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Abstract
The computation of eigenmodes for complex accelerating

structures is a challenging and important task for the design
and operation of particle accelerators. Discretizing long
and complex structures to determine its eigenmodes leads to
demanding computations typically performed on super com-
puters. This contribution presents an application example of
a method to compute eigenmodes and other parameters de-
rived from these eigenmodes for long and complex structures
using standard workstation computers. This is accomplished
by the decomposition of the complex structure into several
single segments. In a next step, the electromagnetic proper-
ties of the segments are described in terms of a compact
state-space model. Subsequently, the state-space models
of the single structures are concatenated to the full struc-
ture. The results of direct calculations are compared with
results obtained by the concatenation scheme in terms of
computational time and accuracy.

INTRODUCTION
Eigenmode computations are important to design super-

conducting resonators used in state-of-the-art high energy
particle accelerators. While eigenmode computations for
single cavities can be performed with desktop computers, the
brute-force approach for computing modes (often referred
to as multi-cavity modes) in long cavity chains typically re-
quires the usage of expensive computer infrastructure. The
computational demand of the direct eigenmode computa-
tions of the full chain can be avoided by decomposing the
structure into single elements. Subsequently, a set of eigen-
modes of the individual segments is determined. Finally, the
eigenmodes of the individual segments are superposed such
that the field distributions of the eigenmodes are continuous
at the decomposition planes. The method allowing for these
steps is referred to as State-Space Concatenations (SSC) [1].
SSC is in fact a generalization of the Coupled S-Parameter
Calculations (CSC) approach [2] used for the scattering pa-
rameter computations in e.g. [3]. In contrast to CSC, SSC
directly delivers eigenmodes as well as field distributions.
The current contribution is focussed on the computation

of eigenmodes in rotational symmetric arrangements of third
harmonic cavities (see Fig. 1). The two-cavity arrange-
ment in Fig. 1a is predominantly used for validation with
direct computations performed with CST Studio Suite® [4],
whereas the chain in Fig. 1b models the cavity chain in the
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module ACC39 at FLASH and the structure with eight ca-
vities in Fig. 1c reflects the arrangement of third harmonic
cavities designed for the European X-FEL. It is stressed that
all computations presented in this article are performed with-
out the consideration of HOM couplers, so that the structures
are rotational symmetric. Basically, the rotational symmetry
allows for using a 2D field solver for the eigenmode compu-
tations. However, the current study is only an intermediate
step as for future investigations the consideration of HOM
couplers is in progress. In that case, the application of a 2D
field solver for the straightforward eigenmode computations
fails.

GENERAL NUMERICAL ASPECTS
All presented eigenmode computations neglect intrinsic

losses of the structures, so that the tangential components of
the electric field on the boundary vanishes. At the ends of
the beam pipes, the normal component of the electric field is
enforced to vanish. Figure 1 shows the decomposition of the
geometries into three segments, namely beam pipe, cavity,
and bellow. At the black lines waveguide ports accounting
for the TM01 2D port mode are assigned (cutoff frequency
fco = 5.7371GHz). All three segments are discretized
with [4] based on a hexahedral mesh using all three symme-
try planes. All eigenmodes of the segments with frequen-
cies below 8.5GHz are computed with the Jacobi-Davidson
Method (JDM). In addition, a set of residual modes is de-
termined to account for not considered higher order modes.
Based on the performed computations, the individual seg-
ments are described by the reduced second order state-space
equation

∂2

∂t2
xr (t) = Ar xr (t) + Br

∂

∂t
ir (t), (1)

and the corresponding output equation

vr (t) = BT
r xr (t). (2)

Here, r is the index of the segment (i.e. 1 ≤ r ≤ 3), ir (t) ∈
R2×1 comprises the two modal currents of the TM01 2D port
modes at port (or cut) planes, and vr (t) ∈ R2×1 the respective
modal voltages. The state-matrices Ar ∈ R

Nsta×Nsta are
diagonal matrices dependent on the resonant frequencies of
the eigenmodes and the residual modes of the segment r.
The input-matrices Br ∈ R

Nsta×2 hold interaction integrals
between 3D eigenmodes and 2D port modes. The state-
vector xr ∈ RNsta×1 contains transient weighting factors for
the 3D eigenmodes. The electric field distributions due to
the modal current excitation at the waveguide ports in the
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(a) Chain of two cavities

(b) Chain of four cavities

(c) Chain of eight cavities

Figure 1: Investigated cavity chains with bellows in between. Structure (a) is solely used for validation purposes, (b) models
the third harmonic cavity chain in FLASH, and (c) reflects the chain for the European X-FEL respectively.

segments can be determined by

Er (r, t) =
Nsta∑
n=1

Ẽr,n (r) xr,n (t), (3)

where Ẽr,n (r) is the spatial dependent field distribution of
the n-th eigenmode in the r-th segment. Table 1 collects
details of the three state-space models and details related to
the creation of the models. Here, Nmc is the number of mesh
cells used for the discretization andTgen the total time needed
to generate the reduced order model. All computing times
refer to an Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz
processor with a RAM size of 8GB.

Table 1: Details on State-Space Models for Segments

Segment r Nsta Nmc Tgen

Pipe 1 8 1,100 < 1min
Cavity 2 33 44,436 51min
Bellow 3 15 16,758 5min

After generating the state-space models of the individual
segments, they are combined to the three structures shown
in Fig. 1 using the approach proposed in [1]. Consequently,
three different state-space systems, which describe the prop-
erties of the entire chains arise from the concatenations.
The eigenvalues of the resulting state-matrices determine
the resonant frequencies of the eigenmodes in the coupled
arrangements, whereas the eigenvectors contain weighting
factors to construct field distributions of the eigenmodes of
the full structures based on the eigenmodes of the individual
segments, e.g. refer to (3). Therefore, the field distributions
of the eigenmodes of the full structure are available by means
of SSC. However, often only the longitudinal field profiles of
the eigenmodes on the symmetry axis are of interest. In par-
ticular the so-called R over Q parameter of the eigenmodes,
which is defined by

(R/Q)n =
1

ω̃n Wn

�����

∫ zmax

zmin

En,z (0,0, z) e jω̃n z/c dz
�����

2
(4)

is of crucial importance as it specifies the interaction between
the bunch of charged particles and the 3D eigenmodes in
the resonator chain or vice versa. In (4), ω̃n denotes the
resonant frequency of the n-th mode, Wn the energy stored
in the n-th mode, c the speed of light, and En,z (0,0, z) the
longitudinal on-axis field profile of the n-th mode.

VALIDATION AND RESULTS
Validation of Scheme
To ensure that the SSC scheme delivers reasonable reso-

nant frequencies and field distributions, the two-cavity chain
shown in Fig. 1a is entirely discretized with [4] taking into
account all symmetry planes. In total, the eigenmode com-
putations with the JDM solver require ≈ 29 h to compute
136 3D eigenmodes. These modes are computed based on
the generated state-space models using the SSC approach
as well. Here the total computational time is ≈ 1 h (com-
pare Table 1). The relative error of the resonant frequencies
obtained from the SSC method is in the order of 10−4, com-
pared to the solution from the direct computation. Figure 2a
shows the comparison between the (R/Q)n parameters de-
termined by the direct computation with [4] (red circles)
and the concatenation approach with SSC (black crosses).
The diagram conveys that SSC delivers reasonable (R/Q)n
parameters, which agree with the results arising from the
straightforward computations.

Comparison of R/Q for Different Arrangements
Figure 2b depicts the (R/Q)n parameters of TM01

monopole modes arising from the SSC concatenation
scheme for the three structures shown in Fig. 1. The black
crosses indicate the (R/Q)n parameters for the two-resonator
arrangement (Fig. 1a), orange plusses for the chain with four
resonators (Fig. 1b), and blue circles for the eight-resonator
structure (Fig. 1c). Modes belonging to the fundamental
TM01 monopole band are observable in Fig. 2 in the fre-
quency range 3.7461GHz− 3.9GHz, whereas modes in the
frequency range 6.9799GHz − 8.1645GHz belong to the
second TM01 monopole band. The modes in between these
two bands are beam pipe and bellowmodes. Figure 2b shows
that the larger the chain becomes, the more modes exists
in the structure within a finite frequency interval. Further-
more, enlarging the chain leads to larger maximal (R/Q)n
factors. In addition, the diagram reveals that modes in the
second TM01 monopole band have a relatively large (R/Q)n
so that these modes can be excited in an unwanted manner
by bunches of charged particles. The red curve in Fig. 3
shows the longitudinal field profile of the mode in the eight-
cavity chain with the largest (R/Q)n parameter in the second
monopole band. The field energy is not localized in indi-
vidual segments of the chain so that a good coupling of the
mode to the beam pipes ends (and therefore a small external
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Figure 2: Diagram (a) shows the (R/Q)n of monopole modes in the chain depicted in Fig. 1a. The red circles arising from a
direct eigenmode computation with [4], whereas the black dots are obtained from the SSC approach. Both methods deliver
comparable results. Diagram (b) presents the (R/Q)n determined by SSC for the arrangements shown in Fig. 1. Black
crosses correspond to a chain of two, orange plusses to a chain of four and blue circles to a chain of eight cavities.
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Figure 3: Normalized longitudinal on-axis electric field profiles of two eigenmodes in the eight-cavity chain (refer to
Fig. 1c). Red shows the profile of the mode with the largest R/Q parameter in the second TM01 monopole band, i.e.
ω̃n/2/π = 7.4983GHz, (R/Q)n = 503.81Ω. Blue shows the profile of the monopole mode in between the first and the
second monopole band with the largest R/Q parameter, i.e. ω̃n/2/π = 5.6987GHz, (R/Q)n = 27.085Ω.

quality factor) can be expected. The blue curve in Fig. 3
represents the longitudinal field profile of the beam pipe (or
bellow) mode with the largest considered (R/Q)n parameter.
Here, the field energy is predominantly localized in the seven
bellows, so that the coupling of the modes to the two ends of
the beam pipe is expected to be weak and the external quality
factor to be large. Modes with a large (R/Q)n and a weak
coupling to the ends of the beam pipe are potentially danger-
ous for the operation as the amplitude of the modes decays
slowly (if not damped additionally) after the excitation by
the bunch of charged particles.

SUMMARY AND OUTLOOK
The current contribution introduces the SSC scheme for

the computation of multi-cavity modes. The validation
shows that the direct computation of eigenmodes and the
computation by means of the concatenation method SSC

delivers similar results (rel. error in resonant frequency of
modes is 10−4). The concatenation approach however is com-
putationally more efficient for large and complex structures
than straightforward computations. Further studies based on
SSC are in preparation which account for rotational symme-
try breaking HOM couplers. Aside from (R/Q)n parameters
external quality factors are also of interest for future consid-
erations.
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