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Abstract. The 14UD at the Australian National University’s Heavy lon Accelerator Facility
(HIAF) operated at a maximum voltage of 15.5 MV after the installation of tubes with a
compressed geometry in the 1990s. In recent years, the performance of the accelerator has
shown a gradual decline to a maximum operation voltage of ~14.5 MV. There are some
fundamental factors that limit the high voltage performance, such as SFs gas pressure, field
enhancement due to triple junctions and total voltage effect. In addition, there are non-
fundamental factors causing high voltage degradation. These are: operation with faulty ceramic
gaps; operation at inappropriate voltage and SFe pressure combinations; SFe leaks into the
vacuum space; use of SFs and O2 as a stripper gases; poor electron suppression in the high
energy stripper and frequent use of highly reactive ions such as sulphur and fluorine. In this
paper we will discuss factors that limit the high voltage performance. The main outcomes of a
preliminary investigation of titanium (Ti) electrodes removed from the accelerator after a few
decades of operation will be reported. The investigation confirmed contamination of Ti
electrodes with unstable films containing traces of oxides, sulphur and fluorine. The
rehabilitation strategies for the accelerator will be discussed.

1. Introduction

The Heavy lon Accelerator Facility (HIAF) at the Australian National University (ANU) operates a
National Electrostatics Corporation (NEC) 14UD pelletron tandem electrostatic particle accelerator
[1]. This accelerator has been in operation for over forty years after the first successful experiment in
1974. The original configuration used corona voltage distribution system, in which a maximum
voltage of 14.8 MV was achieved for experiments in 1981. However, there was a consistent
deterioration from this level that eventually lead to an examination of aging effects [2] and a major
accelerator upgrade in around 1990 [3].

This upgrade was comprised of two components. The first was the installation of *“compressed
geometry” acceleration tubes that removed dead space and allowed the installation of additional
acceleration tubes thereby reducing the field across each insulating gap. The second re-placed the
corona voltage distribution system that was causing corrosion of accelerator components [4] with a
resistor grading system. With these upgrades, a peak conditioning voltage of 16.7 MV was achieved,
with experiments performed at 15.5 MV. However, the maximum voltage available for experiments
has now degraded to around 14.5 MV.
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Since January 2016, the 14UD has had voltage on its terminal for 56% of the total time, with 16%
of the time spent on major accelerator maintenance and repairs. Of the time with voltage on the
terminal, 27% has been with a terminal voltage above 13.5 MV.

Even with continued operation near or above the original design voltage of the 14UD, user demand
for both operational time and even higher terminal voltages is increasing. Therefore, the degradation
mechanisms of the 14UD should be understood in order to extend the useful life of the accelerator.

2. High-voltage breakdown

Mechanical issues in an electrostatic accelerator can be readily dealt with, but it is the electrical
breakdown mechanisms of the insulating gas and vacuum spaces that determine the limits on high-
voltage performance. A thorough review of the mechanisms — and the damage created — is provided in
[5] and discussed here with specific reference to the ANU 14UD.

2.1. SF¢ breakdown
The insulating space between the accelerator column and the containing pressure vessel of the 14UD
is filled with approximately 22 tonnes of sulphur hexafluoride (SFs) gas at a pressure of 100 psia.
Although considered to be inert, chemical reactions during and after electrical breakdown of SFs
creates long-lived toxic and corrosive by-products [6, 7].

The basic reaction scheme, even in high purity SFe, is [8]:

SFe — SF4 + 2F (1)
SF4 + H,O — SOF; + 2HF (2)
SOF2 + H,0 —» SO, + 2HF 3)
2F + M — MF, (4)

where M is any exposed metal such as titanium electrodes or aluminium structural components. The
break-down product yield is influenced by the SFs pressure, H,O content and spark discharge energy
[6, 9].

In the era of corona voltage distribution in the 14UD, hydrofluoric acid (HF) products in particular
may have caused repeated fracturing of the nylon links in the pelletron chains [4]. A move to resistor
voltage distribution configurations ameliorated the problem, but the use of corona terminal voltage
stabilisation and arc discharges of the terminal voltage between accelerator electrodes and to the tank
wall still provide a means of breakdown product formation.

In addition to chemical breakdown products, voltage breakdown in the SFs space results in deposits
on ex-posed metal surfaces and the dispersion of particulate material throughout the 14UD, which
affect the insulating capabilities of the gas.

The SFg gas in the 14UD pressure vessel is recirculated continuously through alumina, with purity,
SO, and moisture content analysed regularly using a Cambridge Sensotec Rapidox 3100CA system.
Since 2014, the SFe purity, SO, content and H.O content has averaged 96.6%, 2.2 ppmV and
5.7 ppmV respectively (at around 20°C and 14.3 psi). This moisture level is similar to that measured in
gaseous nitrogen sourced from liquid nitrogen boil off.

Even with a low moisture content, significant break-down products are still produced inside the
14UD, evidenced by the particulates discussed earlier, a pungent smell and the mild acidification of
water used to clean the accelerator during periodic maintenance.

2.2. Vacuum arcs
Even at 10%-107 Torr, electrical breakdown can occur between the electrodes in the accelerator
vacuum space. Breakdown is triggered via the release of electrons through [5, 10]:
o field emission from protrusions on electrode surfaces, either from manufacture or previous
discharges;
o field emission from foreign particulates embedded in the electrode surfaces;
e ionisation of gas or other low vapour pressure contaminants desorbed from electrode surfaces
that then cause micro-discharges;
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¢ hot field emission from impacting particles that de-form the electrodes and;
¢ ionisation of metal vapour from high-energy particle impact.

Clean electrode surfaces and good vacuum are there-fore necessary prerequisites for good high
voltage performance, both of which become more challenging as the 14UD ages even further.

Electrode surface conditioning is necessary to achieve good insulating strength. This is a process of
safely re-moving protrusions and moving contaminants through the repeated use of electrical
discharges. In operating accelerators, this is most often done in-situ, with or with-out sections of the
accelerator column shorted. The terminal voltage is increased just until qualitative evidence of
conditioning, such as x-ray emission from high-energy electron impact [10] and small vacuum
excursions are observed. This evidence will disappear as conditioning progresses.

Conditioning voltages are usually up to two percent above the above maximum operational voltage.
For example, if the required operational voltage is 14.5 MV, the conditioning voltage is up to 14.8
MV. This corresponds to 28.6 kV per tube gap.

Overzealous attempts at conditioning can lead to dissipation of the majority or all of the stored
energy in the accelerator and cause violent breakdown across other gaps in the accelerator column,
distributing particles and damaging electrodes leading to deconditioning. Deconditioning can also
occur through loss of vacuum from outgassing after discharges or from even the smallest vacuum leak.

Although conditioning can also be performed ex-situ via fast spark, glow or arc discharges or
active gas preparation [5], removal of tubes from the accelerator inherently requires venting the
acceleration tube and compromising the vacuum.

3. 14UD degradation factors

The factors of an aging accelerator that affect ultimate performance of the ANU 14UD are many and
varied. For example, erosion of spark-gap electrodes in the SFe space due to breakdown products
increases surface roughness and the likelihood of electron field emission precipitating breakdown.
Issues such as this are relatively simple to diagnose, track and rectify during routine maintenance.
However, others issues such as small vacuum leaks, the condition of ceramic insulators and the
condition of internal acceleration tube electrodes, are not.

3.1. SFs injection into vacuum space

The Australian Nuclear Science and Technology Organisation (ANSTO) reported on the injection of
SFg gas into the vacuum space for use as a gas stripper medium [11]. While there was no report of an
effect on accelerator performance, installation of a similar system into the ANU 14UD resulted in a
decrease in the ultimate achievable terminal voltage and in rapid deconditioning. The conditioning
limit could not be sustained even after short operation at lower terminal voltages.

More recently, the 14UD has suffered from pressure-sensitive vacuum leaks from the SFg space
into the acceleration tube vacuum. Residual Gas Analysis (RGA) of the vacuum at the both ends of the
acceleration tube showed a sudden appearance and sometimes subsequent disappearance of SFs
without relation to any external event. This occurred on multiple occasions accompanied by up to a
one and a half order of magnitude degradation in vacuum. Even with a recovery in vacuum, and no
significant levels of SFe¢ detected with RGA scans, accelerator performance degraded in a similar
manner to that observed when using SFe as a stripper gas. This perhaps suggests adsorption of the gas
onto the electrode surfaces that is then involved in discharge events.

The inadvertent injection of SFes was later found to be via a small 8.8x10° mbar-I/s leak through a
Swagelok joint of the gas stripper assembly in the terminal.

3.2. Ceramic insulators

The ceramic insulators in the acceleration tubes and column support posts are of course a critical
component in the operation of an electrostatic accelerator. The majority of these in the 14UD are
original to the machine and some are showing their age. Over time, high-voltage insulators can
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degrade due to operation in polluted environments [12] and suffer x-ray radiation-induced degradation
in resistivity in the presence of an electric field [13].

As with an earlier investigation into ageing ceramics in the 14UD [2], current leakage across
insulation gaps in the supporting columns posts is still observed. It is often accompanied by feint
cracks in the surface of the ceramic or metallic track marks that bridge the gap. Leakage cur-rents up
to tens of microamperes at five kilovolts are measured and are sometimes extremely dependent on the
surrounding humidity.

Physical damage of the ceramic is also observed with-out current leakage, with significant amount
of debris visible in the surrounding area.

As the posts form a structural component of the accelerator, damaged posts are replaced with
urgency and exclusively with new posts. A previous programme to refurbish posts through
sandblasting and high pressure rinsing seems to have had no benefit on extending the lifetime of older,
used, post assemblies.

It is unclear if the mechanical failure of ceramics is due to electrical stresses from voltage
breakdowns or from mechanical stresses from pressure cycling, movement of the terminal spinning
during maintenance or from the release of energy during large terminal voltage sparks.

Current leakage is also measured across some ceramic gaps in the acceleration tubes. These are
more problematic as the tubes cannot be removed as readily as posts and the only viable solution in the
short-term is to electrically short those gaps. There are currently 24 shorted gaps of a total of 980 gaps
in the 14UD, which are evenly split between the low- and high-energy ends of the end of the 14UD.
While in theory this is only a 2.4% reduction in the achievable terminal voltage, the shorted gaps are
mostly grouped in particular regions and have a detrimental effect on the homogeneity of the voltage
gradient throughout the acceleration column. Assuming that the maximum terminal voltage of 14UD
without shorted gaps is 15.1 MV (limited by a SFe pressure of 102 psia), the operational voltage with
shorted ceramic gaps is limited to 14.7 MV.

Unlike ceramic gaps on posts, there is sometimes no obvious external physical evidence
accompanying a leaky ceramic gap in the acceleration tube, suggesting an issue in the vacuum space.

3.3. Electrode surface state

The surface condition of electrodes has a great influence on the voltage at which conditioning will first
appear in the vacuum space and therefore the achievable operational voltage. Unfortunately, the
condition of electrodes in the vacuum space cannot be monitored in-situ and controlled testing at full
operational voltages during maintenance periods is not possible, since the high breakdown voltage SFs
insulating gas is replaced with atmospheric air to allow entry into the pressure vessel.

4. Investigation of electrode surface condition

Five acceleration tubes were replaced with viable used spares during a maintenance period in 2016.
The re-placements were to troubleshoot and repair issues created by a poor high-energy stripper design
that allows burst carbon foils to escape the region and electron emission to be unsuppressed (which is
another limiting factor on voltage performance). Three eleven-gap tubes above the high-energy
stripper were removed from unit 19 and two eleven-gap tubes were removed from below the stripper
in unit 20. The titanium insert electrodes within the tubes were removed and examined using SEM
EDX analysis.

Figure 1 and figure 2 show the top of the first titanium electrode in unit 19, acceleration tube 2
(exposed to the ion beam) and the bottom of the last electrode in the same tube (chiefly exposed to
electron flux). SEM images of the same electrodes are shown in figure 3 through figure 6. These
images show varied but common features observed, such as porosity, metal vaporisation and material
build up. Titanium sheet samples were also analysed as a comparison (figure 7) and the surface was
shown to be relatively pure, with sparse embedded particles with a high oxygen and carbon content.
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Figure 1. Top face of electrode 1 in unit 19,
acceleration tube 2 after over 40 years of
operation.
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Figure 3. SEM image of the bottom of
electrode 1 in unit 19, acceleration tube 2,
showing metal vaporisation and surface
porosity.

Figure 2. Bottom face of ele‘trode 12 (last) in
unit 19, acceleration tube 2 after over 40 years
of operation.
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Figure 4. SEM image of the top of electrode
12 (last) in unit 19, acceleration tube 2
showing re-crystallisation of the surface layer
of the Ti electrode.

EDX analysis measured the composition at up to twenty radial points on top and bottom of five of
the fifty-five electrodes removed. Two of these electrodes were the first electrode in a tube, two the
last and one from the middle of a tube. Within measurements on a single side of an electrode, the
composition was relatively homogeneous, with differences arising from which side of the electrode
that the measurement was made.

Aside from titanium, the results showed the primary composition to be of oxygen, carbon, fluorine,
aluminium with trace amounts of silicon, argon, magnesium, sulphur, sodium calcium and iron.
Oxygen percentages were 20-40% and generally higher on the underside of the last electrode in a tube
and carbon percentages were 10-20%. These are both more than double the amounts found on unused
titanium. Fluorine, which is certainly not seen on measurements of unused titanium, was found at
percentages of 3-7%. Furthermore, very slightly higher levels of fluorine were found toward the axis
of the acceleration tubes. Small amounts of aluminium were also detected, at 1-3%.

In combination with the SEM images, the oxygen and carbon content suggests a build-up of oxide
and carbon layers, which aside from impacting the voltage gradient, would provide particulate
material for increased initiation of vacuum breakdown. The supply of oxygen comes from residual gas
in the acceleration tubes and oxygen gas that was historically used as a gas stripper media. Most of the
carbon contamination is likely to be from broken carbon stripper foils.

The presence of fluorine is further evidence of SF¢ leakage into the vacuum space.
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Figure 5. SEM image of the bottom of Figure 6. SEM image at the inner edge
electrode 12 (last) in unit 19, acceleration (toward the beam axis) of the bottom side of an
tube 2, showing metal vaporisation. acceleration tube electrode showing severe
layer build up and subsequent possible flaking.
The black regions are carbon rich layers and
the white areas are pure Ti. The grey areas are

loose films contaminated with O, F, S.
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ure 8. SEM image at the inner edge

Figure 7. SEM image of titanium sheet as a Fig
comparison to used titanium electrodes in (toward the beam axis) of an acceleration tube
acceleration tubes. electrode showing severe metal vaporisation.
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Other features were also observed upon disassembly of the acceleration tubes. Pure physical
damage to electrodes was observed, with craters in electrode surfaces and sputtering of titanium. This
then creates protrusions that then act as a trigger for the release of electrons. An example of cratering
is shown in figure 8.

Determination of the improvement in 14UD performance due solely to the replacement of five
acceleration tubes is not straightforward. The acceleration tubes in-stalled were from used stock as no
new tubes were available in the required timeframe. Furthermore, the overall performance
degradation is due to a number of factors whose impact is difficult to isolate. Nevertheless a gradual
improvement of high voltage operation was achieved as a combined effect of tube replacement and
SF¢ back-ground elimination. The conditioning voltage was sustained up to 14.9 MV allowing
operation at the theoretical maximum of 14.7 MV (with shorted gaps).

5. Remediation options and conclusion

From the observed conditions of the accelerator tube insert electrodes, their remediation through
cleaning or replacement should be a priority. However, even new electrodes may need processing.
New tubes and electrodes installed during the compressed geometry upgrade of the 14UD were
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processed via magnetron sputtering using argon, followed by baking in a vacuum oven at 600 °C [3,
5].

NEC offer refurbishment of accelerator tubes via high pressure rinsing of the tube and replacement
or electro-polishing of the titanium insert electrodes. However, this does not remediate issues with
possible deterioration of the bulk dielectric properties of the ceramic insulation, nor any damage to the
aluminium bonding layer between the titanium and ceramic.

The most obvious and efficient remediation option is the installation of new acceleration tubes.
However, consideration of the large capital outlay required, facility downtime and the strategic future
of the facility is necessary. Incremental replacement over time to reduce down-time requires regular
venting of the vacuum space, com-promising the good, low vacuum required to minimise vacuum
breakdown.
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