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Abstract. We present a selection the unique properties of oscillatory modes of N f l = 3
light quarks −u, d, s−, using the SU

(
2 N f l = 6

)
× SO3

(
�L
)

broken symmetry clas-

sification. �L =
∑ N f l

n = 1
�L n stands for the space rotation group generated by the sum of

the three individual angular momenta of quarks in their c.m. system. The baryonic mul-
tiplets are shown to emerge from the picture of oscillating quarks in 3 space dimensions
in the center of mass system of the baryons. All oscillatory modes are fully relativistic
with a finite number of oscillators and ths is forming the unique harmonic oscillators with
these properties. The density of states as a function of mass-square is calculated. This
estimate is of relevance for the accounting of the missing states of unobserved hadrons,
as the here estimated baryonic multiplets include both the observed and the unobserved
(or "missing") hadrons. The estimate is conceptually different from Hagedorn’s model
and is based on field theory of QCD.

1. Introduction

The underlying field theory of strong interaction, QCD, assigns a local spin 1/2 field to every valence
quark and antiquark with the quantum numbers color and flavor, interacting locally with spin 1 color
octet gauge fields, called gluons. The gauge interactions of the gluons are exactly conserved gauge
transformations based on the local gauge group SU(3) of color. The field theoretic concepts were
developed as core topics of an in depth investigation together with the oscillatory modes of quarks
suggested by linear Regge trajectories [1].
The linear Regge trajectories (e.g. ref. [1] and [2]) with exception of the pomeron, suggest oscillatory
behaviour, whereas the difficulty to describe them is due to the fact that the field theory variables
fall into the perturbatively non accessible domain. Lattice QCD in principle is set to solve the non-
perturbative problems ref. [3] .
Within the theory of Quantum Chromo Dynamics the mesons and baryons are arranged in multiplets
while it was already found since the mid-1960’ies that many states are missing refs. [4], [5], [6] in the
sense that they have not been detected by experiments even though they are predicted by the quark
model. The non observation of some states can be due for example to resonance states overlapping or
being very wide. The missing states remain missing up to the present.
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In this paper we are constructing the full theoretically expected multiplets of baryons including those
measured and those that are missing, and count their states, based on the oscillatory modes for quarks
and antiquarks.
The oscillatory modes of valence quarks and antiquarks in mesons and baryons were developed by
one of us (P.M.) in CALTECH from 1975 onwards and published in ref. [1], ref. [7], ref. [8] . In
reference [8] only non strange hadrons have been considered, which have been compared to a good
compilation of missing states of non strange baryons, as can be found in PDG 1980. However there
are missing states also among the strange hadrons ref. [9] or ref. [10] .
The main idea of this approach is to use relative coordinates and associated canonically conjugate
momenta in the center of mass of qq

′
and q q

′
q
′′

systems to describe harmonic oscillations of the
valence quarks and antiquarks, with full special relativistic invariance using the zero width approxi-
mation for resonances.
We are separating quark antiquark spins combining them to baryonic sub-multiplets.
Oscillator modes mean by definition gaussian wavefunction in the ground state, either in configuration
space or in momentum space.
With respect to light quark masses u,d,s we take the chiral limit. Further the limit considered is
the long range approximation between quarks and antiquarks which involves large main oscillatory
quantum number N.
The model is valid strictly for large N. For small and finite N the multiplets are not degenerate for
different I, J, P, C quantum numbers of particles, deviating from the large N asymptoytic behaviour.
Many modes are unstable against strong decays and are approximated in the zero width limit.
A perturbatively renormalizable field theory does not allow an exponential growth of mass- and/or
masssquare-density of such states because it would lead to an infinite number of free constants, which
render the theory non-renormalizable. In string theory there is an infinite number of independent
oscillators (like many springs) one each for the ground frequency ω, 2ω, 3ω etc. This cannot be
described by a field theory which contains only a finite number of degrees of freedom. The string
theory allows a spectrum of density growing exponentially with mass(square).
The prediction of Hagedorn’s bootstrap model [11], was an exponential spectrum of hadron reso-
nances , which later was shown to be realized in string theory, refs. [12], [13], [14], [15]. In addition
the limiting temperature resulting from the exponential hadron resonance spectrum in Hagedorn’s
model was associated with the critical temperature of the QCD phase transition between hadrons and
partons [16] . However if a limiting temperature exists from the hadron spectrum this is not nessecarily
associated with a phase transition.
In string theory there is a limiting temperature à la Hagedorn, which is determined from the string
tension i.e. of the order of the Planck mass and it is not nessecarily associated with a phase transition.
An exponentially growing spectrum of hadron resonances would not agree with the expectation for an
underlying field theory of strong interactions.
The approximate use of a broken extended symmetry combining S U6 = S U

(
2
( ∑

q
�S q

)
× 3 f l

)

with S O3
( ∑

q
�Lq

)
was vigorously pursued up to the end of the 60-ies, whence the three valence

quarks wave function is conceived in their c.m. frame. Other orbital qq
′

and 3-quark wave functions
were also considered, as e.g. the p z → ∞ states, where a boosted S U6 w symmetry is introduced
instead of S U6 . In this respect the main quantum number N was not related to genuine oscillator
degrees of freedom but instead inferred from recurrences along Regge trajectories from the relation

α
′
M 2 ( J ) = J + J 0 with α

′
∆ M 2 = ∆ J = ∆ N (1)

In eq. 1 �J = �L + �S denotes total angular momentum.
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There is some literature quoted in ref. [8], which is however very limited, and among the many papers
on that matter we mention here few representative ones by J. Schwinger [4], R. Dashen and M. Gell-
Mann [5] and by G. Zweig [6], illustrating the search for local field variables underlying the strong
interactions at that time.
Historically, one result from the investigations and efforts towards identifying the known baryon reso-
nances, was the finding that several states were missing. The counting of oscillatory modes of baryons
with light flavored u, d, s quarks, that we report here, is a new investigation.
The estimate and counting of oscillatory modes of mesons with light flavored u, d, s quarks and cor-
responding antiquarks has been published previously in ref. [17]. In the following we will elaborate
on the oscillating modes of baryons and compare with the measured ones.

Oscillatory modes of quarks in baryons reveal many properties going beyond the quark model, e.g.
the numbers of modes with fixed main quantum number N.
We do not discuss here the techniques derived from Young tableaux, applied to
SU
(
2Nf l = 6

)
× SO3

(
�L
)
. Instead let us quote the book by Hermann Weyl [18] .

2. Oscillatory modes for u,d,s baryons

4. Dynamics - Poincaré-invariant harmonic oscillator modes for baryons in
the space of barycentric coordinates for 3 valence quarks u , d , s

Seen from the time line of the first years of the 70-th it took about 9 years until an explicit construction
of oscillator modes of baryons exhibiting a density function

� n

(
m 2
)
=
∂ N
(

m 2
)

∂ m 2
; N = m 2 · α′ (2)

where α
′

is the slope of Regge trajectories, and

� n

(
m 2
)
∼


m 2

m 2
0


u

for m → ∞

m 0 , u : characteristic parameters and u = positive integer

(3)

for valence quark (antiquark) configurations in mesons and baryons
– ref. [8] – compatible with a finite number of degrees of freedom .
Figure 1 shows the logarithm of the density of states of baryons defined in formula 3, together with the
density of states of mesons from ref. [17], [19] as a function of the main quantum number N plus one.
This calculation (shown here for N+1 until 10) includes only oscillatory modes for u,d,s quarks and
antiquarks for qqq baryons and qq for mesons, i.e. not including exotics. The shown density of states
is valid in the limit of large N. Furthermore the here derived formulae do not include the intercept and
assume a universal slope of Regge trajectories. This does not affect the counting of the number of
these states. We observe that the baryon density of states grows faster than the meson density and is
always larger than the latter. The data used in Fig. 1 come from Table 1 below.
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N z(Meson) z(Baryon)
0 36 56
1 108 210
2 216 1044
3 360 2780
4 540 5766
5 756 12510
6 1008 22366
7 1296 38052
8 1620 62826
9 1980 97540

Table 1: Density of states for each main quantum number N until N=9, for mesons and baryons with
u,d,s quarks and antiquarks.
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Figure 1. Fig. 1 : Logarithm of the density of states of baryons defined in eq. 3 together with the density of
states of mesons from [17] as a function of the main quantum number N plus one.
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We envisage baryons within QCD , allowing temporarily the local color gauge group to be generalized
from 3 colors to 1 < N c → N to simplify notation , whenever no confusion arises . Baryons are :
fermions for N odd , bosons for N even . A concise sketch of barycentric canonically conjugate
momentum and spatial coordinates – pairs of three vectors

(
�π ν , �z ν

)
; ν = 1 , 2 , · · · , N (4)

follows .

Barycentric coordinates in the overall c.m. system

�π 1 =
1√
2

( �p 1 − �p 2 ) , �z 1 =
1√
2

( �x 1 − �x 2 )

�π 2 =
1√
6

( �p 1 + �p 2 − 2 �p 3 ) , �z 2 =
1√
6

( �x 1 + �x 2 − 2 �x 3 )

. .

. .

�π ν = (ν(ν + 1))−1/2
( ∑ν

α=1 �pα
−ν �p ν+1

)
,�z ν = (ν(ν + 1))−1/2

( ∑ν
α=1 �x α
−ν �x ν+1

)

. .

. .

�π N−1 = · · · , �z N−1 = · · ·

�π N = N −1/2 ∑ N
α=1 �p α → 0 , �z N = N −1/2 ∑N

α=1 �x α → 0

(5)

The last line in eq. 5 refers to c.m. momenta and positions , both fixed to vanish, they do not represent
genuine degrees of freedom .

4.1. Completing canonically conjugate variables in the pairs in L N , t

In the local Lagrangean density setting of QCD the external quark masses, denoted M q , appropriate
multipliers of the scalar densities qq composing the mass term, enter in the form, also discussed
recently in refs. 20 – [20] – and 21 – [21] –

− L q−mass =
∑

f lavors
z q

z M
M q q c q c (6)

The quark masses M q are independent of global c.m. frame time t and of configuration space
variables �z ν ; ν = 1, 2, · · · , N − 1 ; the mass functions m q do depend on the entire spacial
configurarion of the (resonance-) state considered – always reduced to the overall c.m. system – and
therein of time t .
For the dynamical meaning of c.m. time the implication of the last relation in eq. 5 repeated below

�π N = N −1/2∑ N
α=1 �p α → 0 , �zN = N−1/2∑N

α=1 �xα → 0 (7)

is central : the ’prima facie’ canonical pair �π N , �z N in eq. 7 is removed from the set of dynamical
canonical (3-vector-)variable pairs

(
�π 1 , �z 1

)
, · · · , ( �π N−1 , �z N−1

)
; �π N = 0 , �z N = 0 (8)
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maintaining kinematic simultaneous vanishing displayed in eq. 8 .
Configuration space variables �x ν ; ν = 1, · · · N inherit from the relations displayed in eqs. 7 and 8
the following c.m.-equivalence holds

�x ν ∼c.m. �x ν − �X ; ν = 1 , · · · , N ; �X =
1

N

( ∑ N
�=1 �x �

)
(9)

which implies that each �x ν is equivalent to a homogeneous linear combination of the barycentric
coordinates �z κ ; 1 ≤ κ ≤ N −1 . c.m. time t is defined as common time coordinate of four vectors

�x ν → { x µ } ν =
(

t , �x ν
)

; µ = 0, 1, 2, 3
ν = 1, · · · ,N

consistent with the constraint :
∑ N
ν=1 �x ν = 0 ;

remembering N = N c

(10)

4.2. Orbits in configuration space and velocities

The configuration space variables obeying c.m.-constraints and c.m. equivalence are together with
c.m. time, as displayed in eq. 10

(
t , �x 1

)
,
(

t , �x 2
)
, · · · , ( t , �x N

)
;
∑ N
�=1 �x � = 0 (11)

with �x ν ; ν = 1, · · · ,N conceived independent of t – whereas an orbit is formed by binding the
space-variables �x ν = f ν ( t ) ≡ �x ν (t) , as expressed in the next equation

(
t, �x 1

)
,
(

t, �x 2
)
, · · · , ( t, �x N

)
;
∑ N
�=1 �x � = 0

(
t, �x 1 ( t )

)
,
(

t, �x 2 ( t)
)
, · · · , ( t, �x N ( t)

)
;
∑ N
�=1 �x � ( t ) = 0

(12)

The definition of orbit in the second relation in eq. 12 leads to the definition of velocities maintaining
c.m.-constraints and c.m.-equivalence

�v ν ( t ) =
d

d t
�x ν ( t ) ≡

•
�x ν ; ν = 1 , · · · , N ;

with :
∑ N
�=1 �v � ( t ) = 0

(13)

4.3. The main quantities L N depends on

These quantities are compiled in the list of 3 items below

1) a universal scale parameter of dimension mass-square Λ =
(

2 α
′ ) −1

related to the inverse
slope of Regge trajectories , as well as quark masses, minimally M q ; q = u , d , s , composing the
mass term in the local QCD Lagrangean given in eq. 6 , where the finite renormalization constants
z q , z m are to be chosen to implement exact Ward identities , which in turn specify M q – refs. [20],
[21] .

2) quark mass functions m �

(
M q ;

{
�z ν
} )

; ν = 1 , · · · , N − 1 ; � = 1, · · · ,N

6
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3) velocities �v ν ( t ) ≡
•
�x ν ; ν = 1 , · · · , N ; with :

∑ N
�=1 �v � ( t ) = 0

This leads to the Ansatz – ref. [8] – for light and heavy quark flavors remembering that we use rational
units with � = c = 1 .

L N = −
∑ N
α=1

[
m 2
α −

∑ N
β=1
∑ N
γ=1 Q α

βγ �v β �v γ
] 1/2

m α = m α

(
M δ , Λ ; z

)
; Q α

βγ = Q α
βγ

(
M δ , Λ ; z

)

z =
{
�z 1 , · · · , �z N−1

}
(14)

The limiting quantities in the chiral limit obtain as follows

m α

(
M δ , Λ ; z

)
∼ ◦m α

(
Λ ; z

)
+ M α + o (M δ)

Q α
βγ

(
M δ , Λ ; z

)
∼
◦
Q
α

βγ

(
Λ ; z

)
+ M � A � | αβγ Λ

1
2 + o

(
M δ Λ

1
2

)

for M δ → 0

(15)

In ref. [8] the quantities‘

m α

(
M δ , Λ ; z

)
−→ ◦

m α

(
Λ ; z

)

chiral limit

Q α
βγ

(
M δ , Λ ; z

)
−→

◦
Q
α

βγ

(
Λ ; z

)
(16)

defined in eq. 15 were identified but shall be kept distinct here , for clarity of logic.

4.4. Remarks with respect to the chiral limit

χ1 The discussion of oscillatory modes of baryons in the chiral limit is simplified but the phenomeno-
logical application is limited to the light flavors u,d,s.

χ2 In the zero width approximation the appearance of 8 massless pseudoscalar goldstone bosons

◦
π σ =

(
π + , π 0 , π − ; K

0
, K

−
; K + , K 0 ; η

)
;

σ = 1, · · · , 8 ; m ◦
π σ
= 0

(17)

does not enter directly , but the modes with large masses will decay to lower ones and one ore more
◦
π - s – also in cascades . This is after removing infrared divergencies not significantly different for the
realistic case of finite π σ - masses . As a consequence such cascades of excited baryon resonance
decays generate a pronounced feeding problem , aggravated if heavy ion collisions are performed at
todays energy frontiers at RHIC and LHC , less so at FAIR .

χ3 In addition at high energy also hevay flavors c , b , t are or will be copiously produced aggravating
the study of light flavored
(anti-)baryons .

On the phenomenological side the ∆ Regge trajectory can be found in ref. 22 – ref. [22] – . The
additional trajectories were erased in our subsequent abalysis.
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4.5. L N →
◦
L N in the chiral limit

For logical consistency we can consider the chiral limit of arbitrary N = N c and N f l light flavors
of quark , as long as N > 1 and N > 2

11 N f l , ensuring asymptotic ( ultraviolet ) freedom .

The Ansatz for
◦
L N becomes

◦
Q
α

βγ =
◦
m

2

α

1

K N
δ βγ ; K N : dimensionless , positive constant (18)

Eq. 14 reduces to

◦
L N = −

( ∑ N
α=1

◦
mα
)  1 −

1

K N
v 2


1
2

; v 2 =
∑ N
β=1 �vβ �vβ

−→ ◦
m =

∑ N
α=1

◦
m α ;

◦
m α =

◦
m β =

◦
m / N ∀ α , β = 1, · · · ,N

(19)

In eq. 19 v =
√
v 2 defines a Euclidean distance in a space over real numbers R d̂ of dimension

d̂ = d space × N , with d space → 3 , yielding the associated scalar product

w =
{
�w 1 , · · · , �w N

} −→
(
v 2

∣∣∣ v 1

)
=
∑ N
β=1 �v 2 β �v 1 β (20)

In R d̂ the transformation to barycentric coordinates defined in eq. 5

x =
{
�x 1 , · · · , �x N

} −→ z = z
(

x
)
=
{
�z 1 , · · · , �z N

}

�z 1 =
1√
2

( �x 1 − �x 2 )

�z 2 =
1√
6

( �x 1 + �x 2 − 2 �x 3 )

· · ·
�z ν = (ν(ν + 1))−1/2

( ∑ ν
α=1
(
�x α − �x ν+1

) )

· · ·
�z N−1 = · · · ; ( ν = N − 1 )

�z N = N −1/2 ∑N
α=1 �x α = N 1/2 �X c.m.

(21)

is an orthogonal Od̂ mapping, i.e. preserves the scalar product defined in eq. 20. 1

The reduction from the Od̃ transformation , to be proven orthogonal , to its form in R d̃ = R N ⊗
R d space

O
(
d̂
)
= O (N) ⊗ ¶ d space×d space ; O (N) ←→ O µν ;

µ , ν = 1, · · · ,N with �z µ = O µ ν �w ν
(22)

is not presented here , additional details can be found in ref. [23] and references cited therein.
The proof of orthogonality of O

(
d̂
)

reduces to establish orthogonality of the matrix O (N)

displayed in eq. 22 .

1 in the approximately realistic case we have N ≡ N c = d space = N f l

= 3 exactly .
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4.5. L N →
◦
L N in the chiral limit
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of quark , as long as N > 1 and N > 2

11 N f l , ensuring asymptotic ( ultraviolet ) freedom .

The Ansatz for
◦
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◦
Q
α

βγ =
◦
m

2

α

1

K N
δ βγ ; K N : dimensionless , positive constant (18)
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◦
L N = −

( ∑ N
α=1

◦
mα
)  1 −

1

K N
v 2


1
2

; v 2 =
∑ N
β=1 �vβ �vβ

−→ ◦
m =

∑ N
α=1

◦
m α ;

◦
m α =

◦
m β =

◦
m / N ∀ α , β = 1, · · · ,N

(19)
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Two relations follow independently from the c.m. constraint in configuration space �X c.m. ∼ 0 from
eqs. 18 - 22 ∑ N

α=1 �x
2
α =

∑ N−1
β=1 �z

2
β + N �X 2

c.m.

=
∑ N
α=1

(
�x α − �X c.m.

) 2
+ N �X 2

c.m.

−→ ∑ N−1
β=1 �z

2
β =

∑ N
α=1

(
�x α − �X c.m.

) 2

(23)

4.6.
◦
L N −→ constructing canonical variables of Hamiltonian quantum mechanics

�p β =
◦
L N , �v β =

◦
m

K N

[
1 − ω 2

] −1/2 1
2 v

2
, �v β

=

◦
m

K N

[
1 − ω 2

] −1/2
�v β

;

β = 1, · · · .N

ω 2 =
1

K N

∑ N
γ=1 v

2
γ ; K N =

N

N − 1
;

◦
m =

∑ N
α=1

◦
m α

(24)

Eq. 24 establishes the N canonically conjugate pairs of d space−vectors
{
�p β , �x β

}
; β = 1, · · · ,N (25)

generated through
◦
L N with general properties outlined in eq. 19. These variables do not satisfy the

c.m. equivalence −→ constraints defined in eqs. 7 - 9 collected in eq. 26 below

�π N = N −1/2 ∑ N
α=1 �p α → 0 , �z N = N −1/2 ∑N

α=1 �x α → 0(
�π 1 , �z 1

)
, · · · , ( �π N−1 , �z N−1

)
; �π N = 0 , �z N = 0

�x ν ∼c.m. �x ν − �X ; ν = 1 , · · · , N ; �X =
1

N

( ∑ N
�=1 �x �

) (26)

Omitting many details , we proceed to construct the main conserved quantity, following the original
ref. 8 – ref. [8]

H N =
∑ N
α=1 �v α �p α −

◦
L N ;

∑ N
α=1 �v α �p α = ω

2
[
1 − ω 2

]−1/2

◦
L N = −

◦
m
[

1 − ω 2
] 1/2 −→ H N =

◦
m
[

1 − ω 2
] −1/2

(27)

From eqs. 24 and 27 we infer

K N �p 2
β = H 2

N

1

K N
�v 2
β −→

K N
∑ N
γ=1 �p

2
γ = H 2

N ω
2

= H 2
N −

◦
m

2 (28)

The last relation on the lower right side of eq. 28 follows from the decomposition ω 2 = 1 −(
1 − ω 2

)
and eqs. 24 and 27 . The structure of a genuine harmonic oscillator is brought a step

nearer rearranging eq. 28

K N
∑ N
γ=1 �p

2
γ +

◦
m

2
= H 2

N
(29)
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Since eq. 29 derives from a variational principle and yields consistent equations of motion both

in the classical as well as the quantized interpretation the Ansatz for
◦
m

2
realizing a system of

s = ( N − 1 ) d space linear harmonic oscillators 2

implies the choice

◦
m

2
∝ ∑ N

γ=1

(
�x β − �X c.m.

) 2
+ δ m 2 ;

δ m 2 : configuration space independent
(30)

The constant transforming the proportionality in eq. 30 into an equality has to be determined in
agreement with canonically conjugate momenta and positions .
The result is, using also the relations in eq. 23

H 2
N =

[
K N

∑ N
α=1
(
�p α
) 2 ∣∣∣∑N

β=1 �p β = 0 +
◦
m

2 (
x γ − X

) ]

=



K N
∑ N
α=1
(
�p α
) 2 ∣∣∣∑ N

β=1 �p β = 0 +

+
Λ 2

K N

∑ N
α=1
(
�x α
) 2 ∣∣∣∑ N

β=1 �x β = 0 + δ m 2


(31)

Eq. 31 reveals that H 2
N so defined does satisfy the c.m.-constraints , and thus by Poincaré invariance

is the mass-square operator , henceforth denoted M 2 ≡
◦
M

2
. For simplicity of notation the superfix

◦ , which stands for the chiral limit , in M 2 , is suppressed .
Next we transform momenta and positions to barycentric coordinates and cast the relations in eqs. 29
- 31 into the form

◦
m

2 (
x γ − X

)
=
Λ 2

K N

∑ N−1
α=1 �z

2
α + δ m 2 (32)

In eq. 32 Λ , of dimension mass-square , is the spring-tension 3.
Λ 2 is related to the gauge boson condensate of QCD ; a detailed discussion can be found in refs.

[19, 23].
We arrive at the relation for M 2 expressed through
d̂ c.m = ( N − 1 ) d space unconstrained , canonically conjugate pairs(
�π 1 , �z 1

)
, · · · , ( �π N−1 , �z N−1

)
defined in eq. 5

M 2 =

 K N
∑ N−1
α=1
(
�π α
) 2
+
Λ 2

K N

∑ N−1
α=1
(
�z α
) 2
+ δ m 2



�π α =
1
i ∂ �z α ; α = 1, · · · ,N − 1 ;

[
�π β k , �z γ l

]
= 1

i δ βγ δ km ¶

k , l = 1, · · · , d space

(33)

The structure of the canonical variables in eq. 33 is intrinsically related to the trace anomaly in QCD,
as derived in ref. [23] , [24].

2 For the realistic case N = d space = 3 , s is = 6 .
3 Spring is not string.
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6. Conclusions and outlook

In the present paper we calculated the density of states for baryons and compared it to our previous
calculation for mesons [17]. The counting of baryons is done here for the first time in a complete
fashion and for the mesons it has been published in a previous paper [17]. This calculation is valid in
the limit of large N. It includes only oscillatory modes for u,d,s quarks and antiquarks for qqq baryons
and qq, i.e. is not including exotics and heavy quarks. Furthermore the here derived formulae do not
include the intercept and assume a universal slope of the Regge trajectory. Within this approximation
all Regge trajectory intercepts are neglected. This however does not affect the counting of the number
of these states. For N=0 we find 36 states of mesons and 56 states of baryons as expected from more
general Quark Model considerations for u,d,s quarks and antiquarks, and the 56 states of the baryon
octet with spin=1/2 and the baryon decuplet with spin=3/2.
The density of states of baryons and mesons rise as a power law following the construction of os-
cillatory modes of quarks. We observe that the baryon density of states grows faster than the meson
density and is always larger than the latter. The mass square density for qqq baryons and qq mesons
within the oscillatory modes approach goes like a power determined by the number of independent
oscillators and the leading powers are 5 for baryons and 2 for mesons.
The calculation predicts the density of baryonic states including the missing states and does not grow
exponentially as in Hagedorn’s model, with respect to N (or mass-square). The fact that there is
no limiting temperature in the oscillatory modes approach does not mean that there is no critical
temperature for the QCD phase transition .
The estimate of missing hadron states is important to take into account in thermal models that fit the
hadron yields and ratios in heavy ion collisions to extract the temperature and chemical potentials of
the particle source. Such fits have been performed by many groups for example in references [25],
[26], [27], [28], [29].
Furthermore, not only there are missing states of qqbar mesons and qqq baryons and their antiparti-
cles, but probably also missing states of glueballs, tetraquarks, pentaquarks etc., which also influence
the feeding and the thermal fits, while there are candidates for non excited glueball states, and strong
candidates for tetraquarks and pentaquarks.
An aim for the future would be therefore to obtain main consequences from including the missing
hadronic states for the description of thermal equilibrium as applying to the hadronic phase of QCD
. A development of the current model would be to proceed along the path of counting oscillatory
modes of heavy flavored qqq and qq hadrons as well as for multiplets for exotic states like tetraquarks,
pentaquarks and glueballsi .
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