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Abstract It is assumed that the holographic complexities
such as the complexity-action (CA) and the complexity-
volume (CV) conjecture are dual to complexity in field the-
ory. However, because the definition of the complexity in
field theory is still not complete, the confirmation of the holo-
graphic duality of the complexity is ambiguous. To improve
this situation, we approach the problem from a different
angle. We first identify minimal and genuin properties that
the filed theory dual of the holographic complexity should
satisfy without assuming anything from the circuit complex-
ity or the information theory. Based on these properties, we
propose a field theory formula dual to the holographic com-
plexity. Our field theory formula implies that the complex-
ity between certain states in two dimensional CFTs is given
by the Liouville action, which is compatible with the path-
integral complexity. It gives natural interpretations for both
the CA and CV conjectures and identify what their reference
states are. When applied to the thermo-field double states, it
also gives consistent results with the holographic results in
the CA conjecture: both the divergent term and finite term.

1 Introduction

For the last decade the quantum informational concepts have
been actively applied to the gravity theory including black
hole physics. For example, “quantum complexity” (“com-
plexity” in short) has been introduced as a tool to investigate
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the interior of the black hole. A complexity has been well
studied in quantum circuits. Simply speaking, the complexity
of an operator is the minimal number of gates(basic build-
ing blocks to construct the circuit) to simulate the operator
by quantum circuits. The complexity of state is the minimal
number of gates necessary to transform a reference state to a
target state.

The concept of the complexity was first introduce to under-
stand the fire-wall proposal of the black hole [1] and the
growth of the Einstein–Rosen bridge of the AdS black holes
[2–4]. The complexity from holographic perspective is called
“holographic complexity”, which deals with the complexity
of a quantum state dual to the boundary time slice of an
eternal asymptotic AdS black hole. There are two main pro-
posals for holographic complexity: the complexity-volume
(CV) conjecture [2] and the complexity-action (CA) conjec-
ture [5].

Let us denote by tR and tL the time slices at the right and
left boundaries of an asymptotically AdS black hole. In the
CV conjecture, the complexity is proportional to the maxi-
mum volume of space-like hypersurfaces. The CV conjecture
says

C = max
∂�=tL∪tR

Vol(�)

GN�
, (1)

where � is a spacelike surface connecting tL and tR , GN is
the Newton’s constant, and � is a certain length scale. In the
CA conjecture, the complexity is the on-shell action

C = SWdW,on-shell

π h̄
, (2)

in the Wheeler–DeWitt (WdW) patch, where the WdW patch
is the closure of all spacelike surfaces connecting tL and tR .

There have been many research investigating the con-
jectures (1) and (2): the structure of the UV divergence of
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the holographic complexities [6–9], the time-evolution [10–
12], the growth rate of the complexities and the Lloyd’s
bound [13–21], the quench effects [22–24], the applica-
tions to cosmological evolutions [25,26], the behavior in
T T̄ deformation [27], the generalization of time-dependent
background [28] and applications in cosmology [25]. For
other holographic complexity conjectures apart from the CV
and CA conjecture see, for example, Refs. [28–33]. For the
generalizations of subregion complexities see, for example,
[27,34–38].

Contrary to various progress on the complexity in gravity
side, the complexity theory in quantum field theory (even
its precise definition) is still incomplete. One natural idea to
define the complexity in field theory is as follows.

(1) Start with various well-established models of circuit com-
plexity and generalize them for field theory in certain
ways.

(2) Analyze the consequences of those generalizations and
figure out which one is compatible with the holographic
complexity.

This idea is based on the assumption that the holographic
complexities such as the CV or CA conjectures are indeed
dual to a kind of “circuit complexity”. See Fig. 1a. Following
this idea, there have been attempts to generalize the concepts
of complexity of discrete quantum circuits to continuous sys-
tems: “complexity geometry” [39–41], Fubini-study metric
[42], and path-integral optimization [30,31,43,44]. See also
[45–50].

In particular, the complexity geometry is actively investi-
gated. The basic idea was first proposed by Nielsen et al. [51–
53], in which the authors considered a continuum approxima-
tion of the circuit complexity. It introduces so-called “com-
plexity geometry” and the geodesic distance there. See for
examples [11,54–63]. Along this road, there have been many
works showing positive supports in identifying the field the-
ory complexity in the sense of the agreement with the holo-
graphic complexity [63–72]. However, a few fundamental
questions still remain.

First, what are the reference states in the holographic con-
jectures? For both the CV and CA conjectures, the target
state is dual to the thermofield double (TFD) state [73] but,
the reference state is not known. Because these holographic
complexities are supposed to be the complexity of states, the
reference state needs to be clearly identified.

Second, what makes the differences in the time-evolution
between the CV and CA conjectures? In both cases, the com-
plexity grows linearly in time at late time. However, they
behave differently at early time [10,11], which indicates that
two conjectures may correspond to different physical quan-
tities (complexity or something else) in field theory.

Fig. 1 Two different methods to understand the holographic complex-
ity. a Assume that the holographic complexity is a precise dual of a
specific generalization of the circuit complexity. We investigate differ-
ent possible generalizations of the circuit complexity in field theory and
then seek for the best one compatible with the holographic complexity.
b Do not make any assumption on what the field theory dual of the
holographic complexity is. First, just try to find out various possible
candidates of the field dual of the holographic complexity. Next, we ask
if they have any relationship to the circuit complexity or something else

There is another important issue to consider when we
identify the field theory dual of the holographic complex-
ity: the properties of the proposed complexity in field theory
may differ for different models. The “path-integral complex-
ity” [30,31,43], which is different from Nielsen’s, is con-
sidered to describe the complexity between the ground state
and the field operator eigenstate in a two-dimensional con-
formal field theory (CFT). Here, the ground state is build by
the tensor network renormalizations [74] and the complexity
is identified with the on-shell Liouville action. One of the
important properties of the path-integral complexity is that it
is unitary invariant and bases-independent. By minimizing
such a complexity, the Einstein’s equation in 2+1 dimension
can be obtained [75]. For the relation between the path inte-
gral complexity and circuit complexity see Ref. [76].
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Though a large amount of efforts have been made along
the road shown in Fig. 1a, there is still no proposal which
can be completely compatible with any holographic com-
plexity. It motivated us to step back and ask a question: is
the quantity so-called the “holographic complexity” really
a “complexity” in field theory? Even if it is the case, it is
possible that that the field theory dual of the holographic
complexity may belong to a different type of complexity,
which is not necessarily the same as a continuous version
of the circuit complexity. In this case, the field theory dual
of the holographic complexity and the continuous version of
the circuit complexity may share some common properties
but there may be differences too. See Fig. 2 for a schematic
explanation. For now, it seems that there is no evidence to
rule out any one in Fig. 2. Thus, let us keep this possibilities
open.

The way in Fig. 1a will work only for the case in Fig. 2a.
If the relationship shown in Fig. 2b is valid, then the way in
Fig. 1a is not suitable. Instead, a different method shown in
Fig. 1b is more promising:

(1) First try to find all possible field theory duals of the holo-
graphic complexity, by considering the genuin properties
of the holographic complexity, without assuming any-
thing from field theory.

(2) Next, we check if there is any candidate which can match
with the basic requirements of the circuit complexity
(non-negativity, right-invariance, triangle inequality, et.)

This method indeed can cover both possibilities in Fig. 2.
The main goal of this paper is to make a step towards this
new road.

We assume that the holographic complexity (CV or CA)
has a field theory dual denoted by C̄
CV (A) = C̄(|ψ〉, |R〉). (3)

which describes an unknown relationship between a target
state |ψ〉 and a reference state |R〉. In this paper, we use the
notation C̄ instead of C, to denote it is the specific ‘complex-
ity’ related with the holographic complexity. In principle, it
may be different from the usual circuit complexity or any
other quantum computational concept. Our first task is to
find if there is any special properties of this function C̄. We
emphasize again that we do not assume anything from field
theory. i.e. at this stage C̄(|ψ〉, |R〉) may not correspond to
a specific kind of “circuit complexity”. We just try to inves-
tigate the properties of the holographic complexity and find
out what the possible candidates of the function C̄ are.

First, we follow a usual way in theoretical physics: sym-
metry is important. We will argue that, the diffeomorphic
invariance of the holographic complexity implies that, at least
for a large class of infinite dimensional unitary group (strictly
speaking, faithful unitary representation of an infinite dimen-

Fig. 2 A schematic explanations for possible relationships between the
circuit complexity and the field-theory duals of the holographic com-
plexity. a The field theory dual of the holographic complexity belongs
to the continuous version of the circuit complexity. b The field theory
dual of the holographic complexity and a continuous version of the
circuit complexity share some common properties, but, there are still
differences too

sional Lie group) G, the function C̄ is invariant under a trans-
formation of G:

∀Û ∈ G, C̄(|ψ〉, |R〉) = C̄(Û |ψ〉, Û |R〉). (4)

This property of the holographic complexity, however, can-
not be read from the circuit complexity. This shows that the
field theory dual of the holographic complexity has infinitely
many symmetries so infinite constraints.

The second important property of C̄ is the it is an extensive
quantity for product states

C̄(|ψ1〉 ⊗ |ψ2〉, |R1〉 ⊗ |R2〉)) = C̄(|ψ1〉, |R1〉)
+C̄(|ψ2〉, |R2〉). (5)

This property comes from a fact that the holographic com-
plexity is proportional to the volume of the boundary slice.
This is also a special property of the holographic complex-
ity and shows an essential difference from the entanglement
entropy.

By combining these two basic properties, we propose a
class of possible simple candidates for the function C̄ and
choose particular forms as examples to make detailed dis-
cussion. Our proposal have many interesting implications. It
supports that the complexity in 2D CFTs can be expressed by
the Liouville action, consistent with the path-integral com-
plexity. It also provides natural interpretations of the CV and
CA conjectures and clarifies their reference and target states.
i.e. our proposal may answer two aforementioned problems.

The paper is organized as follows: In Sect. 2, we explain
why the holographic complexity implies the equations (4)
and (5). In Sect. 3 we give a class of simple candidates for the
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function C̄ and show that they can exhibit very rich contents
including the new interpretation of the CV and CA conjec-
ture. In Sect. 4 we apply our proposal to the TFD states and
do further consistency checks with holographic complexities.
We conclude in Sect. 5.

2 Basic properties of holographic complexity

2.1 Holographic complexity is diffeomorphic invariant

One standard way to investigate physical systems of which
structures are not well known is to start with symmetry. Along
this line, we may ask if there is any universal symmetry in
the CV and CA conjectures? We think the answer is posi-
tive. In both CV and CA conjectures, the complexity is given
as a geometric quantity of the bulk spacetime. This implies
that there is an important and universal symmetry in the holo-
graphic complexity: it is invariant under a bulk diffeomorphic
transformations. If we make a bulk diffeomorphic transfor-
mation, the boundary theory will be also transformed by the
induced transformation. In this paper, when we talk about
spacetime transformation, we always use “active viewpoint”:
the coordinates is fixed but metric is transformed. We will
also use the “active viewpoint” to consider transformations
of states in the Hilbert space and generators in Lie algebra:
the bases of Hilbert space and Lie algebra are unchanged but
the quantum states and generators are changed.

Let us consider a simple case in a pure AdSd+1 space-
time. There are two kinds of transformations: a conformal
group in a boundary theory and an isometric group in AdS
spacetime. The two groups are both isomorphic to SO(2,d).
Every transformation of SO(2, d) in the bulk corresponds to
a conformal transformation at the boundary CFT and versa
vice. Though CFT quantities such as correlation functions,
generating functional and partition function are invariant, the
operators and quantum states will obtain a SO(2,d) transfor-
mation and, in general, this transformation is not an identi-
cal transformation. For example, the gauge transformation
of a U(1) gauge theory does not change the partition func-
tion, correlation functions but it will induce a unitary trans-
formation in the Hilbert space. The gauge transformation:
{ �A, φ} �→ { �A+ �∇�,φ−∂t�} will induce a unitary transfor-
mation in the Hamiltonian and quantum states: H �→ Û HÛ †

and |ψ〉 �→ Û |ψ〉 with Û = exp(iq�). Here q is the charge.
Suppose that the states |ψ〉 and |R〉 are a target state and a

reference state in a CFT, of which the ‘complexity’ is given by
C̄(|ψ〉, |R〉). By the holographic duality, in the corresponding
bulk theory, there are bulk metric gμν and matter fields Ai

(i stands for different matter fields). By using the CV or CA
conjecture C̄(|ψ〉, |R〉) can be computed as

C̄(|ψ〉, |R〉) = CV (A)(gμν, Ai ), (6)

where CV (A)(gμν, Ai ) stands for the holographic complexity
computed by the metric gμν in the CV or CA conjecture.

Suppose now that Ûφ is an SO(2, d) transformation in the
CFT Hilbert space, which transforms |ψ〉 and |ψ〉 to Ûφ |ψ〉
and Ûφ |R〉. Accordingly, there is a corresponding bulk dif-
feomorphism φ, which induces a pull-back transformation
φ∗ for the the bulk metric gμν �→ φ∗(gμν) and for matter
fields Ai → φ∗(Ai ). By symmetry, we have

C̄(Ûφ |ψ〉, Ûφ |R〉) = CV (A)(φ
∗(gμν), φ

∗(Ai )). (7)

In the pure AdS case, the diffeomorphism φ is an isometry
φ∗(gμν) = gμν . Thus, we have the following important result
on the field theory dual of the holographic complexity

∀Û ∈ SO(2, d), C̄(|ψ〉, |R〉) = C̄(Û |ψ〉, Û |R〉). (8)

The same result holds even if the diffeomorphism is not
an isometry. Suppose that Md+1 is an arbitrary asymptot-
ically AdS spacetime and φ : Md+1 �→ Md+1 is an
arbitrary diffeomorphic transformation, which transforms
the boundary time slices and bulk metric {tL , tR, gμν} into
{φ(tL), φ(tR), φ∗(gμν)}. The holographic complexity com-
puted by them are the same, i.e.,

CV (A){tL , tR, gμν} = CV (A){φ(tL), φ(tR), φ∗(gμν)}. (9)

This transformation will also induce a transformation on the
Hilbert space in the boundary theory, i.e., Ûφ : H �→ H. This
transformation must be unitary as no information will be lost
by the diffeomorphic transformation. If {|ψ〉, |R〉} ⊂ H is a
pair of a target state and a reference state, the diffeomorphic
transformation φ will induce a new pair of target state and
reference state {Ûφ |ψ〉, Ûφ |R〉} ⊂ H. Then, we have the
following equations for the function C̄
C̄(|ψ〉, |R〉) = CV (A){tL , tR, gμν},
C̄(Ûφ |ψ〉, Ûφ |R〉) = CV (A){φ(tL), φ(tR), φ∗(gμν)},

(10)

which imply

C̄(|ψ〉, |R〉) = C̄(Ûφ |ψ〉, Ûφ |R〉). (11)

All bulk diffeomorphic transformations form an infinite
dimensional Lie group, which induces an infinite dimen-
sional unitary group (strictly speaking, a faithful unitary rep-
resentation) G on the boundary Hilbert space. Thus, we have
the following symmetry for the field theory dual of the holo-
graphic complexity

∀Û ∈ G, C̄(|ψ〉, |R〉) = C̄(Û |ψ〉, Û |R〉). (12)

Note that the holographic complexity gives a strong condi-
tion to its field theory dual: it must have infinitely many con-
straints from the symmetries, which may imply the following.
If the field theory dual of the holographic complexity is a kind
of continuous version of the usual circuit complexity, these
constraints may not allow us to choose the gates and penalties
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in the circuit complexity artificially. From the perspective of
the usual circuit complexity, it seems too strong because, in
the usual circuit, the gates and penalties can be arbitrarily
chosen and, in general, the complexity is not invariant under
unitary transformations. However, again, our strategy here is
not to have any prejudice from the field theoretic or quan-
tum computational concept. We want to figure out where the
holographic complexity leads us, wherever it is.

Sometimes people may think that the bulk diffeomor-
phisms are just pure gravity redundancies because they van-
ish at the boundary. However, the bulk diffeomorphisms may
not vanish at the boundary. Let us assume that ξμ is the gen-
erator of a bulk diffeomorphism, i.e. xμ → xμ + εξμ gen-
erates an infinitesimal diffeomorphic transformation. At the
AdS boundary, we can decompose ξμ = ξ

μ
‖ + ξ

μ
⊥ , where

ξ
μ
‖ is parallel to AdS boundary and ξ

μ
⊥ is perpendicular to

AdS boundary. In order to fix AdS boundary, one has to set
ξ

μ
⊥ = 0 at the boundary but ξ

μ
‖ is arbitrary. We see ξμ �= 0

at boundary and so the bulk diffeomorphism may not vanish
at the boundary in general. Particularly, we can choose ξ

μ
‖

at boundary to be the Killing vector of boundary metric, and
for flat boundary, this will lead to a Poincaré transformation
at boundary.

2.2 Holographic complexity is extensive

Another important property we learn from the holographic
complexity is that the complexity between an unknown refer-
ence state and a boundary state is proportional to the volume
at the boundary time slices, if the volume is large enough and
the boundary state is uniform, i.e.,

C̄(|ψ〉, |R〉) ∝ Vbd, if Vbd → ∞, (13)

where, Vbd is the volume of boundary slices, not the volume
in any bulk region. This property shows an important differ-
ence compared with the entanglement entropy, as the latter
in general is proportional to the area. Since the volume is
an extensive quantity of physical systems, this implies that
holographic complexity may be also an extensive quantity.
We can prove this statement holographically as follows.

Let us consider the complexity between two states |R〉 and
|ψ〉 that contain two independent sub-systems A and B. The
systems A and B are locally the same and have the volume VA

and VB , respectively. When two sub-systems are separated
far enough, the target state (|ψ〉) and the reference state (|R〉)
of A∪ B can be written in terms of the direct product of two
independent sub-systems:

|ψ〉 = |ψ〉A ⊗ |ψ〉B, |R〉 = |R〉A ⊗ |R〉B . (14)

To deal with the case that a system contains two subregions,
we refer to the holographic proposals of the subregion com-
plexities. They have been studied in detail by Refs. [27,34–

Fig. 3 A two-side static black hole which has two disconnected subre-
gions in every boundary. The lines a4b4 and a2b2 stand for the left and
right AdS boundaries and A and B stand for two subregions of boundary
slices. We assume that the boundary slices lay on t = 0 hypersurface.
�A and �B are extremal co-dimensional-1 surfaces. a1a3 and b1b3 are
two RT surfaces

38]. Here, we use the subregion complexity of the CV con-
jecture as an example. Let us consider a two-side black hole
shown in Fig. 3, of which the two boundaries are labeled by
the lines a2b2 and a4b4. The boundary CFT lies on A ∪ B.

For a static bulkgeometry, the CV conjecture for subre-
gions evaluates the volume of the extremal co-dimensional-1
surface in the bulk which is bounded by the subregion on the
asymptotic boundary and the Ryu–Takayanagi (RT) surface
for this subregion [34], i.e. for a subregion A at the boundary
slice, the subregion complexity by the CV conjecture reads

C̄(A) ∝ max
∂�=RT(A)∪A

Volum(�), (15)

where RT(A) is the RT surface of the subregion A. When
the two subregions are separated far enough, the RT surfaces
will become the type shown by the red lines of Fig. 3. This
corresponds to the fact that the boundary slices describe a
product state. It is clear the total co-dimensional-1 surface
contains two disconnected co-dimensional-1 surfaces and

C̄(A ∪ B) = C̄(A) + C̄(B), (16)

where C̄(A) is given by the extremal volume of a co-
dimensional-one surface �A which is bounded by a2a1a3a4

and C̄(B) is given by the extremal volume of a co-
dimensional-one surface �B which is bounded by b2b1b3b4.
The same result can also be obtained by using the subregion
CA conjecture [35]. Thus we have

Extensive property: the complexity of the product states
of continuous systems is extensive i.e.,

C̄(|ψ〉A ⊗ |ψ〉B, |R〉A ⊗ |R〉B)

= C̄(|ψ〉A, |R〉A) + C̄(|ψ〉B, |R〉B),
(17)

This property is not easy to be found if we think only from the
perspective of circuits complexity. If the field theory dual of
the holographic complexity is a kind of continuous version of
the circuit complexity, it should have very special properties
which do not usually (easily) appear in the studies of the
circuit complexity.
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Fig. 4 Schematic explanation about the proof of triangle inequality

3 Field theory dual of the holographic complexity and
applications

3.1 Proposal and infinitesimal triangle inequality

We have clarified two basic properties of a field theory dual of
the holographic complexity: Eq. (12) and Eq. (17). The next
task is to find possible mathematical formulas for C̄ satisfying
those properties. Since Eqs. (12) and (17) do not lead to a
unique formula for C̄ we want to propose one possibility
which looks minimal and most relevant to our purpose.

Note that the unitary group G, which is a faithful unitary
representation of diffeomorphism group of Md+1, is a very
large group. If we assume that a field theory dual of the
holographic complexity should have a natural mathematical
form, then a simple choice for C̄ is

C̄(|ψ〉, |R〉) = f (〈ψ |R〉), (18)

where f is an unknown function. If we combine it with the
property (17), we conclude that for a complex number x , the
simplest f (x) is

f (x) = α1Re ln x + α2|Im ln x |, (19)

for any constant real numbers α1 and α2. By choosing α1 =
−1, α2 = 1 we have

C̄(|ψ〉, |R〉) = −Re ln x + |Im ln x |
= − ln |〈ψ |R〉| + |Im ln〈ψ |R〉|. (20)

As the complexity has the freedom of an overall factor, only
the ratio α1/α2 is relevant. We assume α1/α2 = −1 in this
paper.

Usually, “complexity” stands for a kind of “distance” so
is expected to satisfy the triangle inequality. Indeed, Eq. (20)
satisfies the triangle inequality under certain conditions.
Let us first prove the “infinitesimal version” of the trian-
gle inequality. Let us consider arbitrary three infinitesimally
close quantum states |R〉, |T 〉 and |ψ〉 as shown in Fig. 4.
There may be three hermitian Hamiltonians (may not be
unique) {H1, H2, H3} and an infinitesimal parameter δ > 0,
which satisfy

|ψ〉 = e−iδH1 |R〉, |T 〉 = e−iδH2 |ψ〉 = e−iδH3 |R〉. (21)

The complexities between these three quantum states are
labeled by C̄1, C̄2 and C̄3. See Fig. 4.

Because

〈ψ |R〉 = 〈R|eiδH1 |R〉 = 1 + iδ〈R|H1|R〉 + O(δ2), (22)

our proposal (20) gives

C̄1 = δ |〈R|H1|R〉| + O(δ2). (23)

Similarly, we have

C̄2 = δ |〈ψ |H2|ψ〉| + O(δ2),

C̄3 = δ |〈R|H3|R〉| + O(δ2). (24)

C̄2 can be also expressed as

C̄2 = δ |〈R|H2|R〉| + O(δ2), (25)

because

〈ψ |H2|ψ〉 = 〈R|eiδH1 H2e
−iδH1 |R〉

= 〈R|H2|R〉 + O(δ). (26)

Furthermore, C̄3 can be expressed as

C̄3 = δ |〈R|H2 + H1|R〉| + O(δ2). (27)

because, up to order O(δ),

〈R|T 〉 = 1 − iδ〈R|H3|R〉 = 〈R|e−iδH2e−iδH1 |R〉
= 1 − iδ〈R|H2 + H1|R〉, (28)

which yields 〈R|H3|R〉 = 〈R|H2 + H1|R〉.
Using the fact

|〈R|H1|R〉| + |〈R|H2|R〉|
≥ |〈R|H2|R〉 + 〈R|H2|R〉| = |〈R|H1 + H2|R〉| , (29)

we have

C̄1 + C̄2 ≥ C̄3. (30)

This shows that our proposal satisfies the triangle inequality
for infinitesimally close states. Note that this “infinitesimal
triangle inequality” does not imply the triangle inequality
for arbitrary states. The proof of general triangle inequality
needs more preparations and we will come back to this point
at end of Sect. 3.2.
A few comments Let us make a few comments on Eq. (20).
From the perspective of the usual circuit complexity, Eq. (20)
is too simple and may lose many interesting properties of
the circuit complexity. This is true. However, we recall that
the motivation of this paper: we do not study how to use the
properties of the usual circuit complexity to recover the holo-
graphic results. Instead, we try to understand what a possible
field theory dual of the holographic complexity is, whatever
it is. Even if it turns out to be a kind of circuit complexity, it
must be a very “special” circuit complexity because it con-
tains properties such as (12) and (17) which do not appear in
the usual circuit complexity.
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In Eq. (20) there is an imaginary part of a complex number.
If the inner product 〈ψ |R〉 is not a real number, there may be
ambiguities in two aspects. The first one is due to the multiple
valued function “ln(·)”. For any complex number x = ρeiθ ,
we have ln x = ln ρ + iθ + 2nπ i with n = 0,±1,±2, . . ..
The second one is due to the fact that two state vectors |ψ〉 and
eiθ |ψ〉 describe the same physical state. These two aspects
imply that our formula (20) has an ambiguity of adding arbi-
trary constants.

Interestingly, this ambiguity may correspond to a fact that,
in the CA conjecture, the action of theory has a freedom of
adding arbitrary constants. The CA conjecture connects the
on-shell action to the complexity and the action has a freedom
of adding a constant term. Thus, any complexity theory, if it
is claimed to be dual to the CA conjecture, must have a free-
dom of adding arbitrary constant. In the Nielsen’s complexity
geometry, we has a freedom to choose an overall factor but do
not have a freedom to add a constant. From this perspective,
it seems difficult to use the Nielsen’s “complexity geometry”
to find a dual of the CA conjecture.

People may think that the phase should be always moded
out by 2π when we discuss its physics. However, there is a
good example to show this is not always the case. Consider
the path integral formulism of quantum mechanics,

K =
∫

Dx exp(−i S), (31)

where S is an action. The partition function (31) is assumed to
contain all physical information including the corresponding
classical limit. We see that action S appears in the phase factor
and it is easy to see S and S+ 2π describe the same physics.
However, when we use an action to discuss physics, particu-
larly physics in classical limit, we do not restrict S ∈ [0, 2π)

by mod out 2π . Thus, even if a quantity in theory appears
in the position of phase factor, we do not always mod it by
2π . Such a quantity in general will have a freedom to add
an arbitrary constant, like an action (S and S + S0 describe
same physics, where S0 is a constant) and the complexity
defined by Eq. (20). If we consider a continuous “deformed”
λ-dependent state |ψ(λ)〉 with |ψ(0)〉 = |R〉, then the com-
plexity C̄(λ) will depend on λ, too. It is natural to require
C̄(λ) is also the continuous function and C̄(0) = 0. In this
case, the ambiguity of a phase factor disappears.

In the following sections, we will show that Eq. (20)
indeed can be understood as a kind of “complexity”, i.e.,
a kind of minimal “cost”. However, in general it will not be
a usual circuit complexity. We will investigate some impli-
cations of the proposal (20), which support that the proposal
(20) may be a correct field theory dual of the holographic
complexity. In Sect. 3.3, we will use detailed examples to
show how to fix the phase factor freedom mentioned above.

3.2 Path-integral formula and triangle inequality

Here, we compute the complexity by using the path integral
formulation. Let us take a normalized initial state |ψ0〉, a
target state |ψ(t)〉 and a time evolution operator Û (t). We
may consider a one dimensional quantum mechanical system
without loss of generality and the Feynman propagator yields

K (x2, t2; x1, 0) := 〈x2|Û (t)|x1〉
= 1

N
∫ x(t2)=x2

x(0)=x1

D[x] exp

{
i

h̄
S[x(t)]

}
,

(32)

whereN is a normalization factor and S[x(t)] is the classical
action functional. The transition amplitude reads

Z := 〈ψ(t)|ψ0〉
=

∫∫
dx2dx2ψ

∗
0 (x2)K (x2, t2; x1, 0)ψ0(x1), (33)

where ψ0(x) := 〈x |ψ0〉 denotes the wave function of the
initial state. By Eq. (20), the complexity between |ψ0〉 and
|ψ(t)〉 is

C̄(t2) = − ln |Z | + |Im ln Z |, (34)

so the time-dependent complexity is determined by the the
action and the initial state.

In quantum field theory, a similar procedure works. The
complexity between the states |�〉 and |�〉 can be expressed
in terms of a functional integration

C̄ = − ln |Z | + Im ln Z , (35)

and

Z = 〈�|�〉 =
∫

D[ϕ(x)]�∗[ϕ(x)]�[ϕ(x)] (36)

where �[ϕ(x)] = 〈ϕ|�〉 is the wave functional of |�〉.
The complexity between the time dependent state |�(t)〉 and
|�0〉 = |�(0)〉 is Eq. (35) with

Z = 〈�(t)|�(0)〉
=

∫
D[ϕ1(x)]D[ϕ2(x)]{�∗

0 [ϕ2(x)]�0[ϕ1(x)]
×K [ϕ2(x), t2;ϕ1(x), 0]}, (37)

where

K [ϕ2(x), t2; ϕ1(x), t1]
= 1

N [ϕ1, ϕ2]
∫ ϕ(x,t2)=ϕ2(x)

ϕ(x,t1)=ϕ1(x)
D[ϕ(x)] exp

{
i

h̄
S[ϕ]

}
. (38)

Here, N [ϕ1, ϕ2] is the normalization factor and satisfies
N [ϕ1, ϕ1] = 1. If we consider the classical limit h̄ → 0 and
assume the target state and reference state are eigenstates of
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the field operator, we have the following approximation

Z = K ≈ 1

N [ϕ1, ϕ2] exp

{
i

h̄
Scl[ϕ]

}
, (39)

where Scl[ϕ] is the classical on-shell action. Up to the leading
order of h̄, we have

C̄ ≈ 1

h̄
min{|Scl[ϕ]| | ∀ϕ(x, t),

s.t. ϕ(x, t1) = ϕ1(x), ϕ(x, t2) = ϕ2(x)},
(40)

Here we assume Re(lnN [ϕ1, ϕ2]) � Scl/h̄ and Im
(lnN [ϕ1, ϕ2]) � Scl/h̄. Here the minimization means that
we choose the minimal on-shell action if the classical paths
are not unique.

Let us consider the complexity between the ground state
|�〉 of a Hamiltonian and the field operator eigenstate |ϕ0〉.
The field operator eigenstate is the continuum limit of the
product state in the configuration space and it is assumed to
be the reference state in the path-integral complexity. The
inner product between these two states can be computed by
the Euclidean path integral as follows:

ZE := 〈ϕ0(x)|�〉 = 1

N
∫

ϕ(x,0)=ϕ0(x)

×D[ϕ(x)] exp

{
− 1

h̄
SE [ϕ]

}
. (41)

Here, ϕ0(x) = 〈x |ϕ0〉, SE [ϕ] is the Euclidean action, and the
normalization factor N is

N :=
∫

ϕ(x,0)=�(x)
D[ϕ(x)] exp

{
− 1

h̄
SE [ϕ]

}
, (42)

with |〈�|�〉| = 1.
The absolute value symbol in Eq. (41) is not neces-

sary because the function in the integration is positive. The
upper bound of integration is omitted: in the Euclidean case,
ϕ(x,∞) is the ground state �(x) = 〈x |�〉 so we do not need
to specify it. In the limit h̄ → 0, the complexity between |�〉
and |ϕ0(x)〉 is approximately

C̄ = − ln |〈ϕ0(x)|�〉| = − ln ZE

≈ 1

h̄
min{SE,on-shell[ϕ] − S0},

(43)

where SE,on-shell[ϕ] is the Euclidean on-shell action and S0 =
lnN ≈ SE [�] is the Euclidean on-shell action for the ground
state (|φ0〉 = |�〉). Here the minimization means that we
choose the minimal on-shell action if the classical pathes
are not unique. Note that there is no imaginary part in the
Euclidean path integral.

The equations (40) and (43) show that our proposal (20)
indeed define a kind of “complexity” if we use the action (or
Euclidean action) to define the cost. However, this complex-
ity has many essential differences compared with the circuit
complexity: (1) it does not allow people to choose the “gates”

and penalties artificially; (2) it may be negative; (3) it is uni-
tary invariant.

We now prove that our proposal (20) satisfies the triangle
inequality not only for the infinitesimally close states but
also for general states which have classical correspondences.
Here, we assume that the classical trajectory is stable so the
on-shell action is locally minimal. Consider three states {|ϕi 〉}
(i=1,2,3), which are the eigenstates of field operator ϕ and
correspond to the classical field configurations ϕi |x = ϕi (x).
Then according to our formula (40), up to the leading order
we have

C̄(|ϕi 〉, |ϕ j 〉) = 1

h̄
min{|Scl[ϕ]| | ∀ϕ(x, t),

s.t. ϕ(x, t1) = ϕi (x), ϕ(x, t2) = ϕ j (x)},
(44)

with i, j = 1, 2, 3. By this formula, we find

C̄(|ϕi 〉, |ϕ j 〉) + C̄(|ϕ j 〉, |ϕk〉) ≥ C̄(|ϕi 〉, |ϕk〉),
i, j, k = 1, 2, 3. (45)

Thus, for the quantum states which have classical correspon-
dences, our formula gives us a kind of “distance”.

Let us make a few comments. Our proof of the triangle
inequality Eq. (45) here is valid only for the quantum states
which have classical correspondences. Otherwise, it is out of
our scope. For example, we do not mean to apply our pro-
posal (20) to some states which appear in quantum informa-
tion processes, quantum circuits or quantum computations
which do not have classical correspondences and even may
not have Lagrangian formalism. In these cases, there are well-
developed complexity theories in that context.

As we have repeatedly emphasized, the purpose of this
paper is not to prove the holographic complexity is really
equivalent to “circuit complexity” in every sense. It is still an
open question and it is not something obvious a priori. We
try to understand, without any prejudice, what the possible
field theory dual of holographic complexity should be and
then try to find certain relationships to the “complexity” of
quantum circuits or quantum computations, if any.

Note that the boundary theory of an asymptotically AdS
spacetime is not an arbitrary tunable quantum theory as in
quantum circuits or quantum computations. Instead, it is a
field theory which has classical correspondence. Our for-
mula (20) is designed for such cases and, for such cases, we
find our proposal satisfies the triangle inequality.

From Eq. (41), we can show that the “path-integral com-
plexity” conjecture [30,31] can be justified. In this “path-
integral complexity”, it was conjectured that complexity
between certain states in two dimensional CFTs is given by
the Liouville action. There is a diagrammatic argument [75]
why complexity is proportional to the Liouville action by
using the relation between discretized path integrals and ten-
sor network renormalization [74]. The proof is similar to
what we have done in Ref. [77] and we show it briefly in
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Appendix A. Here, our result is algebraic and the starting
point has nothing to do with the tensor network renormal-
ization. This agreement between different perspectives is a
good supporting evidence for our proposal.

3.3 Connections to holographic conjectures

In this part we will show how the CV and CA conjectures
can be understood from our proposal and explain what are the
reference states in both conjectures. We also explain why two
conjectures show different behaviors at early time [10,11].
These will serve as supporting evidences for our proposal.
Similar arguments have been shown in our previous work
Ref. [77]. We will show here that, for our more general pro-
posal (20), we can still obtain the same conclusions.

3.3.1 CV conjecture

Let us start with a CFT Hamiltonian H0 and its ground state
|�〉. Next, we consider a perturbation of the Hamiltonian by
HI : Hδ = H0 + HI δ, where δ is an infinitesimal parameter.
Then, we will have the perturbed ground state |�δ〉. Let us
assume that eiθ |�〉 is a ground state of a Hamiltonian H0.
Here the θ stands for the phase factor freedom of the ground
state. We can fix the phase factor of the perturbed ground
state by the following way

|�δ〉 := lim
τ→∞

1√
Zδ

exp[−τ(H0 + δHI )]|�〉, (46)

where Zδ is a normalized factor. In this case the inner prod-
uct between |�〉 and |�δ〉 becomes a real number. Then our
proposal gives the complexity

C̄(δ) = − ln |〈�δ|�〉| + 2nπ, n = 0, 1, 2 . . . . (47)

The 2nπ stands for the branch cut of logarithm. As we have
mentioned at the end of paragraph below Eq. (31), the C̄(δ)

should be a continuous function of δ and satisfies the initial
condition C̄(0) = 0, we have to set n = 0. Denoting the
Euclidean Lagrangians of two Hamiltonians by L0 and Lδ ,
we have [78,79]

〈�δ |�0〉

= 1√
Z0Zδ

∫
Dφ exp

[
−dd x

(∫ 0

−∞
dτL0 +

∫ ∞

0
dτLδ

)]
,

(48)

where φ is the field variable. Eq. (48) can be expanded as
[78,79]

〈�δ|�〉 = 1 − Gδδδ
2 + O(δ4), (49)

where the real value Gδδ is named fidelity of susceptibility
[80] or the information metric [78]. Thus, we find a simple
relationship between the complexity and information metric
at small δ limit

C̄(|�〉, |�δ〉) = − ln |〈�δ|�〉| = Gδδδ
2 ∝ Gδδ, (50)

Furthermore, it has been shown [78,79] that, in conformal
field theories perturbed by a primary operator, the informa-
tion metric is approximately a volume of the maximal time
slice in the AdS spacetime, i.e.,

Gδδ ∝ max
∂�=tL∪tR

Vol(�). (51)

Thus, by Eqs. (51) and (50), we have

C̄(|�〉, |�δ〉) ∝ max
∂�=tL∪tR

Vol(�), (52)

which is nothing but the CV conjecture.
Note that the ground state of a CFT in holography is

the TFD state dual to the double-sided black hole geome-
try. Thus, according to our proposal, the complexity in the
CV conjecture may be interpreted as the complexity between
the TFD state and its perturbed TFD state by a marginal oper-
ator. By this way, we clarified the reference state in the CV
conjecture, while, in most literatures, it is just assumed to be
an unknown “simple” reference state.

3.3.2 CA conjecture

Regarding the CA conjecture we first consider Euclidean
cases. By Eq. (43) the complexity between the ground state
and the field operator eigenstate is obtained by the partition
function of the boundary field theory

C̄ = − ln Zbd[φ(x)]. (53)

However, according to the AdS/CFT correspondence the par-
tition function of the boundary field theory is dual to the one
of a bulk gravity theory:

Zbd[φ(x)] = Zbulk[gμν, φ(x, z)], (54)

with the matter fields satisfying the boundary condition
φ(x, z)|z=0 = φ(x). Thus, from Eqs. (53) and (54) we have

C̄ = − ln
∫

D[gμν]D[φ] exp

{
− 1

h̄
SE [gμν, φ(x, z)]

}
, (55)

where SE is the Euclidian action of the bulk gravity. In the
weak gravity limit,

C̄ ≈ 1

h̄
SE,on-shell[gμν, φ(x, z)]

= 1

h̄

[∫
I

dt
∫
V (t)

HE (gμν, φ)dd x + Sbd

]
,

(56)

where HE (gμν, φ) is the Euclidean Hamiltonian density and
Sbd is a suitable boundary term. V (t) is a time slice in the bulk
at time t and I stands for the integration domain of Euclidean
“time” t , both of which depend on the physical system itself.
If we consider the thermal system (including vacuum state),
then V (t) is a static time slice and I = [0, β] with a periodic
boundary condition at t = 0 and t = β.
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In the Lorentzian case, we consider the complexity
between two “field operators eigenstates”. The complexity
is given by C̄ = − ln |Z | + Im ln Z , where Z is the inner
product of two “field operators eigenstates” and is given by
the path-integral

Z =
∫

D[gμν]D[φ] exp

{
i

h̄
S[gμν, φ(x, z)]

}
. (57)

In the limit h̄ → 0, C̄ is dominated by the imaginary part of
Z and so we have

C̄ ≈ 1

h̄
|Son-shell[gμν, φ(x, z)]|

= 1

h̄

∣∣∣∣
∫
M

L(gμν, φ)dd+1x + Sbd

∣∣∣∣ , (58)

where L(gμν, φ) is the Lagrangian density of the gravity
theory. To compute Eq. (58), the integration domainM needs
to be clarified carefully.

In Euclidean case, a boundary time slice stands for the
target quantum states so we have to choose bulk domain
which is encoded into such time slice. In other word, we
have to choose a bulk domain, of which all information could
be reconstructed only by the boundary slice. Based on the
AdS/CFT correspondence, we know such bulk region must
be the entanglement wedge of the boundary slice. The entan-
glement wedge is defined in the full d+1 dimensional space-
time as the causal domain of dependence of the homology
surface V0, where V0 is a d-dimensional surface which is
surrounded by boundary slice and its corresponding Ryu–
Takayanagi (RT) surface. In CA conjecture, the two discon-
nected time slices tL and tR are both infinitely large. How-
ever, physically it will be more convenient to first assume
that tL and tR are finite but large enough intervals and take
the infinite limit finally. For a pair of large enough two-side
boundary slice tL ∪ tR in two-side black hole, the RT surface
will connect these two disconnected time slices so V0 is a
codimension-one space-like surface which is attached at tL
and tR , see Fig. 5. It is clear that the entanglement wedge in
this case is just the WdW patch

M =
⋃

∂Vs=tL∪tR
Vs . (59)

where Vs stands for an arbitrary space-like codimension-one
surface connecting two-side boundary slice tL ∪ tR .

Thus we obtain following result

C̄ ≈ 1

h̄

[∫
WdW

L(gμν, φ)dd+1x + Sbd

]
. (60)

The absolute sign disappears because it has been shown
the on-shell action of WdW-patch is always positive [35].
Eq. (60) is nothing but the CA conjecture!

We find that the CA conjecture describes the complexity
between the field operator eigenstate of a boundary field the-

Fig. 5 a In CA conjecture, the two disconnected time slices tL and
tR are both infinitely large. We first assume that tL and tR are finite
but large enough intervals. b in the Lorentzian case, when the two-side
boundary are large enough, the entanglement wedge of tL ∪ tR is just
its WdW patch

ory and a TFD state dual to the double-sided AdS black hole,
in the holographic context. It is not the complexity between
two TFD states. The difference of the reference states for
the CV and CA conjecture explains why they show different
time-evolution at early time, reported in [10,11].

Let us now make a little explanation on how the ambiguity
of the phase factor in the CA conjecture corresponds to the
ambiguity of action. Let us denote a field operator eigenstate
by |ϕ0〉 and the TFD state by |TFD〉. Then we have

〈ϕ0(x)|TFD〉 = 1

N
∫

D[gμν, ϕ] exp

(
− i

h̄
SM

)
, (61)

where SM is the action on the WdW patch. We have freedoms
in choosing a phase factors for |ϕ0〉 and |TFD〉, so we can
also choose

|ϕ̃0〉 = eiθ1 |ϕ0〉, |˜TFD〉 = eiθ2 |TFD〉. (62)

Then (61) becomes

〈ϕ̃0(x)|˜TFD〉 = 1

N
∫

D[gμν, ϕ] exp

[
− i

h̄
(SM + S0)

]
, (63)

where S0 = (θ1 − θ2)h̄. We see that these “two phases” (and
including the branch of logarithm) correspond to the freedom
of adding a constant to the action.

4 Applications to the TFD states

In this section we will use our proposal to study the com-
plexity of the TFD states. We will show our proposal can
reproduce some results of the CA conjecture: both the diver-
gent term and the finite term.
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4.1 Complexity of time-independent TFD states

To compare with the CA conjecture, we consider a general
TFD state

|TFD〉 := 1√
Z(β)

∑
En

e−βEn/2|En〉R |En〉L , (64)

with the inverse temperature β, eigen-energy En and partition
function

Z(β) :=
∑
En

e−βEn . (65)

As we have argued, in the CA conjecture, the reference state
should be the eigenstate of the field operator. To write down
such a state, in general we need the detailed action of a the-
ory. Thus, we cannot directly construct such a reference state
only based on the general TFD state (64). Nevertheless, this
reference state is a kind of “simple” state which has no spa-
tial entanglement and there is another type of “no-spatial-
entanglement” state. We know that the strong thermal fluctu-
ation will destroy any quantum correlation, so the TFD state
at infinite temperature has no spatial entanglement. Based on
this property, we use the following state as a reference state

|R̃(ε)
α 〉 := 1√

Z(εα)

∑
En

e−εαEn/2|En〉R |En〉L , (66)

where ε → 0 stands for the UV cut-off and α is an arbitrary
positive constant. Though this state may not be an eigenstate
of a field operator, it is still a kind of classical state with no
spatial entanglement and we will show that it can be used
as a reference state to reproduce basic properties of the CA
conjecture.

As 〈R̃(ε)
α |TFD〉 is a real number, the complexity between

|R̃(ε)
α 〉 and |TFD〉 in our proposal reads

C̄ = − ln〈R̃(ε)
α |TFD〉. (67)

It is easy to find

〈R̃(ε)
α |TFD〉 = 1√

Z(β)Z(αε)

∑
En

e−(β+αε)En/2

= Z(β/2)√
Z(β)Z(αε)

,

(68)

where we neglected the ε term in β + αε. Then our proposal
(67) gives

C̄ = − ln
Z(β/2)√
Z(β)Z(αε)

. (69)

For a CFT theory ind-dimensional spacetime, the partition
function of a thermal field has the universal form

Z(β) ∝ exp(bdVβ1−d) = exp(bdV T d−1), (70)

where bd is a constant and proportional to the central charge
of the CFT. Plugging Eq. (70) in Eq. (69) we obtain

C̄ = 1

2
α1−dbdV [ε1−d + αd−1(1 − 22−d)T d−1]. (71)

Note that the overall factor of complexity is irrelevant. It has
been shown that the complexity of the CA conjecture in the
AdS-Schwarzschild black hole [6] is given by

C = ln d

4π
V ε1−d + d − 2

4πd
cot(π/d)

(
4π

d

)d−1

VT d−1, (72)

where we set GN = 1. By choosing the parameter α suitably
in (71), we can recover the holographic result (72) exactly.

It is interesting to compare our result with other propos-
als, which start from the complexity of quantum circuits:
for example, the proposal of Ref. [81] based on the cMERA
or the proposal of Ref. [42] based the Fubini-Study metric.
Both methods can reproduce the leading divergent term of
the holographic complexity. However, In Ref. [81], L1 norm
is assumed artificially and, in Ref. [42] the generators set
is restrict to be SU(1,1) and L1 norm is also assumed arti-
ficially. In addition, though the leading divergent term was
reproduced in their work, the temperature-dependent term of
Eq. (72) cannot be reproduced.

In our framework, Eq. (71) naturally appears without arti-
ficial assumptions such as L1 norm or specific generators set.
We stress that we obtained the correct temperature-dependent
term as well as the divergence structure. To our knowledge,
this is the only case that a field theory proposal reproduce the
complete form of the holographic result (72).

4.2 Time evolution and compatibility with holographic
results

We also would like to make a short comment regarding the
inner product between a TFD state and its time-evolution
state at large time limit. A time-dependent TFD state is given
by

|TFD(t)〉 := 1√
Z(β)

∑
En

e−(β+2i t)En/2|En〉R |En〉L . (73)

The complexity between |TFD(t)〉 and |TFD(0)〉 in our pro-
posal reads

C̄(t) = − ln |F(t)| + Im ln F(t), (74)

where

F(t) := 〈TFD(t)|TFD(0)〉. (75)

In the CA conjecture, the reference state is conjectured to
be a kind of “simple” state. In this paper, we have argued that
this “simple” state should be an eigenstate of the field opera-
tor and we denote it by |R〉. Though, in the previous subsec-
tion, we used |R̃(ε)

α 〉 (66) as a reference state and reproduced
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a few basic properties of complexity in the CA conjecture,
here we do not assume |R〉 = |R̃(ε)

α 〉.
Let us introduce three different complexities: (i) C̄R(0)

is the complexity between |R〉 and the initial TFD state
|TFD(0)〉, (ii) C̄R(t) is the complexity between |R〉 and the
time-dependent TFD state |TFD(t)〉, (iii) C̄(t) is the com-
plexity between |TFD(0)〉 and |TFD(t)〉. If the complexity
in the CA conjecture stands for a kind of distance [39–41],
the triangle inequality implies

C̄R(t) − C̄R(0) ≤ C̄(t). (76)

In the CA conjecture, it has been discovered that the com-
plexity between |R〉 and |TFD(t)〉 will grow linearly at late-
time limit. Thus, if we accept the result of the CA conjecture
as C̄R(t), we may conclude that C̄(t) should increase forever
as time goes on: C̄(∞) → ∞, i.e. the complexity between
between |TFD(0)〉 and |TFD(t)〉 should grow to infinity as
t → ∞. Let us check it concretely.

Plugging Eq. (73) into Eq. (75) we obtain

F(t) = 1

Z(β)

∑
En

e−(β+i t)En = Z(β + i t)

Z(β)
. (77)

In Eq. (77) we have

Z(β + i t) =
∑
n

e−βEn ei Ent . (78)

In the continuum limit, we may replace the sum with the
integral:

Z(β + i t) =
∫ ∞

0
N (E)e−βEei EtdE, (79)

where the density of state N (E) is introduced and N (E)dE
is the state number when energy is in E ∼ E+dE . It is clear
that∫ ∞

0

∣∣∣N (E)e−βE
∣∣∣ dE =

∫ ∞

0
N (E)e−βEdE = Z(β), (80)

which is finite (here we assume that volume V is large but
finite). Then the Riemann–Lebesgue lemma says that

lim
t→∞ Z(β + i t) = lim

t→∞

∫ ∞

0
N (E)e−βEe−i t EdE = 0, (81)

so

lim
t→∞ F(t) = 0. (82)

It implies that the complexity between |TFD(t)〉 and |TFD(0)〉
will grow forever. See Ref. [46] for another way of compu-
tation of F(t) by an analytic continuation of Eq. (70). In our
opinion, it seems that a simple analytical continuation may
be misleading. This is another nice consistency check of our
proposal with the CV conjecture. As we do not know the ref-
erence state exactly just from the general ‘formal definition”
of the TFD state (64), we cannot directly compute C̄R(t).

Thus, the consistency check we just showed is the best we
can do.

5 Conclusions

Complexity is a quantum informational quantity, which
essentially depends on the choices of the basic operations
(gates) and their costs (penalties). There are proposals for
the holographic duals of the complexity. In the complexity-
volume and the complexity-action conjectures, the complex-
ity is conjectured to be the volume of a maximal spatial hyper-
surface or the on-shell action of the bulk theory in a special
spacetime region. In both conjectures, they neither tell us
what the fundamental operators (gates) are nor tell us how to
choose the costs (penalties). Thus, there are two fundamen-
tal questions: if the holographic complexity is indeed a kind
of complexity, in their field theory duals, what are the basic
gates and their costs?

Towards the answer to these fundamental questions, we
choose a different strategy. We do not assume anything from
usual concepts from the complexity in quantum information
theory. In particular, we do not assume that the field theory
dual of holographic complexity is a continuum version of the
circuit complexity. Without any prejudice, we start with the
inherent properties of the holographic complexity and try to
understand the essential features that the field theory duals
should have. In principle, the dual may not be any kind of
complexity.

We argue that any field theory dual of the holographic
complexity should have two basic properties: (1) it is invari-
ant under infinitely many independent unitary transforma-
tions and (2) it is extensive for product states. These two
basic properties are inferred from the holographic complex-
ity itself but cannot be obtained by the general analyses of
quantum informational setups including “circuit complexity”
or “operators complexity”. Guided by these two properties,
we proposed a possible candidate for the field theory dual of
the holographic complexity:

C̄(|ψ1〉, |ψ2〉) = α1 ln |〈ψ1|ψ2〉| + α2 |Im ln〈ψ1|ψ2〉| . (83)

This simple-looking formula has rich contents.
Firstly, the complexity in field theory can have a natural

path integral formalism. Though formula (83) does not sat-
isfy the “triangle inequality” in usual qubit systems, we show
that it can satisfy the triangle inequality for a theory which
has the Lagrangian formalism. In addition, in the classical
limit, it naturally gives the relation between the “path-integral
complexity” and the Liouville action for 2D conformal field
theories.

Secondly, the proposal (83) can give natural interpreta-
tions for the CV and CA conjectures and clarified their tar-
get and reference states. The CV conjecture is dual to the
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complexity between a TFD state and its perturbed state by
a marginal operator. The CA conjecture computes the com-
plexity between a TFD state and the eigenstate of the field
operator. This difference explains why the two holographic
conjectures have different time evolution.

Finally, if our proposal is applied to the TFD states we
find that it is compatible with the holographic complexities at
late time. Furthermore, our proposal can reproduce the holo-
graphic results of the CA conjecture well. It yields both the
correct divergent structure and the temperature-dependent
term. To our knowledge, this is the only field theory pro-
posal that reproduces the both terms in the result from the
CA conjecture.

One basic property of our proposal (83) is that it is unitary
invariant. It is often claimed [41,82] that the complexity must
be non-unitary invariant because a unitary-invariant com-
plexity cannot reproduce the “expected” time evolution of
the complexity: for a chaotic system with N degrees of free-
dom, the complexity evolves in three stages: linear growth
until t ∼ eN , saturation and small fluctuations, and quan-
tum recurrence at t ∼ ee

N
. However, the counter example of

this claim is shown in Ref. [83], where the unitary-invariant
or bi-invariant complexity can indeed realize the expected
time evolution. The example in [83] is a supporting evidence
for our claim that the field theory dual of the holographic
complexity may be unitary-invariant. What is more, the uni-
tary invariance also matches with the fact that holographic
complexity is diffeomorphic invariant. Every bulk diffeomor-
phic transformation will induce a unitary transformation on
the boundary states, so the boundary complexity should be
invariant under infinitely many independent unitary transfor-
mations. To the best of our knowledge, there is no non-unitary
invariant complexity which is invariant under these infinitely
many independent unitary transformations.

We want to emphasize that there is nothing wrong with the
“non-unitary-invariance” of the complexity in real quantum
circuits. The essential question we are asking in this paper
is “what is the boundary field theory dual corresponding to
the holographic complexity?”. Therefore, the properties of
the complexity of the real circuits are never requirements.
They must be consequences, if possible. If we assume that
the holographic complexity is dual to a kind of continuum
version of the discrete circuit complexity, in our opinion,
some of the properties of the real circuit complexity need
to be modified to satisfy two properties we proposed of this
paper.

One may argue that, our proposal is basically a certain
function of an inner product, which describes some proper-
ties of “overlap” between two states. Particularly, it has been
noted that the function of a inner product, such as the Fubini-
Study distance, can not distinguish one-flip from multi-flips
[41] of qubits systems, so may not be a good candidate of
complexity in qubits systems. Regarding this viewpoint, we
want to make three comments. First, we have shown in the
end of Sects. 3.1 and 3.2 that our proposal satisfies the trian-
gle inequality so stands for a kind of “distance”. Second, we
have shown in the Appendix B how our proposal can distin-
guish one-flip from multi-flips if it is used for “continuous
systems” rather than discrete qubits systems. Thirdly, if a
simple function of the inner product can reproduce most of
basic properties of holographic complexity, there is no reason
to naively abandon the possibility that holographic complex-
ity in fact describes some properties of “overlap” of boundary
states. Holographic complexity may or may not be related to
kind of naively generalization of circuit complexity, which is
still an open question, to our understanding. We believe that
looking at the problem from a different angle will be a mean-
ingful starting point to understand holographic complexity
better.
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Appendix A: Proof for path-integral complexity

For a two-dimensional conformal field theory which contains
matter fields coupling with string worldsheet and is embed-
ded in a D-dimensional flat space (2 < D < 25), the classical
action is

S := (2πα)−1SX + Sm[ϕ, gab]. (A1)

Here, SX := ∫
d2xgab∂a Xμ∂bXνημν stands for the string

worldsheet action with the Minkowski metric ημν in the D-
dimensional background space. gab is the induced metric
of the worldsheet. α is the string coupling constant, which is
proportional to string length square. Sm is a conformal matter
fields action.

The Euclidian action reads [84–86]

SE = Sm[ϕ, δab] + 1

2πα
(SX [Xμ, δab]

+ SL [φ, δab] + Sgh[bab, ca, δab]),
(A2)

where Sgh is the ghost fields action and SL is the Liouville
action with the central charge c:

SL [φ, δab] := c/(24π)

∫∫
d2x

[
ηab∂aφ∂bφ + μe2φ

]
. (A3)

Suppose that a common eigenstate of {ϕ = ϕ0, Xμ =
Xμ

0 , g(E)
ab = δab} is |ϕ0〉; and |�φ〉 stands for the ground state

satisfying g(E)
ab |z=z0 = e2φ(x)δab, where z is the Euclidean

time and z0 = ε � 1 is a UV cut-off. Then we have

〈ϕ0|�φ〉 =
∫

D[φ]D[ϕ]D[X ]D[b]D[c] exp

{
− 1

h̄
SE

}

=
[∫

D[φ] exp

(
− SL

2παh̄

)]
〈ϕ0|�0〉. (A4)

Here |�0〉 stands for the ground state for φ = 0. Based on our
proposal (20) and noting the fact that there is no imaginary
part, we find that the complexity between |ϕ0〉 and |�φ〉 reads

C̄[φ] = − ln
∫

φ(x,z=ε)=φ(x)
D[φ] exp

(
− SL

2παh̄

)

− ln〈ϕ0|�0〉, (A5)

Let us compare our result Eq. (A5) with the path integral
complexity in Refs. [30,31]. In the small h̄α limit, Eq. (A5)
yields, by the saddle point approximation,

C̄ = C̄(0) + S(cl)
L [φ]
2π h̄α

[1 + O(h̄α)], (A6)

where S(cl)
L [φ] is the classical on-shell action of the Liouville

action with the boundary condition φ(x, ε) = φ(x) and C̄(0)

corresponds to S0 in Eq. (43), which contains all terms which
are independent of the dynamics of matters. Thus, we find
that the conjecture of Refs. [30,31] is just the leading order
term of our proposal in the classical limit. Note that there

are two different limits that we can recover the proposal for
the Liouville action: h̄ → 0 and α → 0. The former is the
usual classical limit while the later is the weak coupling limit
between the matter and string/gravity.

Appendix B: A comment on Fubini-Study distance

In this appendix, we will show that how our proposal can
distinguish one-flip from multi-flips if it is used for “contin-
uous systems” rather than discrete qubits systems. The basic
idea of argument was shown in our previous work [77]. We
explain here again for the readers.

To understand our idea, let us first consider the Fubini-
Study distance, which was discussed by Ref. [41] and used to
explain a function of inner product cannot be used to compute
the complexity in qubit systems. The Fubini-Study distance
between two product states |ψ1〉 = ⊗n

i=1 |an〉 and |ψ2〉 =⊗n
i=1 |bn〉 is given by

DFS = arccos

∣∣∣∣∣
n∏

i=1

〈ai |bi 〉
∣∣∣∣∣ , (B1)

Here we take ai = 0, 1 and bi = 0, 1 so that |ψ1〉 and |ψ2〉
are two quibit states. Let us consider |ψ1〉 = |ψ2〉 as a starting
point, i.e. two states are same states and so the complexity
is zero. Only one flip of a qubit will change the complexity
dramatically: from zero to π/2. This can not be the property
of the complexity because flipping just one qubit should not
change the complexity that much. If we start with the case
〈ψ1|ψ2〉 = 0 flipping some of the qubits may not change
the complexity at all. This can not be the property of the
complexity either.

However, this this does not mean that we can not use the
inner product at all for complexity. We will show that the
above issue may be resolved by our proposal (20):

C̄ = C̄r + C̄Im, (B2)

where

C̄r = −
n∑

i=1

ln |〈ai |bi 〉|, C̄Im =
∣∣∣∣∣Im

n∑
i=1

ln〈ai |bi 〉
∣∣∣∣∣ . (B3)

Though here the function “ln” replaces the function “arccos”,
the problem of “flip one qubit” is still seemingly unsolved.
We will argue that this issue can be resolved if we take into
account that our formula (20) is proposed for the system in
the continum limit with infinitely many degrees of freedoms
rather than discrete finite systems.

Let us focus on the real part C̄r . For a 1 dimensional a
continuous system

C̄r = − ln |〈ψ1|ψ2〉| = −2L
∫

ln |〈a(k)|b(k)〉|dk, (B4)
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where the continuous variable k is introduced instead of the
discrete index i . L has the dimension of [k]−1. Suppose
that the states are ‘regular’, meaning that the inner prod-
uct 〈a(k)|b(k) depends on k analytically. If we change the
states of k ∈ (k0 − δ, k0 + δ) so that 〈a(k0)|b(k0)〉 �= 0 →
〈ã(k0)|b̃(k0)〉 = 0, the complexity is changed as

δC̄r = −L
∫ δ

−δ

[ln |〈ã(k0 + x)|b̃(k0 + x)〉|
− ln |〈a(k0 + x)|b(k0 + x)〉|]dx, (B5)

and the integral is finite due to ‘log’, although 〈ã(k0 +
x)|b̃(k0 + x)〉 is zero at x = 0. In the limit δ → 0, which
amounts to “flipping exactly one qubit”, δC̄r = 0 as expected.
The same holds also for C̄Im.

We can use our proposal for the discrete system by mak-
ing a discretization on the integration measure “

∫
dk” and a

regularization in the argument of “ln”. For a n-qubit system,
one way is

L
∫

dk →
∑

, (B6)

for a discretization and

ln〈·|·〉 → ln(〈·|·〉 + ε̄), (B7)

with ε̄ � 1 for a regularization. The discrete version of
Eq. (B4) is

C̄r = −
n∑

i=1

ln

( |〈ai |bi 〉| + ε̄

1 + ε̄

)
, (B8)

where 1 + ε̄ in the denominator is introduced to ensure that
the complexity between the same states is zero. Let us start
with the case |ψ1〉 = |ψ2〉, which yields C̄(|ψ2〉, |ψ1〉) = 0.
Once we flip one qubit in |ψ2〉, the complexity increased by
C̄0 = C̄r = −2 ln(ε̄/(1 + ε̄)) ∼ −2 ln ε̄. If we flip n qubits
in |ψ2〉 the complexity is increased by nC̄0. It is a desirable
property of the complexity.

The cut-off term ε̄ in Eq. (B7) may look artificial. How-
ever, this can be understood in the following way. If we
want to make two qubits |ath〉 and |bth〉 it is easy to write
down mathematically, but physically we have to design cer-
tain physical systems to realize them. Because of ubiquitous
quantum and thermal fluctuations, what we really deal with
are two states |aob〉 and |bob〉. Their inner product is

|〈aob|bob〉| = |〈ath|bth〉| + ε, (B9)

so

ε̄ = |〈aob|bob〉| − |〈ath|bth〉|, (B10)

where the “X” means the average observations of the variable
X and ε̄ is an “error” due to the intrinsic fluctuations. If
|〈ath|bth〉| > 0, |〈aob|bob〉| can be bigger or smaller than
|〈ath|bth〉| , i.e. ε can be positive or negative, so ε̄ → 0.

However, if |〈ath|bth〉| = 0, we have |〈aob|bob〉| ≥ 0 so
ε̄ > 0. The value of ε̄ > 0 is determined by the physical limit
of observation. In principle we can reduce it by considering
complicated systems, which will increase the complexity as
expected. It is reflected in our formula C̄0 ∼ − ln ε̄ in the
previous paragraph.
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