RESUMEN

Desde su descubrimiento en 1932, la simetria SU(2) de isospin en el sector de hadrones ha
jugado un papel muy importante en la clasificacién de estas particulas y de sus interac-
ciones. La simetria de isospin seria exacta en el caso en que los quarks u y d tuvieran las
mismas masas y en ausencia de las interacciones electromagnéticas, por lo que se trata de
una simetria aproximada. La extraccion de parametros fundamentales del modelo estandar
de particulas elementales como las entradas de la matriz de mezcla de quarks, o la pre-
diccion del momento magnético anémalo del muon, requieren tener un buen control en el
calculo de los efectos de rotura de la simetria de isospin, del orden de unas décimas de por
ciento.

En esta tesis se estudian los efectos del rompimiento de la simetria de isospin inducidas
por las interacciones electromagnéticas en varios procesos de interés en la produccion de
hadrones. Mas especificamente, en este trabajo de tesis calculamos las correcciones radia-
tivas de largas distancias al orden « en varios procesos que involucran la produccion de
dos mesones pseudoscalares. Entre nuestros resultados figuran: (a) el primer calculo con-
sistente de la diferencia de anchuras en el sistema de mesones p* — p°, (b) la estimacién de
los efectos de estructura electromagnética en la producciéon de kaones cargados y neutros
y (c) el célculo correcto de las correcciones radiativas en la produccién de dos piones en el

decaimiento del lepton 7.
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Abstract

Since its discovery in 1932, the SU(2) isospin symmetry of strong interactions has
played a very important role in the classification of hadrons and their interactions. It is
well known that isospin symmetry is only an approximate symmetry which is broken by the
mass difference of up and down quarks and by the effects of electromagnetic interactions.
[sospin symmetry is very important also in phenomenological applications. For instance,
the determination of fundamental parameters of the Standard Model of particle physics
such as the mixing of quarks or the prediction of the muon anomalous magnetic moment,
requires that isospin symmetry effects at the level of tenths of percent are under well
control.

In this thesis work we study the isospin symmetry breaking effects produced by the
electromagnetic interactions in the decays of some particles. More specifically, we calculate
the long distance radiative corrections at O(«) in processes where the production of two
pseudoscalars mesons is envolved. Among our most important results we mention: a) the
first calculation of the width difference between charged and neutral p(770) mesons, b)
the calculation of radiative corrections to the dominant decays of ¢ mesons which consider
the electromagnetic structure of kaons and, c¢) the correct calculation of the long-distance

radiative corrections in the production of two pions in 7 decays.
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Capitulo 1

Introduccion

La simetria de isospin o spin isotépico fue postulada en 1932 por W. Heisenberg[1] poco
después del descubrimiento del neutrén por J. Chadwick [2]. La propuesta de Heisenberg
se baso en la observacién de que el neutréon y el proton tienen masas muy similares y
por lo tanto se les podia ver como dos estados degenerados de un isodoblete (doblete de
isospin (p,n)), que se distinguen por el nimero cudntico de isospin I3, andlogo al spin
(de ahi el nombre de isospin). Desde entonces, la simetria de isospin ha jugado un papel
muy importante en la fisica nuclear y en la fisica de particulas elementales tanto en la
clasificacion de los ntcleos y de los hadrones, como en las interacciones fundamentales que
ocurren entre estos. Algunos ejemplos de la clasificacion de hadrones en multipletes de
isospin se muestran en el Cuadro (1.1) [3] donde también se indica el contenido de quarks

de dichas particulas, asi como la diferencia de masas AMp al interior de cada isomultiplete.

Como puede verificarse del Cuadro (1.1), la simetria de isospin no es exacta ya que
los hadrones al interior de un isomultiplete no tienen la misma masa (AMpy # 0). Visto
en términos de interacciones, la contribucion dominante a las masas de los hadrones se
debe a las interacciones fuertes, es decir a las interacciones entre los quarks y los gluones
que los componen. Por lo tanto, se puede postular que las interacciones fuertes respetan
la simetria de isospin y que la rotura de la misma es un efecto de las demas interacciones

fundamentales. Es decir, si Hr, Hyear Y Hem denotan los hamiltonianos de las interacciones
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JY | Particula I quarks Masa (MeV) AMy (MeV)
s 1 du, ud 139.570
0 1 dd, uu 134.976 +4.594
K° : ds 497.648
K+ us 493.677 —3.971
0~ D~ 5 de 1869.4
D° uc 1864.6 +4.8
B 5 db 5279.4
Bt ub 5279.0 —04
pt 1 du, ud 7774
o0 1 dd, uu 775.0 24
K* : ds 896.10
1~ K*t us 891.66 —4.44
D~ : dc 2010.0
D0 uc 2006.7 +3.3
n 5 udd 939.565
P uud 938.272 —1.293
(1/2)*
¥ 1 dds 1197.449
0 uds 1192.642 +4.807
xt uus 1189.37 —3.272

Cuadro 1.1: Multipletes de isospin en algunos hadrones. I denota el niimero cudntico de isospin,
J el spin, y AMpy = my+ — mpo es la diferencia de masa entre estados con y sin carga.

fuerte, débil y electromagnética, se tiene que:

[Hem,weak7 Iz] 7& 0 ) (12)

donde I; (i = 1,2,3) denotan los operadores de isospin.

A nivel de las interacciones fundamentales la simetria de isospin se rompe debido a



(1) que los quarks u y d tienen masas diferentes, (i) la presencia de las interacciones
electromagnéticas. Para verificar los enunciados anteriores, consideremos tunicamente el

caso de dos sabores de los quarks (u y d), los cuales forman un doblete de isospin:

Q:(Z). (1.3)

En términos de este doblete de isospin, el hamiltoniano para las masas de los quarks y

de las interacciones electromagnéticas se pueden escribir de la siguiente manera,

mu—l—md

P00 + - onq

H,, = myuu+ mgdd =
9 _ ~ _
H., = €A, <§avuu — gd%d) =eA, (EQ%Q + QQT:%%Q) 3 (1.4)

donde 7; son las matrices de Pauli, e la carga eléctrica del positrén y A, el cuadrivector
electromagnético. Debido a que [7;, 7;] = 2ig;;x 7k, €l término que contiene 73 no conmuta con
los operados de isospin 71 2 y por lo tanto rompe la simetria de isospin. Como consecuencia
de la rotura de la simetria de isospin, las particulas al interior de un isomultiplete adquieren
diferentes masas.

Mas alla de las relaciones entre las masas de hadrones, la simetria de isospin permite
relacionar las amplitudes de probabilidad de diferentes procesos fisicos, en los cuales parti-
cipan los miembros de un isomultiplete. Una vez que los efectos de rotura de la simetria de
isospin se incorporan en los cédlculos de estas amplitudes, se puede hacer una comparacién
con la informacién experimental correspondiente. En muchos de los procesos estudiados
con anterioridad, se ha encontrado que la simetria de isospin, y los efectos de su rotura ge-
nerados por la diferencia de masas de los quarks u—d y las interacciones electromagnéticas,
dan una buena descripcién del mundo real.

En el presente trabajo de tesis estudiaremos varios procesos de gran interés actual en la
fisica de particulas elementales en donde se requiere calcular de forma cuidadosa los efectos

de la rotura de la simetria de isospin:
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= En el capitulo 2, estudiaremos el rompimiento de la simetria de isospin en la diferencia
de las anchuras de los mesones p™—p°. La contribucién principal de esta tesis tiene que
ver con el calculo de las correcciones radiativas electromagnéticas a los decaimientos

70 p0 — 77~ y el célculo de los correspondientes modos radiativos de estos

pr—
procesos. Este efecto de rotura del isospin, el cual no ha sido medido en la actualidad
con la certeza requerida, es de gran relevancia en la evaluacién del momento magnético
anémalo del muén a, obtenido a partir de los datos[4][5][6] del espectro hadrénico en

decaimientos del leptén 7 (ver descripcién mas adelante).

= En el capitulo 3, estudiaremos los efectos del rompimiento de la simetria de isospin
en la produccién relativa de decaimientos ¢(1020) — K™K~ /K Kg. Esta razén es
un dato muy importante para evaluar la tasa de produccién de estas particulas en los
colisionadores electrén-positron y realizar estudios posteriores sobre los decaimientos
de kaones [7][8][9][10]. Desde hace varios anos se ha observado [11][12] que el cdlculo
de los efectos de rotura de la simetria en estos procesos excede en varias desviacio-
nes estandar a las mediciones experimentales [3]. Dado que esos célculos tedricos se
han efectuado usando la electrodindmica cudntica (QED) escalar (es decir, conside-
rando que los kaones son puntuales), en el presente trabajo de tesis recalculamos
las correcciones radiativas tomando en cuenta la estructura electromagnética de los

kaones.

= En el capitulo 4, revisaremos el calculo de las correcciones radiativas al decaimiento
7~ — 7 7’v,. Estas correcciones radiativas son de i tanci 1 -
- gran importancia en la remo

cion de efectos de rotura de isospin de los datos del espectro de dos piones para la
evaluacién de la contribuciéon hadrénica principal en el momento magnético anémalo
del muén [13][14][15][16]. El célculo de estas correcciones radiativas se realiz6 recien-
temente en las referencias [17][18] y mds recientemente se llevé a cabo un calculo

mas detallado de las correcciones de fotones reales en el contexto de un modelo de



dominancia de mesones [19][20]. En este trabajo de tesis reavisamos el célculo de
las correcciones virtuales y recalculamos las correcciones de fotones reales tenien-
do en cuenta la suma correcta de la probabilidad de transicion sobre los grados de

polarizacion del fotén real.

= Finalmente, en el capitulo 5 mostraremos nuestras conclusiones generales y dedica-

remos unos apéndices para mostrar algunos detalles técnicos de nuestros calculos.

Dado que los célculos que realizamos en los Capitulos 2 y 4 revisten una gran impor-
tancia para la prediccién del momento magnético anémalo del muén (convencionalmente
denotado como a,,) en el contexto del modelo estdandar de particulas elementales, a conti-
nuacion daremos una breve descripcién de este problema.

El momento dipolar magnético de una particula elemental de masa m, carga e y spin
S se define como M = g%g , donde g denota el factor giromagnético. Al orden més bajo
en la teoria de perturbaciones la teoria cuantica relativista predice un momento magnético
normal con g = 2. Las correcciones cuanticas generan una desviacion de este valor estandar,
es decir a = (g — 2)/2 # 0, valor conocido como momento magnético andmalo. En el caso
del muén, este valor ha sido medido recientemente con una alta precision [21][22]. El valor

promedio obtenido de medidas en muones positivos y negativos es [21]:
™ = 11659208.0(5.4)(3.3) x 10717, (1.5)

donde los cifras entre paréntesis denotan respectivamente los errores estadisticos y sis-
tematicos del experimento.

Este resultado puede compararse con las predicciones tedricas obtenidas en el marco
del modelo estandar (MS) de particulas elementales. En realidad, actualmente existen dos
predicciones tedricas las cuales se obtienen usando como datos de entrada la produccion de

hadrones en la aniquilacién electrén-positrén (ete™) y en decaimientos del leptén 7. Estas
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son respectivamente [16][23]

ay®(ete”) = 11659180.5(4.4)(3.5)(0.2) x 107 (1.6)
ay®(r) = 11659198.6(5.8)(3.5)(0.2) x 107", (1.7)

donde las cifras entre paréntesis denotan diferentes incertidumbres relacionadas con parame-
tros y datos usados para obtener dichas predicciones.

Una comparacién entre las ecuaciones (1.5), (1.6) y (1.7) permite extraer las siguientes
conclusiones: (7) la medicién experimental de a5, excede a las predicciénes tedricas (1.6) y
(1.7) en aproximadamente 3.3 y 0.9 desviaciones estdndar y, (i7) las predicciones tedricas,
ecs. (1.6) y (1.7) discrepan entre si en cerca de 3 desviaciones estandar. Un andlisis detallado
de las diferentes contribuciones a la prediccion tedrica permite concluir que el origen de
la discrepancia entre las dos predicciones se encuentra principalmente en la contribucion
que proviene de los diagramas de polarizacion del vacio que involucran un par de mesones

7. Sus valores respectivos, extraidos de datos experimentales de la aniquilacién ete™ y de

decaimientos del leptén 7, son [24]:

am"(e*e”) = (504.6 & 3.1(exp) + 0.9(rad.)) x 107" (1.8)
ar™(1) = (519.1 £ 1.5(exp.) £ 2.6(BR) £ 2.5(Isospin)) x 10719, (1.9)

donde claramente se observa una discrepancia de magnitud similar a la que se tiene entre las
ecs. (1.6) y (1.7). Como veremos a continuacién, las dos diferentes predicciones mostradas
en las ecs. (1.8) y (1.9) deberian ser las mismas debido a la simetria de isospin. El hecho de
que exista una discrepancia revela que las correcciones debidas a la rotura de la simetria
de isospin no han sido tomadas en cuenta correctamente o debido a que existe alguna pieza
faltante de estas correcciones que no ha sido identificada.

La contribucién hadrénica al momento magnético anémalo del muon debida a la polari-

zacion del vacio hadroénico se calcula a partir de los datos de la seccion eficaz de produccién



de dos piones mediante la relacién de dispersién [25]
1 [e.e]

a™" (ete”) = F/ dtK(t)o"(ete” — 7r77)(t) (1.10)
™ Ja

n
m2
U

donde K (t) es una funcién de peso que decrece como 1/t [26] y 0%(eTe™ — m777)(t) denota
la seccidn eficaz desnuda (es decir, donde las correcciones debidas a la radiacién de fotones
en el estado inicial, de la polarizacién de vacio y las correcciones al vértice inicial han sido
sustraidas).

Un célculo alternativo se puede obtener si se utilizan datos del espectro de 2 piones de

los decaimientos 7= — 7~ 7°

v, usando la simetria de isospin [13]. Una vez que los efectos
de rotura de la simetria de isospin han sido incorporados, se puede obtener la relacién
entre la funcién espectral de dos piones en decaimientos del leptén 7 y la seccion eficaz de
efe” — mFn”. Esta relacion, la cual permite calcular a};"(7) al insertarla en (1.10), es la

siguiente [17]:

oete” —rhn) =

lKa(t) dlrry) RIB(t)] | (1.11)

Kp(t) dt Sew
donde dI' [, /dt denota la funcién espectral de dos piones con fotones inclusivos en decai-
mientos del 7, Spw = 1.01907 [27] son las correcciones electrodébiles de cortas distancias

al decaimiento del 7 vy,

G2 |Vig|?>m2 t\’ 2t
Kelt) = —5gis =g Utz

7TO[2

K,(t) = =T (1.12)

La funcién R;p(t) [17] contiene los efectos de rompimiento de la simetria de isospin,
2
CJEM (t) ﬁ§r+7ro

Fy (1)
fe()

Los factores que intervienen en su definicién son: (a) las correcciones electromagnéticas de

Rip(t) (1.13)

QED de largas distancias (Gga(t)), (b) la correccién al espacio fase debida a la diferencia
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de masas entre los piones cargados y neutros (factor 2, _ /62, ),y (c) la razén entre los
factores de forma electromagnético y débil del pion (|Fy (t)/fy(t)]?).

Cada uno de estos tres factores seria igual a la unidad en el caso en que la simetria
de isospin fuera exacta. Los efectos de rotura de la simetria de isospin inducen una ligera
desviacién respecto a la unidad y corresponde a la teoria el calculo explicito de sus valores.
Como ya se mencioné anteriormente en esta Introduccion, entre los objetivos principales
de esta tesis figuran el calculo de los efectos de rotura de la simetria de isospin en los
parametros que intervienen en la razén de factores de forma del pién (Capitulo 2) y en las

correcciones radiativas electromagnéticas de larga distancia (Capitulo 4).



Capitulo 2

Correccion radiativa a p — 77w

En este capitulo se estima el rompimiento de simetria de isospin en la diferencia

de anchuras de los mesones p*

electromagnéticas a la anchura de decaimiento de los proceso p° — 7

,p°. Para tal fin, se realizan las correcciones

ey

pt — 770 y se calcula el modo radiativo de cada proceso. La técnica propuesta

en la ref.[28] se usa para calcular las correcciones radiativas virtuales finitas en

el infrarrojo y ultravioleta en el caso del p*.

2.1. Introduccion

La simetria de isospin (IS) de las interacciones fuertes, permite clasificar a los mesones

cargados p* y neutro p° en un triplete (I = 1) de isospin. En el limite exacto de la IS (es

decir, m, = my y ausencia de interacciones electromagnéticas a nivel fundamental), estos

mesones tienen la mismas masas y anchuras de decaimiento:

Am,

AT’

La primera desigualdad se sigue de

= mp —myx =0,

= Tp—T, =0 (2.1)

P p

la degeneracion en las masas en el interior de un

isomultiplete y la segunda debido a que en el limite de la IS, los mesones p™° experimentan

unicamente decaimientos fuertes. De acuerdo con el PDGI3| el promedio pesado de los

9
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valores de las masas y anchos de los mesones p son

Am, = myp—my = (—0.7+0.8)MeV(S = 15)

p

AT, = T, —T,:=(03+13)MeV(S=14). (2.2)

Debido al valor del factor de escala! S en ambos promedios, tenemos que tomar estos
valores con la debida precaucion y concluir que desde el punto de vista experimental el
rompimiento de la simetria de isospin no ha sido totalmente establecida.

El siguiente cuadro muestra los valores obtenidos por diversos experimentos para la
diferencia de masas y la diferencia de anchos, usados por el PDG para realizar el promedio
indicado en la ec.(2.2). Claramente se observa que este conjunto de datos no proveen una

determinacion consistente de la ruptura de la simetria de isospin.

mpo — mpi

MeV Colaboracién  Proceso

—24+08 ALEPH 7~ = 1 7,

044+07+06 KLOE e"et - rtrnd

1.3+£114+26 SND e"et -t 0

16+06+17 CBAR pp — wta— w0

444 HBC P

545 HBC p

2 +£21 RVUE 7N — pN
Ip—T =

—024+10 ALEPH 7 - 1 1,

36+18+17 KLOE e"et -t 0

En la literatura existen algunos calculos tedricos de las diferencias de masas de los me-
sones p[29]. Estos consisten bésicamente en calcular las diferencias entre las correcciones de
autoenergias de los mesones p. Los calculos de la diferencia de masas en un modelo de domi-

nancia vectorial [30] y en la teoria de perturbaciones quirales [31] arrojan, respectivamente,

'El factor de escala para un promedio de N medidas de una observable se define como S =
[x?/(N —1)]'/? y usualmente se reporta cuando no existe un buen acuerdo entre las distintas mediciones
experimentales de una observable. Un valor grande de S se debe probablemente a que se ha subestimado

el error en al menos uno de los experimentos(3]
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los siguientes resultados:

Am,(VMD) = (—0.02 £ 0.02)MeV ,
(—0.4)MeV < Am,(ChPT) < (0.7)MeV. (2.3)

los cuales parecen mantener la degeneracion en las masas de los mesones p.

En lo referente a la diferencias de anchuras, hasta antes de esta tesis no existia un
célculo tedrico completo de AI',. En resumen, el rompimiento de la simetria de isospin
en el sistema de mesones p es un problema ain abierto tanto desde el punto de vista
experimental, como tedrico. Debido a la importancia que el rompimiento de isospin en el
sistema de mesones p tiene para el calculo de las contribuciones hadrénicas al momento
magnético anémalo del muén [13] [16]-[19], en esta tesis abordamos el problema de la
cuantificiacion del rompimiento de la simetria de isospin en los anchos de decaimiento del
meson p.

Para ilustrar la forma en que el rompimiento de la simetria de isospin contribuye en la
determinacién de aj"(7) retomemos el cociente de los factores de forma electromagnético
y débil del pion en un modelo simple en el cual ambos estan dominados por los mesones p.
Ademés de la contribucion debida al meson p, en el caso del factor de forma electromagnéti-
co debemos agregar un término que rompe la simetria de isospin debido a la mezcla de los
mesones p —w. Asi, los factores de forma electromagnético y débil del pion que intervienen
en la ec. (1.13), se puede escribir como [17]:

2

m o 0 t
Fyt) = £ 1 - 2 ,
v(t) m% —t —imylp(t) m2, mZ —t —imyIly,
mfﬁ

f—f—(t) - 2

me — t—imy+ L+ (t)’

donde 6,, = (=35 £0.7) x 1073GeV? denota la intensidad de la mezcla p — w. Como
podemos observar, el rompimiento de la simetria de isospin en el cociente de factores de

forma del pion esta determinado por Am, y AI',. Més atin, cuando nos encontramos cerca
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de la resonancia (t ~ mi), esta razoén es particularmente sensible al valor de AI', y es por

este motivo que su determinacion es muy importante.

2.1.1. Contribuciones a la diferencia de anchuras

Como es usual, definimos la diferencia de anchuras de los mesones p a partir de sus
anchos parciales de decaimiento. En la siguiente tabla, listamos los modos de decaimiento

de los mesones p medidos experimentalmente [3].

Modo de decaimiento p r,/r
T ~ 100 %

ot
Tty (45+£05) x 1074
tn <6x1073
rtrtan 70 <2x1073

0
Ty (9.9+16) x 1073
70y (6.0+£1.3) x 1074
Ny (295+04) x 1074
OOy (45+0.0) x 107°
whp (4.55 +£0.28) x 107°
ete” (4.70 £0.09) x 107°
ata—n0 (1.017022 +0.34) x 10~*
VI (1.84+09) x 107
rtrnm070 <4x107°

Si deseamos una precisién del orden de 1 x 1073, lo cual es la incertidumbre relevante
para distinguir los efectos debidos a la rotura de la simetria de isospin, debemos concen-

trarnos inicamente en los modos de decaimientos siguientes:

po —ata” ,7T+7T_’7 ,

pt = rErd ataly . (2.4)

Por lo tanto, para estimar los efectos del rompimiento de la simetria de isospin debemos

calcular
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= Las correcciones radiativas al decaimiento p — 7.
» [Los anchos de decaimiento de los modos radiativos p — 7m7y.

El ancho de decaimiento del proceso no radiativo se puede definir como:
I(p—77(y)) =T(p — 7m) + L(p — 777y) | (2.5)

donde el primer término contiene el ancho del proceso no radiativo a nivel arbol mas las
correcciones virtuales al proceso p — 7w, mientras que el segundo término es el ancho
de decaimiento radiativo para fotones suaves?. En las siguientes secciones consideramos el

caso de las diferentes contribuciones por separado.

L] L] O —
2.2. Decaimiento p’ — 7'

En esta seccion mostramos los calculos de las contribuciones al ancho de decaimiento
del meson neutro p’. Primero nos enfocaremos en el cdlculo de las correcciones electro-
magnéticas virtuales de orden « al proceso p® — 7F7~, después nos ocuparemos de sus

Y
correcciones debidas a la emisién de fotones suaves y finalmente al ancho de decaimiento
+

radiativo p® — 77 77.

2.2.1. Correcciones de fotones virtuales a p* — 7t7~

Como es sabido, el célculo de las correcciones virtuales contiene tanto divergencias ul-
travioletas (UV) como infrarrojas (IR). Las divergencias ultravioletas, las cuales provienen
del comportamiento de altas energias de los fotones virtuales, son normalmente eliminadas
mediante un proceso de renormalizacién[32]. Sin embargo, existen casos, como el que se
considera en esta seccion, en los cuales las correcciones virtuales no contienen divergencias

ultravioletas debido a una identidad entre las correcciones de vértice y de autoenergia y

debido a que no consideramos el acoplamiento del fotén al mesén vectorial p° (nétese que

2A los foténes de energia menor que un cierto umbral wy se les llama fotones suaves
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el vértice electromagnético vp®p" no existe para particulas reales debido a la simetria de
conjugacién de carga [33]). Por su parte, las divergencias infrarrojas, que provienen del
comportamiento de bajas energias de los fotones virtuales, son eliminadas cuando se su-
man a las correcciones virtuales, las correcciones debidas a la emision de fotones reales.
Este procedimiento de cancelaciéon de divergencias infrarrojas, conocido como el teorema
de Bloch-Nordsiek [34][35] , se muestra explicitamente en nuestro cdlculo. El que las pro-
babilidades cuanticas de dos procesos diferentes se pueden sumar se justifica en el hecho
de que, experimentalmente es imposible distinguir los procesos no radiativos (p — 7w (7))
de los radiativos (p — 77y) cuando los fotones reales en estos tiltimos tienen energias por
debajo del umbral de deteccién.

Para poder eliminar las divergencias UV e IR que aparecen en el cdlculo de las correc-
ciones virtuales es necesario primero aislarlas o regularizarlas. En el presente trabajo de
tesis hemos usado el método de regularizaciéon dimensional para aislar las divergencias ul-
travioletas y hemos atribuido una masa ficticia al fotén en su propagador?® para regular la
divergencia infrarroja. Para regular la divergencia que aparece en las correcciones debidas
a fotones reales hemos atribuido también una masa ficticia al fotén, pero teniendo cuidado
de sumar sobre los tres grados de polarizacion al calcular la probabilidad de transicién.

En esta seccién revisamos la correccion debida a fotones virtuales, que representa una

T, usando QED escalar

correccion a orden « (1 lazo) a la anchura de decaimiento p — 7
para modelar la interaccion entre piones y fotén [11],[36]-[40].
La forma mas simple de la densidad Lagrangiana que describe la interaccion fuerte pr,

que respeta la invariancia de Lorentz y de isospin es[36]:
v, -
L(p— 7m) = Gapu(ﬁbau Te)€abes (2.6)

donde G es la constante de acoplamiento fuerte y a,b,c = 1,2, 3 representan indices de

isospin. Es facil obtener de la anterior densidad Lagrangiana los vértices para las distintas

3En esta tesis se ha usado la norma de Feynman para el propagador del fotén
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configuraciones de cargas
1Gp, (70,7~ — 7 9,7°],
G, [ Ot — ],
1Gpr [7t0,7° — 7°0, 7], (2.7)

de tal manera que se satisface g,0.+,- = g =-+-0 = G. Las interacciones electromagnéticas
para este sistema se introducen via la sustitucién minima 9, — 9, —ieQA,,, donde Q es el
operador de carga y A, es el 4-vector del campo electromagnético.

En este modelo, la amplitud de probabilidad del decaimiento p° — 77~ al orden mas

bajo en la teoria de perturbaciones es:

Mo = 1g,0ntx- [p — q) - n(P, ), (2.8)
donde (p, q, P) denota el 4-momento de (7,7, p") respectivamente, g,o,+,- €s la cons-
tante de acoplamiento fuerte y n(P,s) el vector de polarizacién del meson vectorial p°.
La anchura de decaimiento no polarizada del meson pY; se obtiene tomando el médulo al
cuadrado de (2.8), promediando sobre spin inicial e integrando en el espacio fase del estado
final. En el sistema en reposo de una particula de masa m que decae en 2 particulas, la

expresién para calcular la anchura es*

il = ——|M] ‘pl‘dQ (2.9)

327?2

—
p1 es el vector momento de cualquiera de las particulas finales , |[M| representa promediar
la amplitud cuadrada sobre spin inicial y sumar sobre spines finales y df2 es el angulo sélido

de la particula 1. En el sistema en reposo de la particula que decae,

By = B = 228
2
4m?
Vo = ]_ — 5
m?,
0
OVO
Pl =gl = —5—

4De manera simbdlica el proceso se representa como V — P;F Py
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Una vez insertadas las expresiones anteriores en (2.9) y realizada la integracién, la anchura

de decaimiento a nivel arbol (que se denota con el superindice 0) es:

2 ,V3Hl 0
0 _ Ipbmta Vol (2.10)

pomtm 4871
Para obtener una expresién de la anchura de decaimiento al siguiente orden en la teoria de

perturbaciones se requiere el calculo de las correcciones radiativas que se pueden separar

en dos tipos:
» Correcciones de cortas distancias (altas energias)
= Correcciones de largas distancias (bajas energias)

Las correcciones de cortas distancias estan dominadas por las correcciones electrodébiles,
es decir, por considerar que los fotones interactian con los constituyentes de los hadrones
(a nivel de quarks). Las correcciones de largas distancias estdn determinadas por QED
escalar, el fotén se acopla a los mesones como si estos fuesen puntuales. En este trabajo
de tesis se consideran a los piones puntuales, es decir nuestro cédlculo se reduce al caso de
correcciones de largas distancias.

Al considerar la contribucién de los fotones virtuales (ver Fig.(2.1) ), la amplitud total

de decaimiento se convierte en M 0
Mo = Mo+ M5 . (2.11)

La suma de las amplitudes generadas por los diagramas de autoenergia y de correccién

al vértice estd contenida en MZO.
M;O = Mif —f‘Mi_E +MVXT . (212)

En el caso que estamos estudiando no consideramos el posible acoplamiento del fotén
al momento magnético del p neutro. Lo anterior se justifica en el hecho de que debido a la

conjugacion de carga, este vértice es nulo para particulas sobre su capa de masa.



2.2. DECAIMIENTO p° — ntn~ 17

7" s
e° P2
a) s b) m
,]_['I'
pO
C) TT
7" '
pO
d) ™ ) al

Figura 2.1: Diagramas de auto-energia a), b) y de correccién al vértice c) - e).

La funcién de autoenergia >, , involucrada en el calculo de la amplitud del diagrama

de autoenergia, puede ser escrita como un desarrollo en potencias de (p* —m?) [41]:

Sen = A+ (p* =m*)B + (p* = m*)’S;(p%) | (213)
con las constantes definidas en la siguiente manera

A=Yrrlpreme B = 0%x /00| p2em -

La constante A se absorbe en la renormalizacién de la masa del pion y B contribuye a la
renormalizacién de la funcién de onda, mientras que la funcién X no contribuye[41]. La
contribucion de auto-energia a la amplitud de correcciones virtuales se escribe de manera
simbolica como:

o [Buv + Big]

SE 0
= X
M,ri ./\/lpo 1 9 )

(2.14)

donde se han separado la parte divergente ultravioleta Byy y la divergente infrarroja Byg.
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La divergencia ultravioleta presente en la amplitud de auto-energia y en la amplitud
de correccion de vértice se cancelan al sumar las amplitudes. Esto es consecuencia de la
identidad de Ward[42] que relaciona la funcién de auto-energia y la funcién correccién al

vértice
1
3Em(p2)/8p”|p2:mz = —;Au(p, —p) . (2.15)

Si la funcion de correccion al vértice por fotones virtuales se separa en una parte divergente

UV (contenida en L) y una parte finita ultravioleta (As(s)), se obtiene la expresion
Au(p+,0=) = Gorn(P+ — P [L + Ap(s)] -
De (2.15) se sigue que la condicién para la cancelacién de las divergencias ultravioletas es:
L+ Byy =0. (2.16)

La cancelacién de la divergencia ultravioleta® se puede mostrar explicitamente, para lo cual
es necesario escribir analiticamente todas las amplitudes. La amplitud de auto-energia de

cada linea externa tiene la forma:

2 2
MifZMgo x 2 ! [2 |:§—7E+1I1[47T]—1I1 lﬂ;”;H —21I1|: )\2 H : (2.17)

2 2,

donde A representa la masa ficticia del fotén. Este parametro es introducido como regulador
en las integrales que presentan comportamiento infrarrojo. Al final de la integracion, se
toma el limite A — 0 y se recupera QED. Los términos que son cero en dicho limite se
omiten y solo se considera el logaritmo en A. La correccion al vértice es la suma de los

diagramas c), d), e) mostrados en la Fig.(2.1). La amplitud la escribimos en términos de

5La divergencia ultravioleta, presente a través del polo en € = 4 — D, estd definida como Ayy =
2/e —vg + In[4n] — In [ZL—;}, donde yg =~ 0.5772 es la constante de Euler-Mascheroni y u es la escala de

masa introducida en el proceso de regularizacion dimensional
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las funciones de Passarino-Veltman [43]como sigue :

2 - 1 2
Muxr = x5 2 B0 om] - L5 E0B o i

dm ( v§ Vi
—mf,o(l +v5)CO [m2,, m2,, mio, m2,, A%, m2, |
2 mfr
2 {E g+ In[dn] — In { u2+”} . (2.18)

En la ecuacion anterior se ha separado el término divergente ultravioleta de las funciones
Passarino-Veltman. Sumando las 2 contribuciones de auto-energia y la correccion total al
vértice, el término divergente ultravioleta se cancela y la amplitud total virtual y finita UV

se escribe como:
0 0
My = MC% x f2 .

s 0 . . ., , . , .
La funcién escalar f? contiene la informacién del célculo a 1 lazo y se escribe en términos

de funciones analiticas® para exhibir el término divergente infrarrojo.

52) _ i 7T2(1+V(2))—2 1+1+V(2)1n ]_—V()
2m 2vy 2vy 1+
A 1 2 1—
—2In 1+ +Voln Yo
M+ 2vy 1+ vy
1 2
—— (L, o] — Lip [vo]
0
1+vg [, 2 : 2
— L —L . 2.19
o () e ) 219

La anchura de decaimiento p® — 7+7~ corregida a orden o debida a la emisién y re-
absorcién de fotones virtuales, normalizada a la anchura a nivel arbol, se escribe en la

forma:
- o
o =1+ 2Re[fl]. (2.20)

POntr—

Es claro que la ecuaciéon anterior contiene la divergencia infrarroja en forma logaritmica y

es necesario tomar en cuenta los fotones suaves del proceso de emisiéon de fotén real para

1 In[1—zt]dt
0 t !

6La funcién dilogaritmo estd definida como Liy(z) =
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.

Figura 2.2: Diagramas de emision de fotones reales.

eliminarlas. Una vez maés senalamos que (2.19) se obtiene considerando piones puntuales

(QED), es decir sin tomar en cuenta la estructura de estos.

2.2.2. Correcciénes de fotones reales a p° — 777

Para eliminar la divergencia infrarroja que aparece en las correcciones virtuales (2.19)
es necesario considerar el proceso de emision de fotones reales, cuyos diagramas se muestra
en la fig.(2.2). A estos diagramas se les llama independientes del modelo debido a que
surgen de introducir el acoplamiento minimo en (2.6). Las contribuciones dependientes del
modelo se originan al considerar la contribucién de estados intermedios no contenidos en
la ec.(2.6).

En el estudio de los procesos radiativos se han establecido dos teoremas importantes
que mencionamos brevemente. El teorema de Low[44] establece que la amplitud total del
proceso radiativo se puede escribir en potencias de la energia (w) del fotén emitido en la

forma siguiente:

M =Awv™ + B’ +wC +w?D. .. (2.21)
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Los coeficientes A, B se obtienen uinicamente a partir de las caracteristicas del proceso no
radiativo. Estos dos primeros términos de la amplitud definen la llamada amplitud de Low
M, tienen su origen en los diagramas de la figura 2.2 y su suma es invariante de norma e
independiente de modelo. Los términos de orden w™! provienen de la radiacién de la carga
eléctrica de las particulas externas. El resto de la amplitud depende del modelo usado para
describir los detalles de la interaccion y es invariante de norma a cada orden en w. La
expansion anterior muestra que el comportamiento de la amplitud es divergente infrarrojo
cuando w — 0.

El otro teorema importante es el Teorema de Burnett-Kroll[45]. Este establece que
el cuadrado de la amplitud total radiativa, sumada sobre los estados de polarizacion de
particulas iniciales y finales (excepto las del fotén), no contiene términos divergentes de

orden w™! en la energfa del fotén
a
) |M3|2:E+bw0+cwl+... (2.22)

Los coeficientes de la anterior ecuacién estdn relacionados con los de la ec.(2.21). Mientras
que el coeficiente a es independiente del modelo, todas las deméas construcciones contienen
términos dependientes del modelo.

La amplitud total del proceso radiativo, sin tomar en cuenta términos dependientes

del modelo en primera aproximacion, representada por los diagramas de Feynman de la

fig.(2.2) es:

ME = Mee,(k) = —eM’ [p;(:)} —e {p;(:)}zgk.n(p, )
+eMO, {q;(:)} —e {q;(:)} Wk - (P, s)

+2iege(k) - n(P, s).

Es importante mencionar que la amplitud M?,o estd escrita en la forma de (2.8) pero con
los momentos cumpliendo la relacion P = p + g + k. Claramente esta amplitud tiene la

forma de la amplitud de Low.
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El médulo al cuadrado de la amplitud total, al sumar sobre el spin del meson vectorial,

adquiere la forma establecida por el teorema de Burnett y Kroll 7

q-e(k) p-ek)]’

T2 __ 2 0 |2
|M'y| = ¢ |Mp0|k::0 qk pk

+ R(KY). (2.23)

Los términos de orden k° estan contenidos en la funcién R y el factor \Mgo |7_, no contiene
dependencia alguna en el momento del fotén.

Nos ocuparemos del término que presenta el problema de divergencia infrarroja, cuya
amplitud de acuerdo a la ecuacién anterior es:

Soft o [a-€k)  p-e(k)
M,th = EMpo q-k - p-k‘

(2.24)

Para calcular la anchura de decaimiento radiativo se requiere integrar en la energia w del
fotén emitido. El rango de valores de w se puede dividir en 2 regiones, [0, wo] ¥ [wo, Winaz]-
El primer intervalo es la region de bajas energias, donde la aproximacion de fotén suave
es requerida y valida siempre que wy sea pequeno comparado con la escala de energia
involucrada en el proceso. Este valor puede representar la resolucion del experimento para
la energia del fotén, es decir, la energia minima de un fotén para ser detectado. En la
aproximaciéon de foton suave, el momento del fotén es despreciado en cualquier parte de
la expresién de la amplitud, excepto en el denominador. El segundo intervalo es la regién
de fotones duros, contribucion que no tiene divergencia infrarroja y que generalmente
se calcula numéricamente. La energia maxima accesible al fotén w,,,. se obtiene de la
cineméatica del decaimiento a 3 cuerpos, en el presente caso w™** = (mﬁ0 —4m?,)/2m.
La correccién al ancho de decaimiento del proceso p° — 77~ debido a los fotones
suaves se obtiene a partir de la amplitud mostrada en (2.24) e integrando en la energia
del fotén real hasta wg. Al sumar sobre la polarizacion del fotén se deben tener en cuenta

los 3 grados de polarizacién de acuerdo a la ref. [46] y como se indica en el apéndice C.

La correccién al ancho de decaimiento del proceso p' — w77~ debida a fotones suaves

"El factor |M20 |i:0 representa la densidad cinemética del proceso no radiativo
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normalizada al ancho a nivel &rbol es :

soft
Prtry gfy)o
POntmr—
A 1 2 1-— 1 1-—
) Y S A ) N el L) § WL WY
™ 2&)0 2V0 1—|—V0 Vo 1+V0
1—|—Vg 11— 11+ v 1— vy
L —L 1
+ 2V0 [ 2 |:1—|—V0 2 1—V0 +omin 1+V0
1—vy 4V(2)
1 1 . 2.25
+n{1+vo}n{1—vg ] (2.25)

Esta expresion depende logaritmicamente de la masa ficticia A del foton, lo cual servira pa-
ra cancelar el término divergente infrarrojo de la expresién para las correcciones virtuales
(2.19). Nétese que también contiene una dependencia en el corte wp. Finalmente al incor-
porar las correcciones virtuales (2.19) y las debidas a fotones reales suaves (2.25), el ancho
corregido de decaimiento del proceso p° — 777~ normalizado al ancho a nivel &rbol es (el

proceso corregido se denota por p® — 77 (7)):

r

G 0 0
—5—— = L+2Re[fl,]+d}
pPOnta—
1 2 1— 1 1-—
= 1+ X0 I 14 +V01n[ VO] — —1In o
T 2wo 2vo 1+ vo Vo 1+ vy
1 2 1— 4v2
n +V0[ln Vo In V02
2vy 14+ vq 1 —v§
. 1—V0 . 1+V0 1—V0
L —L |
+ 2 |:1—|—V0:| 12 [1—V0] o n|:1+V0:|:|
+7T2(1+V(2))_2 1+l—i-vgln 1 — v
2V0 2V0 1+V0
1+v2 . .
— 0 [ng [Vo] — LIQ [—Vo]]
Vo
L+v3 [, . 2 . 2
— L —L . 2.26
o e e e ) 22

A la expresion anterior se le debe agregar la contribucion de los términos regulares en la

energfa del fotén (término R(k°) en (2.23) ) integrando en la energfa del fotén hasta wy y
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cuyo calculo se presentan en el apéndice D (O(1076) para wy = 10 MeV). Este resultado
es adecuado para describir el ancho de decaimiento cuando se pueden excluir los procesos

radiativos con energias del fotéon mayores a wy.

+ -0

2.3. Decaimiento p™ — 7'

Para obtener la correccion electromagnética a la anchura de decaimiento del meson
pT en 2 piones, debemos mencionar que estrictamente hablando no existe una verdadera
teoria para el meson vectorial cargado interactuando con el campo electromagnético. Sin
embargo, es razonable (o al menos manejable) suponer que el vértice electromagnético de
la p* esta dado por un término del tipo Yang-Mills (idéntico al del boson de norma W¥) y
explorar las consecuencias de esta hipdtesis. Una de las consecuencias inmediatas de tener
al fotén acoplado al meson vectorial cargado es que la amplitud total de las correciones
radiativas virtuales es divergente en el ultravioleta, por lo que es necesario implementar un

método para tratar adecuadamente la divergencia ultravioleta.

De forma similar al calculo realizado para el meson p°, la amplitud a nivel drbol que

modela el decaimiento pt — 77 7% y que proviene del Lagrangiano mostrado en (2.6) es :
M2+ = 19ptrt+n0 [p+ — qo] . U(P, S) s (2.27)

donde los 4 momentos (P,pT,q°) corresponden a (p™, 7%, 7%) y n(P, s) es el vector de
polarizacién del meson. Al usar masas diferentes para el pion cargado y el neutro, la

velocidad de los piones en el sistema de reposo del meson p* es:

2 2 2 212
V+ — 1 _ 2 |:m7T+ :_ mﬂ'o:| + |:mﬂ_+ 4m7'r0:| . (228)
mey moy

En el mismo sistema de referencia (el meson p™ en reposo), las energias y el momento de
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los piones del estado final son:

m,+ Ai
Bev = —-(14 ),
ot
m,+ A?T
B = —(1- ),
ot
P o= (2.29)

donde hemos definido A2 = m2, — m?2, v X2 = m2, + m?, . La anchura de decaimiento
T Tt T s ot T

del meson cargado, a nivel arbol es:

2 3
0 gp+ﬂ'+ﬂ'0 Mp+Vy
Fp+7r+7ro =

487

Comparando con (2.10), se observa que la tnica diferencia proviene de la diferencia de

(2.30)

masas de los p’s y de los piones cargados y neutros, ya que gy tr- = gptrtr—. En el
siguiente apartado nos concentraremos en el calculo de las correcciones electromagnéticas

virtuales y reales a este proceso.

+ .0

2.3.1. Correcciones de fotones virtuales a p* — 77

Debido a que las correcciones virtuales a un lazo involucran el vértice electromagnético
de la p™, no se satisface una identidad de Ward que cancele las divergencias UV en forma
automatica. En esta tesis utilizaremos un método originalmente propuesto por Yennie y
Meister [28], el cual permite aislar y calcular la parte finita de las correcciones radiativas
a un lazo.

La técnica consiste en separar la amplitud total de las correcciones radiativas virtuales
en dos partes. Por una parte estd la amplitud obtenida al considerar la emisién y absor-
cién de fotones virtuales por las lineas externas cargadas y que son llamadas correcciones
radiativas externas. Aquellas donde las lineas foténicas terminan en una linea interna se
les denomina correcciones radiativas internas. En este esquema, la amplitud total de las

correcciones radiativas, se puede escribir como:

T _ v v
Mvc - EXT + MINT .



26 CAPITULO 2. CORRECCION RADIATIVA A p — 77
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Figura 2.3: Diagramas de correcciones radiativas virtuales

Las amplitudes de las Correcciones Externas contienen a los llamados términos de convec-

cion, los cuales se originan en la radiacion por las cargas de las particulas externas:
v _ v v,resto
EXT — Mconv + MEXT .

Un hecho importante es que la suma de las amplitudes de conveccién es invariante de

norma, es libre de divergencias UV y contiene todas las divergencias IR [28].

Para el proceso de nuestro interés, los diagramas que dan lugar a las correcciones
externas son las auto-energias, diagramas a) y b) de la fig.(2.3) y el diagrama donde el fotén
se emite desde el pion cargado y es absorbido por el meson p*, diagrama c) fig.(2.3). Los
diagramas que involucran un vértice de cuatro particulas solo contribuyen a las correcciones

internas.

Incluyendo solo el término de conveccion, se obtiene la siguiente amplitud para el dia-
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grama de auto-energia del pion cargado (Figura 2.3 a):
MO ge? / 2pT + k] - [2pT + K] d*k
K [(p* +k)? —m2,]"

Siguiendo el mismo procedimiento, la amplitud correspondiente para la auto-energia del

MSE

= X
7w+, conv 9 (277')4

(2.31)

meson pt (figura 2.3 b) es:

M) 2 [[2P+K]- 2P + k] d*k
Mff,conv = 2P+ X ;e 4 / [ il ] [ il ] 2 (2'32)
G g [y - 2]
De forma similar, el término de conveccién para el diagrama c) de la figura 2.3 es:
Ml =MD, x (2.33)

drac 1 / [2pT + k] - [2P + k] d'k
v (2m)t ) g2 [(

P kP —m. ] [(p* + k)2 —m2,]
De (2.31-2.33) se obtiene la amplitud total debida a los términos de conveccién en las

correcciones virtuales:

M’U

_ AqO Pt
conv T 'A/lpJr X fconv ’

donde M2+ es la amplitud de orden arbol para el proceso p* — 7770, La forma explicita

de la funcién de correccién radiativa es: 8

+ _ a A2 1 [love/g), [
comv % B miJr _2V+/£ n|:1+v+/€:| n|:m7r+mp+:|

o 3 m2, 1 m2, A2
Bl _2 —l L - 2 1 P 1_ s
| e [ a5
1—V+—H?23r 1+V+_I§23r
—mv, m|——— > | 4Ip | ———
P+ 1+V+—n?2$r 1—V+—rnzg$r ]
put o
1 11— 11— 2
N ln[ V+/§} l——ln[ V+/€}+21n[ vy /€ ”
vi/§ L+vi /€ 4 L+vi /€ L+vi/€
2 2 1 1 _9
[ 4L Lo /e Ly e | g Ve £ (E=2)
vy /€ 6 1+vy /&l 2 m,+ §+ vy
— 2
L, {%} }} . (2.34)

8Se ha definido € = 1 +

2
A27r
m

pet
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El resultado anterior para las correcciones virtuales contiene todas las divergencias infra-
rrojas que aparecen en el calculo a un lazo (masa ficticia del fotén \) y es explicitamente
finita en el limite UV.

Regresando a la amplitud total debida a las correcciones virtuales, ésta se ha separado

en una amplitud que contiene los términos de conveccion y el resto en la forma siguiente

MZC = Mgonv + M;)nt : (235)

La amplitud M?Y,, contiene todos los términos restantes (es la suma de MYy, + My5n?)

y un calculo explicito muestra que puede llevarse a la forma siguiente

(67

int = Wprmino — [F* [p* -n(P,s)] + Flq-n(P,s)]] ,

donde F'* y F° son funciones escalares de Lorentz que contienen divergencias ultravioletas,
pero son finitas en el infrarrojo. Notese que ésta amplitud no es proporcional a la amplitud
a nivel de arbol multiplicada por una funcion escalar.

La amplitud total del proceso p™ — 77 7% que incluye la amplitud &rbol se escribe como

sigue

M= MYy + ML+ M, (2.36)

conv int

Considerando una presicion de orden «, la probabilidad no polarizada de la transicion es

MT2 = MO (L4 2Ref2” | + 2Re[MO TS [FH (5t - n(P)) + F(q - n(P))]

(07
= MO |? [L+2Reff*] + 2Re|Mg+|2E [F*— F

~ MO 14 2Re "] [1+2Re fin] -

La funcién escalar fi,; = (a/47) [FT — FY], es finita en el infrarrojo pero contiene diver-
gencias ultravioletas y depende de los detalles de las interacciones electromagnéticas del

pT, se absorbe en la definicién de la constante de acoplamiento fuerte,

Jptatn0 = 1+ 2Re[find]] Jptrtno - (2.37)
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Por lo tanto, hasta el orden «, la anchura de decaimiento corregida por fotones virtuales

y normalizada a la anchura a nivel arbol se puede escribir como sigue:

vce

r
%ﬂro =1+ 2Re|
ptatn0

pt ]
conv )

(2.38)

donde la funcién f2 ha sido definida en la ec.(2.34).

Es importante recordar que la correccion virtual calculada de esta forma es libre de
divergencias ultravioletas, contiene todas las divergencias infrarrojas y es invariante de
norma [28]. En la préxima seccién nos dedicaremos a calcular las correcciones debidas a

fotones suaves.

+-0

2.3.2. Correcciones de fotones reales a p™ — 777

Consideremos ahora el proceso radiativo p™(P,n) — 7t (pT)7%(p°)v(k,€). La parte
divergente IR de la amplitud la cual es importante para fotones suaves viene dada por la

siguiente expresion:

+
soft __ 0 p - E(k) P- E(k)
M’th_eMp+ p+k - Pk 5 (239)

donde P es el momento del meson p*, €(k) el vector de polarizaciéon del fotén y p* el
momento del pion. Es claro que dicha amplitud es invariante de norma electromagnética y

contiene todos los términos singulares de la amplitud de Low.

El método usual para calcular la anchura de decaimiento con emisiéon de fotén suave,
consiste en tomar los fotones de momento nulo en la funcién delta de Dirac (conservacién

de la energia-momento) y situarse en el sistema de reposo de la particula que decae ( p).
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Asi obtenemos:

- dpt g ik
ir — L Syt pom, — B, — )Lk
(2r) 52mp+8 (=Pt = @otmy = By = B ) g =,
. Bt dq d*k
= N MP—— (G — (—p))o(m, — B, — B adE
27T 52mp+8 (q ( p )) (mp + )E+ E() w
dpt 1 A3k

27T 52mp+8

Ey /’pi‘Q + mfro w

Las siguientes relaciones son tutiles en la evaluacién de la ecuacion anterior,

d3+

7 = PdEd,
0(E, —x
+ x2 —A2
=+ ™
m?, + A2
Ty = L
2m+

Despues de realizar la suma correcta sobre polarizaciones del fotén en la Norma de Coester[41],

es decir,

ST
x>
S
B

ol
Sail
|

> (e-a)(e-b)=a- 'w2' L W=+ (2.40)

se obtiene la expresion para la anchura de decaimiento del proceso radiativo ( fotones

suaves) normalizada a la anchura a nivel drbol:

Fsoft |:1 — % 0052 0:|
w - 20‘ 2 / sin 0dOk>dk
0 ™

2
w3§2 [1 . V+1;2056i|
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Una vez realizada la integracion el resultado es:

soft
+ 7 70 +
o =%
ptrta—
a 1 1+ A2 1 - %
= —¢1-2In[2]+ v+ 1n Vi —i—ln[—Q} 1+ 57 In v£+ )
2
1. [1+% RS = 1+ %=
—2V_+[L12 _i — Liy [1 i +In évg In _é
3 ¢ 3 -z ¢
1+
ol | — 1v . (2.41)
3

el cual contiene las divergencias infrarrojas y depende del parametro de corte en la energia

del fotén wy. Noétese que en el limite de la simetria de isospin, £ = 1y vy = vg, lo

cual permitiria hacer una comparacién entre términos similares con la expresion de las

correcciones virtuales de p® — 7F7~ .

Al sumar el ancho de decaimiento corregido por las correcciones virtuales calculadas en
la seccién anterior ec.(2.38) con el ancho de emisién de fotén suave ec.(2.41), se obtiene el

ancho de decaimiento del proceso p™ — 7770 corregido a orden «, el cual viene dado por :

F(er - 7T+7T0(7)) = F2+7r+7r0[1 + 2R€[ o ] + gp+]

conv ¥

= % o[l +d0]. (2.42)
Si se usa la siguiente notacion para los argumentos de los dilogaritmos

y, = t2-¢ R S
2 €+ vl
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o . » . . . ot
podemos escribir la expresion analitica para la funcion de correccion radiativa dy,, como,

+ mfﬁ Agr
Sy = %{—21n[2]+4m30 (w2, In [mi (1)
1—V+—mj:r 1—i—V+—I§:r
_mf}\q In 1—|—V+—If:2+ +1In 1_V+_f:% ]
w? 1 1—vy/€ 3. |mZ,
—hn [mi+] [1+ 2vy /€ n [1+V+/£}} +Zln [mi+
1 1—vy/¢ 1o [1—=vy/¢ 2vy /€
Yo {1+V+/J l_i ' l1+V+/J b [Hu/&“
1+vy/€ 1—vy /¢ M+ [+ vi /€
i L“@/J - {1+V+/§} 8 [m—:J e L“M/J
[l v, /6 (L] [Leva
+L12L+V+/€ ln[l—[v+/§]2]ln p— wrln v, /e }
1 72 [l =vy/€ 1, 5 |m+ ) .
+V+/f |:—€ +L12 {m} + §1H |:m—p+:| +L12 [Yl] +L12 [Yg]:| }} .

(2.43)

Los términos no divergentes del célculo de fotones suaves, asi como en el calculo debido a
la emision de fotones duros se evaltian en forma numérica y se incorporaran en la siguiente

seccion.

0

2.4. Rompimiento de isospin en el sistema p* — p

Con el fin de evaluar el rompimiento de la simetria de isospin en los anchos del sistema
p* — p® empecemos por definir estos anchos a partir de sus anchos parciales de la siguiente

manera:

L(p" — 77 (v)iw S wo) + T(p* — 7770 > w)
+T(pt = 7ty +T(pt = atatn 7% +- -

L(pt — 7t7%(v);0 <wo) + T(pt — 7ty 0 > wo) + Fffib (2.44)
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Lo = I —=atn (7);jw<wy) +T(p° = 77 7w > wp)
+0(p" — 7%y) + (" = 1) + T (" — 77)

+ Z D(p° = I +T(p° = 7t ata™) + - -
l=e,u
= T = ntr (V);w <wo) + (0" — 7777w > wo) + FZ%” , (2.45)

donde los puntos suspensivos denotan otros posibles (pero despreciables en tamano) modos
de decaimiento en cada canal. Los términos restantes (denotados con el superindice sub),
contribuyen respectivamente en 0.04 % y 0.11 % [3] a los anchos de decaimiento del p* y del
oY, por lo que pueden ser despreciados cuando se quiere evaluar los efectos del rompimiento
del isospin mayores que 0.5 %. Por lo tanto solo evaluaremos los anchos de decaimiento de
los modos w7y y las correcciones radiativas al ancho 7.

Un aspecto importante a comentar es que las anchuras de decaimiento de los mesones
p deben ser independientes del parametro wy el cual separa los modos radiativos de los no
radiativos. Algunos calculos usados anteriormente en la literatura para los anchos de los p
[14][17], no satisfacen este criterio, ya que combinan el modo radiativo 77y definido para
una cierta energia de corte wy y la anchura del proceso p — 77 a nivel de arbol (la cual es
independiente de wp). Como consecuencia de ello, la anchura asi definida es dependiente
de la energia de corte del fotén, lo cual es inconsistente con el hecho de que el ancho de
una particula es una propiedad intrinsica de ella y no debe depender del modo en que se
cortan las contribuciones de los modos radiativos.

Tomando en cuenta los modos dominantes de decaimiento, definimos las contribuciones

electromagnéticas a la diferencia de los anchos de la siguiente manera:

AT, = T(p" =71 (7),w <wp) = T(p* — 77%(7),w < wo)

+0(p° - 7t y,w > wo) — D(p" — 777y, w > wo) - (2.46)

Las anchuras de decaimiento correspondientes a p — 7w (%), es decir las que incorporan

el ancho a nivel arbol, las correcciones radiativas virtuales y las correcciones de fotones
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suaves se definen en la siguiente forma

+ 0 ve
L ortn— +

POntr—

L’ — 7tm (7),w < wp)

soft
+1'

Om+m—ry
= T [L+2f2 + 0]
= Fgoﬁr [1 + 55001‘,] )
L(pt = 7 m’(7),w <wo) = Toipino+ 850

soft
ptmtmly

+I'
= P2+7r+7r0 |:1 +2 cpo-:w + g£+i|

— % [1+5fjt] . (2.47)

Estos anchos de decaimiento dependen explicitamente del parametro de corte de los fotones

(ver ec.(2.25) y (ec.2.41)), que por no detectarse estan incluidos en los modos no radiativos.

Los valores de las correcciones radiativas ((552,5, (550:) definidas en (ec.2.47) se presentan en
el Cuadro (2.1), en funcién del corte wy y para 3 valores distintos de las masas de los mesones

%% que son consistentes con un pequeno rompimiento de la simetria de isospin. Como

p
puede verse, el tamano de la correccion en cada caso depende muy débilmente del valor
especifico de la masa del meson p. Sin embargo, el tamano de las correcciones radiativas
es diferente entre los decaimientos de mesones cargados y neutros, lo cual contribuira de
manera significativa al rompimiento del isospin. Finalmente, es interesante senalar que
el factor de Coulomb no es el término dominante de las correcciones en el modo p° —
mtn~como sucede en el caso de las correcciones radiativas a ¢(1020) — KTK~ (Ver
siguiente capitulo). La razén para esto es que los piones emitidos en el decaimiento del

p son relativistas, mientras que los kaones emitidos en el decaimiento de la ¢ son no

relativistas.

Los anchos de decaimiento de los modos radiativos definidos a través del pardmetro (el
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Mpo+ = 772 MeV Mo+ = 775 MeV Mo+ = 778 MeV
wo(MeV) Sy 3oy St
2 —0.03670 —0.03692 —0.03714
4 —0.02910 —0.02930 —0.02949
6 —0.02465 —0.02483 —0.02501
8 —0.02150 —0.02167 —0.02183
10 —0.01905 —0.01921 —0.01937
12 —0.01705 —0.01720 —0.01736
14 —0.01536 —0.01550 —0.01565
16 —0.01389 —0.01403 —0.01477
18 —0.01260 —0.01273 —0.01287
20 —0.01144 —0.01157 —0.01170
30 —0.00697 —0.00708 —0.00720
40 —0.00378 —0.00388 —0.00399
50 —0.00130 —0.00139 —0.00150
3oy Sy Sy
2 —0.01959 —0.01968 —0.01970
4 —0.01701 —0.01710 —0.01718
6 —0.01551 —0.01558 —0.01566
8 —0.01444 —0.01451 —0.01459
10 —0.01361 —0.01368 —0.01375
12 —0.01293 —0.01300 —0.01307
14 —0.01236 —0.01242 —0.01249
16 —0.01186 —0.01192 —0.01199
18 —0.01142 —0.01149 —0.01155
20 —0.01103 —0.01109 —0.01115
30 —0.00953 —0.00958 —0.00963
40 —0.00844 —0.00849 —0.00854
50 —0.00761 —0.00765 —0.00769

35

Cuadro 2.1: Correccién radiativa 0,0+ definida en ec.(2.47) como funcién de wy y para 3

diferentes valores de la masa m .+

cual es practicamente equivalente a la definicién de la fraccién de decaimiento):

D(p° — 7,0 > w)

Ap = 5 ,
pPOntr—
N T > )
pT = 0 J

Fp+7r+7r0

(2.48)
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se muestran en la Cuadro (2.2). Estos anchos también dependen de la energia del corte wy y
como es de esperarse, disminuyen conforme crece wy. Nuevamente, podemos constatar que

al nivel de los modos radiativos existe un rompimiento del isospin de niveles apreciables.

Un aspecto interesante es que, al nivel de precisién que estamos discutiendo (relevantes
para la rotura del isospin), la contribucién de los términos dependientes del modelo en
la amplitud radiativa (terminos de orden w y superiores, ver ec.(2.21)) son dos ordenes
de magnitud menores que los que se muestran en el cuadro (2.2). Estas contribuciones
dependientes de modelo fueron calculadas en las referencias [36], [39], [40] suponiendo que
los estados intermedios estan dominados por la produccién de decaimiento de mesones

w(782), a1(1260) y o(600).

my.+ =772 MeV' mg+ =775 MeV  my.+ = 778 MeV
wo(MeV) A+ Ao A+ A A+ Ao

0 12 14

2 0.01544 0.04475 0.01553 0.04497 0.01561 0.04518
4 0.01290 0.03724 0.01297 0.03742 0.01302 0.03761
6 0.01143 0.03288 0.01149 0.03305 0.01155 0.03322
8 0.01039 0.02981 0.01045 0.02997 0.01051 0.03013

10 0.00959 0.02745 0.00965 0.02760 0.00970 0.02775
12 0.00894 0.02553 0.00900 0.02568 0.00905 0.02582
14 0.00840 0.02393 0.00845 0.02406 0.00850 0.02420
16 0.00793 0.02255 0.00798 0.02268 0.00803 0.02281
18 0.00753 0.02134 0.00758 0.02147 0.00762 0.02159
20 0.00717 0.02027 0.00721 0.02039 0.00726 0.02051
30 0.00581 0.01624 0.00585 0.01635 0.00589 0.01645
40 0.00488 0.01350 0.00492 0.01359 0.00495 0.01369
20 0.00420 0.01146 0.00423 0.01155 0.00426 0.01163
60 0.00366 0.00987 0.00369 0.00994 0.00372 0.01002
70 0.00322 0.00857 0.00325 0.00864 0.00327 0.00871
80 0.00286 0.00750 0.00288 0.00757 0.00291 0.00763
90 0.00255 0.00659 0.00257 0.00665 0.00259 0.00672
100 0.00228 0.00582 0.00230 0.00588 0.00232 0.00593

Cuadro 2.2: Correcciénes radiativas A+ a la razén de decaimiento definidas en ec.(2.48)
como funcién de la energfa minima wy del fotén y para 3 diferentes valores de la masa 0.+
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La prediccién para la fracciéon de decaimiento del modo neutro usando los datos del
Cuadro(2.2) es B(p? — 7tm 7y, w > 50 MeV)= 11.5 x 1073, resultado que se compara muy
bien (dentro de 1o) con el valor experimental reportado en el PDG[3] para el mismo valor

de la energia de corte wy
B(p® — atm y,w > 50MeV) =994+ 16 x 107°

Para el mismo valor de wg, obtenemos el efecto de rompimiento de simetria de isospin en

el modo radiativo (suponiendo I' )+ =TI'j0 = 150 MeV)
[(p° — 7tn7y,w > 50MeV) — T'(p" — 777%,w > 50MeV) ~ 1.1MeV

el cual difiere del valor central (0.45 4+ 0.45 MeV) supuesto por la referencia [17], el cual
es el valor usado en la literatura. Aunque son consistentes dentro de las incertidumbre, las
predicciones del rompimiento del isospin en la evaluacién de las contribuciones hadrénicas
a a, a partir de los datos del lepton 7 son muy diferentes.

Finalmente, en el Cuadro (2.3) presentamos las correcciones (correspondiente a fotones
inclusivos) que deben aplicarse al ancho de decaimiento p — 77 para obtener el ancho total
de los mesones para los casos neutro y cargado. La correccion o, tabulada esta definida

de la siguiente manera:

T(p° — mr(7),w < wo) + T(p° = 7y, 0 > wo)
1‘*0

pPOntr—

— 148+ Ap=1+0y

I'(pf — an(y),w S wp) + T'(p" — 71y, w > wo)

0
ptrtn—

= 1468 + A =140,

Tal como senalamos anteriormente, la correccion inclusiva debe de ser independiente de
el corte wy. A partir del cuadro(2.3) se observa que este requisito se satisface para valores
pequenos de w[47]. La razén importante de que no sea una independencia perfecta se debe,

por un lado a que la aproximacién de fotén suave se realiza, desechando todos los términos
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wo(MeV) o0 Ot T — Oyt
2 805 x 1073 —415x 1073 1220 x 107
4 812x 1073 —413x 1073 1225 x 1073
6 822 x 1073 —4.09 x 1073 1231 x 1073
8 830 x 1073 —4.06 x 107* 12.36 x 1073

10 839 x 1073 —4.03 x 1073 1242 x 1073
12 848 x 1073 —4.00 x 1073 1248 x 1073
14 856 x 1073 —397 x 1073 1253 x 1073
16 865 x 1073 —394 x 1073 1259 x 1073
18 874 x 1073 —391 x107* 1265 x 1073
20 882x 1073 —388x107% 1270 x 1073

Cuadro 2.3: Correccién de fotones inclusivos a la fraccién de decamiento A 0+ como funcién
de la energia minima wy del fotén y para el valor comun de la masas my0+ = 775 MeV

en potencias de wy y solo se mantenie el término logaritmico, mientras que el proceso con
fotones duros contiene todos los términos tales como polinomios en wy.
La diferencia entre anchuras de decaimiento de los mesones p en términos de las dife-

rentes contribuciones se escribe como sigue

3
AT, = rgo {1 + o0 — {m’ﬁvﬂ 1+ ap+]} + A (2.49)

mpo VO

Una vez que sea establecido de manera definitiva cual es el valor y signo de Am,,, el valor de
AT, podra obtenerse con los datos de los cuadros (2.1) y (2.2) en la ecuacién anterior. Para
propositos ilustrativos, usando Fgo = 150 MeV, wy = 10 MeV, obtendriamos los siguientes

valores que dependen de la eleccién de Am,,.

Am
AT

—3 MeV 0 MeV 3 MeV
0.02 MeV 0.86 MeV 1.70 MeV

p

p

Como es de esperarse, el resultado anterior muestra que existe una correlacién impor-
tante entre el rompimiento de isospin en las masas y las anchuras del sistema p* — p°. Sin

embargo, la extraccién de estos parametros a partir de los datos experimentales (produccién
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*te~, en decaimientos del leptén 7 y en reaccio-

de un par de piones en la aniquilacion e
nes hadrénicas[3]) no toman en cuenta esta correlacién o restriccién que impone la teorfa.
Asi por ejemplo un dnalisis combinado de datos sobre la seccion eficaz de ete™ — 7tn~ y

del espectro hadrénico en 7= — 7% en la regién de la resonancia p(770) indica que [48]
AT, = (=23 +£1.6) MeV y Am, = —(3.1+0.9) MeV (2.50)
Sin embargo, un anélisis similar efectuado por la referencia [6] arroja:
AT, = (—02+1.0) MeV y Am, = (—2.4+0.8) MeV . (2.51)

Sin duda, un analisis combinado de dichos datos que tome en cuenta de manera adecua-
da el rompimiento de la simetria de isospin en las masas y anchos de decaimiento [19][20]

es necesario.

2.5. Conclusiones

En el presente capitulo hemos analizado el rompimiento de la simetria de isospin en
la anchura total de decaimiento de los mesones p(770). Definiendo los anchos totales de
decaimiento de la p a partir de la suma sobre sus anchos parciales, hemos encontrado que
solo los modos de decaimiento en dos piones (p — 77 y p — 7ny) son relevantes cuando
se desea una precisién mayor al 0.5 %.

Para calcular de forma completa el ancho de decaimiento de las p’s hemos (i) evaluado
las correcciones radiativas al decaimiento no radiativo del p y (i7) los anchos de decaimiento
radiativos de la p en dos piones. Se encuentra que ambos decaimientos contribuyen de
manera significativa al rompimiento de la simetria de isospin en la diferencias de anchuras
del sistema p° — p*. Ademds se encuentra que la diferencia de anchuras dependende de el

signo y valor absoluto de la diferencia de masas.
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Capitulo 3

Correccién radiativa a ¢ — KTK~

En este capitulo se estudia el rompimiento de la simetria de isospin en los pro-
cesos ¢ — K+tK~/K°KO. Para tal fin se define la razén entre las anchuras de
decaimiento RT = I'(¢p — KTK~)/T(¢p — K°KP). Se realizan las correccio-
nes electromagnéticas que solo afectan al proceso con kaones cargados (QED
escalar). Posteriormente se analiza la incorporacién de factores de forma a los

kaones para modelar su interaccion con el fotén.

3.1. Introducciéon

El meson ¢(1020) posee los mismos niimeros cudnticos que el fotén (JF¢ = 177), pero
tiene una masa de 1019.45 MeV [3]. Puede ser producido tanto en reacciones hadroénicas,
como en la aniquilacion electrén-positron y decae principalmente en un par de mesones
K (KK~ y K°K"). Sus principales modos de decaimiento se muestran en la siguiente

Tablal:

1Siguiendo la convencién adoptada en la literatura, en esta tesis hablaremos indistintamente de los

estados K°K° y K Kg para el par de kaones neutros.

41
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Estado Final r;/T Factor de escala
KK~ (49.1£0.6) % 1.2
K°K° (34.0+0.5) % 1.1
ata w0 (15.04 £0.5) % 1.3
7y (1.295 + 0.25) % 11

Nuevamente, de la tabla anterior podemos observar que estos promedios reportados en
el [3] poseen factores de escala mayores a la unidad.

A partir de los valores experimentales mas precisos obtenidos en las refs.[7],[8],[9], se
puede derivar la siguiente razén de produccién de un par de kaones [3]:
M(¢— K*K°)

I'(¢p — KOKO)
= 145+0.03 . (3.1)

exp __
R¢ —

Esta razén de produccién de kaones es muy grande ya que debido a que siendo el mesén
¢ un isosinglete, en el limite de la simetria de isospin se esperaria R4 = 1. Como veremos
mas adelante, la explicacion de este rompimiento de la simetria de isospin sigue siendo un
reto para la fenomenologia de particulas elementales.

Los datos experimentales m4s limpios se obtienen a traves de la reaccién ete™ — ¢ —
KK, la cual ha sido estudiada por los experimentos CMD2 y SND en Novosibirsk [8][9],
Nuevos resultados se esperan en el experimento KLOE localizado en DA®NE [10][49], por
lo que es factible que se logre una reduccion en las incertidumbres de la medicién de pr .
Cabe mencionar que los experimentos CMD2 y SND han medido simultdneamente las
fracciones de decaimiento de los modos principales del meson ¢,

¢— KK~ ,
¢ — K°K’,
¢ — ol

®—ny.

sujetos a la restriccién >y B(¢p — X) = 1.
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El meson ¢ es un isosinglete, mientras que los kaones pueden ser agrupados en isodo-

bletes (la diferencia de masas de los kaones es: dmg = mg+ — mgo ~ —4 MeV):

K+ K°
K ) K-

Debido a que los decaimientos del meson ¢ en un par de kaones ocurren por medio de
las interacciones fuertes, el par KK debe encontrarse en un estado de isospin I = 0. Por
tanto, en el limite de la simetria de isospin se esperaria que Ré =1, lo cual al compararse
con la ec. (3.1) indica un gran rompimiento de la simetria de isospin. La razén para esta
fuerte ruptura se debe principalmente a que el decaimiento del ¢ ocurre muy cerca del
umbral de produccién de kaones, lo cual realza el efecto de rompimiento del isospin.

A nivel hadrénico, las fuentes de rompimiento del isospin deben provenir de las diferen-
cias de masas entre los kaones cargados y neutros y de las interacciones electromagnéticas
entre las particulas externas [11], [12]. La diferencia de masas entre los kaones produce un
realce en Ry debido al espacio de fase de estas pariculas. Las correcciones radiativas debidas
a las interacciones electromagnéticas de los kaones cargados en el estado final producen un

realce adicional. Al tomar en cuenta ambos efectos se encuentra [11], [12]:
RL ~ 1.59 . (3.2)

Este resultado se encuentra 4.50 por encima del valor experimental ec.(3.1) lo cual repre-
senta un reto para la teoria. Adicionalmente, posibles correcciones de isospin a las constan-
tes de interaccion fuertes calculadas en el contexto de interacciones efectivas hadrdnicas,
incrementan aun més la prediccién tedrica hasta R = 1.62[12].

Una solucién no convencional a este rompimiento de la simetria de isospin fue propuesta
en la ref.[50]. Ese trabajo supone que existen correcciones a la regla de oro de Fermi para
razones de decaimiento, aunque introduce el inconveniente de poner a mano un factor de
forma fenomenolégico que depende de un parametro relacionado con la escala de energia

de confinamiento de los hadrones involucrados.
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Figura 3.1: Modelo de dominancia vectorial para la reaccién ee~ — hadrones.

Otra solucién alternativa fue propuesta en la referencia [51] donde se consideran modifi-
caciones al potencial de Coulomb para cortas distancias en la evaluacion de las interacciones

fuertes en el estado final de las reacciones ete™ — PP~ /PP’ (P = K, D, B) cerca del

umbral de produccién [51].

Aunque estos enfoques parecen brindar una soluciéon a la discrepancia de la simetria de

isospin, se trata de hipétesis ad hoc cuya validacion requeriria de verificaciones adicionales.

Debido a que las correcciones radiativas electromagnéticas [11] fueron hechas sin tomar
en cuenta la estructura electromagnética de los kaones, en este capitulo revisamos el célculo
de las mismas. Nuestra contribucion original consiste en tomar en cuenta la estructura de
los kaones (cargados y neutros) para lo cual usamos un modelo de dominancia vectorial
(VDM) [52, 53]. Nuestro trabajo es similar a la consideracién de los efectos de estructura
electromagnética hechas en la referencia [54] en el caso de los decaimientos débiles 7 — Kv
y m — pv. También hemos realizado una estimacion de las contribuciones dependientes
de modelo en los diagramas de emision de fotones reales (¢ — K K+), los cuales, como se

espera, resultan completamente despreciables.
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3.1.1. El proceso V — PP a nivel de arbol

La densidad Lagrangiana que modela el decaimiento de un meson vectorial de spin 1y

masa M a dos escalares (pseudo-escalares) cada uno de masa m es[55]
L =19y ppV*(z) [P(x)0,P(x) — P(x)0,P(z)] . (3.3)

La anchura de decaimiento I'(V — PP) al orden mas bajo de la teorfa de perturbaciones,

obtenida de esta densidad Lagrangiana esta dada por la expresién [11][56]

_ 1 5|2
FWHPHZE@%iMﬁ (3.4)

donde gy pp es la constante de acoplamiento fuerte entre el meson vectorial y los escalares

(pseudo-escalares) y la velocidad v esta definida como

_ 4m?
vV = — W .
La razén de decaimiento correspondientes a los procesos ¢ — K+K~/K°K" al orden més

bajo en teorfa de perturbaciones, usando (3.4) es :

i |g¢>K+K—|2m 3

P(¢ - K+K—) = F2K+K— = 12T ¢V¢:+ )
[(¢p — K°K% = T9 . _iM 3 (3.5)
- pKOKO — 12 A7 V0 .
4m2i 4m? .
donde v4 4 = /1 — m% Y Voo = 4/1— m‘i denotan las velocidades de los kaones en el
sistema en reposo del ¢. A partir de la ec.(3.5), la razén Ré) tiene la siguiente forma
3
Rt — JoKrK Vot (3.6)

9¢K0K0 Vio
Este resultado muestra que los efectos que rompen la simetra de isospin pueden provenir de

las diferencias de masas entre los kaones (razén de velocidades) y de la razén de constantes

de acoplamiento. Debido a que las interacciones fuertes respetan la simetria de isospin,
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supondremos siempre que gyx+x- = gexogo. Por lo tanto, a este orden la rotura de la
simetria de isospin viene dada por el factor:

V3
0t = 15225 (3.7)
V¢70

A continuacién consideraremos las correcciones radiativas en el caso de kaones puntuales.

3.2. Correcciones radiativas en QED escalar

En esta seccién se rehacen las correcciones radiativas de orden « en el caso en que los
kaones se consideran como particulas puntuales (QED escalar). En este limite inicamente
el proceso ¢ — K™K~ es corregido por la emisién o reabsorcién de fotones. El problema
de las divergencias infrarrojas y ultravioletas ha sido discutido en el capitulo anterior para
el caso p° — w7~ por lo que el cdlculo resulta inmediato. Primero nos enfocamos en las
correcciones debidas a fotones virtuales y después consideraremos la emisién de fotones

reales suaves.

3.2.1. Correcciones de fotones virtuales a ¢ — K™K~

Las correcciones QED al decaimiento ¢ — K*TK~ han sido realizadas por Cremmer
[11] por lo que ésta seccién es una revisién a su trabajo. La densidad Lagrangiana que
describe la interaccion de un meson vectorial de spin 1 con pseudoescalares tiene la forma

siguiente:
L =1gsx+x-9"(z) [KT(2)0, K (z) — K~ (2)0, K" (z)] . (3.8)
La amplitud a nivel arbol obtenida de la anterior expresion es:
M = 1ggrcri-(p—q) - 1(Pys) (3.9)

donde p, ¢, P son los 4-momentos asociados a K, K~ ¢ respectivamente, n(P, s) es el 4-

vector de polarizacion del meson vectorial y g,x+x- es la constante de acoplamiento. Las
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(p) K (p)

¢ (P ¢ (P)

K (a) o) K (a)
2)

K (p)

® (P)

. K (a)

Figura 3.2: Correcciones virtuales al proceso ¢ — K™K~ en QED escalar.

interacciones electromagnéticas son introducidas de la manera usual, con la sustituciéon
minima 0, — 0, —1eQA, en (3.8)[57].

Las amplitudes de los diagramas mostrados en a) y b) de la fig.(3.2) son respectivamente:

— e (@2p+k)-nPs)
Mas = [k G g

o
= —Work-[p-n(P,5)]—(3B0 [mics, 0, mic. ] +1) ,
e (2g+k)-nPs) ,
Moz = / 2K oy R (g 4 k) — )

K+
[0
= orcrrc-[g - (P, )] (3BO [mje, 0,mie | +1) (3.10)




48 CAPITULO 3. CORRECCION RADIATIVA A ¢ — K+tK~

La amplitud que describe la interaccién de Coulomb, diagrama c) de la fig(3.2) es:

Mg / ~Jorrrk-C(2p = k) - 24+ ) - [(p— g = 2K) - (P, 8)] o,
> (p— k)2 —m2e) - ((a+k)> —mi) - k> - (27m)*
a 2+ 3vg 4 1+ v
= MS) X 4—(1 -+ 27% -BO [m%(+,0,m%<+:| - 27(1)74_ - 2B0 [mi,m%(.t,_,m%(.t,_]
i Vo, + Vo, +
—mj(1+v5 ) CO [mi+, mys, m3, mis, A2, mi]) . (3.11)

La suma de (3.10) y (3.11) se escribe como el producto de la amplitud a nivel drbol y una

funcién escalar de Lorentz de la siguiente manera:

o 2 1+v3
Mr = M) x —(BO [miy,0,mi, ] - 54— — — ©* . 9B0 [m3, mf,, mi. ]
47 Vit Vit
—mi(l + V?H_) - CO0 [m%(Jr, M, mi, mi, A% m%(Jr]) ) (3.12)

Para obtener la contribucion total de las correciones radiativas virtuales, se deben agregar

al resultado anterior las contribuciones de autoenergia de los kaones:

2 2
MEE = M x al {2 |:§—’7E+1H[47T]—1I1 {mlﬁﬂ —21n{ )\2 H : (3.13)

472 w? m?,
De esta manera la amplitud total de las correcciones radiativas virtuales, resultado de la
suma de (3.12) y (3.13), escrita de manera explicita es [58]:

T2 (1 +v2 h) 1+ v2 1-—
M = ngi[M—Q 1 +1n (RIS b
2T 2V¢7+ my+ 2V¢>,+ 1+ Vo, +

1+ v3 . . . 2 . 2
_ﬁ [QLIQ [V¢7+] — 2L12 [—V¢7+] + LIQ [m] — LIQ [m]] j|
= M X8 (3.14)

La contribucién (am(1 4 v, ))/(2v44) usualmente conocido como término de Coulomb,
resulta ser dominante en este proceso. Debido a que la masa del ¢ estd ligeramente arriba
del umbral de la produccién del par K™K, la energfa cinética disponible para los kaones
es pequena, asi que después de la produccién del par Kt K™, cada una de las particulas
se desplazan lentamente, condicion favorable para una interaccion Coulombiana entre ellos

antes de su posterior decaimiento.
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(a) (b)

© K

Figura 3.3: Emision de fotén real en ¢ — KK~

La amplitud del decaimiento ¢ — KK~ modificada por las correcciones virtuales se
escribe ahora como la suma de la amplitud a nivel de arbol (3.9) y la amplitud de las

correcciones virtuales (3.14)

My =My + M, . (3.15)
La correspondiente razén de decaimiento corregida por las correcciones virtuales es
Dorrr- = Dhnin [14 2Re[600n] - (3.16)

Como puede verse de la ec.(3.14), las correcciones virtuales de orden « contienen una

divergencia infrarroja la cual esta regulada por la masa ficticia A del fotén.

3.2.2. Correcciones de fotones reales ¢ — KK~

La emisién de fotones reales debe ser considerado para eliminar las divergencias infra-

rrojas de (3.16) tal como se ha mencionado en el capitulo 2.
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La amplitud total de emision de fotén real, independiente del modelo, que contiene la

contribucién de los 3 diagramas de Feynman mostrados en la fig.(3.3) es:

~o D€ (k p-e(k
My = ety [ e [ e k)
~o lq-€(k q-e(k
+€./\/l2)|: q-l(c )} —e[ q-/(€ ) -Z9¢K+Kk~77(P,s)]
+21egyx+r-€ (k) - n(P,s) . (3.17)

La primera linea es la amplitud de la fig.(3.3 a) , la segunda linea es la amplitud de la
fig.(3.3 b) y por tltimo la contribucién de la fig. (3.3 ¢) corresponde a la tltima linea.
Recordemos que en la amplitud /\;12) = 19s5+k- (P — q) -n(P, 5), los momentos satisfacen la

relacién de conservacién de energia-momento para 3 cuerpos :
P=p+qg+k. (3.18)

Es facil notar que (3.17) es invariante de norma electromagnética y que satisface el teorema
de Low[44]. Para mostrar que se satisface el teorema de Burnett-Kroll[45] escribimos la

amplitud total de la siguiente forma:

e |pEk) q-eh)] p-ek) q k)],
My = —eMy = Ch | e Tt k-n(P,s)

+2egpk+ k€ (k) - n(P,s) .
(3.19)

Escrita en esta forma, la amplitud refleja més claramente la expansion de Low.

Para verificar el teorema de Burnett-Kroll, tomamos el cuadrado de (3.19) y promedia-

mos sobre el spin del mesén ¢. El cuadrado del primer término en la ec. (3.19) contiene

2

las potencias w2, w1 W’ (nétese que usamos indistintamente la expansién en k como

expansion en w):
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1 2 629§>K+K7 p-e (k) q-€(k)
gl = [ - e

3
* ’p;.*l(f) - ;.*;(f) (=2(p+q) - k)
1 pE*(k) q€*(l€) 2 ,
m| pk gk p—a)- k] (3.20)

El cuadrado del segundo y tercer términos en (3.19) solo contiene potencias de orden w°:

p-€ (k) _Q‘E*(k) 2]
p-k q-k '

Z%}ch)f _ egd’%[-%(k} e (k) + % [(p—q) - k]
¢

(3.21)

Finalmente la interferencia entre los términos de orden k= y k en (3.19), da lugar a:

I = Z%[Awl(Bwo)*Jr(Awl)*Bwo}

_ W%[m% {p ;.*/(j) g -qe.*l(f)} {p;(? + q;(? k- (p=)llp+q)-F
+2((p+4q) - k) 'p'pejkl(gk) - Qe.*(k) IR (3.22)

Sumando las expresiones (3.20), (3.21), (3.22) se verifica el teorema de Burnett-Kroll

Z}MVIQ — 24 p-e*(k)_q~e*(/€)

2
(—dmj +m}) — g°e*de(k) - € (k)

p-k q-k
g |p-e(k) q-< (k)]
+mé p-k - gk [(p—q) - K]
+2§’Lg [ppe-*l(j) _qqe-*/(j)] {ppe(:> +q;(:) k- —alllp+a) K] .

(3.23)

es decir, los términos de orden k~! no aparecen en el cuadrado de la amplitud.
Para obtener las correcciones de fotones suaves, se usa la amplitud de orden k! definida

como:
Soft _ 40| a0 €(k) p-e(k)
M = epty | TS R (3.24)
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Recordemos una vez mas que en la aproximacién de foton suave, se elimina la dependencia
en la variable k (4-momento del fotén) en el numerador de (3.24) manteniendo la depen-
dencia solo en el denominador. En otras palabras, la amplitud /\/lg) usada en (3.24) debe
corresponder a la del modo no radiativo.

La correccion al ancho de decaimiento debido a la emisién de fotones de baja energia
se calcula usando la expresion :

&5 & &k
(2m)32FE ¢+ (2m)32E - (27)32w

drjfft _ ( ) ‘MSOft’254(p —p—q—Fk)
(3.25)

En el sistema de referencia en el que la particula que decae esté en reposo e integrando en

las variables de los kaones se obtiene

a1
PHHK= 47T7T

a-¢(k) _p-e(k)
q-k p-k

El resultado final para las correcciones de fotones suaves (ver apéndice C) 2, se escribe

2 Bk

dFSOft — 1—1
¢ w

(3.26)

como sigue

Fsoft

™0
[P

o sb
— §¢

1+v3 1— 1 1—
— |:2 1H |: :| {1 b, + 1n |: V¢y+:| } . 1H |: V¢7+:|
2wo 24+ L+ Ve Vot L1+ Ves

14 v2 1— 1 1—
I R S 5 N U ACE i) I R Rl (52
2Vp,+ L+ Ve L =g+ L+ veq

+1 +v3 . 4v3 | I 1—vsy
2V 4 L—v3, 1+ vg o

Una vez que se agrega la correccién de fotones suaves (3.27) a las correcciones radiativas

]. (3.27)

virtuales (3.16), se obtiene la razén de decaimiento del proceso ¢ — KK~ corregida a

orden «, la cual es finita en el infrarrojo y en el ultravioleta

I P [1 + 698D } , (3.28)

¢,point

2Las referencias [59], [60] contienen identidades ttiles entre las funciones dilogaritmo, que muestran la

equivalencia analitica entre nuestro resultado y el de la ref.[11]



3.2. CORRECCIONES RADIATIVAS EN QED ESCALAR 53

donde se ha definido la correccién puntual 5ﬁfo?nt = 2Re§£,’oint+5§)b y cuya expresion analitica
es:
QED am(1+v5.) 2wy L+ves  [1=ves
oGED = [ 2|1+ In 1+ +In :
pom 7r 2vg 4 M+ 2vg 4+ 1+ vy
1+ v2 , _ 1 1—v
25 (Ui ] — Lia vl - I | e
Vo, + Vor L1+ veq
1+v3 2 2
oy | | — Ly |——— || ] . (3.29)
Vo, + L+ ve 1 =gt

3.2.3. Prediccién tedrica be

Las correcciones radiativas en QED escalar modifican tnicamente la razén de decai-
miento el proceso ¢ — KTK~. Atn cuando existe una evidente dependencia en el corte
wp, el resultado numérico no es muy sensible a una eleccién dada, por tal motivo se usa en
el calculo® el valor wy = w™a~.

Como hemos mencionado, la correccién mostrada en (3.29) incluye unicamente la contri-
bucion de fotones suaves en la amplitud radiativa. La contribucién de los términos regulares
de la amplitud radiativa se evalian numéricamente sin problema (ver Apéndice C2) y se

obtiene:
r=T96x 1077 (3.30)

Otras posibles contribuciones a la amplitud radiativa son los términos dependientes de
modelo, los cuales provienen de procesos con estados intermedios resonantes (por ejemplo
¢ — KTK*~ — KTK~). Los contribuciones dependientes de modelo resultan ser’ muy

pequeiias: aproximadamente ~ 7 x 107% para el modo ¢ — KK, mientras que para el

3La cineméatica del proceso radiativo establece que la mixima energia wyar = (mi —4m3..)/me
permitida para el fotén emitido es wyq =~ 31.6MeV. Si se evalia la correccién radiativa en el rango de

valores 10 MeV< wg < w™?® el resultado numérico varia tan solo por 4 x 10~4
4Ver apéndice C3.
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modo con kaones neutros éstos han sido acotados experimentalmente debido a que B(¢ —
KOK%) <18 x 1078[61].

Por lo tanto, tomando en cuenta las correcciones de isospin provenientes del espacio
de fase y las correcciones radiativas de orden « en el caso que los kaones se consideran
particulas puntuales se obtiene el siguiente resultado para la razén de produccion de kaones

en decaimientos del meson ¢:

¢,point

3
A%
RY = 2814+ 6950 4 6%) = 1.588 (3.31)
V(b70

Es decir, la prediccion tedrica se encuentra 4.50’s arriba del valor experimental.

3.3. Correcciones virtuales para kaones no puntuales

A diferencia de QED escalar, las correcciones virtuales afectan tanto el decaimiento
en kaones cargados como en kaones neutros. Los efectos de la estructura electromagnética
de los kaones se manifiesta para grandes virtualidades del foton. Experimentalmente, esta
estructura ha sido explorada para virtualidades del fotén de hasta unos cuantos GeV’s en
la regién temporaloide y se sabe que el modelo de dominancia vectorial (VDM) describe
adecuadamente esta estructura. Sin embargo, se ignora cual es la estructura de los factores
de forma del kaon para cuando k% es muy grande y se piensa que los métodos de QCD
perturbativa son mas adecuados en ese régimen.

Debido a esto, en el calculo de las correcciones virtuales cominmente se realiza una
separacion de la regién de integracion (el momento del fotén virtual) en largas distancias
con 0 < |k|* < p2,; vy en cortas distancias con p2,, < |k|®. La escala de energfa que hace
viable la separacién en el lazo (loop) suele tomarse del orden de unos cuantos GeV’s[54].
Debido a que las correcciones de cortas distancias exploran la estructura de los hadrones
a nivel de quarks, se espera que las correcciones sean las mismas independientemente de

las cargas de los kaones. Por lo anterior, solo consideraremos las correcciones radiativas de
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largas distancias, es decir tomando en cuenta la estructura electromagnética de los kaones
mediante el modelo de dominancia vectorial.

En esta seccion se estudian las correcciones virtuales de largas distancias al proceso
¢ — KTK~, modelando la estructura de los hadrones mediante el factor de forma de
los kaones. Medidas de la interaccién electromagnética de los kaones a energias bajas [62]
e intermedias [8] muestran una estructura que puede ser descrita dentro del modelo de
dominancia vectorial como se muestra en la Figura 3.1. En nuestra aproximacion incluimos
los factores de forma, usando el Modelo de Dominancia Vectoria (VDM) en las correcciones

radiativas virtuales.

3.3.1. Correcciones virtuales en VMD para kaones cargados

Siguiendo las referencias [8], [54], el factor de forma descrito por VDM modifica las
expresiones de cada amplitud a 1 lazo, en cualquier parte del diagrama de Feynman que
se encuentre un vértice K K~ se realiza la modificacién como se indica en la fig.(3.4).

La suma indicada se realiza sobre los 3 mesones vectoriales que acoplan al foton con

los kaones:

VKR = {g¢>KI_(7 JwKEK, ngf(} )
fV - {f¢7fw7fp} )
my = {mp7mwam¢} ;

m%/G = m%/' + zmvae(kQ - kfhreshold) . (332)

La constante fy, esta relacionada con la anchura de decaimiento electrénica del meson

vectorial mediante la relacién[63]:

Ama’m 2m? 4m?
T(V —ete) = V(14 Z=2) (1 — —&)V?, 3.33)
( )= 0 ) (

y la constante de acoplamiento gy g proviene de la interacciéon del meson vectorial V' con

el estado final K K. El factor de forma generado por VDM para el kaon cargado puede
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+ + + +

K K K K
2

fror (=1 Fe®) =) m’ gk

o (=0 f,[m> k7]

2 _

fo ) = ) m’, 9y KOK?
N2

f,[m > k3

Figura 3.4: Vértice electromagnético para kaones puntuales (izquierda) y con estructura

(derecha).
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escribirse de manera que es posible separar la contribucién puntual de la dependiente de

la estructura de la siguiente forma:

fri (k) = Z ngVKKAQ)

fv(k? — 1)

m
_ 1+{Z VgVKK _1}

fv(k? — )
VKK kQ mvaé’(k2 B k%hreshold)
=1 — 3.34
+ Z fV |:_k2 + m %/9 ¢ k2 — 1 %/9 ’ ( )

NS S 2 _ 1.2
donde se ha definido my, = m¢ — mmyvO(k® — ki oa)-

Para evaluar las amplitudes a un lazo, omitiremos en nuestra aproximacion la funcién
de Heaviside y tomamos las anchuras como constantes, por lo que el factor de forma puede

ser dividido en 2 partes

_ TVKf(k2 Tygrmyl'y
fK+(k) - |:1_ kQ—Iﬁ%/ _ZZ kQ—ﬁl%/ )
Tykr = VKR ) (3-35)
fv

donde ahora la masa es m? = m? —myl'y. Para satisfacer la condicion de normalizacién
v v
fx+(k* = 0) = 1, omitimos la contribucién de la parte imaginaria de la ecuacién anterior

y en esta aproximacion solo tomamos el primer término:

Ty ik
fe(k) =1=3 55— KKAQV . (3.36)

Una forma sencilla de obtener las amplitudes con contribucién VDM consiste en tomar
las amplitudes del caso de kaones puntuales revisadas en la seccion anterior y colocar el
factor de forma correspondiente dado por la relacién anterior. Asi, la amplitud para el

diagrama a) de la fig(3.5) es:

MY = — [ 2+ k) (P [m(%)ﬁ[ e (337

2m)4 k2 [(p+ k)? — m%, |

En el limite fx+ — 1 obtenemos de manera inmediata la interaccién puntual. Desarrollando

el cuadrado del factor de forma, podremos separar la contribucién de kaones puntuales del
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@ ®)

()

Figura 3.5: Correcciones virtuales para kaones con estructura.
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resto

VKK k? GvikKKIViKK k!
=142 .
e (k T2 TE +; T fyife [k ][R ]

Introduciendo el desarrollo del factor de forma en (3.37)

VDM d'k s [ 2629¢K+K—
MY = = [ e R 0P _kQ[(pM)Q_mM]

_ d*k 5 [ IVKK 2629¢K+K‘
/(27T) [(2p+k) (P, )] Qva —k2+ﬁ12]} [(p+k)2_m%<+}]

d*k (9vikk9vikr)K
_/(27_(_) [(2]9—1-16) (P,S)] ZZfVZfVJ k2+m } [_k2+ﬁ1%/]}] *

262g¢K+K—
[(p + k)2 - m%{+:|
= MO+ M+ M. (3.38)

El primer término M9 corresponde al caso de kaones puntuales ya revisado en la seccién

anterior, el segundo y tercer término son las nuevas contribuciones. La primera de ellas es:

T S gvrir 1 (2p+ k) - (P, s)dk*
./\/11 = 2 JoK+K 22 i (27r)4/[(p—|—/€)2 “kz AQ]

= 1gsrcei-(pe (P, 8))%22%;;]—{ [BApy + f(mf. m})] . (3.39)

En la ecuacién anterior se ha definido la funcién finita ultravioleta, expresada en términos

de funciones Passarino-Veltman:

<2
(2, m3) — [1 _ } [BO [, 2y, 3] — BO [0, m2., 2]
+3B0 [m%(Jr, my ., ﬁl%,] .
La funcién BO es finita debido a que la divergencia ultravioleta se ha extraido y se escribe

explicitamente con el fin de mostrar la cancelacion al sumar las amplitudes y los diagramas

de auto-energia.

2 m?
AUV:;—’VE+1H[47T]—1H|: I;Jr} :
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La otra parte de la amplitud de la ec.(3.38) se obtiene dividiendo en diferentes piezas el

integrando y usando fracciones parciales

I 1 [(2p + k) - n(P, s)] dk*
M~ 92 9vikk 9vi KK /
2P Sy ey et i e e

1 / [(2p+/€) (P, s)] dk* |
(2m)* [(p+k‘) fer] (K2 =] [k =g, ]

= _ZgéKJfK* (p : 77(p: S))E [ Z IVIKK gVJKK [3AUV + f(mf(+, ﬁlgﬂ)]
J

~ 2
+mvi

Jvi v

%

9vikk 2 2 2 A2 2
+ E +.C0 [O,mK+,mK+,mvl,mvl,mK+}

—~ [
i=j
22
E: IvikKk JViKK my,; sy .
i 1 > f(m y My _f(m , N , 340)
i#j fvi fvs my, — m%/][ K+ 10151 Ky | (

donde se ha definido la funcién:

~ 2 2 .2 .2 9 Ay
Co [O,mK+,mK+,mvl,mV1,mK+] = CO0

— 9 /1 dtz)dz g

A

m?, z + my, (1 —z)?

El procedimiento para calcular la amplitud del diagrama b) de la Fig(3.5) se efectiia de

forma similar,

VDM __ d4k
My = [ 20 k) ()

2€2g¢K+K—
k? [(q +k)? — m%{-‘r]

d*k VKK ] 2€°gorc+ic-
+/ (2m)4 2+ k) { 2 frl=k+m]] | [(g+F)? — mfa}]
dAk gV-Kf(gV-Kf()k2
+ 2q + k) - : ¥
/(277) [( I ;;fva [ k2 + } [_kQ—Hﬁ%/j]

262 g4xc+ 1
[(q + k>2 - m%{+}
= M5+ M+ M. (3.42)
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Sumando el resultado de (3.38) y (3.42) se obtiene la expresién siguiente:

MYBM = MY x [3130 [mZ.,0,mZ,] +1—229VKKf m2 )
9 iKKYVi
+ZZ V}(ijJKK f(m%('*'vmvj)]
mvngZKKgVJKK 2 .2\ 2 2
+§; fVZfVJ m m%/J] [f(mKJr’mVl) f(mK+’mVJ)]

gw 2 2 2 A2 .2 2
+ E i C0 0 mK+,mK+,mV1,mvl,mK+H
VZ
Z

El ultimo diagrama que representa agregar el factor de forma a la interaccién de Coulomb,

diagrama c) de la fig.(3.5), tiene la amplitud:

My = [ =g =20 ) s (O (20— ) 2+ )

N [ 9¢>K+K*€2 ]
R (g + k)P = mi ] [(p = k)? — mic. |
_ Ger+r-€ / (20 — k) - (2 + k) [(p — g — 2k) - (P, 5)] dk*

(2m)* k2 [(p— k)2 —mi, ] [(¢+k)? —mZ, ]
VKK s 1 (2p—k)- (2q+ k) [(p — q—2k) - n(P,s)] dk*
—i-QZ V JeK+K-€ (2ﬂ)4 / [(p _ k)2 _ m%(+] [(q 4 k)2 _ m%ﬁ} [kg A %/]
MVDM (3.44)

donde se ha usado la siguiente notacién para simplificar el resultado:

Ivikg Jvikg 1
MPM = _g¢K+K7€2Z ‘}‘iK ‘}VIjK (2! /(QP—k) - (2¢+ k)
i

[*(p — q — 2k) - n(P, 5)] d*k
(0= #)? =i ] [(g + F)? = mi, ] [R2 = ] [R2 —d ]

Si definimos la siguiente funcién con (para M = my),

x + 1)dydx
COZ 5 ) M : ’ ) ! / / ( ’
[mKJr mK+ y M+ mK+ mV VZ 3;' — 1 (mf(+X2 + M2y2 + XyM2)]

X




62 CAPITULO 3. CORRECCION RADIATIVA A ¢ — KTK~

el resultado de la integracién del segundo término de (3.44)
23]

Z 2gVKK — B0 [m%(Jr, My, My,

Ms,”M = agork-(p —
[2(M? — 2m§ ) + 3| CO; [mK+, mi ., M? mp,, mf,, 1y |

— B0 [m%{Jra m%@m ﬁl%/} )}

mV )(BO [0, m2, 1]

(1
mK+
0 o 29v ki
M X lz fT} Ayy . (3.45)

El tercer término MY¥PM se divide en dos partes para su célculo, que corresponden a los

casos cuando los indices de las sumatorias son iguales y cuando son diferentes
MEPM = Cisj + Ciyy (3.46)

Con la definicién de las siguientes funciones

DO. = (s, mi, M?)
y2dxdy

// [+ 0% (% — 12 + w2 (x— y)2 + (x — 1)(x

Coj, = COp(mis, m3s)

- [ i

el resultado de la integracion en el caso de indices iguales es
i, COf + 1 [4]9 q-+ mvl] DO’

—) [M2 - 2mg ])°

Q QQZ' 2 i
Cej = MOXEE: ‘}éiK[Q[Qp'Q—FmW}CO
2 AQ}]

i=j
ﬁlQ i —
+(1 — m2v ) [BO [0, mf, 3] — BO [miy, miy,m3s || — BO [mi, mis, i
K+
g2 . _
M) x — A 3.47
+Mg X 47r Zz:; f‘2/¢ uv ( )
El otro caso (i # j) se simplifica al tomar en cuenta la descomposicién siguiente
1 B 1 1 1
(ST (e Rl o e R
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La relacién anterior permite escribir C;x; de la forma simplificada

9vikK JViKK 1
Cizj = —Gor+K-€ - - [A; — Aj] . (3.48)
; ; fVi fVJ' [m%/z - Hl%/]]

Las integrales relevantes ya han sido calculadas anteriormente y algunas no son necesarias

de evaluar, pues se cancelan en la diferencia A; — A;.

A;

1 / [(p —q —2k) - 0] [(2p — k)(2q + k)] k*dk*
@2m)t ) [(p— k)2 —mg,] [(g+k)? —m, ] [k2—m3,]

El resultado para indices diferentes es:

gy 9 J i

iy, CO, — 1y, COJ + mvzg(mK+a 103 ) — 13, g(mi s, 10y )|

IViKKIViKK
M0 x [Z IVIKRIVIKE

Apy (3.49)
222 fufv

donde se ha definido la funcién finita ultravioleta g(m% . ,1m3,) como:

2
g(m%(hm%/) = (1 - mV ) [BO [0 mK+7 %/} — B0 [m%(Jr?m%('*‘vm%/H
K+
~B0 [m2,, mZ, 03] . (3.50)

Sumando (3.43), (3.44) y la contribucién de los diagramas de autoenergia ®> obtenemos la

5Ver el Apéndice A
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amplitud total:

T
M - Mpoint

+ MY x E 2 Q‘/K%{QBO [, mf, ] + (2m2 — 4mf, + m)COL}
14
14

+29”“K [t i) — i CO' + 103, C0f — 2(2p - q -+ 10 )COE

—m%,(mv +2m3 — 4mg., )DO, — g(mi, )]
JViK+K-JViK+K- 1 . . .
T I [ [ {f(m ., 10d) — f(m, 30)}
i fvitvi [m ; — I }

Ve Vi
_(Qmi) — 4m%<+) [Iﬁ%lcoz — ﬁ]%” COJ} mVICol + VJ COJ

—1ip g (i, ye) + iy gy, 1h3s) | — f(miee, 1y )] (3.51)

donde M ,in: es la amplitud en el caso puntual. En efecto, la amplitud total se divide en
dos partes MT = M,pin + MYPM_ La contribucién de la amplitud para kaones puntuales
ha sido evaluada en la anterior seccién, por lo que ahora nos interesa evaluar la contribucién
contenida en MYV PM

Separando la contribucién de cada meson vectorial y evaluando numéricamente usando

masas reales® de los mesones vectoriales obtenemos:

2 2 2
MVDPM /\/l°><— 43459 | JeETK- +5.8444 Jork= | |y ag17 |JwKt K-
f

4 f2 1) fw
JpK+K-9pK+ K- 9pK+K-GuwK+K- 9oK+K-GJuwK+K—
+10.2421 +9.0343 + 10.2721
fpf¢> fpfw f¢>fw
6. 26749”1}”( — 6, 31529“}”( -7 9403%[};[( ]. (3.52)
P w

Para terminar la evaluacién numérica es necesario introducir los valores de las constantes
de acoplamiento. La densidad Lagrangiana invariante bajo SU(3) que modela la interac-

ciéon entre mesones vectoriales, nos permite obtener las relaciones entre las constantes de

6Al final de la seccién mostramos que la diferencia entre usar masas reales y el resultado de usar

m%/ = m%/ —wmyI'y es despreciable en el resultado total
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acoplamiento (ver [64]):

YpKk+K- = TYprog0 = GVP1P2 ’
JuK+K- = YGuKOK0 = 7G§/Plp2 sin@v ,
JoK+K- T GproRe = 5 GVP1P2 cos 6,

(3.53)

Las condiciones de normalizacién para los factores de forma de los kaones cargado y neutro

JpK+K- | GuK+K- | YpK+K-
fr+(0) = + + =1,
" fo fu fo
fKo(O) _ ngOKO + ngOKO + g¢K0KO _ O ’ (354)

fp fw fd)

proveen una restriccion auxiliar en la determinacion de las constantes de acoplamiento.
Asumiendo la mezcla ideal ¢ —w (tanf, = 1/+/2 también usado en la ref. [8]) y las ecs.

(3.53), (3.54) obtenemos las siguientes relaciones:

JoK+K- = Juls )
\/5 [f(b + \/ifw]
JuK+K- = fo(b
2 [f¢> + \/ﬁfw} 7
Yox+x- 1
fo 27

Los valores de f,, fs los extraemos de los resultados experimentales reportados en el

PDG[3], mediante la relacion:

fo = 20 \/”m—< 2y g AMeyyys

3Ly ete md) my

T My 2m? 4m?
= 2y 1— 1/2
f \/ S - )

Una vez especificados todos los parametros, la contribuciéon VDM a la correccion virtual
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es:

MYPM = MY x [-1.13 x 107°]

= Mj xyPM (3.55)

Para obtener la modificacion a la anchura de decaimiento debido a la correccion virtual de

VDM se emplea la ecuacion:
Lom(0) = Fgm(Jr,O) [1 + 2Re [(52%“] + QRe[(;XBM]]

donde las cantidades etiquetadas con + (0) corresponde al caso de Kaones cargados (neu-

tros) en el estado final.

3.3.2. Correcciones virtuales en VDM para kaones neutros

La evidencia experimental de estructura de los kaones neutros [65] nos lleva a considerar,
en esta aproximacion, el cdlculo a 1 lazo en el decaimiento ¢ — KYK0. De forma paralela
a la seccion anterior, el factor de forma en el contexto de VDM para kaones neutros se

escribe como:

(—1)m3 gygogo
fro =D [Z;V_Vgﬁ (3.56)

Debido a que la carga de los kaones neutros es cero (fxo(0) = 0), las constantes de acopla-

miento satisfacen la condicién de normalizaciéon:

9VKOKO _ 0

fv
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Usando la misma aproximacion que en el modo cargado, la expresién para el factor de

forma se escribe como:

-1 2 _
fro = Z( )ngVAKOKO—O

fv [k? — ]

_ Z (=1)mi gy xogo _ IV KOKO
fv [k? —mi] fv
Jvkoro | my, 1
fr | R —m2
g‘/KOIEO _k2 :|
~ . 3.57
Z fv [kQ s, (3:57)

Para obtener las correcciones radiativas para este modo, se usa la ec.(3.57) en las amplitudes

de los diagramas de la fig(3.5). La contribucién de los diagramas a) y b) es '

M%/—’—DQM = KOK Z G2 i mK07 mV) Iﬁ%/COI]
2 1y 2 .2 2
—l—ZZszGw [ mKovmVJ) - m{f(mwvmvi) - f(mKovmVJ)} ] )
i#j ] Vi V)
(3.58)
donde Mg)KOK 19, o (P — q) - n. Las funciones (f(m%,,m?;), C0', g(m%o,m2,)...) son

las mismas que las que se usaron en la seccién anterior, solo que ahora se usa la masa del

kaon neutro, por ejemplo:

f(m%(hm%/j) - f(m%(()’m%/J‘) )
g(m%(Jrth%/i) - g(m%@vm%ﬁ) : (3'59)

"Definimos la notaciéon Gy = gy gogo/ fyi
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La contribucién del diagrama c) de la fig.(3.5) es
Mbpy = MG, o Z G| = 2(m? — 2m¥o + m%)COL — 1, (2m? — 4m, + m})DOL

iy C0p — (mio, iy )|

GyviGyi
+ Z Z v I‘I/l i, [(Zmi — 4mio + 1m3:)COL + g(mio, )]
i# 7 12
iy, [(2m¢ — 4mi, + 1013;)COL + g(mfo, ;)] ] - (3.60)

Finalmente, la contribucion total de la correccion radiativa con el factor de forma para los

kaones neutros es:

Mipy = Z G2 [ — f(mo, ) — 03,C0' — 2(m? — 2m%, + 10,)CO}

¢K0K
mvz(2m¢ 4mK0 + mvi)DO1 + mv,COI g(mo, rﬁ%p)}

#3057 G s g [ = {2, — i+ ) OO+ oo )
i#j J My
—|—mw{(2m¢ — 4mgo + ;) COL 4 g(mio, i)}

mvl{f(mKoa m%ﬂ) - f(m%{()a m%ﬂ)}]
El resultado de la contribucién de las correcciones virtuales con factor de forma del kaon

neutro son finitas una vez que se ha agregado la contribucion de las amplitudes de auto-

energia. La evaluaciéon numérica de las funciones escalares da el siguiente resultado:

0 0 2 0 9
. oo 7
Myoy = M0 o x S [5.8060 |55y girr | 05|y 63 lgUJKOKO}
am ¢ fp fw
95 RGO R o dror
101499 PIURISROR | oq durt R TR 8.0400 J2K K IR Ko
fofs fulo ol
= M o ¥ [Z155 x 107°] = MY, o x 65 7 (3.62)

donde el resultado numérico de la dltima linea se obtiene, al igual que en la seccién anterior,

usando las relaciones de SU(3). Usando los valores numéricos para las ecs.(3.55), (3.62) la
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prediccién para la razéon R incluyendo efectos de factores de forma de kaones cargados
como neutros es, [66]:

3
RZ) = V‘g—+ [1 + dgep + 2Re [‘KDM - 5(‘)/DM”

V¢70
= 1.58488 . (3.63)

Si usamos las masas complejas i = m?, —wmy Ty en la ec.(3.62) y ec.(3.52), el resultado

que se obtiene es:
R = 1.58490 . (3.64)

el cudl es casi idéntico al resultado (3.63)

3.3.3. Region de validez del modelo de dominancia vectorial.

La pregunta inmediata es: ; qué tan valido es usar el factor de forma de los kaones
en el cdlculo a 1 lazo, pues estan involucradas altas y bajas energias en el momento de
los fotones?. Si fuera posible mostrar que la contribucién principal de la estructura de los
kaones en los loops proviene del régimen donde el modelo de dominancia vectorial es valido
(abajo de 1~2 GeVs) podemos tener mas confianza en nuestros resultados de la seccion
anterior.

Para ello introducimos una version modificada del propagador del foton en la siguiente

forma [54]:

1 1 P

R (3.65)

donde y es una escala de corte que separa las regiones de cortas y largas distancias. Notese
que cuando p? — oo la expresién anterior se reduce al propagador usual del fotén. En cierta
manera, esta forma modificada del propagador del fotén recuerda el método de regulariza-

cién de Pauli-Villars [67] donde al introducir el factor adicional ayuda a la convergencia de
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la integral divergente. Por otra parte, dicho factor adicional en la ecuacién anterior hace
que las contribuciones cercanas a la regién k? ~ u? se vuelvan las mas importantes.

De esta manera, el regulador extrae la contribucion de VDM para energias no mas
alla de la escala . Aunque no existen primeros principios para especificar la escala de
dicha separacion, mostramos al final de esta secciéon una grafica que muestra el compor-
tamiento del resultado para las correcciones radiativas en funcion del valor del corte. Lo
que esperamos es que el resultado obtenido en el caso del modelo de dominancia vecto-
rial se vuelva estable para escalas de energia donde el mismo tiene su validez. De manera
ilustrativa solo calculamos la contribucién VDM con corte para el caso de kaones cargados.

Ahora calcularemos la contribucién de VDM usando el propagador modificado del fotén
mostrado en la ecuacién (3.65). Las correcciones virtuales correspondientes a los diagramas

de las figuras (3.5a y 3.5b) se convierten en:

7 1
Mith, = Mo x 23 L (i) — o))
A fv [1 — m—g]
n Z Z GviKKIVIKK 1 [f(mp, h3y) — f(mi, p2)]
< b } o |
A9 )
3 A {3}
vy veJvi [1 - “‘gj] [ﬁl%/z - m%u}
. = . = 12 i
by W?*ffﬁ” B g, i) — fnd, 1)
i g ViV [1 - u‘;} [M2 - Ih%ﬂ]
g A
+ Z VKK [ V} CO [0 HIK+, mK+7 m%/a Hl%/, m%('*‘] ] (366)
12

Para evaluar la contribucion que contiene la interaccion de Coulomb, dividimos la amplitud

del diagrama fig.(3.5¢c) en dos términos:

Mvdm :Mvdm+Mvdm (367)

Coulomb 3a, 3r,u

Una vez realizadas las integraciones, las expresiones explicitas para ambos términos de esta
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amplitud son:

. i _
Myt = MO x =3 o TER _ © [oM — dm. + 10d)CO0, + g(m, )

—(2M? — 4miy + 1) C0c(mier, M, M2, s, ms, 1) — g(mi, NQ)} :

(3.68)
y
2 7 — . — .
Ml = =M x L[5 P 2 [2p- g+ ] Q0L — 10,0
i= j Vi A&l
iy [4p - g + 10 | DO, + g(mics, i)
+ Z Z 9viKKRIVIKK = [4]9 q [CO’mVI B COJmVJ

i#] Jvifvi |:mV1 - } [1 - u2 }

ity CO;, — 1ty CO7 + g (mi ., ) — Y, g(mi, 03 )]
52
ol

IVikKKIVIKEK 1 o A
+ — — 4p - ¢ + my,,; ) CO’
2 —  Jvilvs [1 _ m_v] [1 _ mw} p? v
w? w2
+g(mi, m3;)] — (4p - q + p?)COL — g(mi, p?)]] (3.69)

Definimos entonces las correcciones virtuales para kaones con estructura en presencia
de un propagador modificado en el proceso ¢ — KK~ de la siguiente forma:

6{/’—DM = Mqu—dl—n;,u + Mvdm (370)

Coulomb,u

La grafica (3.6) muestra el comportamiento de la correccién radiativa en funcién de la
escala de energia p. Podemos observar que el resultado para la correccion radiativa alcanza
su valor mostrado en la ecuacién (3.55) para valores de la escala de energia del orden
de 3GeVs. Esto significa que la principal contribucién a d;rp,, se encuentra en la regién
de energia menor a 3 GeV, lo cual es consistente con el limite de validez del modelo de

dominancia vectorial.
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Figura 3.6: Correccién virtual 24y ,,, al decaimiento ¢ — K™K~ como funcién de la escala
de corte pu.
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3.4. Resultado y Conclusiones

En este capitulo hemos revisado las correcciones de isospin a larazén R, = I'(¢(1020) —
K+tK™)/T(¢(1020) — K°K?). Nuestro énfasis se ha puesto en el calculo de las correcciones
radiativas de orden « y en particular, en la consideracién de estructura electromagnética de
los kaones, la cual ha sido modelada en el contexto de un modelo de dominancia vectorial.
Hemos mostrado que la contribucién de los efectos de estructura, extraidos de su regién de
validez mediante un corte que separa altas y bajas energias, coincide con la contribucién
obtenida sin esta escala de corte para valores del orden de u ~ 2 ~ 3 GeVs.

La correcciones de isospin obtenidas una vez que se incluyen los efectos de la estructura
kaones cargados y neutros es[66]:

3

A%
R, = %[1+5QED+2[5¢DM—53DMH
¢,0

= 1.58490  (mi = mi —wmyly)

= 158488  (miy =m}), (3.71)

lo cual indica que los efectos de la estructura son despreciables.

Nuestro calculo confirma la discrepancia de alrededor de 4.50s que existe entre la pre-
diccién tedrica y el resultado experimental para la razon ¢ — K™K~ /K Kg. Por lo tanto,
podemos inferir dos posibilidades en el marco usual de la teoria cudntica de campos: (1)
que los efectos de estructura de los kaones a muy altas virtualidades del fotén tenga un
comportamiento diferente al predicho por el modelo de dominancia vectorial, o (ii) que el
resultado experimental sea incorrecto. Respecto a este ultimo caso, es importante senalar
que los fracciones de decaimiento usadas para obtener la razén mostrada en (3.1) se obtie-
nen de un ajuste global al ancho de decaimiento del mesén ¢ suponiendo que los modos
principales saturan la razén de decaimiento total [3]. En vista de lo anterior, es importante

contar con la extraccion directa de las fracciones de decaimiento en un mismo experimento.
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Capitulo 4

Correcciones radiativas a 7 — 7wV

En este capitulo describimos el calculo de las correcciones radiativas electro-
magnéticas de orden « al proceso 7= — 7 7'v. Estas correcciones son muy
importantes cuando se desea comparar las predicciones tedricas para la frac-
cion de decaimiento con las medidas experimentales con una precision menor a
1~2 por ciento . También, estas correcciones son importante cuando se desea
hacer una verificacién de la hipdtesis de corriente vectorial conservada (CVC)
para los factores de forma débil y electromagnético del pion. Este ultimo punto
es de gran relevancia para entender la actual discrepancia entre las predicciones

tedricas y la medida experimental del momento magnético anémalo del muén.

4.1. Introduccion

El 7 es el unico leptén que puede decaer en estados finales que contienen hadrones.
Las actuales fabricas de mesones B, BABAR y BELLE, han acumulado del orden de 10°
pares 777~ [68, 69] con los cuales se pueden estudiar en detalle algunos de los modos de
decaimiento del 7. Con esta alta estadistica se estan mejorando las determinaciones de
algunos modos suprimidos de decaimiento, otros se estan midiendo por primera vez y en
otros casos, se mejorard la precision de algunos de los modos dominantes, como es el caso

del modo que nos ocupa.

I0)
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En este capitulo nos concentraremos en el estudio del proceso
T =y, (4.1)

el cual es el modo de decaimiento dominante del 7 con una fracciéon de decaimiento de
B(r~ — 7 n%,) = (25.41+0.10) [3]. Para este grado de precisién experimental (del orden
de 0.5%) se requiere que los calculos tedricos de esta observable incluyan los efectos de
las correcciones radiativas de O(«). También se han reportado las medidas del espectro
de dos piones en el estado final por las colaboraciones OPAL [4], CLEO [5], ALEPH[70] y
recientemente BELLE [68].

Las medidas de esta observable son muy importantes porque (i) permiten estudiar en
un ambiente limpio las propiedades intrinsecas de la familia de resonancias vectoriales
cargadas p, p/,---, (#) permiten hacer una prueba de la hipétesis de corriente vectorial
conservada (CVC) al comparar el factor de forma del proceso eTe™ — 77~ con el factor
de forma del proceso 7= — 7~ 7’v para cada valor de la masa invariante del sistema 77 y
(#7i) la distribucién de la masa invariante permite calcular, mediante la relacién de CVC,
la contribucion hadrénica mas importante a la prediccion tedrica del momento magnético
anémalo del muon [14][15][16][19]]20].

Mas especificamente, en este trabajo de tesis nos concentraremos en el calculo de las
correcciones radiativas virtuales de tipo electromagnético de orden («) para el proceso
7~ — 7 mv,. Estas correcciones radiativas, tambien llamadas de larga distancia, fue-
ron calculadas recientemente en las referencias [17][18][19][20]. En la referencia [19] se
encontré que las contribuciones dependientes de modelo en las correcciones debidas a fo-
tones reales juegan un papel mas importante de lo que se pensaba anteriormente[17]. Sin
embargo, en los articulos que publicamos anteriormente [19][20] tomamos el célculo de las
correcciones de fotones suaves tal como fueron calculadas en [17][18], sin tomar en cuenta el
hecho de que ellas se calculan de manera inconsistente al sumar inicamente sobre dos gra-

dos de polarizacion del fotén real [46]. En este capitulo hacemos los cdlculos correctamente
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y compararemos nuestros resultados con los calculados en la referencia [17].

4.2. Correcciones virtuales al decaimiento 7= — 7 7'v,

Al orden mas bajo en las interacciones débiles (denotado por el superindice 0), la

0

amplitud de probabilidad de la desintegracion 7= — 7~ 7" v, que procede via el proceso

elemental 7= — udv, esta dada por:

M7 — 1 71, = %VudLaHO‘ (4.2)

donde G denota la constante de Fermi y V,,4 el elemento correspondiente de la matriz de
Cabibbo-Kobayashi-Maskawa [72], L, denota la corriente lepténica y H* es el elemento de

matriz hadrénico definido por:
H" = (r7|ay" (1 — v5)d|0) .

En el caso particular que estudiamos, el estado hadrénico final consiste de 2 piones y
debido a que este sistema tiene una G-paridad par, solamente contribuye la parte vectorial

del elemento de matriz hadrénico
H, = (r~7°|ur,d|0) . (4.3)

Aunque no es posible en la actualidad calcular de primeros principios (es decir, del mo-
delo estandar) el elemento de matriz que representa (4.3), se le puede parametrizar de la

siguiente manera con el requisito de que se satisfaga la covariancia de Lorentz:
H,=F ()0~ = ")+ ()0~ + ") - (4.4)

Los factores de forma (F' (), F_(t)) son funciones invariantes de Lorentz, contienen toda
la informacién sobre la estructura hadrénica y dependen tinicamente de la variable ¢ =
(p~ + p°)2. Si la simetria de isospin se conserva, se tiene que F_(t) = 0. Dado que la

simetria de isospin no es exacta, F__(t) es diferente de cero, pero su contribucién a la razén
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de decaimiento es tan pequefia (del orden de 107%) [17] que se le puede despreciar en los
calculos.

Por lo tanto, nuestra expresién para la amplitud a nivél arbol[17] la definiremos como
(77(P) — 7 (p_)7°(po)v-(q); donde las cantidades entre parentésis denotan los cuadrimo-

mentos de las particulas):
M =1GpVoafr (t)alg) [7° —»~ |7 u(P) (4.5)

donde se ha definido el factor de forma normalizado f(t) = F(t)/v/2 tal que se satisface
f+(t =0) =1y se ha definido la matriz 4" = 1 —~5. Como es bien conocido, la probabili-
dad no polarizada de un decaimiento en tres cuerpos puede escribirse en términos de dos
variables cinematicas independientes. Ademas de la variable ¢ introducida anteriormente,

definimos:
u = (P—p)*.

Luego entonces, la probabilidad de decaimiento no polarizada al orden més bajo en la

teoria de perturbaciones, estd dada por:

ST = £ S0 M = 4G Vi L ()P Delt, ) (1.6)

donde se ha definido la densidad cinemética D.(t,u) del proceso como

2
De(t.w) = 2u® + 7 [m? = t] +2u [t —m? = m2, —m2] +2m2 m? . (4.7)

T T

En el sistema en reposo del leptén 7, la razén diferencial de decaimiento a nivel de arbol
se escribe de la manera siguiente

0 G%|Vud|2 2
A (r — 7)) /dtdu = W|f+(t)| D.(t,u) . (4.8)

Las correcciones de fotones virtuales al orden « para este proceso se muestran en la
fig.(4.1)(los diagramas de autoenergia, aunque no se muestran, si se consideran en el célcu-

lo). Al igual que en la referencia [17] supondremos que el factor de forma f () es constante
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c)

Figura 4.1: Correcciones de fotones virtuales al proceso 7= — 777

0

V.

79
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en el calculo de las correcciones radiativas. En el cdlculo a 1 lazo, como es usual se coloca
una masa ficticia A\ al fotén para regularizar las divergencias infrarrojas.
La amplitud que corresponde al diagrama a) de la fig.(4.1), se puede escribir como

sigue:

Mz, = u(q) [-1eGrViany'] / {—Zgw] l“"” K +mq)

1

(2m)! k2 L(P+k)?—m?
1 P+ + m, ]y dk?

2m) ) K2[(P+ k)% —m2]

| beral ditucr

- GQGFVudﬂ(Q)%’Y7( u(P)

) o 1 dk*
= 4raGrVuai(q)yn" [Py + 7 P u(P) (2m)* / k*Dp

1 kP dk*
_ 7 L
+4maGpVauat(q) .y vey u(P) (2m) / k2Dp

Se ha introducido la notacién Dp = (P + k)*> — m2. Para simplificar la escritura se usan

las propiedades de las matrices de Dirac y se obtiene:

1 dk*
My = AraGrValu()2Pr u(P) g / kK2Dp

8 17.4
+i(q)(=2)757 u(P) (271T)4 / llz;ll?kp] '

Realizando la integraciéon en D = 4 dimensiones (Regularizaciéon dimensional), el resultado

se escribe en la siguiente forma:

M2, =1GpVaai(q) [A%° — B ] 7 "u(P) . (4.9)
Se ha definido:
A*= =B = = [2B0[m,0,m2] + (~2)]
fp = B0 [mi,(;,mi]—l] . (4.10)

La expresion analitica para la funcién escalar de Passarino-Veltman([43] se ha comparado

numéricamente con el resultado del programa LoopTools [73] y su forma explicita es:

2 2
B0 [m*,0,m*] = Pl +2+In[4n] —In [%} : (4.11)
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donde e =4 — D, vg =. 5772 y p es la escala de masa en regularizacién dimensional.

La amplitud para el diagrama b) de la fig.(4.1), se puede calcular en forma similar.

Usando la notacién D,- = (p~ + k)? — m2, el resultado es:
M = a(q) [—ZeGFVudv 77] . / B [ze(p_ +p + k)a} dk*u(P)
Y U (2m)4 k* | | D,-
_ 1 [2p~ + K" dk*
_ 2 7
= ¢ GFVudu(q)’yﬂﬁy u(p) (27’(’)4/ k2Dp—

2p dk* 1 k,dk*
- 4 — w7 P [ ol
7TC(GYFVudu(Q)F}/ Y u( ) |:(27T)4 / ksz_ + (271.)4 / k2Dp_:|

= 470G pVigu(q) (2 ")y u(P) {230 (m3,0.m3] | ifp }

1672 2 - 1672
= 1GpVaati(q) [-B"% | y"u(P) , (4.12)
donde
B' = = [-2B0 [m2,0,m2] - f,] | (4.13)
y se define la funcién f,- = — [B0 [m2,,0,m2,] —1] /2.

Finalmente la amplitud para el diagrama de interaccién de Coulomb, diagrama c)

Fig.(4.1), es:

_ 1 _ , + ) +m. N ap
v - ik -1 [ 2 e [ ]

Jutp)

1 — — v /P+/k/+mT
— 47TO&GFVudW/U(q)(pO —p — k)Y o4 [W
-

1 . B
2m)4 /PZ;_P% +]:§ [2]/ + k/} u(P)dk*
1 P+E+m;

. — v,.7 - 4

1
(p~ + k)2 —m2

X [ze(p_ + k +p_)ﬁ} {

} A8 [2p7 + k}ﬁ dk4u(P)

= AraGpVuati(q)(p° — p~)y"y" (

En la expresion anterior, el primer sumando contiene la contribucién debida al término

de conveccion (ver discusién en Capitulo 2) y el cual podemos extraer usando la siguiente
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relacion:
P+, +m.] 20 + k] uP)=[2p" +k)-QP+k)+2p - k=20 k] u(P) .

El término (2p_+k)-(2P+k) es reconocido como la contribucién del término de conveccién.

Para simplificar la evaluacién de la integracion se usa la siguiente identidad:
Wk AP+ +m.] (207 + k] u(P) = (Dp+ 4P - p~)u(q)k' v u(P) + 2u(q)k*p "7 u(P) .

Finalmente escribimos la amplitud en términos de integrales basicas que ya han sido estu-

diadas en capitulos anteriores:

M, = 1GeVuau(q)(p° — p )y u(P)dma { 1 / (2p~ +k)- 2P+ k)dk4]

(2m)" K2DpD,-

) o, [ kdkt
A _ 0 _ v,7 P &
+4imaGpVuaa(q)(p” — p~ )y 'y u(P) [(%)4 / kQDpr—}

1 kA dk*
—himaGpVauai(q)(p° — p )y (2078 u(P) [(2ﬁ)4 / k2DPDp_:|

) 1 [ kydk?
—dimaGrVoat(q)y y u(P) {(zw)‘1 / D ]
-

—hraGrV, ﬂ(q)yﬁqﬁ [4P . p_} u(P) 1 / kﬁdk4
FVud (27‘()4 kQDPDp*
1 dk* }
(2m)* ) DpDy-|

—hiraGpVyqu(q)2p ™y u(P) [

Notese que la unica integral divergente infrarroja esta contenida en la primera linea de la
ecuacion anterior, que es el inico término proporcional a la amplitud del modo no radiativo
y es el mencionado término de conveccion . Para la evaluacién de esta integral, se coloca
una masa ficticia A en el propagador del fotén (1/(k?—A?)) y al final del cdlculo, se realiza el
limite A — 0 manteniendo solamente el término divergente. Como se discutié en el capitulo

2, los términos de conveccion contienen la totalidad de las divergenicas infrarrojas. Una
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expresion simplificada del término de Coulomb es la siguiente:

1 2p~ (2P 4
M:, = ZGFVudﬂ(Q)(pO—p),xy”fu(P)zmoz{ / R

)’ ¥PDrD,
G Viai(g)Py"u(P) || [Fp(4m? = 6P - p7)]

HG Vgt (=2 u(P) | | [Fo(2P ™ —m2) + 2P -7 Fy
+fp-/2 4 BO [u,m2, m2] ] . (4.14)

Expresemos la anterior ecuacion de la siguiente forma:

M, = 1GpViau(q) A« [p° = p 7] 7 u(P) +1GpVat(q) [A° — B ]y u(P) |

(4.15)
donde
— 1 (20~ + k) - (2P + k)dk*
AT = e [(2@4 / (2= X2| DpD,,-
= [BO [m 0,m } + B0 [mi,O,mz] — B0 [u,mi,mﬂ

AP - p~C0 [m2,u,m?, X, m?, m?]
A = 43 [Fp(4m? — 6P - p7)]
B¢ = y [FP( 4m2 + 6P -p~ + 4P -p~ —2m2)

—4P - p Fp- — fp- —2B0 [u,m2,,m2] ] . (4.16)

Las expresidnes analiticas para cada una de las funciones involucradas en la ecuacién

anterior son

BO* [u,mZ,m?] (u — m2 +m?2) — [u—3m2 —m?]In [z—ﬂ

Fp =
BO* [u,m2,m?] (u+m?2 — m2) + [u — 3m2 — m?2]In [z—j}

F_ = . 4.17
P mt —2m2(m2 + u) + (u —m2)? ( )

m$ —2m2(m2 +u) + (u —m2)?
2
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Con la definicién de las variables siguientes

1
Ty = 2\/7“_t [yt—vy?—llrt} )

—
+
=

-

Yy = 9
™

Ty =

4
NIV

la funcion de dos y tres puntos de Passarino-Veltman se escriben como:

2 — 2 T m!lbr 1
BO* [u,m2,m2] = Mr — M7 4y {m—] M {— - xt} In [z;]
u M u |y
CO [mZ,u,m2, N>, m2,m2] = C(u,\°)

1 Tt 1
- T {3 ) + 2l o

2
1
—% t3 In%[r,] + Lis[x?] + Lis[1 — x;/Tq]

—ln[xt]lnl Al H (4.18)

m:m +

Finalmente, la amplitud que contiene todas las correcciones virtuales de orden « se puede

escribir de la siguiente manera:
Mi,v =1GpVyuru(q) [A(u, My, My, Mg )70 — B(u, My, My, Myo)p’ ™ | Y u(P) , (4.19)

donde las funciones A(w,m,, m +, myo), B(u, m,, m,+,m.o) contienen las funciones esca-

lares que resultan del célculo a 1 lazo (4.10, 4.13, 4.16)

A(u7m77mﬂ-i’mﬂ.o> o Aa_'_ACOTLv_'_AC’

é(ua mr, mﬂi’mﬂ()) = B+ Bb 4+ Ao 4 Be
La probabilidad no polarizada corregida a orden « es la siguiente:

> %|Ml2 = Y %MAQ + ML P> %|M?|2 +2Re Y %M‘;Mgm .
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El término que nos interesa es el segundo, pues contiene la informacién del calculo a 1 lazo,
1 1 _ B - . L
> SMIM, = 5C° > u(P) [p° —p 7], v ulg)ulq) [AJ/O — By ] 7 u(P)

- 02%TT [QP+ m.) [ — v ) [Ap/o - 191/’] 77}

C* Tr [PY AT | (4.20)

donde se usa la notacion

02 = G%"Vud’2‘f+(t)‘2a

Q= -,
T = Apy°— By~ .

Desarrollando la traza se obtiene

Tr[PQYa ] = Tr | Py (Ap® — Ay~ — By~ + By")|
AT PGy v — BTr [P@Yqp"]
= Tr|P@y'a @) (A+ B)+ ATr [P@yav~| — BTr [P@7av"] .

Las variables de Mandelstam

t = (" +p ) =(P—q)?,
u = (P+q°=(P-p),
s = (P=p")? =@ +4q)7,

s+t+u = mZ+mi, +mio . (4.21)

permiten escribir las trazas en términos de la densidad cinematica:

1

Tr [Py gy~ = —2D.(t,u)+2m? {u —m2, — 3 [m? — t}] ,

Tr [Py qp®] = 2D.(t,u) +2m? {u —mZ, — % [m2 — t}] ,

Tr [PV ) = 4D.(t,u) . (4.22)
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Con las relaciones anteriores, la ec.(4.20) se escribe en la siguiente forma

> %M?Mf, = C?|[(A+ B)2D.(t,u) + (A — B)ym? [2u — 2m%, — [m? — tm .
(4.23)

En la referencia [17] se argumenta que las correcciones radiativas virtuales son factori-
zables, es decir que al incluir correcciones de O(«) la amplitud total del decaimiento tiene

la forma
MU,T - M?— + M?— X f(u7m7'7m7Ti’07 A) )
y por lo tanto:

1 1
ZgWV? ~ ZE\MS]Q x (14 2f (u, my, Mato))
= AD.(t,u)(1 + 2f(u,ms, mypxo)) . (4.24)

Como se observa de nuestro resultado (4.23), las correcciones virtuales inducen términos
no factorizables. Debido a que nos interesa verificar el calculo de las correcciones virtuales,

nos concentraremos Unicamente en el primer término de (4.23).

La probabilidad no polarizada corregida por las correcciones virtuales (solo por el primer

término de (4.23)) se escribe com sigue:

STSMP = S IMY M P = ST MIP 2Re S S MOME,

= SV X [ feo e + 557 4 557]

donde se han incluido ya la contribucién de los diagrama de autoenergia (357, $5F) v las
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funciones fe., fresto s ha definido en términos de (4.10, 4.13, 4.16):

fee = A
= = [BO[m2.0,m2] + BO [m2,0,m2] = BO [u,m?, m?]
+4P - p=CO0 [m2,u,m?, A2, m2,m?] |
Jresto = % [A®+ A°+ B* + B" + B
= = [BO [u,m2, m?] = BO [m2,0,m2] + [m? — u] [Fp + Fy-] +m2F,-] .

47
(4.25)

Para escribir nuestro resultado final, se usan las definiciones de la ref.[17]

1 1 2—y
A, = " [ 5 In[r] + T 1= In [l‘t]:|
111 2ry —y
= —|=1 1
B, " [2 n 1y N n[:z:t]] :

In[z;] = [1 - xﬂ [Ac + B]

Infry] = Ac[mi—mZ—u]+B. [ml-m2+u].

Mostremos como escribir el siguiente término en funcién de A, y de B,

m2 — u]

* mﬂ'
2 =] (Fe o+ Fy] = 2yt luBO fu, m?, m2] +In {m_} 2 — mz]}

2[m2 —ulm.m, [1—z?
T

Tz m2) Jmiz
2w almm? (L)1
= TRz m) e

Ty

= [u—-mI][A+B] (4.26)

donde la funcién de Kallén estd definida como

2 2 2 2 4 4 2 2 2, 2
N(u,mZ,m2) = w4+ my+my —2 [umZ +um? +mim?Z] .
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Otras relaciones tutiles son:

2 2 2
2 )‘k(u7m7ﬂm7’) +4
Y = 4 T
mx

S, m2)

2 _
(1_‘rt)(1_xt) = Ttm;lr

Con la ayuda de las relaciones anteriores el término m2F),- se escribe como sigue:

27 2
9 m; e MMy 1 —ua; 9 9
iy = | ] - 5 EE { o } =i+ ]l
m2 [ [m;, 1
m2 [ 1 m; 1 2 2

La expresién analitica de la contribucién de las auto-energias es [54]:

e o e | REL v R Pl

2 l4rm w? m2

0 2 2

MEE = M0, = Mz [ﬁ] [2 F _~yE+ln[47r]} —21In {m;} —2In {A—QH :
€ 7 ms

2 l4r
(4.28)

. . ., . _ SE SE
Insertado las expresiones anteriores, la correccion virtual = 1+ fec + fresto + 227 + X205

S}

0 = —{4P pCO0 [u,mZ, m2, N>, m2, m2] + A. [u—m2] + B, [u— m2 — m?]
2
+2F—7E+1n[47r]}—21nlm“2”7]—21n{ A ]+Bo[mz,o,m3]]}
M mzygmq
= —{4P pC’O[um m2, A%, m2 mQ}
+21n[m)\2 2| A= 2]+ B [u = m2 - m]

+3 E —yp+1n [zm]} —2In lm;T] In [Zﬂ + 2} . (4.29)
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A continuacién definimos la funcién fe;-[17], la cual contiene el término de Coulomb y el

término infrarrojo resultado de los diagramas de auto-energia,

a MMy
fCir = 4_ {4]3 pico [Uami:mza )‘2:m72r7m72'] + 2In [ ]
m

22
+ A [u—m2] + B. [u—m2 —m2]} . (4.30)
Es importante senalar que las correcciones de QED completas al decaimiento 7= —
v, contienen dos partes que se han indentificado claramente. Una de ellas es propor-
cional a la densidad cinematica del decaimiento en tres cuerpos, que se traduce en que
la amplitud correspondiente sea proporcional a la amplitud a nivel de arbol y contiene la
divergencia infrarroja. La otra parte no es proporcional a la densidad cinemética de orden
arbol, y no fué considerada por Cirigliano ni la consideraremos mas en esta tesis. Al igual
que en el caso de las correcciones a los decaimientos del Capitulo 2, es probable que los
efectos de esta amplitud adicional puedan ser reabsorbidos en una redefiniciéon del factor
de forma del pién.
Para terminar esta seccion, consideraremos la cinematica del decaimiento a 3 cuerpos
la cual estd determinada por los limites de integracién sobre las dos variables cinematicas
independientes. Estos limites pueden encontrarse en el apéndice C de la referencia [64] y

SOI:

(Mgt +mpo)? <t < m? (4.31)

T

u_(t) <u<ug(t), (4.32)

donde las funciones u. (t) estan definidas por las siguientes expresiones:

1

u(t) = o [2(m7 +mio =) = (m? = t)(mg- + 1t —mp)
—(m2 = t)AV2(t,m2_, mZ)]
1

wll) = [t — ) — (2 — )+~ m)

+(m2 = A2 (8, mi- m)]
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y A(t,m2_,m2,) es la conocida funcién de Kéllen.

4.3. Correcciones de fotones reales a 7~ — 7 71'v,

Como ya discutimos en capitulos anteriores, es necesarios agregar a las correcciones
virtuales las correcciones debidas a fotones reales del proceso 7= — 7~ 7’v, con el fin de
obtener resultados que son finitos en el infrarrojo. En esta seccion solo consideraremos las
correcciones reales debidas a fotones suaves para mostrar el mecanismo de cancelacion de
las divergencias infrarrojas. Como veremos, la cancelacién de dichas divergencias es un

requisito necesario pero no suficiente para asegurarse de que el resultado sea correcto.

Empecemos por definir la funcién de correccién debida a los fotones reales. Después
de integrar la razén diferencial de decaimiento sobre el resto de las variables cinematicas,
podemos obtener la distribucion en las variables ¢ y u introducidas anteriormente. De esta

manera obtenemos:

dl'(r — mrvy)  dI°(r — wav) a
T il = CLY) R (4.33)

donde el factor dI'°(7 — wv) denota la razén diferencial a nivel de drbol indicada en la
ec. (4.8) para el proceso de no-radiativo, I(u,t) es la funcién de correccién debida a fotones

suaves.

La funcion I(u,t,\) fue calculada por primera vez en la referencia [17] con el siguiente

resultado:

T (u, t, X)) = Jin(t,u, A) + Joo(t, u, N) + Joo(t, u, A) (4.34)
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donde las funciones J;; estdn dadas por [17]:

Ju(t,u,\) = In {M} %ln E%g}

+%@muﬂ5y—mﬂYg+hﬁ}&ﬂ@/4—mﬂ—UYﬂM),

) = w[2=0]

m,x(t,u)
Am2 +m2 —t —u)
Joa(t,u, A) =1 - z . 4.35
02( Uy ) n |: mﬂer(t’u) :| ( )

Las definiciones de las variables involucradas son las siguientes:
1

xp(tw) = o [2ma (m7 4 ) = (¢4 mie = mg)(my +mp — )

—l-\/)\Ktm m \//\Kum m2)]

Me(m,y,2) = 22 +y*+ 22 —2(zy + 22 + y2)

2

1—25i\/(1—25)2—(1—3)

Yio = —
1,2 7
() e, = ) Al m2)
m2_+m?—u 26
- )\K(uamzr—amz)
S

m2_ +m2 —u
. \/)\Kum ,m2)
"}/ oy
25

—miom?Z +m2_(m2 —t)(m20 — u) — tu(—m?2 +t + u)

=l
I

+m2o(—mt + tu + m2t + m2u)

Estos resultados fueron obtenidos a partir de la siguiente razén diferencial de decai-

miento una vez que se integra sobre el resto de las variables [17]

U7 (my) = QGF‘V“d‘2|f+(t)|2DC(t’“){[k P 2P - p~

B, SRy
m2 m2_
. i . r A® ;1 ps | 4.36
[kp_%)\Q}Q [kp_—l—%)\?]?} LIPS ( )
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donde el espacio fase invariante de Lorentz para 5 cuerpos es
dp d3p~ &3p® &k
2F,2E, 2F .0 2w

d®prips = 0"(P —q—p~ —p° —k) (4.37)

Después de integrar sobre las demas variables, excepto ¢ y u se obtiene el resultado de las
ecuaciones 4.35. Es facil constatar que en la ecuacién anterior los autores de la referencia
[17] introdujeron una masa ficticia A en el propagador de las particulas que radian el fotén
y que realizaron la suma sobre polarizaciones del fotéon de acuerdo a:

Z e’ = —g" | (4.38)

pols

lo cual equivale a sumar tinicamente sobre los dos grados transversales de polarizacién de
un fotén sin masa.

Como fue senalado por Kinoshita y Sirlin [46], este procedimiento claramente es incon-
sistente. Para resolver esta inconsistencia, es necesario efectuar la suma sobre las polariza-

ciones del fotén de acuerdo a la siguiente relacién [74][75]

Z(e-a)(ﬂb):a.b_w

2 Y
€

donde a y b son dos trivectores y w = V/ K2+ X2 es la energia del foton.. El resultado

(4.39)

w

obtenido para la funcién de correccién de fotones suaves en este (nuestro) caso es:

1 1-0 k
"% (u, t,\) = —— |2 In{——]]|1 mar I'(u,t 4.4
e == o (150) o B v . o
donde
m2 —4m2_\> 4m2m?
— T iy )2 — o T T — 2 2
kmaac \/( om. ) A ﬁ = 1 b2 s b= m., + m,—u, (441)
y

ron = (U i (55) + (- 5 m (i)
202 (P ) s () m ()

+2Li (%(1 + ﬁ)) — 2Li (%(1 - ﬁ)) } . (4.42)

T T
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Esta expresién parece ser muy diferente de la que se obtuvo en la Ref.[17], por lo que es
interesante ver cual es el efecto que la misma tendria en el calculo de las correcciones ra-
diativas totales. Al sumar las correcciones virtuales de ec.(4.30) y las correcciones debidas
a los fotones suaves, y despues de integrar sobre la variable u definida en ec.(4.21), obte-
nemos el siguiente resultado para la distribucién en la masa invariante de los dos piones

del proceso 7 — wr(7):

Alrriy)  GEm2|Vi|? Am2\ % 9t 20
= g 1——= 1—— ) (1+= 112G, (t 4.43
dt 3843 t m2 + m2 |+ Gen(t) , (4.43)

donde la funcion GY%,,(t) contiene la contribucién a nivel drbol mas las correcciones radia-
tivas que incluyen las correcciones virtuales y las correcciones debidas a los fotones reales
suaves. Es interesante notar que, en ambos casos, la funcién de correccion de largas distan-
cias es independiente de la masa ficticia del fotén por lo que este criterio no es suficiente

para garantizar que el resultado de las correcciones radiativas es correcto.

La funcién G%,,(t) estd definida mediante la siguiente expresién:

[ De(t, u)A°(t, u)du

Gou(t) =1 4.44
donde D.(t,u) es la densidad cinematica del espacio fase de tres cuerpos
m:oo 4 2 2 2

D.(t,u) = T(mT —t)+2m; —2u(mZ —t+2m3) + 2u” | (4.45)

y AY(t,u, \) es la suma de las correcciones virtuales 2 fci, (t, u, \) eq.(4.30) y de las correc-
ciones reales ol (t,u, \)/m ec.(4.33). Para propdsitos de comparacién, a continuacién pro-

porcionamos las expresiones explicitas de A°(¢,u). Al usar las correcciones reales de la
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Figura 4.2: Comparacién del calculo de G%,,(t) sumando sobre 2 (linea entrecortada) y 3
(linea sélida) estados de polarizacién del foton.

referencia [18], ecs.(4.34) y (4.35), se obtiene:

T 4 2 t’ ~2 2 _ t 2 2 _t
A%(tau) = g _2y7 In [.CET] In {M} +1n |:(m7' )(m; +m7r U ):|
Tl Ve Moy 22 ()
L ; 2 [ 1/ o [—1/Yy
Lis || — Lig [Y1] +In? | 22| 1
+ g2 [ 12 [YJ ig [Y1] +In [ 1 n 1
1 1 2 —Yr Tt
—i-% [u—m?2] (—5 In[r] + N In[x,])
uw—m2—m2 1 o, —y, T
+———— (5 In[rr] + ————75 In[z,])
2u 2 N
2 2 )

mo,+mi—u X

1 T
— =1 2In[z-]In[l — 2?] — —
o1 —xZ[ 5 n[z,] + 2Infz, ] In[l — 27] )

X

1
+g 1H2 [7’7—] + LIQ[XE] + ng[l —

] + Lis[1 — x,/1/]] } : (4.46)

.
Vi

En el caso en que se toman en cuenta los tres grados de polarizacion del fotéon masivo,
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nosotros estamos obteniendo:

1 1-6 x 2m2 — b)? — V2 3°
s = 2 e () o (2052
1-5 1—n/(1-7)
+n lln(l—l—ﬁ) +(1—7r;)ln (m)] — 23
1By, (mEob) |
+21n(1_ﬁ)ln (mzmz )+2L12 (—ﬂﬁ) ~ 9Li, (—1Zﬁ)}
1 1 1— 32
+1—21n2+%tanh ﬁl2+41n2+ln( )]

4

1 : : (1= . (1+
—% [Qng(ﬁ) - 2L12(—ﬁ) + ng (Tﬁ) — L12 (?ﬁ)}

1 [u—m?2 1 2—y,

-~ | —=zInr, Inx,
+2[ u ( 2n7“+ Vrr 1—22 nx)
_i_u_m?r_mz 11 +2TT_yT Tr 1

—F— | =Inr, nw,

u 2 Vs 1—a2

2(m2 +m? —u) =z, [ 1 w2

——In’z, + 2Inx, In(1 — 22) — 5

MMy 1—2a2 2

+% In?r, + Liy(22) + Lis (1 - 57_) +Liy(1 — xf\/ﬁ)H } o (447)

T

En las expresiones anteriores hemos puesto un subindice 7' (T' + L) para denotar que
dichas correcciones se obtienen al considerar grados de libertad transversales ( transversales
mas longitudinal) para el fotén masivo. Puede observarse que ambas expresiones para las
correcciones radiativas son independientes de la divergencia infrarroja (como debe de ser),
aunque ellas difieren en varios de los los términos de las primeras dos lineas. Para poder
ver la diferencia entre estas dos correcciones, en la figura (4.2) mostramos la grafica de la
correccién G%,,(¢) en funcién de ¢. Sorprendentemente ambas correcciones son casi idénticas
excepto para valores muy pequenos de ¢t donde se puede apreciar una pequena diferencia.
Esto nos permite concluir que, a pesar de que el calculo de las correcciones debidas a
fotones suaves hechas en la referencia [17] es incorrecta, el efecto de hacerlas correctamente
produce un cambio despreciable. En consecuencia, las correcciones de isospin que provienen

0

de las correcciones radiativas al proceso 7~ — 7~ 7w v, permanecen casi las mismas que las
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reportadas en el cdlculo incorrecto de la referencia [17][19].

4.4. Conclusiones

En este capitulo hemos revisado las correcciones radiativas al proceso 7 — wwr. Como
se discutié en las referencias [14]-[20], estas correcciones son de gran importancia en la
evaluacion de la correccion de isospin a la prediccion de las correcciones hadrénicas al
momento magnético del muon cuando se usan datos experimentales del leptén 7.

En primer lugar revisamos las correcciones virtuales y logramos verificar que las mismas
son idénticas a las calculadas anteriormente en la referencia [17] bajo la hipdtesis de que el
factor de forma del pion no varia con la energia. Demostramos también que las divergencias
ultravioletas provenientes de las correcciones virtuales solo aparecen en un término que no
es factorizable pero que en principio puede reabsorberse en la redefinicién de las constantes
de acoplamiento.

Finalmente, en esta tesis hicimos el célculo correcto de las correcciones debidas a foto-
nes (reales) suaves. En célculos realizados anteriormente [17][19] se habia supuesto que el
foton tiene una masa (ficticia), pero solo se habia efectuado la suma sobre los dos grados
transversales de la polarizacién del fotén. En esta tesis nosotros hicimos ese célculo de ma-
nera consistente al efectuar la suma sobre los tres grados de polarizaciéon que debe tener un
foton masivo. Aunque los resultados analiticos son realmente diferentes, resulta sorpren-
dente que para este caso el efecto de dicho célculo correcto en las correcciones radiativas

al espectro en la masa invariante de dos piones (la funcién G%,,(t)) es muy pequenia.



Capitulo 5

Conclusiones (Generales y
Perspectivas

En el presente trabajo de tesis hemos estudiado los efectos del rompimiento de la si-
metria de isospin inducidos por las correcciones radiativas electromagnéticas en varias
observables fisicas asociadas con los decaimientos en dos particulas pseudoescalares. Nues-
tro trabajo se concentré principalmente en la evaluacion de estas correcciones al orden «
en el régimen de largas distancias.

En todos los casos hemos usado el método de regularizacién dimensional para regu-
larizar las divergencias ultravioletas y hemos introducido una pequena masa ficticia para
el foton para regularizar las divergencias infrarrojas. En todos los casos hemos probado
explicitamente la cancelacion de las divergencias infrarrojas. En el caso de las correccio-
nes debidas a fotones reales suaves, hemos realizado los cdlculos de manera consistente
tomando en cuenta los tres grados de polarizacion para el fotén masivo.

Nuestras conclusiones especificas para cada caso pueden resumirse de la siguiente forma:

1.- En el Capitulo 2 hemos calculado las anchuras totales de decaimiento de los meso-
nes pt y p con una precisién mayor a 0.5 %. Para ello hemos calculado las correcciones
radiativas electromagnéticas a los modos p — 77 y las anchuras de los modos radiativos
p — mry. Nuestros resultados[76] muestran que existe una correlacién importante en el

rompimiento de la simetria de isospin entre las anchuras y las masas de los mesones p. En

97
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las futuras medidas de estas cantidades a partir de los datos experimentales del factor de
forma del pion, serd necesario tomar en cuenta dichas correlaciones ya que las diferentes
medidas experimentales efectuadas hasta ahora no son conclusivas respecto al tamano y

signo del rompimiento de la simetria de isospin.

En lo relativo a los modos de decaimientos radiativos (p — 77y), hemos encontrado a
partir de nuestros calculos que el rompimiento de isospin es AI') = 1.1 MeV, el cual difiere
de los valores usados anteriormente AI'y = 0.4540.45 MeV [13][17], en la evaluacién de la
contribucién hadronica al momento magnético anémalo del muon a partir de los datos del
proceso T — wrv [68][69][70]. Nuestros resultados podrian tener un efecto importante para
encontrar una explicacion a la discrepancia que existe actualmente entre las predicciones
de la contribucion hadrénica al momento magnético del muon basados en datos de la
aniquilacién ete~[7][8][9] y en decaimientos del leptén 7 [68][69][70].

2.- En el capitulo 3 hemos calculado las correcciones radiativas de orden « a los decai-
mientos ¢(1020) — KT K~ /K Kgs. Los cdlculos actuales de las correcciones radiativas a
esta razén, efectuados usando la electrodinamica escalar, exceden en 4.5 desviaciones estan-
dar al valor medido experimentalmente. Nuestro calculo ha tomado en cuenta el efecto de la
estructura de los kaones en el calculo de las correcciones virtuales. Nuestros resultados|66]
indican que no es posible explicar dicha discrepancia entre teoria y experimento basandose
en metodos convencionales (es decir, tomando en cuenta la diferencia de masas de los kao-
nes y las correcciones radiativas). Nuestra conclusién al respecto es que hay que esperar a
que se realicen medidas mas precisas de estos decaimientos dominantes del meson vectorial

¢(1020) antes de pretender que la teoria falla.

3.-Finalmente, en el Capitulo 4 hemos reconsiderado las correcciones radiativas de or-
den « en el decaimiento 7 — 7wwv. Los datos experimentales sobre el espectro de dos piones
en este proceso son de enorme importancia en la verificacion de la hipotesis de CVC y en
el calculo de la contribucion hadrénica de la polarizacion del vacio al momento magnético

andémalo del muon. En ambos casos es necesario tener un control de los efectos de rom-
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pimiento del isospin del orden de unas cuantas partes por mil, y es ahi donde radica la
importancia de las correcciones radiativas. En esta tesis hemos recalculado las correcciones
virtuales a este proceso en la aproximacién en que el factor de forma del pion es cons-
tante y hemos encontrado los mismos resultados que en la referencia [17]. Posteriormente,
realizamos el calculo de las correcciones debidas a fotones reales suaves. Esta parte de la
correccién habia sido calculado de forma incorrecta en la referencia [17][18] pues se consi-
deraba que el fotén solo tenfa dos grados (transversales) de polarizacién. Basados en los
trabajos de Kinoshita y Sirlin [46], rehicimos este célculo sumando sobre los tres grados de
libertad del fotéon masivo en las correcciones de fotones reales. Sin embargo, el resultado
de las correcciones radiativas no difieren sensiblemente de las calculadas mediante el pro-
cedimiento incorrecto de la ref. [17] por lo que el impacto en la prediccién tedrica de a, a
partir de datos del 7, no es significativo.

La perspectiva del trabajo realizado esta centrada principalmente en los estudios del
capitulo 2 y 4. El resultado obtenido para AI', en el capitulo 2 puede ser usado en conjunto

con los resultados de las referencias [19][20] para obtener una prediccién del momento

SM

2(7) que incluird, términos dependientes del modelo[19],

magnético anémalo del muon a
[20] no considerados anteriormente y los efectos de rompimiento de la simetria de isospin

en el meson p(770) obtenidos en esta tesis de manera consistente[76].
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Apéndice A

Autoenergias de kaones

En el capitulo 3, se usa el factor de forma de VDM para modelar la estructura de los
kaones. Como se menciona en dicho capitulo, las amplitudes en el caso de kaones puntuales
se modifican al introducir el factor de forma. Para obtener las amplitudes de los diagramas
de Feynman, se introduce por cada linea conectando un fotén con un kaon, un factor de
forma fr+(k?), fxo(k*) segtn corresponda, procedimiento que también se realiza en los
diagramas de auto-energia.

En este apéndice obtendremos la contribucién de los diagramas de auto-energia consi-
derando la estructura electromagnética de los kaones cargados (el procedimiento se realiza
de manera similar al considerar la estructura en el caso de los kaones neutros). Se muestra
que al considerar todos los diagramas de Feynman del proceso, la divergencia ultravioleta
se cancela.

Recordemos que la expresién para obtener la contribucion de autoenergia de manera
general, para el caso de particulas escalares es:

MO¢?

MSE
21

(82P+/8p2)‘p2:m?3+ : (A]')

donde M"Y es la amplitud a nivel de drbol del proceso en el cual aparece el escalar cargado
(por ejemplo, ¢ — KTK ™), Xp+ es la funcién de auto-energia del escalar cargado denotado

como P y cuyo momento se ha denotado por p.

101
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Definimos la funcién de autoenergia ¥ 7" (p, mg+, my) para los kaones cargados con-
siderando el factor de forma. La parte divergente se obtiene después obtener la derivada
(ver (A.1)). Usando la expansién del factor de forma que permite identificar el caso puntual

ec.(3.36) obtenemos la funcién de auto-energia

EVDM(

b, Mg+, mV)

1 / 2p + k]* [fx+]” dk*
@m)* ) k2 [(p+ k) —mi,]

= Zg(-‘r (pa mK) + Z?{-ﬁ- (pa mg+, IﬁV) + Z?{-ﬁ- (pa mg+, IﬁVia ﬁlvi) )

(A.2)

donde

S0 (p 1) 1 / 2p + k] dik*
5 + = )
DK @)t ) B+ k2 - m,]
o\~ GvErK- 1 / [2p + K] k2dk
fv@mt) R [(p+k)? —mi, ] [—k%+mP]

A i j -1
ol i) = Y PO f o
Ve VJ

1
Rk —mE ] [k 2] [k a,]

?(Jr (pa mg+, mV) = )

(A.3)

El primer término es la contribucion a la funcién de auto-energia en el caso de kaones
puntuales, la cual ya ha sido estudiado con anterioridad. Este contiene una parte divergente
infrarroja que se cancela al sumarle la contribucién de fotones reales y una parte divergente
ultravioleta que desaparece al sumarla a la correccién al vértice. La amplitud de auto-

energia en el caso puntual es:

: 2 2
Mfﬁ’pmnt = Mj x [a] % lQ E — v +1n [47?]} —2In {mfr} —2In [ /\2 H . (A4
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Al evaluar el segundo término en la ec. (A.3) obtenemos:

_[2p% +2m2, — m? dk*
%+ (D, Mg+, my) = —2 JVE+K [p K+ V]/[k2

fv (271')4
JVK+K- dk*
—2 Z fv (2m)4 / (k% — %]

gvr+r- 1 dk*
i fv (27T)4/ [(p+ k)2 _mK+}

= 2y P [2p2 o+ 2mi — 1] o5 B0 [p?mi, d ]

fv
JVK+K- gVK+K-
= - 167T2 AD [y ] +2) TRl (]

La derivada de este término con respecto a p? evaluada en p? = m?, da lugar a la contri-

bucién (divergente UV):

. 7 _ 12 m2
0%+ (p, mk+, mV)/aPQ‘pQ = m%ﬁ = —2 1672 gw}:K 2 {E — g+ In[47n] — In [ MI? ”
(A.5)

El tercer término de la ec.(A.3) es

Gvik+k- Qvik+k- [ 207 +2mg, — 1,
' Z Jvi fvi l 1672 %
{BO [pQ’ mf{h mvl} - mVICO [0 p m%(*? m%{ﬂ Iﬁ%ﬂa m%h] }
2 gvi g 5
+167T22 V;,(‘;:K VJ;.;JFK { %/JBO |:O mvumgﬂ}
+A40 [my,] }
_ Z QVij[::K— gVJ;:;K— = {mwBO [p2, m%{h Ifl%h]

+A0 [mi ]}

EK"' (p, mg+, IHV1 mVJ)

La derivada de la expresién anterior evaluada en p? = m%ﬁ da lugar a la contribucién

divergente :

b S S 2 Jvik+Kk- 9Qvik+k- 1
O (p, e My, s OD° o2 | = > ) > o ——52[A] , (A6)
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m2
donde A =2 — yp +In[47] — In [%2*]
Sumando las contribuciones de la funcién de auto-energia ecs.(A.4, A.5, A.6), la ampli-
tud del diagrama de auto-energia en el VDM es:

MggM 5 X .

o (22) 21 | a 1. (A7)

mK+

donde ahora se ha definido

0 JGvK+K- Jvik+k- QViK+K-
= |1—-2 + .
Row = |12« STy e e

Es facil mostrar que el resultado total del cdlculo usando VDM es finito en el ultravioleta.

Esto se puede hacer retomando la amplitud MY B del capitulo 3 (ec. (3.43))y aislando

en ella la parte que depende del término divergente A en la siguiente forma:
- !
MYBM = SALEY — MS x 2 20, [BA] (A8)

donde MYEM contiene solo términos finitos en el ultravioleta. Haciendo lo mismo para la

amplitud del diagrama de Coulomb (Ver ecs. 3.44, 3.45, 3.47 y 3.49) obtenemos:
MYPM = MERY + MG x = fpy [A] (A.9)

Sumando las 2 contribuciones de auto-energia (A.7) con (A.8),(A.9) se obtiene que la
expresion total se escribe

(67

M\ZCDM = M\ZCDM + M% X I

fopam [=3A + A +2A] . (A.10)

La amplitud total M7 ,,,, es libre de divergencias ultravioleta y ademéds, independiente de
la escala p introducida en el proceso de regularizacion dimensional, una vez que se suman

todas las amplitudes, incluyendo los diagramas de autoenergia modificados.



105

K

Figura A.1: Diagrama de auto-energia considerando la estructura del kaon cargado K.
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Apéndice B

El proceso radiativo V — PTP ™~

En este apéndice mostramos en forma detallada el célculo del proceso radiativo V' —
PtP7v. En la seccién de las evaluaciones numéricas nos concentraremos en el caso del

proceso ¢ — K+TK ™.

B.1. Emision de fotones reales suaves

La divergencia infrarroja presente en las correcciones radiativa virtuales se cancela con
la adicién de la contribucién de fotones reales suaves, tal como se menciona en el capitulo
2. En el célculo a 1 lazo (correcciones radiativas virtuales), la divergencia infrarroja se
origina cuando el k* — 0 (k es el momento del fotén virtual en el loop). Para aislar la
divergencia, es usual agregar un parametro A\ en el propagador del fotén que representa
una masa ficticia para éste. Al final del calculo, se toma el limite A — 0 y se recupera
QED, mientras que la divergencia infrarroja queda aislada en forma logaritmica.

La emisiéon de un fotén real suave (de energia pequena comparada con la resolucién
del experimento) también da lugar a una divergencia infrarroja la cual se regulariza tam-
bién introduciendo una masa ficticia para el fotén. Al sumar sobre las polarizaciones del
fotén real para obtener la probabilidad de desintegracion del proceso radiativo, es necesario
tomar en cuenta que se debe sumar sobre los 3 grados de polarizacion del fotéon masivo. Re-

cordemos que en el caso de fotones reales sin masa, existen solo dos estados (transversales)

107
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de polarizacion por lo que la siguiente relacién se satisface en ese caso:

Ze“e” =—g" . (B.1)

pol

Introducir un pardmetro de masa significa que no podemos utilizar ya esta relacion. Es
necesario ahora, introducir también el modo longitudinal correspondiente [41]. En este
seccion mostraremos el procedimiento correcto para calcular esta contribucion.

La expresion para la suma sobre las polarizaciones transversales longitudinales del fotén
masivo en la norma de Coester|[74][75], se escribe como:

_a-kb-k

2 )

D (e-a)(e-b)=a-b (B.2)

€

w

donde ahora estamos empleando la relacién energia-momento del fotén dada por w? =
k? + 2.

A pesar de que la ec.(C.2) parece que es no covariante, hemos de sefialar que se ha
elegido una norma (Coester) para escribir dicha relacién, lo que significa que se ha fijado
la parametrizacion de los vectores de polarizacion. El céalculo se realiza en el sistema de

referencia en el que el meson vectorial se encuentra en reposo, y k sobre el eje z.

k = (0,0,k),
el = (0,1,0,0),

¢ = (0,0,1,0) . (B.3)

Para obtener la expresion en otro sistema de referencia es necesario acompanar la trans-
formacion de Lorentz con una transformacion de norma correspondiente.
Tomando en cuenta solo el término divergente de la amplitud de Low, la anchura de

decaimiento del proceso V' — P* P~ para un fotén suave se escribe (después de integrar
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sobre los momentos de los pseudoscalares) de la siguiente manera
Fsoft d3k
2 —
] s S e
@
= [I 1+ 1o+ 1)
d3k
ho- z S
p-€
I, = — | |—| —
2 Z T / ’ p-k| w’
Ly, = —22 / d— . (B.4)
w

La suma sobre las polarizaciones del foton real se realiza usando ec.(B.2). La integracién
en el angulo azimutal es trivial, y el siguiente paso es realizar la integraciéon en el angulo

polar 6. Enfocandonos en las 2 primeras integrales

T _ _/2ﬂk251n9d9dkm2(1 |E|2:gszg)
1 T o(q- k) 7
T _ _/2ﬂk251n9d9dk’ﬁ‘2(1 |E|2:gszg)
2 T o(p R 7
donde
p-k = mew 1 |k|5 cos @ |
2 w
¢k = 2 1+M ’
2 w

Realizando la integracién en la variable angular se muestra que el resultado final es el

mismo para [y y Is.

[Bu(B*(v* — 1) = 2) + (1 — f*v*) In [M] ].

Bv—1
(B.5)

1 1 — 2 9
/1 (I+ ﬁfI)de T (B - )
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donde v = k/w. Por lo tanto una vez realizada la integracién angular, el resultado es el

mismo para I; = I.

I=L=1 = ) - /'

/ 27Tk2dk sin 9d6|(ﬂ2 k?
- 5 5 |1 — —cos 20| .
wq(w + Bk cos b)) w?

d3l<;

(B.6)

Usando el siguiente cambio de variable y modificando los limites de integracién correspon-

dientes de acuerdo con

v=—, v; =0, Vf = —— , (B.7)
w 1+ 2

se obtiene que I se pude separar en 2 términos

I = 418+ 1Y),

. v [ (v + 1) — 2] dv
= / [1—v?][1 - 0252] ’

1+,@U

vln
5 = 5/ 1_1}2 ) (B.8)

Al final de la integraciéon, todos los términos que dependen de A tal que son cero en el

limite A — 0 se omiten, dando como resultado lo siguiente:

= 1-2m[2 + —1n [ﬂ}—ﬂn[%} ,

26 g
# = g [ 15 -t 1] e [
+In L f;] In Efﬂ + 27 In [%} ]. (B.9)
Incorporando los resultados en la cc.(B.8) se obtiene
1= 4[-m[%] [2+%ln l%} |~ 22 +1
pli 5] e [T e 5

—1nl F }ml”ﬂ —urln lﬂ}ﬂ. (B.10)
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La integracion restante se realiza de manera similar
2 / peq— 25 Pk
(¢-K)(p-k) w

B 4ﬁQ/ 1— E22 12 dkde
ﬁQk x2w2 w

- [z [ [

= 8/ v* dv—4(1_ﬁﬁ2)/vm[%}dv

]12 =

1 -2 1 -2
A2 1—p3? A2 1+
= 4[—2+21n[2]—1n[w—8]— 255 [—lnlw—g}ln[ﬁ}
1+ C[1-p 1403 3 1+
—(Liy [1—5} — Li, ll—i-ﬁ} +1In [—l—ﬁ} In {71_52} +mln [1_5})” .

(B.11)

Finalmente, incorporando los resultados de las ecs.(B.10, B.11) en la ec.(B.4) obtenemos

que la contribucién de fotones suaves es:

el a A 1+ﬁ2 1 1-3
T, ;[2lnl2—%}{1+ 23 {1%}}}__ l1+ﬂ}

1+6% . [1-7 . [14+8 -
25 {LIQ{Hﬁ}_LIQ ll—ﬁ%”lnllw]

+1In [%} In llﬁ"_ﬁ;} 1 - (B.12)

La expresion contiene el término divergente infrarrojo necesario para cancelar la divergencia

que se encuentra en la correccién virtual. Mediante las relaciones entre dilogaritmos, esta
expresion reproduce el resultado presentado en la ref.[11]
Supongamos ahora que hubiesemos usado la expresién (incorrecta) de la ec(B.1) para

efectuar la suma sobre polarizaciones del fotén,

1— 32 1 1
Fsoft — FO
g [47J T /0 | w?(1+ [ cosh)? - w?(1 — [ cosb)?

"o &
w?(1 — [%cos?0)! w

(B.13)
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donde, como se ha usado la relacién de suma sobre polarizaciones para fotén real, se tienen

las expresiones:

p-k = med)[l—ﬂcose]
gk = ”TW’[Hﬁcose]
K = w

Una de las integrales a realizar la mostramos explicitamente

wo d3k
“ = /0 w?(1 4 B cosb)?
/“’O k*dk sin 6d6
2T
o w3(1=£Bcosh)?

 dr /woy/%'Pdk_ 4 /“’Od_w
I A S

1 iﬂﬁQ In [%}

donde en el peniltimo paso, se coloco el corte para realizar la integracién. Es precisamente

en esta etapa del procedimiento que suele cometerse una inconsistencia en el cdlculo. Al
sumar sobre polarizaciones del foton se toma en cuenta 2 estados, sin embargo, al colocar el
corte, esto implica una masa al fotén y por lo tanto se requiere considerar también el otro
estado de polarizacion. La otra integral necesaria a resolver, usando el mismo procedimiento

inconsistente senalado es:

ol d’k 4n(1+ B

b - _/“’0 /“’0 |k|?dk sin 0d6
B o w3(l—32cos2f) 1—=p%2  Jo w3(l—[?%cos?0)
471 + 32 1+08| [ dw 41+ 32 1+ wo
= In In In [—}
0

1= 10 wo p1=p -8 LA
La expresion para la razon de decaimiento se escribe como:
A 1+5%, [1-3
pSoft — 0 [9] ol | 2| |1 1 B.14
g e e o Y Bl e (B.1)

Claramente la diferencia entre las expresiones incorrecta (B.14) y la correcta (B.12) son

término finitos.



B.2. CONTRIBUCIONES FINITAS AL DECAIMIENTO ¢ — KTK ™~ 113

B.2. Contribuciones finitas al decaimiento ¢ — KK~

Ahora mostraremos la contribucién de los términos de orden cero (en la energia del
fotén) en la amplitud del decaimiento radiativo ¢ — KTK ™.

El célculo de la anchura de emisién de fotén suave solo toma en cuenta el término
divergente en la energia del fotén (de orden w™') de la amplitud radiativa. Recordemos

que la probabilidad del proceso radiativo V' — PTP~ puede descomponerse
1
§Z\M\2 = Ajw? 4+ Bu° (B.15)

El primer término es empleado para calcular el proceso de emision de fotén suave, y el
segundo término, que es finito en el limite w — 0, se le denomina término regular. En el
término regular puede usarse la suma sobre 2 estados de polarizacién del fotén sin problema.
Para mostrar la contribucion regular, tomaremos como caso particular el decaimiento ¢ —

KTK™~

16¢g°Ta
Bu T 1 [(g k]
qg-k+p-k| , 9 5 q-
1+ ——— — — — —2q-k
TRy [T e T Mg }

y L esta definida por la siguiente expresién[40]

s Mk my q-p
E=a o o o nen

La contribucion del término regular se obtiene a partir de la razén diferencial de decaimiento

siguiente
4aF
dI" = T)——_dEdw (B.16)
Tmivy
donde se ha definido a la funcion F como
F o= —I*[(q- k2]
q-k+p-k 9 9 5 q-k
+l+ ——— |my, — My —mix—— —2q-k
mip-k) [ T T Epek
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La integracién en la energia del fotén puede tomar el limite inferior w = 0 sin problema
alguno y se realiza hasta la energia maxima permitida por la cinemética del proceso. Al
integrar sobre todo el espacio de fase del modo radiativo se obtiene:

rr
70
F¢

El comportamiento del término regular en funcion de la energia de corte wy se muestra en

= 0.00007962 (B.17)

la siguiente tabla.

wo(MeV) | 1 2 3 4 5 6 7 8 9
57 % 10° [ 0.0148 | 0.0588 | 0.1309 | 0.2300 | 0.3552 | 0.5053 | 0.6791 | 0.8756 | 1.0936
5P 107 | 7.9477 | 7.9003 | 7.8316 | 7.7324 | 7.6073 | 7.4572 | 7.2834 | 7.0869 | 6.8689

wo(MeV) | 10 11 12 13 14 15 16 17 18
(5}%”‘ x 10° | 1.3318 | 1.589 | 1.8638 | 2.1549 | 2.4608 | 2.7801 | 3.1111 | 3.4523 | 3.8018
dp? x 10° | 6.6307 | 6.3735 | 6.0987 | 5.8076 | 55017 | 5.1824 | 4.8514 | 4.5102 | 4.1660

wo(MeV) | 19 20 21 22 23 24 25 26 27
5ng x 10° | 4.1557 | 4.5185 | 4.8815 | 5.2444 | 5.6049 | 59599 | 6.3006 | 6.6404 | 6.9577
dp? x 10° | 3.8046 | 3.4440 | 3.0810 | 2.7181 | 2.3576 | 2.0026 | 1.6561 | 1.3221 | 1.0048

wo(MeV) | 28 29 30 31 315
5T % 10° | 7.2527 | 7.5183 | 7.7441 | 7.9117 | 7.9592
55 10° | 0.7098 | 0.4442 | 0.2184 | 0.0508 | 0.0033

Se obtiene (52”0 integrando la parte regular en la energia del fotén, desde 0 hasta wy,
mientras que d5” se obtiene integrando desde wp hasta la energfa maxima wy,,, permitido
por la cinemética (wpe = 31.5966). Claramente la suma 52”0 + 057 representa integrar la

parte regular desde 0 hasta la energia maxima del fotén wy,q;.

B.3. Contribuciones dependientes del modelo en ¢ —
KtK™~

Supongamos ahora que existe un estado intermedio resonante en el proceso radiativo (el

cual genera términos dependientes del modelo). En este caso, consideraremos ¢ — K*K~
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J 6 57

a) b)

Figura B.1: Ejemplo de contribucién dependiente del modelo al proceso ¢ — KTK ™.

donde el meson vectorial K* luego decae mediante el proceso K* — K*+. Una contribucién
similar existe para el kaon negativo. Analizamos primero el caso del kaon negativo, la
amplitud a nivel drbol del proceso es [77]

_QK*KWQ¢K*K*€V77ﬁ€uua5€>\,675k”(P - Q)QP)\(P - q)T
mZ +mi, —mi. —2P-p

MBM =

de tal manera que el término de interferencia de esta amplitud con la de Low, sumada

sobre polarizaciones es:

—2e94x K 9oxc- k- Gi-k+~ (k- p)(k - P)?L?

mi—i—m%ﬁ—m%{*—QP'p

> MpyMi,, = (B.18)

donde se recordara que

P’ ¢ pq
(k- p)? " (k- q)? _2(/€-p)(k~CJ)

Para calcular la contribucién a la anchura usamos la expresion siguiente

I —

’

Uom _ / —2e9yx K YoiK- 9Kkt (k- p)(k - P)’L2dEdw
[ [mg +miey —mie. — 2P - p| dmin?gl pv®
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Usamos los siguientes valores de las constantes obtenidas bajo la simetria SU(3) (ver [64])

JoK+K—- = 4.48 s
Ikt = (253 x107)MeV ™"
1 .
JoKk*K_ = _2—\/§G%/"pr [COS 0, 4+ 2v/2r sin Hv] ,
0, = 3537,
r = 1088,

Ghv,p = (1052 x107%)MeV ™",
Recordemos que la amplitud del modo radiativo es posible separarla de la siguiente manera
T _ AqMI MD
M = MTT + MTT (B.19)

donde /\/ly I es la parte independiente del modelo, mientras que la dependencia del modelo
(inclusién de estados intermedios en el proceso) estd contenida en /\/ly D
Asi, la contribucién dependiente e independiente del modelo a la anchura de decamiento

del modo radiativo se puede dividir como sigue:

T MI MD
7= e (B.20)

donde I'}'P contiene, en este caso, el término de interferencia entre la amplitud indepen-
diente del modelo y la amplitud dependiente del modelo (ver ec(B.18)). La contribucién
dependiente del modelo (fig(B.1)) a la anchura de decamiento y normalizada a la anchura
del modo no radiativo es:

MD

110 = —7.04x107% . (B.21)
¢




Apéndice C

Correcciones radiativas de conveccion
en ,00 — T

En este apéndice calculamos las correcciones radiativas virtuales al proceso p® — w7~
en el caso que se consideran unicamente los términos de conveccion en los vértices electro-
magnéticos. En el Capitulo 2 de esta tesis se hizo el cédlculo completo de estas correcciones

virtuales.

El diagrama de auto-energia para el término de conveccién se reduce a:

5 M047Ta 1 / 2p + k] [2p + K] dk*
T+ —

2 (27’(')4 l{2 [(p_'_ l{)2 _ mi+}2 . (Cl)

El término de conveccion del diagrama de interaccién de Coulomb, expresado como funcién

de la velocidad:

1 [g4ma2p—k]-[2¢+ K] [(p — q) - n] dk*
Me = (2m)4 / k2 [(p— k)2 —m2,] [(q+ k)? —m?2,]

1 — 14+v3 [1- A2
- _MO%[—AUV—HVOm{ VO}JF +V01n[ Vo}ln[ 2}

1 —+ Vo Vo 1 —+ Vo Hlﬂ_+

1+V8 1—vy 4vy 1 1—vy
— In 2In|———| —=In
Vo 1 + Vo (1 + V())2 2 1 + Vo
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T[+

T T

Figura C.1: Diagramas que dan lugar a los términos de conveccién.

donde Ay es el término divergente ultravioleta definido de la forma usual

Avy = 2 = 4 + Indn] — In {miﬂ
€ H
Sumando las contribuciones resultantes de auto-energias y del término de Coulomb se
obtiene la contribucion a las correcciones virtuales de los términos de conveccién la cual es
finita en el ultravioleta y contiene todas las divergencias infrarrojas del calculo

2 1+v2 [1-— 1+ v2
2fcc = g[—1n{A2H1+ +Voln{ VOH+{ +V°]w2

™ mﬁ 2V0 1+ Vo 2V0

o o ) - [ 0 i)

+[1—%1n[1_“)”]. (C.3)

1+V0

En la siguiente tabla se muestra la correccién radiativa que resulta de considerar los

términos de conveccién en las correcciones virtuales que incluye la contribucion de los
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fotones suaves mostrados en el Capitulo 2. La evaluacién numérica se obtuvo usando m,+ =

139.57 MeV, my = 775 MeV.

wo (MeV) | 055

2 —0.04196
4 —0.03434
6 —0.02987
8 —0.02671
10 —0.02425
12 —0.02224
14 —0.02055
16 —0.01908
18 —0.01778
20 —0.01662
30 —0.01216
40 —0.008995
90 —0.006539
60 —0.004532
70 —0.002836
80 —0.001366
90 —0.000069
100 0.001089

El célculo anterior es invariante de norma electromagnética (al igual que el resultado
del caso cargado considerado en el Capitulo 2) como lo mostramos a continuacién. El

propagador del fotén mas general tiene la forma [78] :

_gNV + (l_gk?fukl/]

DM — [ 2 (04)
donde el valor del parametro ¢ depende de la norma usada. Empleando la ec.(C.4) obte-

nemos un término adicional a la amplitud de autoenergia ! el cual es divergente:

§6, — MO@Q(l—ﬁ)/[(Qerk)%] [(2p + k) - k] dk*

2u(2m)* K [(p+ k)2 —m2,]?
M1 - Odra 1 dk*
2 (2m)4 / I (C-5)

1A lo largo de la tesis hemos empleado la norma de Feynman para el popagador del fotén, por lo que

el término adicional se debe a la segunda parte del propagador ec.(C.4)
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De la misma manera, el término dependiente de la norma en el propagador del fotén genera

un término divergente en el calculo de la amplitud de Coulomb:

ce . Mlma(1-¢) 1 [(2p — k) - K] [(2q + k) - k] dk*
Mgt = 2 (27)4 / K [(p— k)2 —m2.] [(q+ k)% — m2, ]
M1 —&dra 1 [ di
- . i) B (C.6)

Al sumar dichas contribuciones ellas se cancelan mutuamente, por lo que una eléccion
distinta de la norma en el calculo de las correcciones radiativas virtuales de los términos
de conveccién no afecta el resultado final. Esto estda en acuerdo con el resultado general
enunciado por Sirlin[79], las correcciones virtuales provenientes de los términos de convec-
cion son finitas en el ultravioleta, contienen todas las divergencias infrarrojas necesarias
para cancelar la que proviene del bremsstrahlung suave y ademads son invariantes de nor-
ma. El resultado de Sirlin fue obtenido usando la norma de Landau, pero de acuerdo a su
enunciado, es posible elegir cualquier otra norma.

Una vez que se ha mostrado que el resultado satisface la invarianza de norma, resta por
estudiar los términos restantes de la separacién realizada en el tratamiento de las correc-
ciones virtuales (ver capitulo ), que son finitos en el infrarrojo, pero contienen divergencias
ultravioletas y posibles contribuciones finitas adicionales. El término restante del diagrama
de auto-energia es divergente ultravioleta y puede escribirse como:

a
= MOEUT : (C.7)

donde ¢" es una funcion escalar de Lorentz y contiene divergencias ultravioleta.
El resto del diagrama de interaccion de Coulomb tambien es finito en el infrarrojo, y

se puede escribir como:
T o T
M3C = MOEJ% 5 (C.8)

donde la funcién escalar de Lorentz f; contiene términos finitos y divergencias ultrvioleta.
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A primer orden en « la amplitud del proceso se escribe como:

M = MO+ M4+ M

= MO+Mof§C+Mof{;
(6%
E[f:;JFUT]‘

Tomando la amplitud al cuadrado, obtenemos que a orden « se escribe como:

M= MO+ R
~ M ?[1 + 2Real f + 2Real f7]
~ M2 1+ 2Real £ [1 + 2Real f7]
~ 19(p—q) - n [l +2Real f] [1 + 2Real ]

= 19 (p—q) - n[1+2Real f;] (C.9)

donde se ha definido ¢’ = g(1 + 2Real f7).

Se ha mostrado que los términos restantes, cuando se ha sustraido los términos de
conveccion, pueden ser absorbidos en una re-definicién de la constante de acoplamiento

fuerte.

La siguiente tabla muestra una comparacion entre las correcciones radiativas al proceso
o’ — mFm— que incluyen la correcciones virtuales en la aproximacién en que se usan los
términos de conveccion tinicamente (95°"") con el caso en que se consideran de las correc-
ciones completas (0,) obtenidas en el Capitulo 2. En ambos casos se usan las correcciones

de fotones suaves para el caso de las correcciones reales. Los valores usados para las masas

son my = 775 MeV y m,+ = 139.57 MeV.
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wo(MeV') | 6,0 (5;8””

1 —0.04455 | —0.04959
2 —0.03692 | —0.04196
4 —0.02929 | —0.03434
6 —0.02483 | —0.02987
8 —0.02166 | —0.02671
10 —0.01921 | —0.02425
12 —0.01720 —0.02224
14 —0.01550 | —0.02055
16 —0.01403 | —0.01908
18 —0.01274 | —0.01778
20 —0.01158 | —0.01662
25 —0.009126 | —0.01417
30 —0.007120 | —0.01216
35 —0.005423 | —0.01046
40 —0.003954 | —0.008995
45 —0.002657 | —0.007698
50 —0.001498 | —0.006539
60 0.000508 —0.004532
70 0.002204 —0.002836
80 0.003674 —0.001366
90 0.00497 —0.000069
100 0.00613 0.001089




Apéndice D

Contribucion de los términos
regulares en p — Yy

En el calculo del Bremsstrahlung suave p — w7y, se tomo de la amplitud al cuadrado,
solo la contribucién del término de orden w=2. Los demds términos que no presentan el
problema de divergencia infrarroja (de orden w®) son presentados en este apéndice. En
la evaluacion de estos términos regulares en w se emplea la suma sobre los 2 estados de
polarizacion del fotén.

Recordemos que la cinemdtica de decaimiento de 1 — 3 cuerpos (ver apéndice D de
[64]) permite escribir la anchura diferencial del proceso p — 77y como:

M

dl' = —————
3(2m)38m,

dEdw

donde E es la energia del 77 cuyo intervalo estd limitado por los valores maximo (Ey) y
minimo (E_):
1

E — 3 3 2 9 2 AQ .
+ 2(m2 — 2um,) [m? — 3wm? + 2w*m, + AZ(m, — w)

+w \/mﬁ — dwm? + (4w? 4+ 2A2 — Am2)m2 + (8m2w — dwA2)m, + A2]

donde A2 =m?2, —m?2_.
Las expresiones de los términos regulares pueden ser encontrados en las ref.[38],[40].

Se usa la masa my+ = my = T70MeV, m,+ = 139.57TMeV, m o = 13497MeV. Para
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propésitos de comparacion, también se muestran los resultados para el caso de la simetria

de isospin en las masas de los piones m, + = mgo (en el caso del decaimiento p* — 7t~ 7)

wy (MeV) 10 20 30 40 50
0 454 %1075 [1.78 x 1077 [ 3.94x 10°° | 688 x 1077 | 1.05 x 102
67 (Mgt =mpo) | 1.07 x 1076 | 4.27 x 1070 [ 9.59 x 1076 | 1.70 x 107° | 2.65 x 1075
67" (Mgt # Myo) | 1.06 x 1076 | 4.25 x 1076 [ 9.55 x 1076 | 1.69 x 1077 | 2.64 x 1075
wo (MeV 60 70 80 90 100
0 ) 149 x 1077 [ 1.99 x 1077 255 x 1077 [ 316 x 107% [ 3.83 x 107
67 (Mgt = mpo) | 3.81x 107 | 517 x 1075 | 6.73 x 107° | 849 x 1075 | 1.04 x 1074
67" (my+ #mm®) [ 379 x 1075 [ 515 x 1075 | 6.70 x 1075 | 8.46 x 10~° | 1.04 x 10~*
wo (MeV) 150
0% 779 x 1071
6P (Mpt = myo) | 2.3 x 1074
67" (my+ # mm®) | 2.29 x 10~

Como puede apreciarse, la contribucion de los términos regulares es muy pequena.




Apéndice E

Matrices de Dirac

Las matrices de Dirac satisfacen la relacion de anticonmutacion

{/YIM IVV} - 2g;w (E]_)
{7u775} =0 (EQ)
v = 1y (E.3)

Definiendo A = v*A,,, donde A, es un 4-vector, se tienen las siguientes identidades en D

dimensiones[80].

vyt = D, (E.4)
WA = (2-D)A, (E.5)
VWBEY = AB-C+(D—-4)BC, (E.6)
VWABCA" = —20BA+ (4— D)ABC . (E.7)
Las matrices de Dirac tienen traza nula
Ty = 0, (ES)
Tr[y’] = 0. (E.9)
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Con las anteriores propiedades de las matrices se obtienen las siguientes reaciones ttiles

Tr[y"y"] = 4g", (E.10)
Ty 9" = 4(g"g*" — g"*g"") (E.11)
Tr[y*y"y"] = 0, (E.12)
Tr[y’ vy v*y°] = —4e? . (E.13)
La condicién de Hermiticidad
it =040, (E.14)

LI (E.15)



Apéndice F

Funciones de Passarino-Veltman.

Las funciones Passarino-Veltman estan definidas de la forma siguiente[43]:

1A0(my) 1 / d*k

1672 (2m)* ) k2 —m?
1BO(p?, m2, m?) 1 d'k
1672 - (2ﬂyx/tk2—7na[“*+PV-—"ﬁ]
1CO(p3, p3, mg,mi,m3) 1 / d*k
167 (2m)* J [k* = mg] [(k + p1)* — mi] [(k + p2)* —m3] -

(F.1)

Las expresiones analiticas de algunas funciones de Passarino-Velman que resultan ttiles

pueden ser obtenidas de las expresiones siguientes|81]:

2
A0(mg) = m3 2—7E+1I1 4] —n | 0 +1
0 € ,LL2

p’x® — x(p® —m§ +m3) + m3
,u2

2 1
BO(p®, mg,m}) = ;—7E+ln[47r]—/ dzlnl

0

(F.2)
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Apéndice G
Funcion dilogaritmo

La funcién dilogaritmo esté definida como

Lis(z) = —/0 Mdy .

y

Las siguientes relaciones se satisfacen [59], [60].

Lis {HV] - LiQ{ 2v }—llrf[l_q%—g@)

1—v

2
A% T
Liy [2] — — + = 1n?[1
JFV}Jr i [2] = 5 gL+

1
—wn[1 +v] 4 2 In [2] + 27 In [ —;—V} .
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—2v
Li
[

_V ]

Li
o
Lis { v
1+4+v]|
i
Li, [_

V_

.[1'
L12—

In? [—v]

APENDICE G. FUNCION DILOGARITMO

La funcién de ¢(2) de Riemann esta definida como

Liy (-] = Lig [ 15| = 0(2) + Liaf2 + 10?1~
e {1;} + Lis L__VV} +orln[2) (G5)
C(Q)—%lQ{Vvl]j%n[vvl}lnl%l}—i—Lulﬂ (G.6)
g(2)—%12{vtl} 1nlvil}1nH+ngl_iv} . (G
Ly [v] — %m? V] = ¢(2) + orIn[v] + %2 | (G.8)
Ly [v] - 5 0 [¥]  ¢(2) (©.9)
In* [v] + 2u7 In [v] — 7 (G.10)
=S L (G11)

En particular ¢(2) = 72/6.
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