ≡ 1√
1 + h(φ)gµν∂µφ∂νφ

(5.1.18)

which must always be real. In the four dimensional disformal spacetime, a necessary

condition for causality is that the metric gµν preserves Lorentzian signature for all

values of the scalar field and its derivatives; and then physical particles must follow

trajectories for which ds̄2 ≤ 0. Note that in four dimensions, there are now two

invariant speeds and indeed two copies of the Lorentz group, one associated with

the background spacetime and the other with the disformal spacetime. Writing the

disformal metric as

ḡµν =
gµβ√
T3h(φ)

[δβν + h(φ) ∂βφ ∂νφ], (5.1.19)

we see that for a time-dependent scalar field in a cosmological background, the

components are just

ḡ00 =
g00√
T3h(φ)

[1 + h(φ) ∂0φ ∂0φ] ≡ g00√
T3h(φ)

γ−2, ḡij =
gij√
T3h(φ)

. (5.1.20)

9For branes of lower codimension we extra factors arise from the integration over the compact

directions.
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The warp factor h > 0 always and due to causality in the higher dimensions, γ−2 > 0

always. Therefore the signature of the disformal metric is simply given by that of

the four dimensional metric gµν , and so causality is never violated.10

Geodesics

Extremising the action (5.1.17), we see that particles on the D-brane naturally follow

geodesics of the disformal metric and thus the geodesic equation becomes

ẍµ + Γ̄µαβẋ
αẋβ = 0, (5.1.22)

where the disformal Levi-Civita connection Γ̄µαβ is torsion-free, and can be expressed

in terms of the usual connection Γµαβ associated with gµν as follows:

Γ̄µαβ = Γµαβ −
h′

2h
δµ(α∂β)φ+

γ2

4
∂µφ

(
h′

h
gαβ + 4h∇α∇βφ+ 3h′ ∂αφ∂βφ

)
. (5.1.23)

The connection Γ̄µαβ is the unique connection that is metric-compatible with the

induced metric ḡµν on the moving brane.

Note that while the extra terms in Eq. (5.1.23) could in principle lead to danger-

ous fifth forces if visible matter follows geodesics of ḡµν , in the present construction

only dark matter lives on the moving brane and therefore such forces, if they arise,

would not impact the visible sector directly, and are not a problem for local gravity

tests.

10Note that this coincides with the standard constraints given in [172] for a general disformal

metric as in (5.0.1), namely

C(φ,X) > 0, C(φ,X) +D(φ,X)X > 0, (5.1.21)

where X ≡ gµν∂µφ∂νφ, and for our case the first condition amounts to h > 0 and the second to

γ−2 > 0, where C(r) = D(r)−1 = h(r)−1/2. In [172] it is argued that if C does not depend on

X, then the second constraint can only be met if D depends on X. In our case, neither C nor D

depend on X, and yet the second constraint is ensured dynamically as outlined above.
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Stress energy tensor

Let us consider now the energy density on the brane which will be important for

cosmology. The stress-energy tensor for disformally coupled matter is defined in the

usual manner by

Tµν = − 2√
−g

δ (
√
−ḡLDDM)

δgµν
. (5.1.24)

For the point particle action (5.1.17), the stress-energy tensor is found to be

Tµν = ρ uµuν , (5.1.25)

where the four velocity, normalized as u2 = −1, is

uµ =
ẋµ√
−ẋ2

, (5.1.26)

and the energy density is given as

ρ =
∑
i

miδ
(4)(xi − xi(τ))

(
1

T3 h(φ)

) 1
4

√
ẋ2

g

[
1− h(φ) (uµ∂µφ)2]− 1

2 . (5.1.27)

Comparing Eq. (5.1.27) with the standard expression for the energy density of pres-

sureless matter, the “bare” energy density,

ρb =
∑
i

miδ
(4)(xi − xi(τ))

√
ẋ2

g
, (5.1.28)

we might indeed expect that the disformally coupled fluid behaves quite unlike a

standard pressureless fluid. We will see in what follows that this is certainly the

case. In particular, the inherent coupling of dark matter to dark energy in (5.1.27)

leads to a non-conservation of the dark matter energy density, which modifies its

time evolution as the universe expands.

5.2 Disformal Dark D-brane Cosmology

We will now study the cosmology of the Dark D-brane system in detail. We will

begin by deriving the relevant equations, then we will obtain solutions numerically

as well as by way of a dynamical systems analysis technique, which will be reviewed

briefly in what follows.
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5.2.1 Field equations

Since we are interested in cosmology, we will now follow the usual effective field

theoretic approach and couple our probe Dark D-brane as described in Section 5.1

to four dimensional gravity. The total action we consider, collecting together the

pieces derived Section 5.1.1, is thus

S =
1

2κ

ˆ
d4x
√
−g R −

ˆ
d4x
√
−g
[
h−1(φ)

(√
1 + h(φ)∂µ φ∂µφ− 1

)
+ V (φ)

]
+

ˆ
d4x
√
−ḡLDDM(ḡµν) , (5.2.29)

where the first term is the ordinary four-dimensional Einstein-Hilbert action, which

arises from dimensional reduction of the ten dimensional closed string sector action,

κ = M−2
P = 8πG is the reduced Planck mass in four dimensions, which is related to

the internal volume as M2
P = 2V

(w)
6 /((2π)7α′4) = M2

s V6/((2π)6πg2
s), where V

(w)
6 =´

d6y
√
g6 h, V6 = V w

6 /`
6
s and Ms = `−1

s .

The Einstein equations derived from (5.2.29) are

Rµν −
1

2
gµνR = κ

(
T φµν + Tmµν

)
, (5.2.30)

where the energy momentum tensors are defined as:

T (φ)
µν = − 2√

−g
δSφ
δgµν

, Tµν = − 2√
−g

δ (
√
−ḡLDDM)

δgµν
. (5.2.31)

Furthermore, the equation of motion for the scalar field becomes

∇µ [γ ∂µφ]− V ′ + γ

2

h′

h2

(
γ−1 − 1

)2
= ∇µ [hT µν∂νφ] +

T µν

2

[
h′

2h
gµν −

h′

2
∂µφ∂νφ

]
.

(5.2.32)

The energy momentum tensor for pressureless matter on the brane takes the form

Tµν = ρ uµuν , (5.2.33)

where for the point particle action in (5.1.17), uµ is given by (5.1.26) and the energy

density ρ by (5.1.27). For the scalar field the energy momentum tensor turns out to

be:

T φµν = Pφ gµν + (ρφ + Pφ)uφµu
φ
ν , (5.2.34)
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where

uφµ =
∂µφ√

−∂µφ , ∂µφ
(5.2.35)

and we have defined

ρφ =
γ − 1

h
+ V , Pφ =

1− γ−1

h
− V , (5.2.36)

with γ being the Lorentz factor for the brane’s motion, given in (5.1.18).

Due to the non-minimal coupling, the individual conservation equations for the

two energy momentum tensors are modified. The conservation equation for the full

system is given in the usual fashion as ∇µ(T µνφ + T µν) = 0, and we have

∇µT
µν
φ =

[
∇µ (γ ∂µφ)− V ′ + γh′

4h2

(
γ−1 − 1

)2
]
∂νφ = Q∂νφ (5.2.37)

where we use (5.2.32) to define the non-conservation coupling,

Q ≡ ∇µ [hT µν∂νφ] +
h′

4h
T µν [gµν − h∂µφ∂νφ] . (5.2.38)

Cosmological equations

In order to study cosmology we will now consider a flat Friedmann-Lamâıtre-Robertson-

Walker (FLRW) spacetime, with metric

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
. (5.2.39)

Since the field must be homogeneous in this background, the Lorentz γ-factor be-

comes

γ =
1√

1− h φ̇2

. (5.2.40)

The Friedmann equations and the Klein-Gordon equation for the scalar field become,

respectively

H2 =
κ2

3
[ρφ + ρ] , (5.2.41)

Ḣ +H2 = −κ
2

6
[ρφ + 3Pφ + ρ] , (5.2.42)

φ̈+
h′

2h2
(1− 3γ−2 + 2γ−3) + γ−3(V ′ +Q0) + 3Hγ−2φ̇ = 0 . (5.2.43)
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We further have the continuity equation for the scalar field and matter

ρ̇φ + 3H(ρφ + Pφ) = −Q0φ̇ , ρ̇+ 3Hρ = Q0φ̇ . (5.2.44)

Finally, the non-conservation coupling for the background, Q0, is given by

Q0 = hρ

[
3h′

4h
φ̇2 − h′

4h2
+ φ̇

(
3H +

ρ̇

ρ

)
+ φ̈

]
. (5.2.45)

Solving away the leading derivative terms for φ and ρ using Eqs. (5.2.43), (5.2.44),

this becomes

Q0 = −

h
(
V ′ + 3γHφ̇

)
+ h′

h

(
1− 3

4
γ
)

γ + hρ

 ρ . (5.2.46)

Let us now consider some implications of this coupling.

The effects of the coupling

In order to gain some intuition regarding the interaction between dark matter and

dark energy in this picture, we can compute Q0 in an alternative way. In an FRW

background, the energy density for pressureless particles on the brane given in

(5.1.27) is:

ρ = (T3h)−1/4 ρb γ , (5.2.47)

where the bare energy density ρb solves the standard continuity equation for uncou-

pled matter yielding

ρb = ρ0 a
−3. (5.2.48)

Taking the first derivative of (5.2.47) using (5.2.48), we obtain the equation

ρ̇

ρ
+ 3H =

γ̇

γ
− h′

4h
φ̇ , (5.2.49)

which exactly matches the second of Eqs. (5.2.44) with Q0 defined by (5.2.45). This

also allows us to write Q0 in a particularly compact form

Q0

ρ
φ̇ =

d

dt
log
( γ

h1/4

)
. (5.2.50)

In conformally coupled theories, the bare energy density is modified by a field de-

pendent conformal factor [22]: we see quite neatly here that new disformal effect is
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simply to modulate the bare energy density by an additional factor γ that involves

the kinetic term of field as well.

We can gain some additional useful insight into the dynamics of the system by

rewriting (5.2.49) in terms of an effective equation of state for the disformal dark

matter (DDM),

ρ̇

ρ
+ 3H(1 + weffDDM) = 0, weffDDM ≡ −

1

3H

(
γ̇

γ
− h′

4h
φ̇

)
= − 1

3H

Q0φ̇

ρ
. (5.2.51)

The effective equation of state simply quantifies how the dark matter dilutes with

the expansion. In particular we see clearly that if weffDDM < 0, the dark matter will

redshift slower than a−3, and faster in the opposite case, weffDDM > 0.

In a completely analogous way, we can consider an effective equation of state for

the DBI field,

ρ̇φ
ρφ

+ 3H(1 + weffφ ) = 0, weffφ ≡ wφ −
ρ

ρφ
weffDDM , wφ ≡

Pφ
ρφ

. (5.2.52)

If the energy in dark matter is boosted such that weffDDM < 0, weffφ will corre-

spondingly receive a positive contribution from the coupling term, having then less

accelerating power. On the other hand, if weffDDM > 0, then dark energy is draining

energy from dark matter and thus weffφ receives a negative contribution from the

coupling term, having thus more accelerating power.

As can be seen from (5.2.51), the sign of the effective equation of state parameter

depends on the behaviour of γ̇, h′ and φ̇. Note that γ̇ will always start off as positive

as the brane starts moving down the throat. In the case of a smooth throat such as

the Klebanov-Strassler one, the brane will eventually start slowing down till γ → 0.

Now, the warp factor is always positive and it grows as we reach the tip of the throat

at φ = 0, therefore the contribution from the warp factor is always negative. On

the other hand, the sign of φ̇ depends on whether the brane is moving down or up

the throat.

Let us consider more explicitly the case we will be mostly interested in, an

AdS-like throat, such that h ∝ φ−4. In this case the time-dependent combination

h−1/4γ which appears in (5.2.50) is simply φγ. The general solution to the continuity

equation in Eq. (5.2.51) is then ρ ∝ a−3(1+weffDDM ). Due to the fact that ρb ∝ a−3,
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we see that φγ ∝ a−3weffDDM in Eq. (5.2.47). Thus the disformal coupling may either

quicken or slow the dilution of dark matter, depending on whether weffDDM is positive

or negative, as explained above. Now, despite the fact that φ→ 0 as the brane moves

towards the tip of the throat, the Lorentz factor may in fact grow rapidly enough

such that the overall effect is that φγ is growing with time. This would imply that

weffDDM in Eq. (5.2.51) becomes negative due to the presence of the coupling term,

so that the dark matter energy density dilutes slower with the expansion due to

its energy interchange with dark energy. So, interestingly, while the the conformal

contribution ∼ d log φ/dt in Eq. (5.2.51) tends to quicken the dilution of dark matter

particles, the disformal effect ∼ d log γ/dt can act against the dilution and could, if

it dominates, serve to boost the energy density residing in dark matter.

In the following it will be useful to define the total equation of state parameter

w which characterises the expansion rate as

wT ≡ −
2Ḣ

3H2
− 1 =

Pφ
ρφ + ρ

. (5.2.53)

This is the quantity that is relevant for observations. It is the ratio between the

total pressure content of the universe and its total energy density.

In a so-called scaling solution, where weffφ = weffDDM , the scaling components

dilute at the same rate and their fractional energy densities maintain a constant

ratio. In this case, weffφ/DDM = Pφ/(ρφ + ρ) = wT as we see from the second equation

in (5.2.52). Accelerating scaling solutions then occur when weffφ = weffDDM < −1/3.

In the following we will show, using the method of dynamical system analysis, that

such solutions arise for the model at hand due to the presence of the disformal

coupling. Obviously, in the absence of the coupling, there can be no accelerating

scaling solutions, since then weffDDM = wCDM = 0 as seen in Eq. (5.2.51).

In a DBI scenario where matter on the brane is not taken into account, wT ≡ wφ

becomes negative when the brane is relativistic and warping is strong, because in

that case the pressure pφ → −V in (5.2.36), and acceleration is attained when

wφ < −1/3. Expansion is of the power law type, while quasi de Sitter expansion, for

which w ∼ −1, can usually only arise in the slow-roll limit of DBI, for then γ ∼ 1

and so ρφ ∼ V ∼ −Pφ in Eqs. (5.2.36). In this case the DBI dark energy field is

almost constant as the universe expands.
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On the other hand, in the present case where matter on the brane is taken into

account, wT is given by Eq. (5.2.53), which reduces to wφ only when matter is di-

luted away and thus ρ → 0. One consequence of this is that if weffDDM is positive,

weffφ can be pushed to −1 even when wφ > −1, i.e., dark energy can be constant as

the universe expands. This occurs if the purely conformal contribution ∼ d log φ/dt

in Eq. (5.2.51) is dominating over the disformal contribution ∼ d log γ/dt. As men-

tioned above, the other possibility is if the growth of the Lorentz factor is rapid

enough, the disformal effect can dominate and thus the energy density in matter

can be boosted, resulting in weffDDM becoming negative. For a brane moving towards

the tip of a warped throat, we expect that the Lorentz factor will grow very rapidly

at first. This could result in weffDDM < −1/3, i.e. the disformally coupled matter

could contribute to driving the expansion of the universe: this is the emergence of

a scaling solution. Then, once the strong warping forces the growth of γ to become

less rapid, the disformal dark matter will be less boosted and might be diluted away,

eventually giving rise to a standard DBI epoch.

So here we see the emergence of a new aspect to the usual DBI scenarios: the

Lorentz factor acts on ρb to slow down its usual dilution by a−3, allowing for the

possibility of a new epoch of accelerated expansion that is driven in part by the

disformally coupled dark matter on the brane. This could eventually evolve into the

standard scenario in which matter does not contribute to the expansion. In this way,

the accelerated expansion of the current universe can begin in a matter dominated

era, during which the disformally coupled dark matter fluid is active in initiating the

acceleration of the expansion, due to its non-minimal coupling to dark energy. This

early accelerating era featuring an interplay between dark matter and dark energy

eventually gives way to a fully dark energy dominated era. In what follows, these

various regimes will be explored using both dynamical systems analysis as well as

numerical examples.

5.2.2 Phase space analysis

In this section we make use of a dynamical system approach to solve the equations

of motion. In this approach one considers a system of coupled differential equations
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in first order form:

ẋ = f(x) . (5.2.54)

The vector x may have any integer dimension and its components span the phase

space of the same dimension. The evolution of the system is described by trajectories

in this phase space. The fixed points (or equilibrium points or critical points as they

are sometimes called), are those points in the phase space where the trajectories may

stay constant. At a fixed point x = xc then,

ẋc = f(xc) = 0 . (5.2.55)

For example, if one of the components of x was H, all the fixed points would

correspond to de Sitter solutions with different constants H = Hc. This illustrates

two basic points: the fixed points do not need to describe static situations (in the

de Sitter example the scale factor is evolving with time), and secondly how one sets

up the phase space, i.e. chooses the variable combinations that define x, determines

very crucially whether the fixed points correspond to interesting situations of the

system at hand or not (if one would have chosen aH as the variable instead of H, the

fixed points would correspond to turnarounds or trivial solutions instead of de Sitter

ones). The linear stability of each fixed point with respect to small perturbations

defined by x = xc + δx, can be studied from the first order perturbed equations:

ẋ = f(xc + δx) = f(xc) + F · δx + · · · ⇒ ˙δx = F · δx , (5.2.56)

where F is a matrix with the components FMN = ∂fM/∂xN and the equality holds

up to the linear order. Now, in an orthogonal basis, F(o) is just a diagonal matrix con-

sisting of the eigenvalues, and the above equation has the solution δx
(o)
N ∼ exp (λN),

where λN is the eigenvalue corresponding to the orthogonal basis vector δx
(o)
N . Since

the eigenvalues are independent of the basis, we can compute them directly from F.

Stability is then determined from the eigenvalues as follows: a) if all the λN < 0 are

negative, all the perturbations decay, that is the fixed point is stable and we call

it an attractor. b) If all λN > 0 are positive, any fluctuation away from the fixed

point will grow and take the system away from the solution x = xc. This point is

thus unstable and can be called a repellor. c) Finally, if some of the eigenvalues are
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positive and at least one negative, the system is unstable when disturbed in some

direction in the phase space, while stable to disturbances in some other directions.

Such a solution is called a saddle point.

Let us then consider our specific system of cosmological equations in Section

5.2.1. The phase space is then two-dimensional: we can formulate the equations

as three coupled first order differential equations (for the dark energy scalar field,

its derivative, and the matter density), subject to one constraint (given by the

Friedmann equation). A convenient choice of variables turns out to be

x ≡ κγ√
3 (γ + 1)

φ̇

H
, z ≡ κ

√
V√

3H
, Ω ≡ κ2ρ

3H2
. (5.2.57)

The Friedmann constraint (5.2.41) allows us to then to eliminate Ω as

Ω = 1− x2 − z2 , (5.2.58)

leaving us with physical space spanned by11 −1 ≤ x ≤ 1, 0 ≤ z ≤ 1. Furthermore,

it is convenient to use, instead of γ, the variable

γ̃ ≡ 1

γ
, 0 ≤ γ̃ ≤ 1 . (5.2.59)

The expansion rate corresponding to each parameter value is described then by the

total equation of state defined in (5.2.53),

wT = γ̃x2 − z2 . (5.2.60)

In fact, to close the system of equations, we will also need to specify γ̃, and in this

sense we have a three-dimensional phase space. However, as seen from (5.2.58), it

is only x (roughly speaking, the kinetic energy contribution) and z (the potential

energy contribution), that determine the expansion rate. For this reason, it is useful

to view the phase space in terms of these variables, considering γ̃ as a parameter.

This kind of approach was also implemented in Refs. [160,161].

After some algebra, using the equations of the previous section together with the

definitions above, the evolution equations for the three dimensionless variables, in

11We assume positive potential energies for the field in the following. However, the formulas

would apply also for negative potentials when extended to imaginary z.
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terms of the e-folding time N = log a, can be brought into the following form:

dx

dN
=

3x

2

(
(γ̃ + 1)(2γ̃ − 1)x2

γ̃ (x2 + z2 − 1)− z2 + 1
+ γ̃x2 − z2 + 1

)
(5.2.61)

+

√
3γ̃(γ̃ + 1)x2 [µ ((10γ̃ − 3)x2 − 2γ̃ + 3) + z2((4− 8γ̃)λ+ (2γ̃ − 3)µ)]

8 (γ̃ (x2 + z2 − 1)− z2 + 1)
,

dz

dN
=
z

2

(
3 + 3γ̃x2 − 3z2 −

√
3γ̃(γ̃ + 1)λx

)
, (5.2.62)

dγ̃

dN
=

3γ̃ (1− γ̃2)x2

γ̃ (x2 + z2 − 1)− z2 + 1

+

√
3γ̃(γ̃ + 1)(1− γ̃)γ̃x (µ+ 3µx2 − z2(4λ+ µ))

4 (γ̃ (x2 + z2 − 1)− z2 + 1)
. (5.2.63)

To close the system, we define the following quantities:

µ ≡ − h
′

κh
, λ ≡ − V

′

κV
. (5.2.64)

In general, their evolution equations are

dµ

dN
= Γµ

√
3γ̃(1 + γ̃) , Γµ =

h′2 − h′′h
κ2h2

, (5.2.65)

dλ

dN
= Γλ

√
3γ̃(1 + γ̃) , Γλ =

V ′2 − V ′′V
κ2V 2

. (5.2.66)

Our system can be closed, i.e. put into an autonomous form when the factors Γµ

and Γλ can be expressed in terms of the other quantities. If the functions h and

V were exponential, these factors would vanish and thus both µ and λ would be

constants. However, this simplification is not motivated by the geometries discussed

above in Section 5.1.1, though it might arise in some suitable brane-world scenario.

In the following we study the case in which the warp factor and the potential both

have a power-law form. We will then focus specifically on the cases in which the

powers are those corresponding to an adS5 and constant-warped geometries.

Power-law evolution

In this section, we take power law forms for the warp factor and the potential, which

include adS5 and a mass term potential:

h(φ) = h0
κ4−m

φm
, V (φ) = V0κ

n−4φn . (5.2.67)



5.2. Disformal Dark D-brane Cosmology 144

The parameters V0 and h0 are dimensionless numbers and n and m are constants.

A restriction we need to impose is that n 6= m; then we can solve for µ and λ in

terms of the other variables as

µ = m

(
(1− γ̃)z2

γ̃Γ0x2

) 1
m−n

, λ = −n
(

(1− γ̃)z2

γ̃Γ0x2

) 1
m−n

, (5.2.68)

where we have defined

Γ0 ≡ h0V0 , (5.2.69)

which turns out to be a very useful parameter. Here and in the following we take

φ ≥ 0, since the field corresponds to the brane’s position in the internal space.

Using the equations (5.2.62)-(5.2.63) above, together with the definitions (5.2.67,

5.2.69), the evolution equations for the three dimensionless phase space variables,

in terms of the e-folding time N = log a, turn out to be

dx

dN
=

x

8 (γ̃ (x2 + z2 − 1)− z2 + 1)

[
12
(̃
γ2x4+γ̃x2

(
(γ̃ − 2)z2+γ̃+3

)
−(γ̃ −1)

(
z2 − 1

)2−x2
)

+
√

3γ̃(γ̃ + 1)x
(
z2(2γ̃m+ 8γ̃n− 3m− 4n)+m

(
(10γ̃ − 3)x2 − 2γ̃+3

))( Γ0γ̃x
2

(1− γ̃)z2

) 1
n−m
]
,

(5.2.70)

dz

dN
=
z

2

[√
3γ̃ (γ̃ + 1)nx

(
γ̃Γ0x

2

(1− γ̃)z2

) 1
n−m

+ 3 γ̃ x2 − 3z2 + 3

]
, (5.2.71)

dγ̃

dN
=

γ̃(1− γ̃)x

[√
3γ̃ (γ̃ + 1) (3mx2 −mz2 +m+ 4nz2)

(
γ̃Γ0x2

(1−γ̃)z2

) 1
n−m

+ 12(γ̃ + 1)x

]
4 (γ̃ (x2 + z2 − 1)− z2 + 1)

.

(5.2.72)

Interestingly, the structure of the phase space depends solely upon the product of

the parameters defined in (5.2.67) which quantifies the energy scales of the potential

and the warp factor, Γ0 defined in equation (5.2.69).

General behaviour

Before considering particular values for the exponents in the warp factor and po-

tential, we can make some general statements about the possible fixed points of the

system (5.2.70)-(5.2.72). Indeed, the equations (5.2.70)=(5.2.71)=(5.2.72)=0, can

be solved in various ways:
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(A) Standard matter dominated solution: in this case xMD = zMD = 0⇒ ωMD = 0

and ΩMD = 1. This is valid for all values of n,m and γ. The eigenvalues

corresponding to small perturbations around this solution are (3
2
, 3

2
). Therefore

this solution is always unstable.

(B) Potential dominated de Sitter solution: in this case xdS = ΩdS = 0 so that

zdS = 1 and thus ωdS = −1. From (5.2.70) and (5.2.71) one can check that in

order for it to be a solution, n and m must satisfy:

n−m ≤ −2 , (5.2.73)

and the solutions have γ̃dS = 1. The eigenvalues corresponding to this solution

are (−3, 3), and therefore the solution is always a saddle point.

(C) Kinetic dominated solution: in this case xkin = ±1, zkin = Ωkin = 0. From

(5.2.70) and (5.2.71) we see that in order for this to be a solution to these

equations we need

n−m < 0 (5.2.74)

and therefore the only solutions have γ̃ = ωkin = 0. The eigenvalues corre-

sponding to this solution are 3(1
2
,−1), thus this solution is a saddle point.

(D) For more general solutions with 0 < z < 1, which will be the most interesting

ones, we can make some general statements and will look into two concrete

examples below. Solving (5.2.71) =0 gives rise to the following equation:

3(1+γ̃ x2) z
2

n−m−3 z2(1+ 1
n−m)+nΓ

1
n−m
0

√
3(γ̃ + 1) γ̃

x (γ̃ x2)
1

n−m

(1− γ̃)
1

n−m
= 0 . (5.2.75)

One can check that if the last term in this equation vanishes, then we are back

at one of the previous solutions. Therefore, non-trivial solutions arise when

the last term does not vanish. We can then have the following situations

(i) x = 0 or γ̃ = 0. This case requires that

n−m = −2 (5.2.76)

and the solution to (5.2.75) can be easily found (see below).
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(ii) For general values of x and γ̃, the solution to (5.2.75) is more complicated

depending on the precise values of n and m.

In what follows we consider two explicit examples of the classes of solutions

above, corresponding to a brane moving down an AdS5 throat along a mass term

potential, and a constant warp factor with an inverse law potential, where the brane

moves towards the bulk geometry. This latter case can be seen as an example of a

moving brane in a large volume scenario.

The AdS5 warp factor

Let us consider first the AdS case where the warp factor goes like h ∼ φ−4. For the

potential we consider a mass term, that is we set m = 4, n = 2, so n − m = −2.

From the general discussion above we see that the system contains classes (a), (b),

(c) of fixed points. Furthermore, within class (d) we have the following fixed points:

Class (d): 0 < z < 1. In this example, the condition dz/dN = 0 from Eq. (5.2.75)

reduces to

3
(
1 + γ̃x2 − z2

)
+ 2 z

√
3(1− γ̃2)

Γ0

S(x) = 0 , (5.2.77)

where S(x) = sign(x). The solutions to this equation are

z± =
1√
3Γ0

[
S(x)

√
1− γ̃2 ±

√
1− γ̃2 + 3Γ0 (1 + γ̃x2)

]
. (5.2.78)

Thus we see that physical solutions exist only when the field is rolling down the

throat, S(x) = −1, for the positive branch, since otherwise either z < 0 or the

matter energy density is negative, since z > 1. It is difficult to find the most general

solution for x. However, we can focus on the special case γ̃ = 0, corresponding to

an ultra relativistic regime, (d)(i) above. In this case we obtain the following fixed

points:

• Matter scaling solution with xDDM = 0. For this solution we have

xDDM = 0 , zDDM =
−1 +

√
1 + 3Γ0√

3Γ0

, ΩDDM =
2

1 +
√

1 + 3Γ0

. (5.2.79)
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The total equation of state parameter approaches minus unity as one increases

Γ0,

wDDM = −
(
1−
√

1 + 3Γ0

)2

3Γ0

. (5.2.80)

The eigenvalues for this fixed points are(
−1 + 3Γ0 −

√
1 + 3Γ0

Γ0

,
3
(
1 + Γ0 −

√
1 + 3Γ0

)
2Γ0

)
. (5.2.81)

Requiring these to be negative, we find that this solution is stable for 0 < Γ0 <

1. Otherwise it is a saddle point. Moreover, we are interested in accelerating

solutions, which means that the total effective equation of state parameter

(5.2.80) for this solution should satisfy wDDM < −1/3. This requires Γ0 > 1.

Therefore we see that the solution is not an accelerating attractor for 0 <

Γ0 < 1, however it could be a viable matter scaling attractor when Γ0 is small

enough, such that w ∼ 0. The reason this needs to be small is that large-

scale structure would be too different from the ΛCDM case if dark matter was

not effectively nearly pressureless during the structure formation era. As we

will see in the numerical study below, this fixed point is typically reached as

an intermediate stage for a cosmological evolution which is close to ΛCDM

cosmology.

• Kinetic solution with ΩDBI = 0. For this ultra-relativistic solution the matter

contribution vanishes and

xDBI = −

√
2

1 +
√

1 + 3Γ0

, zDBI =
−1 +

√
1 + 3Γ0√

3Γ0

, ΩDBI = 0 .

(5.2.82)

The total equation of state is the same as for the matter-scaling solution above,

wDBI = −
(
1−
√

1 + 3Γ0

)2

3Γ0

. (5.2.83)

Now we obtain for the eigenvalues of this fixed points:(
−1 + 3Γ0 −

√
1 + 3Γ0

Γ0

,
3
(
2−
√

1 + 3Γ0

)
1 +
√

1 + 3Γ0

)
. (5.2.84)

From this we see that this solution is a saddle point when the previous one is

an attractor, that is when 0 < Γ0 < 1. Moreover, when Γ0 > 1, the solution
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is an accelerating attractor with wDBI < −1/3, while the previous one is a

saddle point for these values of Γ0.

In summary, for the AdS case with a mass term potential we have found two ac-

celerating attractors for the system: a nonrelativistic potential-dominated de Sitter

solution (class (c)), and an ultra-relativistic DBI solution (class (d)-(i)).

Constant warp factor

In regions both asymptotically far into the bulk and very near to the tip of a

Klebanov-Strassler throat, the warp factor can be approximated by a constant.

This provides the simplest example of a nontrivial disformal relation, where both C

and D are constants. In this case m = 0. Following the general discussion above,

we know that this case has class (a) of fixed points. Furthermore, it possesses an

accelerated saddle point, class (b) of solutions, only for n = −2, that is, an inverse

power law potential. Moreover, for all n < 0 it possesses class (c) of fixed points as

well. Regarding class (d), we have the following fixed points:

Class (d): 0 < z < 1. Focusing again in class (d)-(i), we need n = −2. Then Eq.

(5.2.75) yields for z

z± =
1√
3Γ0

[
−S(x)

√
1− γ̃2 ±

√
1− γ̃2 + 3Γ0 (1 + γ̃x2)

]
. (5.2.85)

From here we can see that now the physical solutions correspond to a brane moving

towards the bulk geometry, that is S(x) = +1, and furthermore, we should pick the

+-branch of the solution such that z > 0. Focusing again in the ultra-relativistic

limit γ̃ = 0 we consider the cases when either the matter contribution or the kinetic

contribution to the expansion are negligible.

• Matter scaling solution xDDM = 0. This fixed point and its total equation

of state are given by the expressions (5.2.79) and (5.2.80). However, now the

eigenvalues of the perturbation matrix turn out to be(
−1− 3Γ0 +

√
1 + 3Γ0

Γ0

,
3

2

)
, (5.2.86)

thus this solution is never an attractor when Γ0 is positive, but always a saddle

point.
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Fixed point Stability when Stability for w

m = 4, n = 2 m = 0, n = −2

(a) Matter domination Unstable Unstable 0

(b) de Sitter solution Saddle Saddle −1

(c) Kinetic domination Saddle Saddle 1

(d) Matter scaling solution Attractor iff 0 < Γ0 < 1 Saddle −(1−
√

1+3Γ0)
2

3Γ0

(d) Kinetic scaling solution Attractor iff Γ0 > 1 Attractor −(1−
√

1+3Γ0)
2

3Γ0

Table 5.1: Summary of the fixed points in the two examples considered.

• Kinetic scaling solution with ΩDBI = 0. In analogy with the above, this fixed

point and its total equation of state are given by the expressions (5.2.79) and

(5.2.80), but now the stability properties differ because of the different warp

factor and potential. From the eigenvalues(
−1 + 3Γ0 −

√
1 + 3Γ0

Γ0

,−3

)
, (5.2.87)

we see that this solution is always an attractor. The difference with the m = 4,

n = 2 case is that in that case, the matter scaling solution is a saddle point

and the kinetic solution an attractor in the accelerating case Γ0 > 1, while in

the present case, we find that for all Γ0 > 0 the matter scaling solution is a

saddle point, while the kinetic scaling solution is an attractor.

The fixed points and their stability properties in the two examples considered

above are summarised in Table 5.1.

In the dynamical system analyses of DBI cosmologies, scaling solutions have

been found in the literature [130, 131, 159–162]. However these solutions described

non-accelerating expansion with wT = 0. The possibility of scaling with wT 6= 0

appears only when a coupling is taken into account (recall our discussion in Section

5.2.1).
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5.2.3 Numerical solutions

In this section we will investigate the system of equations (5.2.70)-(5.2.72) numeri-

cally, in order to confirm the expectations from the analytic arguements in Section

5.2.1, and from the dynamical system analysis in Section 5.2.2 above. In addition,

this will enable us to uncover some of the typical details of the evolution as the

system converges to its asymptotic state described by the attracting fixed points.

Our aim is to construct realistic cosmological scenarios which start from a standard

matter dominated era and end in an accelerating era, where as we are only inter-

ested in late-time cosmology, we have omitted any contribution from radiation to

the expansion. For purposes of illustration we consider an AdS geometry for the

warp factor and a quadratic potential for the scalar field. Thus we set m = 4 and

n = 2 in what follows.

Let us describe the generic behaviour. Upon integration of the equations of

motion with matter dominated initial conditions, the system is naturally ends up

in a regime where the DBI field has a significant impact on the dynamics. This is

indeed expected given that the matter dominated solution is a repeller. We also

find that the universe quickly enters an accelerating phase described by the DBI

scaling fixed points when Γ0 > 1. Specifically, for the quadratic AdS model at hand,

a typical evolution is such that the universe evolves via the matter scaling saddle

point (5.2.79) into the kinetic scaling attractor (5.2.82). Examples are shown in

figure 5.1, for two values of the parameter Γ0. Since the universe typically spends

a few e-folds in the saddle point stage and in a realistic case the acceleration has

begun only recently, the prediction is that our universe is currently entering the

accelerating scaling saddle point. Interestingly, the equations of state (5.2.80) and

(5.2.83) for these two physically distinct fixed points coincide, which means that

judging from the expansion of the universe alone, they cannot be observationally

distinguished. For the fixed point (5.2.79) there is a non-negligible contribution from

the disformally coupled dark matter, and for the fixed point (5.2.82) a non-negligible

contribution from the kinetic energy of the scalar field12.

12The reason that they still can have identical expansion rates is that from Eq. (5.2.60) one sees
that for relativistic motion of the brane, neither kinetic energy nor dark matter density but only
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Figure 5.1: The evolution of the fractional energy densities and the total equation

of state as functions of the e-folding time N = log a for Γ0 = 10 (left panel) and

Γ0 = 100 (right panel). The equation of state is the dash-dotted purple line that

settles to its attractor value given by Eq. (5.2.80). The black dotted line is the

matter contribution Ω, that drops first from the matter-dominated value Ω = 1

to the saddle point solution value given by Eq. (5.2.79), and then to zero as the

universe eventually reaches the attractor described by Eq. (5.2.82). At the latter

transition, the kinetic energy contribution of the field, x2, plotted as the blue dashed

line, becomes important. The potential energy contribution z2, plotted as the red

solid line, retains its value through the two latter stages.
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The various equations of state defined in Section 5.2.1 provide another perspec-

tive from which to explore the workings of the disformal coupling. In addition to

the total equation of state in (5.2.60), one has the usual definitions for the equations

of state of the individual fluids, given in terms of our phase space variables as

wDDM = 0 , wφ =
γ̃x2 − z2

x2 + z2
. (5.2.88)

In the presence of the non-minimal coupling however, the scaling of the energy

components is defined by the effective equations of state which may now be written

as

weffDDM =
1

3

1

γ̃

dγ̃

dN
±

√
3(1− γ̃2)

Γ0

z

 , weffφ = wφ −
1− x2 − z2

x2 + z2
weffDDM , (5.2.89)

where the positive sign should be chosen in the former equation, and the derivative

of γ̃ is given by Eq. (5.2.72). The time evolution for these quantities is shown in

figure 5.2. Because γφ grows with time, there is energy transfer from the scalar

field to dark matter that makes the latter dilute slower, as is discussed in Section

5.2.1. During the scaling era, by definition, wT = weffDDM = weffφ . Even when this

era ends, the coupling continues to slow down the dilution of the dark matter energy

density, such that weffDDM remains at a constant negative value. In the right panel of

figure 5.2, we display an example of a case wherein initially the energy density of the

field is not potential-dominated. In that case the kinetic scaling era begins shortly

after the coupling becomes important, and the scaling behaviour never quite takes

place. Such initial conditions require the coupling and the kinetic contribution to

both become significant around the present epoch, and are thus less generic than

the initial conditions that allow some e-folds of scaling. An interesting detail to

observe is that due to the fact that we have set the scalar field evolving as an initial

condition, the coupling is effective from early on: in particular, as suggested in

Section 5.2.1, it forces the energy density of the DBI field to remain constant, i.e.

weffφ = −1 even though wφ > −1. This is because the effect of the coupling is to

produce an energy flow from dark matter to dark energy, which contributes a very

tiny positive weffDDM : when weffφ = −1, weffDDM = (1 +wφ)ρφ/ρ as seen from (5.2.52).

the scalar potential energy determines the total equation of state.
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Figure 5.2: The time evolution for the various equations of state as functions of

the e-folding time N = log a when Γ0 = 50. In the left panel the kinetic energy x

is initially small and the equation of state wφ = pφ/ρφ (purple dash-dotted line),

as well as the effective equation of state for the field weffφ (blue dashed line), are

essentially wφ = −1 until the coupling begins to modify the dynamics. The effect of

the coupling is to increase weffφ and to lower the effective equation of state for dark

matter weffDDM (black dotted line), so that they both track the total equation of state

w (red thick line) during the scaling epoch. When this epoch ends, the dark matter

dilutes faster than dark energy, but as seen from the plot, the coupling continues to

have an effect on the DDM-component. In the right panel, initial conditions are set

such that the kinetic energy x is significant and thus wφ > −1. In such a case the

universe evolves to the kinetic attractor soon after the coupling kicks in, before the

scaling solution is reached.
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To gain a better understanding of the dynamics behind this evolution and the

role of initial conditions, we plot the variable x and the Lorenz factor γ as functions

of the scale factor in figure 5.3 for different initial values of γ. We start with a small

x and z: for a fixed γ, the initial value of z determines when we enter into the saddle

point, and the initial value of x, into the attractor. We see that the transition from

the accelerating fixed point to another point occurs when x reaches its critical value

given by Eq. (5.2.82). The more nonrelativistic γ is, the longer this will take. If

the brane starts moving very slowly from a virtually non-warped region in the early

universe, after reaching the matter scaling fixed point the universe can stay there

for, in principle, an arbitrary number of e-folds before the brane has moved close

enough to the tip of the throat to end the matter scaling behaviour. On the other

hand, if the initial conditions are relativistic enough, the x-variable also grows with

a “saturated” rate during the matter dominated epoch, and there is no difference in

the observational predictions. In the right panel of figure 5.3 we see that the scaling

of the γ-factor, which is identical for all initial values during the matter epochs,

changes only when the attractor is reached. The scaling is such that γφ ∼ a−3wT ,

as expected already from the considerations in Section 5.2.1.

Finally we check how the cosmology depends upon the parameter Γ0, which is

the sole theoretical quantity that controls the evolution. We illustrate this in figure

5.4 by plotting x and Ω as functions of the scale factor for a few different values of

Γ0. In complete agreement with the results of the analytic study in Section 5.2.2,

we find that Γ0 = 1 is the dividing value above which the universe accelerates and

eventually ends with Ω = 0, and below which the universe decelerates forever and

Ω retains a constant finite value.

5.3 Discussion

In this Chapter we have proposed an inherently unified and fundamental origin

for the observed cosmological dark sector in four dimensions. Specifically, we have

suggested that the dark fluids in the universe may be due to the presence of a hidden

sector D-brane moving in the warped extra dimensions. We have named this object
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Figure 5.3: The evolution of the “kinetic term” x (left panel) and the brane Lorenz

factor in the form of log γ̃ (right panel) as functions of the scale factor a when

Γ0 = 30. The results are presented for five different initial conditions (set at

a = 10−12) as given in the legend of the right panel. We see that x, initially set to

a small value, grows until it reaches the attractor value given by Eq. (5.2.82). For

sufficiently non-relativistic initial conditions (γ̃ very close to unity), x can be frozen

during the matter dominated era but starts growing as the universe enters into the

accelerating scaling saddle point solution Eq. (5.2.79). For sufficiently relativistic

initial conditions (γ̃ very close to zero) this does not occur. During the matter dom-

inated era γ is constant, but begins to evolve at a constant rate towards relativistic

values γ → ∞ as the accelerating era begins. When the attractor is reached, this

rate changes. The rate is given by Γ0 in such a way that γφ ∼ a−3w where w is

the equation of state parameter in Eq. (5.2.80), as expected from considerations in

Section 5.2.1.
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Figure 5.4: The evolution of the “kinetic term” x (left panel) and Ω (right panel)

as functions of the scale factor a for different values of Γ0 (as given in the legend of

the right panel). For Γ0 larger than unity, the evolution of x is similar to that which

is depicted in figure 5.3, and Ω behaves as depicted in figure 5.1. For the limiting

value Γ0 = 1, for which the attractor value of the equation of state is w = −1/3,

the x-term freezes, while the matter scaling persists. When Γ0 < 1, the attractor

value of the equation of state parameter is non-accelerating, w > −1/3, and instead

of growing the x-term begins to decay when the matter scaling solution is reached.

The solution is now an attractor and Ω remains as the constant given in Eq. (5.2.79).
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the “Dark D-brane”.

In this scenario, dark energy descends from the brane’s motion in the compact

space, which manifests in the four-dimensional theory as a scalar field with non-

standard (DBI) kinetic terms. In addition, dark matter, and possibly dark radiation,

are associated with the matter fields which are localised on this brane. Due to the

form of the induced metric on the brane, the dark fluids interact with one another

via a disformal coupling, which then provides an explicit realisation of this coupling

within a fundamental theory.

Due to the particular form of the energy exchange between the dark fluids, we

have demonstrated that the Dark D-brane scenario proposed herein exhibits scaling

solutions, and thus can alleviate the “cosmic coincidence” problem by allowing the

energy densities in dark energy and dark matter to be proportional across several

efolds of the cosmological evolution. Furthermore, since the Dark D-brane is a

hidden brane, this scenario can naturally account for the observational fact that the

coupling between dark matter and standard model fields is strongly suppressed.

For the purpose of illustration we have herein considered the simplest Dark D-

brane model, which features a probe D3-brane moving in a warped region of a Type

IIB flux compactification, and have explored the resulting homogeneous cosmological

evolution.

To study the dynamics we have implemented a dynamical systems analysis, in

which we focused on a power law form for the warp factor h as well as for the

brane’s potential V . We derived four classes of fixed points, which correspond to

matter domination, a de Sitter solution, kinetic domination, and the scaling solutions

respectively. Among these, only the matter dominated fixed point is independent of

the values of the parameters, while the other fixed points depend upon the values

of the exponents in the power law expressions for h and V .

The most interesting class of fixed points are the scaling accelerating solutions,

as these can resolve the coincidence problem. Within this class of fixed points, we

have studied explicitly two representative cases. Firstly, we considered a Dark D-

brane moving in an AdS5 geometry, which can be seen as an approximation to the

mid-region of a realistic Klebnov-Strassler geometry, along a quadratic potential.
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Secondly, we considered a constant warp factor, which can arise in a very near-

tip Klebanov-Strassler region, or simply as an unwarped region in a large volume

scenario, with an inverse power law potential. In the ultra-relativistic limit, we

found two different types of disformal scaling fixed points for the two cases, namely

a matter scaling and a kinetic scaling fixed point. At the matter scaling point, the

disformally coupled dark matter contributes a constant fraction to the expansion

rate. At the kinetic scaling point on the other hand, the matter sources contribute

negligibly to the energy density, and yet this fixed point exhibits precisely the same

total equation of state as the matter scaling fixed point.

Finally, we numerically confirmed all of the results for the AdS5 case which were

expected from analytic considerations as well as from the dynamical system analysis.

While we focussed more on this case, it is worth mentioning that inverse power law

potentials of precisely the type considered in our second case, namely for which

n = −2, can alleviate the fine-tuning problem of the scale of dark energy [174,175].

However, it remains to be seen whether such potentials can be realised robustly in

Type IIB flux compactifications. Therefore, while our scenario is able to address one

of the two long-standing problems of dark energy, there is much that still needs to

be understood in relation to how this scenario might address the remaining problem.

Furthermore, in the current work we considered only the background expansion. In

order to fully access the viability of this model, an obvious next step is to study the

perturbations.

In summary, we found that the expansion can generically begin with an acceler-

ating scaling regime which eventually gives way to a purely dark energy dominated

regime with the same expansion rate. Therefore, the simplest Dark D-brane sce-

nario can give rise to very viable late-time cosmology, which motivates the study

of more realistic and concrete models within this framework, as well as the search

for observational signatures that could distinguish the presence of a Dark D-brane

world from other dark sector scenarios.



Chapter 6

Concluding Remarks

In this thesis we have explored a variety of exotic cosmological phenomena in the

late-time universe, when structures such as black holes and galaxy clusters have

formed. In particular, we have focussed on the interactions between the theoretically

well-motivated but physically mysterious entities that may populate the cosmologi-

cal landscape today.

Cosmic strings are objects which are believed to be formed in the early universe

during the symmetry breaking processes that allow the particle spectrum to evolve

into its present form, namely the standard model of particle physics. In addition,

they can be formed at the end of D-brane inflation scenarios in string theoretic

descriptions of the early universe. In this way, their existence is motivated by and

expected from both pure field theory models as well as fundamental high-energy

models of cosmology. Furthermore, while their existence remains hypothetical in

cosmology, there are in fact strong indications from observations of other natural

systems that they may indeed be someday glimpsed in the cosmos. Namely, string-

like defects have indeed been observed to arise in condensed matter systems such as

liquid crystals. The physics underpinning the formation of these objects is precisely

the same as that which predicts defects in the cosmological fluid.

While most studies of the cosmological journey of these objects have focussed

on their formation and evolution into networks of strings and loops, in the present

study we have instead addressed the question of their ultimate fate in the universe.

The evolution of cosmic strings is such that once they have formed in the early

159
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universe, the individual strings are stretched by the expanding background, while at

the same time loops are formed during the intercommutation process, which dilutes

the initial density of the strings. Eventually however the string network enters a

regime during which the density of the network becomes scale-invariant. The overall

result is that a small number of strings are expected to be present today, amid a

gas of oscillating loops.

So, what happens to these strings? This is a very pertinent question as its answer

determines whether or not, and where or where not, we might actually concretely

observe them. As the strings drift through the universe, we can expect that they

will naturally move into gravitationally dense regions much like all other physical

objects which traverse the cosmos. Therefore, along with other forms of visible

matter, they will trace the dark matter density, and collect in dark haloes along

side galaxies and clusters, eventually journeying towards the dense cores of these

regions, which are strongly believed to harbour supermassive black holes. Thus the

question of what happens to the strings may ultimately be the question of how the

strings might interact with black holes. Can a black hole “catch” a cosmic string?

Or are strings somehow repelled by black holes, such that they must avoid regions

of dense matter entirely, and thus can be expected to end up collecting in voids?

In order to address this, in Chapter 3 we have considered the interaction between

an astrophysical black hole, namely a black hole that is rotating, and a single cosmic

string. We focussed on the end state of the interaction, namely the intersection or

composite configuration of the two objects that could form once the objects meet.

Employing the abelian Higgs vortex model for the string, we solved the vortex

equations in the Kerr background, treating the string as a probe in the spacetime

of the black hole, and aligning it in such a way as to respect the symmetries of the

spacetime. From this probe analysis, we found that it is quite possible to form a

stable, composite state consisting of a cosmic string piercing through the poles of

a rotating black hole. Indeed, due to the fact that the energy and tension balance

one another in the core of the string, the string does not feel a gravitational force

through its interior and thus does not become swallowed by the black hole, but

instead threads through it.
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Having verified that such a configuration can exist, we went on the explore its

phenomenology, which turns out to be diverse and abundant. Firstly, in the presence

of rotation, the constant axial magnetic flux lines of the string become accompanied

by electric flux lines which emerge in the close vicinity of the event horizon. Thus

the gauge field of the string naturally picks up a time component, which is in fact

generated by the rotating background due to the non-trivial mixing between the

time and azimuthal directions, and so the standard duet of string degrees of freedom

becomes a trio, {X,Pφ, Pt}.

Secondly, upon examination of the extremal limit of the system for a variety

of black hole masses, we found that the Kerr string system exhibits a Meissner

effect, in which the flux lines of the string become expelled from the black hole

and thus the fields remain in their vacuum states across the entirety of the horizon.

This flux-expelling behaviour occurs for extremal black holes of lower mass relative

to the width of the string. Specifically, as one lowers the mass of the extremal

black hole, a first-order phase transition takes place during which the piercing fields

become expelled, such that the black hole essentially sits within the core of the

string, enveloped by the scalar condensate and gauge flux lines.

Thirdly, taking into account the gravitational effects of the string on the Kerr

spacetime, we uncovered another striking consequence of the non-trivial mixing be-

tween the time and azimuthal directions in this spacetime. Whereas in a static or

flat background, the gravitational effect of the string is to induce an azimuthal con-

ical deficit at spatial infinity, in a stationary background, we verified herein that the

deficit is blended in with the time direction. Another way to phrase this is that the

purely conical effect is with respect to a local co-rotating frame, rather than with

respect to an observer at infinity, thus an asymptotic observer sees a conical effect in

the intersection of the time and azimuthal directions. The physical consequences of

this rotationally blended deficit are that the ergosphere and possibly the innermost

stable circular orbits of objects near to the black hole are shifted by the presence

of the string. While this avenue remains to be explored, it provides a potential

direct signal for the composite string and black hole system through studies of the

perturbations of geodesic motion in the close vicinity of galactic black holes.
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In Chapter 4, we then took this line of research into a more theoretical direction,

and examined the effects of a negative cosmological constant on the Kerr vortex

system. Such a system is not realised in nature, at least not in our four-dimensional

universe, however derives its motivation from holography and higher dimensional

theories such as string theory.

For the purposes of this study, we considered the vortex to be a probe in the AdS

black hole spacetime. We began by exploring the effect of the cosmological constant

on the string fields in a purely AdS background, and found that shortening the AdS

length ` tends to tighten the core of the string while at the same time causes the

fields to fall off more gradually towards their vacuum values. We then addressed

the physics of the full vortex and black hole system, including a black hole charge

for completeness. In this way, we were able to extract a detailed picture of the roles

played by all the various parameters which can be contained in such a system.

As with the pure Kerr case, the rotation generated a time component for the

gauge field, and thus electric flux lines near the horizon. In addition, small mass

black holes exhibited a Meissner effect, once again governed by a first-order phase

transition. The effect of decreasing ` on the transition is to lower to ciritical radius

of the horizon at which the transition takes place. On the other hand, the charge

of the black hole does not appear to impact the physics of the composite system

studied herein.

Thus the work in Chapters 3 and 4 provides an insight into the interactions be-

tween two notable classical objects in cosmology, namely cosmic strings and rotating

black holes, with the studies in Chapter 3 being of interest for physical cosmology

while those in Chapter 4 being instead relevant for purely theoretical constructions.

These objects form part of the visible sector of the cosmological phenomena, in

that they are made from standard model particles, with a black hole originating

from a collapsed star composed of baryonic material, and a cosmic string consisting

of a Higgs condensate core threaded with magnetic flux.

However, as we have reviewed in detail, the late-time universe is in fact domi-

nated by some kind of invisible or dark sector, with dark matter and dark energy in

fact completely governing the cosmological behaviour of visible matter. Dark energy
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is the elusive fluid which is currently causing visible galaxies and clusters to fly apart

from one another, while dark matter dominates the gravity inside the galaxies and

clusters, and thus determines their internal structural and dynamical properties.

In Chapter 5, we trace the possible origins for the observed cosmological dark

sector into higher dimensions of spacetime, and propose a unified model for this

sector as a “Dark D-brane world” moving in these higher dimensions. In this sense,

what we observe as dark phenomenology in four dimensions descends in fact from the

dynamics of fundamental objects in the higher dimensional geometry. Compellingly,

while the Dark D-brane world is constructed purely from the point of view of string

theory, it turns out that the dark fluids associated with this object are exchanging

energy with one another via a disformal coupling, which has been widely studied

in the context of phenomenological theories of modified gravity. Thus our scenario

forms a connection point between phenomenological and fundamental approaches

to cosmology.

The Dark D-brane matter fields, which we associate with dark matter, are nat-

urally and necessarily distinct from the visible sector, providing at once a concrete

explanation for why these sectors are observed to be non-interacting. Furthermore, a

study of the cosmological evolution in the Dark D-brane scenario, where the motion

of the brane is associated with dark energy, revealed the presence of accelerating

scaling solutions which can then address the cosmic coincidence problem. It remains

to be seen however whether or not the observed scale of the vacuum energy can be

robustly derived from this picture, and this might involve constructing the Dark

D-brane from branes of lower codimension.

Therefore, at the level of the homogenous background studied herein, it seems at

least plausible that the dark fluids could in fact be telling us something about what

is going on in the higher dimensional spacetime. If so, then these fields provide a

tantalising means for us to glimpse into worlds beyond our own.
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Figure 6.1: Tibetan Cosmology: The “Wheel of Life”, containing the six realms

into which beings are reborn, held in the claws of Mara, who represents death and

impermanence. In the centre are the three poisons, and an individual’s response to

these poisons determines the realm into which he or she will be reborn.

You are the formless within all forms, the silence and stillness inside all

movements of time and manifestation.

Arise into the fullness of your real nature, as the unchanging self, the goal and

source of all being.

–Mooji
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