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Abstract: We study an extended Proca model with one scalar field and one massive vector
field in one space dimension and one time dimension. We construct the soliton solution
and subsequently compute the vacuum polarization energy (VPE), which is the leading
quantum correction to the classical energy of the soliton. For this calculation, we adopt
the spectral methods approach, which heavily relies on the analytic properties of the
Jost function. This function is extracted from the interaction of the quantum fluctuations
with a background potential generated by the soliton. Particularly, we explore eventual
non-analytical components that may be induced by mass gaps and the unconventional
normalization for the longitudinal component of the vector field fluctuations. By numerical
simulation, we verify that these obstacles do not actually arise and that the real and
imaginary momentum formulations of the VPE yield equal results. The Born approximation
to the The Jost function is crucial when implementing standard renormalization conditions.
In this context, we solve problems arising from the Born approximation being imaginary
for real momenta associated with energies in the mass gap.

Keywords: soliton; Proca model; vacuum polarization energy; potential scattering; Jost
function; threshold cusps

1. Introduction

We consider solitons as static finite energy solutions to non-linear field equations [1-3].
Examples for these solutions are Skyrmions [4,5], monopoles in (3 + 1) dimensions and
vortices, and strings and lumps in (2 + 1) dimensions. There are numerous applications in
various branches of physics: in cosmology [6], condensed matter physics [7,8], as well as
hadron and nuclear physics [9]. We point to those textbooks and review articles for more
details and further references.

The field equations minimize classical energy. In particle physics applications, this
energy represents the leading contribution to the particle masses. Since the early studies [10]
of baryon properties in the Skyrme model, it is known that these predictions exceed the
actual masses by 30% or more. It has therefore been conjectured that quantum corrections
reduce these predictions appropriately [11]. Unfortunately, the Skyrme model is not a
renormalizable theory and these corrections cannot be determined unambiguously. To
nevertheless gain insight on whether such corrections can cause the conjectured effect, it
is appropriate to investigate the vacuum polarization energy (VPE), which is the leading
quantum correction to the classical soliton energy in a renormalizable theory. Moreover,
the Skyrme model with pion fields only has various deficiencies when it comes to the
description of baryon properties. These deficiencies are overcome by adding massive vector
mesons (p, w) [9,12,13], which are described by Proca fields that interact with the pion
fields. This makes the exploration of the VPE for interacting Proca fields in renormalizable
field theory a very worthwhile topic.
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The VPE is the renormalized shift of the zero point energies for the quantum fluctua-
tions about the soliton background. For a static background, the bosonic VPE is formally
given by

1
Eypg = 5 E(Wk - w;@) + Ecr- 1)
k

(0)

Here, wy and w, ™ are the energy eigenvalues of the fluctuations about the background
of the soliton and the translationally invariant vacuum, respectively. Furthermore, Ecr is
the counterterm contribution that implements the renormalization. It is part of the model
definition but needs to be adjusted at each order in the perturbation/loop expansion.

It has been corroborated that spectral methods, which utilize scattering data for the
quantum fluctuations about the static potential generated by the soliton are a very efficient
technique to compute the VPE [14]. This is especially the case for implementing standard
renormalization conditions because the Born series of the scattering data is equivalent to
the Feynman series of the one-loop effective action. Even more, the analytic properties of
the Jost function, which is a particular solution to the scattering wave-equation, allow us to
express the VPE as a single integral over imaginary momenta and make the method even
more efficient [15]. For a particular model, it is therefore compulsory to ensure that there is
no obstacle for the underlying analytic continuation. Here, we will discuss two situations
for which such obstacles seem to exist.

The VPE can also be computed from scattering formulations of Green’s functions [16,17].
Alternatively, the fluctuation determinant is directly computed (or estimated) within heat
kernel methods [18] in conjuction with {-function renormalization [19] or by the world line
formalism [20]. Other approaches relate the quantum fields with and without the soliton
background by a displacement operator [21], conduct derivative expansions [22], or apply
the Gel’'fand-Yaglom method [23], just to name a few other techniques. The implementation
of standard renormalization conditions is not too obvious in most of these approaches. This
is even more the case when these techniques are applied to models that contain quadratic
divergences. Also, the unbiased reader should be able to easily assess the superior efficiency
of the spectral methods when comparing the discussion in Section 3 with, for example,
the heat kernel formalism detailed in the appendix of Ref. [24] or the lengthy and highly
technical calculations in Ref. [21].

After this introduction, we will discuss two subtleties arising from (i) the Born ap-
proximation in the presence of a mass gap and (ii) the quantization of the Proca field. We
will then briefly review the spectral methods approach to the VPE in Section 3. We will
especially explain the effectiveness of the imaginary momentum formulation. In Section 4,
we will consider a toy model for two scalar fields with different masses. We will present a
solution to the above-mentioned Born obstacle, and, by numerical simulation, we will verify
that the real and imaginary momentum formulations yield identical results. In Section 5,
we will introduce a Proca model in D = 1 + 1 space-time dimensions and construct its
soliton solution. Thereafter, in Section 6, we will investigate the scattering problem in that
model with emphasis on the role of the non-standard normalization of the longitudinal
mode. Section 7 contains our numerical results for the VPE of the Proca soliton. We will
briefly summarize and outline related future projects in Section 8.

2. Particular Subtleties

For the scattering problem for two (or more) fields with masses m; < my, the Born
approximation to the sum of the phase shifts contains a contribution proportional to

;/dxw(ﬂ,

\/ K2 —m3 + m?
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where v, is the self-interaction potential of the heavier particle. Obviously, this is ill-defined

(or imaginary) for momenta k € {O, \/m3— mﬂ which correspond to energies in the mass
gap. However, the Born approximation is a crucial element for implementing standard
renormalization conditions. In Ref. [25], this problem was circumvented by analytical

continuation k = if so that the denominator becomes =i/t + m3 — m? and is only needed
for t > my. Hence, it is important to verify the validity of the analytic continuation when
computing the VPE. It is needless to mention that the mass gap problem is also present in
the above mentioned vector meson extensions of the Skyrme model as p and w are more
than five times as heavy as the pion.

We face another possible obstacle in the Proca model for a vector meson field V, with
mass u. For a free Proca field in D = 1 + 1 dimensions, this field only has temporal (V)
and longitudinal (V;) components. The former is not dynamical (its time derivative does
not appear in the Lagrangian) and its elimination yields an extended relation between the
field velocity and the canonical momentum:

Iy (%) = Vi (8, x) + ylzng'(t, x). @)

Here, and in what follows, dots and primes are time and space derivatives, respectively.
The second term in Equation (2) requires the field decomposition

Vl(f, x) _ / 27-[‘(11210) % {a'l' (k)efi(wtka) + a(k)ei(wtka)} , 3)
so that a(k) and af(k) are, respectively, annihilation and creation operators for vector
particles with energy w = \/k? + u?. While the energy factor in the integration measure is
standard (it is usually compensated by the very same factor in the commutation relation
[a(k),at(K')] = 27t(2w)é(k — k'), its appearance in the ratio % is unconventional and the
corresponding square root discontinuity might hamper the analytic continuation in the
momentum variable k.

3. Brief Review of Spectral Methods

The formal sum in Equation (1) can be expressed as a discrete sum over bound
states plus a continuum integral over scattering states. The latter are labeled by their
momentum k, with wy = Vk? + m?. That integral is conveniently evaluated using the
Friedel-Krein formula [26]
for the change in the density of states, Ap, generated by the soliton background. Here, we
imply the sum over channels. For the projects mentioned in the introduction it suffices to
consider the case of one space dimension. When the potential is reflection invariant, this
sum is over channels with spatially symmetric and anti-symmetric wave-functions and
(k) is the sum of the respective phase shifts. When needed, we will refer to this sum as the
total phase shift. We then evaluate the continuum part in Equation (1) as an integral with
the measure Apdk

128 dk ds (k)
_ 2t , ar  Jr2 2
Evpg = 5 ;w] + / o kK +m ik + Ect

18, © dk d
:Ezwj+/() 5 VIE+m?—p[6(k) = 0p(K)] + Erp + Ect
i
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N\H

= 2 2 _ d
; / VR 2 — m] 2 (6(6) — 85(0)) + Erp + Ecr. (5)

The discrete sum now only involves the isolated bound state energies |w;| < m. In the
second line, we have subtracted the leading terms of the Born series for the phase shift.
The (smallest) number of these terms is determined such that the momentum integral
is finite. The Born contributions to the VPE can alternatively be expressed as Feynman
diagrams, Epp, which we use to add back the preceding subtractions under the integral.
These diagrams are regularized by standard means (e.g., dimensional regularization) and
Erp + Ect remains finite when the regulator is removed. For boson models in one space
dimension, the only required Feynman diagram is proportional to the spatial integral
over the background potential. Thus we can implement the no-tadpole renormalization
condition in the form Epp + Ect = 0. In the third line of Equation (5), we have used
Levinson’s theorem that relates the phase shift at zero momentum to the number of bound
states (see Ref. [27] for the formulation of Levinson’s theorem in one space dimension).

A central element of potential scattering theory is the Jost solution fi(x). It solves the
wave-equation subject to the asymptotic condition

—ikx _

lim fi(x)e™ =1 (6)
and is analytic in the upper half momentum plane, i.e., for Im(k) > 0 [28]. For spatially
symmetric potentials, the Jost function F(k) is extracted from f;(0) and f/(0). (Below we
will give more details when discussing particular models.) Obviously, the Jost function is
also analytic for Im(k) > 0, and for real k its phase is the scattering phase shift

F(k) = [F(k)[e ).

While the modulus |F(k)| is an even function of real k, the phase is odd. This can be
easily understood from the asymptotic condition above: since the wave-equation is real,
that condition implies that k — —k corresponds to complex conjugation. For an arbitrary
function ¢ = ¢(k?), we thus have

|7 Se st 260y = 5 [ 2 e0) S InF@)];.,

where the subscript indicates the necessary subtractions from the Born series. We use the
Jost function to compute Equation (5) by completing the contour in the upper half k-plane.
The Born subtraction ensures that there is no contribution from the semi-circle at |k| — oo. It
remains to collect the residues and bypass the branch-cut along the imaginary axis induced
by g(k?) = Vk2 + m? — m. Another well-established property of the Jost function is that it
has single roots which are located on the imaginary axis at the wave-numbers of the bound

state energies [28]: k; =,/ m2 — w}z which implies

d 1

for k ~ in .

Hence, the pole contributions cancel against the (explicit) bound state sum in Equation (5).
The branch cut is along the imaginary axis starting at k = im. We introduce k = it, recognize
that the square root discontinuity is 2iv/#2 — m?2, and finally obtain

© dt t

Evypg = w AR i [InF(it)] 5 (7)
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for a boson theory in D = 1 + 1 dimensions within the no-tadpole renormalization scheme.
In the renowned sine-Gordon and ¢*-kink models, the total Jost functions are known [15]:

t—m t—m2t—m

e =, and el = o

Direct integration yields the well-established results for the VPE: — % and % (\/5 m— 18) ,
respectively [1]. This calculation clearly illustrates the effectiveness of the imaginary
axis formulation.

4. Real Axis Calculation

As we will see, the effectiveness of the imaginary axis formulation is even more
pronounced for systems with coupled scattering channels and different mass parameters.
We will always consider two such channels with the convention that the mass parameters
are ordered m; < my. The other case is merely a matter of re-labeling.

The imaginary axis formulation has already been established some time ago [25].
Nevertheless, and precisely because of that, it is necessary to verify that it agrees with
the real axis approach, Equation (1). The latter is hampered not only by the Born obstacle
mentioned in the introduction but also by the proper identification of the phase shift, which
in the direct numerical simulation is obtained in the interval [—7t, 7r]. As will be discussed
below, with the existence of threshold cusps that endeavor may be cumbersome. We will
investigate these issues within a toy model defined by a spatially symmetric 2 x 2 potential
matrix V(x) = (v;j(x)). We combine the two fields ¢; and ¢, into a two-component array
¥ = (¢1,$2)" which obeys the wave-equation

Plx,t) — 9" (x,t) = —=M*P(x,t) — V(x)p(x, 1) (8)

with the diagonal mass matrix M? = diag(m?2,m3). Since the potential is static, we can

factorize the time dependence as §(x, t) = g, (x)e ! where k = \/w? — m?

label. Furthermore, we define a matrix of Jost solutions where the entries of a particular

is a unique

column are the two fields ¢; and ¢, while the different columns refer to solutions to the
wave-equation that asymptotically have outgoing plane waves for only one of the two
fields. To be precise, we write

e* 0 . _ m3 —m3

The particular form of the dependent momentum k; ensures the pertinent behavior under
k — —k (symmetric in the gap, but anti-symmetric outside) and that all additional singu-
larities will reside in the lower half complex k-plane [25]. The coefficient matrix is subject
to the second order differential equation

Z!'(x) = —2ZL(x)D (k) + [Mz, Zk(x)} FV(x)Z(x)  with  D(k) =i (’5 ]?2) . (10)
The asymptotic condition, Equation (6), translates into limy_,c Z;(x) = 1. The Born series
is straightforwardly constructed by iterating Z;(x) = 1+ Z]Sl) (x) + Z,Ez) (x) + ..., where
the superscripts refer to the order in the background potential V(x). That is, V(x) is the
source for Z,(Cl) (x), V(x)Z]El)(x) is the source for Zéz)(x) and so on. All Z,El) (x) vanish at
spatial infinity.
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The scattering wave-functions are linear combinations of Fi(x) and F(x) = F_(x)
and the relative weight is the scattering matrix. In the anti-symmetric (—) and symmetric (4)
channels, the wave-function and its derivative, respectively, vanish at the center of the
potential. From that, we obtain the scattering matrices. Since we are only interested in the
total phase shift, we consider det[S+ (k)] = det [Fi (—k)F:! (k)} with the Jost matrices

F+(k):lim[Z’(k,x)D’l(k)—i—Z(k,x)} and  F.(k) =lmZ(kx). (1)

x—0

Finally, the total phase shift is given by
0(k) = —Im(Indet[Fy (k)F-(k)]) . (12)

One reason for the i0" prescription in Equation (9) is to ensure that e*2* decays exponen-
tially for momenta in the mass gap regardless of the sign of k. For that reason, we can use
Equation (12) also in that momentum regime when the second particle channel is closed.
The fact that the wave-function in the symmetric channel has a boundary condi-
tion on its derivative leads to a slight modification of Levinson’s theorem in one space

dimension [27]:
5(0) = n<n _ ;) . (13)

As 6(k) is the sum of the phase shifts in the symmetric and anti-symmetric channels, so is n
the total number of bound states from these two channels.
For later consideration, the Born approximation is extracted from

limtrln< [z<1>’(k, )DN (k) + 14 2V (k, x)] [1 +zW(k, x)} )

x—0
~ lim tr(z<1>'(k, )DL (k) + 22D (k, x)) .
x—0
Multiplying the first order expansion of Equation (10) with D~!(k) from the right and
integrating from zero to infinity yields (note that tr( {Mz, ZW (k, x)} D! (k)) =0).

op(k) = —%/Ooodxvu(x)—kl—z/ooodxvzz(x). (14)

Of course, this expression is only well defined outside the mass gap where k, € R.

In numerical simulations, Equation (12) only produces results in the interval [—7t, 77]
which, in particular when there are bound states, does not produce a smooth function of k
that vanishes as k — oco. To this end, we apply a smoothening algorithm by evaluating
Equation (12) on a dense grid for discretized momenta and add multiples of 27t on identified
intervals such that the difference of the phase between two neighboring momenta does
not exceed 1.057t. This produces a smooth function to which we eventually add £27
to accommodate the large k limit. However, this procedure is delicate when the actual
phase shift indeed has sharp cusps as it is the case at the top end of the mass gap or for
Feshbach resonances [29] just below the mass gap. It may therefore still happen that this
smoothening procedure fails to yield the correct phase shift within the gap. We can test
for that by inverting Levinson’s theorem, Equation (13): We determine the bound state
energies numerically by applying a shooting method to the differential equation for i, (x)
such that the wave-function is continuous and vanishes exponentially as x — co. This
is possible only for discrete values of |w;| < m;. Once we have found these bound state
energies, we also know 1 and thus the correct value §(0). If it does not match the result
from the smoothing method, we need to add (or subtract) appropriate integer multiples of
27t(my — my)/2m = my — my to the VPE. Eventually, we will also probe the so-computed
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VPE against the imaginary axis calculation. In Figure 1, we display characteristic results
for this smoothening procedure for the toy model potential v;j(x) = @je*xz. For attractive
potentials, there are no bound states and the original and smoothened phases are identical.
On the other hand, for (strongly) attractive potentials, this need not be the case. For the
example with the attractive potential used in Figure 1, we find bound states at w; = 1.256
and wy = 1.960 in the symmetric and anti-symmetric channels, respectively. Hence, we
should have 6(0) = 5 371, as is obeyed by the smoothened phase. Yet, the violent behavior of
the original phase shift indeed indicates that there are numerical subtleties.

smoothened |

Figure 1. Total phase shift in the toy model for repulsive (left) and attractive (right) potentials. The
parameters for the repulsive case are my = 1.5, my = 3.5, 711 = 4.0,03p = 2.5, and U1p = Up1 = 2.0. In
that case, the two lines are on top of each other. The attractive potential is parameterized by m; = 2.0,
my = 2.5, 511 = —4.0,522 = —3.0and 512 = 521 = —0.5.

We next address the problem associated with the Born subtraction. Obviously we can-
not use the exact Born approximation, Equation (14), in Equation (5). Rather, we consider

1bs

EVPE =5 Z —my) / Wk) — A(k)], (15)
2 T 27T kz + m
with Ag(k) = —1 Jo_ dx[o11(x) + v22(x)]. We will show that the difference to Eypg can

be calculated in two ways that yield identical results: (i) by a reparameterization of the
momentum integral and (ii) the difference of two Feynman diagrams.

Since the Born approximation only concerns the diagonal elements of the potential
matrix, it suffices to consider a single channel problem with a spatially symmetric potential

v(x) in the channel with the heavier mass. With the definition (V) = — fooo dxv(x), the
corresponding VPE is
1y (v)
B2 =5 L(wj—m2) / T [‘5(") - k}
j 2
1% [ dg g (V)
= ;— 1) — 0 2—mi+m? ) - —————,
T2 L« / 27 < 20
f Vo= BRI Vb
with the new integration variable g = |/k? — m% + m3. According to Equation (15), we

would calculate

fo 18 w),

52—2; j —my) O/ZW{F(Q)— q
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E,—E

with
not = 6(0) for g> <mj—m?
F(q) =

5(\/q2—m%+m%> for g% >m3—m?,

where 75 is the number of bound states in that channel and the smoothening produces the
q* < m} — m? part. The contribution of that part is obtained from

)
my —my

dg mymgq  ny [ 2‘\/’”%*’"% _ 128
/ M T2y 2 VT M =5 Llma —m).
0 q° +mjq j

This allows us to write

b.s.
Ez ;Z(w]-—mz) + / di <V>
]

dq 9 2 2 (V)
- / — |5/ gE—m5+m? ) — |,
27 /2+m2{ ( 2 q
Vil M

resulting in

2
2 [e)
B B U N a9 __q
2t [ o 2 2w [ o 2
0 q- +my S \/‘7 +my

(V) (V)
JE-mgmd
(V) ., m

= L=t 1
27T an (6)

/ dg | (V) V)

0 27 \/ 9% +m3 \/ q* +m3
Next, we look at the one-loop effective action arising from the fluctuations and single out
the O(V) contribution:

AADY = %Tr [(82 +m3 — ie) _10 - (82 +m3 — ie) _10}
2/ “k { —K% 4 m? —ie)_l - <_k2 +m3 — ie)_l} 7(0),

where 7 is the Fourier transform of v(x) so that 9(0) = [d*xo(x) = —2(V)T, with
T denoting an (infinitely large) time interval. The above integral is straightforwardly
evaluated by Wick rotation yielding

A — Ty m
27T My

(17)
The corresponding effective energy matches Equation (16). Hence, using Equation (15)
for the real axis calculation and correcting it with Equation (16) properly implements the
no-tadpole condition. Essentially, we regulate the ultra-violet divergence from the heavier
particle with a Feynman diagram with the lighter particle in the loop. We may consider
this treatment as a variant of the Pauli-Villars regularization scheme. In the two channel
problem, we write the correction as

~ \% m ) o
Evac — Evac = %mmé with (V)= — /O dxvs (x). (18)
>
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1 1 2
£ = Eaana“CD - Z(aaV‘B - a‘BVg‘) + ?V“Va -

Here, the subscripts refer to the smaller (<) and larger (>) of the two masses and v, again
is the self-interaction component of potential matrix for the heavier particle.

The goal is to compare the numerical results from the approach outlined above to
the imaginary momentum procedure discussed in Section 3. The latter has been general-
ized to the two-component system in Ref. [25]. We need to solve Equation (10) with the

replacements k — t = ik and k, — iy/t2 + m3 — m? to write the VPE as

— 1 e
B = 5 [, 47 [0 =00 o )
with
v(t) = Indet[F, (it) F_(it)] and vV (f) = /:de ”“t(")+ 022(x) _|. @)

2 2 _
te 4+ m5 —my

Clearly, there is no singularity in the Born approximation, v(1). We also note that the
F4 (it) are real-valued matrices. In Table 1, we compare the results for the two scenarios of
Figure 1.

Table 1. Comparison of real and imaginary axis calculation of the VPE for the Gaussian potential
matrix v;; = E-je*xz. Model parameters are as in Figure 1.

Evac Evac - EV&C Evac Evac

Equation (15) Equation (18) Equation (19)
repulsive —0.5102 0.4780 —0.0322 —0.0324
attractive —0.0872 —0.0944 —0.1817 —0.1821

The agreement of the two approaches could not be clearer. We have performed
numerous such comparisons [30] and never obtained mismatches in the leading three
significant digits after rounding the fourth one.

The considerable lower cost of computing time makes the imaginary axis approach
significantly more efficient. This is mainly caused by the smoothing procedure, which
requires a dense discretization for the real momenta. Also the fact that the real axis approach
solves a differential equation for a complex matrix rather than a real one adds computing
time. On top, there is the advantage that the imaginary axis approach does not require us to
explicitly find the bound state energies. Nevertheless, this toy model exercise impressively
confirms the equivalence of the real and imaginary momentum computations of the VPE,
even in the presence of potential branch cuts arising from energy thresholds. We will use
that knowledge to explore the potential non-analyticity in a vector meson Proca model in
Section 6. But, first we need to construct that soliton.

5. Proca Soliton

We consider a Lagrangian in D = 1 4 1 space time dimensions with two real fields: a
scalar (®) and a massive vector meson (V)

1 2

5 (q>2 - 1) - g(l - @2)e“ﬁvaaﬁcp. 1)
The scale is set by the scalar meson mass m, = 2, the scalar self-interaction is that of the
¢* kink model, and the vector meson mass is yi. The coupling is constructed such that it is
at least cubic in the fluctuations about the possible vacuum configurations (&g = +1 and

Vi = 0) and the € tensor ensures that the field equations are consistent with 9*V, = 0. The
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vector meson mass y and the coupling constant g are the only tunable model parameters.
We have scaled variables, parameters, and fields to dimensionless quantities. This produced
an overall factor for £ which we do not explicitly write because it would only matter if
we compared classical and quantum energies quantitatively. The model can be considered
as the one-dimensional reduction of the Skyrme model with an w meson [31]. This also
motivates the soliton ansatz with a profile function only for the time component of the
vector meson field, V* = (a(x),0) and ® = ¢(x). The classical energy functional becomes

2
Eq— % /dx{4>’2 + (92— 1) = a2 - e + 2501 - 4>2)a4>’} . (22)
The variational principle yields the static equations

a" = y?a— g(l - ¢)2)4>’ and ¢ =2¢ (4)2 - 1) - g(l - ¢2)a’. (23)

For ¢ = 0, they are solved by the ordinary kink, ¢x = tanh(x) and a = 0. Stable soliton
solutions for ¢ # 0 should also connect the two possible vacua ¢y = £1 at positive and
negative spatial infinity. This implies that ¢ is odd under the reflection around its center
xog with ¢(xp) = 0. We choose xp = 0 and find that a(—x) = a(x). We solve Equation (23)
with a shooting method on the positive half-line, x > 0 subject to the boundary conditions
— "0) — ; — ; —

$(0)=0, a'(0)=0 and xlgl;lQ(P(X) =1, xh_r)xc}oa(x) =0. (24)
The profiles on the negative half-line, x < 0, can be constructed via the above discussed
reflection properties. A typical solution is shown in the left panel of Figure 2.

08 //’/ = 08 |

/
o6k / g osk — errDEQ
/ 0ab - e o0 fit

Figure 2. Soliton profiles for ¢ = 1.0 and u# = 1.5 (left panel). The inlay corroborates that a’(0) = 0.
Also shown are the fitted profiles for ¢ (middle panel) and a (right panel) in comparison with the
solutions to Equation (23), labeled ‘DEQ’.

For all cases considered, we have verified that

/Owdx{(P/z_a/z} _ /Ooodx{(¢2—1)2—y2a2}
and /Ooodx{a’2+y2a2—g(1—4)2)a¢>’} =0 (25)

are fulfilled. The first equation reflects Derrick’s theorem [32], while the second is a
consequence of stability under scaling the vector meson profile. Numerically, these profiles
are only known at prescribed values of the coordinate x. However, later in the scattering
problem we will apply an adaptive step size algorithm which requires the profiles at other
x values as well. Rather than implementing a (CPU time costly) interpolation, we choose to
fit the profiles to analytic functions. A good choice is

st(x) = ag tanh(aqx) + ap tanh(azx and age(x) = boefb”‘2 + boe*b1x4. (26
¢
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D(x, 1)

Even though there is some arbitrariness (the fit algorithm consistently produced ag +a; ~ 1,
see also Equation (33) below) in ¢g;(x), we find fitting parameters that perfectly match
the solution from the differential equation, as seen in the middle panel of Figure 2. The fit
to the vector profile shows some minor deviations from the actual solution, in particular
asymptotically as may be observed from the right panel in the same figure. In later
applications, we actually fit a’(x) directly. In any event, we are typically able to construct
fits that violate the identities in Equation (25) by only about one in a thousand or less. This
can also seen from the data for the classical mass in Table 2.

Table 2. The classical energy, Equation (22), for the solutions to the field equations, (23) and the fitted
profiles, Equation (26), as functions of the coupling constant ¢ and two values of the vector meson
mass .

" g 0.4 0.8 1.2 1.6 2.0

15 Eq 1.356 1.422 1.532 1.679 1.858
Eit 1.356 1.423 1.533 1.680 1.860

25 Eq 1.343 1.372 1.419 1.484 1.564
Eie 1.343 1.372 1.419 1.484 1.566

From that table, we see that the classical energy increases with the coupling constant.
A bit more surprising is that it decreases as the vector meson mass gets larger. We may
explain this by noting that for large u the derivative term a’> may be omitted against y?a?
and the field equation may be locally approximated by

am%(l—ﬁ)(p’.

Then, the vector meson profile is no longer dynamical and we may approximate the energy
functional by

Eq =~ ;/dx{(l)/z—i- (¢2_1)2+ii(1_¢2)2¢/2},

indicating that with growing u, we are left with the pure kink model, which has classical

(K)

energy E |~ = % for the units used here.

6. Scattering Problem in Proca Model

We formulate the scattering problem by introducing small amplitude fluctuations
about the above constructed soliton:

o(x) +e Wiy(x), Volx,t) =a(x) +e “uy(x) and Vi(x,t) =e “uy(x). (27)

The time dependence factorizes because the soliton is static and we omit to explicitly write
the frequency (w) dependence of the fluctuations 7, 19 and ;. With this parameterization,
the continuity equation 9*V, = 0 reads ug = — i u). This allows us to eliminate 19 from
the linearized field equations and obtain

uf = (yz - w2>u1 —igw (1 - 4)2)17 (28)
7" = (4= @?)n+6(¢?— 1)y +28pan + éyz(l — ¢ +g2(1- ¢2)217. (29)

We immediately observe that the scattering problem is non-Hermitian. Rather, the coeffi-
cient functions of 7 in the differential equation for 11 and its counterpart in the differential
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equation for # differ by factors % When we introduce the scaled vector fluctuation % via
(see also Section 6 in Ref. [13]),

w
uy = —1i— le (30)
M

the fluctuation equations indeed assume a Hermitian form,
= (12— )i+ gu(1-97)
n" = (4 . wz)n + [6(4)2 - 1) +2¢¢a’ + ¢ (4»2 - 1)2} 7+ gy(l - ¢2)ﬁ1 . (3

We observe the important feature that the rescaling in Equation (30) compensates for the
unconventional normalization for the longitudinal component in Equation (3). That is,
(without interactions) u; is the wave-function of a single particle state that contributes
Jw to the VPE. We find that the normalization issue and the construction of a Hermitian
scattering problem are simply the two sides of the very same medal.

With this scaling, the continuity equation is as simple as puy = —1. Using the soliton
Equations (23), it is straightforward to verify that the above fluctuation equations with
w = 0 are solved by # = ¢' and 7; = —pa. The latter relation corresponds to 1y = a’.

Hence, this zero mode is nothing but the (infinitesimal) translation of the soliton. Observing
a zero mode in the bound state spectrum will further test the numerical simulations in
Section 7.

For u > 2, we can now straightforwardly apply the formalism of Section 4 with
my = 2, my = y and the potential matrix

2 Io2( 42 1)\2 42
s (60 =1) T 29 +2(¢? —1)7 gu(1—¢?)) 32)

gu(l—¢?) 0

In the other case, u < 2, we set

(ki O . B _ . 4—p?
D(k)—1<0 k) with ki =ki(k) = ky/1 Tri0 P

in Equation (10) and replace my — u in Equation (15).

7. Numerical Results

In this section, we present and discuss our numerical results for the VPE of the Proca
soliton constructed above. We first mention that for all scenarios considered, we observe
an energy eigenvalue in the symmetric channel at around wp ~ 0.01...0.03. This is the
translational zero mode. It is not exactly at zero because of the discrepancy between
the actual soliton profiles and the parameterizations in Equation (26). This discrepancy
provides an additional measure for the accuracy of the fit. Minor changes (for example
using the fits from ¢ = 1.2 for g = 1.0) in the fitted profiles fail to produce a low-energy
bound state at all.

We continue with the comparison of the real and imaginary momentum formalism
as for the toy model in Section 4. Six cases are listed in Table 3. For y = 2.5, there is no
contribution associated with the Feynman diagram correction in Equation (18) because
then the self-interaction potential for the heavier particle is zero. The table exhibits perfect
agreement of the two approaches. Typically, we observe differences at the fourth significant
digit which, however, is out of the realm of the numerical precision. Obviously, it is
possible to compute the VPE with both formalisms, and, as expected from the analysis in
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the previous chapter, the normalization of the longitudinal component of the vector meson
field does not hamper the analytic continuation.

Table 3. Comparison of the results from the real and imaginary momentum computations of the
VPE in the Proca model for various model parameters. Eb.s./ Econ_, and Evac, respectively, refer to the
bound state, continuum pieces, and their sum in Equation (15), while Ey,c — Eyac is the Feynman
diagram correction from Equation (18). Finally, the last column is the imaginary axis result from
Equation (19).

Eb.s. Econ. Evac Evac — Evac Evac Eyac
u=15,g=10 —0.735 0.360 —0.375 —0.273 —0.648 —0.649
u=15,g=12 —0.735 0.353 —0.382 —0.272 —0.649 —0.649
u=15,9=15 —0.757 0.371 —0.387 —0.266 —0.653 —0.653
u=25,§=10 —1.146 0.459 —0.687 0 —0.687 —0.687
u=25,g=12 —1.164 0.453 —0.711 0 —0.711 —0.711
u=25,g=15 —1.172 0.440 —0.732 0 —0.732 —0.732

For the above shown equivalence of the real and imaginary axis calculation, the fitting
functions, Equation (26), are good enough. However, for more quantitative discussions
of the parameter dependence of the VPE, a more ambitious parameterization might be
needed. Also, as mentioned after Equation (26), we directly fit 4’ because only that part of
the vector profile enters the differential Equation (31). We have considered a number of
alternative parameterizations and found

¢(x) = agtanh(a;x) + (1 — ap) tanh(apx) and  d'(x) ~ (bo + byx® + b2x4) xe b3 (33)

to be most pertinent. We have assessed that from the predicted zero mode energy eigen-
value. The closer it is to zero, the more reliable is the considered parameterization. In most
of the cases, however, there are only minor differences. For example, the case y = 1.5
and ¢ = 1.0 yields Eyac = —0.658 and —0.649 for Equations (26) and (33), respectively.
Generally, we must allow a parameterization variance of one or two percent.

In Table 4, we present the VPE as a function of the coupling constant g as obtained
from the imaginary axis formulation, Equation (19). After all, we have established its
equivalence with the real axis formulation and it is much more efficient. Nevertheless, we
have verified this equivalence for selected cases.

Table 4. The vacuum polarization energy Eypg for the Proca soliton as a function of the coupling
constant g and for several values of the vector meson mass .

0.4 0.8 1.2 1.6 2.0
u=10 —0.655 —0.640 —0.624 —0.611 —0.609
u=15 —0.662 —0.648 —0.657 —0.663 —0.682
u=20 —0.670 —0.673 —0.688 —-0.712 —0.757
u=25 —0.670 —0.685 —-0.718 —0.759 —0.826
u=230 —0.673 —0.696 -0.737 —0.804 —0.890

When the scalar field is heavier than the Proca field, the VPE shows only little de-
pendence on the coupling constant. The VPE is not even a monotonous function thereof.
However, in the other regime, u > 2, the VPE considerably decreases as the coupling
increases. It is a bit surprising that the Proca model VPE is close to the kink VPE (which
in present units is %(f - 1;8 ~ —0.666 [1]) when the Proca field is the lighter one be-
cause lowering the threshold to # < 2 considerably alters the spectrum. In particular, the

so-called shape mode bound state in the anti-symmetric channel, which in the kink model
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is at w; = v/3 ~ 1.732, may become unbound. Only when the coupling exceeds a certain
value that bound state re-emerges. This is shown in Table 5.

Table 5. The bound state energy eigenvalues in the anti-symmetric channel as a function of the
coupling constant and the Proca mass y. Entries with a star (*) indicate that there is second bound
state (in addition to the zero mode) in the symmetric channel just below threshold at min(2, y).

g 0.4 0.8 1.2 1.6 2.0
u=15 - - 1.499 1.429 1.330
u=20 1.720 1.684 * 1.629 * 1.559 * 1.478 *
u=25 1.724 * 1.702 * 1.665 * 1.615* 1.556 *

On the other hand, when u > 2, we observe a more moderate variation of this energy
eigenvalue. Yet, the VPE changes considerably as a function of the coupling. Hence the
change in the bound state spectrum is (partially) compensated by a similar one of the
continuum spectrum. We view this as a manifestation of Levinson’s theorem, which tells
us that altering the number of bound states has a significant impact on the phase shift.

The argument at the end of Section 5, that the kink model would be assumed for
large y, however, is not necessarily valid for time-dependent fluctuations because there

2

is always a frequency w such that y? — w? is small and we may not generalize the local

approximation to scattering wave-functions.

8. Conclusions

The main objective of this project has been the investigation of the role of a potential
non-analytic field normalization when computing the vacuum polarization energy (VPE)
for a soliton containing a massive vector meson described by a Proca field. Fortunately, it
quickly became clear that this problem is closely related to the construction of a Hermitian
scattering problem for the quantum fluctuations about the soliton. After that construction,
the VPE calculation turned into that of two coupled scalar fields.

In verifying this conclusion by numerical simulation, we have, as an important byprod-
uct, established the equivalence of the real and imaginary momentum formalisms for
computing the VPE when there is a mass gap. In this context, the main accomplishment
was to avoid the Born approximation because it is imaginary for fluctuation energies
that are within the mass gap. We have used a particular helper function, motivated by
the Pauli-Villars regularization scheme, and showed analytically, as well as numerically,
that the resulting deviation from the no-tadpole condition is compensated by a finite
Feynman diagram.

Numerically, we have then constructed the soliton ina D = 1 4 1 model in which a
Proca field interacts with a scalar one, solved the wave-equations for the small amplitude
fluctuations about the soliton, and extracted the Jost function, both for real and purely
imaginary momenta. This function is central to the spectral methods approach to com-
pute the VPE. These methods are particularly efficient when the fluctuation momenta are
continued to the imaginary axis.

While the classical energy increases with the coupling constant, the VPE either only
varies mildly when the Proca field is the lighter of the two fields or decreases considerably
with the coupling strength when the Proca field is the heavier one. A qualitative comparison
of classical and quantum contributions to the energy would only be possible if the overall
factor of the Lagrangian that acts as a loop-counter and emerges by scaling fields and
coordinates to dimensionless quantities was known.

Here, we have considered the simplest model producing a massive vector meson soli-
ton. Eventually, we should consider higher dimensions and/or allow multiple scalar fields.
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The ultimate goal is the computation of the VPE of the 't Hooft-Polyakov monopole [33,34].
Though numerically subtle, the heavy Proca mass limit is interesting because with the
derivative coupling in Equation (21) it potentially induces a non-trivial coefficient function
for the kinetic term of the scalar field. For a scenario for which a number of solitons have
recently been constructed, cf. Ref. [35], which also quotes many articles that discuss models
with such solitons. It seems infeasible to directly compute the VPE in such models because
the wave-equations are not of the form in Equation (8) as relative factors between the time
and space derivatives may emerge.
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