
RESUMEN

Desde su descubrimiento en 1932, la simetŕıa SU(2) de isospin en el sector de hadrones ha

jugado un papel muy importante en la clasificación de estas part́ıculas y de sus interac-

ciones. La simetŕıa de isospin seŕıa exacta en el caso en que los quarks u y d tuvieran las

mismas masas y en ausencia de las interacciones electromagnéticas, por lo que se trata de

una simetŕıa aproximada. La extracción de parámetros fundamentales del modelo estándar

de part́ıculas elementales como las entradas de la matriz de mezcla de quarks, o la pre-

dicción del momento magnético anómalo del muón, requieren tener un buen control en el

cálculo de los efectos de rotura de la simetŕıa de isospin, del orden de unas décimas de por

ciento.

En esta tesis se estudian los efectos del rompimiento de la simetŕıa de isospin inducidas

por las interacciones electromagnéticas en varios procesos de interés en la producción de

hadrones. Mas espećıficamente, en este trabajo de tesis calculamos las correcciones radia-

tivas de largas distancias al orden α en varios procesos que involucran la producción de

dos mesones pseudoscalares. Entre nuestros resultados figuran: (a) el primer cálculo con-

sistente de la diferencia de anchuras en el sistema de mesones ρ±−ρ0, (b) la estimación de

los efectos de estructura electromagnética en la producción de kaones cargados y neutros

y (c) el cálculo correcto de las correcciones radiativas en la producción de dos piones en el

decaimiento del leptón τ .

i



ii



Abstract

Since its discovery in 1932, the SU(2) isospin symmetry of strong interactions has

played a very important role in the classification of hadrons and their interactions. It is

well known that isospin symmetry is only an approximate symmetry which is broken by the

mass difference of up and down quarks and by the effects of electromagnetic interactions.

Isospin symmetry is very important also in phenomenological applications. For instance,

the determination of fundamental parameters of the Standard Model of particle physics

such as the mixing of quarks or the prediction of the muon anomalous magnetic moment,

requires that isospin symmetry effects at the level of tenths of percent are under well

control.

In this thesis work we study the isospin symmetry breaking effects produced by the

electromagnetic interactions in the decays of some particles. More specifically, we calculate

the long distance radiative corrections at O(α) in processes where the production of two

pseudoscalars mesons is envolved. Among our most important results we mention: a) the

first calculation of the width difference between charged and neutral ρ(770) mesons, b)

the calculation of radiative corrections to the dominant decays of φ mesons which consider

the electromagnetic structure of kaons and, c) the correct calculation of the long-distance

radiative corrections in the production of two pions in τ decays.
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Caṕıtulo 1

Introducción

La simetŕıa de isospin o spin isotópico fue postulada en 1932 por W. Heisenberg[1] poco

después del descubrimiento del neutrón por J. Chadwick [2]. La propuesta de Heisenberg

se basó en la observación de que el neutrón y el protón tienen masas muy similares y

por lo tanto se les pod́ıa ver como dos estados degenerados de un isodoblete (doblete de

isospin (p, n)), que se distinguen por el número cuántico de isospin I3, análogo al spin

(de ah́ı el nombre de isospin). Desde entonces, la simetŕıa de isospin ha jugado un papel

muy importante en la f́ısica nuclear y en la f́ısica de part́ıculas elementales tanto en la

clasificación de los núcleos y de los hadrones, como en las interacciones fundamentales que

ocurren entre estos. Algunos ejemplos de la clasificación de hadrones en multipletes de

isospin se muestran en el Cuadro (1.1) [3] donde también se indica el contenido de quarks

de dichas part́ıculas, aśı como la diferencia de masas ∆MH al interior de cada isomultiplete.

Como puede verificarse del Cuadro (1.1), la simetŕıa de isospin no es exacta ya que

los hadrones al interior de un isomultiplete no tienen la misma masa (∆MH �= 0). Visto

en términos de interacciones, la contribución dominante a las masas de los hadrones se

debe a las interacciones fuertes, es decir a las interacciones entre los quarks y los gluones

que los componen. Por lo tanto, se puede postular que las interacciones fuertes respetan

la simetŕıa de isospin y que la rotura de la misma es un efecto de las demás interacciones

fundamentales. Es decir, si HF , Hweak y Hem denotan los hamiltonianos de las interacciones

1



2 CAPÍTULO 1. INTRODUCCIÓN

JP Part́ıcula I quarks Masa (MeV) ∆MH (MeV)
π± 1 d̄u, ūd 139·570
π0 1 d̄d, ūu 134·976 +4·594

K0 1
2

ds̄ 497·648
K+ us̄ 493·677 −3·971

0− D− 1
2

dc̄ 1869·4
D̄0 uc̄ 1864·6 +4·8

B0 1
2

db̄ 5279·4
B+ ub̄ 5279·0 −0·4
ρ± 1 d̄u, ūd 777·4
ρ0 1 d̄d, ūu 775·0 2·4

K∗0 1
2

ds̄ 896·10
1− K∗+ us̄ 891·66 −4·44

D∗− 1
2

dc̄ 2010·0
D̄∗0 uc̄ 2006·7 +3·3

n 1
2

udd 939·565
p uud 938·272 −1·293

(1/2)+

Σ− 1 dds 1197·449
Σ0 uds 1192·642 +4·807
Σ+ uus 1189·37 −3·272

Cuadro 1.1: Multipletes de isospin en algunos hadrones. I denota el número cuántico de isospin,
J el spin, y ∆MH = mH± − mH0 es la diferencia de masa entre estados con y sin carga.

fuerte, débil y electromagnética, se tiene que:

[HF , Ii] = 0 , (1.1)

[Hem,weak, Ii] �= 0 , (1.2)

donde Ii (i = 1, 2, 3) denotan los operadores de isospin.

A nivel de las interacciones fundamentales la simetŕıa de isospin se rompe debido a
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(i) que los quarks u y d tienen masas diferentes, (ii) la presencia de las interacciones

electromagnéticas. Para verificar los enunciados anteriores, consideremos únicamente el

caso de dos sabores de los quarks (u y d), los cuales forman un doblete de isospin:

Q =

(
u
d

)
. (1.3)

En términos de este doblete de isospin, el hamiltoniano para las masas de los quarks y

de las interacciones electromagnéticas se pueden escribir de la siguiente manera,

Hm = muūu + mdd̄d =
mu + md

2
Q̄Q +

mu − md

2
Q̄τ3Q ,

Hem = eAµ

(
2

3
ūγµu − 1

3
d̄γµd

)
= eAµ

(
1

6
Q̄γµQ +

1

2
Q̄τ3γµQ

)
, (1.4)

donde τi son las matrices de Pauli, e la carga eléctrica del positrón y Aµ el cuadrivector

electromagnético. Debido a que [τi, τj ] = 2iεijkτk, el término que contiene τ3 no conmuta con

los operados de isospin τ1,2 y por lo tanto rompe la simetŕıa de isospin. Como consecuencia

de la rotura de la simetŕıa de isospin, las part́ıculas al interior de un isomultiplete adquieren

diferentes masas.

Mas allá de las relaciones entre las masas de hadrones, la simetŕıa de isospin permite

relacionar las amplitudes de probabilidad de diferentes procesos f́ısicos, en los cuales parti-

cipan los miembros de un isomultiplete. Una vez que los efectos de rotura de la simetŕıa de

isospin se incorporan en los cálculos de estas amplitudes, se puede hacer una comparación

con la información experimental correspondiente. En muchos de los procesos estudiados

con anterioridad, se ha encontrado que la simetŕıa de isospin, y los efectos de su rotura ge-

nerados por la diferencia de masas de los quarks u−d y las interacciones electromagnéticas,

dan una buena descripción del mundo real.

En el presente trabajo de tesis estudiaremos varios procesos de gran interés actual en la

f́ısica de part́ıculas elementales en donde se requiere calcular de forma cuidadosa los efectos

de la rotura de la simetŕıa de isospin:
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En el caṕıtulo 2, estudiaremos el rompimiento de la simetŕıa de isospin en la diferencia

de las anchuras de los mesones ρ±−ρ0. La contribución principal de esta tesis tiene que

ver con el cálculo de las correcciones radiativas electromagnéticas a los decaimientos

ρ± → π±π0, ρ0 → π+π− y el cálculo de los correspondientes modos radiativos de estos

procesos. Este efecto de rotura del isospin, el cual no ha sido medido en la actualidad

con la certeza requerida, es de gran relevancia en la evaluación del momento magnético

anómalo del muón aµ obtenido a partir de los datos[4][5][6] del espectro hadrónico en

decaimientos del leptón τ (ver descripción mas adelante).

En el caṕıtulo 3, estudiaremos los efectos del rompimiento de la simetŕıa de isospin

en la producción relativa de decaimientos φ(1020) → K+K−/KLKS. Esta razón es

un dato muy importante para evaluar la tasa de producción de estas part́ıculas en los

colisionadores electrón-positrón y realizar estudios posteriores sobre los decaimientos

de kaones [7][8][9][10]. Desde hace varios años se ha observado [11][12] que el cálculo

de los efectos de rotura de la simetŕıa en estos procesos excede en varias desviacio-

nes estándar a las mediciones experimentales [3]. Dado que esos cálculos teóricos se

han efectuado usando la electrodinámica cuántica (QED) escalar (es decir, conside-

rando que los kaones son puntuales), en el presente trabajo de tesis recalculamos

las correcciones radiativas tomando en cuenta la estructura electromagnética de los

kaones.

En el caṕıtulo 4, revisaremos el cálculo de las correcciones radiativas al decaimiento

τ− → π−π0ντ . Estas correcciones radiativas son de gran importancia en la remo-

ción de efectos de rotura de isospin de los datos del espectro de dos piones para la

evaluación de la contribución hadrónica principal en el momento magnético anómalo

del muón [13][14][15][16]. El cálculo de estas correcciones radiativas se realizó recien-

temente en las referencias [17][18] y más recientemente se llevó a cabo un cálculo

mas detallado de las correcciones de fotones reales en el contexto de un modelo de
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dominancia de mesones [19][20]. En este trabajo de tesis reavisamos el cálculo de

las correcciones virtuales y recalculamos las correcciones de fotones reales tenien-

do en cuenta la suma correcta de la probabilidad de transición sobre los grados de

polarización del fotón real.

Finalmente, en el caṕıtulo 5 mostraremos nuestras conclusiones generales y dedica-

remos unos apéndices para mostrar algunos detalles técnicos de nuestros cálculos.

Dado que los cálculos que realizamos en los Caṕıtulos 2 y 4 revisten una gran impor-

tancia para la predicción del momento magnético anómalo del muón (convencionalmente

denotado como aµ) en el contexto del modelo estándar de part́ıculas elementales, a conti-

nuación daremos una breve descripción de este problema.

El momento dipolar magnético de una part́ıcula elemental de masa m, carga e y spin

	S se define como 	M = g e
2m

	S, donde g denota el factor giromagnético. Al orden más bajo

en la teoŕıa de perturbaciones la teoŕıa cuántica relativista predice un momento magnético

normal con g = 2. Las correcciones cuánticas generan una desviación de este valor estándar,

es decir a ≡ (g − 2)/2 �= 0, valor conocido como momento magnético anómalo. En el caso

del muón, este valor ha sido medido recientemente con una alta precisión [21][22]. El valor

promedio obtenido de medidas en muones positivos y negativos es [21]:

aexp
µ = 11659208·0(5·4)(3·3) × 10−10 , (1.5)

donde los cifras entre paréntesis denotan respectivamente los errores estad́ısticos y sis-

temáticos del experimento.

Este resultado puede compararse con las predicciones teóricas obtenidas en el marco

del modelo estándar (MS) de part́ıculas elementales. En realidad, actualmente existen dos

predicciones teóricas las cuales se obtienen usando como datos de entrada la producción de

hadrones en la aniquilación electrón-positrón (e+e−) y en decaimientos del leptón τ . Estas
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son respectivamente [16][23]

aMS
µ (e+e−) = 11659180·5(4·4)(3·5)(0·2) × 10−10 (1.6)

aMS
µ (τ) = 11659198·6(5·8)(3·5)(0·2) × 10−10 , (1.7)

donde las cifras entre paréntesis denotan diferentes incertidumbres relacionadas con paráme-

tros y datos usados para obtener dichas predicciones.

Una comparación entre las ecuaciones (1.5), (1.6) y (1.7) permite extraer las siguientes

conclusiones: (i) la medición experimental de aexp
µ excede a las predicciónes teóricas (1.6) y

(1.7) en aproximadamente 3.3 y 0.9 desviaciones estándar y, (ii) las predicciones teóricas,

ecs. (1.6) y (1.7) discrepan entre si en cerca de 3 desviaciones estándar. Un análisis detallado

de las diferentes contribuciones a la predicción teórica permite concluir que el origen de

la discrepancia entre las dos predicciones se encuentra principalmente en la contribución

que proviene de los diagramas de polarización del vaćıo que involucran un par de mesones

π. Sus valores respectivos, extráıdos de datos experimentales de la aniquilación e+e− y de

decaimientos del leptón τ , son [24]:

aππ
µ (e+e−) = (504·6 ± 3·1(exp) ± 0·9(rad.)) × 10−10 (1.8)

aππ
µ (τ) = (519·1 ± 1·5(exp.) ± 2·6(BR) ± 2·5(Isospin)) × 10−10 , (1.9)

donde claramente se observa una discrepancia de magnitud similar a la que se tiene entre las

ecs. (1.6) y (1.7). Como veremos a continuación, las dos diferentes predicciones mostradas

en las ecs. (1.8) y (1.9) debeŕıan ser las mismas debido a la simetŕıa de isospin. El hecho de

que exista una discrepancia revela que las correcciones debidas a la rotura de la simetŕıa

de isospin no han sido tomadas en cuenta correctamente o debido a que existe alguna pieza

faltante de estas correcciones que no ha sido identificada.

La contribución hadrónica al momento magnético anómalo del muon debida a la polari-

zación del vaćıo hadrónico se calcula a partir de los datos de la sección eficaz de producción
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de dos piones mediante la relación de dispersión [25]

aππ
µ (e+e−) =

1

4π3

∫ ∞

4m2
π

dtK(t)σ0(e+e− → π+π−)(t) , (1.10)

donde K(t) es una función de peso que decrece como 1/t [26] y σ0(e+e− → π+π−)(t) denota

la sección eficaz desnuda (es decir, donde las correcciones debidas a la radiación de fotones

en el estado inicial, de la polarización de vaćıo y las correcciones al vértice inicial han sido

sustráıdas).

Un cálculo alternativo se puede obtener si se utilizan datos del espectro de 2 piones de

los decaimientos τ− → π−π0ντ usando la simetŕıa de isospin [13]. Una vez que los efectos

de rotura de la simetŕıa de isospin han sido incorporados, se puede obtener la relación

entre la función espectral de dos piones en decaimientos del leptón τ y la sección eficaz de

e+e− → π+π−. Esta relación, la cual permite calcular aππ
µ (τ) al insertarla en (1.10), es la

siguiente [17]:

σ0(e+e− → π+π−) =

[
Kσ(t)

KΓ(t)

dΓππ[γ]

dt
× RIB(t)

SEW

]
, (1.11)

donde dΓππ[γ]/dt denota la función espectral de dos piones con fotones inclusivos en decai-

mientos del τ , SEW = 1·01907 [27] son las correcciones electrodébiles de cortas distancias

al decaimiento del τ y,

KΓ(t) =
G2

F |Vud|2m2
τ

384π3

(
1 − t

m2
τ

)2(
1 +

2t

m2
τ

)
,

Kσ(t) =
πα2

3t
. (1.12)

La función RIB(t) [17] contiene los efectos de rompimiento de la simetŕıa de isospin,

RIB(t) =
1

GEM(t)

β3
π+π−

β3
π+π0

∣∣∣∣FV (t)

f+(t)

∣∣∣∣
2

. (1.13)

Los factores que intervienen en su definición son: (a) las correcciones electromagnéticas de

QED de largas distancias (GEM(t)), (b) la corrección al espacio fase debida a la diferencia
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de masas entre los piones cargados y neutros (factor β3
π+π−/β3

π+π0), y (c) la razón entre los

factores de forma electromagnético y débil del pion (|FV (t)/f+(t)|2).
Cada uno de estos tres factores seŕıa igual a la unidad en el caso en que la simetŕıa

de isospin fuera exacta. Los efectos de rotura de la simetŕıa de isospin inducen una ligera

desviación respecto a la unidad y corresponde a la teoŕıa el cálculo expĺıcito de sus valores.

Como ya se mencionó anteriormente en esta Introducción, entre los objetivos principales

de esta tesis figuran el cálculo de los efectos de rotura de la simetŕıa de isospin en los

parámetros que intervienen en la razón de factores de forma del pión (Caṕıtulo 2) y en las

correcciones radiativas electromagnéticas de larga distancia (Caṕıtulo 4).



Caṕıtulo 2

Corrección radiativa a ρ → ππ

En este caṕıtulo se estima el rompimiento de simetŕıa de isospin en la diferencia

de anchuras de los mesones ρ±, ρ0. Para tal fin, se realizan las correcciones

electromagnéticas a la anchura de decaimiento de los proceso ρ0 → π+π− y

ρ+ → π+π0 y se calcula el modo radiativo de cada proceso. La técnica propuesta

en la ref.[28] se usa para calcular las correcciones radiativas virtuales finitas en

el infrarrojo y ultravioleta en el caso del ρ+.

2.1. Introducción

La simetŕıa de isospin (IS) de las interacciones fuertes, permite clasificar a los mesones

cargados ρ± y neutro ρ0 en un triplete (I = 1) de isospin. En el ĺımite exacto de la IS (es

decir, mu = md y ausencia de interacciones electromagnéticas a nivel fundamental), estos

mesones tienen la mismas masas y anchuras de decaimiento:

∆mρ = mρ0 − mρ± = 0 ,

∆Γ = Γρ0 − Γρ± = 0. (2.1)

La primera desigualdad se sigue de la degeneración en las masas en el interior de un

isomultiplete y la segunda debido a que en el ĺımite de la IS, los mesones ρ±,0 experimentan

únicamente decaimientos fuertes. De acuerdo con el PDG[3] el promedio pesado de los

9
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valores de las masas y anchos de los mesones ρ son

∆mρ = mρ0 − mρ± = (−0·7 ± 0·8)MeV(S = 1·5) ,

∆Γρ = Γρ0 − Γρ± = (0·3 ± 1·3)MeV(S = 1·4). (2.2)

Debido al valor del factor de escala1 S en ambos promedios, tenemos que tomar estos

valores con la debida precaución y concluir que desde el punto de vista experimental el

rompimiento de la simetŕıa de isospin no ha sido totalmente establecida.

El siguiente cuadro muestra los valores obtenidos por diversos experimentos para la

diferencia de masas y la diferencia de anchos, usados por el PDG para realizar el promedio

indicado en la ec.(2.2). Claramente se observa que este conjunto de datos no proveen una

determinación consistente de la ruptura de la simetŕıa de isospin.

mρ0 − mρ±

MeV Colaboración Proceso
−2·4 ± 0·8 ALEPH τ− → π−π0ντ

0·4 ± 0·7 ± 0·6 KLOE e−e+ → π+π−π0

1·3 ± 1·1 ± 2·6 SND e−e+ → π+π−π0

1·6 ± 0·6 ± 1·7 CBAR p̄p → π+π−π0

−4 ± 4 HBC π−p
−5 ± 5 HBC p̄p
2· ± 2·1 RVUE πN → ρN

Γρ0 − Γρ±

−0·2 ± 1·0 ALEPH τ− → π−π0ντ

3·6 ± 1·8 ± 1·7 KLOE e−e+ → π+π−π0

En la literatura existen algunos cálculos teóricos de las diferencias de masas de los me-

sones ρ[29]. Estos consisten básicamente en calcular las diferencias entre las correcciones de

autoenerǵıas de los mesones ρ. Los cálculos de la diferencia de masas en un modelo de domi-

nancia vectorial [30] y en la teoŕıa de perturbaciones quirales [31] arrojan, respectivamente,

1El factor de escala para un promedio de N medidas de una observable se define como S =

[χ2/(N − 1)]1/2 y usualmente se reporta cuando no existe un buen acuerdo entre las distintas mediciones

experimentales de una observable. Un valor grande de S se debe probablemente a que se ha subestimado

el error en al menos uno de los experimentos[3]
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los siguientes resultados:

∆mρ(VMD) = (−0·02 ± 0·02)MeV ,

(−0·4)MeV < ∆mρ(ChPT) < (0·7)MeV. (2.3)

los cuales parecen mantener la degeneración en las masas de los mesones ρ.

En lo referente a la diferencias de anchuras, hasta antes de esta tesis no exist́ıa un

cálculo teórico completo de ∆Γρ. En resumen, el rompimiento de la simetŕıa de isospin

en el sistema de mesones ρ es un problema aún abierto tanto desde el punto de vista

experimental, como teórico. Debido a la importancia que el rompimiento de isospin en el

sistema de mesones ρ tiene para el cálculo de las contribuciones hadrónicas al momento

magnético anómalo del muón [13] [16]-[19], en esta tesis abordamos el problema de la

cuantificiación del rompimiento de la simetŕıa de isospin en los anchos de decaimiento del

meson ρ.

Para ilustrar la forma en que el rompimiento de la simetŕıa de isospin contribuye en la

determinación de aππ
µ (τ) retomemos el cociente de los factores de forma electromagnético

y débil del pion en un modelo simple en el cual ambos están dominados por los mesones ρ.

Además de la contribución debida al meson ρ, en el caso del factor de forma electromagnéti-

co debemos agregar un término que rompe la simetŕıa de isospin debido a la mezcla de los

mesones ρ−ω. Aśı, los factores de forma electromagnético y débil del pion que intervienen

en la ec. (1.13), se puede escribir como [17]:

FV (t) =
m2

ρ0

m2
ρ0 − t − imρ0Γρ0(t)

[
1 − θρω

m2
ρ+

t

m2
ω − t − imωΓω

]
,

f+(t) =
m2

ρ+

m2
ρ+ − t − imρ+Γρ+(t)

,

donde θρω = (−3·5 ± 0·7) × 10−3GeV2 denota la intensidad de la mezcla ρ − ω. Como

podemos observar, el rompimiento de la simetŕıa de isospin en el cociente de factores de

forma del pion está determinado por ∆mρ y ∆Γρ. Más aún, cuando nos encontramos cerca
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de la resonancia (t ≈ m2
ρ), esta razón es particularmente sensible al valor de ∆Γρ y es por

este motivo que su determinación es muy importante.

2.1.1. Contribuciones a la diferencia de anchuras

Como es usual, definimos la diferencia de anchuras de los mesones ρ a partir de sus

anchos parciales de decaimiento. En la siguiente tabla, listamos los modos de decaimiento

de los mesones ρ medidos experimentalmente [3].

Modo de decaimiento ρ Γi/Γ
ππ ∼ 100 %

ρ±

π±γ (4·5 ± 0·5) × 10−4

π±η < 6 × 10−3

π±π+π−π0 < 2 × 10−3

ρ0

π+π−γ (9·9 ± 1·6) × 10−3

π0γ (6·0 ± 1·3) × 10−4

ηγ (2·95 ± 0·4) × 10−4

π0π0γ (4·5 ± 0·0) × 10−5

µ+µ− (4·55 ± 0·28) × 10−5

e+e− (4·70 ± 0·09) × 10−5

π+π−π0 (1·01+0·54
−0·36 ± 0·34) × 10−4

π+π−π+π− (1·8 ± 0·9) × 10−5

π+π−π0π0 < 4 × 10−5

Si deseamos una precisión del orden de 1 × 10−3, lo cual es la incertidumbre relevante

para distinguir los efectos debidos a la rotura de la simetŕıa de isospin, debemos concen-

trarnos únicamente en los modos de decaimientos siguientes:

ρ0 → π+π− , π+π−γ ,

ρ± → π±π0 , π±π0γ . (2.4)

Por lo tanto, para estimar los efectos del rompimiento de la simetŕıa de isospin debemos

calcular
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Las correcciones radiativas al decaimiento ρ → ππ.

Los anchos de decaimiento de los modos radiativos ρ → ππγ.

El ancho de decaimiento del proceso no radiativo se puede definir como:

Γ(ρ → ππ(γ)) = Γ(ρ → ππ) + Γ(ρ → ππγ) , (2.5)

donde el primer término contiene el ancho del proceso no radiativo a nivel árbol más las

correcciones virtuales al proceso ρ → ππ, mientras que el segundo término es el ancho

de decaimiento radiativo para fotones suaves2. En las siguientes secciones consideramos el

caso de las diferentes contribuciones por separado.

2.2. Decaimiento ρ0 → π+π−

En esta sección mostramos los cálculos de las contribuciones al ancho de decaimiento

del meson neutro ρ0. Primero nos enfocaremos en el cálculo de las correcciones electro-

magnéticas virtuales de orden α al proceso ρ0 → π+π−, después nos ocuparemos de sus

correcciones debidas a la emisión de fotones suaves y finalmente al ancho de decaimiento

radiativo ρ0 → π+π−γ.

2.2.1. Correcciones de fotones virtuales a ρ0 → π+π−

Como es sabido, el cálculo de las correcciones virtuales contiene tanto divergencias ul-

travioletas (UV) como infrarrojas (IR). Las divergencias ultravioletas, las cuales provienen

del comportamiento de altas enerǵıas de los fotones virtuales, son normalmente eliminadas

mediante un proceso de renormalización[32]. Sin embargo, existen casos, como el que se

considera en esta sección, en los cuales las correcciones virtuales no contienen divergencias

ultravioletas debido a una identidad entre las correcciones de vértice y de autoenerǵıa y

debido a que no consideramos el acoplamiento del fotón al mesón vectorial ρ0 (nótese que

2A los fotónes de enerǵıa menor que un cierto umbral ω0 se les llama fotones suaves
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el vértice electromagnético γρ0ρ0 no existe para part́ıculas reales debido a la simetŕıa de

conjugación de carga [33]). Por su parte, las divergencias infrarrojas, que provienen del

comportamiento de bajas enerǵıas de los fotones virtuales, son eliminadas cuando se su-

man a las correcciones virtuales, las correcciones debidas a la emisión de fotones reales.

Este procedimiento de cancelación de divergencias infrarrojas, conocido como el teorema

de Bloch-Nordsiek [34][35] , se muestra expĺıcitamente en nuestro cálculo. El que las pro-

babilidades cuánticas de dos procesos diferentes se pueden sumar se justifica en el hecho

de que, experimentalmente es imposible distinguir los procesos no radiativos (ρ → ππ(γ))

de los radiativos (ρ → ππγ) cuando los fotones reales en estos últimos tienen enerǵıas por

debajo del umbral de detección.

Para poder eliminar las divergencias UV e IR que aparecen en el cálculo de las correc-

ciones virtuales es necesario primero aislarlas o regularizarlas. En el presente trabajo de

tesis hemos usado el método de regularización dimensional para aislar las divergencias ul-

travioletas y hemos atribuido una masa ficticia al fotón en su propagador3 para regular la

divergencia infrarroja. Para regular la divergencia que aparece en las correcciones debidas

a fotones reales hemos atribuido también una masa ficticia al fotón, pero teniendo cuidado

de sumar sobre los tres grados de polarización al calcular la probabilidad de transición.

En esta sección revisamos la corrección debida a fotones virtuales, que representa una

corrección a orden α (1 lazo) a la anchura de decaimiento ρ → π+π−, usando QED escalar

para modelar la interacción entre piones y fotón [11],[36]-[40].

La forma mas simple de la densidad Lagrangiana que describe la interacción fuerte ρππ,

que respeta la invariancia de Lorentz y de isospin es[36]:

L(ρ → ππ) = G
ı

2
ρa

µ(πb∂
↔
µ πc)εabc, (2.6)

donde G es la constante de acoplamiento fuerte y a, b, c = 1, 2, 3 representan ı́ndices de

isospin. Es fácil obtener de la anterior densidad Lagrangiana los vértices para las distintas

3En esta tesis se ha usado la norma de Feynman para el propagador del fotón
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configuraciones de cargas

ıGρ−
µ

[
π0∂µπ− − π−∂µπ0

]
,

ıGρ0
µ

[
π−∂µπ+ − π+∂µπ−] ,

ıGρ+
µ

[
π+∂µπ0 − π0∂µπ+

]
, (2.7)

de tal manera que se satisface gρ0π+π− = gρ±π±π0 = G. Las interacciones electromagnéticas

para este sistema se introducen v́ıa la sustitución mı́nima ∂µ → ∂µ − ieQAµ, donde Q es el

operador de carga y Aµ es el 4-vector del campo electromagnético.

En este modelo, la amplitud de probabilidad del decaimiento ρ0 → π+π− al orden mas

bajo en la teoŕıa de perturbaciones es:

M0
ρ0 = ıgρ0π+π− [p − q] · η(P, s), (2.8)

donde (p, q, P) denota el 4-momento de (π+, π−, ρ0) respectivamente, gρ0π+π− es la cons-

tante de acoplamiento fuerte y η(P, s) el vector de polarización del meson vectorial ρ0.

La anchura de decaimiento no polarizada del meson ρ0, se obtiene tomando el módulo al

cuadrado de (2.8), promediando sobre spin inicial e integrando en el espacio fase del estado

final. En el sistema en reposo de una part́ıcula de masa m que decae en 2 part́ıculas, la

expresión para calcular la anchura es4

dΓ =
1

32π2
|M|2 |	p1|

m2
dΩ , (2.9)

	p1 es el vector momento de cualquiera de las part́ıculas finales , |M|2 representa promediar

la amplitud cuadrada sobre spin inicial y sumar sobre spines finales y dΩ es el ángulo sólido

de la part́ıcula 1. En el sistema en reposo de la part́ıcula que decae,

Eπ+ = Eπ− =
mρ0

2
,

v0 =

√
1 − 4m2

π

m2
ρ0

,

|	p| = |	q| =
mρ0v0

2
.

4De manera simbólica el proceso se representa como V → P+
1 P−

2
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Una vez insertadas las expresiones anteriores en (2.9) y realizada la integración, la anchura

de decaimiento a nivel árbol (que se denota con el supeŕındice 0) es:

Γ0
ρ0π+π− =

g2
ρ0π+π−v3

0mρ0

48π
. (2.10)

Para obtener una expresión de la anchura de decaimiento al siguiente orden en la teoŕıa de

perturbaciones se requiere el cálculo de las correcciones radiativas que se pueden separar

en dos tipos:

Correcciones de cortas distancias (altas enerǵıas)

Correcciones de largas distancias (bajas enerǵıas)

Las correcciones de cortas distancias están dominadas por las correcciones electrodébiles,

es decir, por considerar que los fotones interactúan con los constituyentes de los hadrones

(a nivel de quarks). Las correcciones de largas distancias están determinadas por QED

escalar, el fotón se acopla a los mesones como si estos fuesen puntuales. En este trabajo

de tesis se consideran a los piones puntuales, es decir nuestro cálculo se reduce al caso de

correcciones de largas distancias.

Al considerar la contribución de los fotones virtuales (ver Fig.(2.1) ), la amplitud total

de decaimiento se convierte en Mρ0

Mρ0 = M0
ρ0 + Mv

ρ0 . (2.11)

La suma de las amplitudes generadas por los diagramas de autoenerǵıa y de corrección

al vértice está contenida en Mv
ρ0 .

Mv
ρ0 = MSE

π+ + MSE
π− + MV XT . (2.12)

En el caso que estamos estudiando no consideramos el posible acoplamiento del fotón

al momento magnético del ρ neutro. Lo anterior se justifica en el hecho de que debido a la

conjugación de carga, este vértice es nulo para part́ıculas sobre su capa de masa.
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a) b)

c)

d) e)

Figura 2.1: Diagramas de auto-enerǵıa a), b) y de corrección al vértice c) - e).

La función de autoenerǵıa Σππ , involucrada en el cálculo de la amplitud del diagrama

de autoenerǵıa, puede ser escrita como un desarrollo en potencias de (p2 − m2) [41]:

Σππ = A + (p2 − m2)B + (p2 − m2)2Σf (p2) , (2.13)

con las constantes definidas en la siguiente manera

A = Σππ|p2=m2 , B = ∂Σππ/∂p2|p2=m2 .

La constante A se absorbe en la renormalización de la masa del pion y B contribuye a la

renormalización de la función de onda, mientras que la función Σf no contribuye[41]. La

contribución de auto-enerǵıa a la amplitud de correcciones virtuales se escribe de manera

simbólica como:

MSE
π± = M0

ρ0 × α

4π

[BUV + BIR]

2
, (2.14)

donde se han separado la parte divergente ultravioleta BUV y la divergente infrarroja BIR.
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La divergencia ultravioleta presente en la amplitud de auto-enerǵıa y en la amplitud

de corrección de vértice se cancelan al sumar las amplitudes. Esto es consecuencia de la

identidad de Ward[42] que relaciona la función de auto-enerǵıa y la función corrección al

vértice

∂Σππ(p2)/∂pµ|p2=m2 = −1

g
Λµ(p,−p) . (2.15)

Si la función de corrección al vértice por fotones virtuales se separa en una parte divergente

UV (contenida en L) y una parte finita ultravioleta (Λf(s)), se obtiene la expresión

Λµ(p+, p−) = gρππ(p+ − p−)µ [L + Λf (s)] .

De (2.15) se sigue que la condición para la cancelación de las divergencias ultravioletas es:

L + BUV = 0 . (2.16)

La cancelación de la divergencia ultravioleta5 se puede mostrar expĺıcitamente, para lo cual

es necesario escribir anaĺıticamente todas las amplitudes. La amplitud de auto-enerǵıa de

cada ĺınea externa tiene la forma:

MSE
π± = M0

ρ0 × α

4π

1

2

[
2

[
2

ε
− γE + ln [4π] − ln

[
m2

π+

µ2

]]
− 2 ln

[
λ2

m2
π+

]]
, (2.17)

donde λ representa la masa ficticia del fotón. Este parámetro es introducido como regulador

en las integrales que presentan comportamiento infrarrojo. Al final de la integración, se

toma el ĺımite λ → 0 y se recupera QED. Los términos que son cero en dicho ĺımite se

omiten y solo se considera el logaritmo en λ. La corrección al vértice es la suma de los

diagramas c), d), e) mostrados en la Fig.(2.1). La amplitud la escribimos en términos de

5La divergencia ultravioleta, presente a través del polo en ε = 4 − D, está definida como ∆UV =

2/ε − γE + ln [4π] − ln
[

m2

µ2

]
, donde γE � 0·5772 es la constante de Euler-Mascheroni y µ es la escala de

masa introducida en el proceso de regularización dimensional
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las funciones de Passarino-Veltman [43]como sigue :

MV XT = M0
ρ0 × α

4π

{
2

v2
0

B̄0
[
m2

π+ , 0, m2
π+

]− 1 + v2
0

v2
0

2B̄0
[
m2

ρ0 , m2
π+, m2

π+

]
−m2

ρ0(1 + v2
0)C0

[
m2

π+ , m2
π+, m2

ρ0 , m2
π+ , λ2, m2

π+

]
−2

[
2

ε
− γE + ln [4π] − ln

[
m2

π+

µ2

]]}
. (2.18)

En la ecuación anterior se ha separado el término divergente ultravioleta de las funciones

Passarino-Veltman. Sumando las 2 contribuciones de auto-enerǵıa y la corrección total al

vértice, el término divergente ultravioleta se cancela y la amplitud total virtual y finita UV

se escribe como:

Mv
ρ0 = M0

ρ0 × f ρ0

vc .

La función escalar f ρ0

vc contiene la información del cálculo a 1 lazo y se escribe en términos

de funciones anaĺıticas6 para exhibir el término divergente infrarrojo.

f ρ0

vc =
α

2π

{
π2 (1 + v2

0)

2v0

− 2

[
1 +

1 + v2
0

2v0

ln

[
1 − v0

1 + v0

]]

−2 ln

[
λ

mπ+

] [
1 +

1 + v2
0

2v0

ln

[
1 − v0

1 + v0

]]

−1 + v2
0

v0
[Li2 [v0] − Li2 [−v0]]

−1 + v2
0

2v0

[
Li2

[
2

1 + v0

]
− Li2

[
2

1 − v0

]]}
. (2.19)

La anchura de decaimiento ρ0 → π+π− corregida a orden α debida a la emisión y re-

absorción de fotones virtuales, normalizada a la anchura a nivel árbol, se escribe en la

forma:
Γvc

ρ0π+π−

Γ0
ρ0π+π−

= 1 + 2Re[f ρ0

vc ] . (2.20)

Es claro que la ecuación anterior contiene la divergencia infrarroja en forma logaŕıtmica y

es necesario tomar en cuenta los fotones suaves del proceso de emisión de fotón real para

6La función dilogaritmo está definida como Li2(z) = − ∫ 1

0
ln[1−zt]dt

t .
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0

+

0

+

0

+

Figura 2.2: Diagramas de emisión de fotones reales.

eliminarlas. Una vez más señalamos que (2.19) se obtiene considerando piones puntuales

(QED), es decir sin tomar en cuenta la estructura de estos.

2.2.2. Correcciónes de fotones reales a ρ0 → π+π−

Para eliminar la divergencia infrarroja que aparece en las correcciones virtuales (2.19)

es necesario considerar el proceso de emisión de fotones reales, cuyos diagramas se muestra

en la fig.(2.2). A estos diagramas se les llama independientes del modelo debido a que

surgen de introducir el acoplamiento mı́nimo en (2.6). Las contribuciones dependientes del

modelo se originan al considerar la contribución de estados intermedios no contenidos en

la ec.(2.6).

En el estudio de los procesos radiativos se han establecido dos teoremas importantes

que mencionamos brevemente. El teorema de Low[44] establece que la amplitud total del

proceso radiativo se puede escribir en potencias de la enerǵıa (ω) del fotón emitido en la

forma siguiente:

MT
γ = Aω−1 + Bω0 + ωC + ω2D . . . (2.21)
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Los coeficientes A, B se obtienen únicamente a partir de las caracteŕısticas del proceso no

radiativo. Estos dos primeros términos de la amplitud definen la llamada amplitud de Low

ML, tienen su origen en los diagramas de la figura 2.2 y su suma es invariante de norma e

independiente de modelo. Los términos de orden ω−1 provienen de la radiación de la carga

eléctrica de las part́ıculas externas. El resto de la amplitud depende del modelo usado para

describir los detalles de la interacción y es invariante de norma a cada orden en ω. La

expansión anterior muestra que el comportamiento de la amplitud es divergente infrarrojo

cuando ω → 0.

El otro teorema importante es el Teorema de Burnett-Kroll[45]. Este establece que

el cuadrado de la amplitud total radiativa, sumada sobre los estados de polarización de

part́ıculas iniciales y finales (excepto las del fotón), no contiene términos divergentes de

orden ω−1 en la enerǵıa del fotón

∑
|MT

γ |2 =
a

ω2
+ bω0 + cω1 + . . . (2.22)

Los coeficientes de la anterior ecuación están relacionados con los de la ec.(2.21). Mientras

que el coeficiente a es independiente del modelo, todas las demás construcciones contienen

términos dependientes del modelo.

La amplitud total del proceso radiativo, sin tomar en cuenta términos dependientes

del modelo en primera aproximación, representada por los diagramas de Feynman de la

fig.(2.2) es:

MT
γ = Mµ

γεµ(k) = −eM̂0
ρ0

[
p · ε(k)

p · k
]
− e

[
p · ε(k)

p · k
]

ıgk · η(P, s)

+eM̂0
ρ0

[
q · ε(k)

q · k
]
− e

[
q · ε(k)

q · k
]

ıgk · η(P, s)

+2ıegε(k) · η(P, s).

Es importante mencionar que la amplitud M̂0
ρ0 está escrita en la forma de (2.8) pero con

los momentos cumpliendo la relación P = p + q + k. Claramente esta amplitud tiene la

forma de la amplitud de Low.
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El módulo al cuadrado de la amplitud total, al sumar sobre el spin del meson vectorial,

adquiere la forma establecida por el teorema de Burnett y Kroll 7

|M̄T
γ |2 = e2|M0

ρ0|2k=0

[
q · ε(k)

q · k − p · ε(k)

p · k
]2

+ R̄(k0). (2.23)

Los términos de orden k0 están contenidos en la función R̄ y el factor |M0
ρ0|2k=0 no contiene

dependencia alguna en el momento del fotón.

Nos ocuparemos del término que presenta el problema de divergencia infrarroja, cuya

amplitud de acuerdo a la ecuación anterior es:

MSoft
γ = eM0

ρ0

[
q · ε(k)

q · k − p · ε(k)

p · k
]

. (2.24)

Para calcular la anchura de decaimiento radiativo se requiere integrar en la enerǵıa ω del

fotón emitido. El rango de valores de ω se puede dividir en 2 regiones, [0, ω0] y [ω0, ωmax].

El primer intervalo es la región de bajas enerǵıas, donde la aproximación de fotón suave

es requerida y válida siempre que ω0 sea pequeño comparado con la escala de enerǵıa

involucrada en el proceso. Este valor puede representar la resolución del experimento para

la enerǵıa del fotón, es decir, la enerǵıa mı́nima de un fotón para ser detectado. En la

aproximación de fotón suave, el momento del fotón es despreciado en cualquier parte de

la expresión de la amplitud, excepto en el denominador. El segundo intervalo es la región

de fotones duros, contribución que no tiene divergencia infrarroja y que generalmente

se calcula numéricamente. La enerǵıa máxima accesible al fotón ωmax se obtiene de la

cinemática del decaimiento a 3 cuerpos, en el presente caso ωmax = (m2
ρ0 − 4m2

π±)/2mρ0 .

La corrección al ancho de decaimiento del proceso ρ0 → π+π− debido a los fotones

suaves se obtiene a partir de la amplitud mostrada en (2.24) e integrando en la enerǵıa

del fotón real hasta ω0. Al sumar sobre la polarización del fotón se deben tener en cuenta

los 3 grados de polarización de acuerdo a la ref. [46] y como se indica en el apéndice C.

La corrección al ancho de decaimiento del proceso ρ0 → π+π− debida a fotones suaves

7El factor |M0
ρ0 |2k=0 representa la densidad cinemática del proceso no radiativo
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normalizada al ancho a nivel árbol es :

Γsoft
ρ0π+π−γ

Γ0
ρ0π+π−

= gρ0

γ

=
α

π

{
2 ln[

λ

2ω0
]{1 +

1 + v2
0

2v0
ln

[
1 − v0

1 + v0

]
} − 1

v0
ln

[
1 − v0

1 + v0

]

+
1 + v2

0

2v0

[
Li2

[
1 − v0

1 + v0

]
− Li2

[
1 + v0

1 − v0

]
+ ıπ ln

[
1 − v0

1 + v0

]

+ ln

[
1 − v0

1 + v0

]
ln

[
4v2

0

1 − v2
0

] ]}
. (2.25)

Esta expresión depende logaŕıtmicamente de la masa ficticia λ del fotón, lo cual servirá pa-

ra cancelar el término divergente infrarrojo de la expresión para las correcciones virtuales

(2.19). Nótese que también contiene una dependencia en el corte ω0. Finalmente al incor-

porar las correcciones virtuales (2.19) y las debidas a fotones reales suaves (2.25), el ancho

corregido de decaimiento del proceso ρ0 → π+π−, normalizado al ancho a nivel árbol es (el

proceso corregido se denota por ρ0 → π+π−(γ)):

Γρ0π+π−(γ)

Γ0
ρ0π+π−

= 1 + 2Re[f ρ0

vc ] + gρ0

γ

= 1 +
α

π

{
2 ln

[
mπ+

2ω0

] [
1 +

1 + v2
0

2v0

ln[
1 − v0

1 + v0

]

]
− 1

v0

ln

[
1 − v0

1 + v0

]

+
1 + v2

0

2v0

[
ln

[
1 − v0

1 + v0

]
ln

[
4v2

0

1 − v2
0

]

+Li2

[
1 − v0

1 + v0

]
− Li2

[
1 + v0

1 − v0

]
+ ıπ ln

[
1 − v0

1 + v0

] ]
+π2 (1 + v2

0)

2v0

− 2

[
1 +

1 + v2
0

2v0

ln

[
1 − v0

1 + v0

]]

−1 + v2
0

v0

[Li2 [v0] − Li2 [−v0]]

−1 + v2
0

2v0

[
Li2

[
2

1 + v0

]
− Li2

[
2

1 − v0

]]}
. (2.26)

A la expresión anterior se le debe agregar la contribución de los términos regulares en la

enerǵıa del fotón (término R̄(k0) en (2.23) ) integrando en la enerǵıa del fotón hasta ω0 y
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cuyo cálculo se presentan en el apéndice D (O(10−6) para ω0 = 10 MeV). Este resultado

es adecuado para describir el ancho de decaimiento cuando se pueden excluir los procesos

radiativos con enerǵıas del fotón mayores a ω0.

2.3. Decaimiento ρ+ → π+π0

Para obtener la corrección electromagnética a la anchura de decaimiento del meson

ρ+ en 2 piones, debemos mencionar que estrictamente hablando no existe una verdadera

teoŕıa para el meson vectorial cargado interactuando con el campo electromagnético. Sin

embargo, es razonable (o al menos manejable) suponer que el vértice electromagnético de

la ρ+ esta dado por un término del tipo Yang-Mills (idéntico al del boson de norma W±) y

explorar las consecuencias de esta hipótesis. Una de las consecuencias inmediatas de tener

al fotón acoplado al mesón vectorial cargado es que la amplitud total de las correciones

radiativas virtuales es divergente en el ultravioleta, por lo que es necesario implementar un

método para tratar adecuadamente la divergencia ultravioleta.

De forma similar al cálculo realizado para el meson ρ0, la amplitud a nivel árbol que

modela el decaimiento ρ+ → π+π0 y que proviene del Lagrangiano mostrado en (2.6) es :

M0
ρ+ = ıgρ+π+π0

[
p+ − q0

] · η(P, s) , (2.27)

donde los 4 momentos (P, p+, q0) corresponden a (ρ+, π+, π0) y η(P, s) es el vector de

polarización del meson. Al usar masas diferentes para el pion cargado y el neutro, la

velocidad de los piones en el sistema de reposo del meson ρ+ es:

v+ =

√√√√1 − 2
[
m2

π+ + m2
π0

]
m2

ρ+

+

[
m2

π+ − m2
π0

]2
m4

ρ+

. (2.28)

En el mismo sistema de referencia (el meson ρ+ en reposo), las enerǵıas y el momento de
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los piones del estado final son:

Eπ+ =
mρ+

2
(1 +

∆2
π

m2
ρ+

) ,

Eπ0 =
mρ+

2
(1 − ∆2

π

m2
ρ+

) ,

|	p+| =
mρ+v+

2
, (2.29)

donde hemos definido ∆2
π = m2

π+ − m2
π0 y Σ2

π = m2
π+ + m2

π0 . La anchura de decaimiento

del meson cargado, a nivel árbol es:

Γ0
ρ+π+π0 =

g2
ρ+π+π0mρ+v3

+

48π
. (2.30)

Comparando con (2.10), se observa que la única diferencia proviene de la diferencia de

masas de los ρ’s y de los piones cargados y neutros, ya que gρ0π+π− = gρ+π+π− . En el

siguiente apartado nos concentraremos en el cálculo de las correcciones electromagnéticas

virtuales y reales a este proceso.

2.3.1. Correcciones de fotones virtuales a ρ+ → π+π0

Debido a que las correcciones virtuales a un lazo involucran el vértice electromagnético

de la ρ+, no se satisface una identidad de Ward que cancele las divergencias UV en forma

automática. En esta tesis utilizaremos un método originalmente propuesto por Yennie y

Meister [28], el cual permite aislar y calcular la parte finita de las correcciones radiativas

a un lazo.

La técnica consiste en separar la amplitud total de las correcciones radiativas virtuales

en dos partes. Por una parte está la amplitud obtenida al considerar la emisión y absor-

ción de fotones virtuales por las ĺıneas externas cargadas y que son llamadas correcciones

radiativas externas. Aquellas donde las ĺıneas fotónicas terminan en una ĺınea interna se

les denomina correcciones radiativas internas. En este esquema, la amplitud total de las

correcciones radiativas, se puede escribir como:

MT
vc = Mv

EXT + Mv
INT .
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a) b)

c)

d) e)

Figura 2.3: Diagramas de correcciones radiativas virtuales

Las amplitudes de las Correcciones Externas contienen a los llamados términos de convec-

ción, los cuales se originan en la radiación por las cargas de las part́ıculas externas:

Mv
EXT = Mv

conv + Mv,resto
EXT .

Un hecho importante es que la suma de las amplitudes de convección es invariante de

norma, es libre de divergencias UV y contiene todas las divergencias IR [28].

Para el proceso de nuestro interés, los diagramas que dan lugar a las correcciones

externas son las auto-enerǵıas, diagramas a) y b) de la fig.(2.3) y el diagrama donde el fotón

se emite desde el pion cargado y es absorbido por el meson ρ+, diagrama c) fig.(2.3). Los

diagramas que involucran un vértice de cuatro part́ıculas solo contribuyen a las correcciones

internas.

Incluyendo solo el término de convección, se obtiene la siguiente amplitud para el dia-
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grama de auto-enerǵıa del pion cargado (Figura 2.3 a):

MSE
π+,conv =

M0
ρ+

2
× ıe2

(2π)4

∫
[2p+ + k] · [2p+ + k] d4k

k2
[
(p+ + k)2 − m2

π+

]2 . (2.31)

Siguiendo el mismo procedimiento, la amplitud correspondiente para la auto-enerǵıa del

meson ρ+ (figura 2.3 b) es:

MSE
ρ+,conv =

M0
ρ+

2
× ıe2

(2π)4

∫
[2P + k] · [2P + k] d4k

k2
[
(P + k)2 − m2

ρ+

]2 . (2.32)

De forma similar, el término de convección para el diagrama c) de la figura 2.3 es:

Mcoul
conv = M0

ρ+ × 4πα

ı

1

(2π)4

∫
[2p+ + k] · [2P + k] d4k

k2
[
(P + k)2 − m2

ρ+

] [
(p+ + k)2 − m2

π+

] . (2.33)

De (2.31-2.33) se obtiene la amplitud total debida a los términos de convección en las

correcciones virtuales:

Mv
conv = M0

ρ+ × f ρ+

conv ,

donde M0
ρ+ es la amplitud de orden árbol para el proceso ρ+ → π+π0. La forma expĺıcita

de la función de corrección radiativa es: 8

f ρ+

conv =
α

2π

{
− ln

[
λ2

m2
ρ+

]
− 1

2v+/ξ
ln

[
1 − v+/ξ

1 + v+/ξ

]
ln

[
λ2

mπ+mρ+

]}

+
α

4π

{
−2 +

3

2
ln

[
m2

π+

m2
ρ+

]
+

1

2m2
π0

[
m2

ρ+ ln

[
m2

ρ+

m2
π+

]
(1 − ∆2

π

m2
ρ+

)

−m2
ρv+

⎡
⎣ln

⎡
⎣1 − v+ − ∆2

π

m2
ρ+

1 + v+ − ∆2
π

m2
ρ+

⎤
⎦+ ln

⎡
⎣1 + v+ − Σ2

π

m2
ρ+

1 − v+ − Σ2
π

m2
ρ+

⎤
⎦
⎤
⎦ ]

+
1

v+/ξ
ln

[
1 − v+/ξ

1 + v+/ξ

] [
−1

4
ln

[
1 − v+/ξ

1 + v+/ξ

]
+ 2 ln

[
2v+/ξ

1 + v+/ξ

]]

+
2

v+/ξ

[− π2

6
+ Li2

[
1 − v+/ξ

1 + v+/ξ

]
+

1

2
ln2

[
mπ+

mρ+

]
+ Li2

[
v+ + (ξ − 2)

ξ + v+

]

+Li2

[
v+ − ξ + 2

2

] ]}
. (2.34)

8Se ha definido ξ ≡ 1 + ∆2
π

m2
ρ+
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El resultado anterior para las correcciones virtuales contiene todas las divergencias infra-

rrojas que aparecen en el cálculo a un lazo (masa ficticia del fotón λ) y es expĺıcitamente

finita en el ĺımite UV.

Regresando a la amplitud total debida a las correcciones virtuales, ésta se ha separado

en una amplitud que contiene los términos de convección y el resto en la forma siguiente

MT
vc = Mv

conv + Mv
int . (2.35)

La amplitud Mv
int contiene todos los términos restantes (es la suma de Mv

INT + Mv,resto
EXT )

y un cálculo expĺıcito muestra que puede llevarse a la forma siguiente

Mv
int = ıgρ+π+π0

α

4π

[
F+
[
p+ · η(P, s)

]
+ F 0 [q · η(P, s)]

]
,

donde F+ y F 0 son funciones escalares de Lorentz que contienen divergencias ultravioletas,

pero son finitas en el infrarrojo. Nótese que ésta amplitud no es proporcional a la amplitud

a nivel de árbol multiplicada por una función escalar.

La amplitud total del proceso ρ+ → π+π0 que incluye la amplitud árbol se escribe como

sigue

MT = M0
ρ+ + Mv

conv + Mv
int . (2.36)

Considerando una presición de orden α, la probabilidad no polarizada de la transición es

|MT |2 = |M0
ρ+|2
[
1 + 2Ref ρ+

c

]
+ 2Re[M0

ρ+ ]†
ıgα

4π

[
F+(p+ · η(P )) + F 0(q · η(P ))

]
= |M0

ρ+|2
[
1 + 2Ref ρ+

c

]
+ 2Re|M0

ρ+|2 α

4π

[
F+ − F 0

]
� |M0

ρ+|2
[
1 + 2Ref ρ+

c

]
[1 + 2Refint] .

La función escalar fint = (α/4π) [F+ − F 0], es finita en el infrarrojo pero contiene diver-

gencias ultravioletas y depende de los detalles de las interacciones electromagnéticas del

ρ+, se absorbe en la definición de la constante de acoplamiento fuerte,

gρ+π+π0 = [1 + 2Re[fint]] gρ+π+π0 . (2.37)
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Por lo tanto, hasta el orden α, la anchura de decaimiento corregida por fotones virtuales

y normalizada a la anchura a nivel árbol se puede escribir como sigue:

Γvc
ρ+π+π0

Γ0
ρ+π+π0

= 1 + 2Re[f ρ+

conv] , (2.38)

donde la función f ρ+

conv ha sido definida en la ec.(2.34).

Es importante recordar que la corrección virtual calculada de esta forma es libre de

divergencias ultravioletas, contiene todas las divergencias infrarrojas y es invariante de

norma [28]. En la próxima sección nos dedicaremos a calcular las correcciones debidas a

fotones suaves.

2.3.2. Correcciones de fotones reales a ρ+ → π+π0

Consideremos ahora el proceso radiativo ρ+(P, η) → π+(p+)π0(p0)γ(k, ε). La parte

divergente IR de la amplitud la cual es importante para fotones suaves viene dada por la

siguiente expresión:

Msoft
γ = eM0

ρ+

[
p+ · ε(k)

p+ · k − P · ε(k)

P · k
]

, (2.39)

donde P es el momento del meson ρ+, ε(k) el vector de polarización del fotón y p+ el

momento del pion. Es claro que dicha amplitud es invariante de norma electromagnética y

contiene todos los términos singulares de la amplitud de Low.

El método usual para calcular la anchura de decaimiento con emisión de fotón suave,

consiste en tomar los fotones de momento nulo en la función delta de Dirac (conservación

de la enerǵıa-momento) y situarse en el sistema de reposo de la part́ıcula que decae ( ρ+).
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Aśı obtenemos:

dΓ =
∑

|M|2 1

(2π)52mρ+8
δ3(− 	p+ − 	q)δ(mρ − E+ − E−)

d3p+

E+

d3q

E0

d3k

ω

=
∑

|M|2 1

(2π)52mρ+8
δ3(	q − (− 	p+))δ(mρ − E+ − E−)

d3p+

E+

d3q

E0

d3k

ω

=
∑

|M|2 1

(2π)52mρ+8
δ(mρ − E+ − E0)

d3p+

E+

1√
| 	p+|2 + m2

π0

d3k

ω
.

Las siguientes relaciones son útiles en la evaluación de la ecuación anterior,

d3p+

E+
= | 	p+|dE+dΩ+ ,

δ(mρ − E+ − E0) =
δ(E+ − x+)

1 + x+√
x2
+−∆2

π

,

x+ =
m2

ρ+ + ∆2
π

2mρ+

.

Despues de realizar la suma correcta sobre polarizaciones del fotón en la Norma de Coester[41],

es decir,

∑
(ε · a)(ε · b) = 	a ·	b − 	a · 	k	b · 	k

ω2
, ω2 = 	k2 + λ2, (2.40)

se obtiene la expresión para la anchura de decaimiento del proceso radiativo ( fotones

suaves) normalizada a la anchura a nivel árbol:

Γsoft
ρ+π+π0γ

Γ0

=
α

2π
v2

+

∫
sin θdθk2dk

[
1 − k̃2

ω2 cos2 θ
]

ω3ξ2
[
1 − v+k cos θ

ωξ

]2 .
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Una vez realizada la integración el resultado es:

Γsoft
ρ+π+π0γ

Γ0
ρ+π+π−

= gρ+

γ

=
α

π

{
1 − 2 ln[2] +

1

2v+

ξ

ln

[
1 + v+

ξ

1 − v+

ξ

]
+ ln

[
λ2

ω2
0

]
(1 +

1

2v+

ξ

ln

[
1 − v+

ξ

1 + v+

ξ

]
)

− 1

2v+

ξ

[
Li2

[
1 + v+

ξ

1 − v+

ξ

]
− Li2

[
1 − v+

ξ

1 + v+

ξ

]
+ ln

⎡
⎣ v2

+

ξ2

1 − v2
+

ξ2

⎤
⎦ ln

[
1 + v+

ξ

1 − v+

ξ

]

+ıπ ln

[
1 + v+

ξ

1 − v+

ξ

] ]}
, (2.41)

el cual contiene las divergencias infrarrojas y depende del parámetro de corte en la enerǵıa

del fotón ω0. Nótese que en el ĺımite de la simetŕıa de isospin, ξ = 1 y v+ = v0, lo

cual permitiŕıa hacer una comparación entre términos similares con la expresión de las

correcciones virtuales de ρ0 → π+π− .

Al sumar el ancho de decaimiento corregido por las correcciones virtuales calculadas en

la sección anterior ec.(2.38) con el ancho de emisión de fotón suave ec.(2.41), se obtiene el

ancho de decaimiento del proceso ρ+ → π+π0 corregido a orden α, el cual viene dado por :

Γ(ρ+ → π+π0(γ)) = Γ0
ρ+π+π0 [1 + 2Re[f ρ+

conv] + gρ+

γ ]

= Γ0
ρ+π+π0 [1 + δρ+

tot ] . (2.42)

Si se usa la siguiente notación para los argumentos de los dilogaritmos

Y1 =
v+ + 2 − ξ

2
, Y2 =

v+ + ξ − 2

[ξ + v+]
,
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podemos escribir la expresión anaĺıtica para la función de corrección radiativa δρ+

tot como,

δρ+

tot =
α

π

{
−2 ln[2] +

1

4m2
π0

[
m2

ρ+ ln

[
m2

ρ+

m2
π+

]
(1 − ∆2

π

m2
ρ+

)

−m2
ρv+

⎡
⎣ln

⎡
⎣1 − v+ − ∆2

π

m2
ρ+

1 + v+ − ∆2
π

m2
ρ+

⎤
⎦+ ln

⎡
⎣1 + v+ − Σ2

π

m2
ρ+

1 − v+ − Σ2
π

m2
ρ+

⎤
⎦
⎤
⎦ ]

− ln

[
ω2

0

m2
ρ+

] [
1 +

1

2v+/ξ
ln

[
1 − v+/ξ

1 + v+/ξ

]]
+

3

4
ln

[
m2

π+

m2
ρ+

]

+
1

2v+/ξ

[
ln

[
1 − v+/ξ

1 + v+/ξ

] [
−1

4
ln

[
1 − v+/ξ

1 + v+/ξ

]
+ 2 ln

[
2v+/ξ

1 + v+/ξ

]]

+ ln

[
1 + v+/ξ

1 − v+/ξ

]
− ln

[
1 − v+/ξ

1 + v+/ξ

]
ln

[
mρ+

mπ+

]
− Li2

[
1 + v+/ξ

1 − v+/ξ

]

+Li2

[
1 − v+/ξ

1 + v+/ξ

]
− ln

[
[v+/ξ]2

1 − [v+/ξ]2

]
ln

[
1 + v+/ξ

1 − v+/ξ

]
− ıπ ln

[
1 + v+/ξ

1 − v+/ξ

] ]

+
1

v+/ξ

[
−π2

6
+ Li2

[
1 − v+/ξ

1 + v+/ξ

]
+

1

2
ln2

[
mπ+

mρ+

]
+ Li2 [Y1] + Li2 [Y2]

] ]}
.

(2.43)

Los términos no divergentes del cálculo de fotones suaves, aśı como en el cálculo debido a

la emisión de fotones duros se evalúan en forma numérica y se incorporaran en la siguiente

sección.

2.4. Rompimiento de isospin en el sistema ρ± − ρ0

Con el fin de evaluar el rompimiento de la simetŕıa de isospin en los anchos del sistema

ρ±− ρ0 empecemos por definir estos anchos a partir de sus anchos parciales de la siguiente

manera:

Γρ+ = Γ(ρ+ → π+π0(γ); ω ≤ ω0) + Γ(ρ+ → π+π0γ; ω ≥ ω0)

+Γ(ρ+ → π+γ) + Γ(ρ+ → π+π+π−π0) + · · ·
= Γ(ρ+ → π+π0(γ); ω ≤ ω0) + Γ(ρ+ → π+π0γ; ω ≥ ω0) + Γsub

ρ+ (2.44)
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Γρ0 = Γ(ρ0 → π+π−(γ); ω ≤ ω0) + Γ(ρ0 → π+π−γ; ω ≥ ω0)

+Γ(ρ0 → π0γ) + Γ(ρ0 → ηγ) + Γ(ρ0 → π0γ)

+
∑
l=e,µ

Γ(ρ0 → l+l−) + Γ(ρ0 → π+π−π+π−) + · · ·

= Γ(ρ0 → π+π−(γ); ω ≤ ω0) + Γ(ρ0 → π+π−γ; ω ≥ ω0) + Γsub
ρ0 , (2.45)

donde los puntos suspensivos denotan otros posibles (pero despreciables en tamaño) modos

de decaimiento en cada canal. Los términos restantes (denotados con el supeŕındice sub),

contribuyen respectivamente en 0·04 % y 0·11 % [3] a los anchos de decaimiento del ρ+ y del

ρ0, por lo que pueden ser despreciados cuando se quiere evaluar los efectos del rompimiento

del isospin mayores que 0·5 %. Por lo tanto solo evaluaremos los anchos de decaimiento de

los modos ππγ y las correcciones radiativas al ancho ππ.

Un aspecto importante a comentar es que las anchuras de decaimiento de los mesones

ρ deben ser independientes del parámetro ω0 el cual separa los modos radiativos de los no

radiativos. Algunos cálculos usados anteriormente en la literatura para los anchos de los ρ

[14][17], no satisfacen este criterio, ya que combinan el modo radiativo ππγ definido para

una cierta enerǵıa de corte ω0 y la anchura del proceso ρ → ππ a nivel de árbol (la cual es

independiente de ω0). Como consecuencia de ello, la anchura aśı definida es dependiente

de la enerǵıa de corte del fotón, lo cual es inconsistente con el hecho de que el ancho de

una part́ıcula es una propiedad intŕınsica de ella y no debe depender del modo en que se

cortan las contribuciones de los modos radiativos.

Tomando en cuenta los modos dominantes de decaimiento, definimos las contribuciones

electromagnéticas a la diferencia de los anchos de la siguiente manera:

∆Γρ = Γ(ρ0 → π+π−(γ), ω ≤ ω0) − Γ(ρ+ → π+π0(γ), ω ≤ ω0)

+Γ(ρ0 → π+π−γ, ω ≥ ω0) − Γ(ρ+ → π+π0γ, ω ≥ ω0) . (2.46)

Las anchuras de decaimiento correspondientes a ρ → ππ(γ), es decir las que incorporan

el ancho a nivel árbol, las correcciones radiativas virtuales y las correcciones de fotones
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suaves se definen en la siguiente forma

Γ(ρ0 → π+π−(γ), ω ≤ ω0) ≡ Γ0
ρ0π+π− + Γvc

ρ0π+π−

+Γsoft
ρ0π+π−γ

= Γ0
ρ0π+π−

[
1 + 2f ρ0

vc + gρ0

γ

]
= Γ0

ρ0π+π−

[
1 + δρ0

tot

]
,

Γ(ρ+ → π+π0(γ), ω ≤ ω0) ≡ Γ0
ρ+π+π0 + Γvc

ρ+π+π0

+Γsoft
ρ+π+π0γ

= Γ0
ρ+π+π0

[
1 + 2f ρ+

conv + gρ+

γ

]
= Γ0

ρ+π+π0

[
1 + δρ+

tot

]
. (2.47)

Estos anchos de decaimiento dependen expĺıcitamente del parámetro de corte de los fotones

(ver ec.(2.25) y (ec.2.41)), que por no detectarse están incluidos en los modos no radiativos.

Los valores de las correcciones radiativas (δρ0

tot, δρ+

tot) definidas en (ec.2.47) se presentan en

el Cuadro (2.1), en función del corte ω0 y para 3 valores distintos de las masas de los mesones

ρ0,± que son consistentes con un pequeño rompimiento de la simetŕıa de isospin. Como

puede verse, el tamaño de la corrección en cada caso depende muy débilmente del valor

espećıfico de la masa del meson ρ. Sin embargo, el tamaño de las correcciones radiativas

es diferente entre los decaimientos de mesones cargados y neutros, lo cual contribuirá de

manera significativa al rompimiento del isospin. Finalmente, es interesante señalar que

el factor de Coulomb no es el término dominante de las correcciones en el modo ρ0 →
π+π−como sucede en el caso de las correcciones radiativas a φ(1020) → K+K− (Ver

siguiente caṕıtulo). La razón para esto es que los piones emitidos en el decaimiento del

ρ son relativistas, mientras que los kaones emitidos en el decaimiento de la φ son no

relativistas.

Los anchos de decaimiento de los modos radiativos definidos a través del parámetro (el
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mρ0,+ = 772 MeV mρ0,+ = 775 MeV mρ0,+ = 778 MeV

ω0(MeV) δρ0

tot δρ0

tot δρ0

tot

2 −0·03670 −0·03692 −0·03714
4 −0·02910 −0·02930 −0·02949
6 −0·02465 −0·02483 −0·02501
8 −0·02150 −0·02167 −0·02183
10 −0·01905 −0·01921 −0·01937
12 −0·01705 −0·01720 −0·01736
14 −0·01536 −0·01550 −0·01565
16 −0·01389 −0·01403 −0·01477
18 −0·01260 −0·01273 −0·01287
20 −0·01144 −0·01157 −0·01170
30 −0·00697 −0·00708 −0·00720
40 −0·00378 −0·00388 −0·00399
50 −0·00130 −0·00139 −0·00150

δρ+

tot δρ+

tot δρ+

tot

2 −0·01959 −0·01968 −0·01970
4 −0·01701 −0·01710 −0·01718
6 −0·01551 −0·01558 −0·01566
8 −0·01444 −0·01451 −0·01459
10 −0·01361 −0·01368 −0·01375
12 −0·01293 −0·01300 −0·01307
14 −0·01236 −0·01242 −0·01249
16 −0·01186 −0·01192 −0·01199
18 −0·01142 −0·01149 −0·01155
20 −0·01103 −0·01109 −0·01115
30 −0·00953 −0·00958 −0·00963
40 −0·00844 −0·00849 −0·00854
50 −0·00761 −0·00765 −0·00769

Cuadro 2.1: Corrección radiativa δρ0,+ definida en ec.(2.47) como función de ω0 y para 3
diferentes valores de la masa mρ0,+

cual es prácticamente equivalente a la definición de la fracción de decaimiento):

∆ρ0 ≡ Γ(ρ0 → ππγ, ω ≥ ω0)

Γ0
ρ0π+π−

,

∆ρ+ ≡ Γ(ρ+ → ππγ, ω ≥ ω0)

Γ0
ρ+π+π0

, (2.48)
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se muestran en la Cuadro (2.2). Estos anchos también dependen de la enerǵıa del corte ω0 y

como es de esperarse, disminuyen conforme crece ω0. Nuevamente, podemos constatar que

al nivel de los modos radiativos existe un rompimiento del isospin de niveles apreciables.

Un aspecto interesante es que, al nivel de precisión que estamos discutiendo (relevantes

para la rotura del isospin), la contribución de los términos dependientes del modelo en

la amplitud radiativa (terminos de orden ω y superiores, ver ec.(2.21)) son dos ordenes

de magnitud menores que los que se muestran en el cuadro (2.2). Estas contribuciones

dependientes de modelo fueron calculadas en las referencias [36], [39], [40] suponiendo que

los estados intermedios están dominados por la producción de decaimiento de mesones

ω(782), a1(1260) y σ(600).

mρ0,+ = 772 MeV mρ0,+ = 775 MeV mρ0,+ = 778 MeV
ω0(MeV) ∆ρ+ ∆ρ0 ∆ρ+ ∆ρ0 ∆ρ+ ∆ρ0

2 0·01544 0·04475 0·01553 0·04497 0·01561 0·04518
4 0·01290 0·03724 0·01297 0·03742 0·01302 0·03761
6 0·01143 0·03288 0·01149 0·03305 0·01155 0·03322
8 0·01039 0·02981 0·01045 0·02997 0·01051 0·03013
10 0·00959 0·02745 0·00965 0·02760 0·00970 0·02775
12 0·00894 0·02553 0·00900 0·02568 0·00905 0·02582
14 0·00840 0·02393 0·00845 0·02406 0·00850 0·02420
16 0·00793 0·02255 0·00798 0·02268 0·00803 0·02281
18 0·00753 0·02134 0·00758 0·02147 0·00762 0·02159
20 0·00717 0·02027 0·00721 0·02039 0·00726 0·02051
30 0·00581 0·01624 0·00585 0·01635 0·00589 0·01645
40 0·00488 0·01350 0·00492 0·01359 0·00495 0·01369
50 0·00420 0·01146 0·00423 0·01155 0·00426 0·01163
60 0·00366 0·00987 0·00369 0·00994 0·00372 0·01002
70 0·00322 0·00857 0·00325 0·00864 0·00327 0·00871
80 0·00286 0·00750 0·00288 0·00757 0·00291 0·00763
90 0·00255 0·00659 0·00257 0·00665 0·00259 0·00672
100 0·00228 0·00582 0·00230 0·00588 0·00232 0·00593

Cuadro 2.2: Correcciónes radiativas ∆ρ0,+ a la razón de decaimiento definidas en ec.(2.48)
como función de la enerǵıa mı́nima ω0 del fotón y para 3 diferentes valores de la masa mρ0,+
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La predicción para la fracción de decaimiento del modo neutro usando los datos del

Cuadro(2.2) es B(ρ0 → π+π−γ, ω ≥ 50 MeV)= 11·5× 10−3, resultado que se compara muy

bien (dentro de 1σ) con el valor experimental reportado en el PDG[3] para el mismo valor

de la enerǵıa de corte ω0

B(ρ0 → π+π−γ, ω ≥ 50MeV) = 9·9 ± 1·6 × 10−3

Para el mismo valor de ω0, obtenemos el efecto de rompimiento de simetŕıa de isospin en

el modo radiativo (suponiendo Γρ+ = Γρ0 = 150 MeV)

Γ(ρ0 → π+π−γ, ω ≥ 50MeV) − Γ(ρ+ → π+π0γ, ω ≥ 50MeV) ≈ 1·1MeV

el cual difiere del valor central (0·45 ± 0·45 MeV) supuesto por la referencia [17], el cual

es el valor usado en la literatura. Aunque son consistentes dentro de las incertidumbre, las

predicciones del rompimiento del isospin en la evaluación de las contribuciones hadrónicas

a aµ a partir de los datos del lepton τ son muy diferentes.

Finalmente, en el Cuadro (2.3) presentamos las correcciones (correspondiente a fotones

inclusivos) que deben aplicarse al ancho de decaimiento ρ → ππ para obtener el ancho total

de los mesones para los casos neutro y cargado. La corrección σρi tabulada está definida

de la siguiente manera:

Γ(ρ0 → ππ(γ), ω ≤ ω0) + Γ(ρ0 → ππγ, ω ≥ ω0)

Γ0
ρ0π+π−

= 1 + δρ0

tot + ∆ρ0 ≡ 1 + σρ0

Γ(ρ+ → ππ(γ), ω ≤ ω0) + Γ(ρ+ → ππγ, ω ≥ ω0)

Γ0
ρ+π+π−

= 1 + δρ+

tot + ∆ρ+ ≡ 1 + σρ+

Tal como señalamos anteriormente, la corrección inclusiva debe de ser independiente de

el corte ω0. A partir del cuadro(2.3) se observa que este requisito se satisface para valores

pequeños de ω0[47]. La razón importante de que no sea una independencia perfecta se debe,

por un lado a que la aproximación de fotón suave se realiza, desechando todos los términos
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ω0(MeV) σρ0 σρ+ σρ0 − σρ+

2 8·05 × 10−3 −4·15 × 10−3 12·20 × 10−3

4 8·12 × 10−3 −4·13 × 10−3 12·25 × 10−3

6 8·22 × 10−3 −4·09 × 10−3 12·31 × 10−3

8 8·30 × 10−3 −4·06 × 10−3 12·36 × 10−3

10 8·39 × 10−3 −4·03 × 10−3 12·42 × 10−3

12 8·48 × 10−3 −4·00 × 10−3 12·48 × 10−3

14 8·56 × 10−3 −3·97 × 10−3 12·53 × 10−3

16 8·65 × 10−3 −3·94 × 10−3 12·59 × 10−3

18 8·74 × 10−3 −3·91 × 10−3 12·65 × 10−3

20 8·82 × 10−3 −3·88 × 10−3 12·70 × 10−3

Cuadro 2.3: Corrección de fotones inclusivos a la fracción de decamiento ∆ρ0,+ como función
de la enerǵıa minima ω0 del fotón y para el valor común de la masas mρ0,+ = 775 MeV

en potencias de ω0 y solo se mantenie el término logaŕıtmico, mientras que el proceso con

fotones duros contiene todos los términos tales como polinomios en ω0.

La diferencia entre anchuras de decaimiento de los mesones ρ en términos de las dife-

rentes contribuciones se escribe como sigue

∆Γρ = Γ0
ρ0

[
1 + σρ0 −

[
mρ+v3

+

mρ0v3
0

]
[1 + σρ+ ]

]
+ ∆Γsub (2.49)

Una vez que sea establecido de manera definitiva cual es el valor y signo de ∆mρ, el valor de

∆Γρ podrá obtenerse con los datos de los cuadros (2.1) y (2.2) en la ecuación anterior. Para

propósitos ilustrativos, usando Γ0
ρ0 = 150 MeV, ω0 = 10 MeV, obtendŕıamos los siguientes

valores que dependen de la elección de ∆mρ.

∆mρ −3 MeV 0 MeV 3 MeV

∆Γρ 0·02 MeV 0·86 MeV 1·70 MeV

Como es de esperarse, el resultado anterior muestra que existe una correlación impor-

tante entre el rompimiento de isospin en las masas y las anchuras del sistema ρ± − ρ0. Sin

embargo, la extracción de estos parámetros a partir de los datos experimentales (producción
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de un par de piones en la aniquilación e+e−, en decaimientos del leptón τ y en reaccio-

nes hadrónicas[3]) no toman en cuenta esta correlación o restricción que impone la teoŕıa.

Aśı por ejemplo un ánalisis combinado de datos sobre la sección eficaz de e+e− → π+π− y

del espectro hadrónico en τ− → π+π0ν en la región de la resonancia ρ(770) indica que [48]

∆Γρ = (−2·3 ± 1·6) MeV y ∆mρ = −(3·1 ± 0·9) MeV (2.50)

Sin embargo, un análisis similar efectuado por la referencia [6] arroja:

∆Γρ = (−0·2 ± 1·0) MeV y ∆mρ = (−2·4 ± 0·8) MeV . (2.51)

Sin duda, un análisis combinado de dichos datos que tome en cuenta de manera adecua-

da el rompimiento de la simetŕıa de isospin en las masas y anchos de decaimiento [19][20]

es necesario.

2.5. Conclusiones

En el presente caṕıtulo hemos analizado el rompimiento de la simetŕıa de isospin en

la anchura total de decaimiento de los mesones ρ(770). Definiendo los anchos totales de

decaimiento de la ρ a partir de la suma sobre sus anchos parciales, hemos encontrado que

solo los modos de decaimiento en dos piones (ρ → ππ y ρ → ππγ) son relevantes cuando

se desea una precisión mayor al 0·5 %.

Para calcular de forma completa el ancho de decaimiento de las ρ’s hemos (i) evaluado

las correcciones radiativas al decaimiento no radiativo del ρ y (ii) los anchos de decaimiento

radiativos de la ρ en dos piones. Se encuentra que ambos decaimientos contribuyen de

manera significativa al rompimiento de la simetŕıa de isospin en la diferencias de anchuras

del sistema ρ0 − ρ±. Además se encuentra que la diferencia de anchuras dependende de el

signo y valor absoluto de la diferencia de masas.
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Caṕıtulo 3

Corrección radiativa a φ → K+K−

En este caṕıtulo se estudia el rompimiento de la simetŕıa de isospin en los pro-

cesos φ → K+K−/K0K̄0. Para tal fin se define la razón entre las anchuras de

decaimiento RT = Γ(φ → K+K−)/Γ(φ → K0K̄0). Se realizan las correccio-

nes electromagnéticas que solo afectan al proceso con kaones cargados (QED

escalar). Posteriormente se analiza la incorporación de factores de forma a los

kaones para modelar su interacción con el fotón.

3.1. Introducción

El meson φ(1020) posee los mismos números cuánticos que el fotón (JPC = 1−−), pero

tiene una masa de 1019·45 MeV [3]. Puede ser producido tanto en reacciones hadrónicas,

como en la aniquilación electrón-positrón y decae principalmente en un par de mesones

K (K+K− y K0K̄0). Sus principales modos de decaimiento se muestran en la siguiente

Tabla1:

1Siguiendo la convención adoptada en la literatura, en esta tesis hablaremos indistintamente de los

estados K0K̄0 y KLKS para el par de kaones neutros.

41
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Estado Final Γi/Γ Factor de escala

K+K− (49·1 ± 0·6) % 1·2
K0K̄0 (34·0 ± 0·5) % 1·1
π+π−π0 (15·04 ± 0·5) % 1·3
ηγ (1·295 ± 0·25) % 1·1

Nuevamente, de la tabla anterior podemos observar que estos promedios reportados en

el [3] poseen factores de escala mayores a la unidad.

A partir de los valores experimentales más precisos obtenidos en las refs.[7],[8],[9], se

puede derivar la siguiente razón de producción de un par de kaones [3]:

Rexp
φ =

Γ(φ → K+K−)

Γ(φ → K0K̄0)

= 1·45 ± 0·03 . (3.1)

Esta razón de producción de kaones es muy grande ya que debido a que siendo el mesón

φ un isosinglete, en el ĺımite de la simetŕıa de isospin se esperaŕıa Rφ = 1. Como veremos

más adelante, la explicación de este rompimiento de la simetŕıa de isospin sigue siendo un

reto para la fenomenoloǵıa de part́ıculas elementales.

Los datos experimentales más limpios se obtienen a traves de la reacción e+e− → φ →
KK̄, la cual ha sido estudiada por los experimentos CMD2 y SND en Novosibirsk [8][9],

Nuevos resultados se esperan en el experimento KLOE localizado en DAΦNE [10][49], por

lo que es factible que se logre una reducción en las incertidumbres de la medición de Rexp
φ .

Cabe mencionar que los experimentos CMD2 y SND han medido simultáneamente las

fracciones de decaimiento de los modos principales del meson φ,

φ → K+K− ,

φ → K0K̄0 ,

φ → π−π+π0 ,

φ → ηγ .

sujetos a la restricción
∑

X B(φ → X) = 1.
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El meson φ es un isosinglete, mientras que los kaones pueden ser agrupados en isodo-

bletes (la diferencia de masas de los kaones es: δmK = mK+ − mK0 ∼ −4 MeV):⎛
⎝ K+

K0

⎞
⎠ ,

⎛
⎝ K̄0

K−

⎞
⎠ .

Debido a que los decaimientos del meson φ en un par de kaones ocurren por medio de

las interacciones fuertes, el par KK̄ debe encontrarse en un estado de isospin I = 0. Por

tanto, en el ĺımite de la simetŕıa de isospin se esperaŕıa que RI
φ = 1, lo cual al compararse

con la ec. (3.1) indica un gran rompimiento de la simetŕıa de isospin. La razón para esta

fuerte ruptura se debe principalmente a que el decaimiento del φ ocurre muy cerca del

umbral de producción de kaones, lo cual realza el efecto de rompimiento del isospin.

A nivel hadrónico, las fuentes de rompimiento del isospin deben provenir de las diferen-

cias de masas entre los kaones cargados y neutros y de las interacciones electromagnéticas

entre las part́ıculas externas [11], [12]. La diferencia de masas entre los kaones produce un

realce en Rφ debido al espacio de fase de estas paŕıculas. Las correcciones radiativas debidas

a las interacciones electromagnéticas de los kaones cargados en el estado final producen un

realce adicional. Al tomar en cuenta ambos efectos se encuentra [11], [12]:

Rt
φ � 1·59 . (3.2)

Este resultado se encuentra 4·5σ por encima del valor experimental ec.(3.1) lo cual repre-

senta un reto para la teoŕıa. Adicionalmente, posibles correcciones de isospin a las constan-

tes de interacción fuertes calculadas en el contexto de interacciones efectivas hadrónicas,

incrementan aun más la predicción teórica hasta Rt = 1·62[12].

Una solución no convencional a este rompimiento de la simetŕıa de isospin fue propuesta

en la ref.[50]. Ese trabajo supone que existen correcciones a la regla de oro de Fermi para

razones de decaimiento, aunque introduce el inconveniente de poner a mano un factor de

forma fenomenológico que depende de un parámetro relacionado con la escala de enerǵıa

de confinamiento de los hadrones involucrados.
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e-

e+

γ*
V(ρ,ω,φ,...)

X

Figura 3.1: Modelo de dominancia vectorial para la reacción e+e− → hadrones.

Otra solución alternativa fue propuesta en la referencia [51] donde se consideran modifi-

caciones al potencial de Coulomb para cortas distancias en la evaluación de las interacciones

fuertes en el estado final de las reacciones e+e− → P+P−/P 0P̄ 0 (P = K, D, B) cerca del

umbral de producción [51].

Aunque estos enfoques parecen brindar una solución a la discrepancia de la simetŕıa de

isospin, se trata de hipótesis ad hoc cuya validación requeriŕıa de verificaciones adicionales.

Debido a que las correcciones radiativas electromagnéticas [11] fueron hechas sin tomar

en cuenta la estructura electromagnética de los kaones, en este caṕıtulo revisamos el cálculo

de las mismas. Nuestra contribución original consiste en tomar en cuenta la estructura de

los kaones (cargados y neutros) para lo cual usamos un modelo de dominancia vectorial

(VDM) [52, 53]. Nuestro trabajo es similar a la consideración de los efectos de estructura

electromagnética hechas en la referencia [54] en el caso de los decaimientos débiles τ → Kν

y π → µν. También hemos realizado una estimación de las contribuciones dependientes

de modelo en los diagramas de emision de fotones reales (φ → KK̄γ), los cuales, como se

espera, resultan completamente despreciables.
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3.1.1. El proceso V → PP̄ a nivel de árbol

La densidad Lagrangiana que modela el decaimiento de un meson vectorial de spin 1 y

masa M a dos escalares (pseudo-escalares) cada uno de masa m es[55]

L = ıgV P P̄V µ(x)
[
P (x)∂µP̄ (x) − P̄ (x)∂µP (x)

]
. (3.3)

La anchura de decaimiento Γ(V → P P̄ ) al orden mas bajo de la teoŕıa de perturbaciones,

obtenida de esta densidad Lagrangiana esta dada por la expresión [11][56]

Γ(V → PP̄ ) =
1

12

|gV P P̄ |2
4π

Mv3 , (3.4)

donde gV P P̄ es la constante de acoplamiento fuerte entre el meson vectorial y los escalares

(pseudo-escalares) y la velocidad v está definida como

v =

√
1 − 4m2

M2
.

La razón de decaimiento correspondientes a los procesos φ → K+K−/K0K̄0 al orden más

bajo en teoŕıa de perturbaciones, usando (3.4) es :

Γ(φ → K+K−) = Γ0
φK+K− =

1

12

|gφK+K−|2
4π

mφv3
φ,+ ,

Γ(φ → K0K̄0) = Γ0
φK0K̄0 =

1

12

|gφK0K̄0|2
4π

mφv3
φ,0 , (3.5)

donde vφ,+ =

√
1 − 4m2

K±
m2

φ
y vφ,0 =

√
1 − 4m2

K0

m2
φ

denotan las velocidades de los kaones en el

sistema en reposo del φ. A partir de la ec.(3.5), la razón Rt
φ tiene la siguiente forma

Rt
φ =

gφK+K−

gφK0K̄0

v3
φ,+

v3
φ,0

. (3.6)

Este resultado muestra que los efectos que rompen la simetrá de isospin pueden provenir de

las diferencias de masas entre los kaones (razón de velocidades) y de la razón de constantes

de acoplamiento. Debido a que las interacciones fuertes respetan la simetŕıa de isospin,
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supondremos siempre que gφK+K− = gφK0K̄0. Por lo tanto, a este orden la rotura de la

simetŕıa de isospin viene dada por el factor:

v3
φ,+

v3
φ,0

= 1·5225 . (3.7)

A continuación consideraremos las correcciones radiativas en el caso de kaones puntuales.

3.2. Correcciones radiativas en QED escalar

En esta sección se rehacen las correcciones radiativas de orden α en el caso en que los

kaones se consideran como part́ıculas puntuales (QED escalar). En este ĺımite únicamente

el proceso φ → K+K− es corregido por la emisión o reabsorción de fotones. El problema

de las divergencias infrarrojas y ultravioletas ha sido discutido en el caṕıtulo anterior para

el caso ρ0 → π+π−, por lo que el cálculo resulta inmediato. Primero nos enfocamos en las

correcciones debidas a fotones virtuales y después consideraremos la emisión de fotones

reales suaves.

3.2.1. Correcciones de fotones virtuales a φ → K+K−

Las correcciones QED al decaimiento φ → K+K− han sido realizadas por Cremmer

[11] por lo que ésta sección es una revisión a su trabajo. La densidad Lagrangiana que

describe la interacción de un meson vectorial de spin 1 con pseudoescalares tiene la forma

siguiente:

L = ıgφK+K−φµ(x)
[
K+(x)∂µK−(x) − K−(x)∂µK+(x)

]
. (3.8)

La amplitud a nivel árbol obtenida de la anterior expresión es:

M0
φ = ıgφK+K−(p − q) · η(P, s) , (3.9)

donde p, q, P son los 4-momentos asociados a K+, K−, φ respectivamente, η(P, s) es el 4-

vector de polarización del meson vectorial y gφK+K− es la constante de acoplamiento. Las
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Figura 3.2: Correcciones virtuales al proceso φ → K+K− en QED escalar.

interacciones electromagnéticas son introducidas de la manera usual, con la sustitución

mı́nima ∂µ → ∂µ − ıeQAµ en (3.8)[57].

Las amplitudes de los diagramas mostrados en a) y b) de la fig.(3.2) son respectivamente:

Mφ,1 =

∫
−2gφK+K−

e2

(2π)4

(2p + k) · η(P, s)

k2((p + k)2 − m2
K+)

d4k

= −ıgφK+K−[p · η(P, s)]
α

4π
(3B0

[
m2

K+ , 0, m2
K+

]
+ 1) ,

Mφ,2 =

∫
2gφK+K−

e2

(2π)4

(2q + k) · η(P, s)

k2((q + k)2 − m2
K+)

d4k

= ıgφK+K−[q · η(P, s)]
α

4π
(3B0

[
m2

K+ , 0, m2
K+

]
+ 1) . (3.10)
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La amplitud que describe la interacción de Coulomb, diagrama c) de la fig(3.2) es:

Mφ,3 =

∫ −gφK+K−e2(2p − k) · (2q + k) · [(p − q − 2k) · η(P, s)]

((p − k)2 − m2
K+) · ((q + k)2 − m2

K+) · k2 · (2π)4
d4k

= M0
φ × α

4π
(1 +

2 + 3vφ,+
2

v2
φ,+

· B0
[
m2

K+ , 0, m2
K+

]− 1 + v2
φ,+

v2
φ,+

· 2B0
[
m2

φ, m2
K+, m2

K+

]
−m2

φ(1 + v2
φ,+) · C0

[
m2

K+ , m2
K+ , m2

φ, m
2
K+ , λ2, m2

K+

]
) . (3.11)

La suma de (3.10) y (3.11) se escribe como el producto de la amplitud a nivel árbol y una

función escalar de Lorentz de la siguiente manera:

MT = M0
φ × α

4π
(B0
[
m2

K+ , 0, m2
K+

] · 2

v2
φ,+

− 1 + v2
φ,+

v2
φ,+

· 2B0
[
m2

φ, m2
K+, m2

K+

]
−m2

φ(1 + v2
φ,+) · C0

[
m2

K+ , m2
K+ , m2

φ, m
2
K+ , λ2, m2

K+

]
) . (3.12)

Para obtener la contribución total de las correciones radiativas virtuales, se deben agregar

al resultado anterior las contribuciones de autoenerǵıa de los kaones:

MSE
K± = M0

φ × α

4π

1

2

[
2

[
2

ε
− γE + ln [4π] − ln

[
m2

K+

µ2

]]
− 2 ln

[
λ2

m2
π+

]]
. (3.13)

De esta manera la amplitud total de las correcciones radiativas virtuales, resultado de la

suma de (3.12) y (3.13), escrita de manera expĺıcita es [58]:

Mv
φ = M0

φ × α

2π

[π2(1 + v2
φ,+)

2vφ,+

− 2

[
1 + ln

[
λ

mK+

]] [
1 +

1 + v2
φ,+

2vφ,+

ln

[
1 − vφ,+

1 + vφ,+

]]

−1 + v2
φ,+

2vφ,+

[
2Li2 [vφ,+] − 2Li2 [−vφ,+] + Li2

[
2

1 + vφ,+

]
− Li2

[
2

1 − vφ,+

]] ]
= M0

φ × δv
point . (3.14)

La contribución (απ(1 + v2
φ,+))/(2vφ,+) usualmente conocido como término de Coulomb,

resulta ser dominante en este proceso. Debido a que la masa del φ está ligeramente arriba

del umbral de la producción del par K+K−, la enerǵıa cinética disponible para los kaones

es pequeña, aśı que después de la producción del par K+K−, cada una de las part́ıculas

se desplazan lentamente, condición favorable para una interacción Coulombiana entre ellos

antes de su posterior decaimiento.
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Figura 3.3: Emisión de fotón real en φ → K+K−

La amplitud del decaimiento φ → K+K− modificada por las correcciones virtuales se

escribe ahora como la suma de la amplitud a nivel de árbol (3.9) y la amplitud de las

correcciones virtuales (3.14)

Mφ = M0
φ + Mv

φ . (3.15)

La correspondiente razón de decaimiento corregida por las correcciones virtuales es

ΓφK+K− = Γ0
φK+K−

[
1 + 2Re[δv

point]
]

. (3.16)

Como puede verse de la ec.(3.14), las correcciones virtuales de orden α contienen una

divergencia infrarroja la cual esta regulada por la masa ficticia λ del fotón.

3.2.2. Correcciones de fotones reales φ → K+K−

La emisión de fotones reales debe ser considerado para eliminar las divergencias infra-

rrojas de (3.16) tal como se ha mencionado en el caṕıtulo 2.
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La amplitud total de emisión de fotón real, independiente del modelo, que contiene la

contribución de los 3 diagramas de Feynman mostrados en la fig.(3.3) es:

Mγ = −eM̂0
φ

[
p · ε∗(k)

p · k
]
− e

[
p · ε∗(k)

p · k · ıgφK+K−k · η(P, s)

]

+eM̂0
φ

[
q · ε∗(k)

q · k
]
− e

[
q · ε∗(k)

q · k · ıgφK+K−k · η(P, s)

]
+2ıegφK+K−ε∗(k) · η(P, s) . (3.17)

La primera ĺınea es la amplitud de la fig.(3.3 a) , la segunda ĺınea es la amplitud de la

fig.(3.3 b) y por último la contribución de la fig. (3.3 c) corresponde a la última ĺınea.

Recordemos que en la amplitud M̂0
φ = ıgφK+K−(p− q) · η(P, s), los momentos satisfacen la

relación de conservación de enerǵıa-momento para 3 cuerpos :

P = p + q + k . (3.18)

Es fácil notar que (3.17) es invariante de norma electromagnética y que satisface el teorema

de Low[44]. Para mostrar que se satisface el teorema de Burnett-Kroll[45] escribimos la

amplitud total de la siguiente forma:

Mγ = −eM̂0
φ

[
p · ε∗(k)

p · k − q · ε∗(k)

q · k
]
− ıgφK+K−

[
p · ε∗(k)

p · k +
q · ε∗(k)

q · k
]

k · η(P, s)

+2ıegφK+K−ε∗(k) · η(P, s) .

(3.19)

Escrita en esta forma, la amplitud refleja más claramente la expansión de Low.

Para verificar el teorema de Burnett-Kroll, tomamos el cuadrado de (3.19) y promedia-

mos sobre el spin del mesón φ. El cuadrado del primer término en la ec. (3.19) contiene

las potencias ω−2, ω−1, ω0 (nótese que usamos indistintamente la expansión en k como

expansión en ω):
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∑ 1

3

∣∣Aω−1
∣∣2 =

e2g2
φK+K−

3

[ ∣∣∣∣p · ε∗(k)

p · k − q · ε∗(k)

q · k
∣∣∣∣
2

(−4m2
k + m2

φ)

+

∣∣∣∣p · ε∗(k)

p · k − q · ε∗(k)

q · k
∣∣∣∣
2

· (−2(p + q) · k)

+
1

m2
φ

∣∣∣∣p · ε∗(k)

p · k − q · ε∗(k)

q · k
∣∣∣∣
2

· [(p − q) · k]2
]

. (3.20)

El cuadrado del segundo y tercer términos en (3.19) solo contiene potencias de orden ω0:

∑ 1

3

∣∣Bω0
∣∣2 =

e2g2
φK+K−

3

[− 4ε(k) · ε∗(k) +
1

m2
φ

[(p − q) · k]2
∣∣∣∣p · ε∗(k)

p · k − q · ε∗(k)

q · k
∣∣∣∣
2 ]

.

(3.21)

Finalmente la interferencia entre los términos de orden k−1 y k0 en (3.19), da lugar a:

∑
I =

∑ 1

3

[
Aω−1(Bω0)∗ + (Aω−1)∗Bω0

]
=

e2g2
φK+K−

3

[ 2

m2
φ

[
p · ε∗(k)

p · k − q · ε∗(k)

q · k
] [

p · ε(k)

p · k +
q · ε(k)

q · k
]

[k · (p − q)] [(p + q) · k]

+2((p + q) · k)

∣∣∣∣p · ε∗(k)

p · k − q · ε∗(k)

q · k
∣∣∣∣
2 ]

. (3.22)

Sumando las expresiones (3.20), (3.21), (3.22) se verifica el teorema de Burnett-Kroll

∑∣∣Mγ

∣∣2 = e2g2

∣∣∣∣p · ε∗(k)

p · k − q · ε∗(k)

q · k
∣∣∣∣
2

(−4m2
k + m2

φ) − g2e24ε(k) · ε∗(k)

+
e2g2

m2
φ

∣∣∣∣p · ε∗(k)

p · k − q · ε∗(k)

q · k
∣∣∣∣
2

· [(p − q) · k]2

+
2e2g2

m2
φ

[
p · ε∗(k)

p · k − q · ε∗(k)

q · k
] [

p · ε(k)

p · k +
q · ε(k)

q · k
]
· [k · (p − q)] [(p + q) · k] ,

(3.23)

es decir, los términos de orden k−1 no aparecen en el cuadrado de la amplitud.

Para obtener las correcciones de fotones suaves, se usa la amplitud de orden k−1 definida

como:

MSoft
φ = eM0

φ

[
q · ε∗(k)

q · k − p · ε∗(k)

p · k
]

. (3.24)
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Recordemos una vez más que en la aproximación de fotón suave, se elimina la dependencia

en la variable k (4-momento del fotón) en el numerador de (3.24) manteniendo la depen-

dencia solo en el denominador. En otras palabras, la amplitud M0
φ usada en (3.24) debe

corresponder a la del modo no radiativo.

La corrección al ancho de decaimiento debido a la emisión de fotones de baja enerǵıa

se calcula usando la expresión :

dΓsoft
φ =

(2π)4

2mφ
|MSoft

φ |2δ4(P − p − q − k)
d3	p

(2π)32EK+

d3	q

(2π)32EK−

d3	k

(2π)32ω

(3.25)

En el sistema de referencia en el que la part́ıcula que decae está en reposo e integrando en

las variables de los kaones se obtiene

dΓsoft
φ = Γ0

φK+K−
α

4π

1

π

∣∣∣∣q · ε∗(k)

q · k − p · ε∗(k)

p · k
∣∣∣∣
2

· d3	k

ω
(3.26)

El resultado final para las correcciones de fotones suaves (ver apéndice C) 2, se escribe

como sigue

Γsoft
φ

Γ0
φK+K−

= δsb
φ

=
α

π

[
2 ln

[
λ

2ω0

]
{1 +

1 + v2
φ,+

2vφ,+
ln

[
1 − vφ,+

1 + vφ,+

]
} − 1

vφ,+
ln

[
1 − vφ,+

1 + vφ,+

]

+
1 + v2

φ,+

2vφ,+

[
Li2

[
1 − vφ,+

1 + vφ,+

]
− Li2

[
vφ,+ + 1

1 − vφ,+

]
+ ıπ ln

[
1 − vφ,+

1 + vφ,+

]]

+
1 + v2

φ,+

2vφ,+

[
ln

[
4v2

φ,+

1 − v2
φ,+

]
ln

[
1 − vφ,+

1 + vφ,+

]] ]
. (3.27)

Una vez que se agrega la corrección de fotones suaves (3.27) a las correcciones radiativas

virtuales (3.16), se obtiene la razón de decaimiento del proceso φ → K+K− corregida a

orden α, la cual es finita en el infrarrojo y en el ultravioleta

Γrc = Γ0
φK+K−

[
1 + δQED

φ,point

]
, (3.28)

2Las referencias [59], [60] contienen identidades útiles entre las funciones dilogaritmo, que muestran la

equivalencia anaĺıtica entre nuestro resultado y el de la ref.[11]
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donde se ha definido la corrección puntual δQED
φ,point = 2Reδv

point+δsb
φ y cuya expresión anaĺıtica

es:

δQED
φ,point =

α

π

[π2(1 + v2
φ,+)

2vφ,+
− 2

[
1 + ln

[
2ω0

mK+

]] [
1 +

1 + v2
φ,+

2vφ,+
ln

[
1 − vφ,+

1 + vφ,+

]]

−2
1 + v2

φ,+

vφ,+
[Li2 [vφ,+] − Li2 [−vφ,+]] − 1

vφ,+
ln

[
1 − vφ,+

1 + vφ,+

]

−1 + v2
φ,+

vφ,+

[
Li2

[
2

1 + vφ,+

]
− Li2

[
2

1 − vφ,+

]] ]
. (3.29)

3.2.3. Predicción teórica Rt
φ

Las correcciones radiativas en QED escalar modifican únicamente la razón de decai-

miento el proceso φ → K+K−. Aún cuando existe una evidente dependencia en el corte

ω0, el resultado numérico no es muy sensible a una elección dada, por tal motivo se usa en

el cálculo3 el valor ω0 = ωmax.

Como hemos mencionado, la corrección mostrada en (3.29) incluye únicamente la contri-

bución de fotones suaves en la amplitud radiativa. La contribución de los términos regulares

de la amplitud radiativa se evalúan numéricamente sin problema (ver Apéndice C2) y se

obtiene:

δr
R = 7·96 × 10−5 (3.30)

Otras posibles contribuciones a la amplitud radiativa son los términos dependientes de

modelo, los cuales provienen de procesos con estados intermedios resonantes (por ejemplo

φ → K+K∗− → K+K−γ). Los contribuciones dependientes de modelo resultan ser4 muy

pequeñas: aproximadamente ∼ 7 × 10−8 para el modo φ → K+K−γ, mientras que para el

3La cinemática del proceso radiativo establece que la máxima enerǵıa ωmax = (m2
φ − 4m2

K+)/mφ

permitida para el fotón emitido es ωmax ≈ 31·6MeV. Si se evalúa la corrección radiativa en el rango de

valores 10 MeV≤ ω0 ≤ ωmax, el resultado numérico vaŕıa tan solo por 4 × 10−4

4Ver apéndice C3.
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modo con kaones neutros éstos han sido acotados experimentalmente debido a que B(φ →
K0K̄0γ) ≤ 1·8 × 10−8[61].

Por lo tanto, tomando en cuenta las correcciones de isospin provenientes del espacio

de fase y las correcciones radiativas de orden α en el caso que los kaones se consideran

part́ıculas puntuales se obtiene el siguiente resultado para la razón de producción de kaones

en decaimientos del meson φ:

Rt
φ =

v3
φ,+

v3
φ,0

(1 + δQED
φ,point + δr

R) = 1·588 (3.31)

Es decir, la predicción teórica se encuentra 4·5σ’s arriba del valor experimental.

3.3. Correcciones virtuales para kaones no puntuales

A diferencia de QED escalar, las correcciones virtuales afectan tanto el decaimiento

en kaones cargados como en kaones neutros. Los efectos de la estructura electromagnética

de los kaones se manifiesta para grandes virtualidades del fotón. Experimentalmente, esta

estructura ha sido explorada para virtualidades del fotón de hasta unos cuantos GeV’s en

la región temporaloide y se sabe que el modelo de dominancia vectorial (VDM) describe

adecuadamente esta estructura. Sin embargo, se ignora cual es la estructura de los factores

de forma del kaon para cuando k2 es muy grande y se piensa que los métodos de QCD

perturbativa son más adecuados en ese régimen.

Debido a esto, en el cálculo de las correcciones virtuales comúnmente se realiza una

separación de la región de integración (el momento del fotón virtual) en largas distancias

con 0 ≤ |k|2 � µ2
cut y en cortas distancias con µ2

cut ≤ |k|2. La escala de enerǵıa que hace

viable la separación en el lazo (loop) suele tomarse del orden de unos cuantos GeV’s[54].

Debido a que las correcciones de cortas distancias exploran la estructura de los hadrones

a nivel de quarks, se espera que las correcciones sean las mismas independientemente de

las cargas de los kaones. Por lo anterior, solo consideraremos las correcciones radiativas de
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largas distancias, es decir tomando en cuenta la estructura electromagnética de los kaones

mediante el modelo de dominancia vectorial.

En esta sección se estudian las correcciones virtuales de largas distancias al proceso

φ → K+K−, modelando la estructura de los hadrones mediante el factor de forma de

los kaones. Medidas de la interacción electromagnética de los kaones a enerǵıas bajas [62]

e intermedias [8] muestran una estructura que puede ser descrita dentro del modelo de

dominancia vectorial como se muestra en la Figura 3.1. En nuestra aproximación incluimos

los factores de forma, usando el Modelo de Dominancia Vectoria (VDM) en las correcciones

radiativas virtuales.

3.3.1. Correcciones virtuales en VMD para kaones cargados

Siguiendo las referencias [8], [54], el factor de forma descrito por VDM modifica las

expresiones de cada amplitud a 1 lazo, en cualquier parte del diagrama de Feynman que

se encuentre un vértice KKγ se realiza la modificación como se indica en la fig.(3.4).

La suma indicada se realiza sobre los 3 mesones vectoriales que acoplan al fotón con

los kaones:

gV KK̄ = {gφKK̄, gωKK̄, gρKK̄} ,

fV = {fφ, fω, fρ} ,

mV = {mρ, mω, mφ} ,

m̂2
V θ = m2

V + ımVΓVθ(k2 − k2
threshold) . (3.32)

La constante fV esta relacionada con la anchura de decaimiento electrónica del meson

vectorial mediante la relación[63]:

Γ(V → e+e−) =
4πα2mv

3f 2
V

(1 +
2m2

e

m2
V

)(1 − 4m2
e

m2
V

)1/2 , (3.33)

y la constante de acoplamiento gV KK̄ proviene de la interacción del meson vectorial V con

el estado final KK̄. El factor de forma generado por VDM para el kaon cargado puede
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Figura 3.4: Vértice electromagnético para kaones puntuales (izquierda) y con estructura
(derecha).



3.3. CORRECCIONES VIRTUALES PARA KAONES NO PUNTUALES 57

escribirse de manera que es posible separar la contribución puntual de la dependiente de

la estructura de la siguiente forma:

fK+(k) =
∑ m2

VgVKK̄(−1)

fV (k2 − m̂2
V θ)

= 1 + {
∑ m2

VgVKK̄(−1)

fV (k2 − m̂2
V θ)

− 1}

= 1 +
∑ gV KK̄

fV

[
k2

−k2 + m̂2
V θ

− ı
mVΓVθ(k2 − k2

threshold)

k2 − m̂2
V θ

]
, (3.34)

donde se ha definido m̂2
V θ = m2

V − ımVΓVθ(k2 − k2
threshold).

Para evaluar las amplitudes a un lazo, omitiremos en nuestra aproximación la función

de Heaviside y tomamos las anchuras como constantes, por lo que el factor de forma puede

ser dividido en 2 partes

fK+(k) =

[
1 −
∑ TV KK̄k2

k2 − m̂2
V

]
− ı
∑ TV KK̄mVΓV

k2 − m̂2
V

,

TV KK̄ =
gV KK̄

fV
, (3.35)

donde ahora la masa es m̂2
V = m2

V − ımVΓV. Para satisfacer la condicion de normalización

fK+(k2 = 0) = 1, omitimos la contribución de la parte imaginaria de la ecuación anterior

y en esta aproximación solo tomamos el primer término:

fK+(k) = 1 −
∑ TV KK̄k2

k2 − m̂2
V

. (3.36)

Una forma sencilla de obtener las amplitudes con contribución VDM consiste en tomar

las amplitudes del caso de kaones puntuales revisadas en la sección anterior y colocar el

factor de forma correspondiente dado por la relación anterior. Aśı, la amplitud para el

diagrama a) de la fig(3.5) es:

MV DM
1 = −

∫
d4k

(2π)4
[(2p + k) · η(P, s)] [fK+(k)]2

[
2e2gφK+K−

k2
[
(p + k)2 − m2

K+

]
]

. (3.37)

En el ĺımite fK+ → 1 obtenemos de manera inmediata la interacción puntual. Desarrollando

el cuadrado del factor de forma, podremos separar la contribución de kaones puntuales del
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(a) (b)

(c)

K

K

K

K

K

K

Figura 3.5: Correcciones virtuales para kaones con estructura.
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resto

[fK+(k)]2 = 1 + 2
∑ gV KK̄

fV

k2

−k2 + m2
V

+
∑
V i

∑
V j

gV iKK̄gV jKK̄

fV ifV j

k4[−k2 + m̂2
V i

] [−k2 + m̂2
V j

] .

Introduciendo el desarrollo del factor de forma en (3.37)

MV DM
1 = −

∫
d4k

(2π)4
[(2p + k) · η(P, s)]

[
2e2gφK+K−

k2
[
(p + k)2 − m2

K+

]
]

−
∫

d4k

(2π)4
[(2p + k) · η(P, s)]

[
2
∑ gV KK̄

fV [−k2 + m̂2
V ]

][
2e2gφK+K−[

(p + k)2 − m2
K+

]
]

−
∫

d4k

(2π)4
[(2p + k) · η(P, s)]

[∑
i

∑
j

(gV iKK̄gV jKK̄)k2

fV ifV j

[−k2 + m̂2
V i

] [−k2 + m̂2
V j

]
]
∗

∗
[

2e2gφK+K−[
(p + k)2 − m2

K+

]
]

= M0
1 + Ma

1 + Mb
1 . (3.38)

El primer término M0
1 corresponde al caso de kaones puntuales ya revisado en la sección

anterior, el segundo y tercer término son las nuevas contribuciones. La primera de ellas es:

Ma
1 = 2e2gφK+K−

∑
2
gV KK̄

fK

1

(2π)4

∫
(2p + k) · η(P, s)dk4[

(p + k)2 − m2
K+

]
[k2 − m̂2

V ]

= ıgφK+K−(p · η(P, s))
α

4π

∑
2
gV KK̄

fV

[
3∆UV + f(m2

K+, m̂2
V)
]

. (3.39)

En la ecuación anterior se ha definido la función finita ultravioleta, expresada en términos

de funciones Passarino-Veltman:

f(m2
K+ , m̂2

V) =

[
1 − m̂2

V

m2
K+

] [
B0
[
m2

K+ , m2
K+, m̂2

V

]− B0
[
0, m2

K+, m̂2
V

]]
+3B̄0

[
m2

K+ , m2
K+, m̂2

V

]
.

La función B̄0 es finita debido a que la divergencia ultravioleta se ha extráıdo y se escribe

expĺıcitamente con el fin de mostrar la cancelación al sumar las amplitudes y los diagramas

de auto-enerǵıa.

∆UV =
2

ε
− γE + ln [4π] − ln

[
m2

K+

µ2

]
.
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La otra parte de la amplitud de la ec.(3.38) se obtiene dividiendo en diferentes piezas el

integrando y usando fracciones parciales

Mb
1 = −2e2gφK+K−

∑
i

∑
j

gV iKK̄

fV i

gV jKK̄

fV j

[ 1

(2π)4

∫
[(2p + k) · η(P, s)] dk4[

(p + k)2 − m2
K+

] [
k2 − m̂2

V i

]
+m̂2

V i

1

(2π)4

∫
[(2p + k) · η(P, s)]dk4[

(p + k)2 − m2
K+

] [
k2 − m̂2

V i

] [
k2 − m̂2

V j

]]
= −ıgφK+K−(p · η(P, s))

α

4π

[∑
i

∑
j

gV iKK̄

fV i

gV jKK̄

fV j

[
3∆UV + f(m2

K+ , m̂2
Vj)
]

+
∑
i=j

g2
V iKK̄

f 2
V i

m̂2
V iC̄0

[
0, m2

K+ , m2
K+, m̂2

Vi , m̂
2
Vi , m

2
K+

]

+
∑
i�=j

∑ gV iKK̄

fV i

gV jKK̄

fV j

m̂2
V i

m̂2
V i − m̂2

V j

[
f(m2

K+ , m̂2
Vi) − f(m2

K+, m̂2
Vj)
] ]

, (3.40)

donde se ha definido la función:

C̄0
[
0, m2

K+, m2
K+ , m̂2

Vi , m̂2
Vi, m2

K+

]
= C̄0i

= −2

∫ 1

0

z(1 + z)dz

m̂2
V iz + m2

K+(1 − z)2
. (3.41)

El procedimiento para calcular la amplitud del diagrama b) de la Fig(3.5) se efectúa de

forma similar,

MV DM
2 =

∫
d4k

(2π)4
[(2q + k) · η(P, s)]

[
2e2gφK+K−

k2
[
(q + k)2 − m2

K+

]
]

+

∫
d4k

(2π)4
[(2q + k) · η(P, s)]

[
2
∑ gV KK̄

fV [−k2 + m̂2
V ]

] [
2e2gφK+K−[

(q + k)2 − m2
K+

]
]

+

∫
d4k

(2π)4
[(2q + k) · η(P, s)]

⎡
⎣∑

Vi

∑
Vj

(gViKK̄gVjKK̄)k2

fVi
fVj

[−k2 + m̂2
Vi

] [−k2 + m̂2
Vj

]
⎤
⎦ ∗

∗
[

2e2gφK+K−[
(q + k)2 − m2

K+

]
]

= M0
2 + Ma

2 + Mb
2 . (3.42)
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Sumando el resultado de (3.38) y (3.42) se obtiene la expresión siguiente:

MV DM
1+2 = −M0

φ × α

4π

[
3B̄0

[
m2

K+ , 0, m2
K+

]
+ 1 − 2

∑ gV KK̄

fV
f(m2

K+ , m̂2
V)

+
∑

i

∑
j

gV iKK̄gV jKK̄

fV ifV j

[
f(m2

K+ , m̂2
Vj)
]

+
∑
i�=j

∑
j

m̂2
V igV iKK̄gV jKK̄

fV ifV j

[
m̂2

V i − m̂2
V j

] [f(m2
K+ , m̂2

Vi) − f(m2
K+ , m̂2

Vj)
]

+
∑

i

g2
V i

f 2
V i

m̂2
V iC0

[
0, m2

K+, m2
K+ , m̂2

Vi , m̂2
Vi, m2

K+

] ]

−M0
φ × α

4π

[
3∆UV

[
1 − 2

∑ gV KK̄

fV
+
∑∑ gV iKK̄gV jKK̄

fV ifV j

]]
. (3.43)

El último diagrama que representa agregar el factor de forma a la interacción de Coulomb,

diagrama c) de la fig.(3.5), tiene la amplitud:

MV DM
3 = −

∫
d4k

(2π)4
[(p − q − 2k) · η(P, s)] [fK+(k)]2 [(2p − k) · (2q + k)] ∗

∗
[

gφK+K−e2

k2
[
(q + k)2 − m2

K+

] [
(p − k)2 − m2

K+

]
]

= −gφK+K−e2

(2π)4

∫
(2p − k) · (2q + k) [(p − q − 2k) · η(P, s)] dk4

k2
[
(p − k)2 − m2

K+

] [
(q + k)2 − m2

K+

]
+2
∑
V

gV KK̄

fV
gφK+K−e2 1

(2π)4

∫
(2p − k) · (2q + k) [(p − q − 2k) · η(P, s)] dk4[
(p − k)2 − m2

K+

] [
(q + k)2 − m2

K+

]
[k2 − m̂2

V ]

+MV DM
3,r , (3.44)

donde se ha usado la siguiente notación para simplificar el resultado:

MV DM
3r = −gφK+K−e2

∑
i

∑
j

gV iKK̄

fV i

gV jKK̄

fV j

1

(2π)4

∫
(2p − k) · (2q + k)

× [k2(p − q − 2k) · η(P, s)] d4k[
(p − k)2 − m2

K+

] [
(q + k)2 − m2

K+

] [
k2 − m̂2

V i

] [
k2 − m̂2

V j

] .

Si definimos la siguiente función con (para M = mφ),

C̄0i
c

[
m2

K+ , m2
K+ , M2, m2

K+ , m2
K+ , m̂2

Vi

]
=

∫ 1

0

∫ x

0

(x + 1)dydx[
m̂2

V i(x − 1) − (m2
K+x2 + M2y2 + xyM2)

] ,
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el resultado de la integración del segundo término de (3.44) es:

MV DM
3a = ıgφK+K−(p − q) · η(P, s)

α

4π

∑
V

2
gV KK̄

fV

[− B̄0
[
m2

K+ , m2
K+, m̂2

V

]
[
2(M2 − 2m2

K+) + m̂2
V

]
C̄0i

c

[
m2

K+ , m2
K+, M2, m2

K+ , m2
K+, m̂2

V

]
+(1 − m̂2

V

m2
K+

)(B0
[
0, m2

K+, m̂2
V

]− B0
[
m2

K+ , m2
K+ , m̂2

V

]
)
]

−M0
φ × α

4π

[∑ 2gV KK̄

fK

]
∆UV . (3.45)

El tercer término MV DM
3r se divide en dos partes para su cálculo, que corresponden a los

casos cuando los ı́ndices de las sumatorias son iguales y cuando son diferentes,

MV DM
3r = Ci=j + Ci�=j . (3.46)

Con la definición de las siguientes funciones,

D̄0i
c = D̄0c(m̂

2
V i, m2

K+ , M2)

=

∫ 1

0

∫ x

0

y2dxdy[
m̂2

V iy + m2
K+(x − 1)2 + m2

K+(x − y)2 + (x − 1)(x − y)
[
M2 − 2m2

K+

]]2
C̄0i

0 = C̄00(m
2
K+ , m̂2

Vi)

=

∫ 1

0

−2z2dz[
m̂2

V iz + m2
K+(1 − z)2

] ,

el resultado de la integración en el caso de ı́ndices iguales es

Ci=j = −M0
φ × α

4π

∑
i=j

g2
V iKK̄

f 2
V i

[
2
[
2p · q + m̂2

V i

]
C̄0i

c − m̂2
V iC̄0i

0 + m̂2
V i

[
4p · q + m̂2

V i

]
D̄0i

c

+(1 − m̂2
V i

m2
K+

)
[
B0
[
0, m2

K+, m̂2
Vi

]− B0
[
m2

K+ , m2
K+ , m̂2

Vi

]]− B̄0
[
m2

K+ , m2
K+ , m̂2

Vi

] ]

+M0
φ × α

4π

[∑
i=j

g2
V iKK̄

f 2
V i

]
∆UV . (3.47)

El otro caso (i �= j) se simplifica al tomar en cuenta la descomposición siguiente:

1[
k2 − m̂2

V i

] [
k2 − m̂2

V j

] =
1[

m̂2
V i − m̂2

V j

]
[

1[
k2 − m̂2

V i

] − 1[
k2 − m̂2

V j

]
]

.
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La relación anterior permite escribir Ci�=j de la forma simplificada

Ci�=j = −gφK+K−e2
∑
i�=j

∑
j

gV iKK̄

fV i

gV jKK̄

fV j

1[
m̂2

V i − m̂2
V j

] [Ai − Aj ] . (3.48)

Las integrales relevantes ya han sido calculadas anteriormente y algunas no son necesarias

de evaluar, pues se cancelan en la diferencia Ai − Aj .

Ai =
1

(2π)4

∫
[(p − q − 2k) · η] [(2p − k)(2q + k)] k2dk4[

(p − k)2 − m2
K+

] [
(q + k)2 − m2

K+

] [
k2 − m̂2

V i

] .

El resultado para ı́ndices diferentes es:

Ci�=j = −M0
φ × α

4π

∑
i�=j

∑
j

gV iKK̄gV jKK̄

fV ifV j

[
m̂2

V i − m̂2
V j

][4p · q [C̄0i
cm̂

2
V i − C̄0j

cm̂
2
V j

]
+m̂4

V iC̄0i
c − m̂4

V j C̄0j
c + m̂2

V ig(m2
K+ , m̂2

Vi) − m̂2
Vjg(m2

K+ , m̂2
Vj)
]

+M0
φ ×
[∑

i�=j

∑
j

gV iKK̄gV jKK̄

fV ifV j

]
∆UV , (3.49)

donde se ha definido la función finita ultravioleta g(m2
K+ , m̂2

V) como:

g(m2
K+, m̂2

V) = (1 − m̂2
V

m2
K+

)
[
B0
[
0, m2

K+, m̂2
V

]− B0
[
m2

K+ , m2
K+ , m̂2

V

]]
−B̄0

[
m2

K+ , m2
K+, m̂2

V

]
. (3.50)

Sumando (3.43), (3.44) y la contribución de los diagramas de autoenerǵıa 5 obtenemos la

5Ver el Apéndice A
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amplitud total:

MT = Mpoint

+M0
φ × α

4π

[
2
∑
V

gV K+K−

fV
{2B0

[
m2

K+ , m2
K+, m̂2

V

]
+ (2m2

φ − 4m2
K+ + m̂2

V)C̄0i
c}

+
∑
i=j

g2
V K+K−

f 2
V

[− f(m2
K+ , m̂2

V) − m̂2
VC̄0i + m̂2

VC̄0i
0 − 2(2p · q + m̂2

V)C̄0i
c

−m̂2
V (m̂2

V + 2m2
φ − 4m2

K+)D̄0i
c − g(m2

K+ , m̂2
V)
]

+
∑
i�=j

gV iK+K−gV jK+K−

fV ifV j

[ 1[
m̂2

V i − m̂2
V j

][m̂2
V i{f(m2

K+ , m̂2
Vj) − f(m2

K+, m̂2
Vi)}

−(2m2
φ − 4m2

K+)
[
m̂2

ViC̄0i
c − m̂2

VjC̄0j
c

]− m̂4
ViC̄0i

c + m̂4
VjC̄0j

c

−m̂2
V ig(m2

K+ , m̂2
Vi) + m̂2

Vjg(m2
K+ , m̂2

Vj)
]− f(m2

K+ , m̂2
Vj)
]]

, (3.51)

donde Mpoint es la amplitud en el caso puntual. En efecto, la amplitud total se divide en

dos partes MT = Mpoint +MV DM . La contribución de la amplitud para kaones puntuales

ha sido evaluada en la anterior sección, por lo que ahora nos interesa evaluar la contribución

contenida en MV DM .

Separando la contribución de cada meson vectorial y evaluando numéricamente usando

masas reales6 de los mesones vectoriales obtenemos:

MV DM = M0
φ × α

4π

[
4·3459

[
gρK+K−

f 2
ρ

]2

+ 5·8444

[
g2

φK+K−

fφ

]2

+ 4·3917

[
gωK+K−

fω

]2

+10·2421
gρK+K−gφK+K−

fρfφ

+ 9·0343
gρK+K−gωK+K−

fρfω

+ 10·2721
gφK+K−gωK+K−

fφfω

−6·2674
gρK+K−

fρ
− 6·3152

gωK+K−

fω
− 7·9403

gφK+K−

fφ

]
. (3.52)

Para terminar la evaluación numérica es necesario introducir los valores de las constantes

de acoplamiento. La densidad Lagrangiana invariante bajo SU(3) que modela la interac-

ción entre mesones vectoriales, nos permite obtener las relaciones entre las constantes de

6Al final de la sección mostramos que la diferencia entre usar masas reales y el resultado de usar

m2
V = m2

V − ımVΓV es despreciable en el resultado total
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acoplamiento (ver [64]):

gρK+K− = −gρK0K̄0 =
1

2
G8

V P1P2
,

gωK+K− = gωK0K̄0 =

√
3

2
G8

V P1P2
sin θv ,

gφK+K− = gφK0K̄0 =

√
3

2
G8

V P1P2
cos θv .

(3.53)

Las condiciones de normalización para los factores de forma de los kaones cargado y neutro

fK+(0) =
gρK+K−

fρ

+
gωK+K−

fω

+
gφK+K−

fφ

= 1 ,

fK0(0) =
gρK0K̄0

fρ
+

gωK0K̄0

fω
+

gφK0K̄0

fφ
= 0 , (3.54)

proveen una restricción auxiliar en la determinación de las constantes de acoplamiento.

Asumiendo la mezcla ideal φ−ω (tanθv = 1/
√

2 también usado en la ref. [8]) y las ecs.

(3.53), (3.54) obtenemos las siguientes relaciones:

gφK+K− =
fωfφ√

2
[
fφ +

√
2fω

] ,

gωK+K− =
fωfφ

2
[
fφ +

√
2fω

] ,

gρK+K−

fρ
=

1

2
.

Los valores de fω, fφ los extraemos de los resultados experimentales reportados en el

PDG[3], mediante la relación:

fφ = 2α

√
π

3

mφ

Γφ→e+e−
(1 +

2m2
e

m2
φ

)(1 − 4m2
e

m2
φ

)1/2 ,

fω = 2α

√
π

3

mω

Γω→e+e−
(1 +

2m2
e

m2
ω

)(1 − 4m2
e

m2
ω

)1/2 .

Una vez especificados todos los parámetros, la contribución VDM a la corrección virtual
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es:

MV DM = M0
φ × [−1·13 × 10−3

]
= M0

φ × δV DM
+ (3.55)

Para obtener la modificación a la anchura de decaimiento debido a la corrección virtual de

VDM se emplea la ecuación:

Γφ→(+,0) = Γ0
φ→(+,0)

[
1 + 2Re

[
δpoint
+,0

]
+ 2Re[δVDM

+,0 ]
]

donde las cantidades etiquetadas con + (0) corresponde al caso de Kaones cargados (neu-

tros) en el estado final.

3.3.2. Correcciones virtuales en VDM para kaones neutros

La evidencia experimental de estructura de los kaones neutros [65] nos lleva a considerar,

en esta aproximación, el cálculo a 1 lazo en el decaimiento φ → K0K̄0. De forma paralela

a la sección anterior, el factor de forma en el contexto de VDM para kaones neutros se

escribe como:

fK0 =
∑ (−1)m2

VgVK0K̄0

fV [k2 − m̂2
V ]

(3.56)

Debido a que la carga de los kaones neutros es cero (fK0(0) = 0), las constantes de acopla-

miento satisfacen la condición de normalización:

∑ gV K0K̄0

fV
= 0



3.3. CORRECCIONES VIRTUALES PARA KAONES NO PUNTUALES 67

Usando la misma aproximación que en el modo cargado, la expresión para el factor de

forma se escribe como:

fK0 =
∑ (−1)m2

VgVK0K̄0

fV [k2 − m̂2
V ]

− 0

=
∑ (−1)m2

V gV K0K̄0

fV [k2 − m̂2
V ]

−
∑ gV K0K̄0

fV

=
∑ gV K0K̄0

fV

[
− m2

V

k2 − m̂2
V

− 1

]

�
∑ gV K0K̄0

fV

[ −k2

k2 − m̂2
V

]
(3.57)

Para obtener las correcciones radiativas para este modo, se usa la ec.(3.57) en las amplitudes

de los diagramas de la fig(3.5). La contribución de los diagramas a) y b) es 7:

M̄1+2
V DM = M0

φK0K
0 × α

4π

[∑
i=j

G2
V i

[−f(m2
K0 , m̂2

V) − m̂2
VC̄0i

]

+
∑
i�=j

∑
j

GV iGV j

[
−f(m2

K0 , m̂2
Vj) − m̂2

Vi

m̂2
Vi − m̂2

Vj

{f(m2
K0, m̂2

Vi) − f(m2
K0, m̂2

Vj)}
] ]

,

(3.58)

donde M0

φK0K
0 = ıg

φK0K
0(p − q) · η. Las funciones (f(m2

K0 , m̂2
Vj), C̄0i, g(m2

K0, m̂2
Vi) . . .) son

las mismas que las que se usaron en la sección anterior, solo que ahora se usa la masa del

kaon neutro, por ejemplo:

f(m2
K+ , m̂2

Vj) → f(m2
K0, m̂2

Vj) ,

g(m2
K+, m̂2

Vi) → g(m2
K0, m̂2

Vi) . (3.59)

7Definimos la notación GV i = gV iK0K̄0/fV i
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La contribución del diagrama c) de la fig.(3.5) es:

M̄3
V DM = M0

φK0K
0 × α

4π

[∑
i=j

G2
V i

[− 2(m2
φ − 2m2

K0 + m̂2
V)C̄0i

c − m̂2
Vi(2m2

φ − 4m2
K0 + m̂2

V)D̄0i
c

+m̂2
V iC̄0i

0 − g(m2
K0 , m̂2

Vi)
]

+
∑
i�=j

∑
j

GV iGV j

m̂2
V i − m̂2

V j

[− m̂2
V i

[
(2m2

φ − 4m2
K0 + m̂2

Vi)C̄0i
c + g(m2

K0 , m̂2
Vi)
]

+m̂2
V j

[
(2m2

φ − 4m2
K0 + m̂2

Vj)C̄0j
c + g(m2

K0 , m̂2
Vj)
] ]]

. (3.60)

Finalmente, la contribución total de la corrección radiativa con el factor de forma para los

kaones neutros es:

M̄T
V DM = M0

φK0K
0 × α

4π

[∑
i=j

G2
V i

[− f(m2
K0 , m̂2

V) − m̂2
VC̄0i − 2(m2

φ − 2m2
K0 + m̂2

Vi)C̄0i
c

−m̂2
V i(2m2

φ − 4m2
K0 + m̂2

Vi)D̄0i
c + m̂2

ViC̄0i
0 − g(m2

K0 , m̂2
Vi)
]

+
∑
i�=j

∑
j

GV iGV j

[ 1

m̂2
V i − m̂2

V j

[− m̂2
V i{(2m2

φ − 4m2
K0 + m̂2

Vi)C̄0i
c + g(m2

K0, m̂2
Vi)}

+m̂2
V j{(2m2

φ − 4m2
K0 + m̂2

Vj)C̄0j
c + g(m2

K0, m̂2
Vj)}

−m̂2
V i{f(m2

K0 , m̂2
Vi) − f(m2

K0 , m̂2
Vj)}
]

−f(m2
K0 , m̂2

Vj)
]]

. (3.61)

El resultado de la contribución de las correcciones virtuales con factor de forma del kaon

neutro son finitas una vez que se ha agregado la contribución de las amplitudes de auto-

enerǵıa. La evaluación numérica de las funciones escalares da el siguiente resultado:

M̄V DM = M0

φK0K
0 × α

4π

[
5·8064

[
g0

φK0K̄0

fφ

]2

+ 4·3177

[
g0

ρK0K̄0

fρ

]2

+ 4·3632

[
g0

ωK0K̄0

fω

]2

+10·1499
g0

ρK0K̄0g
0
φK0K̄0

fρfφ
+ 10·1799

gωK0K̄0gφK0K̄0

fωfφ
+ 8·9400

gρK0K̄0gωK0K̄0

fρfω

]
= M0

φK0K
0 ×
[−1·55 × 10−5

]
= M0

φK0K
0 × δV DM

0 . (3.62)

donde el resultado numérico de la última ĺınea se obtiene, al igual que en la sección anterior,

usando las relaciones de SU(3). Usando los valores numéricos para las ecs.(3.55), (3.62) la
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predicción para la razón R incluyendo efectos de factores de forma de kaones cargados

como neutros es,[66]:

Rt
φ =

v3
φ,+

v3
φ,0

[
1 + δQED + 2Re

[
δV DM
+ − δV DM

0

]]
= 1·58488 . (3.63)

Si usamos las masas complejas m̂2
V = m2

V − ımV ΓV en la ec.(3.62) y ec.(3.52), el resultado

que se obtiene es:

Rt
φ = 1·58490 . (3.64)

el cuál es casi idéntico al resultado (3.63)

3.3.3. Región de validez del modelo de dominancia vectorial.

La pregunta inmediata es: ¿ qué tan válido es usar el factor de forma de los kaones

en el cálculo a 1 lazo, pues están involucradas altas y bajas enerǵıas en el momento de

los fotones?. Si fuera posible mostrar que la contribución principal de la estructura de los

kaones en los loops proviene del régimen donde el modelo de dominancia vectorial es válido

(abajo de 1∼2 GeVs) podemos tener mas confianza en nuestros resultados de la sección

anterior.

Para ello introducimos una versión modificada del propagador del fotón en la siguiente

forma [54]:

1

k2
→ 1

k2

µ2

µ2 − k2
, (3.65)

donde µ es una escala de corte que separa las regiones de cortas y largas distancias. Nótese

que cuando µ2 → ∞ la expresión anterior se reduce al propagador usual del fotón. En cierta

manera, esta forma modificada del propagador del fotón recuerda el método de regulariza-

ción de Pauli-Villars [67] donde al introducir el factor adicional ayuda a la convergencia de
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la integral divergente. Por otra parte, dicho factor adicional en la ecuación anterior hace

que las contribuciones cercanas a la región k2 ≈ µ2 se vuelvan las más importantes.

De esta manera, el regulador extrae la contribución de VDM para enerǵıas no mas

allá de la escala µ. Aunque no existen primeros principios para especificar la escala de

dicha separación, mostramos al final de esta sección una gráfica que muestra el compor-

tamiento del resultado para las correcciones radiativas en función del valor del corte. Lo

que esperamos es que el resultado obtenido en el caso del modelo de dominancia vecto-

rial se vuelva estable para escalas de enerǵıa donde el mismo tiene su validez. De manera

ilustrativa solo calculamos la contribución VDM con corte para el caso de kaones cargados.

Ahora calcularemos la contribución de VDM usando el propagador modificado del fotón

mostrado en la ecuación (3.65). Las correcciones virtuales correspondientes a los diagramas

de las figuras (3.5a y 3.5b) se convierten en:

Mvdm
1+2,µ = −M0

φ × α

4π

[− 2
∑ gV KK̄

fV

1[
1 − m̂2

V

µ2

] [f(m2
K+ , m̂2

V) − f(m2
K+ , µ2)

]

+
∑

i

∑
j

gV iKK̄gV jKK̄

fV ifV j

1[
1 − m̂2

V j

µ2

] [f(m2
K+ , m̂2

Vj) − f(m2
K+, µ2)

]
∑
i�=j

∑
j
gV iKK̄gV jKK̄

fV ifV j

m̂2
V i[

1 − m̂2
V j

µ2

] [
m̂2

V i − m̂2
V j

]{f(m2
K+ , m̂2

Vi) − f(m2
K+ , m̂2

Vj)}

+
∑

i

∑
j

gV iKK̄gV jKK̄

fV ifV j

m̂2
V i[

1 − m̂2
V j

µ2

] [
µ2 − m̂2

V i

]{f(m2
K+ , m̂2

Vi) − f(m2
K+ , µ2)}

+
∑
i=j

g2
V KK̄

f 2
V

m̂2
V[

1 − m̂2
V

µ2

]C̄0
[
0, m2

K+ , m2
K+, m̂2

V, m̂2
V, m2

K+

] ]
(3.66)

Para evaluar la contribución que contiene la interacción de Coulomb, dividimos la amplitud

del diagrama fig.(3.5c) en dos términos:

Mvdm
Coulomb = Mvdm

3a,µ + Mvdm
3r,µ (3.67)

Una vez realizadas las integraciones, las expresiones expĺıcitas para ambos términos de esta
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amplitud son:

Mvdm
3a,µ = M0

φ ×
α

4π

∑
2
gV KK̄

fV

1

1 − m̂2
V

µ2

[
(2M2 − 4m2

K+ + m̂2
V)C̄0c + g(m2

K+ , m̂2
V)

−(2M2 − 4m2
K+ + µ2)C̄0c(m

2
K+ , m2

K+ , M2, m2
K+ , m2

K+ , µ2) − g(m2
K+ , µ2)

]
.

(3.68)

y

Mvdm
3r,µ = −M0

φ × α

4π

[∑
i=j

g2
V iKK̄

f 2
V i

1

1 − m̂2
V i

µ2

[
2
[
2p · q + m̂2

V i

]
C̄0i

c − m̂2
V iC̄0i

0

+m̂2
V i

[
4p · q + m̂2

V i

]
D̄0i

c + g(m2
K+ , m̂2

Vi)
]

+
∑
i�=j

∑
j

gV iKK̄gV jKK̄

fV ifV j

[
m̂2

V i − m̂2
V j

] [
1 − m̂2

V i

µ2

][4p · q [C̄0i
cm̂

2
V i − C̄0j

cm̂
2
V j

]

+m̂4
V iC̄0i

c − m̂4
V j C̄0j

c + m̂2
V ig(m2

K+ , m̂2
Vi) − m̂2

Vjg(m2
K+ , m̂2

Vj)
]

+
∑

i

∑
j

gV iKK̄gV jKK̄

fV ifV j

1[
1 − m̂2

V i

µ2

] [
1 − m̂2

V j

µ2

][m̂2
V j

µ2

[
(4p · q + m̂2

V j)C̄0j
c

+g(m2
K, m̂2

Vj)
]− (4p · q + µ2)C̄0µ

c − g(m2
K+, µ2)

]]
(3.69)

Definimos entonces las correcciones virtuales para kaones con estructura en presencia

de un propagador modificado en el proceso φ → K+K− de la siguiente forma:

δ+
V DM = Mvdm

1+2,µ + Mvdm
Coulomb,µ (3.70)

La gráfica (3.6) muestra el comportamiento de la corrección radiativa en función de la

escala de enerǵıa µ. Podemos observar que el resultado para la corrección radiativa alcanza

su valor mostrado en la ecuación (3.55) para valores de la escala de enerǵıa del orden

de 3GeVs. Esto significa que la principal contribución a δ+
V DM se encuentra en la región

de enerǵıa menor a 3 GeV, lo cual es consistente con el ĺımite de validez del modelo de

dominancia vectorial.
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Figura 3.6: Corrección virtual 2δ+
V DM al decaimiento φ → K+K− como función de la escala

de corte µ.



3.4. RESULTADO Y CONCLUSIONES 73

3.4. Resultado y Conclusiones

En este caṕıtulo hemos revisado las correcciones de isospin a la razón Rφ = Γ(φ(1020) →
K+K−)/Γ(φ(1020) → K0K̄0). Nuestro énfasis se ha puesto en el cálculo de las correcciones

radiativas de orden α y en particular, en la consideración de estructura electromagnética de

los kaones, la cual ha sido modelada en el contexto de un modelo de dominancia vectorial.

Hemos mostrado que la contribución de los efectos de estructura, extráıdos de su región de

validez mediante un corte que separa altas y bajas enerǵıas, coincide con la contribución

obtenida sin esta escala de corte para valores del orden de µ ≈ 2 ∼ 3 GeVs.

La correcciones de isospin obtenidas una vez que se incluyen los efectos de la estructura

kaones cargados y neutros es[66]:

Rt
φ =

v3
φ,+

v3
φ,0

[
1 + δQED + 2

[
δ+
V DM − δ0

V DM

]]
= 1·58490 (m̂2

V = m2
V − ımV ΓV )

= 1·58488 (m̂2
V = m2

V ) , (3.71)

lo cual indica que los efectos de la estructura son despreciables.

Nuestro cálculo confirma la discrepancia de alrededor de 4.5σs que existe entre la pre-

dicción teórica y el resultado experimental para la razon φ → K+K−/KLKS. Por lo tanto,

podemos inferir dos posibilidades en el marco usual de la teoŕıa cuántica de campos: (i)

que los efectos de estructura de los kaones a muy altas virtualidades del fotón tenga un

comportamiento diferente al predicho por el modelo de dominancia vectorial, o (ii) que el

resultado experimental sea incorrecto. Respecto a este último caso, es importante señalar

que los fracciones de decaimiento usadas para obtener la razón mostrada en (3.1) se obtie-

nen de un ajuste global al ancho de decaimiento del mesón φ suponiendo que los modos

principales saturan la razón de decaimiento total [3]. En vista de lo anterior, es importante

contar con la extracción directa de las fracciones de decaimiento en un mismo experimento.
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Caṕıtulo 4

Correcciones radiativas a τ → ππν

En este caṕıtulo describimos el cálculo de las correcciones radiativas electro-

magnéticas de orden α al proceso τ− → π−π0ν. Estas correcciones son muy

importantes cuando se desea comparar las predicciones teóricas para la frac-

ción de decaimiento con las medidas experimentales con una precisión menor a

1∼2 por ciento . También, estas correcciones son importante cuando se desea

hacer una verificación de la hipótesis de corriente vectorial conservada (CVC)

para los factores de forma débil y electromagnético del pion. Este último punto

es de gran relevancia para entender la actual discrepancia entre las predicciones

teóricas y la medida experimental del momento magnético anómalo del muón.

4.1. Introducción

El τ es el único leptón que puede decaer en estados finales que contienen hadrones.

Las actuales fábricas de mesones B, BABAR y BELLE, han acumulado del orden de 109

pares τ+τ− [68, 69] con los cuales se pueden estudiar en detalle algunos de los modos de

decaimiento del τ . Con esta alta estad́ıstica se están mejorando las determinaciones de

algunos modos suprimidos de decaimiento, otros se están midiendo por primera vez y en

otros casos, se mejorará la precisión de algunos de los modos dominantes, como es el caso

del modo que nos ocupa.

75
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En este caṕıtulo nos concentraremos en el estudio del proceso

τ− → π−π0ντ , (4.1)

el cual es el modo de decaimiento dominante del τ con una fracción de decaimiento de

B(τ− → π−π0ντ ) = (25·41±0·10) [3]. Para este grado de precisión experimental (del orden

de 0·5 %) se requiere que los cálculos teóricos de esta observable incluyan los efectos de

las correcciones radiativas de O(α). También se han reportado las medidas del espectro

de dos piones en el estado final por las colaboraciones OPAL [4], CLEO [5], ALEPH[70] y

recientemente BELLE [68].

Las medidas de esta observable son muy importantes porque (i) permiten estudiar en

un ambiente limpio las propiedades intŕınsecas de la familia de resonancias vectoriales

cargadas ρ, ρ′, · · · , (ii) permiten hacer una prueba de la hipótesis de corriente vectorial

conservada (CVC) al comparar el factor de forma del proceso e+e− → π+π− con el factor

de forma del proceso τ− → π−π0ν para cada valor de la masa invariante del sistema ππ y

(iii) la distribución de la masa invariante permite calcular, mediante la relación de CVC,

la contribución hadrónica mas importante a la predicción teórica del momento magnético

anómalo del muon [14][15][16][19][20].

Más espećıficamente, en este trabajo de tesis nos concentraremos en el cálculo de las

correcciones radiativas virtuales de tipo electromagnético de orden (α) para el proceso

τ− → π−π0ντ . Estas correcciones radiativas, tambien llamadas de larga distancia, fue-

ron calculadas recientemente en las referencias [17][18][19][20]. En la referencia [19] se

encontró que las contribuciones dependientes de modelo en las correcciones debidas a fo-

tones reales juegan un papel más importante de lo que se pensaba anteriormente[17]. Sin

embargo, en los art́ıculos que publicamos anteriormente [19][20] tomamos el cálculo de las

correcciones de fotones suaves tal como fueron calculadas en [17][18], sin tomar en cuenta el

hecho de que ellas se calculan de manera inconsistente al sumar únicamente sobre dos gra-

dos de polarización del fotón real [46]. En este caṕıtulo hacemos los cálculos correctamente
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y compararemos nuestros resultados con los calculados en la referencia [17].

4.2. Correcciones virtuales al decaimiento τ− → π−π0ντ

Al orden mas bajo en las interacciones débiles (denotado por el supeŕındice 0), la

amplitud de probabilidad de la desintegración τ− → π−π0ντ que procede v́ıa el proceso

elemental τ− → ūdντ esta dada por:

M(τ− → π−π0ντ ) =
GF√

2
VudLαHα (4.2)

donde GF denota la constante de Fermi y Vud el elemento correspondiente de la matriz de

Cabibbo-Kobayashi-Maskawa [72], Lα denota la corriente leptónica y Hα es el elemento de

matriz hadrónico definido por:

Hµ = 〈π−π0|ūγµ(1 − γ5)d|0〉 .

En el caso particular que estudiamos, el estado hadrónico final consiste de 2 piones y

debido a que este sistema tiene una G-paridad par, solamente contribuye la parte vectorial

del elemento de matriz hadrónico

Hµ = 〈π−π0|ūγµd|0〉 . (4.3)

Aunque no es posible en la actualidad calcular de primeros principios (es decir, del mo-

delo estándar) el elemento de matriz que representa (4.3), se le puede parametrizar de la

siguiente manera con el requisito de que se satisfaga la covariancia de Lorentz:

Hµ = F+(t)(p− − p0)µ + F−(t)(p− + p0)µ . (4.4)

Los factores de forma (F+(t), F−(t)) son funciones invariantes de Lorentz, contienen toda

la información sobre la estructura hadrónica y dependen únicamente de la variable t =

(p− + p0)2. Si la simetŕıa de isospin se conserva, se tiene que F−(t) = 0. Dado que la

simetŕıa de isospin no es exacta, F−(t) es diferente de cero, pero su contribución a la razón
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de decaimiento es tan pequeña (del orden de 10−6) [17] que se le puede despreciar en los

cálculos.

Por lo tanto, nuestra expresión para la amplitud a nivél árbol[17] la definiremos como

(τ−(P ) → π−(p−)π0(p0)ντ (q); donde las cantidades entre parentésis denotan los cuadrimo-

mentos de las part́ıculas):

M0
τ = ıGFVudf+(t)ū(q)

[
p�0 − p�−] γ7u(P ) , (4.5)

donde se ha definido el factor de forma normalizado f+(t) = F+(t)/
√

2 tal que se satisface

f+(t = 0) = 1 y se ha definido la matriz γ7 = 1− γ5. Como es bien conocido, la probabili-

dad no polarizada de un decaimiento en tres cuerpos puede escribirse en términos de dos

variables cinemáticas independientes. Ademas de la variable t introducida anteriormente,

definimos:

u = (P − p−)2 .

Luego entonces, la probabilidad de decaimiento no polarizada al orden más bajo en la

teoŕıa de perturbaciones, está dada por:

∑
|M0

τ |
2

=
1

2

∑
(M0

τ)
†M0

τ = 4G2
F |Vud|2|f+(t)|2Dc(t, u) , (4.6)

donde se ha definido la densidad cinemática Dc(t, u) del proceso como

Dc(t, u) = 2u2 +
m2

τ

2

[
m2

τ − t
]
+ 2u

[
t − m2

τ − m2
π0

− m2
π−
]
+ 2m2

π0
m2

π− . (4.7)

En el sistema en reposo del leptón τ , la razón diferencial de decaimiento a nivel de árbol

se escribe de la manera siguiente

dΓ0(τ → ππν)/dtdu =
G2

F |Vud|2
(4π)3m3

τ

|f+(t)|2Dc(t, u) . (4.8)

Las correcciones de fotones virtuales al orden α para este proceso se muestran en la

fig.(4.1)(los diagramas de autoenerǵıa, aunque no se muestran, si se consideran en el cálcu-

lo). Al igual que en la referencia [17] supondremos que el factor de forma f+(t) es constante
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a ) b )

c )

Figura 4.1: Correcciones de fotones virtuales al proceso τ− → π−π0ντ .
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en el cálculo de las correcciones radiativas. En el cálculo a 1 lazo, como es usual se coloca

una masa ficticia λ al fotón para regularizar las divergencias infrarrojas.

La amplitud que corresponde al diagrama a) de la fig.(4.1), se puede escribir como

sigue:

Ma
τ,v = ū(q)

[−ıeGF Vudγµγ
7
] 1

(2π)4

∫ [
− ıgµα

k2

] [
ı(P� + k� + mτ )

(P + k)2 − m2
τ

]
[ıeγα] dk4u(P )

= e2GFVudū(q)γµγ
7 1

(2π)4

∫
[P� + k� + mτ ] γ

µdk4

k2 [(P + k)2 − m2
τ ]

u(P )

= 4παGFVudū(q)γµγ
7 [P�γµ + γµP�]u(P )

1

(2π)4

∫
dk4

k2DP

+4παGFVudū(q)γµγ
7γβγµu(P )

1

(2π)4

∫
kβdk4

k2DP

.

Se ha introducido la notación DP = (P + k)2 − m2
τ . Para simplificar la escritura se usan

las propiedades de las matrices de Dirac y se obtiene:

Ma
τ,v = 4παGFVud

[
ū(q)2P�γ7u(P )

1

(2π)4

∫
dk4

k2DP

+ū(q)(−2)γβγ7u(P )
1

(2π)4

∫
kβdk4

k2DP

]
.

Realizando la integración en D = 4 dimensiones (Regularización dimensional), el resultado

se escribe en la siguiente forma:

Ma
τ,v = ıGF Vudū(q)

[
Aap�0 − Bap�−] γ7u(P ) . (4.9)

Se ha definido:

Aa = −Ba =
α

4π

[
2B0

[
m2

τ , 0, m
2
τ

]
+ (−2)fP

]
fP = − [B0 [m2

τ , 0, m
2
τ ] − 1]

2
. (4.10)

La expresión anaĺıtica para la función escalar de Passarino-Veltman[43] se ha comparado

numéricamente con el resultado del programa LoopTools [73] y su forma expĺıcita es:

B0
[
m2, 0, m2

]
=

2

ε
− γE + 2 + ln [4π] − ln

[
m2

µ2

]
, (4.11)
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donde ε = 4 − D, γE =· 5772 y µ es la escala de masa en regularización dimensional.

La amplitud para el diagrama b) de la fig.(4.1), se puede calcular en forma similar.

Usando la notación Dp− = (p− + k)2 − m2
π, el resultado es:

Mb
τ,v = ū(q)

[−ıeGF Vudγµγ7
] 1

(2π)4

∫ [
− ıgµα

k2

] [
ı

Dp−

] [
ıe(p− + p− + k)α

]
dk4u(P )

= e2GF Vudū(q)γµγ
7u(P )

1

(2π)4

∫
[2p− + k]

µ
dk4

k2Dp−

= 4παGFVudū(q)γµγ7u(P )

[
2p−µ

(2π)4

∫
dk4

k2Dp−
+

1

(2π)4

∫
kµdk4

k2Dp−

]

= 4παGFVudū(q)(2p�−)γ7u(P )

[
ıB0 [m2

π, 0, m2
π]

16π2
+

ıfp−

2 · 16π2

]
= ıGFVudū(q)

[−Bbp�−] γ7u(P ) , (4.12)

donde

Bb =
α

4π

[−2B0
[
m2

π, 0, m2
π

]− fp−
]

, (4.13)

y se define la función fp− = − [B0
[
m2

π+ , 0, m2
π+

]− 1
]
/2 .

Finalmente la amplitud para el diagrama de interacción de Coulomb, diagrama c)

Fig.(4.1), es:

MC
τ,v = ū(q)

1

(2π)4

∫ [
ıGFVud(p

0 − p− − k)νγ
νγ7
] · [ı P� + k� + mτ

(P + k)2 − m2
τ

]
[ıeγα]

[
− ıgαβ

k2

]
×

× [ıe(p− + k + p−)β

] [ ı

(p− + k)2 − m2
π

]
u(P )

= 4παGFVud
1

(2π)4

∫
ū(q)(p0 − p− − k)νγ

νγ7

[
P� + k� + mτ

DPDp−k2

]
γβ
[
2p− + k

]
β
dk4u(P )

= 4παGFVudū(q)(p0 − p−)νγ
νγ7 1

(2π)4

∫
P� + k� + mτ

DPDp−k2

[
2p�− + k�

]
u(P )dk4

−4παGF Vudū(q)γνγ7 1

(2π)4

∫
kν

P� + k� + mτ

DP Dp−k2

[
2p�− + k�

]
u(P )dk4 .

En la expresión anterior, el primer sumando contiene la contribución debida al término

de convección (ver discusión en Caṕıtulo 2) y el cual podemos extraer usando la siguiente
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relación:

[P� + k� + mτ ]
[
2p�− + k�

]
u(P ) =

[
(2p− + k) · (2P + k) + 2p− · k − 2p�−k�

]
u(P ) .

El término (2p−+k)·(2P +k) es reconocido como la contribución del término de convección.

Para simplificar la evaluación de la integración se usa la siguiente identidad:

ū(q)k�γ7 [P� + k� + mτ ]
[
2p�− + k�

]
u(P ) = (DP + 4P · p−)ū(q)k�γ7u(P ) + 2ū(q)k2p�−γ7u(P ) .

Finalmente escribimos la amplitud en términos de integrales básicas que ya han sido estu-

diadas en caṕıtulos anteriores:

MC
τ,v = ıGF Vudū(q)(p0 − p−)νγ

νγ7u(P )4πα

[
1

(2π)4

∫
(2p− + k) · (2P + k)dk4

k2DP Dp−

]

+4ıπαGFVudū(q)(p0 − p−)νγ
νγ7u(P )

[
2p−α

(2π)4

∫
kαdk4

k2DPDp−

]

−4ıπαGF Vudū(q)(p0 − p−)νγ
νγ7
[
2p�−γβ

]
u(P )

[
1

(2π)4

∫
kβdk4

k2DP Dp−

]

−4ıπαGF Vudū(q)γβγ7u(P )

[
1

(2π)4

∫
kβdk4

k2Dp−

]

−4ıπαGF Vudū(q)γβγ7
[
4P · p−]u(P )

[
1

(2π)4

∫
kβdk4

k2DP Dp−

]

−4ıπαGF Vudū(q)2p�−γ7u(P )

[
1

(2π)4

∫
dk4

DPDp−

]
.

Notese que la única integral divergente infrarroja esta contenida en la primera ĺınea de la

ecuación anterior, que es el único término proporcional a la amplitud del modo no radiativo

y es el mencionado término de convección . Para la evaluación de esta integral, se coloca

una masa ficticia λ en el propagador del fotón (1/(k2−λ2)) y al final del cálculo, se realiza el

ĺımite λ → 0 manteniendo solamente el término divergente. Como se discutió en el caṕıtulo

2, los términos de convección contienen la totalidad de las divergenicas infrarrojas. Una
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expresión simplificada del término de Coulomb es la siguiente:

MC
τ,v = ıGF Vudū(q)(p0 − p−)νγ

νγ7u(P )4πα

[
1

(2π)4

∫
(2p− + k) · (2P + k)dk4

k2DP Dp−

]

+ıGF Vudū(q)P�γ7u(P )
[ α

4π

] [
FP (4m2

π − 6P · p−)
]

+ıGF Vudū(q)(−2p�−)γ7u(P )
[ α

4π

] [
FP (2P · p− − m2

τ ) + 2P · p−Fp−

+fp−/2 + B0
[
u, m2

π, m
2
τ

] ]
. (4.14)

Expresemos la anterior ecuación de la siguiente forma:

MC
τ,v = ıGF Vudū(q)Aconv

[
p�0 − p�−] γ7u(P ) + ıGFVudū(q)

[
Acp�0 − Bcp�−] γ7u(P ) ,

(4.15)

donde

Aconv = 4πα

[
1

(2π)4

∫
(2p− + k) · (2P + k)dk4

[k2 − λ2] DPDp−

]

=
α

4π

[
B0
[
m2

π, 0, m2
π

]
+ B0

[
m2

τ , 0, m
2
τ

]− B0
[
u, m2

π, m2
τ

]
+4P · p−C0

[
m2

π, u, m2
τ , λ

2, m2
π, m2

τ

] ]
Ac =

α

4π

[
FP (4m2

π − 6P · p−)
]

Bc =
α

4π

[
FP (−4m2

π + 6P · p− + 4P · p− − 2m2
τ )

−4P · p−Fp− − fp− − 2B0
[
u, m2

π+, m2
τ

] ]
. (4.16)

Las expresiónes anaĺıticas para cada una de las funciones involucradas en la ecuación

anterior son

FP =
B0∗ [u, m2

π, m
2
τ ] (u − m2

τ + m2
π) − [u − 3m2

π − m2
τ ] ln

[
mπ

mτ

]
m4

τ − 2m2
τ (m

2
π + u) + (u − m2

π)2

Fp− =
B0∗ [u, m2

π, m
2
τ ] (u + m2

τ − m2
π) + [u − 3m2

τ − m2
π] ln

[
mπ

mτ

]
m4

τ − 2m2
τ (m

2
π + u) + (u − m2

π)2
. (4.17)
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Con la definición de las variables siguientes

xt =
1

2
√

rt

[
yt −

√
y2

t − 4rt

]
,

yt = 1 + rt − u

m2
π

,

rt =
m2

τ

m2
π

,

la función de dos y tres puntos de Passarino-Veltman se escriben como:

B0∗
[
u, m2

π, m2
τ

]
=

m2
π − m2

τ

u
ln

[
mτ

mπ

]
− mπmτ

u

[
1

xt
− xt

]
ln [xt]

C0
[
m2

π, u, m2
τ , λ

2, m2
π, m2

τ

]
= C(u, λ2)

=
1

mτmπ+

xt

1 − x2
t

{
−1

2
ln2[xt] + 2 ln[xt] ln[1 − x2

t ]

−π2

6
+

1

8
ln2[rt] + Li2[x

2
t ] + Li2[1 − xt

√
rt]

− ln [xt] ln

[
λ2

mτmπ+

]}
. (4.18)

Finalmente, la amplitud que contiene todas las correcciones virtuales de orden α se puede

escribir de la siguiente manera:

Mt
τ,v = ıGF Vuf ū(q)

[
Â(u, mτ , mπ±, mπ0)p�0 − B̂(u, mτ , mπ±, mπ0)p�−

]
γ7u(P ) , (4.19)

donde las funciones Â(u, mτ , mπ±, mπ0), B̂(u, mτ , mπ±, mπ0) contienen las funciones esca-

lares que resultan del cálculo a 1 lazo (4.10, 4.13, 4.16)

Â(u, mτ , mπ±, mπ0) = Aa + Aconv + Ac ,

B̂(u, mτ , mπ±, mπ0) = Ba + Bb + Aconv + Bc .

La probabilidad no polarizada corregida a orden α es la siguiente:

∑ 1

2
|M|2 =

∑ 1

2
|M0

τ + Mt
τ,v|2 �

∑ 1

2
|M0

τ |2 + 2Re
∑ 1

2
M0

τMt
τ,v .
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El término que nos interesa es el segundo, pues contiene la información del cálculo a 1 lazo,

∑ 1

2
M0

τMt
v =

1

2
C2
∑

ū(P )
[
p�0 − p�−]

α
γ7u(q)ū(q)

[
Âp�0 − B̂p�−

]
γ7u(P )

= C2 1

2
Tr
[
(P� + mτ )

[
p�0 − p�−] γ7q�

[
Âp�0 − B̂p�−

]
γ7
]

= C2 1

2
Tr
[
P�Q�γ7q�T�γ7

]
, (4.20)

donde se usa la notación

C2 = G2
F |Vud|2|f+(t)|2 ,

Q� = p�0 − p�− ,

T� = Âp�0 − B̂p�− .

Desarrollando la traza se obtiene

Tr
[
P�Q�γ7q�T�

]
= Tr

[
P�Q�γ7q�(Âp�0 − Âp�− − B̂p�− + B̂p�0)

]
+ÂT r

[
P�Q�γ7q�p�−]− B̂T r

[
P�Q�γ7q�p�0

]
= Tr

[
P�Q�γ7q�Q�

]
(Â + B̂) + ÂT r

[
P�Q�γ7q�p�−]− B̂T r

[
P�Q�γ7q�p�0

]
.

Las variables de Mandelstam

t = (p0 + p−)2 = (P − q)2 ,

u = (p0 + q)2 = (P − p−)2 ,

s = (P − p0)2 = (p− + q)2 ,

s + t + u = m2
τ + m2

π+ + m2
π0 . (4.21)

permiten escribir las trazas en términos de la densidad cinemática:

Tr
[
P�Q�γ7q�p�−] = −2Dc(t, u) + 2m2

τ

[
u − m2

π0 − 1

2

[
m2

τ − t
]]

,

T r
[
P�Q�γ7q�p�0

]
= 2Dc(t, u) + 2m2

τ

[
u − m2

π0 − 1

2

[
m2

τ − t
]]

,

T r
[
P�Q�γ7q�Q�

]
= 4Dc(t, u) . (4.22)
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Con las relaciones anteriores, la ec.(4.20) se escribe en la siguiente forma

∑ 1

2
M0

τMt
v = C2

[
(Â + B̂)2Dc(t, u) + (Â − B̂)m2

τ

[
2u − 2m2

π0 −
[
m2

τ − t
]]]

.

(4.23)

En la referencia [17] se argumenta que las correcciones radiativas virtuales son factori-

zables, es decir que al incluir correcciones de O(α) la amplitud total del decaimiento tiene

la forma

Mv,τ = M0
τ + M0

τ × f(u, mτ , mπ±,0 , λ) ,

y por lo tanto:

∑ 1

2
|M|2 ≈

∑ 1

2
|M0

τ |2 × (1 + 2f(u, mτ , mπ±,0))

= 4Dc(t, u)(1 + 2f(u, mτ , mπ±,0)) . (4.24)

Como se observa de nuestro resultado (4.23), las correcciones virtuales inducen términos

no factorizables. Debido a que nos interesa verificar el cálculo de las correcciones virtuales,

nos concentraremos únicamente en el primer término de (4.23).

La probabilidad no polarizada corregida por las correcciones virtuales (solo por el primer

término de (4.23)) se escribe com sigue:

∑ 1

2
|M|2 =

∑ 1

2
|M0

τ + Mt
τ,v|2 �

∑ 1

2
|M0

τ |2 + 2Re
∑ 1

2
M0

τMt
τ,v

=
∑ 1

2
|M0

τ |2 ×
[
1 + fcc + fresto + ΣSE

τ + ΣSE
π−
]

.

donde se han incluido ya la contribución de los diagrama de autoenerǵıa (ΣSE
τ , ΣSE

π− ), y las
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funciones fcc, fresto se ha definido en términos de (4.10, 4.13, 4.16):

fcc = Aconv

=
α

4π

[
B0
[
m2

π, 0, m2
π

]
+ B0

[
m2

τ , 0, m
2
τ

]− B0
[
u, m2

π, m
2
τ

]
+4P · p−C0

[
m2

π, u, m2
τ , λ

2, m2
π, m2

τ

] ]
fresto =

1

2

[
Aa + Ac + Ba + Bb + Bc

]
=

α

4π

[
B0
[
u, m2

π, m2
τ

]− B0
[
m2

π, 0, m2
π

]
+
[
m2

π − u
]
[FP + Fp−] + m2

τFp−
]

.

(4.25)

Para escribir nuestro resultado final, se usan las definiciones de la ref.[17]

Ac =
1

u

[
−1

2
ln [rt] +

2 − y√
rt

xt

1 − x2
t

ln [xt]

]

Bc =
1

u

[
1

2
ln [rt] +

2rt − y√
rt

xt

1 − x2
t

ln [xt]

]
,

de tal forma que resolviendo para los logaritmos:

ln [xt] =
mτmπ

2xt

[
1 − x2

t

]
[Ac + Bc]

ln [rt] = Ac

[
m2

π − m2
τ − u

]
+ Bc

[
m2

π − m2
τ + u

]
.

Mostremos como escribir el siguiente término en función de Ac y de Bc

[
m2

π − u
]
[FP + Fp−] = 2

[m2
π − u]

λ2
K(u, m2

π, m
2
τ )

[
uB0∗

[
u, m2

π, m2
τ

]
+ ln

[
mπ

mτ

] [
m2

π − m2
τ

]]

= −2 [m2
π − u]mπmτ

λ2
k(u, m2

π, m2
τ )

[
1 − x2

t

xt

]
ln [xt]

= −2 [m2
π − u]m2

πm2
τ

2λ2
k(u, m2

π, m
2
τ )

[
(1 − x2

t )(1 − x2
t )

x2
t

]
[Ac + Bc]

=
[
u − m2

π

]
[Ac + Bc] , (4.26)

donde la función de Källén está definida como

λ2
K(u, m2

π, m
2
τ ) = u2 + m4

τ + m4
π − 2

[
um2

π + um2
τ + m2

πm2
τ

]
.
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Otras relaciones útiles son:

y2
t =

λ2
k(u, m2

π, m2
τ )

m4
π

+ 4rt

(1 − x2
t )(1 − x2

t ) =
x2

t λ
2
k(u, m2

π, m2
τ )

rtm4
π

.

Con la ayuda de las relaciones anteriores el término m2
τFp− se escribe como sigue:

m2
τFp− =

m2
τ

u

[
ln

[
mπ

mτ

]
− mπmτ

λ2
k(u, m2

π, m2
τ )

[
1 − x2

t

xt

] [
u − m2

π + m2
τ

]
ln [xt]

]

=
m2

τ

u

[
ln

[
mπ

mτ

]
− 1

2

[
u + m2

τ − m2
π

]
[Ac + Bc]

]

=
m2

τ

u

[
−1

2
ln

[
m2

τ

m2
π

]
− 1

2

[
u + m2

τ − m2
π

]
[Ac + Bc]

]
= −m2

τBc . (4.27)

La expresión anaĺıtica de la contribución de las auto-enerǵıas es [54]:

MSE
π = M0

τΣπ =
M0

τ

2

[ α

4π

] [
2

[
2

ε
− γE + ln [4π]

]
− 2 ln

[
m2

π

µ2

]
− 2 ln

[
λ2

m2
π

]]
,

MSE
τ = M0

τΣτ =
M0

τ

2

[ α

4π

] [
2

[
2

ε
− γE + ln [4π]

]
− 2 ln

[
m2

τ

µ2

]
− 2 ln

[
λ2

m2
τ

]]
.

(4.28)

Insertado las expresiones anteriores, la corrección virtual δ = 1 + fcc + fresto + ΣSE
τ + ΣSE

π−

es

δ =
α

4π

{
4P · p−C0

[
u, m2

π, m
2
τ , λ

2, m2
π, m2

τ

]
+ Ac

[
u − m2

π

]
+ Bc

[
u − m2

π − m2
τ

]
+2

[
2

ε
− γE + ln [4π]

]
− 2 ln

[
mπmτ

µ2

]
− 2 ln

[
λ2

mπmτ

]
+ B0

[
m2

τ , 0, m
2
τ

] ]}

=
α

4π

{
4P · p−C0

[
u, m2

π, m
2
τ , λ

2, m2
π, m2

τ

]
+2 ln

[mπmτ

λ2

]
+ Ac

[
u − m2

π

]
+ Bc

[
u − m2

π − m2
τ

]
+3

[
2

ε
− γE + ln [4π]

]
− 2 ln

[
mπmτ

µ2

]
− ln

[
m2

τ

µ2

]
+ 2

}
. (4.29)
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A continuación definimos la función fCir[17], la cual contiene el término de Coulomb y el

término infrarrojo resultado de los diagramas de auto-enerǵıa,

fCir =
α

4π

{
4P · p−C0

[
u, m2

π, m
2
τ , λ

2, m2
π, m2

τ

]
+ 2 ln

[mπmτ

λ2

]
+Ac

[
u − m2

π

]
+ Bc

[
u − m2

π − m2
τ

]}
. (4.30)

Es importante señalar que las correcciones de QED completas al decaimiento τ− →
ντπ

−π0 contienen dos partes que se han indentificado claramente. Una de ellas es propor-

cional a la densidad cinemática del decaimiento en tres cuerpos, que se traduce en que

la amplitud correspondiente sea proporcional a la amplitud a nivel de árbol y contiene la

divergencia infrarroja. La otra parte no es proporcional a la densidad cinemática de orden

árbol, y no fué considerada por Cirigliano ni la consideraremos más en esta tesis. Al igual

que en el caso de las correcciones a los decaimientos del Caṕıtulo 2, es probable que los

efectos de esta amplitud adicional puedan ser reabsorbidos en una redefinición del factor

de forma del pión.

Para terminar esta sección, consideraremos la cinemática del decaimiento a 3 cuerpos

la cual está determinada por los ĺımites de integración sobre las dos variables cinemáticas

independientes. Estos ĺımites pueden encontrarse en el apéndice C de la referencia [64] y

son:

(mπ+ + mπ0)2 ≤ t ≤ m2
τ (4.31)

u−(t) ≤ u ≤ u+(t) , (4.32)

donde las funciones u±(t) están definidas por las siguientes expresiones:

u−(t) =
1

2t

[
2t(m2

τ + m2
π0 − t) − (m2

τ − t)(m2
π− + t − m2

π0)

−(m2
τ − t)λ1/2(t, m2

π− , m2
π0)
]

u+(t) =
1

2t

[
2t(m2

τ + m2
π0 − t) − (m2

τ − t)(m2
π− + t − m2

π0)

+(m2
τ − t)λ1/2(t, m2

π−, m2
π0)
]

,
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y λ(t, m2
π−, m2

π0) es la conocida función de Källen.

4.3. Correcciones de fotones reales a τ− → π−π0ντ

Como ya discutimos en caṕıtulos anteriores, es necesarios agregar a las correcciones

virtuales las correcciones debidas a fotones reales del proceso τ− → π−π0ντ con el fin de

obtener resultados que son finitos en el infrarrojo. En esta sección solo consideraremos las

correcciones reales debidas a fotones suaves para mostrar el mecanismo de cancelación de

las divergencias infrarrojas. Como veremos, la cancelación de dichas divergencias es un

requisito necesario pero no suficiente para asegurarse de que el resultado sea correcto.

Empecemos por definir la función de corrección debida a los fotones reales. Después

de integrar la razón diferencial de decaimiento sobre el resto de las variables cinemáticas,

podemos obtener la distribución en las variables t y u introducidas anteriormente. De esta

manera obtenemos:

dΓ(τ → ππνγ)

dtdu
=

dΓ0(τ → ππν)

dtdu
×
(α

π
I(u, t, λ)

)
, (4.33)

donde el factor dΓ0(τ → ππν) denota la razón diferencial a nivel de árbol indicada en la

ec. (4.8) para el proceso de no-radiativo, I(u, t) es la función de corrección debida a fotones

suaves.

La función I(u, t, λ) fue calculada por primera vez en la referencia [17] con el siguiente

resultado:

Iciri(u, t, λ) = J11(t, u, λ) + J20(t, u, λ) + J02(t, u, λ) , (4.34)
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donde las funciones Jij están dadas por [17]:

J11(t, u, λ) = ln

[
2x+(t, u)γ̄

λ

]
1

β̄
ln

[
1 + β̄

1 − β̄

]

+
1

β̄
(Li2(1/Y2) − Li2(Y1) + ln2 [−1/Y2] /4 − ln2 [−1/Y1] /4) ,

J20(t, u, λ) = ln

[
λ(m2

τ − t)

mτx+(t, u)

]
,

J02(t, u, λ) = ln

[
λ(m2

τ + m2
π − t − u)

mπx+(t, u)

]
. (4.35)

Las definiciones de las variables involucradas son las siguientes:

x+(t, u) =
1

2m2
π−

[
2m2

π−(m2
τ + t) − (t + m2

π− − m2
π0)(m2

τ + m2
π− − u)

+
√

λK(t, m2
π−, m2

π0)
√

λK(u, m2
π−, m2

τ )
]

λK(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz)

Y1,2 =
1 − 2α ±

√
(1 − 2α)2 − (1 − β

2
)

1 + β

α =
(m2

τ − t)(m2
τ + m2

π0 − t − u)

m2
π− + m2

τ − u

λK(u, m2
π−, m2

τ )

2δ

β = −
√

λK(u, m2
π−, m2

τ )

m2
π− + m2

τ − u

γ =

√
λK(u, m2

π−, m2
τ )

2
√

δ
δ = −m4

π0m2
τ + m2

π−(m2
τ − t)(m2

π0 − u) − tu(−m2
τ + t + u)

+m2
π0(−m4

τ + tu + m2
τ t + m2

τu)

Estos resultados fueron obtenidos a partir de la siguiente razón diferencial de decai-

miento una vez que se integra sobre el resto de las variables [17]

dΓτ (ππγ) =
αGF |Vud|2|f+(t)|2Dc(t, u)

32π7mτ

{
2P · p−[

k · P − 1
2
λ2
] [

k · p− + 1
2
λ2
]

− m2
τ[

k · P − 1
2
λ2
]2 − m2

π−[
k · p− + 1

2
λ2
]2
}

dΦLIPS , (4.36)
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donde el espacio fase invariante de Lorentz para 5 cuerpos es

dΦLIPS = δ4(P − q − p− − p0 − k)
d3p

2Eν

d3p−

2Eπ−

d3p0

2Eπ0

d3k

2ω
. (4.37)

Después de integrar sobre las demás variables, excepto t y u se obtiene el resultado de las

ecuaciones 4.35. Es fácil constatar que en la ecuación anterior los autores de la referencia

[17] introdujeron una masa ficticia λ en el propagador de las part́ıculas que rad́ıan el fotón

y que realizaron la suma sobre polarizaciones del fotón de acuerdo a:∑
pols

εµεν = −gµν , (4.38)

lo cual equivale a sumar únicamente sobre los dos grados transversales de polarización de

un fotón sin masa.

Como fue señalado por Kinoshita y Sirlin [46], este procedimiento claramente es incon-

sistente. Para resolver esta inconsistencia, es necesario efectuar la suma sobre las polariza-

ciones del fotón de acuerdo a la siguiente relación [74][75]∑
ε

(ε · a)(ε · b) = a · b− (a · k)(b · k)

ω2
, (4.39)

donde a y b son dos trivectores y ω =
√

	K2 + λ2 es la enerǵıa del fotón.. El resultado

obtenido para la función de corrección de fotones suaves en este (nuestro) caso es:

Inos(u, t, λ) = − 1

β

[
2β + ln

(
1 − β

1 + β

)]
ln

[
kmax

λ

]
+ I ′(u, t) , (4.40)

donde

kmax =

√(
m2

τ − 4m2
π−

2mτ

)2

− λ2 β ≡
√

1 − 4m2
πm2

τ

b2
, b ≡ m2

τ + m2
π − u , (4.41)

y

I ′(u, t) =
1

2β

{
b(1 − β2)

2m2
τ

[
ln

(
1 − β

1 + β

)
+

(
1 − m2

π

m2
τ

)
ln

(
2m2

τ − b(1 + β)

2m2
τ − b(1 − β)

)]

−2β + 2β ln

(
(2m2

τ − b)2 − b2β2

(m2
τ − b)2

)
+ 2 ln

(
1 + β

1 − β

)
ln

(
m2

τ − b

2m2
τ

)

+2Li

(
b

2m2
τ

(1 + β)

)
− 2Li

(
b

2m2
τ

(1 − β)

)}
. (4.42)
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Esta expresión parece ser muy diferente de la que se obtuvo en la Ref.[17], por lo que es

interesante ver cual es el efecto que la misma tendŕıa en el cálculo de las correcciones ra-

diativas totales. Al sumar las correcciones virtuales de ec.(4.30) y las correcciones debidas

a los fotones suaves, y despues de integrar sobre la variable u definida en ec.(4.21), obte-

nemos el siguiente resultado para la distribución en la masa invariante de los dos piones

del proceso τ → ππν(γ):

dΓππ[γ]

dt
=

G2
F m3

τ |Vud|2
384π3

(
1 − 4m2

π

t

)3/2(
1 − t

m2
τ

)2(
1 +

2t

m2
τ

)
|f+(t)|2G0

EM(t) , (4.43)

donde la funcion G0
EM(t) contiene la contribución a nivel árbol mas las correcciones radia-

tivas que incluyen las correcciones virtuales y las correcciones debidas a los fotones reales

suaves. Es interesante notar que, en ambos casos, la función de corrección de largas distan-

cias es independiente de la masa ficticia del fotón por lo que este criterio no es suficiente

para garantizar que el resultado de las correcciones radiativas es correcto.

La función G0
EM(t) está definida mediante la siguiente expresión:

G0
EM(t) = 1 +

∫
Dc(t, u)∆0(t, u)du∫

Dc(t, u)du
, (4.44)

donde Dc(t, u) es la densidad cinemática del espacio fase de tres cuerpos

Dc(t, u) =
m2

τ

2
(m2

τ − t) + 2m4
π − 2u(m2

τ − t + 2m2
π) + 2u2 , (4.45)

y ∆0(t, u, λ) es la suma de las correcciones virtuales 2fCir(t, u, λ) eq.(4.30) y de las correc-

ciones reales αI(t, u, λ)/π ec.(4.33). Para propósitos de comparación, a continuación pro-

porcionamos las expresiones expĺıcitas de ∆0(t, u). Al usar las correcciones reales de la
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Figura 4.2: Comparación del cálculo de G0
EM(t) sumando sobre 2 (ĺınea entrecortada) y 3

(ĺınea sólida) estados de polarización del fotón.

referencia [18], ecs.(4.34) y (4.35), se obtiene:

∆0
T (t, u) =

α

π

{
− yτ√

y2
τ − 4rτ

ln [xτ ] ln

[
4x2

+(t, u)γ̄2

mτmπ

]
+ ln

[
(m2

τ − t)(m2
τ + m2

π − u − t)

x2
+(t, u)

]

+
yτ√
y2

τ

[
Li2

[
1

Y2

]
− Li2 [Y1] + ln2

[−1/Y2

4

]
− ln2

[−1/Y1

4

]]

+
1

2u

[
u − m2

π

]
(−1

2
ln[rτ ] +

2 − yτ√
rτ

xτ

1 − x2
τ

ln[xτ ])

+
u − m2

π − m2
τ

2u
(
1

2
ln[rτ ] +

2rτ − yτ√
rτ

xτ

1 − x2
τ

ln[xτ ])

+
m2

π + m2
τ − u

mτmπ

xτ

1 − x2
τ

[− 1

2
ln[xτ ] + 2 ln[xτ ] ln[1 − x2

τ ] −
π2

6

+
1

8
ln2[rτ ] + Li2[x

2
τ ] + Li2[1 − xτ√

rτ
] + Li2[1 − xτ

√
rτ ]
]}

. (4.46)

En el caso en que se toman en cuenta los tres grados de polarizacion del fotón masivo,
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nosotros estamos obteniendo:

∆0
L+T (t, u) =

α

π

{
1

2β

{[
2β + ln

(
1 − β

1 + β

)]
ln

(
mπ

mτ

)
+ 2β ln

(
(2m2

τ − b)2 − b2β2

(m2
τ − b)2

)

+η

[
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(
1 − β

1 + β

)
+ (1 − rτ ) ln

(
1 − η/(1 − β)
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(
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1 − β

)
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(
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2m2
τ
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(
η
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τ
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1

2
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1 − x2
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−1

2
ln2 xτ + 2 lnxτ ln(1 − x2
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π2

6

+
1
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ln2 rτ + Li2(x

2
τ ) + Li2

(
1 − xτ√
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+ Li2(1 − xτ

√
rτ )

]]}
. (4.47)

En las expresiones anteriores hemos puesto un sub́ındice T (T + L) para denotar que

dichas correcciones se obtienen al considerar grados de libertad transversales ( transversales

mas longitudinal) para el fotón masivo. Puede observarse que ambas expresiones para las

correcciones radiativas son independientes de la divergencia infrarroja (como debe de ser),

aunque ellas difieren en varios de los los términos de las primeras dos ĺıneas. Para poder

ver la diferencia entre estas dos correcciones, en la figura (4.2) mostramos la gráfica de la

corrección G0
EM(t) en función de t. Sorprendentemente ambas correcciones son casi idénticas

excepto para valores muy pequeños de t donde se puede apreciar una pequeña diferencia.

Esto nos permite concluir que, a pesar de que el cálculo de las correcciones debidas a

fotones suaves hechas en la referencia [17] es incorrecta, el efecto de hacerlas correctamente

produce un cambio despreciable. En consecuencia, las correcciones de isospin que provienen

de las correcciones radiativas al proceso τ− → π−π0ντ permanecen casi las mismas que las
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reportadas en el cálculo incorrecto de la referencia [17][19].

4.4. Conclusiones

En este caṕıtulo hemos revisado las correcciones radiativas al proceso τ → ππν. Como

se discutió en las referencias [14]-[20], estas correcciones son de gran importancia en la

evaluación de la corrección de isospin a la predicción de las correcciones hadrónicas al

momento magnético del muon cuando se usan datos experimentales del leptón τ .

En primer lugar revisamos las correcciones virtuales y logramos verificar que las mismas

son idénticas a las calculadas anteriormente en la referencia [17] bajo la hipótesis de que el

factor de forma del pion no vaŕıa con la enerǵıa. Demostramos también que las divergencias

ultravioletas provenientes de las correcciones virtuales solo aparecen en un término que no

es factorizable pero que en principio puede reabsorberse en la redefinición de las constantes

de acoplamiento.

Finalmente, en esta tesis hicimos el cálculo correcto de las correcciones debidas a foto-

nes (reales) suaves. En cálculos realizados anteriormente [17][19] se hab́ıa supuesto que el

fotón tiene una masa (ficticia), pero solo se hab́ıa efectuado la suma sobre los dos grados

transversales de la polarización del fotón. En esta tesis nosotros hicimos ese cálculo de ma-

nera consistente al efectuar la suma sobre los tres grados de polarización que debe tener un

fotón masivo. Aunque los resultados anaĺıticos son realmente diferentes, resulta sorpren-

dente que para este caso el efecto de dicho cálculo correcto en las correcciones radiativas

al espectro en la masa invariante de dos piones (la función G0
EM(t)) es muy pequeña.



Caṕıtulo 5

Conclusiones Generales y
Perspectivas

En el presente trabajo de tesis hemos estudiado los efectos del rompimiento de la si-

metŕıa de isospin inducidos por las correcciones radiativas electromagnéticas en varias

observables f́ısicas asociadas con los decaimientos en dos part́ıculas pseudoescalares. Nues-

tro trabajo se concentró principalmente en la evaluación de estas correcciones al orden α

en el régimen de largas distancias.

En todos los casos hemos usado el método de regularización dimensional para regu-

larizar las divergencias ultravioletas y hemos introducido una pequeña masa ficticia para

el fotón para regularizar las divergencias infrarrojas. En todos los casos hemos probado

expĺıcitamente la cancelación de las divergencias infrarrojas. En el caso de las correccio-

nes debidas a fotones reales suaves, hemos realizado los cálculos de manera consistente

tomando en cuenta los tres grados de polarización para el fotón masivo.

Nuestras conclusiones espećıficas para cada caso pueden resumirse de la siguiente forma:

1.- En el Caṕıtulo 2 hemos calculado las anchuras totales de decaimiento de los meso-

nes ρ± y ρ0 con una precisión mayor a 0.5 %. Para ello hemos calculado las correcciones

radiativas electromagnéticas a los modos ρ → ππ y las anchuras de los modos radiativos

ρ → ππγ. Nuestros resultados[76] muestran que existe una correlación importante en el

rompimiento de la simetŕıa de isospin entre las anchuras y las masas de los mesones ρ. En

97
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las futuras medidas de estas cantidades a partir de los datos experimentales del factor de

forma del pion, será necesario tomar en cuenta dichas correlaciones ya que las diferentes

medidas experimentales efectuadas hasta ahora no son conclusivas respecto al tamaño y

signo del rompimiento de la simetŕıa de isospin.

En lo relativo a los modos de decaimientos radiativos (ρ → ππγ), hemos encontrado a

partir de nuestros cálculos que el rompimiento de isospin es ∆Γρ = 1·1 MeV, el cual difiere

de los valores usados anteriormente ∆Γρ = 0·45± 0·45 MeV [13][17], en la evaluación de la

contribución hadrónica al momento magnético anómalo del muon a partir de los datos del

proceso τ → ππν [68][69][70]. Nuestros resultados podŕıan tener un efecto importante para

encontrar una explicación a la discrepancia que existe actualmente entre las predicciones

de la contribución hadrónica al momento magnético del muon basados en datos de la

aniquilación e+e−[7][8][9] y en decaimientos del leptón τ [68][69][70].

2.- En el caṕıtulo 3 hemos calculado las correcciones radiativas de orden α a los decai-

mientos φ(1020) → K+K−/KLKS. Los cálculos actuales de las correcciones radiativas a

esta razón, efectuados usando la electrodinámica escalar, exceden en 4·5 desviaciones estan-

dar al valor medido experimentalmente. Nuestro cálculo ha tomado en cuenta el efecto de la

estructura de los kaones en el cálculo de las correcciones virtuales. Nuestros resultados[66]

indican que no es posible explicar dicha discrepancia entre teoŕıa y experimento basandose

en metodos convencionales (es decir, tomando en cuenta la diferencia de masas de los kao-

nes y las correcciones radiativas). Nuestra conclusión al respecto es que hay que esperar a

que se realicen medidas mas precisas de estos decaimientos dominantes del meson vectorial

φ(1020) antes de pretender que la teoŕıa falla.

3.-Finalmente, en el Caṕıtulo 4 hemos reconsiderado las correcciones radiativas de or-

den α en el decaimiento τ → ππν. Los datos experimentales sobre el espectro de dos piones

en este proceso son de enorme importancia en la verificación de la hipótesis de CVC y en

el cálculo de la contribucion hadrónica de la polarización del vaćıo al momento magnético

anómalo del muon. En ambos casos es necesario tener un control de los efectos de rom-
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pimiento del isospin del orden de unas cuantas partes por mil, y es ah́ı donde radica la

importancia de las correcciones radiativas. En esta tesis hemos recalculado las correcciones

virtuales a este proceso en la aproximación en que el factor de forma del pion es cons-

tante y hemos encontrado los mismos resultados que en la referencia [17]. Posteriormente,

realizamos el cálculo de las correcciones debidas a fotones reales suaves. Esta parte de la

corrección habia sido calculado de forma incorrecta en la referencia [17][18] pues se consi-

deraba que el fotón solo teńıa dos grados (transversales) de polarización. Basados en los

trabajos de Kinoshita y Sirlin [46], rehicimos este cálculo sumando sobre los tres grados de

libertad del fotón masivo en las correcciones de fotones reales. Sin embargo, el resultado

de las correcciones radiativas no difieren sensiblemente de las calculadas mediante el pro-

cedimiento incorrecto de la ref. [17] por lo que el impacto en la predicción teórica de aµ a

partir de datos del τ , no es significativo.

La perspectiva del trabajo realizado está centrada principalmente en los estudios del

caṕıtulo 2 y 4. El resultado obtenido para ∆Γρ en el caṕıtulo 2 puede ser usado en conjunto

con los resultados de las referencias [19][20] para obtener una predicción del momento

magnético anómalo del muon aSM
µ (τ) que incluirá, términos dependientes del modelo[19],

[20] no considerados anteriormente y los efectos de rompimiento de la simetŕıa de isospin

en el meson ρ(770) obtenidos en esta tesis de manera consistente[76].
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Apéndice A

Autoenerǵıas de kaones

En el caṕıtulo 3, se usa el factor de forma de VDM para modelar la estructura de los

kaones. Como se menciona en dicho caṕıtulo, las amplitudes en el caso de kaones puntuales

se modifican al introducir el factor de forma. Para obtener las amplitudes de los diagramas

de Feynman, se introduce por cada ĺınea conectando un fotón con un kaon, un factor de

forma fK+(k2), fK0(k2) según corresponda, procedimiento que también se realiza en los

diagramas de auto-enerǵıa.

En este apéndice obtendremos la contribución de los diagramas de auto-enerǵıa consi-

derando la estructura electromagnética de los kaones cargados (el procedimiento se realiza

de manera similar al considerar la estructura en el caso de los kaones neutros). Se muestra

que al considerar todos los diagramas de Feynman del proceso, la divergencia ultravioleta

se cancela.

Recordemos que la expresión para obtener la contribución de autoenerǵıa de manera

general, para el caso de part́ıculas escalares es:

MSE =
M0e2

2ı
(∂ΣP+/∂p2)|p2=m2

P+
. (A.1)

donde M0 es la amplitud a nivel de árbol del proceso en el cual aparece el escalar cargado

(por ejemplo, φ → K+K−), ΣP+ es la función de auto-enerǵıa del escalar cargado denotado

como P+ y cuyo momento se ha denotado por p.
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Definimos la función de autoenerǵıa ΣV DM
K+ (p, mK+ , mV) para los kaones cargados con-

siderando el factor de forma. La parte divergente se obtiene después obtener la derivada

(ver (A.1)). Usando la expansión del factor de forma que permite identificar el caso puntual

ec.(3.36) obtenemos la función de auto-enerǵıa

ΣV DM
K+ (p, mK+ , m̂V) =

1

(2π)4

∫
[2p + k]2 [fK+]2 dk4

k2
[
(p + k)2 − m2

K+

]
= Σ0

K+(p, mK) + Σa
K+(p, mK+ , m̂V) + Σb

K+(p, mK+ , m̂Vi , m̂Vj) ,

(A.2)

donde

Σ0
K+(p, mK+) =

1

(2π)4

∫
[2p + k]2 dk4

k2
[
(p + k)2 − m2

K+

] ,

Σa
K+(p, mK+ , mV) = 2

∑ gV K+K−

fV

1

(2π)4

∫
[2p + k]2 k2dk4

k2
[
(p + k)2 − m2

K+

]
[−k2 + m̂2

V ]
,

Σb
K+(p, mK+ , m̂Vi, m̂Vj) =

∑∑ gV iK+K−

fV i

gV jK+K−

fV j

1

(2π)4

∫
[2p + k]2 k4dk4

× 1

k2
[
(p + k)2 − m2

K+

] [−k2 + m̂2
V i

] [−k2 + m̂2
V j

] . (A.3)

El primer término es la contribución a la función de auto-enerǵıa en el caso de kaones

puntuales, la cual ya ha sido estudiado con anterioridad. Éste contiene una parte divergente

infrarroja que se cancela al sumarle la contribución de fotones reales y una parte divergente

ultravioleta que desaparece al sumarla a la corrección al vértice. La amplitud de auto-

enerǵıa en el caso puntual es:

MSE,point
K+ = M0

φ ×
[ α

4π

] 1

2

[
2

[
2

ε
− γE + ln [4π]

]
− 2 ln

[
m2

K+

µ2

]
− 2 ln

[
λ2

m2
K+

]]
. (A.4)
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Al evaluar el segundo término en la ec. (A.3) obtenemos:

Σa
K+(p, mK+ , m̂V) = −2

∑ gV K+K−

fV

[
2p2 + 2m2

K+ − m̂2
V

]
(2π)4

∫
dk4

[k2 − m̂2
V ]
[
(p + k)2 − m2

K+

]
−2
∑ gV K+K−

fV

2

(2π)4

∫
dk4

[k2 − m̂2
V ]

+2
∑ gV K+K−

fV

1

(2π)4

∫
dk4[

(p + k)2 − m2
K+

]
= −2

∑ gV K+K−

fV

[
2p2 + 2m2

K+ − m̂2
V

] ı

16π2
B0
[
p2, m2

K+ , m̂2
V

]
−2
∑ gV K+K−

fV

2ı

16π2
A0
[
m̂2

V

]
+ 2
∑ gVK+K−

fV

ı

16π2
A0
[
m2

K+

]
.

La derivada de este término con respecto a p2 evaluada en p2 = m2
K+ da lugar a la contri-

bución (divergente UV):

∂Σa
K+(p, mK+, m̂V)/∂p2|p2 = m2

K+ = −2
ı

16π2

∑ gV K+K−

fV
2

[
2

ε
− γE + ln [4π] − ln

[
m2

K+

µ2

]]
(A.5)

El tercer término de la ec.(A.3) es:

Σb
K+(p, mK+ , m̂Vi , m̂Vj) = ı

∑∑ gV iK+K−

fV i

gV jK+K−

fV j

[
2p2 + 2m2

K+ − m̂2
Vi

16π2

]
×

{B0
[
p2, m2

K+ , m̂2
Vi

]
+ m̂2

ViC0
[
0, p2, m2

K+, m2
K+ , m̂2

Vi , m̂
2
Vj

]}
+

2ı

16π2

∑∑ gV iK+K−

fV i

gV jK+K−

fV j

{
m̂2

VjB0
[
0, m̂2

Vi, m̂2
Vj

]
+A0

[
m̂2

V j

]}
−
∑∑ gV iK+K−

fV i

gV jK+K−

fV j

ı

16π2

{
m̂2

V jB0
[
p2, m2

K+ , m̂2
Vj

]
+A0

[
m2

K+

]}
La derivada de la expresión anterior evaluada en p2 = m2

K+ da lugar a la contribución

divergente :

∂Σb
K(p, mK+ , m̂Vi, m̂Vj)/∂p2|p2=m2

K+
=
∑∑ gV iK+K−

fV i

gV jK+K−

fV j

ı

16π2
2 [∆] , (A.6)
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donde ∆ ≡ 2
ε
− γE + ln [4π] − ln

[
m2

K+

µ2

]
.

Sumando las contribuciones de la función de auto-enerǵıa ecs.(A.4, A.5, A.6), la ampli-

tud del diagrama de auto-enerǵıa en el VDM es:

MV DM
SE =

M0
φ

2
× α

4π

[
f 0

V DM(2∆) − 2 ln

[
λ2

m2
K+

] ]
, (A.7)

donde ahora se ha definido

f 0
V DM =

[
1 − 2

∑ gV K+K−

fV
+
∑∑ gV iK+K−

fV i

gV jK+K−

fV j

]
.

Es fácil mostrar que el resultado total del cálculo usando VDM es finito en el ultravioleta.

Esto se puede hacer retomando la amplitud MV DM
1+2 del caṕıtulo 3 (ec. (3.43))y aislando

en ella la parte que depende del término divergente ∆ en la siguiente forma:

MV DM
1+2 = M̄V DM

1+2 −M0
φ × α

4π
f 0

V DM [3∆] . (A.8)

donde M̄V DM
1+2 contiene solo términos finitos en el ultravioleta. Haciendo lo mismo para la

amplitud del diagrama de Coulomb (Ver ecs. 3.44, 3.45, 3.47 y 3.49) obtenemos:

MV DM
3 = M̄V DM

Coul + M0
φ × α

4π
f 0

V DM [∆] . (A.9)

Sumando las 2 contribuciones de auto-enerǵıa (A.7) con (A.8),(A.9) se obtiene que la

expresión total se escribe

MT
V DM = M̄T

V DM + M0
φ × α

4π
f 0

V DM [−3∆ + ∆ + 2∆] . (A.10)

La amplitud total M̄T
V DM es libre de divergencias ultravioleta y además, independiente de

la escala µ introducida en el proceso de regularización dimensional, una vez que se suman

todas las amplitudes, incluyendo los diagramas de autoenerǵıa modificados.
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K

K

Figura A.1: Diagrama de auto-enerǵıa considerando la estructura del kaon cargado K+.
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Apéndice B

El proceso radiativo V → P+P−γ

En este apéndice mostramos en forma detallada el cálculo del proceso radiativo V →
P+P−γ. En la sección de las evaluaciones numéricas nos concentraremos en el caso del

proceso φ → K+K−γ.

B.1. Emisión de fotones reales suaves

La divergencia infrarroja presente en las correcciones radiativa virtuales se cancela con

la adición de la contribución de fotones reales suaves, tal como se menciona en el caṕıtulo

2. En el cálculo a 1 lazo (correcciones radiativas virtuales), la divergencia infrarroja se

origina cuando el k2 → 0 (k es el momento del fotón virtual en el loop). Para aislar la

divergencia, es usual agregar un parámetro λ en el propagador del fotón que representa

una masa ficticia para éste. Al final del cálculo, se toma el ĺımite λ → 0 y se recupera

QED, mientras que la divergencia infrarroja queda aislada en forma logaŕıtmica.

La emisión de un fotón real suave (de enerǵıa pequeña comparada con la resolución

del experimento) también da lugar a una divergencia infrarroja la cual se regulariza tam-

bién introduciendo una masa ficticia para el fotón. Al sumar sobre las polarizaciones del

fotón real para obtener la probabilidad de desintegración del proceso radiativo, es necesario

tomar en cuenta que se debe sumar sobre los 3 grados de polarización del fotón masivo. Re-

cordemos que en el caso de fotones reales sin masa, existen solo dos estados (transversales)
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de polarización por lo que la siguiente relación se satisface en ese caso:

∑
pol

εµεν = −gµν . (B.1)

Introducir un parámetro de masa significa que no podemos utilizar ya esta relación. Es

necesario ahora, introducir también el modo longitudinal correspondiente [41]. En este

sección mostraremos el procedimiento correcto para calcular esta contribución.

La expresión para la suma sobre las polarizaciones transversales longitudinales del fotón

masivo en la norma de Coester[74][75], se escribe como:

∑
ε

(ε · a)(ε · b) = a · b − a · kb · k
ω2

, (B.2)

donde ahora estamos empleando la relación enerǵıa-momento del fotón dada por ω2 =

k2 + λ2.

A pesar de que la ec.(C.2) parece que es no covariante, hemos de señalar que se ha

elegido una norma (Coester) para escribir dicha relación, lo que significa que se ha fijado

la parametrización de los vectores de polarización. El cálculo se realiza en el sistema de

referencia en el que el mesón vectorial se encuentra en reposo, y k sobre el eje z.

k = (0, 0, k) ,

εµ
1 = (0, 1, 0, 0) ,

εµ
2 = (0, 0, 1, 0) . (B.3)

Para obtener la expresión en otro sistema de referencia es necesario acompañar la trans-

formación de Lorentz con una transformacion de norma correspondiente.

Tomando en cuenta solo el término divergente de la amplitud de Low, la anchura de

decaimiento del proceso V → P +P−γ para un fotón suave se escribe (después de integrar
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sobre los momentos de los pseudoscalares) de la siguiente manera

Γsoft
γ

Γ0
φ

=
α

4π

∑
ε

1

π

∫ ∣∣∣∣ q · εq · k − p · ε
p · k

∣∣∣∣
2
d3	k

ω

=
α

4π
[I1 + I2 + I12]

I1 =
∑

ε

1

π

∫ ∣∣∣∣ q · εq · k
∣∣∣∣
2
d3	k

ω
,

I2 =
∑

ε

1

π

∫ ∣∣∣∣ p · ε
p · k

∣∣∣∣
2
d3	k

ω
,

I12 = −2
∑

ε

1

π

∫
[q · ε] [p · ε]
[q · k] [p · k]

d3	k

ω
. (B.4)

La suma sobre las polarizaciones del fotón real se realiza usando ec.(B.2). La integración

en el ángulo azimutal es trivial, y el siguiente paso es realizar la integración en el ángulo

polar θ. Enfocándonos en las 2 primeras integrales

I1 =
1

π

∫
2πk2 sin θdθdk|	q|2(1 − |�k|2 cos2 θ

ω2 )

ω(q · k)2
,

I2 =
1

π

∫
2πk2 sin θdθdk|	p|2(1 − |�k|2 cos2 θ

ω2 )

ω(p · k)2
,

donde

p · k =
mφω

2

[
1 − |	k|β cos θ

ω

]
,

q · k =
mφω

2

[
1 +

|	k|β cos θ

ω

]
,

y β es la velocidad del kaon en el sistema de reposo del mesón φ

β =

√
1 − 4m2

P±

m2
V

.

Realizando la integración en la variable angular se muestra que el resultado final es el

mismo para I1 y I2.∫ 1

−1

1 − k2

ω2 x
2

(1 ± β k
ω
x)2

dx = − 2

β3v(β2v2 − 1)

[
βv(β2(v2 − 1) − 2) + (1 − β2v2) ln

[
βv + 1

βv − 1

] ]
.

(B.5)
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donde v = k/ω. Por lo tanto una vez realizada la integración angular, el resultado es el

mismo para I1 = I2.

I = I1 = I2 =
∑ 1

π

∫ ∣∣∣∣ q · εq · k
∣∣∣∣
2
d3k

ω

=
1

π

∫
2πk2dk sin θdθ|	q|2
ωq2

0(ω + βk cos θ)2

[
1 − k2

ω2
cos2 θ

]
. (B.6)

Usando el siguiente cambio de variable y modificando los ĺımites de integración correspon-

dientes de acuerdo con

v =
k

ω
, vi = 0 , vf =

1√
1 + λ2

ω2
0

, (B.7)

se obtiene que I se pude separar en 2 términos

I = 4(Ia
1 + Ib

1) ,

Ia
1 =

∫
v2 [β2(v2 + 1) − 2] dv

[1 − v2] [1 − v2β2]
,

Ia
2 =

1

β

∫ v ln
[

1+βv
1−βv

]
dv

1 − v2
. (B.8)

Al final de la integración, todos los términos que dependen de λ tal que son cero en el

ĺımite λ → 0 se omiten, dando como resultado lo siguiente:

Ia
1 = 1 − 2 ln [2] +

1

2β
ln

[
1 + β

1 − β

]
− 2 ln

[ω0

λ

]
,

Ib
1 = − 1

2β
ln

[
λ2

ω2
0

]
ln

[
1 + β

1 − β

]
− 1

2β

[
Li2

[
1 + β

1 − β

]
− Li2

[
1 − β

1 + β

]

+ ln

[
β2

1 − β2

]
ln

[
1 + β

1 − β

]
+ ıπ ln

[
1 + β

1 − β

] ]
. (B.9)

Incorporando los resultados en la ec.(B.8) se obtiene

I = 4
[− ln

[ω0

λ

] [
2 +

1

β
ln

[
1 − β

1 + β

] ]− 2 ln [2] + 1

+
1

2β

[
Li2

[
1 − β

1 + β

]
− Li2

[
1 + β

1 − β

]
+ ln

[
1 + β

1 − β

]

− ln

[
β2

1 − β2

]
ln

[
1 + β

1 − β

]
− ıπ ln

[
1 + β

1 − β

] ]]
. (B.10)
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La integración restante se realiza de manera similar

I12 = −2

π

∫
	p · 	q − �q·�k�p·�k

ω2

(q · k)(p · k)

d3k

ω

= 4β2

∫
1 − k2

ω2 x
2

1 − β2 k2

ω2 x2

k2

ω2

dkdx

ω

= 8

[
β2

2

∫
k2

ω2

dk

ω

∫ 1

−1

1 − v2x2

1 − β2v2x2
dx

]

= 8

∫
v2

1 − v2
dv − 4

(1 − β2)

β

∫ v ln
[

1+βv
1−βv

]
1 − v2

dv

= 4
[− 2 + 2 ln [2] − ln

[
λ2

ω2
0

]
− 1 − β2

2β

[− ln

[
λ2

ω2
0

]
ln

[
1 + β

1 − β

]

−(Li2

[
1 + β

1 − β

]
− Li2

[
1 − β

1 + β

]
+ ln

[
1 + β

1 − β

]
ln

[
β2

1 − β2

]
+ ıπ ln

[
1 + β

1 − β

]
)
]]

.

(B.11)

Finalmente, incorporando los resultados de las ecs.(B.10, B.11) en la ec.(B.4) obtenemos

que la contribución de fotones suaves es:

Γsoft
γ

Γ0
=

α

π

[
2 ln

[
λ

2ω0

]
{1 +

1 + β2

2β
ln

[
1 − β

1 + β

]
} − 1

β
ln

[
1 − β

1 + β

]

+
1 + β2

2β
{Li2

[
1 − β

1 + β

]
− Li2

[
1 + β

1 − β

]
+ ıπ ln

[
1 − β

1 + β

]

+ ln

[
1 − β

1 + β

]
ln

[
4β2

1 − β2

]
}] . (B.12)

La expresión contiene el término divergente infrarrojo necesario para cancelar la divergencia

que se encuentra en la corrección virtual. Mediante las relaciones entre dilogaritmos, esta

expresión reproduce el resultado presentado en la ref.[11]

Supongamos ahora que hubiesemos usado la expresión (incorrecta) de la ec(B.1) para

efectuar la suma sobre polarizaciones del fotón,

Γsoft
γ = −Γ0

φ

[ α

4π

] 1 − β2

π

∫ ω0

0

[ 1

ω2(1 + β cos θ)2
+

1

ω2(1 − β cos θ)2

− 21+β2

1−β2

ω2(1 − β2 cos2 θ)

]d3	k

ω
(B.13)
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donde, como se ha usado la relación de suma sobre polarizaciones para fotón real, se tienen

las expresiones:

p · k =
ωmφ

2
[1 − β cos θ]

q · k =
ωmφ

2
[1 + β cos θ]

|	k| = ω

Una de las integrales a realizar la mostramos expĺıcitamente

a =

∫ ω0

0

d3	k

ω2(1 ± β cos θ)2

= 2π

∫ ω0

0

k2dk sin θdθ

ω3(1 ± β cos θ)2

=
4π

1 − β2

∫ ω0

0

|	k|2dk

ω3
=

4π

1 − β2

∫ ω0

λ

dω

ω

=
4π

1 − β2
ln
[ω0

λ

]
donde en el penúltimo paso, se colocó el corte para realizar la integración. Es precisamente

en esta etapa del procedimiento que suele cometerse una inconsistencia en el cálculo. Al

sumar sobre polarizaciones del fotón se toma en cuenta 2 estados, sin embargo, al colocar el

corte, esto implica una masa al fotón y por lo tanto se requiere considerar también el otro

estado de polarización. La otra integral necesaria a resolver, usando el mismo procedimiento

inconsistente señalado es:

b = −
∫ ω0

0

2p·q
m2

K
d3	k

ω3(1 − β2 cos2 θ)
= −4π(1 + β2)

1 − β2

∫ ω0

0

|k|2dk sin θdθ

ω3(1 − β2 cos2 θ)

= −4π

β

1 + β2

1 − β2
ln

[
1 + β

1 − β

] ∫ ω0

0

dω

ω
= −4π

β

1 + β2

1 − β2
ln

[
1 + β

1 − β

]
ln
[ω0

λ

]
La expresión para la razón de decaimiento se escribe como:

ΓSoft
γ = Γ0

φ

[α
π

]
2 ln

[
λ

ω0

] [
1 +

1 + β2

2β
ln

[
1 − β

1 + β

]]
(B.14)

Claramente la diferencia entre las expresiones incorrecta (B.14) y la correcta (B.12) son

término finitos.
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B.2. Contribuciones finitas al decaimiento φ → K+K−γ

Ahora mostraremos la contribución de los términos de orden cero (en la enerǵıa del

fotón) en la amplitud del decaimiento radiativo φ → K+K−γ.

El cálculo de la anchura de emisión de fotón suave solo toma en cuenta el término

divergente en la enerǵıa del fotón (de orden ω−1) de la amplitud radiativa. Recordemos

que la probabilidad del proceso radiativo V → P +P− puede descomponerse

1

3

∑
|M|2 = A/ω2 + Bω0 (B.15)

El primer término es empleado para calcular el proceso de emisión de fotón suave, y el

segundo término, que es finito en el ĺımite ω → 0, se le denomina término regular. En el

término regular puede usarse la suma sobre 2 estados de polarización del fotón sin problema.

Para mostrar la contribución regular, tomaremos como caso particular el decaimiento φ →
K+K−γ

Bω0 =
16g2πα

3

[− L2
[
(q · k)2/m2

φ

]
+1 +

q · k + p · k
m2

φ(p · k)

[
m2

φ − m2
K − m2

K

q · k
p · k − 2q · k

] ]
y L esta definida por la siguiente expresión[40]

L2 =
m2

K

(q · k)2
+

m2
K

(p · k)2
− 2

q · p
(p · k)(q · k)

La contribución del término regular se obtiene a partir de la razón diferencial de decaimiento

siguiente

dΓr = Γ0
φ

4αF

πm2
πv3

+

dEdω (B.16)

donde se ha definido a la funcion F como

F = −L2
[
(q · k)2/m2

φ

]
+1 +

q · k + p · k
m2

φ(p · k)

[
m2

φ − m2
K − m2

K

q · k
p · k − 2q · k

]
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La integración en la enerǵıa del fotón puede tomar el ĺımite inferior ω = 0 sin problema

alguno y se realiza hasta la enerǵıa máxima permitida por la cinemática del proceso. Al

integrar sobre todo el espacio de fase del modo radiativo se obtiene:

Γr

Γ0
φ

= 0·00007962 (B.17)

El comportamiento del término regular en función de la enerǵıa de corte ω0 se muestra en

la siguiente tabla.

ω0(MeV) 1 2 3 4 5 6 7 8 9

δinf
R × 105 0·0148 0·0588 0·1309 0·2300 0·3552 0·5053 0·6791 0·8756 1·0936

δsup
R × 105 7·9477 7·9003 7·8316 7·7324 7·6073 7·4572 7·2834 7·0869 6·8689

ω0(MeV) 10 11 12 13 14 15 16 17 18

δinf
R × 105 1·3318 1·589 1·8638 2·1549 2·4608 2·7801 3·1111 3·4523 3·8018

δsup
R × 105 6·6307 6·3735 6·0987 5·8076 5·5017 5·1824 4·8514 4·5102 4·1660

ω0(MeV) 19 20 21 22 23 24 25 26 27

δinf
R × 105 4·1557 4·5185 4·8815 5·2444 5·6049 5·9599 6·3006 6·6404 6·9577

δsup
R × 105 3·8046 3·4440 3·0810 2·7181 2·3576 2·0026 1·6561 1·3221 1·0048

ω0(MeV) 28 29 30 31 31·5
δinf
R × 105 7·2527 7·5183 7·7441 7·9117 7·9592

δsup
R × 105 0·7098 0·4442 0·2184 0·0508 0·0033

Se obtiene δinf
R integrando la parte regular en la enerǵıa del fotón, desde 0 hasta ω0,

mientras que δsup
R se obtiene integrando desde ω0 hasta la enerǵıa maxima ωmax permitido

por la cinemática (ωmax = 31·5966). Claramente la suma δinf
R + δsup

R representa integrar la

parte regular desde 0 hasta la enerǵıa máxima del fotón ωmax.

B.3. Contribuciones dependientes del modelo en φ →
K+K−γ

Supongamos ahora que existe un estado intermedio resonante en el proceso radiativo (el

cual genera términos dependientes del modelo). En este caso, consideraremos φ → K∗K−
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a ) b )

Figura B.1: Ejemplo de contribución dependiente del modelo al proceso φ → K+K−γ.

donde el meson vectorial K∗ luego decae mediante el proceso K∗ → K+γ. Una contribución

similar existe para el kaon negativo. Analizamos primero el caso del kaon negativo, la

amplitud a nivel árbol del proceso es [77]

M−
DM = −gK∗K−γgφK∗K−ενηβεµναδελβτδk

µ(P − q)αP λ(P − q)τ

m2
φ + m2

K+ − m2
K∗ − 2P · p

de tal manera que el término de interferencia de esta amplitud con la de Low, sumada

sobre polarizaciones es:

∑
M−

DMM†
Low =

−2egφKK̄gφK∗K−gK∗K+γ(k · p)(k · P )2L2

m2
φ + m2

K+ − m2
K∗ − 2P · p (B.18)

donde se recordará que

L =
p2

(k · p)2
+

q2

(k · q)2
− 2

p · q
(k · p)(k · q)

Para calcular la contribución a la anchura usamos la expresión siguiente

Γ−
DM

Γ0φ
=

∫ −2egφKK̄gφK∗K−gK∗K+γ(k · p)(k · P )2L2dEdω[
m2

φ + m2
K+ − m2

K∗ − 2P · p] 4m2
φπ

2g2
φKK̄

v3
,
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Usamos los siguientes valores de las constantes obtenidas bajo la simetŕıa SU(3) (ver [64])

gφK+K− = 4·48 ,

gK∗K+γ = (2·53 × 10−4)MeV−1 ,

gφK∗K− = − 1

2
√

3
G8

ViVf P

[
cos θv + 2

√
2r sin θv

]
,

θv = 35·3o ,

r = 1·088 ,

G8
ViVf P = (1·052 × 10−2)MeV−1 .

Recordemos que la amplitud del modo radiativo es posible separarla de la siguiente manera

MT
γ = MMI

γ + MMD
γ , (B.19)

donde MMI
γ es la parte independiente del modelo, mientras que la dependencia del modelo

(inclusión de estados intermedios en el proceso) está contenida en MMD
γ .

Aśı, la contribución dependiente e independiente del modelo a la anchura de decamiento

del modo radiativo se puede dividir como sigue:

ΓT
γ = ΓMI

γ + ΓMD
γ , (B.20)

donde ΓMD
γ contiene, en este caso, el término de interferencia entre la amplitud indepen-

diente del modelo y la amplitud dependiente del modelo (ver ec(B.18)). La contribución

dependiente del modelo (fig(B.1)) a la anchura de decamiento y normalizada a la anchura

del modo no radiativo es:
ΓMD

γ

Γ0
φ

= −7·04 × 10−8 . (B.21)



Apéndice C

Correcciones radiativas de convección
en ρ0 → π+π−

En este apéndice calculamos las correcciones radiativas virtuales al proceso ρ0 → π+π−

en el caso que se consideran únicamente los términos de convección en los vértices electro-

magnéticos. En el Caṕıtulo 2 de esta tesis se hizo el cálculo completo de estas correcciones

virtuales.

El diagrama de auto-enerǵıa para el término de convección se reduce a:

Σπ± = M04πα

2

ı

(2π)4

∫
[2p + k] [2p + k] dk4

k2
[
(p + k)2 − m2

π+

]2 . (C.1)

El término de convección del diagrama de interacción de Coulomb, expresado como función

de la velocidad:

Mc = − 1

(2π)4

∫
g4πα [2p − k] · [2q + k] [(p − q) · η] dk4

k2
[
(p − k)2 − m2

π+

] [
(q + k)2 − m2

π+

]
= −M0 α

4π

[− ∆UV − 2 + v0 ln

[
1 − v0

1 + v0

]
+

1 + v2
0

v0
ln

[
1 − v0

1 + v0

]
ln

[
λ2

m2
π+

]

−1 + v2
0

v0

ln

[
1 − v0

1 + v0

] [
2 ln

[
4v0

(1 + v0)2

]
− 1

2
ln

[
1 − v0

1 + v0

]]

−1 + v2
0

v0

[
π2

3
+ Li2

[
(1 − v0)

2

(1 + v0)2

]
+ 2Li2

[
2

1 + v0

]] ]
. (C.2)
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0

0

0

Figura C.1: Diagramas que dan lugar a los términos de convección.

donde ∆UV es el término divergente ultravioleta definido de la forma usual

∆UV =
2

ε
− γE + ln[4π] − ln

[
m2

K+

µ2

]

Sumando las contribuciones resultantes de auto-enerǵıas y del término de Coulomb se

obtiene la contribución a las correcciones virtuales de los términos de convección la cual es

finita en el ultravioleta y contiene todas las divergencias infrarrojas del cálculo

2f cc
v =

α

π

[− ln

[
λ2

m2
π+

] [
1 +

1 + v2
0

2v0

ln

[
1 − v0

1 + v0

]]
+

[
1 + v2

0

2v0

]
π2

−1 + v2
0

2v0

[
Li2

[
2

1 + v0

]
− Li2

[
2

1 − v0

]
+ 2(Li2 [v0] − Li2 [−v0])

]

+

[
1 − v0

2
ln

[
1 − v0

1 + v0

]] ]
. (C.3)

En la siguiente tabla se muestra la corrección radiativa que resulta de considerar los

términos de convección en las correcciones virtuales que incluye la contribución de los
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fotones suaves mostrados en el Caṕıtulo 2. La evaluación numérica se obtuvo usando mπ+ =

139·57 MeV, mρ0 = 775 MeV.

ω0 (MeV) δcc
ρ0

2 −0·04196
4 −0·03434
6 −0·02987
8 −0·02671
10 −0·02425
12 −0·02224
14 −0·02055
16 −0·01908
18 −0·01778
20 −0·01662
30 −0·01216
40 −0·008995
50 −0·006539
60 −0·004532
70 −0·002836
80 −0·001366
90 −0·000069
100 0·001089

El cálculo anterior es invariante de norma electromagnética (al igual que el resultado

del caso cargado considerado en el Caṕıtulo 2) como lo mostramos a continuación. El

propagador del fotón mas general tiene la forma [78] :

Dµν = ı

[
−gµν + (1−ξ)kµkν

k2

k2

]
, (C.4)

donde el valor del parámetro ξ depende de la norma usada. Empleando la ec.(C.4) obte-

nemos un término adicional a la amplitud de autoenerǵıa 1 el cual es divergente:

Sξ
π+ =

M0e2(1 − ξ)

2ı(2π)4

∫
[(2p + k) · k] [(2p + k) · k] dk4

k4
[
(p + k)2 − m2

π+

]2
=

M0(1 − ξ)4πα

2ı

1

(2π)4

∫
dk4

k4
. (C.5)

1A lo largo de la tesis hemos empleado la norma de Feynman para el popagador del fotón, por lo que

el término adicional se debe a la segunda parte del propagador ec.(C.4)
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De la misma manera, el término dependiente de la norma en el propagador del fotón genera

un término divergente en el cálculo de la amplitud de Coulomb:

Mc,ξ
3 =

M04πα(1 − ξ)

ı

1

(2π)4

∫
[(2p − k) · k] [(2q + k) · k] dk4

k4
[
(p − k)2 − m2

π+

] [
(q + k)2 − m2

π+

]
= −M0(1 − ξ)4πα

ı

1

(2π)4

∫
dk4

k4
. (C.6)

Al sumar dichas contribuciones ellas se cancelan mutuamente, por lo que una eléccion

distinta de la norma en el cálculo de las correcciones radiativas virtuales de los términos

de convección no afecta el resultado final. Esto está en acuerdo con el resultado general

enunciado por Sirlin[79], las correcciones virtuales provenientes de los términos de convec-

ción son finitas en el ultravioleta, contienen todas las divergencias infrarrojas necesarias

para cancelar la que proviene del bremsstrahlung suave y además son invariantes de nor-

ma. El resultado de Sirlin fue obtenido usando la norma de Landau, pero de acuerdo a su

enunciado, es posible elegir cualquier otra norma.

Una vez que se ha mostrado que el resultado satisface la invarianza de norma, resta por

estudiar los términos restantes de la separación realizada en el tratamiento de las correc-

ciones virtuales (ver caṕıtulo ), que son finitos en el infrarrojo, pero contienen divergencias

ultravioletas y posibles contribuciones finitas adicionales. El término restante del diagrama

de auto-enerǵıa es divergente ultravioleta y puede escribirse como:

Sr
π+ = M0 α

4π
σr , (C.7)

donde σr es una función escalar de Lorentz y contiene divergencias ultravioleta.

El resto del diagrama de interacción de Coulomb tambien es finito en el infrarrojo, y

se puede escribir como:

MC,r
3 = M0 α

4π
f r

3 , (C.8)

donde la función escalar de Lorentz f r
3 contiene términos finitos y divergencias ultrvioleta.



121

A primer orden en α la amplitud del proceso se escribe como:

M = M0 + Mc + Mr

= M0 + M0f cc
v + M0f r

v

f r
v =

α

4π
[f r

3 + σr] .

Tomando la amplitud al cuadrado, obtenemos que a orden α se escribe como:

|M|2 = |M0|2 [1 + f cc
v + f r

v ]2

∼ |M0|2 [1 + 2Realf cc
v + 2Realf r

v ]

∼ |M0|2 [1 + 2Realf cc
v ] [1 + 2Realf r

v ]

∼ ıg(p − q) · η [1 + 2Realf cc
v ] [1 + 2Realf r

v ]

= ıg
′
(p − q) · η [1 + 2Realf cc

v ] , (C.9)

donde se ha definido g
′
= g(1 + 2Realf r

v ).

Se ha mostrado que los términos restantes, cuando se ha sustraido los términos de

convección, pueden ser absorbidos en una re-definición de la constante de acoplamiento

fuerte.

La siguiente tabla muestra una comparación entre las correcciones radiativas al proceso

ρ0 → π+π− que incluyen la correcciones virtuales en la aproximación en que se usan los

términos de convección únicamente (δconv
ρ ) con el caso en que se consideran de las correc-

ciones completas (δρ) obtenidas en el Caṕıtulo 2. En ambos casos se usan las correcciones

de fotones suaves para el caso de las correcciones reales. Los valores usados para las masas

son mρ0 = 775 MeV y mπ+ = 139·57 MeV.
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w0(MeV ) δρ0 δconv
ρ0

1 −0·04455 −0·04959
2 −0·03692 −0·04196
4 −0·02929 −0·03434
6 −0·02483 −0·02987
8 −0·02166 −0·02671
10 −0·01921 −0·02425
12 −0·01720 −0·02224
14 −0·01550 −0·02055
16 −0·01403 −0·01908
18 −0·01274 −0·01778
20 −0·01158 −0·01662
25 −0·009126 −0·01417
30 −0·007120 −0·01216
35 −0·005423 −0·01046
40 −0·003954 −0·008995
45 −0·002657 −0·007698
50 −0·001498 −0·006539
60 0·000508 −0·004532
70 0·002204 −0·002836
80 0·003674 −0·001366
90 0·00497 −0·000069
100 0·00613 0·001089



Apéndice D

Contribución de los términos
regulares en ρ → ππγ

En el cálculo del Bremsstrahlung suave ρ → ππγ, se tomó de la amplitud al cuadrado,

solo la contribución del término de orden ω−2. Los demás términos que no presentan el

problema de divergencia infrarroja (de orden ω0) son presentados en este apéndice. En

la evaluación de estos términos regulares en ω se emplea la suma sobre los 2 estados de

polarización del fotón.

Recordemos que la cinemática de decaimiento de 1 → 3 cuerpos (ver apéndice D de

[64]) permite escribir la anchura diferencial del proceso ρ → ππγ como:

dΓ =
|M|2

3(2π)38mρ
dEdω

donde E es la enerǵıa del π+ cuyo intervalo está limitado por los valores máximo (E+) y

mı́nimo (E−):

E± =
1

2(m2
ρ − 2ωmρ)

[
m3

ρ − 3ωm2
ρ + 2ω2mρ + ∆2

π(mρ − ω)

±ω
√

m4
ρ − 4ωm3

ρ + (4ω2 + 2∆2
π − 4m2

π)m2
ρ + (8m2

πω − 4ω∆2
π)mρ + ∆2

π

]
donde ∆2

π = m2
π+ − m2

π−.

Las expresiones de los términos regulares pueden ser encontrados en las ref.[38],[40].

Se usa la masa mρ± = mρ0 = 775MeV, mπ± = 139·57MeV, mπ0 = 134·97MeV. Para
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propósitos de comparación, también se muestran los resultados para el caso de la simetŕıa

de isospin en las masas de los piones mπ+ = mπ0 (en el caso del decaimiento ρ+ → π+π−γ)

.

ω0 (MeV) 10 20 30 40 50
δr
ρ0 4·54 × 10−6 1·78 × 10−5 3·94 × 10−5 6·88 × 10−5 1·05 × 10−4

δρ+

r (mπ+ = mπ0) 1·07 × 10−6 4·27 × 10−6 9·59 × 10−6 1·70 × 10−5 2·65 × 10−5

δρ+

r (mπ+ �= mπ0) 1·06 × 10−6 4·25 × 10−6 9·55 × 10−6 1·69 × 10−5 2·64 × 10−5

ω0 (MeV) 60 70 80 90 100
δr
ρ0 1·49 × 10−4 1·99 × 10−4 2·55 × 10−4 3·16 × 10−4 3·83 × 10−4

δρ+

r (mπ+ = mπ0) 3·81 × 10−5 5·17 × 10−5 6·73 × 10−5 8·49 × 10−5 1·04 × 10−4

δρ+

r (mπ+ �= mπ0) 3·79 × 10−5 5·15 × 10−5 6·70 × 10−5 8·46 × 10−5 1·04 × 10−4

ω0 (MeV) 150
δr
ρ0 7·79 × 10−4

δρ+

r (mπ+ = mπ0) 2·3 × 10−4

δρ+

r (mπ+ �= mπ0) 2·29 × 10−4

Como puede apreciarse, la contribución de los términos regulares es muy pequeña.



Apéndice E

Matrices de Dirac

Las matrices de Dirac satisfacen la relación de anticonmutación

{γµ, γν} = 2gµν (E.1)

{γµ, γ5} = 0 (E.2)

γ5 = ıγ0γ1γ2γ3 (E.3)

Definiendo A� = γµAµ, donde Aµ es un 4-vector, se tienen las siguientes identidades en D

dimensiones[80].

γµγ
µ = D , (E.4)

γµA�γµ = (2 − D)A� , (E.5)

γµB�C�γµ = 4B · C + (D − 4)B�C� , (E.6)

γµA�B�C�γµ = −2C�B�A� + (4 − D)A�B�C� . (E.7)

Las matrices de Dirac tienen traza nula

Tr[γµ] = 0 , (E.8)

Tr[γ5] = 0 . (E.9)
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Con las anteriores propiedades de las matrices se obtienen las siguientes reaciones útiles

Tr[γµγν ] = 4gµν , (E.10)

Tr[γµγνγαγβ ] = 4(gµνgαβ − gµαgνβ) , (E.11)

Tr[γ5γµγν ] = 0 , (E.12)

Tr[γ5γµγνγαγβ ] = −4εµναβ . (E.13)

La condición de Hermiticidad

γµ,† = γ0γµγ0 , (E.14)

γ5,† = γ5 (E.15)



Apéndice F

Funciones de Passarino-Veltman.

Las funciones Passarino-Veltman están definidas de la forma siguiente[43]:

ıA0(m0)

16π2
=

1

(2π)4

∫
d4k

k2 − m2
0

ıB0(p2, m2
0, m

2
1)

16π2
=

1

(2π)4

∫
d4k

[k2 − m2
0] [(k + p)2 − m2

1]

ıC0(p2
1, p

2
2, m

2
0, m

2
1, m

2
2)

16π2
=

1

(2π)4

∫
d4k

[k2 − m2
0] [(k + p1)2 − m2

1] [(k + p2)2 − m2
2]

.

(F.1)

Las expresiones anaĺıticas de algunas funciones de Passarino-Velman que resultan útiles

pueden ser obtenidas de las expresiones siguientes[81]:

A0(m0) = m2
0

[
2

ε
− γE + ln [4π] − ln

[
m2

0

µ2

]
+ 1

]

B0(p2, m2
0, m

2
1) =

2

ε
− γE + ln [4π] −

∫ 1

0

dx ln

[
p2x2 − x(p2 − m2

0 + m2
1) + m2

1

µ2

]
.

(F.2)
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Apéndice G

Función dilogaritmo

La función dilogaritmo está definida como

Li2(z) = −
∫ 1

0

ln[1 − zy]

y
dy . (G.1)

Las siguientes relaciones se satisfacen [59], [60].

Li2

[
1 + v

1 − v

]
= Li2

[
2v

1 + v

]
− 1

2
ln2

[
1 − v

1 + v

]
+ ζ(2)

+ ln

[
1 − v

1 + v

]
ln

[
2v

1 + v

]
+ ıπ ln

[
1 − v

1 + v

]
. (G.2)

Li2

[
1 − v

1 + v

]
= Li2

[ −2v

1 − v

]
− 1

2
ln2

[
1 + v

1 − v

]
+ ζ(2)

+ ln

[
1 + v

1 − v

]
ln

[
2v

1 − v

]
. (G.3)

Li2

[
2v

1 + v

]
= Li2 [v] − Li2

[
1 + v

2

]
− ζ(2)− 1

2
ln2

[
−(

1 + v

2
)

]

+Li2

[
v

1 + v

]
+ Li2 [2] − π2

2
+

1

2
ln2 [1 + v]

−ıπ ln [1 + v] + 2ıπ ln [2] + 2ıπ ln

[
1 + v

2

]
. (G.4)
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Li2

[ −2v

1 − v

]
= Li2 [−v] − Li2

[
1 − v

2

]
− ζ(2) + Li2 [2] +

1

2
ln2 [1 − v]

−1

2
ln2

[
1 − v

2

]
+ Li2

[ −v

1 − v

]
+ ıπ ln [2] . (G.5)

Li2

[ −v

1 − v

]
= ζ(2) − 1

2
ln2

[
v − 1

v

]
+ ln

[
v − 1

v

]
ln

[−1

v

]
+ Li2

[
1

v

]
. (G.6)

Li2

[
v

1 + v

]
= ζ(2) − 1

2
ln2

[
v + 1

v

]
+ ln

[
v + 1

v

]
ln

[
1

v

]
+ Li2

[
1

−v

]
. (G.7)

Li2

[
1

v

]
= −Li2 [v] − 1

2
ln2 [v] − ζ(2) + ıπ ln [v] +

π2

2
. (G.8)

Li2

[
1

−v

]
= −Li2 [−v] − 1

2
ln2 [v] − ζ(2) . (G.9)

ln2 [−v] = ln2 [v] + 2ıπ ln [v] − π2 . (G.10)

La función de ζ(2) de Riemann esta definida como

ζ(s) =
∞∑

n=1

1

ns
. (G.11)

En particular ζ(2) = π2/6.
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[38] G. López Castro and G. Toledo Sánchez, J.Phys. G 27, 2203 (2001).

[39] A. Bramon, J.L. Dı́az-Cruz and G. López-Castro, Phys. Rev. D 47, 5181 (1993).
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