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Abstract: We study an extended Proca model with one scalar field and one massive vector

field in one space dimension and one time dimension. We construct the soliton solution

and subsequently compute the vacuum polarization energy (VPE), which is the leading

quantum correction to the classical energy of the soliton. For this calculation, we adopt

the spectral methods approach, which heavily relies on the analytic properties of the

Jost function. This function is extracted from the interaction of the quantum fluctuations

with a background potential generated by the soliton. Particularly, we explore eventual

non-analytical components that may be induced by mass gaps and the unconventional

normalization for the longitudinal component of the vector field fluctuations. By numerical

simulation, we verify that these obstacles do not actually arise and that the real and

imaginary momentum formulations of the VPE yield equal results. The Born approximation

to the The Jost function is crucial when implementing standard renormalization conditions.

In this context, we solve problems arising from the Born approximation being imaginary

for real momenta associated with energies in the mass gap.

Keywords: soliton; Proca model; vacuum polarization energy; potential scattering; Jost

function; threshold cusps

1. Introduction

We consider solitons as static finite energy solutions to non-linear field equations [1–3].

Examples for these solutions are Skyrmions [4,5], monopoles in (3 + 1) dimensions and

vortices, and strings and lumps in (2 + 1) dimensions. There are numerous applications in

various branches of physics: in cosmology [6], condensed matter physics [7,8], as well as

hadron and nuclear physics [9]. We point to those textbooks and review articles for more

details and further references.

The field equations minimize classical energy. In particle physics applications, this

energy represents the leading contribution to the particle masses. Since the early studies [10]

of baryon properties in the Skyrme model, it is known that these predictions exceed the

actual masses by 30% or more. It has therefore been conjectured that quantum corrections

reduce these predictions appropriately [11]. Unfortunately, the Skyrme model is not a

renormalizable theory and these corrections cannot be determined unambiguously. To

nevertheless gain insight on whether such corrections can cause the conjectured effect, it

is appropriate to investigate the vacuum polarization energy (VPE), which is the leading

quantum correction to the classical soliton energy in a renormalizable theory. Moreover,

the Skyrme model with pion fields only has various deficiencies when it comes to the

description of baryon properties. These deficiencies are overcome by adding massive vector

mesons (ρ, ω) [9,12,13], which are described by Proca fields that interact with the pion

fields. This makes the exploration of the VPE for interacting Proca fields in renormalizable

field theory a very worthwhile topic.
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The VPE is the renormalized shift of the zero point energies for the quantum fluctua-

tions about the soliton background. For a static background, the bosonic VPE is formally

given by

EVPE =
1

2 ∑
k

(
ωk − ω

(0)
k

)
+ ECT . (1)

Here, ωk and ω
(0)
k are the energy eigenvalues of the fluctuations about the background

of the soliton and the translationally invariant vacuum, respectively. Furthermore, ECT is

the counterterm contribution that implements the renormalization. It is part of the model

definition but needs to be adjusted at each order in the perturbation/loop expansion.

It has been corroborated that spectral methods, which utilize scattering data for the

quantum fluctuations about the static potential generated by the soliton are a very efficient

technique to compute the VPE [14]. This is especially the case for implementing standard

renormalization conditions because the Born series of the scattering data is equivalent to

the Feynman series of the one-loop effective action. Even more, the analytic properties of

the Jost function, which is a particular solution to the scattering wave-equation, allow us to

express the VPE as a single integral over imaginary momenta and make the method even

more efficient [15]. For a particular model, it is therefore compulsory to ensure that there is

no obstacle for the underlying analytic continuation. Here, we will discuss two situations

for which such obstacles seem to exist.

The VPE can also be computed from scattering formulations of Green’s functions [16,17].

Alternatively, the fluctuation determinant is directly computed (or estimated) within heat

kernel methods [18] in conjuction with ζ-function renormalization [19] or by the world line

formalism [20]. Other approaches relate the quantum fields with and without the soliton

background by a displacement operator [21], conduct derivative expansions [22], or apply

the Gel’fand-Yaglom method [23], just to name a few other techniques. The implementation

of standard renormalization conditions is not too obvious in most of these approaches. This

is even more the case when these techniques are applied to models that contain quadratic

divergences. Also, the unbiased reader should be able to easily assess the superior efficiency

of the spectral methods when comparing the discussion in Section 3 with, for example,

the heat kernel formalism detailed in the appendix of Ref. [24] or the lengthy and highly

technical calculations in Ref. [21].

After this introduction, we will discuss two subtleties arising from (i) the Born ap-

proximation in the presence of a mass gap and (ii) the quantization of the Proca field. We

will then briefly review the spectral methods approach to the VPE in Section 3. We will

especially explain the effectiveness of the imaginary momentum formulation. In Section 4,

we will consider a toy model for two scalar fields with different masses. We will present a

solution to the above-mentioned Born obstacle, and, by numerical simulation, we will verify

that the real and imaginary momentum formulations yield identical results. In Section 5,

we will introduce a Proca model in D = 1 + 1 space–time dimensions and construct its

soliton solution. Thereafter, in Section 6, we will investigate the scattering problem in that

model with emphasis on the role of the non-standard normalization of the longitudinal

mode. Section 7 contains our numerical results for the VPE of the Proca soliton. We will

briefly summarize and outline related future projects in Section 8.

2. Particular Subtleties

For the scattering problem for two (or more) fields with masses m1 ≤ m2, the Born

approximation to the sum of the phase shifts contains a contribution proportional to

1√
k2 − m2

2 + m2
1

∫
dx v>(x) ,
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where v> is the self-interaction potential of the heavier particle. Obviously, this is ill-defined

(or imaginary) for momenta k ∈
[
0,
√

m2
2 − m2

1

]
which correspond to energies in the mass

gap. However, the Born approximation is a crucial element for implementing standard

renormalization conditions. In Ref. [25], this problem was circumvented by analytical

continuation k = it so that the denominator becomes ±i
√

t2 + m2
2 − m2

1 and is only needed

for t ≥ m1. Hence, it is important to verify the validity of the analytic continuation when

computing the VPE. It is needless to mention that the mass gap problem is also present in

the above mentioned vector meson extensions of the Skyrme model as ρ and ω are more

than five times as heavy as the pion.

We face another possible obstacle in the Proca model for a vector meson field Vα with

mass µ. For a free Proca field in D = 1 + 1 dimensions, this field only has temporal (V0)

and longitudinal (V1) components. The former is not dynamical (its time derivative does

not appear in the Lagrangian) and its elimination yields an extended relation between the

field velocity and the canonical momentum:

Π1(t, x) = V̇1(t, x) +
1

µ2
Π′′

1 (t, x) . (2)

Here, and in what follows, dots and primes are time and space derivatives, respectively.

The second term in Equation (2) requires the field decomposition

V1(t, x) =
∫

dk

2π(2ω)

ω

µ

[
a†(k)e−i(ωt−kx) + a(k)ei(ωt−kx)

]
, (3)

so that a(k) and a†(k) are, respectively, annihilation and creation operators for vector

particles with energy ω =
√

k2 + µ2. While the energy factor in the integration measure is

standard (it is usually compensated by the very same factor in the commutation relation[
a(k), a†(k′)

]
= 2π(2ω)δ(k − k′)), its appearance in the ratio ω

µ is unconventional and the

corresponding square root discontinuity might hamper the analytic continuation in the

momentum variable k.

3. Brief Review of Spectral Methods

The formal sum in Equation (1) can be expressed as a discrete sum over bound

states plus a continuum integral over scattering states. The latter are labeled by their

momentum k, with ωk =
√

k2 + m2. That integral is conveniently evaluated using the

Friedel–Krein formula [26]

∆ρ =
1

π

dδ(k)

dk
(4)

for the change in the density of states, ∆ρ, generated by the soliton background. Here, we

imply the sum over channels. For the projects mentioned in the introduction it suffices to

consider the case of one space dimension. When the potential is reflection invariant, this

sum is over channels with spatially symmetric and anti-symmetric wave-functions and

δ(k) is the sum of the respective phase shifts. When needed, we will refer to this sum as the

total phase shift. We then evaluate the continuum part in Equation (1) as an integral with

the measure ∆ρdk

EVPE =
1

2

b.s.

∑
j

ωj +
∫

dk

2π

√
k2 + m2

dδ(k)

dk
+ ECT

=
1

2

b.s.

∑
j

ωj +
∫ ∞

0

dk

2π

√
k2 + m2

d

dk
[δ(k)− δB(k)] + EFD + ECT
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=
1

2

b.s.

∑
j

(ωj − m) +
∫ ∞

0

dk

2π

[√
k2 + m2 − m

] d

dk
[δ(k)− δB(k)] + EFD + ECT . (5)

The discrete sum now only involves the isolated bound state energies |ωj| < m. In the

second line, we have subtracted the leading terms of the Born series for the phase shift.

The (smallest) number of these terms is determined such that the momentum integral

is finite. The Born contributions to the VPE can alternatively be expressed as Feynman

diagrams, EFD, which we use to add back the preceding subtractions under the integral.

These diagrams are regularized by standard means (e.g., dimensional regularization) and

EFD + ECT remains finite when the regulator is removed. For boson models in one space

dimension, the only required Feynman diagram is proportional to the spatial integral

over the background potential. Thus we can implement the no-tadpole renormalization

condition in the form EFD + ECT = 0. In the third line of Equation (5), we have used

Levinson’s theorem that relates the phase shift at zero momentum to the number of bound

states (see Ref. [27] for the formulation of Levinson’s theorem in one space dimension).

A central element of potential scattering theory is the Jost solution fk(x). It solves the

wave-equation subject to the asymptotic condition

lim
x→∞

fk(x) e−ikx = 1 (6)

and is analytic in the upper half momentum plane, i.e., for Im(k) ≥ 0 [28]. For spatially

symmetric potentials, the Jost function F(k) is extracted from fk(0) and f ′k(0). (Below we

will give more details when discussing particular models.) Obviously, the Jost function is

also analytic for Im(k) ≥ 0, and for real k its phase is the scattering phase shift

F(k) = |F(k)|e−iδ(k) .

While the modulus |F(k)| is an even function of real k, the phase is odd. This can be

easily understood from the asymptotic condition above: since the wave-equation is real,

that condition implies that k → −k corresponds to complex conjugation. For an arbitrary

function g = g(k2), we thus have

∫ ∞

0

dk

2π
g(k2)

d

dk
[δ(k)]B =

i

2

∫ ∞

−∞

dk

2π
g(k2)

d

dk
[ln F(k)]B ,

where the subscript indicates the necessary subtractions from the Born series. We use the

Jost function to compute Equation (5) by completing the contour in the upper half k-plane.

The Born subtraction ensures that there is no contribution from the semi-circle at |k| → ∞. It

remains to collect the residues and bypass the branch-cut along the imaginary axis induced

by g(k2) =
√

k2 + m2 − m. Another well-established property of the Jost function is that it

has single roots which are located on the imaginary axis at the wave-numbers of the bound

state energies [28]: κj =
√

m2 − ω2
j which implies

d

dk
ln F(k) ≈ 1

k − iκj
for k ≈ iκj .

Hence, the pole contributions cancel against the (explicit) bound state sum in Equation (5).

The branch cut is along the imaginary axis starting at k = im. We introduce k = it, recognize

that the square root discontinuity is 2i
√

t2 − m2, and finally obtain

EVPE =
∫ ∞

m

dt

2π

t√
t2 − m2

[ln F(it)]B (7)
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for a boson theory in D = 1 + 1 dimensions within the no-tadpole renormalization scheme.

In the renowned sine-Gordon and ϕ4-kink models, the total Jost functions are known [15]:

FsG(it) =
t − m

t + m
and Fkink(it) =

t − m

t + m

2t − m

2t + m
.

Direct integration yields the well-established results for the VPE: −m
π and m

12π

(√
3π − 18

)
,

respectively [1]. This calculation clearly illustrates the effectiveness of the imaginary

axis formulation.

4. Real Axis Calculation

As we will see, the effectiveness of the imaginary axis formulation is even more

pronounced for systems with coupled scattering channels and different mass parameters.

We will always consider two such channels with the convention that the mass parameters

are ordered m1 ≤ m2. The other case is merely a matter of re-labeling.

The imaginary axis formulation has already been established some time ago [25].

Nevertheless, and precisely because of that, it is necessary to verify that it agrees with

the real axis approach, Equation (1). The latter is hampered not only by the Born obstacle

mentioned in the introduction but also by the proper identification of the phase shift, which

in the direct numerical simulation is obtained in the interval [−π, π]. As will be discussed

below, with the existence of threshold cusps that endeavor may be cumbersome. We will

investigate these issues within a toy model defined by a spatially symmetric 2 × 2 potential

matrix V(x) = (vij(x)). We combine the two fields ϕ1 and ϕ2 into a two-component array

ψ = (ϕ1, ϕ2)
t which obeys the wave-equation

ψ̈(x, t)− ψ′′(x, t) = −M2ψ(x, t)− V(x)ψ(x, t) . (8)

with the diagonal mass matrix M2 = diag
(
m2

1, m2
2

)
. Since the potential is static, we can

factorize the time dependence as ψ(x, t) = ψk(x)e−iωt where k =
√

ω2 − m2
1 is a unique

label. Furthermore, we define a matrix of Jost solutions where the entries of a particular

column are the two fields ϕ1 and ϕ2, while the different columns refer to solutions to the

wave-equation that asymptotically have outgoing plane waves for only one of the two

fields. To be precise, we write

Fk(x) = Zk(x)

(
eikx 0

0 eik2x

)
with k2 = k2(k) ≡ k

√
1 − m2

2 − m2
1

[k + i0+]2
. (9)

The particular form of the dependent momentum k2 ensures the pertinent behavior under

k → −k (symmetric in the gap, but anti-symmetric outside) and that all additional singu-

larities will reside in the lower half complex k-plane [25]. The coefficient matrix is subject

to the second order differential equation

Z′′
k (x) = −2Z′

k(x)D(k) +
[

M2, Zk(x)
]
+ V(x)Zk(x) with D(k) = i

(
k 0

0 k2

)
. (10)

The asymptotic condition, Equation (6), translates into limx→∞ Zk(x) = 1. The Born series

is straightforwardly constructed by iterating Zk(x) = 1+ Z
(1)
k (x) + Z

(2)
k (x) + . . ., where

the superscripts refer to the order in the background potential V(x). That is, V(x) is the

source for Z
(1)
k (x), V(x)Z

(1)
k (x) is the source for Z

(2)
k (x) and so on. All Z

(l)
k (x) vanish at

spatial infinity.
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The scattering wave-functions are linear combinations of Fk(x) and F∗
k (x) = F−k(x)

and the relative weight is the scattering matrix. In the anti-symmetric (−) and symmetric (+)

channels, the wave-function and its derivative, respectively, vanish at the center of the

potential. From that, we obtain the scattering matrices. Since we are only interested in the

total phase shift, we consider det[S±(k)] = det
[

F±(−k)F−1
± (k)

]
with the Jost matrices

F+(k) = lim
x→0

[
Z′(k, x)D−1(k) + Z(k, x)

]
and F−(k) = lim

x→0
Z(k, x) . (11)

Finally, the total phase shift is given by

δ(k) = −Im(lndet[F+(k)F−(k)]) . (12)

One reason for the i0+ prescription in Equation (9) is to ensure that eik2x decays exponen-

tially for momenta in the mass gap regardless of the sign of k. For that reason, we can use

Equation (12) also in that momentum regime when the second particle channel is closed.

The fact that the wave-function in the symmetric channel has a boundary condi-

tion on its derivative leads to a slight modification of Levinson’s theorem in one space

dimension [27]:

δ(0) = π

(
n − 1

2

)
. (13)

As δ(k) is the sum of the phase shifts in the symmetric and anti-symmetric channels, so is n

the total number of bound states from these two channels.

For later consideration, the Born approximation is extracted from

lim
x→0

trln
([

Z(1)′(k, x)D−1(k) + 1+ Z(1)(k, x)
][

1+ Z(1)(k, x)
])

≈ lim
x→0

tr
(

Z(1)′(k, x)D−1(k) + 2Z(1)(k, x)
)

.

Multiplying the first order expansion of Equation (10) with D−1(k) from the right and

integrating from zero to infinity yields (note that tr
([

M2, Z(1)(k, x)
]

D−1(k)
)
= 0).

δB(k) = −1

k

∫ ∞

0
dx v11(x)− 1

k2

∫ ∞

0
dx v22(x) . (14)

Of course, this expression is only well defined outside the mass gap where k2 ∈ R.

In numerical simulations, Equation (12) only produces results in the interval [−π, π]

which, in particular when there are bound states, does not produce a smooth function of k

that vanishes as k → ∞. To this end, we apply a smoothening algorithm by evaluating

Equation (12) on a dense grid for discretized momenta and add multiples of 2π on identified

intervals such that the difference of the phase between two neighboring momenta does

not exceed 1.05π. This produces a smooth function to which we eventually add ±2π

to accommodate the large k limit. However, this procedure is delicate when the actual

phase shift indeed has sharp cusps as it is the case at the top end of the mass gap or for

Feshbach resonances [29] just below the mass gap. It may therefore still happen that this

smoothening procedure fails to yield the correct phase shift within the gap. We can test

for that by inverting Levinson’s theorem, Equation (13): We determine the bound state

energies numerically by applying a shooting method to the differential equation for ψiκ(x)

such that the wave-function is continuous and vanishes exponentially as x → ∞. This

is possible only for discrete values of |ωj| ≤ m1. Once we have found these bound state

energies, we also know n and thus the correct value δ(0). If it does not match the result

from the smoothing method, we need to add (or subtract) appropriate integer multiples of

2π(m1 − m2)/2π = m1 − m2 to the VPE. Eventually, we will also probe the so-computed
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VPE against the imaginary axis calculation. In Figure 1, we display characteristic results

for this smoothening procedure for the toy model potential vij(x) = vije
−x2

. For attractive

potentials, there are no bound states and the original and smoothened phases are identical.

On the other hand, for (strongly) attractive potentials, this need not be the case. For the

example with the attractive potential used in Figure 1, we find bound states at ω1 = 1.256

and ω2 = 1.960 in the symmetric and anti-symmetric channels, respectively. Hence, we

should have δ(0) = 3
2 π, as is obeyed by the smoothened phase. Yet, the violent behavior of

the original phase shift indeed indicates that there are numerical subtleties.

Figure 1. Total phase shift in the toy model for repulsive (left) and attractive (right) potentials. The

parameters for the repulsive case are m1 = 1.5, m2 = 3.5, v11 = 4.0, v22 = 2.5, and v12 = v21 = 2.0. In

that case, the two lines are on top of each other. The attractive potential is parameterized by m1 = 2.0,

m2 = 2.5, v11 = −4.0, v22 = −3.0 and v12 = v21 = −0.5.

We next address the problem associated with the Born subtraction. Obviously we can-

not use the exact Born approximation, Equation (14), in Equation (5). Rather, we consider

ẼVPE =
1

2

b.s.

∑
k

(ωk − m1)−
∫ ∞

0

dk

2π

k√
k2 + m2

1

[δ(k)− ∆(k)] , (15)

with ∆B(k) = − 1
k

∫ ∞

0 dx[v11(x) + v22(x)]. We will show that the difference to EVPE can

be calculated in two ways that yield identical results: (i) by a reparameterization of the

momentum integral and (ii) the difference of two Feynman diagrams.

Since the Born approximation only concerns the diagonal elements of the potential

matrix, it suffices to consider a single channel problem with a spatially symmetric potential

v(x) in the channel with the heavier mass. With the definition ⟨V⟩ = −
∫ ∞

0 dx v(x), the

corresponding VPE is

E2 =
1

2

b.s.

∑
j

(
ωj − m2

)
−

∞∫

0

dk

2π

k√
k2 + m2

2

[
δ(k)− ⟨V⟩

k

]

=
1

2

b.s.

∑
j

(
ωj − m2

)
−

∞∫

√
m2

2−m2
1

dq

2π

q√
q2 + m2

1


δ

(√
q2 − m2

2 + m2
1

)
− ⟨V⟩√

q2 − m2
2 + m2

1


 ,

with the new integration variable q =
√

k2 − m2
1 + m2

2. According to Equation (15), we

would calculate

Ẽ2 =
1

2

b.s.

∑
j

(
ωj − m1

)
−

∞∫

0

dq

2π

q√
q2 + m2

1

[
F(q)− ⟨V⟩

q

]
,
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with

F(q) =





n2π = δ(0) for q2 ≤ m2
2 − m2

1

δ
(√

q2 − m2
2 + m2

1

)
for q2 ≥ m2

2 − m2
1 ,

where n2 is the number of bound states in that channel and the smoothening produces the

q2 ≤ m2
2 − m2

1 part. The contribution of that part is obtained from

√
m2

2−m2
1∫

0

dq

2π

n2πq√
q2 + m2

1

=
n2

2

√
q2 + m2

1

∣∣∣
√

m2
2−m2

1

0
=

1

2

b.s.

∑
j

(m2 − m1) .

This allows us to write

Ẽ2 =
1

2

b.s.

∑
j

(
ωj − m2

)
+

√
m2

2−m2
1∫

0

dq

2π

⟨V⟩√
q2 + m2

1

−
∞∫

√
m2

2−m2
1

dq

2π

q√
q2 + m2

1

[
δ

(√
q2 − m2

2 + m2
1

)
− ⟨V⟩

q

]
,

resulting in

E2 − Ẽ2 = −

√
m2

2−m2
1∫

0

dq

2π

⟨V⟩√
q2 + m2

1

+

∞∫

√
m2

2−m2
1

dq

2π

q√
q2 + m2

1


 ⟨V⟩√

q2 − m2
2 + m2

1

− ⟨V⟩
q




=

∞∫

0

dq

2π


 ⟨V⟩√

q2 + m2
2

− ⟨V⟩√
q2 + m2

1


 =

⟨V⟩
2π

ln
m1

m2
. (16)

Next, we look at the one-loop effective action arising from the fluctuations and single out

the O(V) contribution:

∆A(1) =
i

2
Tr

[(
∂2 + m2

1 − iϵ
)−1

v −
(

∂2 + m2
2 − iϵ

)−1
v

]

=
i

2

∫
d2k

(2π)2

[(
−k2 + m2

1 − iϵ
)−1

−
(
−k2 + m2

2 − iϵ
)−1

]
ṽ(0) ,

where ṽ is the Fourier transform of v(x) so that ṽ(0) =
∫

d2x v(x) = −2⟨V⟩T, with

T denoting an (infinitely large) time interval. The above integral is straightforwardly

evaluated by Wick rotation yielding

∆A(1) = −⟨V⟩T
2π

ln
m1

m2
. (17)

The corresponding effective energy matches Equation (16). Hence, using Equation (15)

for the real axis calculation and correcting it with Equation (16) properly implements the

no-tadpole condition. Essentially, we regulate the ultra-violet divergence from the heavier

particle with a Feynman diagram with the lighter particle in the loop. We may consider

this treatment as a variant of the Pauli–Villars regularization scheme. In the two channel

problem, we write the correction as

Evac − Ẽvac =
⟨V⟩
2π

ln
m<

m>

with ⟨V⟩ = −
∫ ∞

0
dx v>(x) . (18)
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Here, the subscripts refer to the smaller (<) and larger (>) of the two masses and v> again

is the self-interaction component of potential matrix for the heavier particle.

The goal is to compare the numerical results from the approach outlined above to

the imaginary momentum procedure discussed in Section 3. The latter has been general-

ized to the two-component system in Ref. [25]. We need to solve Equation (10) with the

replacements k → t = ik and k2 → i
√

t2 + m2
2 − m2

1 to write the VPE as

Evac ≡
1

2π

∫ ∞

0
dτ
[
ν(t)− ν(1)(t)

]
t=
√

τ2+m2
1

, (19)

with

ν(t) ≡ ln det[F+(it) F−(it)] and ν(1)(t) =
∫ ∞

0
dx


v11(x)

t
+

v22(x)√
t2 + m2

2 − m2
1


 . (20)

Clearly, there is no singularity in the Born approximation, ν(1). We also note that the

F±(it) are real-valued matrices. In Table 1, we compare the results for the two scenarios of

Figure 1.

Table 1. Comparison of real and imaginary axis calculation of the VPE for the Gaussian potential

matrix vij = vije
−x2

. Model parameters are as in Figure 1.

Ẽvac Evac − Ẽvac Evac Evac

Equation (15) Equation (18) Equation (19)

repulsive −0.5102 0.4780 −0.0322 −0.0324
attractive −0.0872 −0.0944 −0.1817 −0.1821

The agreement of the two approaches could not be clearer. We have performed

numerous such comparisons [30] and never obtained mismatches in the leading three

significant digits after rounding the fourth one.

The considerable lower cost of computing time makes the imaginary axis approach

significantly more efficient. This is mainly caused by the smoothing procedure, which

requires a dense discretization for the real momenta. Also the fact that the real axis approach

solves a differential equation for a complex matrix rather than a real one adds computing

time. On top, there is the advantage that the imaginary axis approach does not require us to

explicitly find the bound state energies. Nevertheless, this toy model exercise impressively

confirms the equivalence of the real and imaginary momentum computations of the VPE,

even in the presence of potential branch cuts arising from energy thresholds. We will use

that knowledge to explore the potential non-analyticity in a vector meson Proca model in

Section 6. But, first we need to construct that soliton.

5. Proca Soliton

We consider a Lagrangian in D = 1 + 1 space time dimensions with two real fields: a

scalar (Φ) and a massive vector meson (Vα)

L =
1

2
∂αΦ∂αΦ − 1

4

(
∂αVβ − ∂βVα

)2
+

µ2

2
VαVα − 1

2

(
Φ2 − 1

)2
− g
(

1 − Φ2
)

ϵαβVα∂βΦ . (21)

The scale is set by the scalar meson mass mϕ = 2, the scalar self-interaction is that of the

ϕ4 kink model, and the vector meson mass is µ. The coupling is constructed such that it is

at least cubic in the fluctuations about the possible vacuum configurations (Φ0 = ±1 and

Vα
0 = 0) and the ϵ tensor ensures that the field equations are consistent with ∂αVα = 0. The
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vector meson mass µ and the coupling constant g are the only tunable model parameters.

We have scaled variables, parameters, and fields to dimensionless quantities. This produced

an overall factor for L which we do not explicitly write because it would only matter if

we compared classical and quantum energies quantitatively. The model can be considered

as the one-dimensional reduction of the Skyrme model with an ω meson [31]. This also

motivates the soliton ansatz with a profile function only for the time component of the

vector meson field, Vα = (a(x), 0) and Φ = ϕ(x). The classical energy functional becomes

Ecl =
1

2

∫
dx

{
ϕ′2 +

(
ϕ2 − 1

)2
− a′2 − µ2a2 + 2g(1 − ϕ2)aϕ′

}
. (22)

The variational principle yields the static equations

a′′ = µ2a − g
(

1 − ϕ2
)

ϕ′ and ϕ′′ = 2ϕ
(

ϕ2 − 1
)
− g
(

1 − ϕ2
)

a′ . (23)

For g = 0, they are solved by the ordinary kink, ϕK = tanh(x) and a ≡ 0. Stable soliton

solutions for g ̸= 0 should also connect the two possible vacua ϕ0 = ±1 at positive and

negative spatial infinity. This implies that ϕ is odd under the reflection around its center

x0 with ϕ(x0) = 0. We choose x0 = 0 and find that a(−x) = a(x). We solve Equation (23)

with a shooting method on the positive half-line, x ≥ 0 subject to the boundary conditions

ϕ(0) = 0 , a′(0) = 0 and lim
x→∞

ϕ(x) = 1 , lim
x→∞

a(x) = 0 . (24)

The profiles on the negative half-line, x ≤ 0, can be constructed via the above discussed

reflection properties. A typical solution is shown in the left panel of Figure 2.

Figure 2. Soliton profiles for g = 1.0 and µ = 1.5 (left panel). The inlay corroborates that a′(0) = 0.

Also shown are the fitted profiles for ϕ (middle panel) and a (right panel) in comparison with the

solutions to Equation (23), labeled ‘DEQ’.

For all cases considered, we have verified that

∫ ∞

0
dx
{

ϕ′2 − a′2
}
=
∫ ∞

0
dx

{(
ϕ2 − 1

)2
− µ2a2

}

and
∫ ∞

0
dx
{

a′2 + µ2a2 − g(1 − ϕ2)aϕ′
}
= 0 (25)

are fulfilled. The first equation reflects Derrick’s theorem [32], while the second is a

consequence of stability under scaling the vector meson profile. Numerically, these profiles

are only known at prescribed values of the coordinate x. However, later in the scattering

problem we will apply an adaptive step size algorithm which requires the profiles at other

x values as well. Rather than implementing a (CPU time costly) interpolation, we choose to

fit the profiles to analytic functions. A good choice is

ϕfit(x) = a0 tanh(a1x) + a2 tanh(a3x) and afit(x) = b0e−b1x2
+ b0e−b1x4

. (26)
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Even though there is some arbitrariness (the fit algorithm consistently produced a0 + a2 ≈ 1,

see also Equation (33) below) in ϕfit(x), we find fitting parameters that perfectly match

the solution from the differential equation, as seen in the middle panel of Figure 2. The fit

to the vector profile shows some minor deviations from the actual solution, in particular

asymptotically as may be observed from the right panel in the same figure. In later

applications, we actually fit a′(x) directly. In any event, we are typically able to construct

fits that violate the identities in Equation (25) by only about one in a thousand or less. This

can also seen from the data for the classical mass in Table 2.

Table 2. The classical energy, Equation (22), for the solutions to the field equations, (23) and the fitted

profiles, Equation (26), as functions of the coupling constant g and two values of the vector meson

mass m.

µ g 0.4 0.8 1.2 1.6 2.0

1.5 Ecl 1.356 1.422 1.532 1.679 1.858
Efit 1.356 1.423 1.533 1.680 1.860

2.5 Ecl 1.343 1.372 1.419 1.484 1.564
Efit 1.343 1.372 1.419 1.484 1.566

From that table, we see that the classical energy increases with the coupling constant.

A bit more surprising is that it decreases as the vector meson mass gets larger. We may

explain this by noting that for large µ the derivative term a′2 may be omitted against µ2a2

and the field equation may be locally approximated by

a ≈ g

µ2

(
1 − ϕ2

)
ϕ′ .

Then, the vector meson profile is no longer dynamical and we may approximate the energy

functional by

Ecl ≈
1

2

∫
dx

{
ϕ′2 +

(
ϕ2 − 1

)2
+

g2

µ2
(1 − ϕ2)2ϕ′2

}
,

indicating that with growing µ, we are left with the pure kink model, which has classical

energy E
(K)
cl = 4

3 for the units used here.

6. Scattering Problem in Proca Model

We formulate the scattering problem by introducing small amplitude fluctuations

about the above constructed soliton:

Φ(x, t) = ϕ(x) + e−iωtη(x) , V0(x, t) = a(x) + e−iωtu0(x) and V1(x, t) = e−iωtu1(x) . (27)

The time dependence factorizes because the soliton is static and we omit to explicitly write

the frequency (ω) dependence of the fluctuations η, u0 and u1. With this parameterization,

the continuity equation ∂αVα = 0 reads u0 = − i
ω u′

1. This allows us to eliminate u0 from

the linearized field equations and obtain

u′′
1 =

(
µ2 − ω2

)
u1 − igω

(
1 − ϕ2

)
η (28)

η′′ =
(

4 − ω2
)

η + 6
(

ϕ2 − 1
)

η + 2gϕa′η +
i

ω
µ2
(

1 − ϕ2
)

u1 + g2
(

1 − ϕ2
)2

η . (29)

We immediately observe that the scattering problem is non-Hermitian. Rather, the coeffi-

cient functions of η in the differential equation for u1 and its counterpart in the differential
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equation for η differ by factors ω
µ . When we introduce the scaled vector fluctuation u1 via

(see also Section 6 in Ref. [13]),

u1 = −i
ω

µ
u1 , (30)

the fluctuation equations indeed assume a Hermitian form,

u′′
1 =

(
µ2 − ω2

)
u1 + gµ

(
1 − ϕ2

)
η

η′′ =
(

4 − ω2
)

η +

[
6
(

ϕ2 − 1
)
+ 2gϕa′ + g2

(
ϕ2 − 1

)2
]

η + gµ
(

1 − ϕ2
)

u1 . (31)

We observe the important feature that the rescaling in Equation (30) compensates for the

unconventional normalization for the longitudinal component in Equation (3). That is,

(without interactions) u1 is the wave-function of a single particle state that contributes
1
2 ω to the VPE. We find that the normalization issue and the construction of a Hermitian

scattering problem are simply the two sides of the very same medal.

With this scaling, the continuity equation is as simple as µu0 = −u′
1. Using the soliton

Equations (23), it is straightforward to verify that the above fluctuation equations with

ω = 0 are solved by η = ϕ′ and u1 = −µa. The latter relation corresponds to u0 = a′.
Hence, this zero mode is nothing but the (infinitesimal) translation of the soliton. Observing

a zero mode in the bound state spectrum will further test the numerical simulations in

Section 7.

For µ ≥ 2, we can now straightforwardly apply the formalism of Section 4 with

m1 = 2, m2 = µ and the potential matrix

V =


6
(
ϕ2 − 1

)
+ 2gϕa′ + g2

(
ϕ2 − 1

)2
gµ
(
1 − ϕ2

)

gµ
(
1 − ϕ2

)
0


 . (32)

In the other case, µ ≤ 2, we set

D(k) = i

(
k1 0

0 k

)
with k1 = k1(k) = k

√

1 − 4 − µ2

[k + i0+]2

in Equation (10) and replace m1 → µ in Equation (15).

7. Numerical Results

In this section, we present and discuss our numerical results for the VPE of the Proca

soliton constructed above. We first mention that for all scenarios considered, we observe

an energy eigenvalue in the symmetric channel at around ω0 ≈ 0.01 . . . 0.03. This is the

translational zero mode. It is not exactly at zero because of the discrepancy between

the actual soliton profiles and the parameterizations in Equation (26). This discrepancy

provides an additional measure for the accuracy of the fit. Minor changes (for example

using the fits from g = 1.2 for g = 1.0) in the fitted profiles fail to produce a low-energy

bound state at all.

We continue with the comparison of the real and imaginary momentum formalism

as for the toy model in Section 4. Six cases are listed in Table 3. For µ = 2.5, there is no

contribution associated with the Feynman diagram correction in Equation (18) because

then the self-interaction potential for the heavier particle is zero. The table exhibits perfect

agreement of the two approaches. Typically, we observe differences at the fourth significant

digit which, however, is out of the realm of the numerical precision. Obviously, it is

possible to compute the VPE with both formalisms, and, as expected from the analysis in
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the previous chapter, the normalization of the longitudinal component of the vector meson

field does not hamper the analytic continuation.

Table 3. Comparison of the results from the real and imaginary momentum computations of the

VPE in the Proca model for various model parameters. Ẽb.s., Ẽcon., and Ẽvac, respectively, refer to the

bound state, continuum pieces, and their sum in Equation (15), while Evac − Ẽvac is the Feynman

diagram correction from Equation (18). Finally, the last column is the imaginary axis result from

Equation (19).

Ẽb.s. Ẽcon. Ẽvac Evac − Ẽvac Evac Evac

µ = 1.5 , g = 1.0 −0.735 0.360 −0.375 −0.273 −0.648 −0.649
µ = 1.5 , g = 1.2 −0.735 0.353 −0.382 −0.272 −0.649 −0.649
µ = 1.5 , g = 1.5 −0.757 0.371 −0.387 −0.266 −0.653 −0.653

µ = 2.5 , g = 1.0 −1.146 0.459 −0.687 0 −0.687 −0.687
µ = 2.5 , g = 1.2 −1.164 0.453 −0.711 0 −0.711 −0.711
µ = 2.5 , g = 1.5 −1.172 0.440 −0.732 0 −0.732 −0.732

For the above shown equivalence of the real and imaginary axis calculation, the fitting

functions, Equation (26), are good enough. However, for more quantitative discussions

of the parameter dependence of the VPE, a more ambitious parameterization might be

needed. Also, as mentioned after Equation (26), we directly fit a′ because only that part of

the vector profile enters the differential Equation (31). We have considered a number of

alternative parameterizations and found

ϕ(x) ≈ a0 tanh(a1x) + (1 − a0) tanh(a2x) and a′(x) ≈
(

b0 + b1x2 + b2x4
)

xe−b3x2
(33)

to be most pertinent. We have assessed that from the predicted zero mode energy eigen-

value. The closer it is to zero, the more reliable is the considered parameterization. In most

of the cases, however, there are only minor differences. For example, the case µ = 1.5

and g = 1.0 yields Evac = −0.658 and −0.649 for Equations (26) and (33), respectively.

Generally, we must allow a parameterization variance of one or two percent.

In Table 4, we present the VPE as a function of the coupling constant g as obtained

from the imaginary axis formulation, Equation (19). After all, we have established its

equivalence with the real axis formulation and it is much more efficient. Nevertheless, we

have verified this equivalence for selected cases.

Table 4. The vacuum polarization energy EVPE for the Proca soliton as a function of the coupling

constant g and for several values of the vector meson mass µ.

g 0.4 0.8 1.2 1.6 2.0

µ = 1.0 −0.655 −0.640 −0.624 −0.611 −0.609
µ = 1.5 −0.662 −0.648 −0.657 −0.663 −0.682
µ = 2.0 −0.670 −0.673 −0.688 −0.712 −0.757
µ = 2.5 −0.670 −0.685 −0.718 −0.759 −0.826
µ = 3.0 −0.673 −0.696 −0.737 −0.804 −0.890

When the scalar field is heavier than the Proca field, the VPE shows only little de-

pendence on the coupling constant. The VPE is not even a monotonous function thereof.

However, in the other regime, µ > 2, the VPE considerably decreases as the coupling

increases. It is a bit surprising that the Proca model VPE is close to the kink VPE (which

in present units is 1
6

(√
3 − 18

π

)
≈ −0.666 [1]) when the Proca field is the lighter one be-

cause lowering the threshold to µ < 2 considerably alters the spectrum. In particular, the

so-called shape mode bound state in the anti-symmetric channel, which in the kink model
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is at ω1 =
√

3 ≈ 1.732, may become unbound. Only when the coupling exceeds a certain

value that bound state re-emerges. This is shown in Table 5.

Table 5. The bound state energy eigenvalues in the anti-symmetric channel as a function of the

coupling constant and the Proca mass µ. Entries with a star (*) indicate that there is second bound

state (in addition to the zero mode) in the symmetric channel just below threshold at min(2, µ).

g 0.4 0.8 1.2 1.6 2.0

µ = 1.5 – – 1.499 1.429 1.330
µ = 2.0 1.720 1.684 ∗ 1.629 ∗ 1.559 ∗ 1.478 ∗

µ = 2.5 1.724 ∗ 1.702 ∗ 1.665 ∗ 1.615 ∗ 1.556 ∗

On the other hand, when µ ≥ 2, we observe a more moderate variation of this energy

eigenvalue. Yet, the VPE changes considerably as a function of the coupling. Hence the

change in the bound state spectrum is (partially) compensated by a similar one of the

continuum spectrum. We view this as a manifestation of Levinson’s theorem, which tells

us that altering the number of bound states has a significant impact on the phase shift.

The argument at the end of Section 5, that the kink model would be assumed for

large µ, however, is not necessarily valid for time-dependent fluctuations because there

is always a frequency ω such that µ2 − ω2 is small and we may not generalize the local

approximation to scattering wave-functions.

8. Conclusions

The main objective of this project has been the investigation of the role of a potential

non-analytic field normalization when computing the vacuum polarization energy (VPE)

for a soliton containing a massive vector meson described by a Proca field. Fortunately, it

quickly became clear that this problem is closely related to the construction of a Hermitian

scattering problem for the quantum fluctuations about the soliton. After that construction,

the VPE calculation turned into that of two coupled scalar fields.

In verifying this conclusion by numerical simulation, we have, as an important byprod-

uct, established the equivalence of the real and imaginary momentum formalisms for

computing the VPE when there is a mass gap. In this context, the main accomplishment

was to avoid the Born approximation because it is imaginary for fluctuation energies

that are within the mass gap. We have used a particular helper function, motivated by

the Pauli–Villars regularization scheme, and showed analytically, as well as numerically,

that the resulting deviation from the no-tadpole condition is compensated by a finite

Feynman diagram.

Numerically, we have then constructed the soliton in a D = 1 + 1 model in which a

Proca field interacts with a scalar one, solved the wave-equations for the small amplitude

fluctuations about the soliton, and extracted the Jost function, both for real and purely

imaginary momenta. This function is central to the spectral methods approach to com-

pute the VPE. These methods are particularly efficient when the fluctuation momenta are

continued to the imaginary axis.

While the classical energy increases with the coupling constant, the VPE either only

varies mildly when the Proca field is the lighter of the two fields or decreases considerably

with the coupling strength when the Proca field is the heavier one. A qualitative comparison

of classical and quantum contributions to the energy would only be possible if the overall

factor of the Lagrangian that acts as a loop-counter and emerges by scaling fields and

coordinates to dimensionless quantities was known.

Here, we have considered the simplest model producing a massive vector meson soli-

ton. Eventually, we should consider higher dimensions and/or allow multiple scalar fields.
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The ultimate goal is the computation of the VPE of the ’t Hooft–Polyakov monopole [33,34].

Though numerically subtle, the heavy Proca mass limit is interesting because with the

derivative coupling in Equation (21) it potentially induces a non-trivial coefficient function

for the kinetic term of the scalar field. For a scenario for which a number of solitons have

recently been constructed, cf. Ref. [35], which also quotes many articles that discuss models

with such solitons. It seems infeasible to directly compute the VPE in such models because

the wave-equations are not of the form in Equation (8) as relative factors between the time

and space derivatives may emerge.
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