TinyTPC - A test stand for photosensitive dopants
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Introduction

Liquid argon time projection chamber (LArTPC) detectors have been primarily used to
study accelerator neutrinos (GeV-scale).

It has been demonstrated that LArTPCs are able to reconstruct at the MeV-scale [1,2].
However, at low energies, their energy resolution is significantly degraded, since only a
small fraction of scintillation photons are collected (Fig. 1).
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One solution is the use of a special class of hydrocarbons (photosensitive dopants), which
convert light to charge (that can be collected more efficiently) (Fig. 2).

We have built a test stand (TinyTPC) to study these charge enhancements.
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Motivation & Prior Art

Physics opportunities at the MeV-scale [4, 5]

- study of supernova and solar neutrinos
» test of proposed theories (for example, neutrinoless double-beta decays and
millicharged particles)

Previous studies demonstrated that the mix of photosensitive dopants in LAr results in
increase of ionization signal:

. of 5.5 MeV a-particles in LAr calorimeter test stands [6] (Fig. 4)
» of cosmic muons in ton-size LArTPCs [7] (Fig. 5)

Our research question: Do photosensitive dopants improve LArTPCs' energy resolution
at the MeV scale?
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Figure 5: Amount of charge collected with and
without photosensitive dopants in an electric field
of 300 V/cm for 250 days. Figure adapted from [7].

Figure 4: Amount of charge observed for different
electric fields and for different photosensitive
dopants. Figure adapted from [6].
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Technical description of TinyTPC

It is a single-phase detector, where only charge is collected.

lts components are:

» 4 field cage boards
- a cathode (high voltage) plane
 a LArPix [8] pixelated anode plane (state-of-the-art readout system)
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Figure 7: The other side of
the LArPix pixelated anode
plane. The 10 cm x 10 cm
surface is the active area |
of the detector. |

Commissioning Run

In August 2023, TinyTPC was deployed inside the BLANCHE cryostat [9], which is located
at FNAL. Cosmic data were acquired over the course of 5 days at 4 kV and 4.5 kV to

calculate TinyTPC's calibrations. 400
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Next Steps

Stage 1:

Characterization of TinyTPC's energy response at the MeV-scale with radioactive sources
[oy comparing the sources’ expected Compton edge energy with the measured ones].

Stage 2:
Introduction of photosensitive dopant (isobutylene) in LAr and repetition of Stage 1.

Stage 3:
Exploration of optimal doping strategies.
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