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LES RELATIONS DE ¢—DOLAN-GRADY
D’ORDRE SUPERIEUR ET CERTAINS
SYSTEMES INTEGRABLES
QUANTIQUES

Résumé

Dans cette thése, la connexion entre certaines structures algébriques récentes (algébres
tridiagonales, algébre ¢g—Onsager, algébres ¢g—Onsager généralisées), la théorie des représen-
tations (paire tridiagonale, paire de Leonard, polynémes orthogonaux), certaines des pro-
priétés de ces algebres et ’analyse de modéles intégrables quantiques sur le réseau (la chaine
de spin XXZ ouverte aux racines de I'unité) est considérée.

Le manuscript commence par une introduction bréve sur le sujet. Dans le Chapitre 1
et 2, le matériel de base est rappelé: dans le Chapitre 1, les algebres q—Onsager et tridi-
agonales, certaines relations avc ’algébre quantique affine U,(sl2), avec ’algébre de boucle
Uq(slz), avec I'algébre de dimension infinie A, et 1’algébre de réflexion sont présentées, ainsi
que certains résultats connus de Terwilliger et al. concernant la théorie des représentation
de l'algébre g—Onsager (paire de Leonard, paire tridiagonale,polynémes orthogonaux);
Dans le Chapitre 2, I’émergence de 'algébre de Onsager et g—Onsager dans le contexte
des systémes intégrables quantiques est rappelée. En particulier, la découverte de ’algébre
g—Onsager dans ce contexte (Baseilhac et al.) et ses applications a la solution de la chaine
de spin XXZ ouverte avec conditions aux bords génériques sont revues. Le Chapitre 3 est
dédié a la description des résultats principaux de cette thése: (i) Pour la classe des algébres
g—Onsager associées a gfg et aux algébres de Lie affines simplement lacées de type ADE,
des relations d’ordre supérieur analogues a celles de Lusztig sont conjecturées; (ii) pour
la chaine de spin XXZ ouverte aux racines de 'unité, de nouveaux éléments (polynoémes
divisés des générateurs de ’algébre ¢g—Onsager) sont introduits et leurs propriétés étudiées.
Ces deux éléments, en plus des deux générateurs de base de 'algébre ¢g—Onsager, forment
une nouvelle algébre. Celle-ci peut étre comprise comme un analogue du groupe quantique
de Lustzig pour l'algébre ¢g—Onsager. Dans le Chapitre 4, plusieurs problémes ouverts sont
proposés. Dans les Appendices, deux programmes en calcul symbolique MAPLE ayant
servis sont donnés.

Mots clés :  Algébre tridiagonale; algébre ¢g—Onsager; algébre g—Onsager généralisées;
chaine de spin XXZ ouverte; racine de I'unité.
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THE HIGHER ORDER ¢-DOLAN-GRADY
RELATIONS AND QUANTUM
INTEGRABLE SYSTEMS

Abstract

In this thesis, the connection between recently introduced algebraic structures (tridiag-
onal algebra, g-Onsager algebra, generalized ¢—Onsager algebras), related representation
theory (tridiagonal pair, Leonard pair, orthogonal polynomials), some properties of these
algebras and the analysis of related quantum integrable models on the lattice (the X X Z
open spin chain at roots of unity) is considered.

The manuscript starts with a brief introduction on the subject. In Chapter 1 and 2,
some background material is recalled: In Chapter 1, the g—Onsager and tridiagonal al-
gebras, some of the relations with the quantum affine algebra U,(slz), the U,(sl2)-loop
algebra, the infinite dimensional algebra A, and the reflection equation algebra are pre-
sented, as well as some of the known results by Terwilliger et al. about the representation
theory of the ¢g-Onsager algebra (Leonard pair, tridiagonal pair, orthogonal polynomials);
In Chapter 2, the emergence of the Onsager and ¢—Onsager algebras in the context of
quantum integrable systems is recalled. In particular, the discovery of the ¢—Onsager al-
gebra and its application to the solution of the open X X Z chain for generic values of g are
reviewed. Chapter 3 is devoted to the description of the main results of the thesis: (i) for
the class of g—Omnsager algebras associated with s/l\g and ADE type simply-laced affine Lie
algebras, higher order analogs of Lusztig’s relations are conjectured; (ii) for the open X X Z
spin chain at roots of unity, new elements (that are divided polynomials of g—Onsager gen-
erators) are introduced and some of their properties studied. These two elements together
with the two basic elements of the g—Onsager algebra generate a new algebra, which can be
understood as an analog of Lusztig’s quantum group for the g—Onsager algebra. In Chap-
ter 4, open problems are proposed. In the Appendices, computer programs (MAPLE) that
were used are given.

Keywords :  Tridiagonal algebra; Tridiagonal pair; g-Onsager algebra; Generalized ¢-
Onsager algebra; X X Z open spin chain; root of unity.
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Notations

Throughout this thesis, we use the following notations:

1. Let A, B denote generators, then

[A,B] = AB - BA.
[A,B], = ¢AB—q 'BA.

2. Let n,m be integers, then

n

B R OTE | (P OB SR R

q9—q

3. {x} denotes the integer part of z. Let j,m,n be integers, write j = m,n for j =
m,m+1,...n—1,n.

4. The Pauli matrices o1, 09,0,,04+:
_ 01 (0 —i (1 0
= N10)2 i 0o )0 o -1 )
. — 0 1 o — 0 0
= \oo) """ \10)
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Introduction

In the literature, the Onsager algebra and the Dolan-Grady relations first appeared in
study of integrable systems (the XY, the Ising models,...) [044, DG82, Dav91, Dav90].
Later on, they appeared in the context of mathematics in relation with certain subalgebras
of sly [DR99|. From 2003, a g—deformed analog of the Dolan-Grady relations appeared
in the context of mathematics as a special case of tridiagonal algebras [Terwilliger et al.].
Almost simultaneously, the ¢g—Dolan-Grady relations appeared in the context of quantum
integrable systems on the lattice and continuum: the ¢g—Onsager algebra was defined (which
g—Dolan-Grady relations are the defining relations) in relation with the quantum reflection
equation, as an algebra generating a large class of quantum integrable systems on the lattice
or continuum |Baseilhac et al.|.

There is now a rather vast literature on the subject of tridiagonal algebras [Ter93III],
the representation theory of tridiagonal pairs [ITT99] and Leonard pairs [Ter03|, the
g—Onsager algebra and its generalizations [Ter01, Bas0404], the connections with coideal
subalgebras of Uq(S/l\g) [BB12| and with a new infinite dimensional algebra called A, [BS09].
In the context of mathematical physics, these structures and the explicit analysis of some
of their properties lead to several new exact non-perturbative results for the open XXZ
spin chain [BKO07|, for the half-infinite XXZ spin chain [BB12, BK14], for the open affine
Toda field theories [BB09, BF11]. From a general point of view, a new approach called
‘g—Onsager approach’ has emerged as an alternative to existing ones in quantum integrable
systems (Bethe ansatz [Bet31, FST80|, separation of variable [Sk92|, ¢g—vertex operators
[JM95, JKKKMW94]). Since 2007, this approach has been currently developed in different
directions.

In this thesis, we explore one direction which overlaps between mathematics and physics.
Namely, we investigate in detail some properties of the ¢g—Onsager algebras (in particu-
lar the existence and explicit construction of higher order relations between monomials of
the fundamental generators) which will find application in the analysis of the open XXZ
spin chain at roots of unity (characterization of the symmetry of the Hamiltonian at roots
of unity). At the moment, the results of this thesis have been published in two articles
[BV13, BV1312|. There is another article in preparation [BGSV15].

The manuscript of the thesis is divided into three main Chapters.

Chapter 1. We summarize without proofs the relevant material on tridiagonal alge-
bras, the q-Onsager algebra and some aspects of its representation theory: Leonard pairs,
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tridiagonal pairs and orthogonal polynomials.

In the first part, tridiagonal algebras are defined by generators and relations. Several
special cases corresponding to particular parameter sequences of the tridiagonal relations
are mentioned such as the g-Serre relations or the Dolan-Grady relations.

The ¢g-Onsager algebra is introduced in a second part. Its defining relations are the
g—Dolan-Grady relations: these are p;-deformed analogues of the ¢-Serre relations, and
correspond to a special parameter sequence of the tridiagonal algebra. In connection with
the quantum affine algebra U,(sl) and the Ug(slz)-loop algebra, we thus recall homo-
morphisms from the ¢-Onsager algebra to these algebras. Finally, we recall the reflection
equation algebra and indicate its relation with the g-Onsager algebra: the reflection equa-
tion algebra is defined by generators which are entries of the solution of the “RKRK”
equations for the Uq(.;l\g) R-matrix. The isomorphisms between the reflection equation
algebra, the current algebra Oq(gl\g), and the infinite dimensional algebra A, generated by
Wk, Wis1, Grs1, Gror |k € Z, } are recalled. We also recall the construction of a coaction
map for the g-Onsager algebra and the defining relations of the K-matrix as an intertwiner
of irreducible finite dimensional representations of the g-Onsager algebra. Thus, a quotient
of the ¢-Onsager algebra is isomorphic to a quotient of the reflection equation algebra.

The last part recalls some aspects of the representation theory of tridiagonal algebras
(including the case of the g—Onsager algebra), in particular the results of Terwilliger et al.
about irreducible finite dimensional representations and the concept of tridiagonal pairs.
For convenience, Leonard pairs (a subclass of the tridiagonal pairs) are introduced first.
We recall the notion of Leonard pair, Leonard system as well as modification of a given
Leonard pair in several ways. The relation between the Leonard pair and the tridiagonal
algebra is also clarified. Namely, there exists a scalar sequence such that the Leonard pair
satisfies the corresponding Askey-Wilson relations. Inversely, a pair of linear transforma-
tions satisfying the Askey-Wilson relations allows to define a Leonard pair under certain
conditions. One more important result is the classification of Leonard pairs, it is asserted
that a sequence of scalars satisfying conditions (i) — (v) in Theorem (1.3.7) is necessary
and sufficient to obtain a Leonard pair. In addition, we show that Leonard pairs arise
naturally in relation with the Lie algebra sl and Ugy(sl2). A more general object than the
concept of Leonard pair, namely the concept of tridiagonal pair, is also introduced and
described in some details. We first recall the concept of a tridiagonal pair, of a tridiagonal
system as well as properties of its (dual) eigenvalue sequence, the corresponding (dual)
eigenspace sequence. It is asserted that the tridiagonal pair of ¢g-Racah type satisfies the
tridiagonal relations, inversely a tridiagonal pair can be obtained from a tridiagonal algebra
under several conditions. We also describe some special classes of tridiagonal pairs, such as
Leonard pairs, tridiagonal pairs of the g-Serre type, mild tridiagonal pairs, sharp tridiag-
onal pairs. Especially, the classification of the sharp tridiagonal pairs is clarified [INT10].
Last but not least, the relation between tridiagonal algebras and the theory of orthogo-
nal polynomials is briefly described. We recall hypergeometric orthogonal polynomials,
and describe the connection between the theory of Leonard pairs and the Askey-scheme
of orthogonal polynomials [Ter0306]. Note that the extension to the theory of tridiagonal
pairs leads to hypergeometric polynomials of several variables defined on a discrete support
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(Gasper-Rahman), as recently discovered in [BM15].

Chapter 2. We recall the known presentations of the Onsager algebra and how the
so-called g— Onsager algebra appeared in the context of mathematical physics. We briefly
recall the ‘g—Onsager approach’.

First, we provide a historical background about the two different known presentations
of the Onsager algebra: either the original presentation with generators A,,, G, [044] or
the presentation in terms of the Dolan-Grady relations [DG82]. We also recall the relation
with the loop algebra of sly. Secondly, we recall how the g—Onsager algebra surprisingly
appeared in 2004 in the context of quantum integrable systems, through an analysis of so-
lutions of the reflection equation. In particular, we recall how the new infinite dimensional
algebra A, arises and how it is related with the g—Onsager algebra. It is explained how
its connections with the quantum loop algebra of slo and with Uq(gfg) naturally appear
from the Yang-Baxter and reflection equation algebra formulation. Then, the so-called
‘g—Onsager approach’ is briefly recalled.

Chapter 3. The three main results of the thesis are presented in some details. (i) and
(ii): For the family of q— Onsager algebras (;FQ and ADE type), analogs of the higher order
relations of Lusztig are conjectured and supporting evidence is presented in detail; (iii) The
open XXZ spin chain is considered at roots of unity in the framework of the g— Onsager
approach. A new algebra, an analog of Lusztig’s quantum group, naturally arises. For a
class of finite dimensional representations, explicit generators and relations are described.
With respect to the new algebra, symmetries of the Hamiltonian are explored.

Recall the homomorphism from the g—Onsager algebra to the quantum affine Lie alge-
bra Uy,(sl2) |Bas0408, BB12|. Recall the homomorphism from the generalized ¢—Onsager
algebras (higher rank generalizations of the g—Onsager algebra) to the quantum affine Lie
algebra U,(g) [BB09, Koll2|. By analogy with Lusztig’s higher order relations |Lusz93|
which arise for any quantum affine Lie algebra, it is thus expected that higher order rela-
tions are satisfied. Successively, we obtained:

1. The higher order relations for the q-Onsager algebra (the gl\g case) |[BV13]

Let A, A* be the standard generators of the ¢—Onsager algebra. The r—th higher
order relations for the g-Onsager algebra are conjectured. First, a generalization of
the conjecture is proven for the case of tridiagonal pairs (i.e. certain irreducible finite
dimensional representations on which A, A* act). Two-variable polynomials which
determine the relations are given. Then, the special case of the g—Onsager algebra
is considered in details. The conjecture is proven for r = 2,3. For r generic, the
conjecture is studied recursively. A Maple software program is used to check the
conjecture, which is confirmed for r < 10. Also, for a special case, the higher order
relations of Lusztig are recovered.

2. The higher order relations for the generalized q-Onsager algebra (the ADE serie)
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[BV1312]

For each affine Lie algebra, a generalized ¢-Onsager algebra has been defined in
[BB09]. Let A;, i = 0,1,...,7ank(g) be the standard generators of this algebra.
By analogy with the s/l\g case, for any simply-laced affine Lie algebra analogues of
Lusztig’s higher order relations are conjectured. The conjecture is proven for r < 5.
For r generic, the conjecture is studied recursively. A Maple software program is
used to check the conjecture, which is confirmed for » < 10. According to the parity
of r, two new families of two-variable polynomials are proposed, which determine the
structure of the higher order relations. Several independent checks are done, which
support the conjecture.

3. The XX Z open spin chain at roots of unity [BGSV15]

Inspired by the fact that the XXZ periodic spin chain at roots of unity enjoys a
sly loop algebra symmetry in certain sectors of the spectrum [DFM99]|, the aim is
to settle an algebraic framework for the analysis of the open XXZ spin chain at
roots of unity within the g—Onsager approach. First, the two basic generators of
the ¢g—Onsager algebra are recalled, and their properties are studied for ¢ a root of
unity (spectrum, structure of the eigenspaces and action). They form a new object
that we call a ‘cyclic tridiagonal pair’. Secondly, two new operators that are divided
polynomials of the fundamental generators of the g-Onsager algebra are introduced.
We study some of their properties (spectrum, structure of the eigenspaces and action).
The relations satisfied by the four operators are described in details. They generate
an explicit realization and first example of an analog of Lusztig quantum group for
the ¢g—Onsager algebra. Finally, we briefly discuss the conditions on the boundary
parameters such that the Hamiltonian of the open XXZ spin chain commutes with
some of the generators.

In the end of this thesis, three families of open problems are presented in Chapter 4 and
appendices are reported in Chapter 5.



Chapter 1

Mathematics: background

The aim of this Chapter is to present various aspects of the tridiagonal and ¢-Onsager
algebras, their relations with other types of quantum algebras, their relations with the
theory of Leonard and tridiagonal pairs, and finally the remarkable connection with the
theory of orthogonal polynomials and Askey-scheme.

In the first part, the definition of the tridiagonal algebra is given in terms of generators
and relations. Several special cases of tridiagonal relations corresponding to the particular
parameter sequences are recalled such as the g-Serre relations, the Dolan-Grady relations.

In the second part, the ¢-Onsager algebra is defined as the p;-deformed analogues of
the g-Serre relations. Indeed, it is a special case of the tridiagonal algebra. Furthermore,
the connection between the g-Onsager algebra and other algebras such that the quantum
enveloping algebra Uy(slz), the quantum loop algebra U,(L(sl2), the reflection equation
algebra and the current algebra denoted Oq(s/fg) recently introduced is briefly described.

In the last part, several results due to Terwilliger et al. about the representation the-
ory of tridiagonal algebras - in particular the g—Onsager algebra - are recalled. Finite
dimensional irreducible representations of the tridiagonal algebras and of the ¢—Onsager
algebras have been considered in details by Terwilliger et al.. Provided two matrices A, A*
satisfy the defining relations of the tridiagonal algebra, are diagonalizable on the vector
space and the representation is irreducible, it implies the following: in the basis in which
the first matrix A is diagonal with degeneracies, the other matrix A* takes a block tridi-
agonal structure. Furthermore, there exists another basis with respect to which the first
matrix A transforms into a block tridiagonal matrix, whereas the second one transforms
into a diagonal matrix with degeneracies. In the simplest case (no degeneracy in the spec-
tra), tridiagonal pairs are called Leonard pairs, which definition and properties will be
first recalled. Then, we will describe definition and properties of tridiagonal pairs based
on Terwilliger and collaborators’ investigations. In addition, the connection between the
theory of special functions and orthogonal polynomial and the g—Onsager algebra is briefly
described. Note that this subject was one of the motivations for studying tridiagonal al-
gebras and the theory of tridiagonal pairs. For the simplest examples of tridiagonal pairs,
namely the Leonard pairs, Askey-Wilson polynomials arise.

Note that some of the material presented in this Chapter will play a crucial role in the



1.1. TRIDIAGONAL ALGEBRAS

analysis of the higher-order g—Dolan-Grady relations of the ¢g—Onsager algebra, that will
be considered in Chapter 3 entitled “MAIN RESULTS”.

1.1 Tridiagonal algebras

Tridiagonal algebras come up in the theory of @-polynomial distance-regular graphs
[Ter93III, Lemma 5.4] and tridiagonal pairs [ITT99, Theorem 10.1], [Ter99, Theorem 3.10].
A tridiagonal algebra has a presentation by two generators and two relations as follows

Definition 1.1.1 [Ter99/ Let K denote a field, and let 3,7,~v*,0,0* denote a sequence of
scalars taken from K. The corresponding tridiagonal algebra T is the associative K-algebra
with 1 generated by the generators A, A* subject to the relations

[A, A2A* — BAA* A+ A* A% — y(AA* + A*A) — GA*] = 0, (1.1.1)
[A* A2 A — BA*AA* + AA™? — (A" A+ AA*) —6*A] = 0. (1.1.2)

These relations are called the tridiagonal relations.

The algebra generated by A and A* satisfy (1.1.1), (1.1.2) is known as the subconstituent
algebra or the Terwilliger algebra [Ter92, Ter93I1, Ter93I1I|. Furthermore, relations (1.1.1)
and (1.1.2) are satisfied by the generators of both the classical and quantum ‘Quadratic
Askey-Wilson algebra’ introduced by Granovskii et al. [GLZ92].

A tridiagonal algebra depends on the parameter sequence 3,~,~v*,6,0*. Now we con-
sider some cases of the tridiagonal algebras that correspond to the particular parameter
sequences.

A special case of (1.1.1) and (1.1.2) occurs in the context of quantum groups. For
B=q¢*+q¢2%y=~"=0,6 =06 =0, the tridiagonal relations are the g-Serre relations
[CPI1].

A3A* — [3],A%A* A+ [3],AA*A* — A*A® = (1.1.3)
AP A~ [3], A2 AA* 4 [3],A*AA™ — AA® = 0. (1.1.4)

=

Note that equations (1.1.3) and (1.1.4) are among the defining relations for the quantum
affine algebra U, (sls).

Another special case of (1.1.1) and (1.1.2) has come up in the context of exactly solvable
models in statistical mecanics. For 8 = 2,7 = v* = 0,6 = b%,6* = b*2, the tridiagonal
relations are the so-called Dolan-Grady relations [DG82]

[A,[A,[4,A7)] = B[4, A, (1.1.5)
(A%, [A%,[A%, A]]] = b*2[A*, A (1.1.6)

One more example of a tridiagonal algebra is the ¢-Onsager algebra. It will be considered
in the following part.
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1.2 The ¢-Onsager algebra from different points of view

In [Ter01, Bas0404, Bas0408|, the ¢-Onsager algebra has been defined by standard
generators and relations which are called the ‘g-deformed’ Dolan-Grady relations. Ap-
plications of the g-Onsager algebra to tridiagonal pairs can be found in [ITT99, IT08,
IT09, Ter99, Ter01]. The ¢-Onsager algebra has applications to quantum integrable mod-
els [Bas0404, Bas0408, Bas06, Bas0604, BK13, BK0507, BK07, BS09, BB12, BK13| and
quantum symmetric pairs [Kol12].

Definition 1.2.1 [Ter01, Bas0404, Bas0408] Let K denote a field. The q-Onsager algebra
is the associative algebra with unit and standard generators A, A* subject to the following
relations

& 3
> (-1 { . ] AP AT AR = po[A, A7), (1.2.1)
k=0 q
3 «3—k 1 pxk .
(-1 { k } ATTRAAT = pi[A7, A, (1.2.2)

k= q

o

where q is a deformation parameter, and pg, p1 are fixed scalars in K.

The relations (1.2.1), (1.2.2) can be seen as p;-deformed analogues of the g-Serre relations
because for pg = p1 = 0 these relations are reduced to the ¢-Serre relations.

Clearly, the generators A, A* of the ¢-Onsager algebra satisfy the defining relations of the
tridiagonal algebra corresponding to the scalars 8 = ¢> +¢ 2,y =~* =0, and § = pg, 0* =
p1. This parameter sequence is said to be reduced.

For simplicity, the ¢-Onsager algebra can be defined by generators A, A* subject to the
relations

[A,A%A* — BAA* A+ A" AT = p[A, A", (1.2.3)
[A*, A*2 A — BA*AA* + AA™ = p[A*, A, (1.2.4)

where 8 = ¢ + q~2 and pg = p1 = p [IT09]. Relations (1.2.3) and (1.2.4) can be regarded
as a g-analogue of the Dolan-Grady relations.

The ¢-Onsager algebra (1.2.3), (1.2.4) has a basis as follows [IT09].

Let r denote a positive integer. Set

AT = {A:()‘()?)\la-'w)\?”)EZT+1|)‘0207Ai21(1SiST>}7

A = UAT.

reNu{0}
If there exists an integer ¢ (0 <14 < ) such that

A <AL < <A Z A1 2 2 A
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then A = (Ao, A\1,..., Ar) is said to be irreducible.
Denote A" = {\ € A|) is irreducible}.

Let X,Y denote noncommuting indeterminates. For A = (Mg, A\1,...,A;) € A, put

XoyM XM if s even
wA(X,Y) = { XMyA YA ifrisodd

where X0 =1 if \g = 0.

Theorem 1.2.1 [IT09] The following set is a basis of the q-Onsager algebra as a C-vector
space: ‘
{wr(A, A)|A € A"}

1.2.1 The ¢-Onsager algebra and Uq(gl\g)

There is an explicit relationship between the g¢-Onsager algebra and the quantum
affine algebra Uy (sl2). There are homomorphisms from the g-Onsager algebra into U,(sl2)

[Bas0408, Bas0604, BB12, Kol12|. Firstly, recall the definition of Uq(;fQ) in Drinfeld-Jimbo
presentation.

Definition 1.2.2 [CP91] Let K denote an algebraically closed field. The quantum affine
algebra Uy(sly) is the associative K-algebra with unit 1, defined by generators ez:»t, Kiﬂ,i €
{0,1} and the following relations:

KK ' = K 'K, =1,
KoK1 = KKy,
KiegtKi_l = qﬂef,
Kiey K1 = qTey, i # ],
K;—K!
[ef 6] = ——,
q-q
[eoi’e:l':] = 0,
(e )e; — [Blg(ei) e ei + Blyei ey () — €5 (e)* =0, i # . (1.2.5)

where the expression [r, s] means rs—sr. We call eli, Kii,z' € {0,1} the Chevalley generators

for Uq(;l\g).

Theorem 1.2.2 [BB12] There exist algebra homomorphisms ¢, @* from the q-Onsager
algebra to Ug(sla)

p(A) = k_ef +kiq 'eg Ko+ e Ko, (1.2.6)
QO(A*) = k+€f + k_q_lele + 6+K1,
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where ky,k_,er, e €K, and p=kik_(q¢+q 1>
And
0 (A) = k qled Kyt +kyeg +EL Kyl (1.2.8)
O (A*) = kiq lef Kyt +k e +e Kl

where ky,k_ €, e €K, and p=kik_(q¢+q 1>

1.2.2 The ¢-Onsager algebra and the U,(sl;)-loop algebra

There are algebra homomorphisms from the g-Onsager algebra into the Uy(sl2)-loop
algebra [IT08, IT09|.

Definition 1.2.3 [CP91] The Uy(sla)-loop algebra L is the associative C-algebra with 1
generated by el e, k;, k:;l (i =0,1) subject to the relations

(2

kikyt = kki=1,
koki = kiko =1,

kiefkt = ¢Fef,
kieyki ' = qPer, i,
ki — k7t
[6?_,6;] = 747117
q9—4q
[6(:)‘:’61':] = 0,

()’ — Blo(ef)ej e + Blaei ey () — €5 (e)* =0, i #5.

Note that if we replace kok1 = kiko = 1 in the definition for £ by koki1 = kiko then we
have the quantum affine algebra Uj(slz). Namely, £ is isomorphic to the quotient algebra

of Uq(s/l\g) by the two-sided ideal generated by kok; — 1.

Theorem 1.2.3 [IT0904] For arbitrary nonzero s,t € C, there exists an algebra homo-
morphism s from the q-Onsager algebra to L that sends A, A* to

A(s) = z(s) +tk(s) + tilk(s)fl,
Af(s) = y(s)+t  k(s) +th(s)™ 1,

respectively, where

a(s) = alsef +5 'erkr) witha=—q"'(¢—q"),
y(s) = seghko+s e,
kI(S) = Sk(]a

p = _(q2_q—2)2.

Moreover ¢4 is injective.



1.2. THE Q-ONSAGER ALGEBRA FROM DIFFERENT POINTS OF VIEW

Theorem 1.2.4 [Bas0604] Let ki, k_,eq,e_ denote scalars in K. There is an algebra
homomorphism from the q-Onsager algebra to L such that

A = koelky? + kpegky? + e_ko, (1.2.10)
A o kel kP 4 k_er kP ek, (1.2.11)
with po = p1 = kik_(¢+¢7")%

1.2.3 The ¢-Onsager algebra, the reflection equation and the algebra A,

The aim of this part is to recall the relation between the reflection equation algebra
[Cher84, Sk&8] and the g-Onsager algebra (1.2.1), (1.2.2). In the literature, the connection
between the two algebras appeared as follows: First, the structure of the solutions the K-
operators satisfying “RKRK" defining relations for the Ug(sly) with R-matrix (1.2.12) had
been studied in details in the case where the entries of the K —matrix act on an irreducible
finite dimensional vector space. Recall that the entries of the K —matrix depends on
a spectral parameter u. Expanding the entries in terms of a new spectral parameter
U= (qu+q'u=?)/(q+ q7'), it was observed that the first modes of the expansion of
the diagonal entries of the K —matrix generate a ¢g—Onsager algebra [BK0503|. This will
be recalled in details in Chapter 2. This observation suggested that the reflection equation
algebra and the ¢g—Onsager algebra are closely related.

In [BS09], this connection was further studied. Let K (u) be a solution of the reflection
equation algebra with Uq(;fg) with R-matrix (1.2.12). Assume ¢ is not a root of unity. Let
V' be an irreducible finite dimensional vector space on which the entries of the K —matrix
act. Then, it is known that the solution of the reflection equation is unique (up to an overall
scalar factor). Independently, consider the g—Onsager algebra. Let § denote a coaction map
(see the definition below) that is introduced explicitly. Then, one introduces the K —matrix
as the intertwiner between tensor product representations of the ¢g—Onsager algera. By
construction, the K —matrix automatically satisfies the reflection equation algebra. As a
consequence, for V' an irreducible finite dimensional vector space, the uniqueness of the
solution K implies that a quotient of the g—Onsager algebra is isomorphic to a quotient
of the reflection equation algebra.

Below, in a first part we recall the reflection equation algebra. Then, we recall the struc-
ture of the general K —matrix solutions of the reflection equation algebra for the R—matrix
in terms of currents. The modes of these currents are denoted {W_x, W11, Gr+1, Wk+1 |k €
Z4} and generate the algebra A,. The isomorphism between the current algebra and the
reflection equation algebra is given (see Theorem 1.2.6). In a second part, we independently
recall the construction of a coaction map of the g—Onsager algebra (see Proposition 1.2.1).
The defining relations of the K —matrix as an intertwiner of tensor product representa-
tions of the g—Onsager algebra is mentioned. One of the main result of [BS09| is finally
recalled: if the elements of the ¢—Onsager algebra act on an irreducible finite dimensional
vector space (in which case a quotient of the g—Onsager algebra is considered), then it is
isomorphic to a quotient of the algebra A, or, equivalently, to a quotient of the reflection
equation algebra.

10
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Let R: C* — End(V®YV) denote the intertwining operator between the tensor product
of two fundamental representations ¥V = C? associated with the algebra Ug(slz). The
element R(u) depends on the deformation parameter ¢ and is defined by [Bax82]

ug—u g7t 0 0 0
0 u—u"t qg—q! 0
R(u) = 0 i— gl ! 0 : (1.2.12)
0 0 0 uqg—utg!

where u is called the special parameter.

By construction, R(u) satisfies the Yang-Baxter equation in the space V ® V @ V.
Namely,
ng(u/v)ng(u)Rgg(v) = Rgg(v)ng(u)ng(u/v), Vu,v. (1.2.13)

Definition 1.2.4 [Sk88] Reflection equation algebra Bq(sﬁ\g) is an associative algebra with
unit 1 and generators Ki11(u) = A(u), Ki2(u) = B(u), Ko1(u) = C(u), Ka(u) = D(u)

considered as the entries of the 2 X 2 square matriz K (u) which obeys the defining relations

Ria(u/v)(K(u) @ D)Rig(uwv)(I® K(v)) = (I® K(v))Ri2(uwv)(K(u) @ I)Riz(u/v), Yu,wv.
(1.2.14)

Definition 1.2.5 [BS09] The current algebra Oq(gg) is an associative algebra with unit
1, current generators Wy (u), Gi(u) and parameter p € C*. Define the formal variables
U= (qu*+q¢wu?2)/(qg+q ') and V = (qv*> + ¢ v 2)/(q+ q 1), Yu,v. The defining
relations are:

[Wi(u)7w:|:(v)] = 07 (1215)
Wi (u), W—(v)] + [W-(u), Wi (v)] =0, (1.2.16)
U - V)W) We)] = L) (G ()G(v) - G (0)G ()
S plag+q ) =TT TR
WY +1q1 (G (u) = Gx(u) + G5 (v) = Gx(v)), (1.2.17)
Wa()Wa(v) — We(w)Ws(v) + p(qﬁqz)[gi(u),g;(v)]
+ 1U7_U1‘// (Wi ()Wx(v) = We(v)We(u)) =0,  (1.2.18)

UlG(v), We(w)ly — VIGx(u), We(v)lg — (¢ — ¢ )(Wx ()G (v) = W (0)G(u))
+ p(UWe (1) — VW (v) — W (u) + Wy (v)) = 0, (1.2.19)

UWx(u),Gz(0)lg — VIWVz(),Gx(w)lg — (¢ — ¢ W ()G (v) = W (v)G(u))
+ p(UWs (1) — VWe(v) — Wa(u) + Wi (v)) = 0, (1.2.20)

11
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[Ge(u), W (v)] + W (u), Ge(v )] =0, Ve =+, (1.2.21)
(G (u), G (v)] = (1.2.22)
G+ (u), G- (v)] + [G- (), g+(v)] = 0. (1.2.23)
Theorem 1.2.5 [BS09] The map ® : Bq(s/l\z) — Oq(s/l\g) defined by

Alu) = ugWi(u) —u g W_(u), (1.2.24)
D(u) = ugW_(u) —utq "Wy (u), (1.2.25)

_ 1 ky(g+q 1)

-1
Clu) = /-mr(qurq—l)g(“) - k‘q(q_tjfl) (1.2.27)

is an algebra isomorphism, where ¢ # 1,u # ¢~ and k+ € C*.

Definition 1.2.6 [BS09] A, is an associative algebra with parameter p € C*, unit 1 and
generators {W_i, Wii1, Gk+1, Gr+1lk € Z4} satisfying the following relations:
Wos Wit1] = Wi, Wi] = q+1q_1(g~k+1 — Gk11), (1.2.28
Wo, Grt1lg = [Gri1, Wolg = pW-—1 = pWei1, (
[Gr1:Wilg = V1, Grepalg = pPWira — pWoi, (
W_, W_i] =0, U¢%+1JM&+1]=:0 (
Wi, Wiga] + Wi, W] = 0, (
W_i, Gl + [Gry1, W—i] = 0, (
WG] + [Grs1, W] = 0, (1.2.34
Wi+t1, Gl + [Gr1, Wia] = 0, (
Wii1, Gip1) + [Gry1, Wipa] =0, (
[Gr+1,Gi41] = 0, [Grs1,Gia] = 0, (
[Gr+1,Giv1] + [Ght1, Gris1] = 0, (
where Zy is the set of all nonnegative integers.
By analogy with Drinfeld’s construction, we are now looking for an infinite dimensional

set of elements (the so-called ‘modes’) of an algebra in terms of which the currents Wy (u),
G+ (u) are expanded.

Theorem 1.2.6 [BS09] Define the formal variable U = (qu? + ¢ 'u=2)/(q¢ + q7'). Let
U : Oy(sly) — Ay be the map defined by

wy= > WU W (u)= Y WU ", (1.2.39)
k}EZ+ kJEZ+

=3 GenaU ™ G (w)= > GeaUF 1 (1.2.40)
keZ keZy

Then, ¥ is an algebra isomorphism between Oq(s/l\g) and Aq.

12
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In [J85, J86], Jimbo pointed out that intertwiners R of quantum loop algebra lead to
trigonometric solutions of the quantum Yang-Baxter equation (1.2.13). Any tensor prod-
uct of two evaluation representations with generic evaluation parameters u and v being
indecomposable, by Schur’s lemma the solution R is unique up to an overall scalar factor.
Consider the quantum affine algebra Ug(slz) the construction of the solution R(u) given
by (1.2.12) goes below. Similar arguments apply to solutions of the reflection equation
algebra. If the vector space on which the entries of the K —matrix act is irreducible, then
the solution is unique (up to an overall factor).

We now turn to the construction of intertwiners between representations of the g—Onsager
algebra. First we recall some basic ingredients that are necessary for the discussion.

Recall the realization of the quantum affine algebra Uq(s/l\g) in the Chevalley presenta-
tion {va Ejv Fj}aj € {07 1} [CP91]

Definition 1.2.7 Define the extended Cartan matriz {a;;} (ai = 2,a:5 = =2 for i # j).
The quantum affine algebra Uq(sly) is generated by the elements {H;, E;, F;},5 € {0,1}
which satisfy the defining relations

[H%Hj} = 0, [HME]] :aijEj (1241)
g — g7
[Hi, Fj] = —aijFj,  [E;, Fj] = b PR (1.2.42)
together with the q-Serre relations
[Ei, [Ei, [Ei, Ejlglg—] = 0, (1.2.43)
[Fi, [Fiy [Fy, Fllglg—2] = 0. (1.2.44)

Clearly, this realization of Uq(s/l\g) is equivalent to the one in Definition 1.2.2. We endow
the quantum group with a Hopf algebra structure that is ensured by the existence of a
coproduct A : Uy(sly) — Uy(sla) ® Ugy(slz), an antipode S : Uy(sly) — Uy(slz) and a
counit & : Uq(gfg) — C with

AE;) = EoqgT?4"PeE, (1.2.45)
AF) = Fog 2R, (1.2.46)
A(H;)) = H;®I+1® H;, (1.2.47)
S(E;) = —Eiq", S(F)=—¢"'F;, S(H;)=-H;, SI)=1, (1.2.48)
and
E(E;) =E(F)=EH;) =0, &) =1. (1.2.49)

Note that the opposite coproduct A’ can be similarly defined with A’ = 0 o A where the
permutation map o(z ® y) =y ® x for all z,y € Uy(slz) is used.

Recall that, by definition the intertwiner R(u/v) : V, ® V, — V, ® V,, between two
fundamental Uy (sl2)- evaluation representation obeys

R(u/v)(my X m)[A(2)] = (74 X 7)[A(2)|R(u/v)  Va € Uq(gzg), (1.2.50)

13
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where the (evaluation) homomorphism m, : Uq(gfg) — End(V,) is chosen such that (V =
C?)

(B = ugPoy, wi(Ey) =u¢?o_, (1.2.51)
m(F) = u ¢ V0, m(Fy) =utq V20, (1.2.52)
ma(g™) = 7, mu(q™) =q 7. (1.2.53)

It is not difficult to check the matrix R(u) given by (1.2.12) indeed satisfies the required
conditions (1.2.50). The intertwiner R(u) is unique (up to an overall scalar factor) and
satisfies the Yang-Baxter algebra (1.2.13).

By analogy with the construction described above for the R-matrix and along the
lines described in [DeG02, DeMO01], an intertwiner for the ¢g-Onsager algebra can be easily
constructed. Before, we need to introduce the concept of the comodule algebra using the
analogue of the Hopf’s algebra coproduct action called the coaction map.

Definition 1.2.8 [CP91] Given a Hopf algebra H with comultiplication A and counit &,
7 is called a left H-comodule if there exists a left coaction map 6 : T — H @ T such that

(Axid)od = (idx8) 08, (£xid)od=id (1.2.54)

Right H-comodules are defined similarly.

Proposition 1.2.1 [Bas0404] Let k+ € C* and set py = p2 = kyk_(q¢+ ¢~ V)2, The q-
Onsager algebra T is a left Uy(slay)-comodule algebra with coaction map 6 : T — Ugy(sly)@T
such that

5(A) = (kyErgd™? +k_Fig"?) @1+ ¢™ A, (1.2.55)
§(A%) = (k_Eoq™" + kyFyq™?) @1+ ¢ © A*, (1.2.56)

Proposition 1.2.2 [BS09] Let m, : Uq(gl\g) — End(V,) be the evaluation homomorphism
for V = C2%. Let W denote a vector space over C on which the elements of the q-Onsager
algebra T act. Assume the tensor product V, @ W is irreducible. Then, there exists an
intertwiner

Ku): VW —V,-1 W, (1.2.57)

such that
K(u)(my x id)[6(a)] = (m,-1 x id)[0(a)| K (u), VaeT. (1.2.58)

It is unique (up to an overall scalar factor), and it satisfies the reflection equation (1.2.14).

According to Proposition (1.2.2), K(u) is the unique intertwiner of the ¢g-Onsager algebra
T satisfying (1.2.58). By construction, it satisfies the reflection equation algebra (1.2.14).
This implies that a quotient of the g-Onsager algebra is isomorphic to a quotient of the
reflection equation algebra or, alternatively, a quotient of infinite dimensional algebra A,.
Combining these results, it suggests that the g-Onsager algebra with py = p1 = p has
two different realizations: one in terms of the reflection equation algebra for the U,(sl2)
R-matrix and another one in terms of the current algebra Oq(gg) = A,

14
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“RKRK” algebra [Cher84, SK&8[°™s 125,126 cyypent algebra (Def. 1.2.5)
Reflection equation for Uq(S/l\g) Presentation {W_j, Wi11, Qk+1,g~k+1} [BS09, BK13|

\ Oy(sls) /

g—Onsager algebra T with py = p1 [Bas0408, Ter99|

Figure 1.1: Presentations of Oq(gl\z)

1.3 Representation theory

The concept of a tridiagonal pair originated in algebraic graph theory, or more precisely,
the theory of Q-polynomial distance-regular graphs. The standard generators for the sub-
constituent algebra (Terwilliger algebra) of a P- and Q- polynomial association scheme give
rise to the concept of tridiagonal pair when they are restricted to an irreducible submodule
of the standard module [ITT99, Example 1.4|, [Ter92, Lemmas 3.9, 3.12]. This fact moti-
vates the ongoing investigation of the tridiagonal pairs [ITT99, INT10, IT07, IT03, NT08,
Ter99|.

It is now well understood that the representation theory of tridiagonal algebras - in
particular the ¢g—Onsager algebra - is intimately connected with the theory of tridiagonal
pairs. For instant, for an algebraically closed field and no restrictions on ¢, note that a
classification of tridiagonal pairs is given in [INT10| (see also [IT08|). In this Section, we
first recall what is a Leonard pair, and then turn to tridiagonal pairs. The material is taken
from the work of Terwilliger et al.

1.3.1 Leonard pairs

We recall the notion of a Leonard pair, a special case of the tridiagonal pair [ITT99,
Ter03, Ter01, Ter99| and illustrate how Leonard pairs arise in representation theory, com-
binatorics, and the theory of orthogonal polynomials [Ter03].

Definition 1.3.1 [Ter01] Let V denote a finite dimensional vector space over K. By
a Leonard pair we mean an ordered pair of linear transformations A : V. — V. and
A* .V = V that satisfy the following conditions.

(i) There exists a basis for V with respect to which the matriz representing A is diagonal
and the matriz representing A* is irreducible tridiagonal.

(ii) There exists a basis for V with respect to which the matriz representing A* is
diagonal and the matriz representing A is irreducible tridiagonal.

Note that a matrix is called tridiagonal whenever each nonzero entry lies on either the
diagonal, the subdiagonal, or the superdiagonal. A tridiagonal matrix is said to be irre-

15
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ducible if all entries on the subdiagonal and superdiagonal are nonzero.

Suppose that V' has dimension d + 1. Write End(V) is the K-algebra consisting of
linear transformations from V to V. Now let A € End(V'), suppose that A has (n + 1)
distinct eigenvalues g, 01, ...,0,. If n = d and the eigenvalues 6g, 01, ...,0; € K then A is
said to be multiplicity-free. Assume A is multiplicity-free, put

A—0.1
Ei: J ) O<<da
H 91'—9]' ==

0<j<d
ji

where I denotes the identity of End(V').
Apparently, by the elementary algebra,

AE; = BiA = 0,E;, 0<i<d, (1.3.1)
EE; =6,E;, 0<ij<d, (1.3.2)
d d
Y Ei=1, ) 6B =A, (1.3.3)
i=0 i=0
V; = E;V is eigenspace of A corresponding with the eigenvalue 6;, (1.3.4
Ey, E1, ..., Ey is a basic of subalgebra of End(V) generated by A. (1.3.5)

We call E; the primitive idempotent of A associated with 6;. As a result,

V=EV+EV+- - +E)V (direct sum).

Lemma 1.3.1 [Ter01] Let V' denote a finite dimensional vector space over a field K. Let
(A, A*) denote a Leonard pair on V.. Then each of A, A* is multiplicity-free.

When working with a Leonard pair, it is often convenient to consider a closely related
object called a Leonard system.

Definition 1.3.2 [Ter01] Let d denote a nonnegative integer. Let V denote a finite di-
mensional vector space over a field K with dimension d + 1. By a Leonard system on V,
we mean a Sequence

b= (A Ey, Er,...,Eq; A Ep BN, ... EY),

that satisfy the following conditions

(i) A, A* are both multiplicity-free elements.

(ii) Eg, En, ..., Eq is an ordering of the primitive idempotents of A.
(uii) B, EY, ..., E} is an ordering of the primitive idempotents of A*.

, . 0 ifli—jl>1 o
F-AYE. — < <d).
(iv) BA"E; {#0 fli-jl=1 ©0=Hi<d
* A I 0 ifli—jl>1 P
; — < <d).
(v) BEfAE; { 0 fli—jl=1 (0<i,j<d)
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Ones refer to d as the diameter of ®, and say ® is over K.

Remark 1 Let® = (A; Eo, B, ..., Eq; A% E§, EY, ..., E}) denote a Leonard system on'V,
and let ¢ denote an automorphism of End(V'). Then ¥ = (p(A); o(Eo), ¢(E1), ..., ¢(Eq);
O(A*); p(Es), o(ET), ..., @(E))) is also a Leonard system on V.

The Leonard pairs ® and ¥ are said to be isomorphic whenever there exists an automor-
phism of End(V') such that ¢(®) = V.

A given Leonard system can be modified in several ways to get a new Leonard system.
For instant, let ® = (A4; Ey, B, ..., Eq; A E5, EY, ..., E}) denote a Leonard system on V/,
let a, a*, 5, 8* denote scalars in K such that o # 0,a* # 0. Then,

(€A + BI;Ey, Er, ..., Eq;a” A" + B*I E5, EY, ..., E))

is a Leonard system on V. Also,

* = (A% E}EY,...,E}; A;Eo, B, ..., Ey), (1.3.6)
Ot = (A;Fo,Ey,...,Eg; AN ELES (... EY), (1.3.7)
VY = (A4, EyEqy,...,Eo; A% ES Er, ... EY) (1.3.8)

are Leonard systems on V.

From the conditions (i7) and (iv) of Definition 1.3.2, with respect to an appropriate
basis consisting of eigenvectors for A, the matrix representing A* is irreducible tridiago-
nal. Similarly, from the conditions (iii) and (v) of Definition 1.3.2, with respect to an
appropriate basis consisting of eigenvectors for A*, the matrix representing A is irreducible
tridiagonal. It means that in the Leonard system ®, (A, A*) is a Leonard pair. Inversely, if
(A, A*) is a Leonard pair, and E;,i = 0, ..., d (resp.E}) denotes an ordering of the primitive
idempotents of A (resp.A*) corresponding with the basis of V' in the condition () (resp.(i7))
of Definition 1.3.1, then ® = (A; Ey, B, ..., Eq; A% E§, EY, ..., E}) is a Leonard system.

Let (A, A*) be a Leonard pair on V. Let 0y,601,...,04 (vesp 65,07,...,05) denote
eigenvalues of A (resp. A*) such that the corresponding eigenvectors v, vy, ...,vq (resp.
V3, V1, ..., v)) satisfy the condition (i) (resp. (7)) in Definition 1.3.1. We refer to 6y,, 61,
..., 0q as the eigenvalue sequence of ®, and 6,07, ...,0} as the dual eigenvalue sequence
of . Let E; (resp. E}) denote the primitive idempotent of A (resp. A*) associated with
6; (resp. 0F), 0 < i < d. Let ag,ai,...,aq be the diagonal of the matrix representing A
with respect to the basis vg,v7,...,v). Let aj,a],...,a}; be the diagonal of the matrix
representing A* with respect to the basis vg,v1,...,v4. As we know, a; = tr(EfA), af =
tr(E;A*) for 0 <i <d.

Theorem 1.3.1 [Ter0306] Let ® denote a Leonard system from Definition 1.3.2. Then
the elements A"E§A® (0 < r,s <d) form a basis for the K-vector space End(V).
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Corollary 1.3.1 Let ® denote a Leonard system from Definition 1.3.2. Then the elements
A, Ej together generate End(V'). Moreover the elements A, A* together generate End(V').

Corollary 1.3.2 Let ® denote a Leonard system from Definition 1.3.2. Let D denote the
subalgebra of End(V') generated by A. Let Xo, X1,..., Xy denote a basis for the K-vector
space D. Then the elements X, E;Xs (0 < 7,5 < d) form a basis for the K-vector space
End(V).

Lemma 1.3.2 For 0 <i,5 <d, the following hold

(1) E;AE; =q #0  ifli—j[=1,
aiEZ?" ifi :j.
0 ifli—jl>1,
(ii)) EA*E; =< #0 ifli—j|=1,
alB; ifi=j.

where a; = tr(EfA),af =tr(E;A*) (0 <1 <d)

Lemma 1.3.3 [TV03] For 0 <r,s,i,j < d, the following hold
, 0 g os<r<li-jl.
AT
" EA@_{¢0ﬁr4wm
H;JFSE;‘A”SE;, ifi—j=r+s,
(it) By ATATACE; = ¢ 05 EJA™TELifj—i=r+s,

07 Zf’Z_J|>T+S

Obviously, the role of A and A* in the Leonard pair (A, A*) are the same, hence the prop-
erties similar to Lemma 1.3.3 are also given for A*.

Based on the relations between A, A* and the primitive idempotents E;, £, the eigen-
values 6;, 87, P. Terwilliger found elements of the algebra generated by A, A* commuting
with elements in the subalgebra of End(V') generated by A and elements in the subalgebra
of End(V') generated by A*. As aresult, A, A* satisfy the defining relations of a tridiagonal
algebra.

Theorem 1.3.2 [Ter99/ Let V denote a finite dimensional vector space over a field K.
Let (A, A*) denote a Leonard pair on V. There exists a sequence of scalars B,v,~*, 9, 6*
in K such that A, A* satisfy the tridiagonal relations (1.1.1), (1.1.2). Furthermore, if the
dimension of V is at least 3, then the sequence is uniquely determined.

The eigenvalues 6; (resp. 6;) of A (resp. A*) satisfy recurrence relations below

(i) The expressions % and % are independent of 7 and equal to 8 + 1, for
all 2 <i<d-1.

(ii) 0i+1 —BO; +0,_1 = v, 0;-’(_’_1 — ﬁ@: + 0;‘_12: v, 1< §2d

(i) 02— B0,0i1+ 02, —(0,+0,1) = 0, 67— G007, +072, —7*(6;+6;_,) = &7, 1<
1 < d.

Theorem 1.3.2 is extended as follows.

18
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Theorem 1.3.3 [TV03] Let V' denote a finite dimensional vector space over a field K. Let
(A, A*) denote a Leonard pair on' V. There exists a sequence of scalars 3,v,7*,9,0*, w,n,n*
wn K such that both

A2A* — BAATA + A*A? — y(AA* + A*A) — §A* = A2+ wA+ql,  (1.3.9)
A2A — BAYAA* + AAY? — (A" A4+ AA*) —65"A = ~FA? +wA* +0*1. (1.3.10)

If the dimension of V is at least 4, then the sequence is uniquely determined.

The relations (1.3.9), (1.3.10) are called the Askey-Wilson relations.

There is no doubt that if A, A* is a Leonard pair then A, A* satisfy the tridiagonal
relations and the scalars §,7,~*,9,6* in Theorem 1.3.3 coincide with the scalars of the
tridiagonal relations. If the dimension of V' is at least 4, then they are uniquely defined
by the recurrent relations. By [TVO03| for the scalars w,n,n*, they are obtained by the
following
(Z) w= af(@z — 92‘+1> + afﬁl(ﬁifl — 97;72) — ’7*(91 + 91;1), 2<3:<d-1.

(11) w=ai(0] =07 ,) +ai1(07_, =07 o) —~7(07 +0;_,), 2<i<d-—-1
(ZZZ) n= af(@l — 9171)(91 — 9¢+1) — ’}/*9? — wﬁi, 1 S ) S d—1.
(iv) 0" = ai(0F — 07 1) (07 — 07,1) — SCARS whi, 1<i<d—1

We now show conditions in order to get a Leonard pair. Indeed, it is that a kind of
converse of Theorem 1.3.3.

Theorem 1.3.4 [TV03] Let V denote a finite dimensional vector space on a field K. Let
A, A* denote linear transformations from V to V. Suppose that:

(i) There ezists a sequence of scalars (B,7v,v*,d,0% w,n,n* in K which satisfy (1.3.9),
(1.5.10).

(i) There exists a scalar ¢ not a root of unity such that ¢ +q~* = B.

(iii) Each of A, A* is multiplicity-free.

(iv) There does not exist a subspace W C V such that AW C W, A*W C W other than 0
and V.

Then (A, A*) is a Leonard pair on V.

Lemma 1.3.4 [Nom05] Let A, A* denote linear transformations from V to V. Suppose
A%A* — BAA*A 4 A*A? — y(AA* 4 A*A) — §A* = P(A)

holds for some polynomial P(x) in K(z), and for some scalars 3,7,9 in K. The eigenspaces
of A and the eigenspaces of A* all have one common dimension.

Furthermore if K is algebraically closed or q is not a root of unity, where B = q+q~"', then
the eigenspaces of A and the eigenspaces of A* all have dimension 1.

Theorem 1.3.5 [Nom05] Suppose K is algebraically closed. Then the following are equiv-
alent.

i) (A, A*) is a Leonard pair on V.

ii) A, A* satisfy the Askey-Wilson relations (1.8.9)-(1.3.10) for some scalars B3,~,~v*, 9, %,
w,n,n*.
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Now we move on to important properties about the classification of the Leonard pairs.

Theorem 1.3.6 [Ter(01] Let V denote a finite dimensional vector space over a field K.
Let ® = (A; Eo, Ev, ..., Eq; A% EG EY, ..., EYS) be a Leonard system. There exists an au-
tomorphism ¢ of End(V'), and there exist scalars o1, @2, ..., ¢q in K such that

90 0 1 [ 98 (251 0 1
1 6y 07 v2
1 0 . 0
b (A) = 2 L (A = ?
o Pd
| 0 1 64 | | O 0% |

The sequence 1, 1, ..., pq is uniquely determined by ®. Moreover, p; # 0 for 1 <i <d.

The Leonard system ¢(®) = (¥(A);¥(Eo), ¥(Ev), ..., v(Ea); ¥ (A"); Y(Ep), v(EY), .-,
Y (E})) is called the split canonical form of ®, and the sequence @1, o, ..., ¢q is called the
first split sequence of ®.

Lemma 1.3.5 Let ® and ® denote Leonard systems over K. Then the following are
equivalent:

(i) ® and @' are isomorphic.

(i1) ® and @' share the same eigenvalue sequence, dual eigenvalue sequence, and first split
sequence.

Let ¢1, 9, ..., ¢q denote the first split sequence of ®¥. We call ¢1, do, ..., dq the second
split sequence of ®.

Lemma 1.3.6 Let ® and ® denote Leonard systems over K. Then the following are
equivalent:

(i) ® and @' are isomorphic.

(i1)) ® and ®' share the same eigenvalue sequence, dual eigenvalue sequence, and second
split sequence.

Theorem 1.3.7 [Ter(01] Let d denote a nonnegative integer, let K denote a field, and let
007017"'70d; 687 T?aej;b

P1, P25+ -5 Pds ¢15¢25"'7¢d

denote scalars in K. Then there exists a Leonard system ® over K with eigenvalues sequence
to,01,...,04, dual eigenvalue sequence 0,07, ... ,07, first split sequence o1, @2, .., 04, and
second split sequence ¢1, ¢, ..., dq if and only if (i)-(v) hold below:
(i) i 0, ¢ £0 (1<i<d).
(1) 0: # 05, 6, 465, ifi#] (0<ij<d).

i—1
(iii) @i = d1 Y Pl=h 4 (07 — 05) (01 — 0a) (1< <d).

o—04
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i—1

(iv) i = o1 Y == 4 (607 — 05) (Ba—ip1 — 00) (1< < d).

(v) The ezpressions
Oi2— 01 07 o— 07,
O;—1—0; = 0F,—0r

are equal and independent of i for 2 <i<d—1.
Moreover, if (i)-(v) hold above, then ® is unique up to isomorphism of Leonard systems.

We display the ‘most general’ solution for the parameters in Theorem 1.3.7.

For 0 <i <d,
h(1 —¢")(1 — s¢'t!
6 = g+ U Q)(i i), (1.3.11)
q
. i} h*(]. o qz)(l S*qi-i-l)

0; = 65+ e . (1.3.12)

For 1 <i<d,
@i =hh*q" (1= ¢") (1= ¢~ (1= r1q") (1 = rag'), (1.3.13)

hh* 1—21‘1_2' 1— i—d—1 oX ol ox 0
S
where q, h, h*,r1,79, 8, 8* are nonzero scalars in the algebraic closure of K such that ryry =
ss*q™1. For this solution the common value of (v) in Theorem 1.3.7 equals ¢ + ¢~ + 1.

Corollary 1.3.3 Let ® denote a Leonard system over K with diameter d > 3, eigen-
value sequence 0o, 01,...,04, dual eigenvalue sequence 03,07,...,0%, first split sequence
1,99, .-, 04, and second split sequence ¢1,pa,...,dq. Consider a sequence L of nine
parameters consisting of 0o, 01, 62,03, 0,07, 05,05 and one of the parameters p1, 4, d1, Pd.
Then the isomorphism class of ® as a Leonard system over K is determined by L.

Corollary 1.3.4 Let d denote a nonnegative integer, and let A and A* denote linear trans-
formations in End(V') of the form

90 0 [ «98 ©1 0 T
1 91 QT P2
A= 1 ‘9_2 . A= %
. . . (pd
| 0 1 0 | | 0 0%

Then the following are equivalent:

(i) (A, A*) is a Leonard pair on V.

(ii) There exists a sequence of scalars ¢1,da, ..., dq taken from K such that (i)-(v) hold in
Theorem 1.5.7.
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Suppose (i) and (ii) hold above. Then
(A; Eo, Er,...,Eq; A% Ep EY, ... EY)

is a Leonard system on V', where E; (resp. E) denotes the primitive idempotent of A
(resp. A*) associated with 6; (resp. 67), for 0 < ¢ < d. The Leonard system has eigen-
value sequence 6,01, ...,04, dual eigenvalue sequence 67,67, ...,0}, first split sequence
V1,99, ,pq, and sequence split sequence @1, @2, ..., Pq.

Leonard pairs arise naturally in Lie algebra. Consider the remark below.

Definition 1.3.3 Let K denote an algebraically closed field with characteristic zero. The
algebra sla(K) is a Lie algebra which has a basis e, f, h satisfying

[h7€] = 263 [haf] = _2f7 [e7f] = ha
where [,] denotes the Lie bracket.

Lemma 1.3.7 [Kas95] There exists a family Vg, d =0,1,2... of irreducible finite dimen-

sional sla(K)-modules such that the module Vy has a basis vo,v1,...,vq satisfying
hvi = (d—2i)v; for 0 <1i<d, (1.3.15)
foi = (i+1Dvip for0<i<d-—1, fug=0, (1.3.16)
evi = (d—i+ 1y for1<i<d, evy=0. (1.3.17)

Every irreducible finite dimensional slo(K)-module is isomorphic to exactly one of the mod-
ules Vg, d =0,1,2....

Remark 2 [ITT99] Let K be an algebraically closed field with characteristic 0, let A, A* be
semi-simple (diagonalizable) elements in the Lie algebra sla(K), and let V' be an irreducible
finite dimensional sla(K)-module. Assume sla(K) is generated by the elements A, A*, then
the pair A, A* acts on V' as a Leonard pair.

Definition 1.3.4 Let K denote an algebraically closed field. The algebra Uy(slz) is an
associative K-algebra with unit 1 and is generated by the elements e, f, k, k=" that satisfy
the following relations

EE =k7k =1, (1.3.18)

ke = ¢*ek, kf =q %fk, (1.3.19)
E—k=!

ef — fe= . 1.3.20

f-te= =5 (1.3.20)

Lemma 1.3.8 [Ter03, Lemma 6.2] Let d denote a nonnegative integer. There exists a
family Ve q, € € {1,—1} of irreducible finite dimensional Uy(slz)-modules such that the

module Ve q has a basis ug,u1, ..., uq satisfying
ku; = eq %y, 0 <i<d, (1.3.21)
fui =i+ 1quip1, 0<i<d—1, fug=0, (1.3.22)
eu; = €ld — i+ 1)qui—1, 1 <i<d, eug=0. (1.3.23)
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FEach irreducible finite dimensional Uy(slz)-module is isomorphic to exactly one of the mod-
ules Ve q.

Theorem 1.3.8 [Ter03, Example 6.3] Let d denote a nonnegative integer, and choose
e € {1, —1} Let e, f,k, k1 denote genemtors of the algebm Uq(slz). Let o, denote

= fe + —. Assume eaf is not among

¢t ¢t ...,q1 ¢ then the pair A A* acts on the zrreduczble finite dimensional Uy(sl2)-

module V. 4 as a Leonard Pair.

1.3.2 Tridiagonal pairs

A more general object called a tridiagonal pair is now considered. The concept of a
tridiagonal pair is implicit in [BI84, page 263|, [Leo82] and more explicit in [Ter92, Theo-
rem 2.1]. A systematic study began in [ITT99|. As research progressed, connections were
found to representation theory [AC04, Bas0404, IT07, IT03, IT08, IT09, Ter99, TV03|,
partially ordered sets |Ter03|, the bispectral problem |[GH96, GH9699, GLZ92, Zhe91].
Parallel with these progress, tridiagonal pairs appeared in statistical mechanical models
[Bas0404, Bas06, BK0503, BK0507, BK07, Bas0604| and classical mechanics [ZK02].

Let V' denote a vector space over a field K with finite positive dimension. Let End(V)
denote the K—algebra of all linear transformations from V' to V. Let A denote a diagonal-
izable element of End(V). Let {V;}%_, denote an ordering of the eigenspaces of A and let
{91‘}?:0 denote the corresponding ordering of the eigenvalues of A. For 0 < ¢ < d, define
E; € End(V) such that (E; — I)V; =0 and E;V; =0 for j #i(0 <4 < d). Here I denotes
the identity of End(V'). We call E; the primitive idempotent of A corresponding to V; (or

0;).

Lemma 1.3.9 The sequence {E;}i—o,. 4 satisfies the following properties,
(i) 1=3LoE;;
(7,7,) EZEJ = (Sl’JE (O <1 ] d)
(iii) Vi =EV (0<i<d);
(iv) A= 0:FE;
(v) Eo, Er,...,Eq is a basic for subalgebra of End(V') generated by A.
Proof. For all v € V, there exist a; € K,v; € V},5 =0,...,d such that v = Zj‘l:o a;v;.
(1) Z?:l Eiv = 25:1 E; Z?:o ajuj = 25:1 Ei(av;) = Z?:o @iV = V.
(il) E:Bjv = Ei(EBj(Xf_g akvr)) = Ei(ajv) = 65 Ei(X g arvr) = 655 Erv.
. d d d d d d
(iv) Av =A% 5 gaju; =3 50 a;05v55 Do Oibw = 3 5o 0iEi 25— azu; = 375 a;b;v;.
n .
(v) Let D denote the subalgebra of End(V) generated by A. We have D = {>" a;A’|n €

i=0
N,a; € K,0 <i <n}. Since A is diagonalizable, and A has d+ 1 eigenvalues 0o, 01, ...,04,

then the order of the minimal polynomial of A is d + 1. Hence, D = {Z a;Atla; € K,0 <
=0
i < d}. Moreover, Ey, E1,...,Eq € D, and they are independent. The proof is straightfor-

ward. ]
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Definition 1.3.5 [ITT99, Definition 1.1] Let V' denote a vector space over a field K with
finite positive dimension. By a tridiagonal pair (or TD pair) on V we mean an ordered
pair of linear transformations A :'V — V and A* : V. — V that satisfy the following four
conditions.

(i) Each of A, A* is diagonalizable.
(ii) There exists an ordering {Vi}fzo of the eigenspaces of A such that

where V_1 =0 and Vi1 = 0.

(iii) There exists an ordering {V;*}0_, of the eigenspaces of A* such that

AVF C Vi + Vi 4+ Vi 0<i<9, (1.3.25)
where V*; =0 and V(;‘+1 =0.

(iv) There does not exist a subspace W of V' such that AW C W, AW C W, W # 0,
W #£V.

Let (A, A*) denote a TD pair on V, the integers d and § from (ii), (iii) are equal and
called the diameter of the pair. We will prove it later. An ordering of the eigenspaces
of A (resp. A*) is said to be standard whenever it satisfies (1.3.24) (resp. (1.3.25)). Let
{Vi}4, (resp. % 35-:0) denote a standard ordering of the eigenspaces of A (resp. A*).
For 0 <i<d,0<j<4,let 6; (resp. 0;) denote the eigenvalue of A (resp. A*) associated
with V; (resp. V). By [ITT99], for 0 < i < d the spaces V;, V;* have the same dimension;
we denote this common dimension by p;. By the construction p; # 0,7 =1,...,d, and the
sequence pg, P1,- - -, Pq is symmetric and unimodal; that is p; = pg—; for 0 < ¢ < d and
pi—1 < p; for 1 < i < d/2. We refer to the sequence (pg, p1,-..,pq) as the shape vector
of A, A*. In particular, the shape vector of A, A* is independent of the choice of standard
orderings of the eigenspaces of A, A*.

Now let (A, A*) denote a TD pair on V. An ordering of the primitive idempotents of A
(resp. A*) is said to be standard whenever the corresponding ordering of the eigenspaces
of A (resp. A*) is standard.

Definition 1.3.6 [ITT99, Definition 2.1] Let V denote a vector space over K with finite
positive dimention. By a tridiagonal system (or TD system) on V we mean a sequence

® = (A {Ei} Lo A% {Ef Hoo)
that satisfies (1)—(iii) below.
(i) (A, A*) is a TD pair on V.

(ii) {E;}% is a standard ordering of the primitive idempotents of A.
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(iii) {E} ?:0 is a standard ordering of the primitive idempotents of A*.
We say that ® is over K.

Actually, F; can be written as follows,

0<j<d 0<j<d
J#i i

And for all v € V},j # i, Ejv = 0. Therefore, E; is the projection of V' on V;.
Our proof is complete with the observation that there exists one and only one linear trans-
formation such that it is the projection of V onto V.

Lemma 1.3.10 [INT10] Let (A;{E;}¢_o; A*;{E}2_,) denote a TD system. Then the
following hold for 0 < i,j,r < d,0 < h,k,r <4.

(i) EfA"E; =0 if |lh—Fk|>7r .

(i) EAE; =0if|i—j|>r .

Proof. We give only the proof of (i), for (ii) it is also proved similarly.
For all a € V| we have

EjAEia) € EAV;
C B ATV + Vi + Vi)
C E Vi, +Vien+ o+ Vi + Vi)
= 0. (Since |h— k| > 7).
It follows directly that Ef A"E} = 0if |h — k| > 7. ]

Lemma 1.3.11 [ITT99] Let (A, A*) denote a TD pair on V, the integers d and & from
(i), (i1i) of Definition (1.3.5) are equal.

Proof. Assume without loss of generality that § < d. Set Vi j = (35— EZV)Q(ZZ:J- ELV)

. o . : 0if i<0 g
for all integers 4, j, with convention that » , , E;V = { Vifis s and Zk:j EV =
Vit j <0
0 if j>d -
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Since EY +---+ Ej =1, then AE}V = (E7 +---+ E)AE}V. By (i) of Lemma 1.3.10,
AE;V C Ej_\V + E}V + E;_,V. Consequently, (A —0,1) S} _o E;V C S EiV.
Moreover,

Mg

d d
(A=0,1) EV = Z AELV — 0;E,V) =
k=

(0L ERV — 0,E,V)

=T

J

I
M&u

(0, — 0;)ExV = Z E,V.

k=j+1 k=j+1
It follows that (4 — 6;1)Vi; © (S350 BpV) N (S0 BRV) = Vigryer. From that, we
obtain AV, ; C V;; + Vi1 41

Similarly, we get A*V; ; C Vi ; + Vi_1 1.

Put W =Vy, +Vipp1+ -+ Vig_pq for 0 <r < d. By the above,

AW = AVor+-+Vaera) CVor +Vigsr + -+ Vara + Vacrr1,041 = W,
AW = A*(‘/O,r +F Vd—r,d) - Vfl,r‘fl + ‘/O,r + 4+ Vd—r—l,d—l + Vd—’r,d =W.

Use the condition (iv) of Definition 1.3.5, W =0 or W = V.

Clearly, Vo, ..., Vj—rq are subsets of Zz;g EpV, then W C ZZ;B E;V. Therefore
W #V ( 2;6 E;V is the proper subset of V).
Suppose that § < d, put 0 <r=d—-6 <d, wehave W = Vy, + Vg1 +---+ Vsq = 0.
However, V54 = EqV < 0. This is a contradiction. Thus, we conclude that § = d. [

Theorem 1.3.9 [ITT99, Theorem 10.1] Let V denote a vector space over K with finite
positive dimension, and let A, A* denote a TD pair on K. There exist scalars 8,~,7v*,4,0"
in K such that the tridiagonal relations are satisfied

[A, A2A* — BAA* A+ A* A2 — y(AA* + A*A) —6A"] = 0, (1.3.26)
[A*, A2 A — BATAA* + AA™2 — " (A*A+ AA*) —5*A] = 0. (1.3.27)

Moreover, these scalars are unique if the diameter of the pair is at least 3.

Proof. Let ® = (4;{E;}L; A*;{E7}L ) denote a TD system associated with (A, A*).
Let 0o, 61,...,04 (vesp. 65,67,...,603) denote the eigenvalue sequence (resp. the dual eigen-
value sequence) of ®.

Put U; = Z E;vVn EEkV forall 0 <i<d,and W =Uy+ Uy + --- + Uy. We first
h=0
prove that V is the dlrect sum of Uy, Uy, ...,Uy. Similarly, in the proof of Lemma 1.3.11,

AW C A, AW C W, thus W =0, or W = V. Moreover 0 ;é Uy = EjV C W Clearly,

V = W. On the other hand, for all 0 < ¢ <d—1, ZUI C Z E}V,Uii1 C ZEkV By
1=0 h=0 i1
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i i d
the proof of Lemma 1.3.11, >~ UyNU;41 C > EfV N > ERV = 0. This gives that V is
=0 h=0 k=i+1
the direct sum of Uy, Uy, ...,Uy.

Let F; denote the projection map of V onto U;, for all 0 < ¢ < d. Put R =

d d
A= 0;F, L =A*— Y 0:F,.
=0 =0

Write D = {3 apA¥|n € N,a, € K}. Since A is diagonalizable, and A has d + 1
k=0
d
eigenvalues 6g, 01, ...,04, then the minimal polynomial of A is [[ (A — 6;I). Hence, we
=0

d
can rewrite D = {>" a,A¥|a; € K}.
k=0

d
For all 0 < ¢ < d, by Lemma 1.3.10, E;A* = E;A*() E;) = E;A*E;_1 + E;A*E; +
7=0
EiA*EZ'+1, with E,1 == Ed+1 = 0. Similarly, A*EZ == El',lA*Ei JrEZA*EZ +El+1A*EZ Put
l
Li=> E;forall0<]<d,
1=0

l l
LA* — AL, = Z E;A* — A* Z E; = BIA*E; 1 — Ei 1 A*E).
i=0 i=0
In fact, D is spanned by Ey, E1,...,E4 (the property (v) of {E;,i = 0,...,d}), then
Lo, Lq,...,Lgis also a basic of D.

Span{XA"Y —YA*X|X,Y € D} = Span{E;A"E; — E;A'E;|0 <i,j <d}
Span{ E;A*E; 11 — E; 1 AYE;|0 < i < d}
Span{L;A* — A*L;|0 < i < d}

— {XA"— A*X|X € D}.

It follows immediately that there exist uniquely scalars a; € K (i = 0,1,...,d) such that

d
APATA = AATA® =) ai(APA* — A" AY) (1.3.28)
=0

Assume d > 3, put t = max{i € {0,1,...,d}a; # 0}. Suppose that ¢ > 4, multiply two
sides of the equation (1.3.28) on the left by F}, and on the right by Fy. By Lemma 7.3 of
[ITT99|, we have

0= at(FtAtA*FO - FtA*AtF()) = (Lt(gé - ‘9;;)RtF0

By Corollary 6.7 of [ITT99], R'Fy # 0, then a.(6F — 6F) = 0, it is a contradiction. Hence
t < 3, the equation (1.3.28) can be rewritten

A2A%A — AA*A? = a3(APA* — A*A3) + ap(A2A* — A*A%) + a1 (AA* — A*A). (1.3.29)
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Suppose asz = 0, multiply the two sides of (1.3.29) on the left by F3 and on the right by
Fy, we get (07 — 9§)R3F0 = 0. This is again a contradiction. So asz # 0. We can put
8= % —1l,y=-2 (5 . The equation (1.3.29) becomes

(ABA* — A*A3) — (B + 1)(A2A* A — AA*A2) — y(A2A* — A*A%) — §(AA* — A*A) = 0

or [A, A2A* — BAA* A+ A*A? — y(AA* + A*A) — §A*] = 0. Multiply each term in (1.3.26)
on the left by F;_» and on the right by Fiyq, for all 2 < ¢ < d — 1, we find (6} , —
05— (B+1)(0;_, — 07))R3F;_5 = 0. Consequently, 0} , — 07— (B+ 1)(0;“ 105 =0.
It follows 07 , — 07 | + 07 = 07 | — BO; + 0;41, for all 2 < i < d. So the expression
07, — BO; + 9Z+1 does not depend on i. Let us put vk = 07 — 807 + 67 ;. Consider

(0ic1 — 0i41)(0i—1 — BO; + 0;=1 —~*) = 0, thenQ;‘1 — Bo;7_ 9*+0*2—7(0;“1+9*)—
02— 36070* 1+ez+1 - (a*+9z .1). We can also put 6* = 0%— 80707, | +07, > —v* (0:+07, )
because 0 ﬁ@:ﬂ;‘_i_l 2 —*(0; + 0;,) is independent of i. Accordlng to Lemma

9.3 of [ITT99], we get (1.3.27). Since 3,7, 6 are determined uniquely, and ~*,6* satisfy
(1.3.27) then ~v*,6* are also determined uniquely. We already finish proving for d at least
equals 3, then f3,+, ¢ are determined uniquely such that (1.3.26), (1.3.27).

If d =2, let 3 be any scalar in K, put v = 6y — 3601 + 02, and § = 63 — B0, + 07 —
(0 + 01). If d = 1, let 3, be any scalars in K, put § = 02 — B0o0; + 03 — v(0p + 61). If
d =0, let 8,v,0 be any scalars in K. By Lemma 9.3 of [I[TT99|, we get (1.3.26). Similarly,

there exist scalars v*, 6* for (1.3.27). ]
Corollary 1.3.5 [Ter99] Let (A, A*) be a TD pair on' V', with eigenvalue sequence 6,01, . ..
and dual eigenvalue sequence 05,07, ...,0%5. Then the expressions
;o — 9i+1; 07 o — 0714 (1.3.30)
0;—1—0; 0r , —0;

are equal and independent of i for 2 <i<d-—1

Proof. This lemma is straightforward from the equations 6;_o—0;11—(8+1)(0;—1—6;) = 0,
and 0 _, — 07, — (B+1)(0;_, —07) = 0 in the proof of the above theorem. [

Corollary 1.3.6 Let (A, A*) be a TD pair on V, with eigenvalue sequence 6y, 01, ...,04
and dual eigenvalue sequence 05,07,...,0%5. For all 0 < i < d, there exist scalars
a1, g, 03,07, a5, 05 1n K and q in the algebraic closure of K, q¢ # 0,q # £1 such that

0, = oaq+ asq + asq’, (1.3.31)
0F = af+aiq +ajq (1.3.32)

Proof. By Corollary 1.3.5 and Theorem 1.3.9, there exists scalar 8 in K, such that

% =p+1, forall 2 <i<d-—1. Letq in the algebraic closure of K, such that

-1

g+ q " = . We have the equation
Oi—2 — Oit1 -1
i1 — 0;
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It is equivalent to

Oi—2 —0i14+0;—1 —0; +6; —0; 11

1
=q+q  +1
0;i—1—0;

Put U; = 92'_2 — 91'_1, it yields

Uiro — (¢ 4+ ¢ Duiss +u; = 0.
Since ¢ # +1, there exist scalars a,b € K : v; = aq’ + bq™?, or 0;_s — 6;,_1 = aq’ + bg".
Solving this equation, there exist scalars oy, ao, a3 € K such that 6; = a;+asq¢*+aszq™". By
the same arguments, there also exist scalars o}, o, o € K such that 0 = of +abq'+ajq™".
]

i

Note that the following equations are inferred directly from Corollary 1.3.6. If § =
@+ q 72, ¢* # 1, there exist scalars a, o* in K, and b, b*, ¢, ¢* in the algebraic closure of K
such that

0, =a+bg> 44cq?  0<i<d, (1.3.33)
07 =a"+b"¢¥ °+c"¥  0<j<4, (1.3.34)
where b, b*, ¢, ¢* are nonzero scalars.

Lemma 1.3.12 For each positive integer s, there exist scalars s, Vs, Vs, 0s,0: in the alge-
braic cloture of K such that

07 — Bobi; + 07 —vs(0; +0;) =05 = 0 if |i—jl=s. (0<i,j<d), (1.3.35)
057 — Bbi0r + 052 — 7505 +607) =0 = 0 if |h—kl=s. (0<h,k<0). (1.3.36)

Proof. There is no loss of generality of assuming j = i + s. Substituting (1.3.33) into
(1.3.35) gives

0= b2q2s—2d(q2s + q—2s . Bs)qlli + C2q2d—25(q23 + q—2$ o ﬁs)q—4i
+ 0+ ) (2a — Bsa = 1) + (¢’ + 47 ) (20 — oo —v5)g
+ 202 4 4bc — Bs(a® 4+ be(¢* + ¢7%%)) — 2ays — ds

If b,c,q # 0 and ¢** + q~2% # —2, then (1.3.35) is satisfied for all 0 < i < d if and only if
g =p=0

2a — Bsa — s =0
202 + 4be — Bs(a® + be(q* + ¢7%%)) — 2ays — 05 = 0

Therefore,
Bs=q> +q %
Vs =2 —¢* —q7%)
55 — a2(qs _ qfs)Q o bC(qu _ q723)2
Similarly, there exist scalars v}, 0% s.t (1.3.36) [
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Remark 3 Let V denote a finite dimensional vector space over K, and (A, A*) be a
tridiagonal pair on V. Let r,r*,s,s* denote scalars in K such that r,rv* are mnonzero,
then the ordered pair (rA + sl,r*A* + s*I) is also a tridiagonal pair on V. Moreover,
if B,7v,7",0,0% is a sequence of parameters in the tridiagonal relations of A, A*, then
B,y + 8(2 = B), r*v* + 55(2 — B), 125 — 2rsy + s2(B — 2),7°20* — 2r*s*y* 4+ 5*2(B — 2)
is the sequence of parameters in the tridiagonal relations of rA + sI, r*A* + s*1I.

Theorem 1.3.10 [Ter99] Let 3,v,7*,0,0" be scalars in K. Let T denote a tridiagonal
algebra over K with the parameters 5,7v,~*,9,6%, and generators A, A*. Let V denote an
irreducible finite dimensional T-module. Assume that q is not a root of unity such that
B=q+q !, and A, A* are diagonalizable on V. Then (A, A*) acts on V as a tridiagonal
pair.

By Theorem 1.3.9 and Theorem 1.3.10, there exists a relationship between the tridiagonal
pair and the generators of the g-Onsager algebra as follows.

Remark 4 If A, A* are generators of the q-Onsager algebra, V is an irreducible finite
dimensional vector space on which A, A* act, and A, A* are diagonalizable on V then
(A, A*) is a tridiagonal pair on V. Inversely, if (A, A*) is a tridiagonal pair on V, and
the parameters B = ¢*> + ¢ 2, ~v =~* =0 then A, A* satisfy the defining relations of the
q-Onsager algebra.

The conditions making a tridiagonal pair become a Leonard pair are established by the
next theorem

Theorem 1.3.11 [Ter99] Let V denote a finite dimensional vector space over K. Let A, A*
be linear transformations from V to V. Then the following are equivalent.

(i) (A, A*) is a Leonard pair on V.

(i1) (A, A*) is a tridiagonal pair, and for each of A, A* all eigenspaces have dimension 1.

Lemma 1.3.13 Let (A, A*) denote a tridiagonal pair on V. If the shape vector of A, A*
satisfies po = p1 = 1, then A, A* is Leonard pair.

Corollary 1.3.7 Let (A, A*) denote a tridiagonal pair on V. If (A, A*) is not a Leonard
pair, the shape vector of (A, A*) satisfies p; >2 (1 <i<d-1).

Theorem 1.3.12 /CP91] The quantum affine algebra Uq(S/l\Q) is isomorphic to the unital
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associative K-algebra U with generators yii, k:ii,i € {0,1} and the following relations:
kiky ' =k Mk = 1,

kok1 is central,

qy; ki — q kiy;t

qg—q? = b
gy, —q ki _
q—q? -
av; v —a Yty )
q—q* -
T P
9Yi yiq_ Z—lyi Y o _ kkTY, i g,

W)y — BlowH) 2wy + Bloyi v ) — v (uf)? =0, i # j.
An isomorphism from U to Uq(;fQ) is given by:
k- K
v = Ko e
+ -1 1271+
yi = K —qlg—q ) K e

The inverse of this isomorphsim is given by:

Kf — kf,
e; oy — kil

+ 1-— kiyf

=t

aa—q')

Theorem 1.3.13 [IT07] Let V denote a vector space over K with finite positive dimension
and let (A, A*) denote a tridiagonal pair on V. Let 0y,01,...,04 (resp. 65,607,...,60%)
denote a standard ordering of the eigenvalues of A (resp. A*). We assume there ezist
nonzero scalars a,a* in K such that 0; = ag®~ % and 07 = a*q® 2% for 0 < i < d. Then with
reference to Theorem 1.3.12 there exists a unique Uq(sla)-module structure on V' such that
ay; acts as A and a*y, acts as A*. Moreover there exists a unique Ug(sla)-module structure
on V such that ayy acts as A and a*y; acts as A*. Both Uy(sly)-module structures are
irreducible.

Definition 1.3.7 Let V denote a vector space over K with finite positive dimension. Let
d denote a nonnegative integer. By a decomposition of V' of length d, we mean a sequence
Uo,Us, ..., Uq consisting of nonzero subspaces of V' such that

V=Uy+U +---4+Ug (direct sum).
Now we are concerned about six decompositions of a finite dimensional vector space V.
Recall that (A, A*) is the tridiagonal pair on V. Let Vo, Vi,..., Vg (vesp. Vi, Vi, ..., V)

denote a standard order of the eigenspaces of A (resp. A*). For 0 < i <d, let 6; (resp. 6})
denote the eigenvalue of A (resp. A*) associated with V; (resp. V.*)
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Lemma 1.3.14 [IT07] The sequence of subspaces Uy, Uy, ..., Uq of V is a decomposition
of V' if one of the six following is satisfied

i)U =V, i=0,1,...,d,

W) Uy =Vr, i=0,1,...,d

iii) Uy = (Vi + Vi -+ V)N (Vi Vigr 4 - + Vo),
w) U= Vg +V+--+V)INWV+Vi+-+ Vii), ..
) Ui= (Vi + Vi ++VHO)n(Vo+Vit-+Vey), i=0,1,....d,
i) Uy = (Vi + Vi + A VOIN Vit Vigr +- -+ Vo), i

Lemma 1.3.15 [IT07] Let Uy, Us,...,Uy denote one of the siz decompositions of V' as-
sociated with the tridiagonal pair (A, A*) in Lemma 1.3.14. For 0 < i < d, let p; denote
the dimension of U;. Then the sequence pg, p1, - .., pq s independent of the decomposition.
Moreover the sequence pg, p1, - - ., pq 1S unimodal and symmetric.

Lemma 1.3.16 [IT07] Let Uy, Uy, ...,Uy denote any one of the siz decompositions of V
associated with a tridiagonal pair (A, A*) in Lemma 1.3.14. Then for 0 <i < d the action
of A and A* on U; is described as follows.

7,) If Uz == ‘/Z then (A - QlI)UZ == 0, A*Ul C Ui—l + Uz + Ui+1,

ii) ]f U, = Vz* then AU; CU;_1+U; + Uit1, (A* — H*I)UZ =0,

Ui—la

iv) ]fUi = (VO*+V1*+' "+‘/;*)ﬂ(%+‘/1+"'+vd_i) then (A—Gd_iI)Ui - Ui—&-l; (A* —
G:1U; C U1,

v) IfU; = (Vi + Vi, ++ V)N (MVo+Vi+ -+ Vi) then (A—041)U; C
Uiy1, (A*=60:1)U; C U;_q,

Ui) [fUZ = (Vd*_i+Vd*_i+1+- . ‘+Vd*)ﬂ(‘/i+vi+l+‘ : '+Vd) then (A—@ZI)UZ - Ui+17 (A* —
6, HU; C U;—;1.

Theorem 1.3.14 [IT07] Let B : V. — V denote the unique linear transformation such
that for 0 <14 < d,

Vo+Vi+-+VI)n(W+Vi+-+ Vi)

is an eigenspace of B with eigenvalues bg* 7.

Let B* : V. — V denote the unique linear transformation such that for 0 < i <d,
(V;—i+vd*_i+1+"'+V;)Q(VZ~+VZ-+1+...+VCI)

is an eigenspace of B* with eigenvalue b*q?2.

Then (B, B*) is a tridiagonal pair on V. The sequence bg*~4(0 < i < d) is a standard
ordering of the eigenvalues of B and the sequence b*q?=2(0 < i < d) is a standard ordering
of the eigenvalues of B*.

Now we give two relations involving the tridiagonal pair (A, A*) which has a standard
ordering of the eigevalues 6;,i = 0,1,...,d of A satisfying §; = a¢* ¢ and a standard
ordering of the eigenvalues 07,7 = 0,1,...,d of A* satisfying 0] = a*q?% where a, a* are

nonzero scalars in K.
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Theorem 1.3.15 [IT07] Let (A, A*) denote a tridiagonal pair on V', let 6y, 01, . .., 04 (Tesp.
05,07, ...,05) denote a standard ordering of the eigenvalues of A (resp. A*). Assume that
0; = aq%_d,ﬁz‘ =a*¢?%,i=0,1,...,d where a,a* are nonzero scalars in K then A, A*
satisfy the q-Serre relations

A3A* — [3],A%A* A+ [3],AA*A* — A*A® = 0, (1.3.37)
AP A — [3], AP AA* 4 [3],A*AA™ — AA = 0. (1.3.38)

In fact, the result of the above theorem is expressed more efficiently as follows

Theorem 1.3.16 [Ter99/ Let (A, A*) denote a tridiagonal pair on' V' of diameter d. Then
the following are equivalent:

i) A, A* satisfy the q-Serre relations.

ii) There exist eigenvalue and dual eigenvalue sequences for A, A* which satisfy

ei — q2i9’ 9: — q2d72i0* (0 <i< d)7

for some nonzero scalars 6,0*.

Theorem 1.3.17 [IT07] Let K denote an algebraically closed field with characteristic 0.
Let V' denote a vector space over K with finite positive dimension and let (A, A*) denote
a tridiagonal pair on 'V of diameter d. Let (po, p1,--.,pq) denote the corresponding shape
vector. Assume A, A* satisfy the q-Serre relations then the entries in this shape vector are
upper bounded by binomial coefficients as follows

pi§<c.l> (0 <i<d).

1

In particular, pg = pqg = 1 for such tridiagonal pairs.

Lemma 1.3.17 [AC04] Let (A, A*) denote a tridiagonal pair on V, and let D and D*
denote the subalgebras of End(V') generated by A and A*, respectively. Fixz standard order-
ings of the eigenspaces Vo, Vi,...,Vy and of the eigenspaces V', Vi*, ...,V of A*. Then
the following are equivalent:

i) (A, A*) is a Leonard pair.

ii) V.= Dv* for some nonzero v* € V.

iit) V.= D*v for some nonzero v € V.

The preceding result suggests the following generalization of a Leonard pair, from which
the case of Leonard pair is excluded to focus on what is new.

Definition 1.3.8 Let (A, A*) denote a tridiagonal pair on V. Let D and D* denote the
subalgebras of End(V') generated by A and A*, respectively. We say that (A, A*) is mild
whenever (A, A*) is not a Leonard pair, but po = pg = 1 and V = Dv* + D*v for some
nonzero v* € Vi and v € Vy.
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Theorem 1.3.18 [AC04] Suppose that (A, A*) is mild, and pick nonzero vectors v* € Vi
and v € Vy. Define

v;k:(A—HZ,lI)(A—Hll)(A—HOI)U* (O§Z§d—1),

vi= (A" =05 D). (A" — 05 I)(A* — 0D (1<i<d).

Then {vg,vi,v],v2,05,...,V4-1,V_1,v4} is basis for V.

Definition 1.3.9 Let (A, A*) denote a tridiagonal pair on V. Then (A, A*) is said to be
of q-Serre type whenever the following hold:

A3A* — [3],A%A* A+ [3],AA*A? — A* A3 = 0,
APA — [3],A P AA* + [3],A*AAT? — A4 =

The action of a mild tridiagonal pair of g-Serre type on the basis of Theorem 1.3.18 was
studied more deeply by H. Alnajjar and B. Curtin.

Theorem 1.3.19 [AC04] Let (A, A*) denote a mild tridiagonal pair on V' of q-Serre type
with diameter d > 3. Fizx standard orderings of the eigenspaces of A and A* for which the
corresponding eigenvalue and dual eigenvalue sequences satisfy ii) of Theorem 1.3.16 for
some nonzero scalars §,0%. Define v} and v; (0 <1i < d) as in Theorem 1.53.18. Then there
exist nonzero scalars A, p, u* € K such that

Av = 0+, (0<i<d—2),
Avs = @005 + vapva,
Avi = ¥ 0v + Nvig1 +Ya—ipvi, (1<i<d—2),
Avgsr = @7 20v41 + (N1 + va-1[2)gip™ v,
Avgy = quGUd,
Ay = T 4 v (2<i<d),
Ay = @200 + VUG s
AP = @PUEO 4 A vf vt (2<i<d—1),
A% = 20707 + (N1 + a1 [2lgpe)vg,
A*’Ug — q2d9*’08,
where
Ai = [ilgld—ilgh 1<i<d-1),
o d—1],! .
[2]q[d -1+ 1]q

Recall that V' is irreducible as an (A4, A*)-module whenever there is no subalgebra W of V/
such that both AW C W and A*W C W, other than 0 and V.
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Theorem 1.3.20 [AC04]

Let 0,0%,q, \, u*, and u be nonzero scalars in K. Pick any integer d > 3, and let V be
a vector space of dimension 2d. Let A:V — V and A* : V — V denote linear transforma-
tions which act on some basis vy, v1,v7,...,04-1,V;_;,vq as in Theorem 1.3.19. Further
suppose that V is irreducible as an (A, A*)-module. Then (A, A*) is a mild tridiagonal pair
on 'V of q-Serre type.

Let (A, A*) denote a tridiagonal pair on V. Let 6y, 01,...,64 (resp. 65,07,...,6) denote
a standard ordering of the eigenvalues of A (resp. A*) By [ITT99] there exists a unique
sequence Uy, Uy, ..., Uy consisting of subspaces of V' suth that

V=Uy+U+ ---+Uy (direct sum),
(A—HiI)Ui QUiH (0§i<d), (A—HdI)UdZO,
(A* — OfI)Uz CU,_1 (0 <1< d), (A* — HSI)UO =0.

We call the sequence Uy, Uy, ..., Uy the split decomposition for (A, A*) with respect to the
orderings 6o, 01, ...,04 and 03,07,...,07.
For 0 <i<d, let F; : V — V denote the linear transformation which satisfies both

(F; —DU; =0,
FUj=0ifj#i, (0<j<ad).
In other words, F; is the projection map from V onto U;. We observe
FiF; = 0;F; (0<1i,j<d),
Fo+Fy+--+Fyg=1,
FV=U; (0<i<d).

Define J
R=A— Z 01, F,,
h=0
d
L=A"-) 6;F,
h=0

We obtain that

and
R =0, L7 =o.

We call R (resp. L) the raising map (resp. lowering map) for (A, A*) with respect to
Uy, Uy, ..., Uy.
Now we consider that (A, A*) is a tridiagonal pair and satisfies the g-Serre relations. Hence
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there exist nonzero scalars a,a* such that 0; = ag® 9, 07 = a*¢>% (0 < i < d). By
[ITT99] the maps R, L satisfy the g-Serre relations

R3L — [3],R*LR + [3],RLR®> - LR® = 0,
L*R — [3],L*RL + [3],LRL* — RL* =

Theorem 1.3.21 [IT03] Let (A, A*) denote a tridiagonal pair on V' satisfying the q-Serre
relations. Let Uy, Un, . ..,Uq denote the split decomposition for (A, A*) and let R, L denote
the corresponding raising and lowering maps. Let v denote a nonzero vector in Uy. Then
V is spanned by the vectors of the forms L'" R L R* ... Ri»v, where i1,1a, ..., i, Tanges
over all sequences such that n is a nonnegative even integer, and i1,19,...,1, are integers
satisfying 0 < iy < ig < --- <ip < d.

Definition 1.3.10 Let (A, A*) denote a tridiagonal pair on V. Let (po, p1,.-.,pd) denote
the shape vector of (A, A*). The pair (A, A*) is said to be sharp whenever py = 1.

Theorem 1.3.22 /[NT08] A tridiagonal pair over an algebraically closed field is sharp.

Theorem 1.3.23 [NT08] Let (A, A*) denote a sharp tridiagonal pair on V. Then there
exists a nonzero bilinear form (,) on 'V such that (Au,v) = (u, Av) and (A*u,v) = (u, A*v)
for all u,v € V. This form is unique up to multiplication by a nonzero scalar in K. This
form is nondegenerate and symmetric.

Let A denote an indeterminate and let K[\] denote the K-algebra consisting of the poly-
nomials in A that have all coefficients in K. Let {6;}¢_, and {#;}%_, denote scalars in K.
Then for 0 < i < d we define the following polynomials in K[\J:

o= (A=00)(A—01)...(A—0i_1),
o= (A=0)A-0)...(A=64),
ni = (A=0a)A—=0ba-1)...(A—0ba—iy1),
nio= A=0)A=04_1) - (A=0_;11)-

Note that each of 7, 7", n;,n; is monic with degree 7.

Definition 1.3.11 Let ® = (A; {E;}Lo; A% {Ef}L,) denote a tridiagonal system on V.
We say ® is sharp whenever the tridiagonal pair A, A* is sharp.

Definition 1.3.12 Let ® = (A; {E;}; A% {Ef}L,) denote a tridiagonal system over K,
with the standard ordering of the eigenvalues {0;}¢, o (resp. {6;}%.) of A (resp. A*). By
[NT08], for 0 < i < d there exists a unique ¢ € K such that

GEG '
(05 —07)(05 — 05) ... (65 — 07)

Eymi(A)E; =
Note that (o = 1. We call {Q}?:O the split sequence of the tridiagonal system.
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Definition 1.3.13 Let ® = (A;{E;}L; A*; {E7}L, denote a sharp tridiagonal system.
By the parameter array of ® we mean the sequence ({0;}9_q; {0 Y4 o; {Gi YL y) where {0;}L,
(resp. {0:}9_) is the standard ordering of the eigenvalues of A (resp. A*) and {(;}4, is
the split sequence of ®.

Definition 1.3.14 Let & = (A4; {Ei}gZO;A*; {E? 21:0 denote a tridiagonal system on V
and let ® = (A';{E';}4 o; A {EYL)) denote a tridiagonal system on V'. We say ®

K2
and ®' are isomorphic whenever there exists an isomorphism of K-vector spacesy : V. — V'

such that YA = A'y,vA* = A*'~ and vE; = E/'y,yEf = E}'~y for 0 <i <d.
The following result shows the significance of the parameter array.

Theorem 1.3.24 [NT08] Two sharp tridiagonal systems over K are isomorphic if and
only if they have the same parameter array.

Definition 1.3.15 Let d denote a nonnegative integer and let ({0;}q; {0 }4,) denote a
sequence of scalars taken from K. We call this sequence q-Racah whenever the following i),
ii) hold.

i) 0; # 05,07 # 07 ifi # 5 (0<4i,j <d).

ii) There exist q,a,b,c,a*,b*, c* that satisfy

0; = a—+bg> 44 cqE (0<i<d),
0 =a* +b*"¢* 1+ ¢t E (0<i<d),
Q7a‘abvcaa*;b*,c* EK,

q#0, q2 # 1, q2 # —1, bb*cc® # 0.

where K is the algebraic closure of K.

Theorem 1.3.25 [IT08] Assume the field K is algebraically closed and let d denote a non-
negative integer. Let ({60;}%_o; {0711 ,) denote a g-Racah sequence of scalars of K and let
{Ci}?:o denote any sequence of scalars in K. Then the following are equivalent:

i) There exists a tridiagonal system ® over K that has parameter array ({60; }9_q; {0:39_0; {¢:}y)

i) Go = 1,(q # 0, and
d
0# > nai(00)mi_s(05)G:
=0

Suppose i), i) hold. Then ® is unique up to isomorphism of tridiagonal systems.

Theorem 1.3.26 [INT10] Let d denote a nonnegative integer and let

{00 {67 10 {GiYo) (1.3.39)

denote a sequence of scalars taken from K. Then there exists a sharp tridiagonal system ®
over K with parameter (1.8.39) if and only if i)-iii) hold below.
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i) 6 £ 0,07 £ 0 ifi £ (0<i,j<d).
ii) The expressions
iz —Oiy1 0o — 07
i1 —0; 0 0,0

are equal and independent of i for 2 <i<d—1.
ii1) ¢o = 1,(q # 0, and

d
0% > na—i(B0)mi_i(65)¢:.
i=0
Suppose i)-iii) hold. Then ® is unique up to isomorphism of tridiagonal systems.

There is no doubt that if K is an algebraically closed field, then there exists a tridiagonal
system over K with parameter array (1.3.39) if and only if this array satisfies the conditions
i), ii) and iii) of Theorem 1.3.26.

1.3.3 Connection with the theory of orthogonal polynomials

In the literature, the first connection between the theory of orthogonal polynomials
and Leonard pairs arises in the analysis of finite dimensional representation of Zhedanov’s
algebra [Zhe91| (also called the Askey-Wilson algebra). It is shown that the Askey-Wilson
polynomials are the overlap coefficients between the ‘dual’ basis in which two generators
are diagonalized respectively.

Furthermore, the theory of Leonard pairs gives a nice algebraic framework for the or-
thogonal polynomials of the Askey-scheme. Historically, there is a theorem due to Leonard
[Leo82|, [BI84, page 260] that gives a characterization of the g-Racah polynomials and
some related polynomials in the Askey scheme [ARS95, AWT79, AWS85, KS96, Koo86|. In
this Section, the connection between the theory of Leonard pairs and the Askey-scheme of
orthogonal polynomials is recalled [Ter99, Ter01, Ter0306].

First, we recall hypergeometric orthogonal polynomials which appeared in [KS96].
Define g-analogue of the Pochhammer-symbol (a)g

(a)p=1and (a)y =ala+1)(a+2)...(a+k—-1), k=1,2,3,....
This g-extension is given by
(a;q)o=1and (a;q)r = (1 —a)(1 —aq)(1 —ag?)...(1 —ag®™ ), k=1,2,3....

It is clear that N
lim (g% ) = ()

=1 (1)
The symbols (a;q); are called g-shifted factorials. They can also be defined for negative
values of k as

1

. _ 2 3 —k _
(a;Q)k— (1—aq_1)(1—aq_2)...(1—aqk)’ a#Q?Q qd 554 ak__17_27_37""
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1.3. REPRESENTATION THEORY

We can also define

k=0
This implies that
(a;9) oo
a;q )
(@) (aq"™; @)oo

and, for any complex number A,

N L0
(#0)s = (ag*; @)oo

The hypergeometric series ,.F is defined by

00 k
rFs<a1,...,aT 2‘): (Gl,---;ar)ki"
bi,...,bs P (b1,...,bs) K!
where
(@1, @) = ()i - - (ar)y.

The hypergeometric series ,.Fy is called balanced if r = s+ 1,z =1 and a; + a3+ --- +
as+1+1:b1+b2+"‘+bs-
The basic hypergeometric series (or g-hypergeometric series) , ¢ is defined by

k
0 . (1+sr)< ) k
1y .., 0r5q sr 2 z
i) = 3 (e ek e

Pt (b1, .., bs; Q) ()%’

Aly...,0p
T‘¢S
( bi,...,bs
where

(a1,...,ar; @k = (a1; @k - - - (ar; @)1

The special case r = s + 1 reads

k

16 A1, ..., 0541
s+ s
bi,.... b,

o0
q.z>: (a1, ar @k 2
’ £ by, bs; @) (5D

A basic hypergeometric series is called balanced if z = ¢ and ajasg . ..as119 = b1by ... bs.

There is a natural correspondence between Leonard pairs and a family of orthogonal
polynomials. The following material is taken from [Ter99, Ter01].

Let A denote an indeterminant, and let K[A] denote a K-algebra consisting of all poly-
nomials in A that have coefficients in K. Let ® = (A; Eo, E1, ..., Eq; A% E§, EY, ..., EY)
denote a Leonard system over K. Then there exists a unique sequence of monic polynomi-
als po, 1, .- Pdr1; PosPls- -+ Pyyq 0 K[A] such that

deg(pi) =i, deg(pi)=1i (0<i<d+1),
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P(AES = AL, pi(A")E) = EA“E, (0<i<d),

Pa+1(A) =0, py(A*)=0.

These polynomials satisfy

Api = pit1 +aipi + xipi—1 (0 < i < d), (1.3.41)
Api = pia +aip; Haipi (0<i<d), (1.3.42)

where g, z§, p—1,p*, are all 0, and where
a; =tr(EFA), af =tr(E;A") (0<i<d),

T; = tT(E,;kAE,;k_lA), ZL‘;k = tT(EiA*EiflA*).

In fact
r; #0, z; #0 (1<i<d). (1.3.43)
We call po,p1, ..., pa+1 the monic polynomial sequence of @, and py, py, ..., py,; the dual
monic polynomial sequence of ®.
Let 0,01, ...,04 (resp. 65,07, ...,0;) denote the eigenvalue sequence (resp. dual eigenvalue
sequence) of ®, so that
0; # 05, 0; #0; ifi#j (0<i,5<d), (1.3.44)
Pa+1(0;) =0, py1(07) =0 (0<i<d). (1.3.45)
Then
pi(fo) #0, pi(6p) #0 (0<i<d), (1.3.46)
and

= (0<i,j <d). 1.3.47
pz(g(]) P; (90) ( ) ( )
Conversely, given polynomials
Po, P15 - -5 Pd+1, (1348)
p(*;vpiv e 7p2<l+1 (1349)

in K[\] satisfying (1.3.40)-(1.3.42), and given scalars

00,01, ..., 04, (1.3.50)
05,0%,....,05 (1.3.51)

in K satisfying (1.3.44)-(1.3.47), there exists a Leonard system ® over K with monic poly-
nomial sequence (1.3.48), dual monic polynomial sequence (1.3.49), eigenvalue sequence
(1.3.50), and dual eigenvalue sequence (1.3.51). The system ® is unique up to isomor-
phism of Leonard systems.
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Hence, there is a bijection between the Leonard systems and systems (1.3.48)-(1.3.51)
satisfying (1.3.40)-(1.3.47). For K = R, the systems (1.3.48)-(1.3.51) satisfying (1.3.40)-
(1.3.47) were classified by Leonard, Bannai, and Ito. They found the polynomials involved

are g-Racah polynomials or related polynomials from the Askey scheme.

We define the polynomials

By (1.3.47),

wi(0;) = uj(07) (0 <i,j <d),

then u; and v} are dual sequences of normalized polynomials [Leo82].

Furthermore, there exists a unique sequence of scalars ¢y, co,...,cq; bg,b1,...,bq_1 In
K such that:
r = bi_i; (1<i<d),
0 = ¢ +a;+b; (Ogigd),
where cg = 0,b5 = 0. Then
A = ciui—1 + aiu; +buipr (0<i<d-—1),
and A\ug — cqug—1 — aqug vanishes on each of 6y, 61,...,0,, where A is an indeterminant.

By the main theorem of [Leo82|, we have

7 (67) 7i(6:) ,
bi = Yitl 5> b =pinn—— (0<i<d-1),
i +1Ti+1(91‘+1) 4 +1Ti+1(91+1) ( )
Na—i(0) . Na—i(0:) :
G =i ¢ =¢i——— (1<i<d),
My—iv1(05_1) Nd—i+1(0i—1) ( )
where
7’1()\) = ()\ — 90)()\ — 01) Ce ()\ — Qz;l),
(A = A=0)A—07)...(A=0_1),
) = A= 00— 0a-1) - = Oaiy),
n(A) = A=00)A—05_1) ... (A= 05_;11)-

Hence, the polynomials u;, v (0 < i < d) are given by
i i

w=3 7, (67) o uf =3 h(6:) -

heo P1¥2---Ph i P12 Ph
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We find that for 0 < i, j < d, the common value of u;(6;), u;(0;)

> (5 On(s* ¢ (a7 On(s¢7 5 Ong”

1.3.52
— (11 Qn(r2¢; O)n(a~% @)n (g On ( )
n=0
In fact, (1.3.52) is the basic hypergeometric series
gt st gt g, sgit )
0 _ q
4 3( 71¢,72q,q ¢ ©4
where ri,79,s,s* are parameters in (1.3.11)-(1.3.14) and it is balanced because r1ry =
ss*q?*1. Then u;, u; are g-Racah polynomials.

Now we consider orthogonality of p;, p; and w;, u;.

Put m; = tr(E;Ef), m! = tr(EEy),0 < i < d. Then each of m;, m] is nonzero
(0 <i<d), and the orthogonality for the p; is

sz mr = (51]1'1.%2 X (0 < Z,] < d)7

ZZM —Sem=t (0< 7 s <d).
12 3

Observe that mg = mg, let v denote the multiplicative inverse of this common value, and
set
ki=miv (0<14,j<d).

The orthogonality for the u; is

Zuz g (0)my = 8kt (0<4,j < d),
Zul s)ki = Ops. 1 (0<r,s<d).
Remark that
bob1 ... bi—1
ki = ’
C1C2...C;

and
v=Fko+ki+ -+ kg

As an example, we now consider an infinite family of Leonard pairs and find the relation
with hypergeometric series. For any nonnegative integer d, the pair

0 d 0
1 0 d—1
A= 2 , A" =diag(d,d —2,d—4,...,—d)
-1
0 d 0
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is a Leonard pair on the vector space K%t!, provided the characteristic of K is zero or an
odd prime greater than d. One shows P? = 2] and AP = PA*, where P denotes the
matrix with 5 entry

L d : (_i)n(_j)nQn .
Py = ( j )ZO ! O=HI= D,

Further P;; can be written in form of hypergeometric series

_7:7 _.7
wn ()
There exist Leonard pairs similar to the one above in which the series of type oFy is re-
placed by a series of one of the following types: 3Fb, 4F3, 201, 302, 4¢3.

Let K denote a field with characteristic 0. Let d denote a nonnegative integer. Put
Q={d—2i]i=0,1,...,d}. Let V denote a vector space over K consisting of all functions
from Q to K. Since the cardinality of €2 is d + 1 the dimension of V is d + 1.

Define two transformations A, A* from V to V as follows.

For all f e V,0 € Q,

(Af)(0) = 0f(9), (1.3.53)
(A*F)(0) = dTJ“ef(e —2)+ %f(e +2). (1.3.54)

It is easy seen that A, A* are linear.

For j =0,...,d let K; denote the element in V satisfying

d! —i,—j
50~ gm0 [2)

where 0; = d — 2,0 <1 <d.

Observe that K;(6) is a polynomial of degree j in 6. The polynomials Ko, K1, ..., K, are
Krawtchouk polynomials and form a basis for V. With respect to this basis the matrices
representing A and A* are

0 d 0
10 d-1
A= 2 - , A" =diag(d,d—2,d—4,...,—d).
.1
0 d 0

Since the pair (A4, A*) is a Leonard pair on V, there exists a basis for V' with respect to
which the matrix representing A is diagonal and the matrix representing A* is irreducible
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tridiagonal. Now we display this basis. For 0 < j < d let K denote the element in V'

which satisfies
KJ*(HZ) =d;; (0<i<d),

where d;; denotes the Kronecker delta. The sequence K, K7, ..., K} forms a basis for V.
With respect to this basis the matrices representing A and A* are

0 d 0
10 d—1
A — 2 A = diag(d,d —2,d — 4, ..., —d).
o1
0 d 0

We have then shown how the above Krawtchouk polynomials correspond to the Leonard
pairs.

The polynomials in the following table are related to Leonard pairs in a similar fashion.

Type Polynomial

4F3 Racah

3By Hahn, dual Hahn

o Fy Krawtchouk

103 g-Racah

3¢9 g-Hahn, dual g-Hahn

a¢1 | ¢-Krawtchouk (classical, affine, quantum, dual)

The above polynomials are defined in Koekoek and Swarttouw [KS96], and the connection
to Leonard pairs is given in |[Ter01, BI84]. Indeed, these polynomials exhaust all Leonard
pairs for which ¢ # —1. For K = R, the classification of Leonard pairs amounts to a “linear
algebraic version" of Leonard’s theorem [Leo82, BI&4].
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Chapter 2

Mathematical Physics: background

In the first part, we recall the two known presentations of the Onsager algebra. The
second presentation (the original one) is given by an infinite set of elements {A,},n =
0,£1,4£2,..., {Gn},m = 1,2,... that satisfy the relations (2.1.1)-(2.1.3) [O44]. The
first presentation introduced by Dolan-Grady is given by Ag, A; satisfying the relations
(2.1.12)-(2.1.13) [DG82]. It is also explained that the elements of an Abelian subalgebra of
the Onsager algebra provide examples of mutually commuting quantities (see (2.1.6)) that
generate integrable systems. Also, the connection with s/l\g (more precisely, with the loop
algebra of slg) is described. For irreducible finite dimensional representation of the Onsager
algebra, it is known that the generators of the second representation satisfy additional
relations (2.1.17)-(2.1.18). These relations are usually called the Davies’ relations [Dav91,
Dav90].

In the second and third parts, by analogy with the undeformed case discussed in the
first part, it is explained that the ¢g—Onsager algebra admits two presentations. The sec-
ond presentation is given by the generators W_g, Wi+1, Gi+1, §k+1 that satisfy the infinite
dimensional algebra A, (see Definition 1.2.6) [BS09]. The first presentation is given by the
standard generators Wy, W, that satisfy the g—Dolan-Grady relations [Ter01, Bas0404,
Bas0408]. It is explained how mutually commuting quantities (2.3.5) that generate an
Abelian subalgebra of the ¢—Onsager algebra are derived by using Sklyanin’s formalism.
Also, the connection between the two presentations and Uy(sl2) (more precisely, the quan-
tum loop algebra of sly) is described. For most of the examples considered in the lit-
erature [Bas0404, BK0503, BKO07|, the vector space on which the elements act is finite
dimensional. As a consequence, quantum analogs of Davies relations naturally appear, see
(2.2.39)-(2.2.42).

In the last part, we briefly recall how the open XXZ spin chain with generic boundary
conditions and generic values of ¢ can be formulated using the g—Onsager approach.

2.1 Historical background

The exact solution of the planar Ising model in zero magnetic field which was obtained
by Onsager [O44] has provided a considerable source of developments in the theory of
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exactly solvable systems of statistical mechanics, or quantum field theory in two dimen-
sions. Onsager’s successful approach was originally based on the so-called Onsager algebra
and its representation theory. In progress of solving the two dimensional Ising model,
he established the transfer matrix of the model in terms of an infinite set of elements
{A,},n=0,£1,42,..., {Gp,},m = 1,2,... that generate the so-called Onsager algebra.

Definition 2.1.1 [/044] The Onsager algebra is a Lie algebra which has generators Ay, G,
n=0,£1,42,... ,m=1,2,... such that they satisfy the following relations

[An, Ai] = 4G, (2.1.1)
(G, An] = 2An1m — 240 m, (2.1.2)
[Gm, Gl = 0. (2.1.3)

Use algebraic methods, Onsager derived the largest eigenvalue and the corresponding eigen-
vector of the transfer matrix of the Ising model. Despite the important role of the Onsager
algebra, it received less attention in the following years than the star triangular relations
which originated in [O44], [Wan45| and led to the Yang-Baxter equations, the theory of
quantum groups, as well as the quantum inverse scattering method.

In the 1980s the Onsager algebra appeared |Dav9l|, [Dav90|, [Perk87| to be closely
related with the quantum integrable structure discovered by Dolan and Grady in [DG82|.
In fact, Dolan and Grady considered a self-dual quantum Hamiltonian of the form

H=krkA+kK"A, (2.1.4)

where k, k* are coupling constants and A is the operator dual to A such that both operators
satisfy the condition

[A,[A, [A, A]]] = 16[A, A]. (2.1.5)

As a consequence of this relation, there exists an infinite set of commuting conserved self-
dual charges

To, = H(Wgn — WQn,Q) + H*(Wgn - Wgnfg), n=12..., (216)
where )
Wanyo = —[4, [A, Wap]] = Wan, n=1,2,..., (2.1.7)

Wo = A,Zy = H, and the sequence {Wa,}, n = 1,2,... can be extended to n < 0 by
defining W_o,, = —Wap—a. .
It was showed that [Woy, Way,_o1—o] = [Woi_o, Way,_o], for alln >0, I > 0, then it followed

[H,Tpn] =0 and [Ton, Tom] =0 (2.1.8)

Clearly, Dolan and Grady [DG82] showed the the Dolan-Grady relations are sufficient to
guarantee that there is an infinite sequence of commuting operators of the Hamiltonian H.
Based on this result the integrability does not depend on the dimension of the system or the
nature of the space-time manifold, i.e, lattice, continuum or loop space. Integrable systems
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are characterized by the existence of a sufficient number of constants of motion, i.e. equal
to the number of degrees of freedom. The rigorous connection between simple self-duality
and a set of commuting conserved charges was established. For a finite lattice, the set is
finite. For an infinite system, the set is infinite. In the XY and Ising modes, the charges
coincide with known results. Moreover, von Gehlen and Rittenberg [GR85] considered some
Z, symmetric quantum spin chain Hamiltonians (2.1.4), and presented strong numerical
evidence that they exhibit Ising-like behavior in their spectra. Namely, the Hamiltonians
have an infinite set of commuting conserved charges based on the Dolan-Grady relation

[A, [A, [4, A]]] = n?[A, A]. (2.1.9)

Obviously, if we put B = 4n~'A, B = 4n~1A the equation (2.1.9) becomes the equation
(2.1.5) for B, B. It means that

[B,[B,|B, B]]] = 16[B, B). (2.1.10)

In the early 1990s, Davies [Dav91]|, [Dav90| obtained the relation between the Onsager
algebra and the Dolan Grady relations. Actually, Davies did not require the self-duality of
operators Ag, Ay in the Hamiltonian

H =krAy+ k" A1, (2.1.11)
where k, k* are coupling constants, but he gave a pair of conditions

[Ao, [Ao, [Ao, A1]]] = 16[Ao, A4], (2.1.12)
[A1,[A1, [A1, Ao]l] = 16[Ay, Ag). (2.1.13)

We first recall the way to identify an Onsager algebra from the Dolan-Grady relations
[Dav9l|. Let Ap, A; denote generators satisfying the Dolan-Grady relations, define the

sequences A,,Gm,n =0,+1,4+2,...,m=1,2,... by the recursion relations
1
Gi = Z[Al’AO]’ (2.1.14)
1
Ap1—Ap1 = Q[Gl’ Ay, (2.1.15)
1
G, = E[An,AO]. (2.1.16)

The generators A, G, satisfy the defining relations of the Onsager algebra [Dav9l].

Inversely, if Ay, Gm,n=0,+1,£2,....m =1,2,... are generators of an Onsager alge-
bra, then Ag, A; satisfy the Dolan-Grady relations. In fact, every adjacent pairs Ay, Ax11
of the sequence {A,} satisfy the Dolan-Grady relations. As a consequence, the Onsager
algebra admits two presentations. One given by (2.1.1) - (2.1.3) and one given by (2.1.12)
- (2.1.13). The proof of isomorphism between the two presentations is detailed in [Dav91].
More recently, see also [E110]
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Around the same time, a relation between the Onsager algebra and the loop algebra
of sly was exhibited by Davies [Dav90|. It is argued that if the Onsager algebra acts on a
finite dimensional vector space, then there exists some value of h such that the sequences
{A,},{Gn} satisfy the linear recurrence relations of length (2h + 1), namely

h
Z Cvak,l = 0, (2.1.17)
k=—h
h
> Gry = 0 (2.1.18)
k=—h

where [ is arbitrary. Then, Davies showed that the finite-dimensional Onsager algebra is
the direct sum of h copies of the algebra sio,

h
Ay = 2> (FEf +2"E;), (2.1.19)
j=1
h
Gm = > (& H; (2.1.20)
7j=1

where [E;L, E, | = 0;.Hy, [Hj, E,:f] = :t2(5j/z€]_“7,:€iE are the generators of the sly algebra and
zj are called the evaluation parameters of the representation.

Furthermore, after using the expression of A, in terms of E]i (2.1.19), the eigenvalues
of the Hamiltonian (2.1.11) in the sector that is the direct product of n factors of dimension
d;, 1 <j <n fit the general form

n
Mk, k") = ka+ KB+ Z4mj\//£2 + k*2 + 2kK* cosBj, mj = —s;,—sj+1,...,5;,
j=1
(2.1.21)
where z; = e7"%; «, B is a pair of eigenvalues of Ag, A1; and dj = (2s;+1) is the dimension
of an irreducible representation of sly associated with the pair z;, z;

10

2.2 Sklyanin’s formalism and the ¢—Onsager algebra

Among the known examples of quadratic algebraic structures, one finds the Yang-
Baxter algebra. For further analysis, let us first recall some known results. This algebra
consists of a couple R(u), L(u) where the R-matrix solves the Yang-Baxter equation

Ry, (w) Ryyyy (uv) Ry (v) = Ry (v) Ryyyy (uv) Ry, (u) (2.2.1)
and the so-called L-operator satisfies the quadratic relation
Ry (w/v)(Lyy (w) @ Ly (v) = (Lyy (v) @ Ly (u)) Ry,v; (u/v) (2.2.2)

where Vy, V), denote finite dimensional auxiliary space representations. Here, the entries
of the L-operators act on a quantum space denoted V. If one considers a two-dimensional
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spin-3) representation for Vy and V), a solution R(u) of the Yang-Baxter equation and
2 0
the L-operator can be written in the form

Ru) = Y wij(u) o @0, (2.2.3)
1,j€{0,z,£}

Lw) = Y  wju)ees;, (2.2.4)
1,7€{0,z,+}

where 0,04 are Pauli matrices, 0gp = I and w;;(u) are some combinations of functions

woolw) = gla+D(u—g ), (2.2.5)
weel) = Slg—Dutg ), (2.2.6)
wi—(u) = w_y(w)=qg—q " (2:2.7)

Note that the defining relations of the algebra generated by elements {S;} are determined
by the equation (2.2.2). The elements {.S;} act on the quantum space V. The corresponding
algebra is known as the Sklyanin algebra [Sk88|. It admits a trigonometric degeneration
such that the elements {S;} are identified with the generators {S4,s3} of the quantum
enveloping algebra U,(sl2)

So = m (2.2.8)
S, — m (2.2.9)

where [s3,54] = £54 and [S4,S5_] = 7‘1255__;:1233, together with the Casimir operator
w=qq* +q ¢+ (¢ — ¢ )5S, (2.2.10)

Following [Bas0404|, [Bas0408|, let us consider the reflection equation which was first
introduced by Cherednik [Cher84| (see also [Sk88]):

R(u/v)(K(u) @ )R(uv)(I® K(v)) = (I® K(v))R(uv)(K(u) @ I)R(u/v). (2.2.11)

This equation arises, for instance, in the context of the quantum integrable systems with
boundaries [Sk88|. Similarly to (2.2.4), in the spin- we introduce a K-matrix of the form:

Ku)= > 0;®Qu). (2.2.12)
j€{0,2,1}

By [Bas0404], any solutions of the reflection equation (2.2.11) of degree —2 < d < 2 in the
spectral parameter u - with non-commuting entries - can be written in the form (2.2.12)
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where

(A+A)(qu—q 'u™)

Qo(u) = : , (2.2.13)
0w = A= A*)(Q; tg uTh) (2.2.14)
Q. (u) _W —e[A, A, + e, (2.2.15)
O () = —W — coer[A, Ay + cocs (2.2.16)

where the parameters cg,c1 # 0, co are arbitrary, and A, A* have to satisfy the Askey-
Wilson relations (1.3.9)-(1.3.10) with particular values of the parameters

1
B 2.2.17
p p el ( )
C2 _
w = ——=(qg—q"), (2.2.18)
C1

This explicit relation between the Askey-Wilson algebra (1.3.9)- (1.3.10) and the reflection
equation algebra through the analysis of K —operators suggested to investigate further this
new connection.

The generalization of the above connection goes as follows. From the results of [Sk88|,
for any parameter v it is for instance known that

KO () = Ly(uv) . .. Ly (ww) KO (u) Ly (uv™) . .. Ly (uv™), (2.2.20)

the so-called Sklyanin’s operator, gives a family of solutions to (2.2.11). Here L;(u) is the
Lax operator given by (2.2.4), and we choose (for simplicity) the trivial solution of (2.2.11)
to be KO(u) = (04 /co+0_)/(q—q"). For these choices, the Sklyanin operator acts on
the quantum space ®JL:1V]‘ @ V.

Then, the Sklyanin’s operator K (L) can be written as follows

EBw = Y o008 W), (2.2.21)
j€{0,z,+}

(L)
J
in the spectral parameter u and operators acting solely on ®]L:1Uq(sl2). Baseilhac and
Koizumi [BK0503] obtained the following result

where the operators 2} are combinations of Laurent polynomials of degree —2L < d < 2L
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Theorem 2.2.1 [BK0503] For generic values of L, the operators Qg-L) (u) are given by:

o (w) + Q4 (u) = quP(L - ‘1ZP§2 Wi | (2.2.22)
L L L) = (L)
O w) —oP ) = quP( Wik —ulg! ZP D wywk,, (2.2.23)
—-1,,—2 L—-1
0B () = wp(” p b 9.2.24
+ () colg—q1) " ° q+q 1; k—i—l “o ( )
u2 4+ g1y 2 L—
Q" (u) T 2 pPu)+ Z PR )G, + o, (2.2.25)

q+ =

where ng) (u) are Laurent polynomials defined by

L-1 2 -1
(L) _ 1 qQu”+9q U T\ g (L)
P k (u) - q_1 ( q+q_1 ) Cfn7
2 -2y, (7) !
(L) —1\n+1 L—n (U +v )w(] L—n+1 L!
= -1 —_—
C—n (Q+q ) ( ) ( q+q’1 ) (n+1)|(L_n_1)|’
2 -2
2 -2
1 v+ v i
A = e e
w(()j) — q2j+1 + q72j*1, (2.2.30)

provided the generators W( k), Wk+1= ng, ék+1 act on L-tensor product evaluation repre-

sentation of Uy(sla):

1 _

Wit = qu1/4S+q53/2 @I+v g VA 2 @+ ¢ o Wi, (2.2.31)
0
1 —

WI(L) _ ;v—lq—1/48+q—53/2 QT+ Uq1/4s_q_53/2 RI+q¢ 32 ® W£L 1 , (2.2.32)
0

1/2 4 o—1/2
g%L) _ (q—q_l)Sg(X)]I— (q q ) (253+U 2_83)®H+H®g1L 1)

co(q2 — ¢ 172)
+a—a7") (va s g 2@ WY Tl s g e W)

(0% + v 2wl
co(q/2 — q—1/2)

®1, (2.2.33)
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(L) _ (q—q Do or @P+q) 5 o .
G~ = 2 Sl (q1/2_q_1/2)(vq +v )RI+1®GE™
-1
+(qé?><v1QU4S+q%/2®)4%L—n_%vqu45+q%/2®)44L—n)
2 -2y, (J)
WA )W g, (2.2.34)

co(q'/? — q=1/?)

) _ (172 —1/2\ 53 2 -2
w _ (wg = (@"+q /%)) (-1 (0¥ +v7?)
Wi, = = QWi —(q1/2 +q71/2)H®W

(¢2—q ' s L1 S ; 5(L—1)
m (Uq1/4S+q 2 @ gliJrl - cv g V1S ¢ Gt )

(L 1)

@2+v‘)w9) @) 1 g5 @ Wik
() _ 172 —1/2Y,,—s3 2 -2
(L) (wg’ —(¢7%+q /%)qg*) (L 1y (+vT) (L-1)
W’““ (q1/2 + q*1/2) W (q 1/2 4 (171/2)]I ® Wk+1
(=g —s —s 5(L—1)
(g2 + ¢~ 1/2)2 (U LS g e ng + covg'/tS_q/2 @ Gir1 )
(U2 + U—Q) () (L) . (1)
+—( 1721 ¢ 172) Wit P OW, (2.2.36)
co(@"? = g2 o s 1 2 ss 42 sy o g(L-1)
gk+2 = (q1/2+q_1/2> S_®gk.+1 _< 1/2+q_1/2)(’uq3+v q )®gk
—2y, ()
) (Vv ?)wyg
+I® gk+2 + mglﬁ_l
+g—q ") (vq_l/“S_qS**/2 o (W) — W)
+ o7l s g e (WY - wiTY)), (2.2.37)
¢ ("% — ¢ 1/%)? 52 @ gD 1 s | y=2g5) @ G
k+2 CO(q1/2+q—1/2) Y k+1 (q1/2+q_1/2)( +v “q )® kil

2 (4)
< ) (02 + v Hwy’ -
+]I®gk+2 ( 12 4 g 1/2) gk+1

-1
+(q C;] ) (U71q1/48+q33/2 (W( ) ng+1 ))
+vg V18,2 @ (W,gi;l) - W(_Lk_l))) ) (2.2.38)
for k€ {0,1,...,L — 2},
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and satisfy the analog of Davies relations

L
colg — ¢ Hwd"WH =Sl W) = o, (2.2.39)
k=1
L L L L L
colg — g HwdWH =SB wi = o, (2.2.40)
k=1
colg — g MwiP" — ZC DGt = o, (2.2.41)
L) 5(L L L 5(L
colg—q Hws?GP =S G = o (2.2.42)
k=1

with C(jg)ﬂ given by (2.2.27).

As a consequence of the reflection equation algebra and the fact that the vector bpace
on which the elements act is finite dimensional, the generators W(L),W,E: l,gk +1,Qk )
generate a quotient of the infinite dimensional algebra A, (1.2.28)-(1.2.38) by the relations
(qDavies) (2.2.39)-(2.2.42).

Importantly, in [BK0507] 1t was Shown that the first two elements W(L) WI(L) of the
family of generators W( ) Wk +1’ gk 1 g,iﬂ of the quotient of A, satisfy the g-deformed

Dolan-Grady relations
s™ V" Vs el = Vo), (2:2.43)
I W] = e W), (2.2.44)
with
p=(q+q )Vkik_.

For all these reasons, in the literature on the subject the algebra A, is sometimes called
the ¢g—deformed analog of the Onsager algebra, and the relations (2.2.39)-(2.2.42) are called
the g—deformed analog of Davies relations.

2.3 Commuting quantities and the g—Dolan-Grady hierarchy

For the Onsager algebra (2.1.1)-(2.1.3), the explicit construction of mutually commuting
quantities that generate an Abelian subalgebra of the Onsager algebra (2.1.6) has been
considered in details in [O44, DG82|. For the g—Onsager algebra, an analogous construction
is, in general, a rather complicated problem. However, using the connection between the
reflection equation algebra and the infinite dimensional algebra A, or alternatively the
q—Onsager algebra, this problem can be handled. Indeed, it is known that starting from
solutions of the reflection equation algebra, a transfer matrix that generates mutually
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commuting quantities can be constructed. Namely, following the analysis of [Sk88|, for any
values of the spectral parameters u, v

[t 5 (), t B ()] =0 where tB)(u) = tro{ Ky (u) KL (u)} (2.3.1)

where tr( denotes the trace over the two-dimensional auxiliary space. The idea of [BK0503]
was then to consider the expansion of (2.3.1) in order to extract mutually commuting
quantities expressed in terms of the generators of the infinite dimensional algebra A,. To
this end, let us plug the c—number solution of the dual reflection equation! [IK94], [GZ94]
given by

1

B ugr +utq K" Ko(q+ q’l)(q u? —2)/co
Holw) = ( ri(g+a (e — g %u™?) ugr™ +u”lq K ) (232

where k* = k7! for any k € C, and K+ € C. Substitute (2.3.2), and (2.2.21) with

the generators W(_Lk),WIEﬂ, Q,gi)l, é,gi)l of Theorem 2.2.1 into (2.3.1). By straightforward
calculations, it follows [BK0503]

L—1
) =3 (¢*u? - ¢ 2 ) PR ()Iy), + F(u)l (2.3.3)
k=0

with (2.2.26) and

(q+ ) (Pu? — g 2u?) ((qu2 + ¢ w2 B (u)

Flu) =
() co q—q !

—|—cow(()L)) (kt+r_). (2.3.4)

Here, we have introduced the generators Iékil which can be written in terms of the gen-
erators of the quotient of A4,. Explicitly, they read:

L L *
IQ(kzrl = kW) 45 W/g+)1 + “+gk+1 + R gk+1v (2.3.5)
for k € {0,1,...,L —1}. As a consequence of the property (2.3.1), it leads to
Z5) . I8 ) =0 forall ke {0,1,...,L—1}. (2.3.6)

The mutually commuting quantities (2.3.5) are the g—deformed analog of the mutually
commuting quantities (2.1.6) of the Onsager algebra.

Clearly, an interesting problem is to write these quantities solely in terms of the fun-
damental generators of the g—Omnsager algebra, in view of the connection between the
quotient of A, and the ¢g—Onsager algebra. Such problem was first considered in details
in [BK0503], and generalized in [BB10|, where it is shown that the mutually conserved

quantities are polynomials of the fundamental generators W(()L), Wl(L). For instance,
g™ = P Wi, G = i wihy, (2.3.7)
1 2 2
wh = p((q2+q_2)Wé WEWSH — Wi Wi —wBw ) + WP, (2.3.8)

1 2 2
Wi — p<(q2+q‘2)w§”wé”w£” ~WWEE - wiPw ) + W (2.3.9)

!This equation is obtained from (2.2.11) by changing u — v™*,v — v~ and K (u) in its transpose
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2.4 The open X X7 spin chain and the ¢-Onsager algebra

Since Sklyanin’s work [Sk88| on spin chains with integrable boundary conditions, find-
ing exact results such as the energy spectrum of a model, corresponding eigenstates and
correlation functions for elementary excitations has remained an interesting problem in
connection with condensed matter or high-energy physics. Among the known integrable
open spin chains that have been considered in details, one finds the open X X Z spin chain.

For generic boundary conditions, the Hamiltonian of the X X Z spin chain reads

L-1
H)((-L))(Z = Z (cr’f“a’f + 0’5“05 + Aafﬂaf) (2.4.1)
k=1
R 2 1 1
+ o, + kioy +k_o
2 (€++6_) # (6++6_)( et )
(g—qg"HE—-e) o 2 I LT
+ - —0 — — oy +k_o
2 (6+ + 67) ? (6+ + 67) ( + )
where L is the number of sites, A = q+‘2771 denotes the anisotropy parameter, and o4, oy,

09, 0, are the usual Pauli matrices.

Besides the anisotropy parameter, ey, k+ (resp. €i,k+) denote the right (resp. left)
boundary parameters associated with the right (resp. left) boundary. Considering a gauge
transformation, note that one parameter might be removed. For symmetry reasons, we
however keep the boundary parametrization as defined above.

For generic values of ¢ and generic non-diagonal boundary parameters, the Hamilto-
nian H can be formulated within the so-called Sklyanin’s formalism (boundary quantum
inverse scattering) [Sk88|. In this standard approach, a generating function for all mutu-
ally commuting quantities besides H is introduced. It is built from a R—matrix solution of
the Yang-Baxter equation and two K —matrices solutions of the reflection equation [Sk88|.
However, the algebraic setting based on Uq(S/l\g) is obscured in this formulation, and the
standard algebraic Bethe ansatz fails to apply for generic boundary parameters. Instead,
an alternative formulation has been proposed [BK0507|, which is based on an analog of
Onsager’s approach for the two-dimensional Ising model: the transfer matrix - denoted
t(L)(C ) below - is written in terms of mutually commuting quantities Zo, 1 that generate
a g—deformed analog of the Onsager-Dolan-Grady’s hierarchy?. Namely,

-1
B (¢) = Z Fory1(C) Tops1 + Fo(Q)I  with [Zokt1, Zor41] =0 (2.4.2)
k=0

for all k,1 €0,...,L — 1 where ( is the so-called spectral parameter,

_ _ 1 k_ ki 5
D1 = & Wop + € Wi + P (Egkﬂ + Hng) (2.4.3)

2The Onsager’s (also called Dolan-Grady [DG82]) hierarchy is an Abelian algebra with elements of the
form Zopt1 = €4(An + A_p) + € (Ant1 + A—nt1) + KGny1 with n € Z,, generated from the Onsager
algebra with defining relations [An, Am] =4Gn—m, [Gm, An] =2An+m — 2A,_m and [Gn, Gm} =0 for
any n,m € Z [044].
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and Foy11(¢) are given in [BK0507|

1 (P +q 2 =42 —q —2) Z qC2+q 1( 2)n k(D)

For+1(C) Tatal (@rql-C—(- — qtq! -
244 | —2--4 _ 2 2 Booklk. k k_
Q) = (L8 +g?jq_2_q<23g§§+q DG+ )
(L) -1 L-1 -2 —1,—2
wo (a=a7) N~ 9 R )
X( ko nz:%( P C‘")

(qC2 + ¢ ¢ ey + (g + g He)el”
(@ +q2 ==k
(g% + a7 ¢ e + (g + g He)e”
(@ +q2=¢=¢2)F
(L)

The explicit expressions for the coefficients C
choice of quantum space representations at each site (two dimensional for (2.4.1)) of the
spin chain

+

_l’_

(L) (L)

and wy 7, ey essentially depend on the

L
L —-n —1\n
CB = (I g+ g Y e, (2.4.4)
k1<-<kp_pn—1=1
where
202 4 g2 (g — g—1)2
o — 2l 'l ), exe-la q_l) ’ (2.4.5)
(¢+q7')  kik(g+q7t)
9 2 —2
a = L‘fl) for k=2,...,L, (2.4.6)
q+q
and for arbitrary values for L
) = (@ a2 ) = (24.7)

L) _ Lokike 2@+ 0D\ T 2P+ 0D ere(g—qh)?
= )q—q ( q+qt > < q+qt k+k‘—(Q+q‘1)>(2'4'8>

Note that the parameters e+ of the right boundary - which do not appear explicitly in the
formula (2.4.3)- are actually hidden in the definition of the elements W_, Wkt 1, Gr+1, Grt1
[BK0507, BKO7].

Since the generators W_g, Wk+1, Gk+1, ng of the g-deformed analogue of the Onsager
algebra possess the block diagonal and block tridiagonal structure in the eigenbasis of Wy
or the eigenbasis of W; [BKO07]|, the general spectral problem of all nonlocal commuting

operators I;kzrl is solved

7(D)

L L L
(0 B AE) b

AL T 2417 ) (D) for k=0,1,...,L - 1. (2.4.9)
1 1
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It follows that the eigenvalues Axxz(¢) of the transfer matrix (2.4.2) are given by:

L—1
Axxz(0) =Y Farrt QA + Fo(Q). (2.4.10)
k=0

The spectrum E of the Hamiltonian (2.4.1) immediately follows:

_ a—a e+ ) (= P Q) ) dFo(C)
E = 2(E+ + E_)(e_,’_ -+ 6_) <Z Tk:l A2k+1 + dc ‘Czl (2411)

Indeed, it is known that the Hamiltonian of the XXZ open spin chain with generic integrable
boundary conditions (2.4.1) is obtained as follows:

k=0

Ay ) _ 2 (¢—q¢h) 2L
dCl (2 (Dle=r (¢ — q‘l)H ((q +q71) " (¢g—q7Y)

More generally, higher mutually commuting local conserved quantities, say H,, with H; =
H, can be derived similarly by taking higher derivatives of the transfer matrix (2.4.2).

A)H . (2.4.12)

To resume, in the g—Omnsager approach of the open XXZ spin chain with generic in-
tegrable boundary conditions [Bas0404, BK07] the Hamiltonian is written in terms of the
elements (2.4.3). These elements generate an Abelian subalgebra of the ¢g—deformed ana-
log of the Onsager algebra. For the open XXZ spin chain and ¢ generic, the vector space
on which the elements act is irreducible finite dimensional. So, stricly speaking the ele-
ments W_g, Wii1, ng,QkH generate a quotient of the infinite dimensional algebra A,
(1.2.28)-(1.2.38) by the relations (2.2.39)-(2.2.42).

In [Bas0604|, recall that two (dual) bases of the vector space were constructed, on
which the operators Wy, W, act as a tridiagonal pair. Remarkably, in these bases the more
general operators (called descendants) W_j, Wiy1, Gii1, Q~k+1 of the g-deformed analogue
of the Onsager algebra act as block diagonal or block tridiagonal matrices. In [BKO07], the
spectrum and eigenstates of the Hamiltonian (2.4.1) were derived using this remarkable
property. It was the first solution proposed in the literature for the open XXZ spin chain
with generic integrable boundary conditions.
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Chapter 3

Main Results

In this Chapter, we review the three main results of the thesis. The first two results
have their own interest in the context of tridiagonal algebras, g—Onsager algebra, coideal
subalgebras of Uy(slz) and their higher rank generalizations: analogs of Lusztig’s higher
order relations are conjectured, and supporting evidences for these are described. In partic-
ular, the theory of tridiagonal pairs recalled in Chapter 1 plays a central role in the analysis
for the g—Onsager algebra associated with sly. The third main result of this thesis overlaps
between mathematics and physics. In mathematics, quantum universal enveloping alge-
bras have been studied at roots of unity in the literature [Lusz93|. The introduction of the
divided powers of the Chevalley generators plays a central role in the construction. Here,
for the g—Onsager algebra, analogs of these elements are introduced and studied in details
at roots of unity at least for a certain class of irreducible finite dimensional representations
that finds applications in physics. These elements are divided polynomials of the two fun-
damental generators of the g—Onsager algebra. For a special case, they satisfy a pair of
relations that share some similarity with the higher order g—Dolan-Grady relations pre-
viously conjectured. All together, the g—Onsager generators and the divided polynomials
generate a new quantum algebra. Based on this construction, the commutation relations
between the Hamiltonian of the open X X Z chain at roots of unity and the four generators
are studied.

3.1 Higher order relations for the ¢-Onsager algebra

3.1.1 Motivation

Consider the quantum universal enveloping algebras for arbitrary Kac-Moody algebras
g introduced by Drinfeld [Dr87|, and Jimbo [J85]. Let {a;j} be the extended Cartan
matrix of g. Fix coprime integers d; such that d;a;; is symmetric. Define ¢; = qdi. The
quantum universal enveloping algebra U,(g) is generated by the elements {h;,e;, f;}, j =
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0,1,...,rank(g), which satisfy the defining relations:

[hishil =0, [hiye5] = aijej o [hi, fi] = —aijfj (3.1.1)
h; —h;
q;, —4q; ..
[ei7fj] :513ﬁ7 1,] :O,l,...,rank(g) y
€€ = €€, fzf] f]fz for ‘i_j’>17

together with the so-called quantum Serre relations (i # j)

1_aij

k=0 q;
1—a;;
1—a;; 1—a;;
Z(—l)’“[ L J] R =0, (3.1.3)
k=0 qi

where 0;; denotes Kronecker delta.

In the mathematical literature [Lusz93|, generalizations of the relations (3.1.2)-(3.1.3) -

the so-called higher order quantum (q— )Serre relations - have been proposed. For g = l
they read® [Lusz93]:

2r+1

2r+1 . .
Z(—l)k[ A } e T Rerek = 0, (3.1.4)
k=0 q
2r+1
> (-1)f {QTH} fERREE = 0 for i#j, i,j=0,1. (3.15)
k=0

Consider the relations (3.1.2)-(3.1.3) for g = sla, we observe that the ¢-Onsager algebra
is closely related with Uq(,@). In particular, there exists an homomorphism from the g-
Onsager algebra to a coideal subalgebras of Uq(s/l\g) (see Chapter 1).

Recall that the g—Onsager algebra is a special case of the tridiagonal algebra: it corre-
sponds to the reduced parameter sequence v = 0,7* =0, 8 = ¢> 4+ ¢ 2 and p = po, p* = p1
which exhibits all interesting properties that can be extended to more general parameter
sequences. The defining relations of the g—Onsager algebra read

[A’ [Av [Av A*]q]q—l] = pO[Av A*] ) [A*v [A*’ [A*v A]q]q—l] = p1 [A*7 A] ’ (3'1'6)

which can be seen as p;—deformed analogues of the ¢g—Serre relations (3.1.2)-(3.1.3) associ-

ated with g = S/l\g For ¢ =1, pg = p1 = 16, note that they coincide with the Dolan-Grady
relations [DG82].

In the study of tridiagonal algebras and the representation theory associated with the
special case pg = p1 = 0, higher order g—Serre relations (3.1.4), (3.1.5) play an important

For § = gl\z, recall that a;; = 2, a;; = —2 with 4,5 =0, 1.
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role [IT03| in the construction of a basis of the corresponding vector space. As suggested
in [IT03, Problem 3.4], for py # 0, p1 # 0 finding analogues of the higher order g—Serre
relations for the g—Onsager algebra is an interesting problem. Another interest for the
construction of higher order relations associated with the ¢g—Onsager algebra comes from
the theory of quantum integrable systems with boundaries. Indeed, by analogy with the
case of periodic boundary conditions [DFM99|, such relations or similar relations should
play a role in the identification of the symmetry of the Hamiltonian of the X X Z open spin
chain at ¢ a root of unity and for special boundary parameters. Motivated by these open
problems, below we focus on the explicit construction of higher order tridiagonal relations
and the special case associated with the g-Onsager algebra.

3.1.2 Conjecture about the higher order relations of the ¢-Onsager al-
gebra

By analogy with Lusztig’s higher order relations (3.1.4), (3.1.5) for quantum universal
enveloping algebras, it is natural to expect higher order relations for the g—Onsager algebra.

Conjecture 1 Let A, A* be the fundamental generators of the g— Onsager algebra (3.1.6),
then A, A* satisfy the higher order q-Dolan-Grady relations as follows:

r 2r+1-2p
Z Z (—1)J+pp€ anp} A=A AT = (3.1.7)
p=0 j=0
r 2r+1-2p ' '
(—1)7HPph P I grgnd = (3.1.8)
p=0 j=0
[r,p] _ Iyl
where Colrp)+1—j = Cj and
J
[r,p] (r—p)! 2 2 [28pt1lg2-[28p1klg2
c. = — — [s1]%2...[sp] , (3.1.9)
! kz_o ({%})!(T_P_ {%})' %} v e [3p+1]q2"'[5p+k]q2
j=0,r—p, s;€{1,2,..,r},
with Py 51 << Sp; Spr1 < < Spik
{st,-spt N {spr1,- s Spyr} =0

Below we give several supporting evidences for this conjecture. First, it is shown that a
generalized version of the conjecture holds for every TD pair (A, A*) of g—Racah type. As
a special case, the higher order relations for the g—Onsager algebra are obtained and have
the form of (3.1.9). Then, the conjecture is explicitely proven for » = 2,3. Finally, the
conjecture is studied recursively. Using a computer program, up to » = 10 it is checked
that the conjecture holds.

3.1.3 Higher order relations and tridiagonal pairs

Let A, A* act on an irreducible finite dimensional vector space V. In this Section, it
is shown that A, A* satisfy higher order relations which are generalizations (3.1.9). For
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r = 1, these relations are the defining relations of the g-Onsager algebra. This is proven
using the properties of tridiagonal pairs described in Chapter 1.

Let (A, A*) denote a tridiagonal pair on V', the sequence 6o, 01, ..., 0q (vesp. 65,07, ...,07)
denote a standard ordering of the eigenvalues of A (resp. A*). For each positive integer s,
let Bs,7s, V2, 0s, 0% in K satisfying (1.3.35), (1.3.36).

Definition 3.1.1 Let z,y denote commuting indeterminates. For each positive integer r,
we define the polynomials p,(x,y), pi(x,y) as follows:

T

pr(z,y) = (x —y) [[(2® = By +y* — vs(z + 1) = 3s) , (3.1.10)
s=1

pi(,y) = (z—y) [[(a® = By +y* — i (x+y) — &%) . (3.1.11)
s=1

We observe p.(z,y) and pi(z,y) have a total degree 2r + 1 in z,y.

Lemma 3.1.1 For each positive integer v, py(0;,0;) = 0, and p;(07,07) = 0 if |i — j| <
r, (0 <i,j <d).

Proof. Let two integers 4, j such that |i — j| <, (0 <4,7 <d).

If i = j, then 0; = 0;,0; = 07. Hence, p,(0;,0;) = p;(0;,07) = 0.

If i # j, since 0 < |i — j| < r, there exists an integer 1 < s < r such that |i — j| = s.

By Lemma (1.3.12),
02 — By0,8; + 0% — 75 (6; + 0;) — 8, = 0,
*2 * )% )k *2 * (% * *
Hence, p,(0;,0;) = py(0;,6) = 0. .

177

Theorem 3.1.1 For each positive integer r,

i+5<2r+1 i+5<2r+1 A A
Z aijAzA*TAJ =0 , Z a,?jA*ZArA*] =0 7 (3112)
1,j=0 i,j=0

where the scalars a;;, a;-‘j are defined by:

<241 i+j<2r41
pr(zy)= Y aga'y and pi(v.y)= Y aja'y . (3.1.13)
i,j=0 1,j=0
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Proof. Let A, denote the expression of the left-hand side of the first equation of (3.1.12).
We show A, = 0.

Let {Ei}?zo denote the standard ordering of the primitive idempotents of A correspond-
ing to {6;}% .

For 0 < i,j < d, one finds E;A,E; = p,(0;,0;) E;A*"E; with (3.1.13). According to
Lemma 3.1.1 and Lemma 1.3.10, it follows A, = 0. Similar arguments are used to show
the second equation of (3.1.12). [ |

As a straightforward application, below we focus on the r — th higher order tridiagonal
relations associated with the g—Onsager algebra, a special case of the tridiagonal algebra.

Definition 3.1.2 Consider a TD pair (A, A*) of g— Racah type with eigenvalues such that
a=a*=0 (see (1.3.33)-(1.3.34)). Assumer = 1. The corresponding tridiagonal relations
(1.8.26), (1.3.27) are called the g— Dolan-Grady relations.

Example 1 For a TD pair (A, A*) of g— Racah type with eigenvalues such that « = a* = 0,
the parameter sequence is given by 81 = ¢*+q =2, 1 =¥ =0, &1 = —be(¢*—q72)%, 07 =
—b*c*(q® — ¢ 2)%. Define 61 = po, 07 = p1. The q— Dolan-Grady relations are given by:

3
> (-1y [ j’] A3TTAYAT — po(AA* — A*A) = 0, (3.1.14)
=0 q
> (-1y [ ; } APTTAAM — pj(A*A— AAY) = 0. (3.1.15)
j=0 q

Remark 5 The relations (3.1.14), (3.1.15) are the defining relations of the q—Onsager
algebra.

Definition 3.1.3 Consider a TD pair (A, A*) of g— Racah type with eigenvalues such that
a = a* = 0. For any positive integer r, the corresponding higher order tridiagonal relations
(3.1.12) are called the higher order q— Dolan-Grady relations.

Theorem 3.1.2 For a TD pair (A, A*) of q-Racah type with eigenvalues such that o =
a* = 0, the higher order q-Dolan-Grady relations are given by (3.1.7)-(3.1.8) with the
identification py = 01 and p1 = 67,

Proof. For a = o* = 0in (1.3.33), (1.3.34), from Lemma 1.3.12 one finds 3 = ¢**+¢~ 2,
Ys = =0, 6s = —bc(q® —q=2%)? |, 5 = —b*c*(¢* —q~2%)? . Then, the first polynomial
generating function (3.3.36) reads:

) = = [T (2 = ey o () | (3.1.16)

where the notation 85 = [2s]2/[s],2 and d5/po = [5](212 has been introduced. Expanding the

s=1

polynomial in the variables x,y as (3.1.13), one shows that the coefficients a;; in (3.1.13)
take the form:

Garp1-2p-j j = (~1)*Ppfe ™ (3.1.17)
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where ¢"?! solely depend on ¢, and are vanishing otherwise. By induction, one finds that

they are given by (3.1.9). Replacing pg — p1, the second relation (3.1.8) follows. |
For r = 2,3, the higher order ¢g—Dolan-Grady relations (3.1.7), (3.1.8) can be con-
structed in a straightforward manner:

Example 2 The first ezample of higher order g— Dolan-Grady relations is given by (3.1.7),
(3.1.8) for r =2 with:

20 20 [l _[5 20 [ _[5
@ = b ‘1+m¥+mﬁ—[1q”g‘”+m*+mf+mf— 2],
21 _ 2 _ 4 —4 (2,1] _ 2 [4]q2 3 _
o = 1+[2=¢ +q¢ +3, ¢ =1+[2+ 2.2 + 212 = [5]4[3]q
q
? = 2= +a?).

Example 3 The second example of higher order g—Dolan-Grady relations is given by
(3.1.7), (3.1.8) for r = 3 with:

3,0 7 .
¢; = [j]q7 7=0,...,7,
= 1+,
V= 1425+ 3% + (1 +[3)%) Ao (1212 + [3]2)[2lg2 + (1 + [2]%) O,z :
q q /2] » q q 3],
B = o1+ 2+ )+ (L B+ (2 + B2 + 1+ 2
4]216],2 21262 )
+ 2],23],2 3], + 312142
? = 2%+ 3% + 22B)%
B R 4 B 2R 220 4 32 2+ a1
1 q q q° 1"l 7 [3],2 7 12],2 q?1%lg®
o’ = RlRBYE

To end up this Section, let us consider the family of relations satisfied by a TD pair of
g—Racah type such that? py = p; = 0.

We remind a powerful theorem called the ¢-Binomial Theorem in studying the binomial
coefficients.

n . n *
Theorem 3.1.3 Foralln>1, [[ (14+z¢’) = > qk(k+1)/2[ Z ] ok
Jj=1 k=0 q

where [ Z ]* = (Gl
q

(1—¢F)(1—g*—1)...(1—q)

For instance, choose b,b* = 0 and/or c,c* = 0 in (1.3.33), (1.3.34).
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Proof. By induction [

Theorem 3.1.4 For pg = p1 = 0, the higher order q— Dolan-Grady relations satisfied
by the corresponding TD pair simplify to the well-known Lusztig’s higher order q—Serre
relations [Lusz93):

2r+1

S (-1y [ 27“;,“1} ATHId g4l = (3.1.18)
3=0 q

2r+1

S (1) [ 27’;1} AT AT 40 = (3.1.19)
j=0 q

Proof. Since pg =0, (3.1.16) can be written by:

T

prley) = =D a7+ ()
s=1

= 2= HIJa-ha-g>9)

s=1

.
— g2t H (1_q23g).
T

S=—T

2r+1
Put ¢ = s +7+1, pr(z,y) =27 I (14 ¢*(—¢ 2D Y)).

=1
Applying the g-Binomial Theorem yields

2r+1 *
priry) = a2 S <—1>J‘qf<f+”[ 2l ] (g2 DY),
X
=0 ¢

Using the relation between [ " ] and [ " } for all n > 7, [ " } = /=) [ " ] .
Jil, Jlp J 2

J
q
We have -
r+
2r+1 i
pr(z,y) = ) (—1)3[ j ] Z? Ty,
j=0 q

3.1.4 Recursion for generating the coefficients of the higher order g-
Dolan-Grady relations

In the previous Section, it was shown that every TD pair of g—Racah type such that
a = o* = 0 satisfies the r — th higher order ¢g—Dolan-Grady relations (3.1.7), (3.1.8) with
(3.1.9). For the special case r = 1, these relations coincide with the defining relations of
the g—Onsager algebra (1.2.1), (1.2.2). This strongly suggests that the conjecture holds
in general. Below, the conjecture for r = 2,3 will be proved. Then, using an inductive
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argument we will study the general structure and derive recursion formulae - independently
of the results of the previous part - for the coefficients cg-r’p I,

Let A, A* be the fundamental generators of the g—Onsager algebra (1.2.1), (1.2.2). By
analogy with Lusztig’s higher order g—Serre relations, we are interested in more compli-
cated linear combinations of monomials of the type A" A*"A™ n+m =2r+1,2r—1,...,1,
that are vanishing. The defining relations (1.2.1), (1.2.2) correspond to the case r = 1 of
(3.1.7), (3.1.8). Below, successively we derive the relations (3.1.7), (3.1.8) for r = 2,3 and
study the generic case by induction.

3.1.4.1 Proof of the relations for r = 2

Consider the simplest example beyond (1.2.1): we are looking for a linear relation
between monomials of the type A"A*2A™ n 4+ m = 5,3,1. According to the defining
relations (1.2.1), note that the monomial A3A* can be written as:

ABA* = aA?AA — @ AAT A% + A" AP 4 pg(AA* — A*A)  with o =[3],. (3.1.20)

Multiplying from the left by A or A2, the corresponding expressions can be ordered as
follows: each time a monomial of the form A™ A* A™ with n > 3 arises, it is reduced using
(3.1.20). It follows:

AYA* = (0% —)A?AT AT 4 (1 - a?)AA A3 + aAr A
+ po (A*A* — aA*A% + (a — 1) AA*A) |

APAY = (@® =202 + 1)A2A* A3 fa(—a® + a+1)AA A + a(a — 1)A*AD
+ po (20 —1)A?A*A + aa — 3)AA* A — (a® — a — 1) A* A?)
+ pA(AA* — A*A) .

For our purpose, four different types of monomials may be now considered: A°A*2, A*A*2A,
A3A*2 A? and A3 A*?. Following the ordering prescription, each of these monomials can be
reduced as a combination of monomials of the type (n,m,p, s, t > 0):

A A 4™ with n<2,n4+m=5,31, (3.1.21)
APA*ASA*AY with p<2,1<s<2,p+s+t=531.
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For instance, the monomial A% A*? is reduced to:
A4 = (a® - 222 +1) (aAQA*AQA*A — A?ATAA*A? ¢ AQA*2A3)
(@B —a?—a) ((a2 —Q)AATAZATA? 4 (1 - a?)AATAATAB aAA*2A4>
+ (a? - ) ((a3 — 202 4+ 1) AT A2A A3 — (0B — a? — 1)A*AA* A* + a(a— 1)A*2A5)
+ po(a® —20% + 2a) (AZA*AA* — AA*A®A* + A*APA*A)
+ po(—a® +2a2 — 1) (AQA*QA n aAA*AA*A)

+ po(a — a3 — a?) (AA*2A2>

+ po(a® —3a® 4+ 20% — ) (A*AA*A?)
+ po(—a* +20% —a? + 1) (A*2A3)
+ pR[A, 4% |

The two other monomials A*A*?A, A3 A*? A? are also ordered using (3.1.20). One obtains:
ATAPA = (@ —a) (APA"APA" A+ a A" APATAP) + o2 AP A
+ (a® - 1) (aAA*AA*A3 — QAATAZATA? — aATAATAY - AA*2A4)
+ po (AZA*QA—(l—a2)AA*2A2—OZQA*ZA3>
+ po (@ —a) (A*AA*A? — AA*AA*A) |
APATPAY = o (APATAATA? — AATAPATA? + AT APAT AP — ATAATAY) + AP AP
+pO(AA*2A2 _ A*2A3) .
The ordered expression for the fourth monomial A3A*? directly follows from (3.1.20).

Having the explicit ordered expressions of A°A*?, A*A*2A, A3A*?A? and A3A*? in terms
of monomials of the type (3.1.21), let us consider the combination:

Fo(A A%y = 2O A5 A2 — 2Ot A2 4 4 2O g3 4242 po 2N 4342 (3.1.22)

(2,0] 2,0]

with unknown coefficients ¢ 2, 1], and normalization c¢; = 1. After simplifi-

cations, the combination takes the ordered form:

]_17276

Fo(A, A7) = 20A24%243 — 2OAA 240 4 POA245 4 gy, 47) (3.1.23)

where
i =aP -2’41, f=a’@—a-D+e1-a?), (3124
[52 0 _ (0? —a)? — [12 0 4 c[2 0

Inspired by the structure of Lusztig’s higher order g—Serre relations, consider the conditions
under which the combination go(A, A*) never contains monomials of the form AP A* A% A* A
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(p <2, 1 <s<2). At the lowest order in pg, given a particular monomial the condition
under which its coefficient in go(A, A*) is vanishing is given by:

AAAA A o® =20 +1 - -1)=0,

A2AAA*A%: —aP 4202 -1+ =0,

A A2A A2 (a-1)(—a®+a’ +a) - (1 -a?) 5% =0,
AAAA A . (1—a?)(—a® +a?+a)+ 2% (1 —a?) =0,
A*AZA* A3 - (o — 1)(a3 202 + 1) — 0[12’0](a2 e +0[22,0] —0.

AAN A (a-1)(—0® +a?+a) - (1-0?) - 7T =0
Recall that o = [3],. The solution {05-2’0], j = 1,2} to this system of equations exists, and
it is unique. In terms of ¢g—binomials, it reads:

0[12,0] _ [ ? ] ’ 0[22’0] _ [ g ] . (3.1.25)
q q

At the next order pg, the conditions such that monomials of the type APA* A A* Al with
p+s+t<3and 1 <s <2 are vanishing yield to:

SR L -

All the other coefficients of the monomials A”A*24™ for n+m =5,3,1 are explicitly
determined in terms of 052’0] (7 = 0,1,2), cg’l], po and p%. Based on these results, we
conclude that the ¢g—Dolan-Grady relation (1.2.1) implies the existence of a unique linear
relation between monomials of the type A"A*?A™ with n+m = 5,3,1. This relation
can be seen as a pg—deformed analogue of the simplest higher order g—Serre relation.

Explicitly, one finds:

5
S| D aatal = i+t et - 4
j=0
— Bl [3], (A2A™A — AA"242)
—92\2 * *
— 03 (P +q7?)" (AA? — A*24) . (3.1.26)
Using the automorphism A > A* and pg <> p1 which exchanges (1.2.1) and (1.2.2), the
second relation generalizing (1.2.2) is obtained. The coefficients coincide with the ones

given in Example 2. For the special undeformed case pg = p1 = 0, note that both relations
reduce to the simplest examples of higher order ¢—Serre relations.

3.1.4.2 Proof of the relations for r = 3

Following a similar analysis, the next example of higher order g—Dolan-Grady relations
can be also derived. To this end, one is looking for a linear relation between monomials of
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the type A"A*3A™ n+m =17,5,3,1. Assume the g—Dolan-Grady relation (1.2.1) and its
simplest consequence (3.1.26). Write the four monomials:
A7A*3 (A7A*2)A* AGA*3A _ (A6A*2)A*A
A5A*3A2 — (ASA*Q)A*AQ , ASA*B (A5A*2)A>k
Using (3.1.26) and then (3.1.20), they can be expressed solely in terms of monomials of the
type:
A" A3 A™ with n<4,n+m=175,3,1, (3.1.27)
APAASA*AY with p<4,1<s<2,p+s+t=7,531.

Then, introduce the combination

Fa(A, A%) = cBOAT A3 — BOA6 A3 4 O g5 43 42— o B A543 (3.1.28)

with unknown coefficients cg:z,o]’ (j=1,2), 31 and normalization C[[)s,o] = 1. By straight-

forward calculations using the ordered expressions of A7A*3, ASA*3 A, A5 A*3 A% and A® A*3,
f3(A, A*) is reduced to a combination of monomials of the type (3.1.27). Note that the co-
efficients of the monomials A A*3A™ for n+m = 5,3, 1 are of order po, pg, pg, respectively.
Identifying the conditions under which the coefficient of any monomial of the form

APA?ASA* AT with p<4,1<s<2, p+s+t=7531,

is vanishing, one obtains a system of equations for the coefficients, which solution is unique.

Simplifying (3.1.28) according to the explicit solutions cg 0] ,7=1,2and C([) U , one ends up

with the next example of higher order ¢g—Dolan-Grady relations. Using the automorphism
A < A* and pg <> p1, the second relation follows. One finds:

7—2p

pr Z J+p 3p AT=2p—7 A*3 AT — , (3.1.29)

72p

pr Z j+p 7p A*? 2p— jASA*]_O

where cgg’p]—c[;g]p i CE”O]: [;Land

_ (q8+3q4+6_~_3q74+ 78) 0[3,1] _ [7] (q6+q4+q2+4+q72+q74+q76)7
[, (@ = 1+a )@+ a2 +2* +4+20 % +¢77),

(0° +2¢° +3¢72 +q7°)(° +3¢° + 207 +q7°)

M+ +4* + P+ T+ 2 +4 + ¢ +¢78)

2]

q
=2§2H

It is straightforward to compare the coefficients above with the ones obtained from the
expansion of the polynomial generating function ps(z,y). Although the coefficients above
look different, they coincide exactly with the ones reported in Example 3.

q
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3.1.4.3 Relations for r generic

To Look for a linear relation between monomials of the type A"A*"A™ n 4+ m =
2r+1,2r —1,...,1, for r > 1, relations of the form

2(r—p)+1

Z oS (Lt A2 g g = (3.1.30)
7=0
(r—p)+1

Z pp Z 1)7+2 PPl A2 =) gr pT = (3.1.31)

are expected, where the elements A, A* satisfy the ¢g—Dolan-Grady relations (1.2.1) and

(1.2.2). Our aim is now to study these relations in details and obtain recursive formulae

for the coeflicients cg P }

In order to study the higher order g—Dolan-Grady relations (3.1.30) for generic values

of r, we proceed by induction. First, assume the basic relation (1.2.1) holds and implies all

relations (3.1.30) up to r which explicit coefficients cg Pl in terms of g are assumed to be

known. It is the case for r = 2, 3 as shown above. Our aim is to construct the higher order
relation associated with r + 1 and express the coefficients c[ 1) , (1=0,1,..2r +3 — 2p,
p=0,..,r+ 1) in terms of cg 4 (4 =0,1,.2r+1—-2p', p = 0,...,7) . Following the
steps described for r = 2,3, from the relation (3.1.30) we first deduce:

2r+1
AL grr Z (_1)jCE'T70]A2r+1—jA*TAj
r 2(r—p)+1 . ' '
—Zpg Z (—1)7+pc£r’p]AQ("_”)H_JA*TAJ, (3.1.32)
§=0
2r+4-2
A2r+2A*T - Z A2r+2 jA*rA]
2(r—p)+2 ‘ r2) ' '
- Z ph > (CLTPAMLTP AR A AT (3.1.33)
7=0
2r+3
A2T+3A*T — Z ]N(TO A2r+3 _jA*’f’Aj
2(r—p)+3 . ‘ ‘
- Z o N (LN AR g g (3.1.34)
7=0

] (see Ap-

where the coefficients M ](T’p ) N ("P) are determined recursively in terms of ¢j
pendix A). Now, write the four monomlals
A2T+3A*T+1 (A27"+3A*T)A* A2r+2A*r+1A _ (A2r+2A*r)A*A
A2T+IA*T+1A2 — (A2r+1A*T)A*A2 A2r+1A*T+1 (A27‘+1A*T‘)A*
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Using (3.1.32)-(3.1.34), they can be expressed solely in terms of:
APATIA™ with n<2r, n+m=2r+3,2r+1,..,1, (3.1.35)
APATASA*A  with p<2r, 1<s<2,p+s+t=2r+3,2r+1,....1. (3.1.36)

It is however clear from (3.3.2.1)-(3.1.34) that each monomial A2 +3A*m 1 A2r+2 g7+l 4
AT LA A2 and A2 A*FL can be further reduced using (1.2.1). For instance,

2r+3
(A27"+3A*r _ Z ]N (r,0) A27~+3 JA*T’A]A*
redumble
(r—p)+3 )
_ J+P TP) A2(r—p)+3—3 A*T AT A*
E:pp Z N A A*TATA

reducible if j > 3

According to (1.2.1), observe that the monomials A7 A* (for j even or odd) can be written
as:

A2n+2A* _ Z Zpo nkz +2)A2 zA*AZkJrz (3.1.37)
k=0 i=0
n+1 2
A3 Ax ZZ n+1—k 2TL+3)A2 i A A2k—1+i p6L+1(AA* o A*A) ,(3138)
k=1 1=0
(2n+2) (2n+3) . . . .
where the coefficients U are determined recursively in terms of ¢ (see Appendix
A). It follows:
A2r+3A*T+1 ZNQ(:-ElAQ r—1i +2A*T ZZ i—k (214‘1 AQ ]A*A2k—1+] _|_p6(AA* o A*A)) (3139)
k=1 j=0
_ ZNZZ—E2A2 r— z)+1A*T ZZ 21+2 A2 ]A*A2k+j)
k=0 5=0
_ Z N(TP)AQ(T‘ p)+3 gxr+l _ I(Tap)A2(r—p)+2A*7‘AA* + NQ(T»P)AQ(r—p)+1A*7’A2A*)
r—p+1 i 2 A ‘
+Z< PY NERATTIIRATQ LD g T AT AN 4 phad - ar))
k=1 37=0
_Z PO ZN 7.p) A2(r p— z)—l—lA*r Zzpz k 21+2 A2 ]A*A2k+])
=1 k=0 j=0

—(—p)T+1(N(§"”+1>AA*T“ — N 457 4 4%)

The three other monomials A2 t2A*™ 1A A2+ A*7 1 A2 and A2+ A"+ are also further
reduced. For simplicity, corresponding expressions are reported in Appendix B. Now,
introduce the combination

Fria(A A% = cgr+1,0]A2r+3A*r+1 _ c[fH’O]A?T*?A*T“A
+ c[2r+1,0]A2r+1A*r+1A2 . poc([)rﬂ,uAgTHA*rH (3.1.40)
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with unknown coefficients CETH O (j = 1,2), cngl 1 and normalization cgﬂ’o] = 1.

Combining all reduced expressions for A3 A*+1 - AZr+2 gxr+l g A2r+1 gxr+l g2 4
A%+ A*™ L reported in Appendix B, one observes that f,,1(A, A*) generates monomi-
als either of the type (3.1.35) or (3.1.36). First, consider monomials of the type (3.1.36)
which occur at the lowest order in py, namely A?" A*"A2A*A and A?" A*" AA*A%. The
conditions under which their coefficients are vanishing read:

A2 AT AZARA - Ng(r,o)n% + C[1T+1,O]M2(7",0) —0,
AZTA*TAA*AQ : N{ﬂ(r,o)nfl) + C[2T+1,O]C[1T,O} —0.

Using the explicit expressions for N?ET’O), nf’g and nf’l) given in Appendices A,B, it is easy
to solve these these equations. It yields to:

(3.1.41)

[r+1,00 _ | 2r+3 [r+1,00 _ | 2r+3
cy = 1 , Cy = 9 .
q q

The conditions under which the coefficients of other unwanted monomials of the type

(3.1.36) are vanishing have now to be considered. In particular, similarly to the case
[r+1,0]  [r+1,0]

r = 2,3 the coefficients c; , Cy arise in the following set of conditions:
A2 A*T AA* A3 - Ni?‘ 0) 51) +e [T+1 O]M(f‘ 0) (3) -0,
AZT=1 AT A2 A% A2 - Nir 0) (4) ) e [7"+1 O}Méﬁo)ng()) +e [T+1 0] [T 0] _ —0,
DA N O | L g
A2(r—i) gxT 42 g* g2i+1 . Né{f%nﬁzf(?) 4 [1r+1 O]Mg(:f% 1(201+2) te [r+1,0] [sz;ﬁ]l 1(201‘4—1) 0,
A2(r—i)+1 gor 4 g A2iF1 . Négf%nz(iwr?) + [T+170}M2(:f2 Z(212+1) [T+1 010[2?;0]772( 1)1 -0,
A2(r—i)+1 T g2 g% 720 NQ(:f; Z%z%) I [r+1 O]Mz(:ﬂ Z(20z+1) + C[2r+1,0]c[2?;0]m(311)’0 —0i=2r.

Using the recursion relations in Appendices A B, we have checked that all above equations
are satisfied, as expected.

More generally, one determines all other coefficients CE-T—H’O] for 7 > 3. One finds:

r+1,0 r,0) (3 2r +3
G = o= | T

q
r+1,0 4 r+1,0] 5 ,(r,0) (3 2r+4+3
P R el

q

r+1,0 7,0 2k+1 r+1,0] 5 rr,0 (2k r+1,0] [r,0 2k—1
[2k+1] = N2(k+)1771(cz )+c[ ]M ( ) 2 tce [ ][Qk]lnl(c—l,Q)7 k=2r+1,
[r+1,0]

o N(T‘O) (2k:+2)+ [r+1, O]M(’V‘O) (2k+1)+c[2r+1,0]c[7’,0] (2k)

Cokro — 2k+2Mk 2 2k+1"k,2 2k Me—1,2 k=2r.

For any j > 0, one finds that the coefficient CE-TH’O} can be simply expressed as a g—binomial:

(3.1.42)

[r+1,0] [ 2r+3 ]
cl = R .
J 7 g
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All coefficients cg r+1,0] being obtained, at the lowest order in pg one has to check that

the coefficients of any unwanted term of the type (3.1.36) with p+s+¢t =2r+1,2r—1,...,1
are systematically vanishing. Using the recursion relations given in Appendices A B, this
has been checked in details. Then, following the analysis for » = 3 it remains to determine
the coefficient c[rJrl U which contributes at the order po. The condition such that the

coefficient of the monomial A% A*" AA* is vanishing yields to:

[r+1,1] [r,0]2 [r 0] [r y [17",1} [r1]
g =c —2c 0+ [T 0] C[T’O} +2¢y . (3.1.43)
1
[r+1,0] [r+1,1]

Using the explicit expression for ¢ ,7=0,1,2 and ¢, , we have checked in details

that fr+1(A, A*) reduces to a combination of monomlals of the type (3.1.35) only. The

reduced expression f,41(A, A*) determines uniquely all the remaining coefficients cg"“’p }

for p > 1. For r generic, in addition to (3.1.42) and (3.1.43) one finally obtains:

Cg"—i-l,r—i-l] _ Cgr—kl,l]cgr,r] + Nér,r+1), (3.1.44>
c([)r—i—l,p] _ Nér,p) + C[OT-&-l,l]C([)r,p—l]’ p=2r,
[17‘+1,1] _ Nér,O) + 6[17‘-1-1,0] M(gr,l)7
[1r+1 ,2] _ _Nér,[)) + N?Er,l) + Cg‘+1 ,1] [r 0] +e [7‘+1 O]M(r 2)
T 7‘—1
[r+1,r4+1) r+p pr(T,p) [r+1,1] rp+1 [r.p]
“ = Z (=1) pNz(r —p)+3 T €0 ) ey

p=0 p=0
p—1

r+1, s r+1,0 T,

C[l +1p]  _ (— 1)J+p+1N((pJ)])+1 + C[l + ]Mé P)

i
o

+1,1
[r ]Z ]+pCT;] §)—1 p=9,r1,

C[2r+1,1] _ _Nir,o) (()42)+ [7~+1,0]M(r,0)+ [r+1,0] [r,l],
C[2r+1,2] _ N(r 0)77(()2) N(r 1)77(()2) +e [r+1 0](M5( 0) Mér,l)) . C[2r+1,0]c([)r,2} + C([)r+1,1]6£1r,0]n(()i12)’
p—1 p—1
r+1, ] r,J 2(p—j)+2 r+1,0 T,
eyt = Y NG s ST (g
j=0 7=0
p—2
r+1,0] |r, r+1,1 T, 2 ]
+cl [ ] [ Pl [ ] ‘ O( 1)itetl [2(;] j)n[(m(p J))7 p=3r,
‘]:
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Cgﬂ,l] —(N( )%52) N(T’l)nfz))— [r+1,O}M£T,O)n(fL)+ [r+1,1] [rO]n(3)+ [r+1,0] [r,O]’
p p—
r+1, r, 2(p—j4)+3) r+1,0 r, 2(p—j)+2
cé pl _ Z 1)7+PN, (p])g)+3 §2(p N3 4 [ ]Z )77 M ( J) ) e (()72(p 3)+2)
§=0
p—1 p—l
r+1,0] r, r+1,1 T, 2 i)+1
[ Z 1)7 et [213) D —l—c% ]Z( 1)/ pt [2(13)] g)+177§ 2(10 ) )7 j=
j=0 =0
r+1,1 r,0) (6 r,1 4 r+1,0 r,0 5 r,1 3
P = O M) e IO )
_C[2r+1 O]CLTO} (()42)+ [r+1,1] 4[1 ]nﬁg’
P P
r+1, ; r.j 2(p—j)+4 r+1,0 j r.j 2(p—j)+3
ef = SN s e TS ()
=0 j=0
p—1
r+1,0 r, j)+2
+C£+ ] (- 1)]+pc[2(11)] s ((),2(p 7)+2)
j=0
p—1
r+1,1 T, 2(p—7)+2 e
g TN (el B p =2
j=0
ERI I
r+1,—k k ar(r, 2(j—p)+4) r+1,0 : +2
62k+33 _ (—1)PHit N((Jp)p)+477/(f+(j1 Zp )+ e [ ]Z p+]+kM Jp)p)+2 l(géj —p)+2)
p=0
j—k
r+1,0 ; r 2(j—p)+1
—|—c[2 ] (_1)p+J+kc[2(;7Lp)+1 ’géj p)+1)
p=0
j—k—1
r+11] [Pk I CU-IH) . _3 LT3
+CO ( ) ((] p)+1)?7k+12 , ] =97, =17 ’
p=0
r+1,1 r,0 2543 r,1 2541 r+1,0 2542 r,0 r,1) (25
[2j+1} = _(N2(j+2% 3(2] ) N2(3+)1 ](QJ ))_C[l ](773( ]12)M2(g+)2 M2(j )77](‘—J1),2)
r+1,0], [r,0] (2j+1 1] (25—1 1,1 2j+1 =
—0[2 ](C[2j+}1 ]('31,2) - C[2jj1n§j1,2)) + C([)Jr ]C[2j+}1 y(2j+ )v =2,
[ ] =
r+1,—k k ar(r, 2(j—p)+2) r+1,0 : +1
62k+2j _ Z 1)pHit N} ]p)p)+2 ](§2(J P+2) | . [ ]Z p+]+kM Jp)p)+1771(c é] —-p)+1)
i—k
[T+10 Z p+j+k ,p] (2(j—p))
2(j—p) k1,2
p=
j—k—1
[r+1 1] Z 1)pHitht E%] p))m%(rp))j j=14r, k=272,
p=
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[r+11]  _ [r+11] [r0] (27) (r,0), (2j+2) (r,1), (24)
c;j o COT Czrj j—]172_N2;+277j—]172 "’Nz; 773'_]172
41,0 0) (2541 1) (251
=IO — Mg )
+1,0 ,0] (27 ,1 2j—2 .
_C[2T ](C[zrj } ]('—J2,2 - 0[23—]277](']2,2))7 Jj=3,r.

According to above results and using the automorphism A <> A* and py < p1, we con-
clude that if A, A* satisfy the defining relations (1.2.1), (1.2.2), then the higher order

g—Dolan-Grady relations (3.1.30), (3.1.31) are such that the coefficients cg“’p I are deter-
mined recursively by (3.1.42), (3.1.43) and (3.1.44). For p > 1, they can be computed for
practical purpose, for r = 2, 3 the coefficients cg-r’p I are proportional to [2r + 1], iff j # 0 or
2r + 1; for a large number of values r > 4, this property holds too. As a consequence, the

relations (3.1.7) drastically simplify for ¢?"*! = +1. This case is however not considered
here. In particular, one observes that C?,p] = [QTEf]—p)+1—j . For r =4,5,... <10, using a
computer program we have checked in details that r —th higher order relations of the form

(3.1.7) hold, and that the coefficients satisfy above recursive formula.

3.1.5 Algorithm

A Maple software program has been constructed to calculate the expressions for the co-
efficients cg-TH’p ] by induction on r. For r = 2,3, ..., 10, the expressions have been compared
with the exact expressions for the coefficients given in (3.1.9). Both expressions agree, thus
giving a strong support to the conjecture. The Maple program is reported in Appendix D.

Here, we sketch the algorithm.

o Input: 7, 0y, j =0.2 ny).k=01,j=0,2

AP p=01,j=032p; " p=02,;=05-2

e Output: cgﬁl’p], p=0,...,r+1;, j=0,...,2r+3—2p

e Algorithm:

Step 1. Compute the coefficients 17,(:';), m=2>5,2r+3,7=0,2,

b { 0,[Z1] If m is even

1, [2A] If mis odd

Step 2. Compute M;T’O),j =2,2r+2; M;T’p),p =1,7r,7=02(r—p)+2

Step 3. Compute NJ(.T’O),j =3,2r+3; N;T’p)yp =1,rj= W;

Step 4. Compute CETH’O},c[lrﬂ’o},c[2r+1’o],c([)r+1’1]

Step 5. Compute f,+1(A, A*) in the equation (3.1.40).
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3.2 Higher order relations for the generalized ¢—Onsager al-
gebra

3.2.1 Introduction

Introduced in [BB09|, the generalized g—Onsager algebra O,(g) associated with the
affine Lie algebra g is a higher rank generalization of the so-called g—Onsager - algebra
[Ter99, Bas0404|. The usual ¢—Onsager algebra corresponds to the choice g = sla. The
defining relations are determined by the entries of the Cartan matrix of the algebra consid-
ered. For g = a%l), it can be understood as a g—deformation of the sl,11-Onsager algebra
introduced by Uglov and Ivanov [UI95]. By analogy with the sls case [Bas0404, IT07], an
algebra homomorphism from O4(g) to a certain coideal subalgebra of the Drinfeld-Jimbo
[Dr87, J85] quantum universal enveloping algebra U, (g) is known [BB09|. From a gen-
eral point of view, generalized g—Onsager algebras appear in the theory of quantum affine
symmetric pairs [Kol12]. Note that realizations in terms of finite dimensional quantum
algebras may be also considered: for instance, coideal subalgebras of Uy(g) studied by
Letzter [Letz99] or the non-standard U, (soy) introduced by Klimyk, Gavrilik and Iorgov
[GI97, KlimO1].

Besides the definition of the generalized ¢g—Onsager algebra in terms of generators and
relations [BB09, Definition 2.1], most of its properties remain to be studied.

Definition 3.2.1 Let {a;;} be the extended Cartan matriz of the affine Lie algebra g.
Fiz coprime integers d; such that d;a;; is symmetric. The generalized q-Onsager algebra
O4(g) is an associative algebra with unit 1, generators A; and scalars pfj,fyfjl e C with
i,j€{0,1,...,n}, ke {0,1,...,[-%] -1} and 1 € {0,1,..., —a;; — 1 — 2k} (k and | are
positive integers). The defining relations are:

1—aij [_%]—1 —2k—a;;—1

L — aij 1—aij—r r k Ikl g—2k—a;j—1-1 l
Z (=1)" r A; AjA; = Z Pij Z (-1 ’Yiin AjA;,
r=0 qi k=0 =0

(3.2.1)

Generalized ¢—Onsager algebras are extensions of the ¢g—Onsager algebra to higher
rank affine Lie algebras [BB09|. Inspired by the analysis of [BV13], analogues of Lusztig’s
higher order relations for O4(g) can be conjectured. First, recall some basic definitions.

Definition 3.2.2 Let the simply-laced affine Lie algebra §, the generalized q— Onsager al-

gebra O4(q) is an associative algebra with unit 1, generators A; and scalars p;. The defining
relations are:

2
Z(—nkm] AR AY —piA; = 0 df 0,5 are linked (3.2.2)
k=0 q

[AZ-,A]-] = 0 otherwize .

Remark 6 For p; =0 the relations (3.2.2) reduce to the q—Serre relations of Uy(9g).

76



3.2. HIGHER ORDER RELATIONS FOR THE GENERALIZED @Q—ONSAGER
ALGEBRA

Remark 7 For q = 1, the relations (3.2.2) coincide with the defining relations of the
so-called sl,+1—Onsager’s algebra for n > 1 introduced by Uglov and Ivanov [UI95].

3.2.2 Conjecture about the higher order relations of the generalized ¢-
Onsager algebra

By analogy with the Q\Q case discussed in details in the previous parts, we expect the
following form for the higher order relations

Conjecture 2 Let {A;} be the fundamental generators of the generalized q— Onsager al-
gebra (3.2.2), then {A;} satisfy the higher order relations as follows:

{Tgl}ererl
STl AT AT AR =0 if i) are linked (3.2.3)
p=0 k=0

where the coefficients are given by:

{k/a} r+1
[r,p] _ Z ({%} —k+al- p)' 2[51]2 “[SP}Z [23p+1]q"~[25p+k—al]q (324)

T L (DAY kol —p— (N TP ] [pakadla

k:O,{%}, sie{r—2{r;21},...,r—2,r},

. P - S1 << Sp Sp+1 < o < Sptk—al 5
with st sy N Spats o Spakat} =0
o — { 1 if r is even,
2 ifr is odd

Although it is highly expected that the concept of tridiagonal pair for the ¢—Onsager
algebra could be extended to the higher rank generalizations of the g—Onsager algebras, in
the mathematical literature such object has not been introduced yet. For this reason, the
conjecture for the higher order relations (3.2.3) can not be checked for every irreducible
finite dimensional vector space on which the generators A; act. Still, below we provide
several supporting evidences for the conjecture. First, the conjecture is proven for r» < 5.
Secondly, recursive relations for the coefficients are derived. Using a Maple software, it is
found that the coefficients computed from the recursion relations coincide exactly with the
ones conjectured. Other checks of the conjecture are considered, thus giving independent
supporting evidences.

3.2.3 Proof of the higher order relations for r <5

For r = 1, the relations (3.2.3) are the defining relations of the generalized ¢—Onsager
algebra O4(g). Assume A; are the fundamental generators of Oy(g). To derive the first
example of higher order relations, we are looking for a linear relations between monomials
of the type A?A?A;” with n +m = 3,1. Suppose it is of the form (3.2.3) for r = 2 with

yet unknown coefficients cg’p I, We show cg’p | are uniquely determined. First, according to
the defining relations (3.2.2) the monomial A?A; can be ordered as:
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AZA; = [2],AiAjA; — A;A? 1 pi A (3.2.5)

Multiplying from the left and/or right by A;, A; (i # j), the new monomials can be ordered
as follows: each time a monomial of the form A?A?A;” with n > 2 arises, it is reduced
using (3.2.5). For instance, one has:

APA; = (122 = DAAA? — 20,447 + pi([20,A54; + Aidy) . (3.2.6)

Now, observe that the first two monomials in (3.2.3) for r = 2 can be written as A?A? =
(A2A;)A; and A?A?Ai = (A2A;)A;A;. Following the ordering prescription, each of these
monomials can be reduced as a combination of monomials of the type:

AP AZAT with n<1,n+m=31, (3.2.7)
APA;AAGAD with p<1,p+t=2,0. (3.2.8)

Plugging the reduced expressions of A?AJZ- and A%A;Ai in (3.2.3) for r = 2, one finds that
all monomials of the form (3.2.8) cancel provided a simple system of equations for the

coefficients c,[:’p ) is satisfied. The solution of this system is unique, given by:

05’01:[2] for k=0,1,23, and o' =cP =g +q2+2.
q

For r = 3,4,5, we proceed similarly: the monomials entering in the relations (3.2.3)
are ordered according to the prescription described above. Given 7, the reduced expression
of the corresponding relation (3.2.3) holds provided the coefficients cg’p ] satisfy a system
of equation which solution is unique. In each case, one finds:

r0] | T +1
Ck = ]{

} for k=0,...,r+1,r=345, (3.2.9)
q
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[7,p] [7.p]

whereas for p > 1, the other coefficients are such that ¢, ™ = Crlopi1—k> given by:
Case r =3: =g v2? a2+ qt, P =Pt 3),
0l = (P +a?+1)%
Caser =4 ol =(¢" +3+ 22, " = [5],[3], 122,
0 = (@ + a0
Case r = 5:
AN = P2t a4 62+ 9+ 602+ 407 200 + 475,
6[15,1] — [G]q[3];1(q8 +4¢° + 8¢ + 14¢® + 16 + 14¢7 2 + 8¢ * +4¢7 % +¢79),
SV = (614025 Bla(a* + 36 + 6+ 372+ g7,
B = " 149" + 1165 + 20¢° + 31¢* + 40> + 45
+40¢ 2 4+ 31¢7 4 420+ 11¢7 8 + 4¢710 4+ ¢ 12,
= (61403171 (¢ + 6¢° + 17¢° + 324" + 47¢% + 53
+47¢72 +32¢7* +17¢ ¢ + 647 + ¢ 19),
¥ = B2

3.2.4 Recursion relations of the coefficients of the higher order relations
in generic case r

Above examples suggest that higher order relations of the form (3.2.3) exist for generic
values of r. To derive the coefficients recursively, one first assumes that given r, the relation

(3.2.3) exists and that all coefficients c,[:’p | are already known in terms of g. The relation
(3.2.3) for r — r + 1 is then considered. In this case, the combination

T T r+1, r r
f{f}DE(Ai?Aj) _ Ai+2Aj+1 . C[l-i- O]AZ’+1AJ’+1A1‘ (3.2'10)

is introduced. Following the steps described in details in [BV13], the monomials A:+2A§+1

and A£+1A§+1Ai are reduced using (3.2.2) and (3.2.3). The ordered expression of the first
monomial follows:

r42
A:+2A§+l — Z (_1)k+1M’g7"0)A;+2ka'jr‘ AfA]
k=2 .
reducible
{Tgl}r+272p

: 2-2p—k
Py ST e g gty
=1 k=0 o~
reducible if k£ > 2
where the recursive relations for the coefficients M IET’p ) are reported in Appendix C. Ob-

viously, an ordered expression for the second monomial immediately follows from (3.2.3).
Then, the whole combination can be further reduced fAP¥(A;, A;). As an intermediate
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step, one uses (3.2.2) to obtain:

A?n+1Aj _ pr(n(()ZnJrl,p)AiAjA?n—Qp +n§2n+l,p)AjA§2n72p+1)) ’
p=0

n
A?n+2Aj _ szp(n(()2n+2,p)AiAjA§n+172p +n£2n+2,p)AjA?n+2f2p) +p?+1Aj 7
p=0
where the coefficients n](-r’p ) are given in Appendix C. The ordered expression of f;“D E(A;, Aj)
is then studied. A detailed analysis shows that all coefficients of monomials of the type
AfA;AiAjA§ (withp+t=r—1,..,0if risodd, and p+t =r—1,...,1if r is even) vanish

provided the coefficients cg’p ]

one finds:

satisfy a system of equations. According to the parity of r,

Case r odd: For r =2t + 1 and p = 0:

2t+1,0 2t,0 2,0

210 r0), 20)

2641,0 2¢,0) (2h,0 2+1,0] [2¢,0] (2h—1,0

I ¥ e e T | AN T X s §
[2641,0] 2 0(260) (2h+1,0) | [26+1,0] [2t,0] (2h,0) B

Coht1 = My, ym +c Cop ) h=1,t.

Using the recursion relations given in Appendix C, it is possible to show that these coeffi-
cients can be simply written in terms of g—binomials:

ool [ Tzl ] . (3.2.11)
q

Other coeflicients Cth—‘,—l,p ) for p > 1 are determined by the following recursion relations:

t
[2t+1,¢+1] t+1 7 r(2t,p)
“ = Z (=DPMy
p=0
Cgt“’l] _ _M2(2t,0) —I—Mé%’l),
h
2t+1,h h 2t,
C([) b= Z(_np—&- Mg((h,p;y h =2,
p=0
2t+1,1 2t,0) (3,1 2t+1,0 2t,0 2t,1
(O 0 )
h—1
2t+1,h 2, 2(h—p)+1,h—
C[l 1 _ (_1)p+hM2((h2;)+177§( D) )
p=0

h
2t+1,0 2t,
+c[l - ] Z (_1)p+hc[2(hli]p)7 h’ = 27 ta
p=0

80



3.2. HIGHER ORDER RELATIONS FOR THE GENERALIZED @Q—ONSAGER
ALGEBRA

(— )pHM((Qt”’L)n( (h—p),l—p)

C[22t+1,1] _ _M(2t 0) (4 )+M(2t 1) (20)_0[12t+1,0}cg2t,0]n§3,1)7
l
2t+1,1 11 (28, 2(h—p)+1,I—
C[Qh—Zlil = Z bl M, hpz,H_ 775 v 7
p=0
l
: h—p),l— —
+c [12t+1 0] ( 1)p+l [Q(ilp}p)n§2( P) p)’ h = Q,t, | = 1’ h — 1’
p=0
[2t+1,1] :
10 Z

Con—21

=
I
=)

min(l,h—2)

F PN B PPy 3T, =T h - L

2(h—p)—1
p=0

2t42,0]

Case r even: For r = 2t + 2, the coefficients cg- are given by:

2t4+2,0 2t4+1,0) (2,0

6[2 | _ 7\[2( ),,ﬁ )’
2t+2,0 M 2t+1,0) (2h+1,0) 2t+2,0] [2t+1,0] (2h,0

C[Qh-‘,-l ! 2(h+1 )ng C[l ]C[Qh ]1}5 )7 h 17 t 17
2t4+2,0 M 2t+1,0 2h,0 2t+2,0] [2t+1,0] (2h—1,0 2
[Qh ] = 2(h )Té ) C[l ]C[thl ]"75 )7 h‘ = ’t 1

According to the relations in Appendix C, one shows that cg’o] simplify to ¢g—binomials
(3.2.11). For p > 1, the recursive formulae for all other coefficients are given by:

Cg2t+2,1] _ 7M2(2t+1,0)+M(2t+1,1)7
h
= N (ot =271,
p=0
2t+2,1 26+1,0) (3,1 2t4+2,0 2t+1,0 2t+1,1
Py 00 | sl il o)
[26-+2,h] - (r+19) () +Lh-p)
2t+2, o p+h 2t+1,p 2(h—p)+1,h—p
‘1 - (1P My, "y
p=0
[ | . ]
2t+2,0 +h [2t+1,p _
RS DI e S e
=0
2t+2,1 2t41,0) (4,1 2t+1,1) (2,0 2t42,0] [2t+1,0] (3,1
E Y N Y S LY N
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l
242, 2+1,p) (2(h—p)l—
[2h 21] — Z( )pHM((h p)p) g( p),l—p)
p=0
min(l,h—2)
S Cprg i T
p=0
l
2t+2,0 241, h—p)+1,1—
Gt = D (CDPMEGT )

3
I
=)

+ef [2t42,0] Z p+l [2t+171)7}77§2(h*p)7lfp)’ h=2t+1,1=1h— 1.

All coefficients ¢ [ ) entering in the higher order relations (3.2.3) can be computed recur-
sively for any p081tive integer r. Note that setting p; = 0, the relations (3.2.3) reproduce
the higher order g—Serre relations (3.1.4) of U,(g) [Lusz93|. Using a computer program,
up to r = 10 we have checked that the results for the coefficients derived from the recursion
relations coincide exactly with the ones conjectured in (3.2.3).

The algorithm for the computation of the coefficients is the following (Appendix E)

e Input: r+ 1, 77(()23, 77(()21), C([)l O], C[11 0}7 6[21’0]7 C([)Ll]

e Output: C[TH’p] p:O,...,{%}, k=0,....,r+2—2p
e Algorithm:
Step 1. Compute the coefficients 77;(7};‘)’ h=3,...,7r+2, p= 0,...,{%}, 1=0,1

Step 2. Compute M,gr’p)
Ifp=0,then k=2,...,r+2.
przl,...,{ﬂ} thenk=1,...,r+2—2p

Step 3. Compute c[TH 0]

Step 4. Compute f,41(A, A*) in the equation (3.2.10).

3.2.5 A two-variable polynomial generating function

For the g—Onsager algebra, it was shown that the coefficients entering in the r — th
higher order relations can be derived from a two-variable generating function. Here, for
any simply-laced affine Lie algebras we propose a two-variable generating function for the

coefficients CIE 7] )

Definition 3.2.3 Let r € Z*. Let x,y be commuting indeterminates and p a scalar. To
any simply-laced affine Lie algebra §, we associate the polynomial generating function
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pAPE (1.4)) such that:

Pt (a,y) = ﬁ <w2 - Hw +y° = pl2l - 113) : (3:2.12)
=1 a
W25 = -]l (a8~ Gilov+ o —oRIE) . G213
=1
Lemma 3.2.1 The polynomial p,‘f‘DE(x,y) can be expanded as:
p;leE(x,y) _ & T_ffrl(_l)mppp Cg,p] g2k (3.2.14)
p=0 k=0

where the coefficients cg’p] are given by (3.2.4).

Proof. By induction. n

We claim that the two-variable polynomial (3.2.14) is the generating function for the
coefficients cg’p ] entering in the higher order relations (3.2.3) in view of the following

observations:

[

e For » < 5, it is an exercise to check that the coefficients c,: ! from (3.2.4) coincide
exactly with the ones derived in the previous Section (see cases r = 2,3,4,5);

e Using the g—binomial theorem, for r generic it is easy to check that the coefficients
ngo} obtained from (3.2.4) are the g—binomials (3.2.11). Namely,

For p =0,
t+1
(41 — 2]
pft]?f(% y) = H (2 — ﬁazy +v7)
I=1 g
t
200 T 1 -¢*(2)
I=—(t+1)
2(t+1)
Put k = I+t +2, psi?P (z,y) = 22D T (1 - ¢*(¢~273Y)). Apply the g-binomial
k=1
theorem
2t+1
ADE any k| 2t+2 2A+2—k, k
Doty (mvy) = Z (_1) k r Y.
k=1 q

e For r > 6 and p > 1, the comparison is more involved. However, using a computer
program we have checked that the coefficients derived from the recursive formulae
coincide exactly with the ones given by (3.2.4) for a large number of values r > 6;
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o Let {¢;, ¢, w;} € C. Let g = ag)(n > 1),d7(11), eél), 6;1), eél). There exists an algebra
homomorphism: O4(g) — Uy(g) [BB09] given by

h; hg
2

Ai— A =c¢ ein + G fiqi + wiqlhi (3.2.15)

iff the parameters w; are subject to the constraints: w; <wj2.+ 7 +ij{_ 2> =0, wj (w?—i—

Ci Ci
qtq1-2
evaluation representation of Uy (g) on which A; act (see e.g. [J86, Proposition 1| for

(1)

g = ay,’). For generic parameters ¢;, ¢;, q, V' is irreducible and A; is diagonalizable on

) = 0 where ¢, are simply linked and p; — ¢;¢; . Let V' be the so-called

V. Let 0,(3), k = 0,1,... denote the (possibly degenerate) corresponding eigenvalues
of A;. For instance, for the fundamental representation® of L{q(agll)), the eigenvalues

take the simple form:
9](:) yel0) (vqk + v_lq_k) , (3.2.16)

)

where v, C® are scalar and C'V depend on ¢;, ¢, ¢. Let E,Ef be the projector on the

eigenspace associated with the eigenvalue 9,(3). Denote Agi) as the Lh.s of the first
equation in (3.2.2). The relation (3.2.2) implies that it must exist integers k,[ such

that:
EVAVEY =0 = ptPPOY, o) EYAED =0 with p=p

For generic parameters ¢;, ¢;, g, E,E:Z)AjEl(l) # 0. It implies p{‘D E (9,(;), 01(1)) = 0 which,
using (3.2.16), is consistent with the structure (3.2.12) for ¢ = 0 provided | = k £ 1.
The same observation about the structure of the two-variable polynomial can be
generalized as follows. Denote AY as the Lhs of (3.2.3). If the relation (3.2.3) with
(3.2.4) holds, then it must exist integers k, [ such that:

EPAOED =0 = pAPEOR 0EYALEY =0 with p=p; .

For generic ¢;, ¢, q, E,ii)A;Efi) £ 0. Tt implies pAPF (0,(:), HI(i)) = 0 which leads to the
following constraints of the integers k, I:

k=1l4+1,14+3,1+5,--- ,l£7T for r odd ,
k=1,1+2,1l£4,---,lxr for r even .

Again, this is in perfect agreement with the factorized form (3.2.12), (3.2.13). Thus,
for g = a$? the structure of the two-variable polynomial (3.2.3) is consistent with

the spectral properties of A;.

(1) g

3For § = ay,’, m > 1, see [J86, Proposition 1]. For § = ds,’, see for instance [DeG02].
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3.3 The XXZ open spin chain at roots of unity

In the literature, the X X Z spin chain with periodic boundary conditions at roots of
unity ¢ = /N, N ¢ N\{0}, is known to enjoy a sly loop algebra symmetry in certain
sectors of the spectrum [DFM99|. A rather natural question is whether such phenomena
occurs for the open X X Z spin chain and for which class of boundary conditions.

In this Section, we describe the third main result of the thesis. We consider the open
XXZ spin chain within the framework of the ¢—Onsager algebra and its representation
theory. Starting from the basic operators that generate the g—Onsager algebra, two new
operators are introduced at roots of unity. These operators can be understood as analogues
of the divided powers of the Chevalley generators (that occur in Lusztig’s analysis of U (sl2)
at roots of unity) acting on a finite dimensional vector space. Some properties of the
operators are studied. For a special class of parameters, it is shown that the new operators
satisfy a pair of relations that can be understood as a higher order generalization of the two
basic (Dolan-Grady [DG82]) defining relations of the classical Onsager algebra. The ‘mixed
relations’ between the basic operators and the divided polynomials are also constructed.
They can be seen as a different higher order generalization of the Dolan-Grady relations.
All relations together provide, to our knowledge, the first example in the literature of an
analog of Lusztig quantum group for the ¢g—Onsager algebra. As an application in physics,
we study some of the symmetries of the Hamiltonian with respect to the generators of the
new algebra.

3.3.1 A background: the X X7 periodic spin chain at roots of unity

Recall that the Hamiltonian of the X X Z spin chain with periodic boundary conditions
and L sites reads:

Hy = (o oitt + odol™ + Aclolth), (3.3.1)

N | —
=

1

J

—1
Here A = q"‘% denotes the anisotropy parameter. By construction, the Hamiltonian acts
on a 2” finite dimensional vector space:

YO —C20C2@ v ® C2, (3.3.2)

For ¢ a root of unity and L finite, it is known [Bax73] that additional degeneracies occur
in the spectrum of the Hamiltonian. Such degeneracies are associated with the existence
of an additional sla-loop algebra symmetry of the Hamiltonian, as shown in [DFM99|. Let
us now recall the main steps and results of [DFM99|.

In the works of Jimbo [J86], five basic operators satisfying the Uq(gz;) defining relations
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naturally occur in the study of the X X Z spin chain for g generic:
1N
5% = 5 Z O';v
j=1
L
+ 02/2 o ... o2/2 + —02/2 o ... —0,/2
§* = Y e e teger e o

L
T = Zq—f’zﬂ Q- ®q—02/2 ® Uj.[ ®qu/2 Q- ®qf’z/2.

By straightforward calculations, N—th powers of the basic operators Si, Ty are shown to
be proportional to [N],!. Explicitly, one derives:

N N (N—-2) (N—-2)
SHY = N Y Pew¢i ool eq 7 Te--®q T % (3.3.3)
1<ii<<jn<L
(N—4 (N 1) _

) N
®0’]:I;®q 2 UZ®...®q UZ®0— ®q202®...®q7027

_N _N _(N=2) _(N=2)
THY = [Nl > ¢ e--0q¢ 270 R 2 Te---®q¢ 2 °%(3.34)
1<j1<--<jnN<L
N—4

_( ) *(N
Ro.®q 2 Q---®q

N
O'z@o. ®q2 ®®q70'z

For ¢V — 1, it implies (ST)N = (T+)N = 0.
Following Lusztig’s works, the authors [DFM99] introduce the non-trivial divided pow-
ers:

SEN) = lim (SHN/[N]!, TNV = lim (TF)N/[N],!

¢?N—1 ¢?N—1

and study their commutation relations by using, for instance, the so-called Lusztig’s higher
order g—Serre relations [Lusz93] (3.1.4)-(3.1.5).

Let 9§m) = (ST)™/Im]!, Hém) = (T7)™/[m]q!. According to Lusztig’s work [Lusz93|,
the following relations can be derived from the higher order g—Serre relations:

o B3N g Z%, (BN=)p(N) p (") (3.3.5)
where
N 1 ,
vy = (—1)¥ g% 1)lg!0==") [‘ﬂ (3.3.6)
l:(] q
Define

s =Ns+p with p=0,1,...., N — 1.
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Observe

p(Ns) _ [N]g?® H(N)s

[Ns]g!
Then, one shows:
N2
_1\s+1 [N] 19 - q
qzlzirm YNs+p = Opo(—1) and 21}1\;:11 Nsl,| =

It follows that STN) T—(N) gatisfy the Serre relations of the slo-loop algebra namely:

: )" G (Bs) (- (V) g+ (N)y s
S
> (T sy = 3:37)

Provided the change ST — S—, T~ — T, the same relation holds for S=, 7.

Either based on straightforward calculations or using some formula? in [DeCK90], the

authors [DFM99| derive successively the following relations for ¢>V = 1:
[5tW) (V)] = [§=(V) p=(N)] = 0, (3.3.9)
(S| g7 = NSEW) (7= g7 = L NTEW) (3.3.10)

and in the sector S* = 0(mod N)

(5N, §—() = () -] _(_q)N%sz, (3.3.11)

According to the above analysis, define
Eo=5TW F=5W p=17"W g =7tW_ T, =T = —(—¢)NS*/N.

Then, the operators {E;, F;,T;} satisfy the defining relations of the loop algebra of sls.
When S% = 0 (mod N), the Hamiltonian (3.3.1) commutes with SEN) T+WN) at 2N =1
[DFM99]. One has:

[Eo,H] = [Ey, H] = 0, (3.3.12)
[Fo,H] = [F,H] = 0. (3.3.13)

Also, by (3.3.11) and (3.3.12)-(3.3.13):

[Ty, H] = [Ty, H] = 0. (3.3.14)

Hence, the Hamiltonian of the X X Z periodic spin chain at ¢ a root of unity enjoys a
slo-loop algebra invariance in the sector S* = 0.

4

— im—n—k —(28%*+m—n—k)

min(m,n)
CHMNCOEENDY [’ﬂ Hb‘lws NGl H — - (338

= J q-q

87



3.3. THE XXZ OPEN SPIN CHAIN AT ROOTS OF UNITY

3.3.2 The case of the open X X7 spin chain

The purpose of this Section is to study the open X X Z spin chain with non-diagonal
integrable boundary conditions for an anisotropy parameter (q-+q~1)/2 evaluated at roots
of unity ¢ = €™/N. Inspired by the analysis done for ‘the XX Z spin chain with periodic
boundary conditions using the quantum algebra Ugy(slz) [DFM99], it is thus natural to
start from the framework of the g—Onsager algebra, a coideal subalgebra of Uq(s@) (see
Chapter 1). For generic boundary conditions, recall that the Hamiltonian of the X X Z
open spin chain reads

=~
|

1

B, = Y (b ot + okt iah+ Aottiok) 5315
k=1
(=g (er—e) 4 2 1 1
k k_
M R e e e LG
(g—a")E-&) 4 2 n L7 L
——(k k_
T G T (E++E_)( +0f ko)
a+

where L is the number of sites, A =
are the usual Pauli matrices.

-1
q . :
5— denotes the anisotropy parameter, and o+, 01, 02,0,

3.3.2.1 The basic operators and the divided polynomials

Following [BK0507], the two operators Wy, W of the ¢-Onsager algebra that naturally
occur in the analysis of the X X Z open spin chain with non-diagonal boundary conditions
are known explicitly (see Chapter 2). Denote:

wo = k‘+0+ +k_o_. (3.3.16)
They are given by:
L
Wo = > ¢7® - @¢"uw, @10 @l+eq” @ ®q7, (3.3.17)
j=1
L
W= >0 000w, ®le @l+eq - ©q . (33.18)

<
Il
-

with the parameters p = p* = (¢ + ¢ )%k, k_.

The finite dimensional module V&) on which they act is of dimension 2. Indeed, both
operators are diagonalizable on the finite 22— dimensional vector space V(£ [Bas0604].
For convenience, denote €g = €4, €1 = €_.

Lemma 3.3.1 [Bas0604] For generic values of q, the operator W;, i = 0,1, has L + 1
distinct eigenvalues. They read:

00 = ag)(q)qL—% + agi)(q)q_L+2n for n=0,1,..,L . (3.3.19)
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If k+ # 0 and use the convenient parametrization
e = cosh(oy) and ky = (k)T = —(q—q V)e"/2 with o;,neC (3.3.20)

(4) evi (i) e~

then ay’(q) = S, a3’ (q) = %5
If k_ =0, then ag)(q) = €&, aé”(q) = 0.

Let V, V1, ..., Vi denote the eigenspaces of W, with eigenvalues «9(()0), 9%0), R G(LO) given

in Lemma 3.3.1. On {V,,}, the basic operator W, acts as:

WhiVi, € Vi + Vi 4 Vi (0<n<Ll), (3.3.21)
where V_1 = 0, V111 = 0. On the other hand, let Vi, V{*,..., V[ denote the eigenspaces
of Wy with eigenvalues 0(()1), 9%1), ceey G(Ll). The basic operator Wy acts as:

WoVi SV + Ve + Vi (0<s< L), (3.3.22)

where V*; = 0, V', ; = 0. Note that the eigenbasis in which Wy (resp. W) is diagonalized
has been constructed and described in details in [Bas0604|, as well as the entries of the
block tridiagonal matrix Wi (resp. Wj) in the same basis.

L ) .
Note that Trace(W;) = > dim (V},) <a§l)(q)qL_2” + ag)(q)q_L—FZn), and Trace(W;) =
n=0

ei(g +q 1%, then dim(V,) = < f: >, and agi)(q) + aéi)(q) = ¢ if ¢> # —1. In addition,

ag) (q)ag)(q) — 7%. Therefore, if q2 # —1, then

i i 1 4k k_ 1 4k k_
aé)(Q)aaé)(Q) € {2 (GH‘ \/fg‘i‘(q_z_l)g) 5 <6z‘ - \/612"‘ (q _2—1)2>}'

Up to now, the parameter ¢ is generic. Let us now consider the case ¢ = e'™/V. Starting
from the known results for ¢ generic, for ¢ = ¢V one observes that additional degeneracies
in the spectra of Wy, Wi occur.

Lemma 3.3.2 Forq = e™/N N > 2, the operator Wj, i = 0,1, has N distinct etgenvalues.
They read:
0 = o ()" 2 + a)(q)g 2 for t=0,1,..,N—1. (3.3.23)

o

If k+ # 0 and use the parametrization (3.3.20), then ag)(q) =5, a:(si) (q) = e;ai'
If k_ =0, then ag)(q) = €4, a:(;') (Q) =0.

Furthermore, let Vt(N) (resp. Vt*(N)) denote the eigenspace associated with 9§0) (resp.

0?51)), one has the decomposition:

~
—
~
—

V;(N) — W*(N) —

k

VitkN and
0 k

VN (3.3.24)

L
N
= 0

L
N
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Proof. For generic parameters «;,n, the eigenvectors with explicit formulae given in
[Bas0604| remain well-defined and linearly independent for ¢ = e™/N_ Given n, there
exist uniquely integers t,k such that n =t + kN with 0 <n < L,and 0 <t < N — 1.
From (3.3.19), one immediately finds (3.3.23). We now show (3.3.24). Let ¢ be fixed, the
eigenspace denoted V;(N) (resp. Vt*(N) ) is spanned by the eigenvectors of Vi, Viyn, ... (resp.
Vi, Vi N, --) evaluated at ¢ = eim/N [ |
)

The dimension of the eigenspaces V;(N), V;*(N is computed based on the above decom-

position. It follows:

-~
-

N
dim(VY) = dim(V; ™) = 37 ( tfk N ) . (3.3.25)
k=0

From above results, using (3.3.21), (3.3.22) it follows:

Corollary 3.3.1 Let Vt(N), Vt*(N) be defined as in Lemma 5.5.2.
wov ™ ¢ v, (3.3.26)
vV c v 4 v ™ 4y ) (0<t<N-1),
where V_(le) = V]S,]X)l and V]E,N) = VO(N) and
wy v ) (3.3.27)
WoV ™ c v 4 v ™ 4y (0<t<N-—1),
where ngN) = V]:}(_A? and V;\}(N) = VO*(N).

For ¢ a root of unity, besides the two fundamental operators of the g—Onsager algebra,
two additional operators that are called the divided polynomials can be introduced® for the
analysis of the spin chain. In particular, the spectrum of these operators is described in
details below. These new operators are introduced as follows. Recall that the fundamental
generators ST, T% of the quantum loop algebra of sly become nilpotent, for ¢ a root of
unity. Namely, (ST)V = (T)N = 0 for ¢*¥ = 1 [DFM99]. For non-vanishing values
of the non-diagonal boundary parameters ki entering in (3.3.17)-(3.3.18), such property
doesn’t hold for the fundamental generators Wy, Wi of the g—Onsager algebra. Instead,
given N, certain polynomials of Wy, W are vanishing for ¢ = 1. These polynomials can
be constructed as follows.

First, for small values of N, by straightforward calculations using the explicit expres-
sions of Wy and W; (see Appendix F) it is not difficult to construct polynomials such
that: '

PEIW) =0, i=0,1. (3.3.28)

For instance®:

®These operators can be seen as analogs of the divided powers of the Chevalley elements that generate
the so-called full or Lusztig quantum group Ug(sl2) with ¢ = e™/N acting on V).

SFor N = 1, ¢®> = 1 there is no polynomial. In this special case, the operators Wo, W, however reduce
to elements that generate the undeformed Onsager algebra.
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For N=2,¢*=1,

Py (@) = 2 + (~1)FH (e? - (1+(_21)L+1)k+k—> I

For N =3, ¢%=1,
P?SL,i)($) = 23— kk_x+ (—1)E (e — kyko)L

For N =4, ¢® =1,

i 1+ (—1)F*!
PED (2) = 2t — 2k k_a® + (—1)FH! (egl — 27k, k_ + H(z))kiﬁ) I.
e For N =5, ¢'" =1, recall p =k k_(q¢+q 1?2,
PE@) = 2% = plg"+q " +3)0’ + (¢ + g D)
543
+(—1)L+1(\[4+)ei(e? — ki k) (362 — VB2 — 2k k)L

For N =6, ¢"> =1,

P () = b — 6k kot + 9k2 K202
+(=1)E(§ — 6k k_ef + 9kTkZ el —2(1 4+ ()P TR E ) L.

Recall that W;, i = 0, 1 are both diagonalizable on V(L). As above mentioned, for ¢ = e!™/N
there are exactly N distinct' eigenvalues denoted 9511 ), n=20,1,...,N—1. Then, observe that

the above polynomials P](\[L’l)(x) for N = 2,3, ..., 6 are nothing but the minimal polynomials
associated with W, ¢ = 0, 1. More generally, it follows:

Proposition 3.3.1 Let ex(0o,--- ,0n-1), kK =0,1,..., N — 1 denote the so-called elemen-
tary symmetric polynomials in the variables 0,,, given by:

ex(Bo, - ,ON_1) = Z 0;,0;,---0;, with eo(fo,---,0n_1) = 1. (3.3.29)
0<j1<jo<-<jpr<N-—1

For N > 2 generic:

N
P](VL,z) (33) _ Zek(961)7 . ’05\7})71)3:]\[*’? . (3330)
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Proof. Recall that the distinct eigenvalues are given by 9(()2'), . 9%)_1 in (3.3.23). In-
troduce the minimal polynomials of {W;}i—o 1:

N—-1
Py (@) = I (@ - 69). (3.3.31)

n=0

According to the Cayley-Hamilton theorem, one has P](\,L’i)(WZ-) = 0. Expanding the fac-
torized expression above in x, one obtains (3.3.30). |

For ¢ a root of unity, recall that the small or restricted quantum loop algebra of slo
can be defined: it is the quotient of the quantum loop algebra of sls by the relations
(SN = (T*)N =0 and S* = 0 mod N for ¢ = 1. Then, the full or Lusztig quantum
group can be introduced. It is generated by the fundamental Chevalley elements and
additionally by the divided powers (S*)V/[N],!, (T*)" /[N],!. The corresponding defining
relations can be found in [DFM99]. By analogy, let us introduce the divided polynomials:

V] PO o)

Wi == hmq—)e% [N]q|

with 1=0,1. (3.3.32)

Note that using the formulae of Appendix F, it is possible to derive the generic expression
[N]

of Wy, 1 = 0,1 for arbitrary N.

According to the spectral properties of the fundamental operators Wy, Wi, the eigen-
values of the divided polynomials (3.3.32) can be easily obtained.
Lemma 3.3.3 Let N > 2 denote an integer. Let éﬁf), n=20,1,..., L denote the eigenvalues

[N]
of the divided polynomials W;, © = 0,1. For alln =0,1,..., L there exist uniquely k,t non-
negative integers such thatn =t + kN, 0 <t < N —1. Forn=0,1,..., L, the eigenvalues
read:

00 = 6" (9yaf))(g" 2 = ) 4 (L= 2m)(af) (@)g" " = af) (@)g )

(3.3.33)
where ¢ = !N and
~1 N-1
i) _ __(a=a") (i) _ )
G = 2N[N —1],! H (6:7 = 6;7)-
J=0,5#t

[N] [N] - .
The eigenspace of Wo (resp. W1) corresponding to 97(10) (resp. 0,(11)) is Vi, (resp. V.)) at
_ In/N
g=e .

Proof. By Lemma 3.3.1, recall that W;,i = 0,1 has L + 1 distinct eigenvalues Géi)(q),
9%1)(q),. . 9%) (¢), and L+1 eigenspaces VO(Z)(q), 1(1) (Q),-.., éz)(q), respectively. Here the

notations 0,(f )(q), TS” (q),n =0,...,L are used in order to emphasize that the eigenvalues

and eigenspaces of W; depend on ¢q. Since Wy, W is a tridiagonal pair, there exist scalars
ag) #0, ag) # 0 such that

609(q) = a3y (9)d* 2" + o (@) ¥, n=0,...,L.
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Clearly, if ¢ = e%, then W; has N distinct eigenvalues

Géi) = lim Géi)(q), 0&“ = lim 952') (q), ..., 0](\1})71 = lim 9%)71(q).
q—e N q—e N q—e N

[V] . .
Now, define (3.3.32). Then, W, has L + 1 eigenvalues denoted 0,(1Z ) and V, = lin} Vﬂfl)(q)
q—)eWﬂ
denote the corresponding eigenspaces. Explicitely, 57(3) can be written as follows:

i (0" (a) = 0670 (@) = 01") ... (0 (a) — 00 )

6% = lim , n=0,...,L.
" ge N [V]g!
For all n = 0,..., L, there exist uniquely k, ¢ non-negative integers, such that n = kN +
t, 0<t< N —1. It yields to:
N—1
-1 (4) (@)
. (a—q )701—[ t<6t _Hj ) 9(1')()_9(1‘)
R 07 lim %
N —1],! goei® @V —a”
Using the L’Hopital’s rule, we have
@)\ _ o) 0D (o))
i P00 0
q%elﬁﬂ 7 —4q q%e% _2Nq
8q(a§i)) (qh-2n+1 — g LH2n+1) 4 (L — 2p) (agl)(q)qL—Qn _ agz) (q)q—L+2n)

—2N

q:eITr/N
It simplifies to

) = 5 (B0 (g™ 2 — g2 4 (L = 2m)(ad) (@)™ " — o (g)g~ )

where ¢ = e!™/N and

(n.i) (@=a D) YT 40 o0

Remark 8 If N =2, then o) = (—=1)E(L —2n)a where a = e;\/kik— — €2.

Proof. For ¢ = e¢!™2 W, has the two eigenvalues Héi), HY) such that

o) = o) ¢ {\/ (e (@ - G ), —\/ (@ - G ) } '
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3.3. THE XXZ OPEN SPIN CHAIN AT ROOTS OF UNITY

We compute

i —on i _raon) 2 i)2
o | (ag)(q)qL 2 +aé)(q)q L+2 ) _0(())
Y = hmli i
qg—e 2

— (L-2n) (aé“ (9)g" " + aéi)(q)q—L“") (aé“(Q)qL‘Q”‘1 - a:(f)(Q)q‘L“”‘l) ‘

= (=DX(L —2n)ei/kik_ — €

qzelﬁ/Q

Remark 9 For ki # 0 and the parametrization (3.3.20), one has the identification agi) (q) =
e;i’ aél)(q) - % For k_ =0, one has ag) (q) = &, a;(;)(Q) =0

[N]  [N]
Using the explicit expression (3.3.32) of the divided polynomials Wy, W1 in terms of

the basic operators Wy, Wi, the action of the basic operators in each eigenbasis implies:

[N]  [N]
Proposition 3.3.2 On the eigenspaces V,, (resp. V), the divided polynomials Wo, W1

act as
(V]
[V]
WiV CVan+ -4+ Vo + -+ Vasn (OSnSL),
N, .
WiVy C Ve,
[V] . . . .
WoVy CVIiN+ o+ Vi + Vi (0<s<L).

where V—l:"':VfN:()?VLJr].:”':VL+N:O7 andvjlz"':VjN207VE+1:
= Vi oy =0.

[N]
Explicitly, in the basis which diagonalizes Wy (resp. W) , the matrix representing W

(resp. Wp) is (2N + 1)-block diagonal.

[N]  [N]
3.3.2.2 The algebra generated by Wy, Wi, Wo, W1 for k_ =0 or k. = 0.

Let us focus on the special class of parameters ky = 0 or k_ = 0. In this case, the
spectrum of the tridiagonal pair Wy, W, simplifies: ag)(q) = ¢, az(f)(q) = 0. This has the
[N] [N
following consequence on the spectrum of the divided polynomials Wq, Wi:

Lemma 3.3.4 Let 9}@, n = 0,1,...,L denote the distinct eigenvalues of the divided poly-

[N i i
nomials W;, i = 0,1. Assume ag)(q) =¢; and aé)(q) =0. Then

. _ —1\N
Q) :eﬁVW(—l)Nz““(L—zn). n=0,1,.. L. (3.3.35)
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3.3. THE XXZ OPEN SPIN CHAIN AT ROOTS OF UNITY

For this special choice of parameters, note that the spectrum of the divided polynomials
has an arithmetic progression with respect to the integer n = 0,1,2,..., L. In this special
case, it is not difficult to show that the divided polynomials satisfy a pair of polynomial
relations. Indeed, define

Definition 3.3.1 Let x,y denote commuting indeterminates. For each positive integer N,

we define the two two-variable polynomials pg\i,) (x,y), 1 =0,1, as follows:

N
PV (2,y) = (@ —y) [[(«* — 22y +* — pis?) (3.3.36)
s=1
with
—1\2N
q - q LT
pPi = (_1)N+1612N( N2 ) y 4= e’ /N

Observe pg\i,) (z,y) have a total degree 2N + 1 in z,y.

Lemma 3.3.5 Assume agi) =¢; and agi) =0. For anyi=0,1, one has:

V@D, 6Dy =0 for |r—s|<N.

Proof. For r = s, the relation obvioulsy holds. Then, suppose |r—s| = k with k < N. Due
to the arithmetic progression of 0, for as = ¢; and ag = 0, one has s> —2r(s+k)+(s+£k)? =
k%. The relation then follows. ]

Let us now introduce a new algebra. The defining relations of the new algebra can be
understood as a generalization of the Dolan-Grady relations (3.1.6) which are recovered
for N = 1. For this reason, we decide to call this new algebra the N — th higher order
generalization of the Onsager algebra.

[V]
Proposition 3.3.3 Let k- = 0 or ki = 0. Then, the divided polynomials W;, i = 0,1
satisfy the defining relations of the N — th higher order generalization of the Onsager
algebra:

N 2N+1-2p
[NV] _op—f Nl N]
S COEE N (e YT E R (W)t = 0, (3.3.37)
p=0 k=0
N 2N+1-2p
[NV] —op—f W] N]
Z (—1)FP gl CLN’p] (W )2N+1 2k Wo (Wh )k = 0,
p=0 k=0
where 6[2]2[17\?]—p)+1—k = CLN’p] and
Nl _ ( 2N +k1 —2p ) Y228 (3:3.38)

1<s1<--<sp<N
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3.3. THE XXZ OPEN SPIN CHAIN AT ROOTS OF UNITY

with k =0, N — p. Also, one has:
v la=

/N
N2 ’ ’

pi = g=e

Proof. Let AV denote the expression of the left-hand side of the first equation (3.3.37).
We show ANl = 0. Let E, denote the projector on the eigenspace V;, associated with the

- ~0) ~ (V]
eigenvalue 0;0). For 0 < n < m < N, observe E,ANE, = pg\?)(&(?), 97(7?))En W1 E,, where
the two-variable polynomial (3.3.36) has been expanded in a straigthforward manner as

[N]
power series in the variable x,y. According to Proposition 3.3.2, one has E, Wi E,, =0
for |n —m| > N. Using Lemma 3.3.5, it follows AN = 0. Similar arguments are used to
show the second relation in (3.3.37) ]

Note that the defining relations above do not coincide with the higher order g—Dolan-
Grady relations introduced in the previous Section, except for N =r = 1.

It remains to consider the mixed relations between the fundamental operators and the
divided polynomials. The derivation of the relations below follows the same steps as the
ones for the derivation of the higher g—Dolan-Grady relations. For this reason, we skip
the details.

Proposition 3.3.4 Let k- = 0 or k. = 0. Then, the operators W; and the divided

[N]
polynomials W;, i = 0,1 satisfy the mized relations:

2N-1
3 (1) [ 2Nk— 1

k=0
N\ 2 [N 2 (V] [N] [N 2 N\ 2 [N]
Wi | Wizt =3 (Wi | Wipt Wi +3 Wi Wit (Wi | — Wi [ Wi = pi[ Wi, Wit1],

where p; is defined in Proposition 3.3.3

[N]
} WH=R o WE =0, (3.3.39)
q:ei‘rr/N

To resume, for k_ = 0 or ky = 0 the algebra generated by the basic operators W;

[N]
of the ¢g—Onsager algebra and the divided polynomials W; has defining relations (2.2.43),
(3.3.37) and (3.3.39).

(2] [2I
3.3.2.3 The algebra generated by Wy, Wi, Wy, W1 for generic parameters.

For the special case ¢ = i, the algebra generated by the basic operators together with
the divided polynomials can be easily identified. The generators W; satisfy obviously the

defining relations of the g—Onsager algebra at ¢ = €'™/2 or, because p = 0, the ¢-Serre
relations at ¢> = —1 together with the “nilpotency” relations
1—(=DF
W2 = (-1)k (e - ((2))k+k_)]l. (3.3.40)

96



3.3. THE XXZ OPEN SPIN CHAIN AT ROOTS OF UNITY

[2]
For the mixed relations between W; and W;41, ¢ = 0,1 we obtain the defining relations of
the Onsager algebra for ¢ = 0, 1:

2 2 2 B e,
W32 Wir1 —3W2 Wit Wi +3W; Wit W2— Wi Wi = p, {WMWZ—H}

(3.3.41)

7

<1[/2\]/i+1)3Wi - 3(1[/2\]/¢+1)2W¢ %iﬂ +3 )[/2\}7i+1 Wi (1[/2\]/i+1>2 - Wi (%iﬂ)g = pgi)l |:1[/2\]}i+1a W’i:|7

(3.3.42)
where we set €g = €4, € = ¢_ and
1— (=1
p) = a(=1)k (& - (2)k+k_), PP =4 (kyk_ — €2). (3.3.43)

2] 2]
Finally, for the divided polynomials Wy and W we have

[)[/2\}71‘, (1[/2\]/z‘>4 1[/2\}21‘4—1 —4<1[/2\]/¢>3 1[/2\]/z‘+17[/2\]/¢ +6 ()[/2\]/1)2 1[/2\]/i+1 ()[/2\}%) —4 )[/2\]%)[/2\}/1'—}-1 <1[/2\]/z> + )[/2\]/1‘4-1 (1[/2\]/z‘>4
5P§2){ ()[/2\}%)2 )[/2\]/z‘+1 -2 )[/2\])2)[/2\]/14-1)[/2\}/1 + )[/2\]/z'+1 (%’>2} ( (2)) 1[/2\]7%1] =0. (3.3.44)

3.3.3 Observations about the symmetries of the Hamiltonian

In this subsection, we study the commutation relations between the basic generators
of the g—Onsager algebra or the divided polynomials in the basic generators and the
Hamiltonian of the open XXZ spin chain for a certain choice of boundary conditions and
q a root of unity. Basically, let us consider the Hamiltonian:

L—1 o
H%;)(Z = Z ( "ot 1+ akHak + AO'];+10'§> + (q;)hga; + h+<7}r +h_ ot
k=1
o _ _ _
+ ((]27(])%05 + h_s_af_ + h_ok.

e The special case k_ = 0.
In this case, the operators satsify the relations considered in the previous Section. We find:

[N]
[HE Wil =0

if and only if

7Z+:7l_:h_:0,

B3 = (_1)17
hy : free (3.3.45)
hy = (=1 :I+Ezh+)
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3.3. THE XXZ OPEN SPIN CHAIN AT ROOTS OF UNITY

Note that the conditions [H)((L))( 7, Wi] = 0 are satisfied provided the above relations are
satisfied too. From the results above, we conclude that the Hamiltonian cannot commute
[N] [V]
simultaneously with both Wy and Ws.
However, recall that for the XXZ spin chain with periodic boundary conditions, in
some sectors of the spin chain the Hamiltonian commutes with the generators of the slo
loop algebra [DFM99| (see the first section of this part). By analogy, we are currently

investigating the existence of sectors of the spin chain in which a non-Abelian symmetry
(N] [N]
associated with a subalgebra of the algebra generated W, YW1 may occur.

Note that the results reported here are part of an ongoing project.
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Chapter 4

Perspectives

This thesis opens at least three new and promising directions for further research. To
our knowledge, none of these have been discussed in the literature.

4.1 A family of new integrable hierarchies

Let A, A* be the generators of the g—Onsager algebra. As shown by Dolan and Grady
[DG82], it is possible to construct a hierarchy of mutually commuting quantities that are
polynomials in A, A*, of the form:

Ii = kA+KA*,
Iy = & (1((q2 +q ) AATA — A2A* — AT A% + A*)
P

+r* <1((q2 +q72)A*AA* _A*QA_AA*Q) +A> (411)
0

In Chapter 2, we explained that examples of such hierarchy can be generated from the
transfer matrix formalism, where the transfer matrix is built from solutions to the re-
flection equation algebra (the so-called Sklyanin’s operator). In this thesis, it is con-
jectured (with several supporting evidences) that the ¢—Onsager algebra automatically
implies the existence of higher order relations satisfied by A, A*, the so-called r—th higher
order g—Dolan-Grady relations.

Having this in mind and taking a more general point of view, let us introduce a new
associative algebra with generators X,Y that satisfy only the r—th higher order Dolan-
Grady relation (3.1.7)-(3.1.8) (i.e. we do not assume the k—th higher order g—Dolan-Grady
relations for 1 < k < r —1). We call this new algebra O((f). The following problems may
be considered:

Problem 1: For r = 1, the ¢g—Onsager algebra and the reflection equation algebra are
closely related (see Chapters 1,2). Is there an r — th analogue of the reflection equation
algebra that would correspond to this new algebra? What is the interpretation of this new
algebra in the context of scattering theory?
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4.2. CYCLIC TRIDIAGONAL PAIRS

Problem 2: For r = 1, the quantities (4.1.1) generate the g—Dolan-Grady integrable
hierarchy. For r # 1, what is the structure of the new integrable hierarchy ? Find an
algorithm to construct explicitly its first few elements.

Problem 3: For r = 1, there is an homomorphism from the ¢—Onsager algebra to a
coideal subalgebra of Ug(slz) (see Chapter 1). What happens for r # 17

Problem 4: For r = 1, there are numerous examples of quantum integrable systems
that are generated by the g—Onsager algebra for ¢ = 1 or ¢ # 1: Ising, superintegrable
chiral Potts model, XY, open XXZ spin chain,... For r # 1, construct explicit examples of
Hamiltonian integrable systems with applications to condensed matter physics.

4.2 Cyclic tridiagonal pairs

It is clear that one of the main ingredients in this thesis is the concept of tridiagonal
pairs, provided ¢ is not a root of unity. For details, we refer the reader to Chapter 2.
In particular, the definition of tridiagonal pairs is given in [ITT99]. Among the known
examples of tridiagonal pairs, for generic values of ¢ one finds the basic operators that
appear in the open XXZ spin chain, see (3.3.17)-(3.3.18) and found application to the
solution of this model [BKO7|.

For ¢ a root of unity, as shown in Chapter 3, the basic operators of the open XXZ spin
chain, see (3.3.17)-(3.3.18) still satisfy the g—Onsager algebra. However, the decomposition
of the vector space on which they act is different for ¢ a root of unity compared to the case
q generic. Indeed, for ¢ a root of unity the spectrum of the operators admits additional
degeneracies. In this case, to each eigenvalue one associates an eigenspace as defined by

(3.3.24). Recall that for ¢ generic, the ordered eigenspaces are such that V_; = V1 =
0; V*y =Vj =0 (see Definition 1.3.5). However, for ¢ a root of unity, one has: V_(le) =
V]S,]X)l, VO(N) = V]S,N); V*(_]\{) = V*%Vzl, V*BN) = V*S\]fv) (see Corollary 3.3.1)

In other words, for g a root of unity the action of the two basic operators is ‘cyclic’.

Based on this example, a new concept may be introduced that we call ‘cyclic tridiagonal
pairs’. For this object, we propose the following definition:

Definition 4.2.1 Let V' denote a vector space over a field K with finite positive dimension.
By a cyclic tridiagonal pair on V. we mean an ordered pair of linear transformations A :
V =V and A* : V = V that satisfy the following four conditions.

(i) Each of A, A* is diagonalizable.
(ii) There exists an ordering {Vi}fzo of the eigenspaces of A such that
AV, CVia+Vi+ Vip 0<i<d, (4.2.1)
where V_1 = Vy_1 and Vy = V.
6

(1it) There exists an ordering {V;*}?_, of the eigenspaces of A* such that
AV C VP + Ve 4V, 0<i<s, (42.2)
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ALGEBRA AT ROOTS OF UNITY

where VX, = V5 | and Vi = V5.

(iv) There does not exist a subspace W of V' such that AW C W, A*W C W, W # 0,
W #£V.

According to this definition, the following problems may be considered:

Problem 1: Classify irreducible finite dimensional representations (up to isomor-
phisms) of cyclic tridiagonal pairs.

Problem 2: Construct explicit examples of cyclic tridiagonal pairs using the connection
between the solutions of the reflection equation algebra and the g—Onsager algebra at roots
of unity.

Problem 3: Solve quantum integrable systems using the representation theory of the
g—Onsager algebra at roots of unity and the properties of cyclic tridiagonal pairs.

4.3 An analog of Lusztig quantum group for the ¢—Onsager
algebra at roots of unity

Let p be an positive integer. Consider the quantum group U,(slz) at root of unity
q = €7/?, denote U q(sl2). It is sometimes referred as the ‘small quantum group’. The
generators are given by E, F and K+ satisfying the standard defining relations of U, (sl2).

K—-K!

KEK'=¢*E, KFK'=¢?F, |[EF|= —,
q—q

(4.3.1)

with additional relations,
EP =FP =0, K¥*=1. (4.3.2)

It can be endowed with a Hopf algebra structure. The comultiplication is given by
AE)=19E+E®K, AF)=K'9@F+F®l1, AK)=K®K. (4.3.3)

This associative algebra is finite-dimensional, namely dimU,(sly) = 2p3.

In the literature, the so-called full or Lusztig quantum group has been introduced. For
q = €™/P and for any integer p > 2, it is generated by E, F, K*! together with h such
that K = e*" («a is a scalar) and the so-called Lusztig’s divided powers f ~ EFP/[p]! and
e ~ EP/[p|!. The defining relations are given by (4.3.1),

[hae]zea [hvf]:_fa [evf]:2h
and the ‘mixed’ relations

[h7 K] = 07 [E7 6] = 07 [K7 6] == 07 [F7 f] - 07 [K7 f] - 07
1 quK_qflel (_1)p+1Fp_1qK_qf1K71
[p—1]! q—q! [p—1]! q—q!

1 1
[mE}:iEA,[MFﬂ:—iAR

[Fie] = Bl (B f] = :
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where
1
A= pz (us(q™*") —us(¢™NK +¢"us(¢"™h) =g~ Mus(g™ ™) (K)es.
= T Dusla > Duale )

s—l—2n)

Here, the polynomials us(K) = Hn 1n 7és( —q , and ey are central primitive

idempotents (see [FGSTO05])

The Lusztig quantum group can be endowed with a Hopf algebra structure. For in-
stance, the comultiplication is given by:

AE)=1® E+E®K, A(F )—K—1®F+F®1, AK)=K® K,

r(p—r)

1 q -
A()—e®1+Kp®e+[ _1‘2 a KPEP " @ E"K™,

-1

A(f)=f®1+K7’®f+ ],Z

q‘s P

KP+SFS ® FP~3,

[N] [N]
In Chapter 3, we have seen that the operators Wy, Wi, Wo, W1 satisfy certain relations

at least for certain choices of the parameters k+. According to these results, it is thus
natural to consider the following problems:

Problem 1: Define an analog of the small quantum group for the g—Onsager algebra.
Classify irreducible finite dimensional representations.

Problem 2: Define an analog of the Lusztig quantum group for the ¢g—Onsager algebra.
Classify irreducible finite dimensional representations.

Problem 3: What is the analog of the Hopf algebra structure?

Note that some results are already obtained in relation to Problem 1 and 2, although
not published yet.
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Chapter 5

Appendices

5.1 APPENDIX A: Coefficients n"’

. . m
The recursion relations for n; j
2

(2n+2)
Mo,0

(2n+2)
k0

(2n+2)

Mo,1

(2n+2)

M1

(2n+2)

nnl

(2n+2)

Mo,2

(2n+2)

M2

(2n+2)

nn,Q

and

(2n+3)
M0
(2n+3)
M1
(2n+3)
nnfm
(2n+3)
M2
(2n+3)
Mh+1,2

3]q 77§31) = —[3]y, 77%) =1,
Lo ol =a+a% niy =0l
(@ +a DBl ) =@+ DR =03,
(m) are such that:
= 17
= Bl gt 1<k<n,
= oy -1,
= —Blgle ™+l w st 1<k <1,
= Bl F Y,
= -,
= gy =Y, 1<k <n—1,
= Y,
= Bl 0 1<k<n+d,
= Bl ,f"ﬁf +age Y 0l 1<k<n,
= Bl + 0,
= o =t 1<k <n,
_ (ot
= g,
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M](Tap) ,

(r,p)
Nj

The coefficients that appear in egs. (3.1.37), (3.1.38) are such that:



5.1. APPENDIX A: COEFFICIENTS (M), m{®P) N

R,P)

The coefficients that appear in egs. (3.1.33), (3.1.34) are such that:

A0

[r 0] [r 0]

MJ(T’O) =9 Cj-1- j=22r+1,
Mgy = —of O]c[zii]p
Mér,p) _ [W]’p =T,
MJ(r,p) _ cg.’”’p] [7" 0] Enpﬂj p=T,7, j=120—p) +1,
2(8‘11)10)+2 = _C[ITVO] [2T(7f]—p)+17 p=1r,
and
NJ(T,O) _ CBT,O} . C[l 0] [r 0] +( [r, 0} [T’O})CE‘TLOQ]; j:m’
Ny = e o o el
NGO = (@ - e,
NP = o,
N](m) _ (C[lr,o]Q 7 Cgr,o])cgrf% B C[lr,o] E'ml] n cgr,l] 7 C([)r,ucgr,o]’ P
Nl(r,l) _ _C[lr,()]cg",l} +C[1r,1] [r 1] [7"0]
MY = (- O, — e, e
NED = - Y, -,
Nj(r,r+1) _C([)r,l]cgr,r]’ =01
For2 <p<r,
N](r,p) _ (C[lr,o]2_ [r,o]) grip] [er] gr,pl] ny [r,p} Cg«,ucgr,p—u’ =330 —p) 1,
Nér,p) _ c([)?",p] [T 1] [,p 1]7
NP ol o +C[1r,p1 e,
]\72(2“;“11)1))+2 _ (C[lr,0]2 B C[zr,o])c[;(,f]_p) [17“ 0] C[r(,f] il — cg }c[;(’f ;;+2’
N, 2(?1)) +3 T (C[IT’O]Z - C[2T’O])C[27"(7f]—p)+1 - C([)r I]C[;(f ;;+3'
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5.2. APPENDIX B: A2R+2A*R+1A, A2R+1A*R+1A2, A2R+1A*R+1

. A2r+2 +1 2r+1 +1 42 2r+1 +1
5.2 APPENDIX B: A2+2A%+1 A A2+ g#r+1 g2 g2r+1 gor
In addition to (3.1.39), the other monomials can be written as:

% 2

A2r+2A*7’+1A Z MQ;?QAQ r— z)A*T Z 21-‘!—2 A2 jA*A2k+]+1)
k=0 j=0

ZMz(:flAQ’r' ZJrlA*’I‘ Zzpo k (22+1 A2 JA*A2k+j+p6(AA*A—A*A2))
k=1 j=0

_ Z PO TP)A2(T p)+2A*T+1A M( 7P)A2(r p)—HA*TAA*A + M(TP)AZ(r p)A*rA2A*A>

(TU)AQTA*T‘AQA*A Z pD pZM2 \D AQ(T p— z)A*T ZZ i— k; 21+2 A2 ]A*A2k+]+1)

p=1 i=1 k=0 7=0
r—1 [ 2 ) '
+ Z pZMQZfIAQ r—p—i +1A*7” Zzpz k 21+1)A2 3 A* A2k+i —l—pé(AA”‘A B A*Az)) ’
p=1 k=1 5=0

A2r+1A*T+1A2 _ C[lTyo]AZT’A*TAA*AQ - C[2T7O}A2T_1A*TA2A*A2
. Z Po [r,p]AZ(r p)+1A*T+1A2 [T,p]AZ(r—p)A*rAA*AZ + C[Qr,p]Az(rfp)—lA*rA2A*A2)

~ (—p ) (el AN A% [T”"}A*’"AA*/P)
i 2

+ ch;ﬁ]lAw—i)A*r Z 21+1 ) A2—7 p* p2k+147 + P (AATA? — A% A4%)
i=1 k=1 j=0
. 2 2)
_Z AQ(T i)— 1A*7’ Z H‘ A2 jA*A2k+]+2)
k=
+z N S W R ]
k=1 j=0
r—p—1 i 2
_Z(_po)p Z c[2 7.p] A2(r p—i)—1 g*7 ZZ 21+2)A2 JA*AQHJH) 7
p=1 =1 k=0 j=0
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5.2. APPENDIX B: A2R+2A*R+1A, A2R+1A*R+1A2, A2R+1A*R+1

T T 7,0 T oAXT * r,0 r—1 A%T *
A2 gl 0] g2r g g gx (IO g2r—1 e 42 4
k 2
+ ZC[V ,0] AQ(T k)A*T z 2k+1 A2 ]A*A2z 145 + p (AA* A*A))
i=1 j=0
_ k 2
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5.3 APPENDIX C: Coefficients 7", M

The initial values of Nk j

’ J

(m) are given by:
2
77((),3 = [2]q, Mo,1 =

(
J

The recursion relations for nkn;.) and M"P) read:
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5.4 APPENDIX D: Algorithms for the ¢g-Onsager algebra

# Compute the coefficients etalm,k,j] of A~(2n+2)Ax and A~(2n+3)Ax
Funct := proc(n)

local i, k;

global eta, alpha, q;

# Input the initial values

alpha := q~2+1+1/972;

etal[3, 1, 0] := alpha;

etal[3, 1, 1] := -alpha;

etal3, 1, 2] := 1;

etal[4, 1, 0] := alpha~2-alpha;

etal4, 1, 1] := 1-alpha~2;

etal4, 1, 2] := alpha;

etal[4, 0, 1] := alpha-1;

etal4, 0, 0] := 1;

etal4, 0, 2] := -alpha;

etal[5, 2, 0] := alpha~3-2*alpha~2+1;
etal[5, 2, 1] := -alpha~3+alpha~2+alpha;
etal5, 2, 2] := alphax(alpha-1); etal5, 1, 0] := 2xalpha-1;
etal[5, 1, 1] := alpha~2-3xalpha;

etal5, 1, 2] := -alpha~2+alpha+l;
for i from 2 to n do

etal[2*i+2, 0, 0] := 1;
for k from 1 to i do

eta[2*i+2, k, 0] := simplify(alpha*eta[2*i+1, k, O]+eta[2*i+1, k, 1]);
end do;
eta[2*i+2, 0, 1] := simplify(eta[2*i+1, 1, 0]-1);
for k from 1 to i-1 do

eta[2*i+2, k, 1] := simplify(-alpha*eta[2*i+1, k, O]

+eta[2*i+1, k+1, Ol+etal[2*i+1, k, 2]);

end do;
eta[2+i+2, i, 1] := simplify(-alpha*eta[2*i+1, i, Ol+etal[2*i+1, i, 2]);
eta[2*i+2, 0, 2] := simplify(-eta[2*i+1, 1, 0]);
for k from 1 to i-1 do

eta[2*i+2, k, 2] := simplify(eta[2*i+1, k, O]-eta[2*i+1, k+1, 0]);
end do;
eta[2*i+2, i, 2] := simplify(eta[2*i+1, i, 0]);
for k from 1 to i+l do

eta[2*i+3, k, 0] := simplify(alpha*eta[2*i+2, k-1, O]+eta[2*i+2, k-1, 1]);
end do;
for k from 1 to i do

eta[2*i+3, k, 1] := simplify(-alpha*eta[2*i+2, k-1, 0]+eta[2*i+2, k, 0]

+etal[2*%i+2, k-1, 2]);

end do;

108



5.4. APPENDIX D: ALGORITHMS FOR THE @Q-ONSAGER ALGEBRA

eta[2*i+3, i+1, 1] := simplify(-alphax*eta[2*i+2, i, O]+eta[2*i+2, i, 2]);
for k from 1 to i do
eta[2*i+3, k, 2] := simplify(eta[2*i+2, k-1, 0]-etal[2*i+2, k, 0]);
end do;
eta[2*i+3, i+1, 2] := simplify(eta[2*i+2, i, 0])
end do;
end proc;

Resultl := proc (n)
local i, p, d, 1, F, M, N, t, tam, tal, ta2, ta3;
global A, c, alpha, rho, q;
# Input the initial values
alpha := q 2+1+1/q 2;

cl1, 0, 0] :=1;

cl[1, 0, 3] := 1;

c[1, 0, 1] := alpha;

c[1, 0, 2] := alpha;

cl[1, 1, 0] := -1;

cl1, 1, 1] := -1;

cl2, 0, 0] :=1;

cl2, 0, 5] :=1;

c[2, 0, 1] := expand(simplify(alpha~2-alpha-1));

c[2, 0, 4] := expand(simplify(alpha~2-alpha-1));

c[2, 0, 2] := expand(simplify(alpha~3-2*alpha~2+1));

c[2, 0, 3] := expand(simplify(alpha~3-2*alpha~2+1));

c[2, 1, 0] := expand(simplify(-alpha~2+2*alpha-2));

c[2, 1, 3] := expand(simplify(-alpha~2+2%alpha-2));

cl[2, 1, 1] := expand(simplify(-alpha*(alpha~2-alpha-1)));
c[2, 1, 2] := expand(simplify(-alpha*(alpha~2-alpha-1)));
c[2, 2, 0] := expand(simplify((alpha-1)-2));

c[2, 2, 1] := expand(simplify((alpha-1)~2));

# Use the convention that the first factor A is denoted A[1],
# the second factor A~* is denoted A[2], and the third factor A is denoted A[3]
# Input the g-Dolan-Grady relations
if n = 0 then
F[1] := A[1]~3xA[2]-alpha*A[1]~2*A[2]*A[3]+alpha*A[1]*A[2]*A[3]~2-A[2]*A[3]"3
+rhox (-A[1]1*A[2]+A[2]*A[3]) =
end if;
# Input the higher order g-Dolan-Grady relations for r = 2
if n = 1 then
F[2] := A[1]°5%A[2]~2-(alpha~2-alpha-1)*A[1]~4*A[2]~2*A[3]
+(alpha~3-2*alpha~2+1)*A[1]~3*A[2] ~2%A[3] "2
-(alpha~3-2*alpha~2+1)*A[1]~2*A[2] ~2xA[3] "3
+(alpha~2-alpha-1)*A[1]*A[2] ~2*A[3] ~4-A[2]~2%A[3]"5
+rho* (- (alpha~2-2*alpha+2)*A[1]~3%A[2]~2
+alphax(alpha~2-alpha-1)*A[1]~2xA[2] ~2*A[3]
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-alphax(alpha~2-alpha-1)*A[1]*A[2] ~2*A[3] "2
+(alpha~2-2*alpha+2)*A[2]~2*A[3]"3)
+rho~2x((alpha-1) ~2*A[1]*A[2] ~2-(alpha-1) ~2*A[2] ~2xA[3]) = O
end if;
if 1 < n then
# Compute M[n, p, jl, p=0,..., n; j=2,..., 2n+2 if p=0,
# j=0,..., 2@-p)+2 if p=1,...,n
for i from 2 to n do
M[i, 0, 2%i+2] := simplify(-c[i, 0, 1l*c[i, 0, 2x*i+1]);
for 1 from 2 to 2x*i+1 do
M[i, 0, 1] := simplify(c[i, 0, 1]-c[i, 0, 1]xc[i, 0, 1-11);
end do;
for d to i do
M[i, 4, 0] := c[i, 4, 0];
for 1 to 2*%i-2%d+1 do
M[i, d, 1] := simplify(c[i, d, 1]-c[i, 0, 1l*c[i, d, 1-11);
end do;
M[i, d, 2%i-2%d+2] := simplify(-c[i, 0, 1]*c[i, d, 2*i-2%d+1]);
end do;
Funct (i) ;
# Expand A~{2n+2}{A~*}~{r+1}A
t[2] := simplify(-(sum(M[i, 0, 2*h+2]*A[1]~(2%i-2*¥h)*A[2]"1
*(sum(sum(eta[2*¥h+2, k, jI1*A[3]~(2-j)*A[4]*A[5]~(2xk+j+1),
j =0 .. 1)+etal2xh+2, k, 2]*A[2]*A[3]~(2%k+3),
k=0..h),h=1..1))
+sum(M[i, 0, 2xh+1]*A[1]~(2%i-2%h+1)*A[2] 1%
(sum(eta[2*h+1, k, 2]*A[2]*A[3]~(2xk+2)
+sum(eta[2*h+1, k, jI*A[3]~(2-j)*A[4]*A[5]~(2xk+]),
j=0..1,k=1..h
+rho~h* (A[3]*A[4]*A[5]-A[2]*A[3]"2)), h =1 .. i)
-M[i, 0, 2]*A[1]1~(2*i)*A[2]~i*A[3]~2xA[4]*A[5]
- (sum(rho~p*x(M[i, p, O0J*A[1]~(2*i-2xp+2)*A[2]~(i+1)=*A[3]
+sum((-1)~j*M[i, p, jI*A[1]~(2%i-2%p+2-j)*A[2]~i*A[3]"~]
*A[41*A[5],5 =1 .. 2)), p=1 .. i)
-(sum(rho~p*(sum(M[i, p, 2%h+2]*A[1]~(2%i-2xp-2xh)*A[2] i
*(sum(sum(eta[2*h+2, k, jI*A[3]~(2-j)*A[4]
*A[5]~(2%k+j+1),j= 0 .. 1)
+teta[2+h+2, k, 2]*A[2]*A[3]~(2*k+3), k = 0 .. h)),
h=1..1i-p)), p=1..1i-1))
+sum(rho~p*(sum(M[i, p, 2%h+1]*A[1]~(2*%i-2*p-2*xh+1)*A[2] i
*(sum(eta[2xh+1, k, 2]*A[2]*A[3]~ (2xk+2)
+sum(eta[2*%h+1, k, jI*A[3]~(2-j)*A[4]
*A[5]1~(2%k+j),j =0 .. 1), k=1 .. h)
+rho~h* (A[3]1*A[4]*A[5]-A[2]1*A[3]~2)),
h=1..1i-p)), p=1 .. 1i-1));
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# Compute N[n, p, jl, p=0,...,n;
# j =3,...,20+2 if p =0
# j =
N[i, 0, 2*i+2]

yeos2(@-p)+3 if p=1,...,n
simplify((c[i, 0, 1]1"2-c[i, 0, 2])*c[i, 0, 2*i]
-c[i, 0, 11*c[i, 0, 2xi+1]);
N[i, 0, 2%i+3] simplify((c[i, 0, 11~2-c[i, 0, 2])*c[i, 0, 2*i+1]);
for 1 from 3 to 2x%i+1 do
N[i, 0, 1] := simplify((c[i, 0, 1]1-2-c[i, 0, 2])*c[i, 0, 1-2]
-c[i, 0, 11*c[i, 0, 1-1]+c[i, 0, 11);

N o

end do;
N[i, 1, 1] := simplify(-2*c[i, 0, 1l*c[i, 1, 0]+c[i, 1, 11);
N[i, 1, 2%i] := simplify((c[i, 0, 1]1~2-c[i, 0, 2])*c[i, 1, 2*i-2]
-c[i, 0, 1]*cl[i, 1, 2*i-1]-c[i, 1, Ol*c[i, O, 2*il);
N[i, 1, 2%i+1] := simplify((c[i, 0, 11°2-c[i, O, 2])*c[i, 1, 2*i-1]
-cl[i, 1, Ol*cl[i, 0, 2*i+1]);
N[i, 1, 0] := 0;
for 1 from 2 to 2*i-1 do
N[i, 1, 1] := simplify((c[i, 0, 1]1-2-c[i, 0, 2]1)*c[i, 1, 1-2]
-cl[i, 0, 11*c[i, 1, 1-1]+c[i, 1, 1]
-cl[i, 1, 0lxcl[i, 0, 11);
end do;
for d from 2 to i do
for 1 from 2 to 2%i-2%d+1 do
N[i, d, 1] := simplify((cl[i, 0, 1]~2-c[i, 0, 2])*cl[i, d, 1-2]
-c[i, 0, 11*c[i, d, 1-1]+cli, d, 1]
-c[i, 1, Ol*c[i, d-1, 11);

end do;
N[i, 4, 0] := simplify(c[i, d, 0]-c[i, 1, Ol*c[i, d-1, 0]);
N[i, d, 1] := simplify(-c[i, 0, 1l*c[i, d, Ol+c[i, d, 1]

-cli, 1, 0l*cl[i, d-1, 11);
simplify((c[i, 0, 11~2-c[i, 0, 21)
xc[i, d, 2%i-2x%d]
-c[i, 0, 1]*cl[i, d, 2*i-2xd+1]
-c[i, 1, Ol*cl[i, d-1, 2*%i-2%d+2]);
simplify((c[i, 0, 1]1°2-c[i, O, 2])
xc[i, d, 2*i-2%d+1]
-c[i, 1, 0)*c[i, d-1, 2*i-2%d+3]);

N[i, d, 2%i-2%d+2]

N[i, d, 2%i-2%d+3]

end do;
for 1 from 0 to 1 do
N[i, i+1, 1] := simplify(-c[i, 1, O)*c[i, i, 11);
end do;
# Expand A~{2n+3}{A~*}"{n+1}
t[1] := simplify(sum(N[i, O, 2*h+1]*A[1]~(2*i+2-2*h)*A[2]"1
*(sum(eta[2*¥h+1, k, 2]1*A[2]*A[3] "~ (2xk+1)
+sum(eta[2*h+1, k, jI*A[3]~(2-j)
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*xA[4]*A[5] ~(2*%k-1+j),
j=0..1,%k=1..h)
+rho~h*x(A[3]1*A[4]-A[2]*A[3])), h = 1 .. i+1)
-(sum(N[i, 0, 2xh+2]*A[1]~(2*i-2xh+1)*A[2]"i
*(sum(eta[2xh+2, k, 2]*A[2]*A[3]~(2%k+2)
+sum(eta[2*h+2, k, jI1*A[3]~(2-j)*A[4]1*A[5]"~(2xk+]),
j=0..1),k=0..h),h=1..1))
- (sum(rho~p*x(N[i, p, O1*A[1]~(2*i-2%p+3)*A[2]~(i+1)
-N[i, p, 11*A[1]~(2%i-2xp+2)*A[2] ~i*A[3]*A[4]
+N[i, p, 2I*A[1]1°(2%i-2%p+1)*A[2]"i
*A[3]72%A[4]), p =1 .. 1))
+sum(rho~p*(sum(N[i, p, 2%h+1]*A[1]~(2*i-2%p-2*h+2)*A[2] i
*(sum(eta[2*h+1, k, 2]1*A[2]*A[3]~(2*xk+1)
+sum(eta[2*h+1, k, jI*A[3]~(2-3)
*xA[4]*A[5]~(2xk-1+7),
j=0..1,k=1..h
+rho~h* (A[3]*A[4]-A[2]*A[3])), h = 1 .. i-p+1)),
p=1..1)
- (sum(rho~p*(sum(N[i, p, 2*¥h+2]*A[1]~(2*i-2%p-2xh+1)*A[2]"i
*(sum(eta[2*h+2, k, 2]*A[2]*A[3] "~ (2*xk+2)
+sum(eta[2*h+2, k, j1*A[3]~(2-7)
*A[4]*A[5]~(2%k+j),j =0 .. 1), k=0 .. h)),
h=1..1i-p)), p=1..1i-1))
-rho~ (i+1)*(N[i, i+1, O0l*A[1]1*A[2]~(i+1)
-N[i, i+1, 1I=A[2]~i*A[3]1*A[4]1));
# Expand A~{2n+1}{A~*}"{n+1}A~2
t[3] := simplify(c[i, 0, 11*A[1]1~(2*i)*A[2]~i*A[3]*A[4]*A[5]"2
-cli, 0, 2]1*A[1]~(2*i-1)*A[2]~ixA[3]~2*A[4]*A[5]"2
- (sum(rho~p*(c[i, p, O0J*A[1]~(2*i-2xp+1)*A[2]~(i+1)*A[3]~2
-cli, p, 11*A[1]1~(2%i-2xp)*A[2]~i*A[3]*A[4]*A[5]"2
+cli, p, 21*A[1]1~(2*%i-2*p-1)*A[2] ~i*A[3]~2xA[4]*A[5]~2),
p=1..1i-1))
-rho~ix(c[i, i, OJ*A[1]*A[2]~(i+1)*A[3]"2
-c[i, i, 11*A[2]~i*A[3]*A[4]1*A[5]"2)
+sum(c[i, 0, 2xh+1]*A[1]~(2*i-2*xh)*A[2]"i
*(sum(etal[2*¥h+1, k, 2]1*A[2]*A[3]~(2%k+3)
+sum(eta[2xh+1, k, jI1*A[3]~(2-j)*A[4]*A[5]~(2xk+j+1),
j=0..1,k=1..h)
+rho~h* (A[3]*A[4]*A[5]~2-A[2]*A[3]"3)), h =1 .. i)
-(sum(c[i, 0, 2xh+2]*A[1]~(2*i-2xh-1)*A[2]"1i
*(sum(eta[2xh+2, k, 2]1*A[2]*A[3]~(2xk+4)
+sum(eta[2*%h+2, k, jI*A[3]~(2-j)*A[4]*A[5]~(2xk+j+2),
j=0..1),k=0..h),h=1..1i-1))
+sum(rho~p*(sum(c[i, p, 2*h+1]1*A[1]~(2*%i-2%p-2xh)*A[2]"1i
*(sum(eta[2xh+1, k, 2]*A[2]*A[3]~(2xk+3)

112



5.4. APPENDIX D: ALGORITHMS FOR THE @Q-ONSAGER ALGEBRA

+sum(eta[2*h+1, k, j1*A[3]~(2-j)*A[4]
*A[5]~(2xk+j+1),

j=0..1,k=1..h)
+rho~h* (A[3]*A[4]*A[5]~2-A[2]*A[3]~3)),

h=1..4i-p),p=1..1i-1));
# Expand A~{2n+1}{A~*}~{n+1}

t[4] := cli, 0, 1I*A[1]~(2*i)*A[2]~i*A[3]*A[4]
-cl[i, 0, 2]1*A[1]~(2%i-1)*A[2]~i*A[3]~2*A[4]
+sum(c[i, 0, 2*%k+1]1*A[1]~(2*i-2%k)*A[2] “i*x(sum(eta[2*k+1, h, 2]
*xA[2]*A[3]~(2%h+1)
+sum(eta[2*¥k+1, h, jI1*A[3]~(2-j)*A[4]1*A[5]~(2*h-1+j),
j=0..1,h=1..%k)

+rho~k* (A[3]*A[4]-A[2]1*A[3])), k =1 .. 1)

-(sum(c[i, 0, 2xk+2]*A[1]~(2*i-2xk-1)*A[2]"i

*(sum(etal[2%k+2, h, 21*A[2]*A[3]~(2*h+2)
+sum(eta[2*k+2, h, jI1*A[3]~(2-3j)
*A[4]1*A[5]~(2*h+j), j =0 .. 1),
h=0..%k),k=1..1i-1))

-tho~i*(c[i, i, O]*A[11*A[2]~(i+1)-c[i, i, 1]1*A[2]~ixA[3]*A[4])

- (sum(rho~p*(c[i, p, O1*A[1]~(2*i-2%p+1)*A[2]~(i+1)
-c[i, p, 11*A[1]1~(2*i-2*p)*A[2]~i*A[3]*A[4]
+c[i, p, 21*A[1]~(2%i-2xp-1)*A[2]~i*A[3]~2%A[4]),

p=1..1i-1))

+sum(rho~p*(sum(c[i, p, 2*¥k+1]1*A[1]~(2%i-2*%p-2xk)*A[2]"i
*(sum(eta[2*¥k+1, h, 2]*A[2]*A[3]~(2*h+1)
+sum(eta[2*k+1, h, jI*A[3]1"(2-j)*A[4]*A[5]~(2*h-1+j),

j=0..1,h=1..k)
+rho~k* (A[3]1*A[4]1-A[2]*A[3])),

k=1 ..1i-p)), p=1 .. i-1);
if 2 < i then

t[4] := t[4]-(sum(rho~p*(sum(c[i, p, 2*k+2]

*A[1]~ (2%1i-2%p-2*k-1)*A[2] i
*(sum(eta[2xk+2, h, 2]*A[2]*A[3]~(2*xh+2)

+sum(eta[2*k+2, h, jI*A[3]17(2-j)*A[4]*A[5]~(2*h+j),
j=0..1,h=0..%),

k=1..1i-p-1)), p=1 .. i-2));
:= t[3]-(sum(rho~px(sum(c[i, p, 2*h+2]*A[1]~(2*%i-2%p-2xh-1)
*A[2] ~ix(sum(eta[2xh+2, k, 2]*A[2]*A[3]~(2xk+4)

+sum(eta[2*h+2, k, jI*A[3]~(2-j)*A[4]1*A[5] "~ (2%k+j+2),
j=0..1),k=0..h)),

h=1..1i-p-1)), p=1 .. i-2));

t [3]

end if;
t[3] :
t[4] :

simplify(t[3]);
simplify(t[4]);
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cli+1, 0, 0] := 1;
cl[i+1, 0, 1] := expand(simplify((q~(2*i+3)-q~(-2%i-3))/(q-1/9)));
cli+1, 0, 2] := expand(simplify((q~(2*i+3)-q~(-2%i-3))*
(q~(2*%i+2) -q~(-2%i-2))/((gq-1/9)*(q~2-1/972))));
cli+1, 1, 0] := expand(simplify(-c[i, 0, 1]1-2+2*c[i, 0, 2]
-c[i, 0, 3]/cli, O, 1]-c[i, 1, 11/cl[i, O, 1]
+2%c[i, 1, 01));
# Compute the higher order gq-Dolan-Grady relations F[i+1]
F[i+1] := expand(simplify(c[i+1, O, 0l*t[1]-c[i+1, O, 11*t[2]
+c[i+1, 0, 2]*t[3]+rhoxc[i+1, 1, 01*t[4]));
# Rewrite F[i+1] in the distributed form of A[1], A[2], A[3] and rho
F[i+1] := collect(F[i+1], [A[1], A[2], A[3], rhol, distributed);
# Extract the coefficient in A[1]and A[3] in the sum of
# all elements containing A[2]~{i+1} of F[i+1]
tam := coeff(F[i+1], A[2], i+1);
for 1 from 3 to 2%i+3 do
# Extract the coefficient in A[1] in the sum of
# all elements containing A[3]"1 of tam
tal[l] := coeff(tam, A[3], 1);
# Extract the coefficient of A[1]~{2*i+3-1} in tal
tal[l] := coeff(tal[l], A[1], 2%i+3-1);
# Define the coefficient c[i+1, 0, 1]
cli+1, 0, 1] := tal[l]l*(-1)~(1+1);
end do;
for 1 to 2xi+1 do
# Extract the coefficient in A[3] in the sum
# of all elements containing A[1]~{2%i+1-1}
ta2[1] := coeff(tam, A[3], 1);
ta2[1] := coeff(ta2[1], A[1], 2*i+1-1);
# Define the coefficient c[i+1, 1, 1]
cli+1, 1, 1] := ta2[1]*(-1)~(1+1)/rho;
end do;
for d from 2 to i+l do
for 1 from O to 2%i-2%d+3 do

ta3[1] := coeff(tam, A[3], 1);
ta3[1] := coeff(ta3[1], A[1], 2*i-2%d+3-1);
cl[i+1, d, 1] := ta3[1]1*(-1)"(1+1)*rho~(-d);
end do
end do
end do
end if;
F[n+1]
end proc;

# Compute the coefficients c[n+1l, p, jl
Result2 := proc (n)
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local i, p, d, 1, M, N;
global A, c, alpha, q;

# Input the innitial values
alpha := q~2+1+1/9"2;

cl[1, 0, 0] := 1;

cl[1, 0, 3] := 1;

c[1, 0, 1] := alpha;

c[1, 0, 2] := alpha;

cl1, 1, 0] :=1;

cl1, 1, 1] := 1;

cl2, 0, 0] :=1;

cl2, 0, 5] := 1;

c[2, 0, 1] := expand(simplify(alpha~2-alpha-1));

c[2, 0, 4] := expand(simplify(alpha~2-alpha-1));

c[2, 0, 2] := expand(simplify(alpha~3-2*alpha~2+1));
c[2, 0, 3] := expand(simplify(alpha~3-2%alpha~2+1));
cl2, 1, 0] := expand(simplify(alpha~2-2*alpha+2));

c[2, 1, 3] := expand(simplify(alpha~2-2*alpha+2));

c[2, 1, 1] := expand(simplify(alpha*(alpha~2-alpha-1)));
c[2, 1, 2] := expand(simplify(alpha*(alpha~2-alpha-1)));
c[2, 2, 0] := expand(simplify((alpha-1)-2));

c[2, 2, 1] := expand(simplify((alpha-1)-2));
if 1 < n then
for i from 2 to n do
# Compute M[n, p, jl, p=0,..., n; j= 2,..., 2n+2 if p=0,
# j=0,..., 2@-p)+2 if p=1,...,n
M[i, 0, 2%i+2] := simplify(-c[i, 0, 1l*c[i, 0, 2*i+1]);
for 1 from 2 to 2*i+1 do
M[i, 0, 1] := simplify(c[i, 0, 11-c[i, 0, 1]*c[i, 0, 1-11);
end do;
for d from 1 to i do
M[i, d, 0] := c[i, d, 0];
for 1 from 1 to 2*i-2*d+1 do
M[i, d, 1] := simplify(c[i, d, 1]-c[i, 0, 1]*c[i, d, 1-1]);

end do;
M[i, d, 2%i-2%d+2] := simplify(-c[i, 0, 1]*c[i, d, 2*i-2%d+1]);
end do;
Funct (i) ;
# Compute N[n, p, jl, p = 0,...,n;
# j=3,...,2n+2 if p =0
# j=0,....,2(p)+3 if p=1,...,n

N[i, 0, 2%i+2]

simplify((c[i, 0, 11~2-c[i, 0, 2])*c[i, 0, 2%i]
-c[i, 0, 1]x*c[i, 0, 2*xi+1]);

N[i, 0, 2%i+3] := simplify((c[i, 0, 11°2-c[i, 0, 2])*c[i, 0, 2*i+1]);

for 1 from 3 to 2*i+1 do
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N[i, 0, 1] := simplify((c[i, 0, 1]1-2-c[i, 0, 2]1)*c[i, 0, 1-2]
-cli, 0, 1]*c[i, 0, 1-1]+c[i, 0, 11);
end do;
N[i, 1, 1] := simplify(-2*c[i, O, 1]l*c[i, 1, 0l+c[i, 1, 11);
N[i, 1, 2%i] := simplify((c[i, 0, 11°2-c[i, 0, 2])*cl[i, 1, 2*i-2]
-c[i, 0, 1]*cl[i, 1, 2*i-1]
-cli, 1, 0l*c[i, 0, 2*il);
N[i, 1, 2%i+1] := simplify((c[i, 0, 1]1-2-c[i, 0, 2])*c[i, 1, 2*i-1]
-cli, 1, 0l*c[i, 0, 2*i+1]);
N[i, 1, 0] := 0;
for 1 from 2 to 2*i-1 do
N[i, 1, 1] := simplify((c[i, 0, 1]1-2-c[i, 0, 2])*c[i, 1, 1-2]
-c[i, 0, 1]*c[i, 1, 1-1]+c[i, 1, 1]
-cli, 1, 0]*c[i, 0, 11);
end do;
for d from 2 to i do
for 1 from 2 to 2xi-2*xd+1 do
N[i, d, 1] := simplify((c[i, 0, 1]1~2-c[i, 0, 2])*c[i, d, 1-2]
-cl[i, 0, 1]*c[i, d, 1-1]+c[i, 4, 1]
-cli, 1, 0l*c[i, d-1, 11);

end do;
N[i, d, 0] := simplify(c[i, d, 0]-c[i, 1, Ol*c[i, d-1, 01);
N[i, 4, 1] := simplify(-c[i, O, 1]xc[i, d, O]+c[i, d, 1]

-c[i, 1, O0l*c[i, d-1, 1]1);

N[i, d, 2*%i-2%d+2] := simplify((c[i, 0, 11~2-c[i, 0, 21)
xc[i, d, 2%i-2x%d]
-c[i, 0, 11*c[i, d, 2%i-2*d+1]
-c[i, 1, O)*c[i, d-1, 2*i-2%d+2]);
N[i, d, 2%i-2%d+3] := simplify((c[i, 0, 1]1°2-c[i, 0, 2]1)
xc[i, d, 2%i-2*%d+1]
1,

-cli, 0)*c[i, d-1, 2*i-2*d+3])
end do;
for 1 from O to 1 do
N[i, i+1, 1] := simplify(-c[i, 1, Olxc[i, i, 11);
end do;
# Compute the coefficients c[n+1, p, jl, p =0,...,n+1; j = 0,...,2n+3-2p.
cli+1, 0, 0] := 1;
c[i+1, 0, 1] := expand(simplify((q~(2*i+3)-q~(-2%i-3))/(q-1/q)));
cli+1, 0, 2] := expand(simplify((q~(2*i+3)-q~(-2%i-3))
*(q~(2%1+2) -9~ (-2%1-2))/((q~2-1/9"2)*(q-1/9))));
c[i+1, 0, 3] := expand(simplify(N[i, 0, 3]*etal3, 1, 2]1));
cli+1, 0, 4] := expand(simplify(N[i, O, 4]xetal4, 1, 2]
+c[i+1, O, 11*M[i, O, 3]*xetal3, 1, 21));
for 1 from 2 to i+l do
cli+1, 0, 2*1+1] := expand(simplify(N[i, O, 2*1+1]*eta[2*1+1, 1, 2]
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end do;
for 1 from 2 to

+c[i+1, O, 11*M[i, O, 2%1]*eta[2*1, 1-1, 2]
+c[i+1, 0, 2]*c[i, 0, 2*x1-1]*etal[2*1-1, 1-1, 2]1));

i do

cli+1, 0, 2*%1+2] := expand(simplify(N[i, 0, 2*1+2]*eta[2%1+2, 1, 2]

end do;
cli+1, 1, 0] :=
cli+1, i+1, 0]

for d from 2 to
cli+1, d, 0]

end do;
cli+1, 1, 1] :=
cli+1, 2, 1] :=

cli+1, i+1, 1]

if 2 < i then
for d from 3
cli+1, 4,

cli+1, 4,

end do;
for d from 2
cli+1, d,

+c[i+1, 0, 1]1*M[i, 0, 2*1+1]*etal[2*1+1, 1, 2]
+c[i+1, 0, 2]*c[i, 0, 2*1]*etal[2*1, 1-1, 2]));

expand(simplify(c[i, 0, 1]1°2-2xc[i, 0, 2]

+cli, 0, 31/cli, 0, 1]

-c[i, 1, 11/cli, 0, 1]1+2*xc[i, 1, 0]1));

expand (simplify (N[i, i+1, OJ+c[i+1, 1, O]
*c[i, 1, 01));

i do
:= expand(simplify(N[i, d, O]+c[i+1, 1, O]
xc[i, d-1, 01));

expand (simplify(N[i, 0, 3]+c[i+1, O, 1I*M[i, 1, 0]));
expand (simplify(-N[i, O, 5]+N[i, 1, 3]
+c[i+1, 1, Ol*c[i, 0, 3]+c[i+1, O, 1IxM[i, 2, 01));

:= expand(simplify((-1)~i*(N[i, O, 2*i+3]

+sum((-1)"p*N[i, p, 2%i-2%p+3], p = 1 .. 1))
+(-1)~(i+1)*c[i+1, 1, 0]*(c[i, O, 2*i+1]
+sum((-1) “p*xc[i, p, 2*i-2%p+1], p =1 .. i-1))));

to i do
1] := expand(simplify((-1)~(d+1)*(N[i, 0, 2xd+1]
+sum((-1)~j*N[i, j, 2%d-2*j+1], j =1 .. d-1))
+c[i+1, 0, 11*M[i, d, 0]+(-1)"d
xc[i+1, 1, 0]*(c[i, O, 2x*d-1]
+sum((-1)~j*c[i, j, 2xd-2%j-11, j =1 .. d-2))));
2] := expand(simplify((-1)~dx(eta[2*d+2, 0, 2]
*N[i, 0, 2*d+2]
+sum((-1)~j*N[i, j, 2*d-2*j+2]*eta[2+d-2%j+2, 0, 2],
j=1..d-1)
+(-1)~(d+1)*c[i+1, O, 11*x(M[i, O, 2*d+1]
+sum((-1)~j*M[i, j, 2%d-2*j+1], j =1 .. d-1))
+c[i+1, 0, 2]*c[i, 4, 0]
+(-1)~(d+1)*c[i+1, 1, 0]*(c[i, O, 2*d]*etal[2%d, 0, 2]
+sum((-1)~j*c[i, j, 2xd-2%jl*eta[2xd-2%j, 0, 2],
j=1..d-2))));

to i-1 do

4] := expand(simplify((-1)~d*(N[i, O, 2*d+4]
xeta[2*xd+4, 1, 2]
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+sum((-1)~j*N[i, j, 2*d-2xj+4]*etal[2+d-2*%j+4, 1, 2], j =1 .. d))
+(-1)~d*c[i+1, 0, 2]*(c[i, O, 2*xd+2]*eta[2xd+2, 0, 2]
+sum((-1)~j*c[i, j, 2*d-2%j+2]*etal[2+d-2*%j+2, 0, 2], j =1 .. d-1))

+(-1)~d*c[i+1, 0, 1]1*(M[i, O, 2*d+3]*eta[2%d+3, 1, 2]

+sum((-1)~j*M[i, j, 2*d-2xj+3]*eta[2*d-2*j+3, 1, 2], j =1 .. d))
+(-1)~(d+1)*c[i+1, 1, 0]*(c[i, O, 2*d+2]*etal[2*d+2, 1, 2]
+sum((-1)~j*cl[i, j, 2*d-2xj+2]*etal2xd-2*%j+2, 1, 2], j =1 .. d-1))));

end do;

for d from 3 to i do
for 1 to d-2 do
cli+1, d-1, 2%1+3] := expand(simplify((-1)~(d+1)

end do
end do;
for 1 from 3
cl[i+1, 1,
end do
end if;

*(N[i, 0, 2*d+3]*etal[2*d+3, 1+1, 2]
+sum((-1)~j*N[i, j, 2*xd-2%j+3]*etal[2%d-2%j+3, 1+1, 2],
j=1..d-1)
+(-1)~(@+1)*c[i+1, 0, 2]*(c[i, 0, 2*d+1]x*eta[2*xd+1, 1, 2]
+sum((-1)~j*c[i, j, 2xd-2*xj+1]*eta[2+d-2xj+1, 1, 2],
j=1..d-1))
+(-1)~(d+1)*c[i+1, 0, 1]*(etal[2*d+2, 1, 2]*M[i, O, 2*d+2]
+sum((-1)~j*M[i, j, 2*d-2%j+2]*eta[2+d-2xj+2, 1, 2],
j=1..4d-1))
+(-1)~(d+1+1)*c[i+1, 1, 0)*(c[i, O, 2*d+1]*eta[2xd+1, 1+1, 2]
+sum((-1)"j*c[i, j, 2%d-2%j+1]lxeta[2+d-2%j+1, 1+1, 2],
j=1..d-1-1))));

to i do
2%1] := expand(simplify(c[i+1, 1, 0]

xc[i, 0, 2x1]*eta[2*1, 1-1, 2]

-N[i, 0, 2*%1+2]*eta[2x1+2, 1-1, 2]

+N[i, 1, 2%x1]*etal[2*1, 1-1, 2]

-c[i+1, 0, 1I1*M[i, 0, 2x1+1]*eta[2*1+1, 1-1, 2]
-M[i, 1, 2%1-1]*eta[2%1-1, 1-1, 2])

-c[i+1, 0, 2I*(c[i, 0, 2%1]xetal[2x1, 1-2, 2]
-cli, 1, 2x1-2]*xeta[2%1-2, 1-2, 2])));

for d from 2 to i do

cli+1, d, 3]

:= expand(simplify((-1)~d*c[i+1, 0, 1]

*(eta[2xd+2, 0, 2]1*M[i, 0, 2xd+2]
+sum((-1)~j*M[i, j, 2*xd-2%j+2]*eta[2+d-2%j+2, 0, 2],
j=1..d-1))
+(-1)~(d+1)*c[i+1, 0, 2]*(c[i, O, 2*d+1]
+sum((-1)~j*c[i, j, 2*%d-2%j+1], j =1 .. d-1))
+(-1)~d*x(N[i, 0, 2*d+3]*etal[2*d+3, 1, 2]
+sum((-1)~j*N[i, j, 2*d-2%j+3]*eta[2*d-2%j+3, 1, 2],
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j=1..4d)»
+(-1)~(d+1)*c[i+1, 1, 0]*(c[i, O, 2xd+1]*eta[2*xd+1, 1, 2]
+sum((-1)~j*c[i, j, 2xd-2*xj+1]*etal[2+d-2xj+1, 1, 2],
j=1..d-1)))N;
end do;
for 1 from 2 to i do
cli+1, 1, 2%1+1] := expand(simplify(-N[i, 0, 2x1+3]*etal[2%1+3, 1, 2]
+N[i, 1, 2x1+1]*etal[2*1+1, 1, 2]
-c[i+1, 0, 2]*(c[i, 0, 2*x1+1]*etal[2%1+1, 1-1, 2]
-c[i, 1, 2x1-1]*eta[2%1-1, 1-1, 2])
-c[i+1, 0, 1]l*(etal[2*1+2, 1-1, 2]*M[i, 0, 2*x1+2]
-M[i, 1, 2*1]*eta[2%1, 1-1, 2])
+c[i+1, 1, Ol*c[i, 0, 2*x1+1]xetal[2*1+1, 1, 2]));
end do;
if 3 < i then
for d from 4 to i do
for 1 from 2 to d-2 do
cli+1, d-1, 2%1+2] := expand(simplify((-1)~(d+1)*(N[i, 0, 2*d+2]
xeta[2xd+2, 1, 2]
+sum((-1)~j*N[i, j, 2*d-2%j+2]*eta[2xd-2xj+2, 1, 2],
j=1..4d-1))
+(-1)~(d+1)*c[i+1, 0, 1]*(M[i, O, 2*d+1]*etal[2*xd+1, 1, 2]
+sum((-1)~j*M[i, j, 2*d-2%j+1]*eta[2%d-2*%j+1, 1, 2],
j=1..4d-1))
+(-1)~(d+1) *c[i+1, 0, 2]*(c[i, O, 2*xd]l*eta[2*d, 1-1, 2]
+sum((-1)~j*c[i, j, 2*d-2%jl¥eta[2+d-2%j, 1-1, 2],
j=1..4d-1))
+(-1)~(d+1+1)*c[i+1, 1, 0]*(c[i, O, 2*d]x*etal[2%d, 1, 2]
+sum((-1)~j*c[i, j, 2xd-2*jl*etal2xd-2%j, 1, 2],
j=1..d-1-1))));
end do
end do
end if;
cli+1, 1, 4] := expand(simplify(-N[i, 0, 6]*etal6, 1, 2]
+N[i, 1, 4]*etal4, 1, 2]
-etal4, 0, 2]*c[i, 0, 4]*c[i+1, O, 2]-c[i+1, 0, 1]
*(M[i, 0, 5]xetal5, 1, 2]
-M[i, 1, 3lxetal3, 1, 2])+cl[i+1, 1, Ol*c[i, O, 4]
xetald, 1, 2]1));
cli+1, 1, 3] := expand(simplify(-c[i+1, O, 1]l*etal[4, O, 2]*M[i, 0, 4]
+c[i+1, 1, Ol*c[i, O, 3]x*etal3, 1, 2]
+c[i+1, 0, 2]*c[i, 0, 3]
-N[i, O, 5]xetalb, 1, 2]+N[i, 1, 3]*etal3, 1, 2]1));
cli+1, 1, 2] := expand(simplify(-etal4, 0, 2]*N[i, 0, 4]
+c[i+1, O, 1]1=M[i, O, 3]
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+c[i+1, 0, 2]*cl[i, 1, 01));

cli+1l, 2, 2] := -expand(simplify(-etal6, 0, 2]*N[i, 0, 6]
+N[i, 1, 4]*etal4, 0, 2]
-c[i+1, 0, 11*(-M[i, O, 5]1+M[i, 1, 31)
-cli+1, 0, 2]*c[i, 2, 0]

+c[i+1, 1, Ol*c[i, 0, 4]xetal4, 0, 2]1));
end do

end if;
# Display the coefficients c[n+1, p, jl = coefln+l, p, jl
for d from 0 to n+l1 do

for 1 from 0 to 2*n+3-2*%d do

print(coef[n+1, d, 1], "=", cln+1l, d, 11);
end do
end do
end proc;

The coefficients c[n+1, p, j| which are obtained from the two programming Resultl and
Result2 completely coincide together.
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5.5 APPENDIX E: Algorithms for the generalized
g-Onsager algebra

# Compute the coefficients etalm,k,j] of A~{2n+1}A~* and A~{2n+2}A~*

Funct := proc (n)
local p, i, j;
global eta;
# Input the initial values
etal2, 0, 0] := gq+1/q;
etal2, 0, 1] := -1;

for i to n do
for p from O to i-1 do
eta[2*i+1, p, 0] := expand(simplify(etal[2*i, p, 0]x*(q+1/q)
+etal[2xi, p, 11));
end do;
eta[2*i+1, i, 0] := 1;
for p to i-1 do
eta[2*i+1, p, 1] := expand(simplify(-eta[2*i, p, O]
+eta[2*i, p-1, 01));
end do;
etal[2*i+1, 0, 1] expand(simplify(-etal[2*i, 0, 0]));
eta[2*i+1, i, 1] := expand(simplify(etal[2*i, i-1, 0]));
for p from O to i do
eta[2*i+2, p, 0] := expand(simplify(etal[2*i+1, p, 0]1*(q+1/q)
+etal[2xi+1, p, 11));

end do;
for p to i do
eta[2*i+2, p, 1] := expand(simplify(etal[2*i+1, p-1, 0]
-eta[2*i+1, p, 01));
end do;
eta[2xi+2, 0, 1] := expand(simplify(-eta[2*i+1, 0, 0]))
end do
end proc;

# Compute A~{r+2}{A~*}~{r+1}-c[r+1,0,1]A{r+1}{A*}~{r+1}A
# and output the higher order relations of the generalized g-Onsager algebra
Resultl := proc (r)

local k, i, t, p, F, £, tam, ta2, tal, B;

global M, c, A, eta;

# Input the initial values

cl1, 0, 0] :=1;

cl[1, 0, 1] := g+1/q;
cl[1, 0, 2] := 1;
cl1, 1, 0] :=1;
c[2, 0, 0] := 1;
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cl2, 0, 1] := gq~2+1+1/q9"2;

c[2, 0, 2] := g 2+1+1/9"2;

c[2, 0, 3] :=1;

cl2, 1, 0] := q~2+2+1/q9~2;

cl2, 1, 1] := q~2+2+1/9~2;

c[3, 0, 0] :=1;

cl[3, 0, 1] := expand((q~4-1/q~4)/(q-1/9));

c[3, 0, 2] := expand((q~2+1/q~2)*(q~2+1+1/q~2));
c[3, 0, 3] := expand((q~4-1/9~4)/(q-1/9));

c[3, 0, 4] := 1;

cl[3, 1, 0] := q~4+2xq~2+4+2/q~2+1/q~4;

cl3, 1, 1] := expand((q+1/q)*(q~2+1/q~2+3)*(q~2+1/q"2));
c[3, 1, 2] := q 4+2%q 2+4+2/q~2+1/q"4;

cl3, 2, 0] := expand(q~2+1+1/9~2);
if r = 0 the
F[1] := A[1]1~2xA[2]-(q+1/q)*A[1]1*A[2]*A[3]+A[2]*A[3]~2-rho*A[2] = O
end if;
if r = 1 then
F[2] := A[1]1°3%A[2]~2-(q~2+1+1/q~2) *A[1]~2%A[2] ~2+A[3]
+(q 2+1+1/q"2) *A[1]*A[2] ~2*A[3] ~2
-A[2]~2*A[3]~3-rho*(q~2+2+1/q~2) *A[1]*A[2] ~2
+rho* (q~2+2+1/q~2) *A[2] ~2%xA[3] = 0
end if;
if 1 < r then

for i from 2 to r do
t = trunc((1/2)*i);
# Compute the coefficients M[r,p,j]
for k from 2 to i+1 do

M[i, O, k] := -c[i, O, 1]*c[i, O, k-1]+c[i, O, k];
end do;
M[i, 0, i+2] := -c[i, O, 1]l*c[i, O, i+1];

if 1 = 2*t then
for p to t do
for k to i-2xp+1 do

M[i, p, k] := -cl[i, 0, 1]*c[i, p, k-1]l+c[i, p, k];
end do;
M[i, p, 0] := c[i, p, 0];
M[i, p, i+2-2*p] := -cl[i, 0, 1]x*cl[i, p, i-2*p+1];
end do

else
for p to t do
M[i, p, 0] := c[i, p, 0];
M[i, p, i+2-2%p] := -c[i, 0, 1l*cl[i, p, i-2*p+1];
for k to i-2*p+1 do
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M[i, p, k] := -c[i, 0, 1l*c[i, p, k-1]1+c[i, p, k];
end do
end do;
M[i, t+1, 0] := cl[i, t+1, 0];
M[i, t+1, 1] := -cl[i, t+1, Ol*c[i, 0, 1];
end if;
Funct (i) ;

if i = 2%t then
# Expand A~{2r+2}{A~*}~{r+1}A
f[1] := simplify(-(sum(M[2*t, 0, 2xh]*A[1]~(2xt+2-2xh)*A[2]~(2*t)
* (rho~h*A[2] +sum(rho~1*(eta[2*h, 1, 0]
*A[3]*A[4]*A[5]~ (2¥h-1-2x1)
+etal[2*h, 1, 1]*A[2]*A[3]~(2*¥h-2%1)),
1=0..h-1)), h =1 .. t+1))
+sum(M[2%t, O, 2%h+1]*A[1]~(2%t+1-2xh)*A[2]~(2%*t)
*(sum(rho~1*(etal[2*h+1, 1, 0]*A[3]1*A[4]*A[5] " (2%h-2%1)
+eta[2*h+1, 1, 1]*A[2]*A[3]~(2%h-2*%1+1)),
1=0..h),h=1..1%)
-(sum(rho~d*((-1)~d*M[2*t, d, O0]*A[1]~ (2*t+2-2%d)
*A[2]~ (2%t+1)+(-1)~(d+1)
*M[2%t, d, 1]*A[1]~(2%t+1-2%d)*A[2] ~(2%t)*A[3]*A[4]),
d=1..1t))
- (sum(rho~d*(sum((-1) ~d*M[2*t, d, 2x*h]
*A[1] =~ (2%t+2-2%d-2%h) *A[2] ~ (2%t)
* (rho~h*A[2]+sum(rho~1*(eta[2*h, 1, 0]
*A[3]*A[4]*A[5]~(2%h-1-2%1)
+etal[2xh, 1, 11*A[2]*A[3]~(2*h-2*1)),
1=0..h-1)), h=1 .. t+t1-d)), d=1 .. t))
-(sum(rho~d*(sum((-1)~(d+1)*M[2*t, 4, 2xh+1]
*A[1]~ (2%t+1-2%d-2%h)
*A[2] ~(2*t)* (sum(rho~1*(eta[2*h+1, 1, O]
*A[3]*A[4]*A[5]~ (2%h-2%1)
+eta[2xh+1, 1, 11*A[2]*A[3]~(2*h-2x1+1)),
1=0..h),h=1..td),d=1..1t));
# Expand A~{2r+1}{A~*}~{r+1}A~2
f[2] := simplify(c[2xt, O, 11*A[1]~(2xt)*A[2]~(2xt)*A[3]*A[4]*A[5]
-(sum(c[2*t, 0, 2xh]*A[1]~(2*t+1-2xh)*A[2]~(2*t)
*(rho~h*A[2]*A[3]
+sum(rho~1*(eta[2*h, 1, O0]*A[3]*A[4]*A[5]~(2%¥h-2%1)
+etal[2xh, 1, 1]*A[2]*A[3]~(2%h-2*x1+1)),
1=0..h-1)),h=1..1%))
+sum(c[2*%t, 0, 2*xh+1]*A[1]~(2*xt-2xh)*A[2]~(2*t)
*(sum(rho~1x(eta[2xh+1, 1, O0]*A[3]*A[4]*A[5]~ (2*h-2%1+1)
+eta[2*h+1, 1, 1]*A[2]*A[3]~(2*%h-2*1+2)),
1=0..h)),h=1..1%)
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-(sum(rho~d*((-1)~d*c[2*t, d, O0]*A[1]~ (2*t+1-2%d)
*A[2] ~ (2%t+1) *A[3]+(-1) ~(d+1)
xc[2%t, d, 11*A[1]~(2xt-2xd)*A[2]~(2*t)
*A[3]*A[4]*A[B]), d =1 .. t)));
if 2 <= t then
f[2] := simplify(f[2]-(sum(rho~d*(sum((-1)~d*c[2*t, d, 2xh]
*A[1] " (2%t+1-2%d-2%h) *A[2] ~ (2*t) * (rho~h*A[2] *A [3]
+sum(rho~1*(eta[2xh, 1, 0]*A[3]
*A[4]*A[5]~ (2xh-2%1)
+eta[2xh, 1, 1]1*A[2]*A[3]~(2xh-2%1+1)),
1=0..h-1)),
h=1..t-d),d=1.. t-1))
-(sum(rho~d* (sum((-1)~(d+1)*c[2*t, d, 2*h+1]
*A[1]~(2%t-2*d-2%h)
*A[2] ~(2*t)* (sum(rho~1*(eta[2*h+1, 1, O]
*A[3]*A[4]*A[5]~ (2*h-2*1+1)
+eta[2xh+1, 1, 1]*A[2]*A[3]~(2*h-2%1+2)),
1=0..h),h=1..1t%t-d),d=1..t-1)));
end if
else
f[1] := simplify(-(sum(M[2*t+1, O, 2%h]*A[1]~(2%t+3-2xh)
*A[2] ~ (2%t+1) * (rho~h*A[2]
+sum(rho~1*(eta[2xh, 1, 0]*A[3]*A[4]*A[5]~ (2*¥h-1-2%1)
+eta[2*h, 1, 1]*A[2]*A[3]~(2%¥h-2%1)),
1=0..h-1)),h =1 .. t+1))
+sum(M[2*%t+1, 0, 2xh+1]*A[1]~(2*xt+2-2xh)*A[2]~(2*%t+1)
*(sum(rho~1*(eta[2*h+1, 1, 0]*A[3]*A[4]*A[5]~(2%h-2%1)
+eta[2*h+1, 1, 1]*A[2]*A[3]~(2%h-2*%1+1)),
1=0..h)), h=1..t+1)
- (sum(rho~d*((-1)~d*M[2xt+1, d, O]*A[1]~ (2*t+3-2%d)
*A [2] ~ (2%t+2)
+(-1)~(ad+1)*M[2*%t+1, d, 11*A[1]~(2*t+2-2%d)
*A[2]~(2%t+1)*A[3]*A[4]), d =1 .. t+1))
- (sum(rho~d*(sum((-1) ~d*M[2*t+1, d, 2xh]
*A[1] -~ (2%t+3-2%d-2%h)
*A[2]~ (2%t+1) *(rho~h*A[2]
+sum(rho~1*(eta[2*h, 1, O0]*A[3]*A[4]
*A[5]~(2xh-1-2%1)+etal[2%h, 1, 1]1*A[2]*A[3]~(2xh-2%1)),
1=0..h-1)), h =1 .. t+1-d)), d =1 .. t))
- (sum(rho~d* (sum((-1) ~(d+1)*M[2*t+1, d, 2xh+1]
*A[1]~ (2%t+2-2%d-2%h)
*A[2] ~ (2%t+1) * (sum(rho~1* (eta[2*¥h+1, 1, O]
*xA[3]*A[4]*A[5]~ (2*h-2%1)
+eta[2*h+1, 1, 1]*A[2]*A[3]~(2*h-2*x1+1)),
1=0..h),h=1..t+#1-d)), d=1 .. t)));
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f[2] := simplify(c[2xt+1, O, 1IxA[1]~(2*t+1)*A[2]~ (2*t+1)*A[3]*A[4]*A[5]
-(sum(c[2*t+1, O, 2xh]*A[1]~(2*t+2-2*h)
*A[2] = (2xt+1) * (rho~h*A[2] *A [3]
+sum(rho~1*(eta[2%h, 1, 0]1*A[3]*A[4]*A[5]~ (2*h-2%1)
+eta[2+h, 1, 1]xA[2]*A[3]~(2%h-2%1+1)),
1=0..h-1)), h =1 .. t+1))
+sum(c[2*%t+1, 0, 2*%h+1]1*A[1]~(2%t+1-2%h)*A[2]~(2*t+1)
*(sum(rho~1x(eta[2xh+1, 1, 0]*A[3]*A[4]
*A[5]~ (2%h-2*%1+1)+eta[2xh+1, 1, 1]
*A[2]*A[3]~(2%h-2%1+2)), 1 =0 .. h)), h =1 .. t)
-rho~ (t+1)*(-1) ~(t+1) *c[2*t+1, t+1, O0J*A[2]~(2*xt+2)*A[3]
-(sum(rho~d*((-1)~(d+1)*xc[2*t+1, d, 1]1*A[1]~(2*t+1-2%d)
*A[2] ~(2%t+1)*A[3]*A[4]*A[5]+(-1) ~d*c[2*t+1, d, O]
*A[1]~ (2%t +2-2*%d) *A[2] ~ (2*t+2)*A[3]), d = 1 .. t))
- (sum(rho~d*(sum((-1) ~d*c[2*t+1, d, 2*h]
*xA[1]~ (2%t+2-2%d-2%h) *A [2] ~ (2%t +1)
*(rho~h*A[2] *A[3]+sum(rho~1*(eta[2*h, 1, O]
*A[3]*A[4]*A[5]~ (2*h-2%1)
+eta[2*h, 1, 1]1*A[2]*A[3]~(2xh-2%1+1)),
1=0..h-1)), h=1 .. t+t1-d)), d =1 .. t))
- (sum(rho~d*(sum((-1)~(d+1) *c[2*t+1, d, 2*h+1]
*A[1]~ (2%t+1-2%d-2%h) *A[2] ~ (2%t+1)
*(sum(rho~1*(eta[2xh+1, 1, O]J*A[3]*A[4]*A[5]~(2%h-2*x1+1)
+eta[2*h+1, 1, 1]*A[2]*A[3]~(2*%h-2*1+2)),
1=0..h),h=1..td),d=1..1t)));
end if;

cli+1, 0, 0] := 1;
cli+1l, 0, 1] := expand(simplify((q~(i+2)-q~(-i-2))/(q-1/9)));
# Compute A~{i+2}{A~*}~{i+1}-c[i+1,0,1]*A~{i+1}{A~*}"{i+1}A

Bl[i+1]

expand(simplify (f[1]-c[i+1, 0, 11xf[2]));

# Rewrite B[i+1] in the distributed form of A[1], A[2], A[3] and rho

Bli+1]

collect(B[i+1], [A[1], A[2], A[3], rhol, distributed);

# Extract the coefficient in A[1] and A[3] in the sum
# of all elements containing A[2]~{i+1} of B[i+1]

tam :=

coeff (B[i+1], A[2], i+1);

for k from 2 to i+2 do
# Extract the coefficient in A[1] in the sum
# of all elements containing A[3]"k of tam

tal[k]

:= coeff(tam, A[3], k);

# Extract the coefficient of A[1]~{i+2-k} in tall[k]

tal[k]

:= coeff(tallk], A[1], i+2-k);

# Extract the coefficient c[i+1, O, k] of
(-1)~"{k+1}A[1]~{i+2-kIA[2] ~{i+1}A[3] "k
cli+1, 0, k] := tallk]l*(-1)~(k+1);

end do;
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for p to trunc((1/2)*i+1) do
for k from 0 to i+2-2%p do
# Extract the coefficient in A[1] in the sum
# of all elements containing A[3]"k of tam
ta2[k] := coeff(tam, A[3], k);
# Extract the coefficient of A[1]~{i+2-2xp-k} in ta2k
ta2[k] := coeff(ta2[k], A[1], i+2-2%p-k);
# Extract the coefficient c[i+1,p,k]
# of (-1) {k+p+i}*rho~{p}A[1]-~{i+2-2*p-k}A[2]~{i+1}A[3]"k
cli+1, p, k] := ta2[k]*rho~(-p)*(-1)~(k+p+1);
end do
end do;
# Compute the higher order relations of
# the generalized gq-Onsager algebra for r = i+l
Fli+1] := A[1]~(i+2)*A[2]~(i+1)
-c[i+1, 0, 1]1*A[1]1~(i+1)*A[2]~(i+1)*A[3]-B[i+1] =0
end do
end if;
# Output the higher order relations of the
# generalized gq-Onsager algebra for r+i
Flr+1];
end proc;

# Print the coefficients c[r+1, p, k] of the higher
# order relations of the generalized g-Onsager algebra

pri := proc (r)
local p, k, coef;
global c;

for p from 0 to trunc((1/2)*r+1) do
for k from O to r+2-2*p do
print(coef [r+1, p, kI, "=", c[r+l, p, k1)
end do
end do
end proc;

# Compute the coefficients c[n+l,p,j] by recursion relations
Result2 := proc (n)
local p, i, j, k, t, coef;
global eta, c, M;
# Input the initial values
c[1, 0, 0] := 1;
c[1, 0, 1] := g+1/q;
cl1, 0, 2] :=1;
clt, 1, 0] :=1;
cl2, 0, 0] :=1;
cl2, 0, 1] := gq~2+1+1/q9"2;
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cl2, 0, 2] := q~2+1+1/q9~2;

cl2, 0, 3] :=1;

cl2, 1, 0] := gq~2+2+1/q9~2;

cl2, 1, 1] := q~2+2+1/q~2;

c[3, 0, 0] :=1;

cl[3, 0, 1] := expand((q~4-1/q~4)/(q-1/q));

cl3, 0, 2] := expand((q~2+1/q~2)*(q~2+1+1/q~2));
c[3, 0, 3] := expand((q~4-1/q9~4)/(q-1/9));

cl[3, 0, 4] := 1;

cl3, 1, 0] := q4+2xq~2+4+2/q~2+1/q"4;

cl3, 1, 1] := expand((q+1/q)*(q~2+1/q~2+3)*(q~2+1/q~2));

cl3, 1, 2] := q4+2xq~2+4+2/q~2+1/q"4;

c[3, 2, 0] := expand(q~2+1+1/9~2);

Function(n) ;

if 1 < n then

for i from 2 to n do

t := trunc((1/2)*i);
# Compute the coefficients M[r, p, j] of the expansion
#  of A~{r+2}{A~*}~{r+1}
for k from 2 to i+l do

M[i, O, k] := -c[i, O, 1]*c[i, O, k-1]+c[i, O, k];
end do;
M[i, 0, i+2] := -c[i, O, 1]l*c[i, O, i+1];

if 1 = 2%t then
for p to t do
for k to i-2xp+1 do

M[i, p, k] := -cl[i, 0, 1l*cl[i, p, k-1]l+cl[i, p, k];
end do;
M[i, p, 0] := c[i, p, O];
M[i, p, i+2-2*p] := -cl[i, 0, 1]x*cl[i, p, i-2*p+1];
end do

else
for p to t do
M[i, p, 0] := c[i, p, 0];
M[i, p, i+2-2%p] := -c[i, 0, 1l*cl[i, p, i-2*p+1];
for k to i-2*p+1 do
M[i, p, k] := -c[i, 0, 1l*c[i, p, k-1]l+c[i, p, k];

end do
end do;
M[i, t+1, 0]
M[i, t+1, 1]
end if;
# Compute the coefficients cli+l, p, jl
cli+1, 0, 0] := 1;

cli, t+1, 0];
-c[i, t+1, O]*c[i, O, 1]
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cli+1, 0, 1] := expand(simplify((q~(i+2)-q~(-i-2))/(g-1/9)));
if i = 2%t then
cli+1, 0, 2] := expand(simplify(M[i, 0, 2]*etal[2, 0, 11));
for k from 2 to t+1 do
cli+1, 0, 2*k] := expand(simplify(M[i, 0, 2xk]*eta[2*k, 0, 1]
+c[i+1, 0, 1]*c[i, 0, 2*k-1]*eta[2%k-1, 0, 1]1));
end do;
for k to t do
cli+1l, 0, 2xk+1] := expand(simplify(M[i, O, 2*k+1]*eta[2*xk+1, 0, 1]
+c[i+1, O, 1]*c[i, 0, 2xkl*eta[2xk, 0, 1]1));
end do;
cli+1, t+1, 0] := expand(simplify((-1)~t*(-M[i, 0, i+2]
-(sum((-1)~1*M[i, 1, i+2-2%1], 1 =1 .. t)))));
c[i+1, 1, 0] := expand(simplify(-M[i, O, 2]+M[i, 1, 0]));
if 2 <= t then
for k from 2 to t do
cli+1l, k, 0] := expand(simplify((-1) k*(sum((-1)"1
«M[i, 1, 2%k-2%1]1, 1 =0 .. k))));
end do
end if;
cli+1, 1, 1] := expand(simplify(-M[i, O, 3]xetal3, 1, 1]
+c[i+1, 0, 1]1*(-cl[i, 0, 2]+cl[i, 1, 01)));
if 2 <= t then
for k from 2 to t do
c[i+1, k, 1] := expand(simplify((-1) "k*(-(sum((-1)~(1+1)
*M[i, 1, 2xk-2x%1+1]
xeta[2*k-2%1+1, k-1, 1], 1 =0 .. k-1))
+c[i+1, 0, 1]*(sum((-1)"1*c[i, 1, 2*xk-2x*1],
1=0..%))));
end do
end if;
cli+1, 1, 2] := expand(simplify(-M[i, O, 4]xetal4, 1, 1]
+M[i, 1, 2]*etal[2, 0, 1]
-c[i+1, 0, 1]*c[i, O, 3]*etal3, 1, 11));
if 2 <= t then
for k from 2 to t do
for p to k-1 do
cli+1l, p, 2*k-2xp+1] := expand(simplify((-1) px(sum((-1)"1
*M[i, 1, 2%k-2*x1+1]*xeta[2*k-2%1+1, p-1, 1],
1=0..0p)
+c[i+1, 0, 1]1*(sum((-1)"1*xc[i, 1, 2xk-2x%1]
xeta[2%k-2%1, p-1, 11, 1 =0 .. p)))));
end do
end do;
for k from 3 to t+1 do
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for p to k-1 do
cli+l, p, 2%k-2*p] := expand(simplify((-1) p*(sum((-1)"1
*M[i, 1, 2xk-2x1]
xeta[2*k-2%1, p-1, 1], 1 =0 .. p)
+c[i+1, 0, 1]*(sum((-1)"1*c[i, 1, 2xk-2x1-1]
*eta[2*%k-2%1-1, p-1, 1], 1 = 0 .. min(p, k-2))))));
end do
end do
end if
else
cli+1, 0, 2] := expand(simplify(M[i, 0, 2]*etal[2, 0, 11));
for k to t+1 do
c[i+l, 0, 2%k+1] := expand(simplify(M[i, O, 2xk+1]
xeta[2+k+1, 0, 1]
+c[i+1, 0, 1]*c[i, 0, 2xk]*etal[2xk, 0, 1]));
end do;
for k from 2 to t+1 do
cli+1, 0, 2*k] := expand(simplify(M[i, O, 2*k]*eta[2%k, 0, 1]
+c[i+1, O, 1]x*c[i, 0, 2xk-1]*etal[2*k-1, 0, 11));
end do;
cli+1, 1, 0] := expand(simplify(-M[i, O, 2]+M[i, 1, 01));
for k from 2 to t+1 do
c[i+1, k, 0] := expand(simplify((-1) kx(sum((-1)"1
*M[i, 1, 2%k-2%1]1,1 =0 .. k))));
end do;
cli+1, 1, 1] := expand(simplify(-M[i, 0, 3]*etal3, 1, 1]
+c[i+1, 0, 11*(-c[i, 0, 2]+c[i, 1, 01)));
for k from 2 to t+1 do
cli+1l, k, 1] := expand(simplify((-1) "k*(sum((-1)~1xM[i, 1, 2%k-2x1+1]
xeta[2+¥k-2%1+1, k-1, 1], 1 =0 .. k-1)
+c[i+1, 0, 1]*(sum((-1)~1*xc[i, 1, 2xk-2x*1],
1=0..X));
end do;
cli+1, 1, 2] := expand(simplify(-M[i, O, 4]xetal4, 1, 1]
+M[i, 1, 2]*etal2, 0, 1]
-c[i+1, 0, 1l*c[i, 0, 3]xetal3, 1, 11));
if 2 <= t then
for k from 3 to t+1 do
for p to k-1 do
cli+l, p, 2xk-2*p] := expand(simplify((-1)~p
*(sum((-1)~1xM[1i, 1, 2*k-2x%1]
xeta[2%k-2%1, p-1, 11, 1 =0 .. p)
+c[i+1, 0, 1]1*(sum((-1)-1
*c[i, 1, 2*k-2x1-1]
xeta[2xk-2%1-1, p-1, 1],
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1 =0 .. min(p, k-2))))));
end do
end do
end if;
for k from 2 to t+1 do
for p to k-1 do
cli+l, p, 2xk-2*p+1]

expand (simplify ((-1) “p*(sum((-1)"1
*M[1i, 1, 2%k-2%1+1]
xeta[2xk-2*1+1, p-1, 1], 1 =0 .. p)
+c[i+1, 0, 1]1*(sum((-1)"1*xc[i, 1, 2xk-2x*1]
keta[2xk-2%1, p-1, 11,1 =0 .. p)))));
end do
end do
end if
end do
end if;
for p from 0 to trunc((1/2)*n+1) do
for k from O to n+2-2*p do
print(coef [n+1, p, k], "=", c[n+l, p, kI)
end do
end do
end proc;
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5.6 APPENDIX F: Powers of g—Onsager generators

The explicit expressions of the divided polynomials in terms of tensor products of
Pauli matrices can be derived using (3.3.30) and computing powers W', i = 0,1 (n is a
positive integer) of the fundamental generators of the g—Onsager algebra (3.3.17)-(3.3.18).
According to the parity of n, the expressions slightly differ. For simplicity, let us first study
the case ex = 0. To get the results below, we used:

n (kyk_)2I if n is even,
wl = e
0 (k+k_)le0 if n is odd.
For N =2 and e = 0:
Wg = [2][ Z q20z®...®qQO'Z®w0jl®q0'z®...®q0'z®w0j2®H®...®H
1</1<j2<L
+ > e e ouw, el ol

1<j<L
For N =3 and e; = O:

W(:])) — [3][ Z <q3‘72®--~®q302 ®w0j1®q202®"'®q202®w0j2®
1<51<j2<g3<L

®qu®®qaz®wojs®]l®®]l>

+ > e e ouw) 0l 0l

1<5<L
+[3] Z q302®"~®q302®woj1®q2‘72®"~®q202®w§j2®H®"'®H
1<j1<je<L
+[2] Z q30'z®®q302®w3]1®q02®®q0'z®woj2®]l®®H
1<j1<g2<L
+ Y, e 0¢" e 8¢ 0 - 0¢" Qug, @108l
1<j1<je <L

More generally, by induction one finds the general structure:
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e Case n is odd and €4 = 0:

n
h .
LD 2 (C“ @@ S
h=1 0<iyig,.ip  1<j1<ja<<jp<L \ Jlr-h
i1+ig++ip=n
® ¢ g L@ (T g wéi‘z ® TR0 g L g g TR)eE g
® q(n_il_"'—ihfl)o'z R & q(n_il_"'—ih—l)az ® wéijlh QIR - ® H)

ne1 (25 -lh—[2F2)] ataatoze=Min{["F1],h}

DI 2. 2. 2

h=2 u=1 0<x1,22,...,T0 0<fud1,0ut2;--th P
T1t+T2tFTu=u Gy 1Fiytr2toFip=n—2(z1++xu)
(h) no no Tyt (n—iyt1)os
<C?17-7317:7‘1§---§tu7‘37u‘7ju ) q ® ® 4 ® woj/ 41 © 9 © ®©
74u+17Zu+27~~~72h;.7lu+1:-~~7j/h “

® q(n—iu+1)02 ® q;iwg;? ® q(n—iu+1—2:c1)oz ® - ® q(n—z‘u+1—..._ih_l—2(x1+...+xu))az ®
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e Case n is even and e = 0:

n
h .
W= X 2 (CE,I?...,Z-,hqu@---@qué;

h=1 0<i1,%2,...,ip 1<j1<j2<...,<jn <L J15--Jh
i1+t Fip=n

® q(n—il)a'z ® - ® q('rL—il)O'z ® w62,2 ® q(n—il—ig)oz ® . ® q(n—il—ig)(fz ® .

3
q(n—il—"'_ih—l)o'z QR ® q(n—i1—...—ih—1)0z ® w(i)f;h RIR---® ]I)

n/2  h—1 zl+w2+---+zu:Min{[%],h}

DAY 2 2 2

h=2 u=1 0<z1,22,...,T0 0<@u+1,0ut2y-+5th P
T1+ToF FTu=U tut1 iyt Fip=n—2(z1 4+ +xy)
(h) no, no Tut1 (n—tut1)02
<Ctlyx1:j1§~--§tu’mu7ju q ® ® q ® woj'u+1 ® q ® ®
. : Mg .
tu+1, u+25---3th3] w41 h

® q(nfiu+1)0'2 X q;ingll X q(n*iu+172x1)gz R---® q(n*iu+1*"'7ihf172(x1+'“+xu)) ®

Qur RI®---®1
OJ/h

n—nh $1+m2+--~+xu:Min{["T_l],h}

> 5 5 5

h=n/2+1 u=1 0<z1,22,...,T0 0<Tut1,but2y-sin P
Tzt Tu=u Tyt 1Fiut2ttip=n—2(z1++au)
c(h) : . "R 277 wiu+1 ® q(nf’iu-!—l)(fz R ®
121,515 5tusTusJu 07411
Tutseth5d w1000 b

® q(”—iqul)Uz ® qﬁwgil ® q(”—iuﬂ—hl)gz R ® q(”—iuﬂ—"'—ih71—2(fﬂ1+"'+$u)) ®

where
1<n<.<ju<slk,
1<jyi1 <..<jn <L,
P = {jlv 7.7?1} N {j/u—i—la "'7j/h} - ®’
t1 >ty >+ =1, >0,

e < D2 2xp+ > by, k=1,...,u.
v>k Ju>Jk

For n = 1,2, 3,4, the explicit expressions for the coefficients are:

e For n=1: C’(ll) =1,
Ji

e Forn =2: C'(f% =q+qt=12, 0(21) =1, where j; < jo;
J1,Jj2 J1

133



5.6. APPENDIX F: POWERS OF Q—ONSAGER GENERATORS

© Fopn=3 2) @) )
o, =B P =@, ¢ =p, =1

3 I
J1,J2,J3 J1,32 J1,J2 J1
2 . ) )
C(l,)2,j1 =1, where j1 < j2 < js;
17j2
* o=t 3) 3) 3)
4 3 3 3
01,1,1,1 = [4]}, 02,1,1 = [3]4, 01,2,1 = [2][4], 01,1,2 = [3][4],
J1,J2,J3,J4 J1,J2,J3 J1,J2,J3 J1,J2,J3
2 2 2 1
@l =22, P} =4, ¢ =@, =1,
J1,J2 J1,J2 J1,J2 Ji
(3) _ (3) _ (3) _ 2 _ 2 _
€125, — [4], €125 = [2]2= Co2j = 2], €121 = 2], €221 = L,
1,151,353 1,152,373 1,152,353 2,52 2,52

where j1 < ja < j3 < ja.

Remark 10 Powers of Wy for e_ = 0 are readily obtained through the substitutions ¢ —
g~ ! in above expressions.

The results above correspond to the special choice ex = 0. For ex # 0, a similar
analysis yields to:

W('I)’L — W(7)1|6+:0+61q77/0'z ®®qn0z
n—1 m . '
T 3 b ] A L R T
m=1h=1 P; Jiseesh

® ¢ g g q<nfm>crz)

n—1 m—-1 Min([FLh) z1+ze++zu=[7F]

+ 2 2. 2

m=2 h=1 u=1 0<x1,22,...,T4 0<@yd1,0ud2,th Py
TitZat o FTu=U dy g Fiypototip=m—2(z1 4 +Tu)
e mc(m:h) ) ) noz ... ® g no: g wlu+1 ® (n—tu+1)oz R ® (n—iu+1)02®
+ él:xly?ﬁuﬁtuy‘xu?]u ] q 1 q q
zu+17Zu+2,“~72h;]/u+17"'7j/h u+

® q 211 Q q(n tut1—221)0; QR ® q(n—iu+1—2x1)az Q- ® q(n—m)az R ® q(n—m)az)
[257]

t
n—2t (Qt h) naz no, t102 2161
+ Z Z Z Z ( Ctvargiiitnangnd OO T B g5 "Wy, ©

N

t=1 h=1 0<z1,x2,...,Tp

x1+xo++xp=t

_ _ t ) o —
® q(n 221)0> R ® q(n 221)0> ® q~20zng.;2 ® q(n 221—2x2)0, ®
X

. ® q(n—2m1—2x2)az Q- ® qthUz h ® q(n—2t)az Q- ® q(TL—Qt)O'z)
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where
p = o tin=m, .
! 0<ji<jo<---<jn<L’

l1<ji<--<ju<lL,
1<y < <j, <L
py=d U dud 0 G-k =0,
t1 >ty >+ 21, >0,
tkgn—Qin— Z iv, kzl,...,u.
i<k I <k
l<jp<--<jn<L,
py={ t12t2>- 21 >0,
tk<n—2> x;, k=1,...,h.
i<k

For n = 2, 3,4, the explicit expressions for the coefficients are:

e Forn =2: 0(11,1) = [2];
J1
* FO(£277)J:3 (21 (1,1)
cPP =), oY= oY =3,
J1,J2 J1 J1
), =1, where ji < ju;
* Fog??:ZL: 3,2 (3,2) (3,1)
i) = ofY =@ ofY =[u), oY =2,
J1,J2,J3 J1,J2 J1,92,33 J1

o =3, V=03, V=,

Ji,J2 Ji Ji
(3,2) _ 3,2) _ (3,2) _ 912
Ci1js — [4], Coli — 2], Cii5 — [2]%,
151 152 172
(2,1) _ (2,1) _
ain =02 arn =1,

where j1 < j2 < Jj3.

Remark 11 Powers of Wy for e_ # 0 are readily obtained through the substitutions ¢ —
gt €+ — €_ in above expressions.
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