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ABSTRACT 

Some methods of nonrelativistic quantum mechanics which are particularly 

useful for studying the variation of bound-state parameters with constituent mass 

and excitation energy are reviewed. These techniques rely upon elementary scaling 

arguments and on the semiclassical (WKB) approximation. They are of general 

interest, but are applied here to the study of bound systems of a heavy quark and 

antiquark. Properties of the interquark interaction are extracted from information 

about masses and leptonic widths of the J, and T families. It is shown how general 
. 

methods can be applied to the determination of the electric charge of quarks and to 

the prediction of properties of new families. 
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I. INTRODUCTION 

Nonrelativistic quantum mechanics, as embodied in the Schrddinger equation, 

is the source of much of our understanding of the structure of matter. In a rich 

variety of circumstances it provides the correct description of physical reality, in 

that a nonrelativistic treatment is entirely proper or that small relativistic 

corrections may be treated as well-controlled perturbations. This is the physics of 

atoms and molecules, of condensed matter, and of university courses in quantum 

mechanics: the physics of the “heroic age” of the mid-1920’s. Fl In many other 

instances, insights gained from the Schrodinger equation have provided indis- 

pensible guidance in the relativistic regime. One such episode is the profound 

influence of studies in potential scattering, as represented in the classic monograph 

by de Alfaro and Regge,L upon the evolution of the S-matrix theory of strong 

interactions. Nuclear and particle physics abound in similar cases. All are 

characterized by the hope that reliable extrapolations can be made from a solvable 

nonrelativistic problem to a physically interesting problem which may be difficult 

to frame with precision or to solve. 

Recently a new opportunity to productively employ nonrelativistic methods 

has presented itself to high energy physicists, in the discovery of the $(3 GeV/c’) 

and T(10 GeV/c’) families of heavy neutral mesons. These are interpreted as bound 

states of a massive quark and antiquark (QQ moving nonrelativistically. The 

prospect that heavy mesons can be identified as eigenstates of the Schrodinger 

equation has stimulated considerable activity directed toward the achievement of a 

predictive spectroscopy of hadrons. Efforts along these lines are encouraged by the 

special satisfaction that accompanies finding new uses for established techniques or 

noticing new consequences of familiar ideas. 



FERMILAB-Pub-79/22-THY 

Many applications of the Schrodinger equation to the new heavy mesons have 

been based on specific potentials with varying degrees of theoretical justification. 

Our aim in the present review is somewhat different. We shall show how some 

general methods, elementary but perhaps not well enough known, can be used to 

characterize families of mesons and the potentials responsible for them. Many 

results of specific potential models can be obtained from simple scaling or 

semiclassical considerations. Thus, we shall explore in this report the way in which 

various physical properties of heavy mesons can be expected to depend on coupling 

strength, quark mass, or excitation energy. A number of results promise to give 

insight into the nature of the interquark interaction: Is it independent of quark 

species? Does it approach a Coulombic form near the origin as expected from the 

exchange of a single massless gluon? 

Although our recent interest in the Schrodinger equation is motivated by the 

promise of this program, the present report is not limited to the spectroscopy of 

heavy mesons. Indeed, for much of the article we shall deal with techniques and 

results which have more universal applicability. The topics to be discussed have 

aspects of pedagogical interest, and it will not surprise us to learn that they may 

illuminate physical issues unrelated to those that concern us. Not until all the 

techniques have been exhibited and the general results derived shall we present 

applications to the problems at (our) hand. Most of this report is therefore suited 

to the general reader, or to’me student of undergraduate quantum mechanics. 

Let us however briefly summarize the circumstances of the contemporary 

interest in these methods among high energy physicists. We believe F2 that hadrons 

are composed of quarks which, if not permanently confined, are at least very 

difficult to liberate. The nonobservation of free quarks F3 suggests that the binding 
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force is formidable, but the success of the quark parton model’ in describing hard 

scattering processes argues that quarks nevertheless behave within hadrons as if 

quasi-free. Although it has not been proved to yield quark confinement, quantum 

chromodynamics (QCD),F4 the non-Abelian gauge theory of quarks interacting via 

massless vector quanta called gluons, promises to explain this paradoxical 

circumstance through the property of asymptotic freedom. F5 Asymptotic freedom 

refers to the fact that in QCD, the strong interaction becomes feeble at large 

momentum transfers (short distances) so that quarks are weakly bound at small 

separations, but feel an increasingly strong restoring force at large separations. 

On the basis of asymptotic freedom arguments, it was anticipated 13 that 

bound states of then conjectural heavy quarks might be described by a 

nonrelativistic analog of the bound e+e- system, positronium. F6 The spectrum of 

positronium (Ps) is shown schematically in Fig. 1. The ground state, a favorite 

textbook example, 16 IS split by the hyperfine interaction into the J PC = 1-- 

orthopositronium and J PC = o-+ parapositronium components with lifetimes that 

differ by a factor of 1120. We refer to the hadronic counterpart of positronium 

generically as quarkonium. 

At the end of 1974, the $/J (3095 MeV/c’) was discoveredl7918 in 

experiments at SLAC and Brookhaven. It was immediately recognized as 

exceptional because of its tiny decay width (67 keV), which may be understood 13 

by analogy with the metastability of orthopositronium. The I) is composed of a 

charmed quark and antiquark (cs). In addition to the second-order electromagnetic 

decays illustrated in Fig. 2(a), two sorts of strong decays may be contemplated. 

The first of these, dissociation into a pair of charmed particles (shown in Fig. 2(b)) 

is energetically forbidden. This kind of decay mechanism is the norm for ordinary 

hadrons. Finally, as indicated in Fig. 2(c), the cc pair may annihilate into three 
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(virtual) gluons which materialize into the observed ordinary hadrons. Three 

gluons, each transforming under the W(3) color gauge group as a member of an 

octet, are required to reach the color singlet final state. This decay mechanism is 

inhibited by the smallness of the heavy quark coupling to gluons. 

The experimentally-studied spectrum of the 11, or charmonium, family is 

exceedingly rich, F7 as shown in Fig. 3(a). Below the threshold for decay into pairs 

of charmed mesons lie the very narrow states $(3095), $‘(3684), X (3415), x(35101, 

and x(3550) for which quantum numbers are rather convincingly established. Above 

charm threshold lie the discrete vector states J1(3772) and $(4414), and a thicket of 

levels around 4.1 GeV/c’. In addition, there have been suggestions of states which 

may be pseudoscalar: X(2830), X(3455), X(3600),F8 none of which is unambiguously 

identified. The spectroscopic notation for the psions as bound states of a charmed 

quark and antiquark is indicated in Fig. 3(b). 

In broad terms, the description of the psions as atomic levels of a 

nonrelativistic (ca system bound by a static potential has met with great 

success.F9 The spectrum resembles a nonrelativistic level scheme, and there have 

been some predictive triumphs. The principal challenges to the ingenuous model 

have primarily to do with spin-orbit and hyperfine splittings. To do justice to the 

quantitative difficulties and proposed resolutions would take us too far afieId.F1o 

It will be enough to know that the Schrodinger equation approach does very well on 

the generalities of the charmonium system, and that the nonrelativistic approxima- 

tion should be much better for families composed of heavier quarks. For the 

purposes of this report, we shall confine ourselves to the spin-triplet spectrum, 

which includes the important vector mesons, and neglect fine structure and 

hyperfine structure effects. 
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It is appropriate to ask what are the aspirations of a nonrelativistic quantum 

mechanics approach to quarkonium spectroscopy. We expect it to serve as a basis 

for a fertile phenomenology, a means of asking the right experimental questions 

and understanding how to interpret the answers. It can also provide specific guides 

to experiment. If the form of the interquark potential is known, there is for the 

first time in hadron physics the possibility of a predictive, rather than descriptive 

spectroscopy. F11 In addition, many nontrivial predictions can be made even 

without precise knowledge of the potential. We will be concerned only in passing 

with adjusting explicit potentials to reproduce detailed features of the data. 

The body of this report is organized as follows. In Section II we review 

general consequences of the SchrGdinger equation and theorems which do not 

depend upon restrictive conditions on the potential. Section III is devoted to the 

sharper results which hold for potentials which are simple powers of the interquark 

separation or depend logarithmically upon the separation. Semiclassical results are 

the subject of Section IV. For many of the results discussed in Sections II-IV, we 

relate unfamiliar general results to well-known special cases. In Section V we turn 

our attention for the first time to quarkonium spectroscopy. There we review some 

earlier applications of scaling laws to the JI and T families. We compare two 

specific potentials for the charmonium and upsilon families in Section VI. In 

Section VII we show how charges of the quarks in neutral vector mesons can be 

deduced from the leptonic decay widths of these mesons in a manner largely 

independent of details of the potential. In Section VIII semiclassical methods are 

used to count narrow quarkonium levels by estimating the threshold for decays of 

the form shown in Fig. 2(b). In a concluding section we survey the achievements 

and future promise of quarkonium quantum mechanics. 
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Encouragement to prepare this report has come from many of our colleagues 

who have convinced us that the style of quantum mechanics presented here is of 

interest to physicists of diverse backgrounds. We hope the reader will find in the 

study of this report as much entertainment and enlightenment as we have found in 

the writing. 
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II. THE SCHR6DINCER EQUATION-GENERAL CONSEQUENCES 

In this Section we fix notation and derive some useful general consequences 

of the Schrodinger equation. The theorems that can be proved in potential theory 

are nearly limitless, as are the identities that can be deduced from the Schrodinger 

equation. Our principal object will be to find results which are convenient for the 

discussion of bound-state problems. We shall not discuss the complementary 

problem of quantum scattering, many aspects of which are summarized in the 

monograph by de Alfaro and Regge. 
2 

Almost without exception, the results 

presented here are not novel, but in only a few cases has it been possible to 

attribute them to the originators. 

After introducing our notation, we shall derive (§A) the Feynman-Hellmann 

theorem on the variation of the energy eigenvalue with parameters of the 

interaction, a result that we shall frequently apply. We shall then construct (§ B) 

the virial theorem and its generalizations. Of these, the connection between the 

wavefunction at the origin and the gradient of the potential occurs most often in 

the applications we discuss. A slightly technical digression (§Cl on bound-state 

normalizations may be omitted by the reader who is not concerned with details. 

The subsequent discussion of the mass dependence of wavefunctions (5 D) is 

important. We draw upon it many times in the rest of the article. A very brief 

treatment of quantum mechanical sum rules (§E) is included for completeness, 

although no later developments build upon it. 

The Schrodinger equation32 in three dimensions is written in the form 

H2 -z V2’+‘(r)+ [V(r)-Ely(r1 = 0 , A. (2.1) 

where u is the reduced mass of the two-body system, L is the relative coordinate, Y(rJ 

is the Schrodinger wavefunction, V(r) is the interaction potential, E is the energy 
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eigenvalue, and fi is Planck’s constant divided by 2n. For the interesting case of a 

central potential, it is convenient to write 

‘(2 = Rk)YQ ,(B, @ ) f 

where R(r) is the radial wavefunction and Y a mC3 ,0 ) is a spherical harmonic. F12 

With this substitution, the SchrGdinger equation separates and the radial wave- 

function satisfies 

E - V(r) - ” +21’H2 
3 

R(r) = 0 . (2.3) 
&Jr 

The radial equation can be placed in formal correspondence with the one- 

dimensional Schradinger equation by means of the substitution 

u(r) z r R(r) f (2.4) 

which defines the reduced radial wavefunction. The reduced radial equation is then 

-u”(r) = 2J 

Ii2 [ 
E _ v(r) _ a(a + l)fi2 

2ur2 1 u(r) , 

subject to the boundary conditions 

u(O) = 0 

u’(O) = R(O) 

f (2.6a) 

(2.6b) 

We denote by a prime the derivative of a function with respect to its argument. 

Equation (2.5) is identical with the one-dimensional equation for an effective 

potential given by V(r) + Q,(fi + 1)H2/2pr2, except that even parity solutions are 

inconsistent with the boundary conditions (2.6). The SchrGdinger wavefunction is 

normalized, 
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, (2.7) id~lY(rJ2 = I 

(2.8) 

so that the reduced radial wavefunction satisfies F13 

.f, dr[u(r)12 = 1 . 

A. The Feynman-Hellmann Theorem 

As a first consequence of the SchrGdinger equation, we show that the larger 

the constituent mass, the lower a specified bound state lies in a given potential. 

This result rests on a general theorem due to Feynman and Hellmann. 34 We write 

the Schrodinger equation in Hamiltonian form as 

%?A, 1 Y> = E(X)1 ‘f’> , (2.9) 

where i is any parameter characterizing the interaction, such as potential strength 

or reduced mass. Then the variation of bound-state energy with the parameter X is 

given by 

g=<z> , (2.10) 

where <> denotes an expectation value. The proof is elementary. Since E = ~8, 

aE FL = &YIkqY> 

a<yIkVIy> + <Y+-- 
=--Ti- 

aff7 Y’ + <Ypi?~ . (2.11) 
ah 

Using (2.9), we rewrite the first and last terms to obtain 

g = <a%> +E(<p>+<Ylg>) . (2.12) 

The term proportional to E may be recognized as 
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E $& <‘I’/ Y’> = E & (1) = 0 , (2.13) 

by virtue of (2.7), which establishes the theorem. 

Early applications of this theorem were to physical situations such as 

molecular configurations for which h is a parameter of the potential. An important 

case for our purposes is the variation of bound-state energy with reduced mass. 

For bound states in a three-dimensional potential, the Hamiltonian is, according to 

(2.1), 

ap, = T(p) + V(J) = -g + V(z) . 

Consequently we have 

F= -; ( -g, = -pTy . 

The Feynman-Hellmann theorem (2.10) now yields 

z ap = +E-<V>) < 0 , 

(2.14) 

(2.15) 

(2.16) 

which shows that as p increases, the energy of a specified bound state decreases. 

Examples of this behavior will be given in 5 III. The same result holds in any 

number of dimensions, for a Hamiltonian of the general form (2.14). For a 

central potential which is monotonically increasing with r, V’(r), 0, the classical 

turning point rc, defined through 

Vkc) = E (2.17) 
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will therefore decrease as well. A further application of relation (2.16) will be 

made in 5II.D. 

B. The Virial Theorem and Related Theorems 

Two results of considerable general utility for the study of bound states in a 

central potential are the virial theorem, 

<T> = E- <V> = <I dv > 
2 dr (2.18) 

and the connection between the s-wave wavefunction at the origin and the gradient 

of the potential, Fl4 

IY(O)12 = 2 <g> 
2nH2 

(2.19) 

We shall derive these connections in a way that permits powerful generalizations 

for many simple potentials. It is convenient to define the function 

..$f(r) = 2 [ E-V(r)-a’2’~21)KZ ] 9 
u 

(2.20) 

so that the Schrodinger equation may be written as 

-u”(r) = %r)u(r) (2.21) 

We then multiply the Schrodinger equation by rqut(r), where q’ -2a, and integrate 

from 0 to m.F15 
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- Jrn dr rqul(r)ull(r) = j-= dr r’sr)u(r)u’(r) * (2.22) 
0 0 

Recognizing that u’u” = K(ut2)’ and that uu’ = V,(u2)‘, we integrate both sides by 

parts, whereupon 

-rq[u1(r)121;+q .f, drrq-‘[u’(r)12 = 

rq%r) [u(r) ]‘I$q~~ dr rq-‘p(r)[u(r) 12-Ii dr rqp\r)[ u(r)] ’ . (2.23) 

For bound states the boundary terms vanish at the upper limit of integration, 

leaving 

2 - 
r* [u’(r) II o + q J 

0 
dr rqvl[ uYr)12 =-rqflr)[u(r)l 21 - q<rq-‘p(r)> - <rq.??k) >. (2.24) 

0 

To evaluate the remaining integral, we integrate again by parts: 

m m 

q .! drr q-‘[ u’(r)1 2= q rq-‘u(rW(r) 1 o - q Irn dr rq-‘u(r)u”(r) 
0 

o 

- q(q - 1) Ji dr rq-2u(r)u’(r) 9 (2.25) 

where the first term again vanishes at infinity. The second term is seen to be 

+q uq-’ y(r) >, by using (2.21). A final integration by parts yields 

- q(q - 1) Irn dr rqS2u(r)ut(r) = - 4 (q - 
0 

1)rqs2[ u(r) l”I, 

+ q(q - I;(” - 2) ,,q-3, (2.26) 
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Assembling the pieces and again using the Schriidinger equation (2.21), we obtain 

C rq [u’(r) ] 2 - qrq-lu(r)u’(r) + q(q - 11” [ u(r) I2 - rqu(r)u%) 1 r=O = 

- 2q <rq-lY(r)> - <rq5?‘(r) >- qCq - 12” - 2)<rq-3 > . (2.27) 

Near the origin, the reduced radial wavefunction for angular momentum R takes 

the form 

uI1(r) fl aQr R+I 

so that 

uR’(r) S (5! + I)ailr II 

, (2.28) 

(2.29) 

Evaluating (2.27) in the limit r +O, we find that 

(2L + 1J2 aL2 6 q,-211 = - 
c2qrq-‘y + ,qy’ + ds - If” - 2) $3 > , (2.30) 

which holds for any power q’ -211. 

To recover eq. (2.19) we set II= 0, q = 0, for which 

ao2 = - <y’ir) > = $<g> (2.31) 

Next observe that according to (2.6b) and (2.29) 



so that 

(Y(O)[2 = -@- <$ > 
2d2 

The virial theorem follows from (2.30) with the choice q = 1: the equation 

2<Y(r)> = -<rYtr)> 

can be rearranged to read 

E- <V> E <T> = <$“$ > 

An important special case occurs for power-law potentials of the form 

V(r) = X r” , 

for which the kinetic, potential, and total energies are related by 

CT> = ;<V> = 2& E I 

(2.32) 

(2.19) 

(2.33) 

(2.18) 

(2.34) 

(2.35a) 
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~~(0) = a0 = R(O) = /6iY(O) f 

or equivalently, 
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<v> = 2 +” 2E (2.35b) 

Thus for the linear potential (V = I) we find 

1 <r>= T <V> = 3+E (2.36) 

For the Coulomb potential (V = -I), the generalized virial theorem with q = 2 leads 

immediately toF16 

+ k(k + l,tr2 
2 ux (2.37) 

Other practical uses of the general formula (2.30) include the determination 

of the coefficients aR and, especially for the Coulomb and linear potentials, the 

evaluation of other spatial moments of the probability distribution. One- 

dimensional applications can be read off from (2.27), with the imposition of 

appropriate boundary conditions. 

C. Bound State Normalization 

Consider the Schrsdinger equation for a symmetric potential in one 

dimension, with 2~ z K2 for convenience: 

$ “(x) + (E - V(x))@(x) = 0 

subject to the boundary conditions 

, (2.38) 

$(O) = I , @‘to) = 0 (2.39a) 
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$l(O) = 0 , @‘CO) = 1 (2.39b) 

This statement of the problem is chosen in practice for numerical calculations. At 

an eigenvalue E = En, C)(X) + 0 as [x I* Q). 

It is of interest to evaluate the normalization integral 

I = fin dx[$(x)l 2 
0 

f (2.40) 

which is needed to construct normalized eigenfunctions. In one dimension these are 

given by 

9 w = ~(X)/L?-f (2.41) 

For the three-dimensional problem in a symmetric potential, for which boundary 

conditions (2.39b3 are appropriate, the (normalized) reduced radial wavefunction is 

u(r) = $ WJi- (2.42) 

Since according to (2.32) the SchrGdinger wavefunction at the origin is given by 

HO) = u’(O)//E 9 (2.32’) 

we find that 

IY(0)12 = I/4nI (2.43) 



-17- FERMILAB-Pub-79/22-THY 

We now derive a useful expression for the normalization integral. Similar forms 

may be found in Ref. 2. 

Define the function 

5 E a da E 

and differentiate the Schriidinger equation (2.38) with respect to E, 

;‘I+ o+(E-V) ;= 0 

Next multiply (2.38) by 5 and (2.45) by @, and subtract. The result is 

tJ2 =&II-$;” =&L&g] 

(2.44) 

(2.45) 

(2.46) 

Therefore the normalization integral (2.40) becomes 

I = l;dx[@(x)]‘; [&9-&l] 
m 

, (2.47) 
0 

With either set of boundary conditions, the contribution at the lower limit is 

zero. To compute the contribution at x = m, we express the wavefunction as a 

linear combination of solutions damped and unbounded at infinity. Let us write 

4(x, E) = cl(E)fl(x, E) + c2(E)f2(x, E) , (2.48) 

where 
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lim fl(x, E) = 0 (2.49) 
x+co 

and 

lim f2(x, E) = k w * 
X-+00 

At an energy eigenvalue, the unbounded solution is absent, so that 

c2(En) = 0 , 

(2.50) 

(2.51) 

or equivalently 

9(x, En) = cl(En)fl(x, En) . (2.52) 

For large values of x, we note from eqs. (2.48)-(2.51) that the function i 

approaches 

&x, En) = f2(x, En) 2 1 
E=E ’ n 

Thus the normalization integral is given by 

In = cl@,) 2 1 
E=E 

W(f2, f,) 9 
n 

where the Wronskian determinant 

(2.53) 

(2.54) 

W(f2, f,) 3 f2fl’ - f,f2’ (2.55) 
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is independent of x because the SchrGdinger equation (2.38) is free of first- 

derivative terms. 

In some cases, notably for the Coulomb problem, eq. (2.54) is suitable for 

computations. However, all reference to the unphysical solution f2 can be 

eliminated from eq. (2.54). To show this, we express the boundary values as 

do, E) = cI(E)fl(O, E) + c2(E)f2(0, E) (2.56) 

and 

@‘to, E) = cl(E)f,‘(O, E) + c2(E)f2’(0, E) , (2.57) 

both valid for all values of E. As usual, the prime indicates a derivative with 

respect to the spatial argument. Imposing the even boundary conditions (2.39a), we 

compute 

cle(E) = - f,‘(O, E)/W(f2, fl) , (2.58) 

c2JE) = f,‘(O, E)/W(f2, fl) , (2.59) 

dc2e 
do 63 = 

a f,‘(O, E)/aE f,‘(O, E) a W/aE 

W(f2,fl) - W(f,, f I)2 
(2.60) 

The vanishing of c2e at an even eigenvalue E, implies that 

f,‘(O, Eel = 0 f (2.61) 
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so that 

dc2e 
do (E,) = 

afi (0, E,)/aE 

W(f2, f,) 

It is convenient to evaluate the Wronskian at x = 0, for which 

w(f2, f,) = - fl(O, E,)f; (0, Ee) 

(2.60’) 

(2.62) 

Combining (2.541, (2.58), (2.60’) and (2.62), we arrive at the normalization integral 

for even-parity bound states, 

Ie q 

afi (0, E,)/aE 

fl(O, Ee) 
(2.63) 

The derivation for odd-parity bound states, which obey the boundary conditions 

(2.39b), entails similar arithmetic. We now have 

clo(E) = f2(0, E)/W(f2, fl) 

cZo(E) = -fl(O, E)/W(f2, f,) 

and 

dc20(E) = _ 3 fl(O, E)/ aE 
dE W(f2, fl) 

+ fl(O, E)aW/aE 

wu,, f $2 

. 

The vanishing of c20 at an odd eigenvalue E. implies that 

(2.64) 

(2.65) 

(2.66) 
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fl(O, Eo) = 0 9 (2.67) 

so that 

dc2 
J$E,)= - 

a f l(0, E,)/8 E 

W(f2’ fl) 

The Wronskian is again conveniently evaluated at x = 0, this time yielding 

W(f2, fl) = f2(0, E,)fi(O, E,) 

(2.66’1 

(2.68) 

Now combining (2.541, (2.641, (2.66’) and (2.68) we obtain the normalization integral 

for odd-parity bound states 

afl(0, EoME 
‘0 = - fi(O, E,) (2.69) 

We illustrate the use of eq. (2.63) and (2.69) by applying them to the bound 

states of a linear potential, 

f (2.70) V(x) = Ix ( 

for which the damped solution as x + +- is 

fl(x, El = Ai(x - E) . (2.71) 

The energy eigenvalues are specified by the zeroes of Airy functions, F17 namely 
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Ai’(-E,) = 0 t (2.72) 

for even-parity solutions, and 

t 

for odd-parity solutions. The even-parity normalization integral is then evaluated 

from (2.63) as 

Ai”(-E,) 

‘e = -.Ai(-E,) 

which, by virtue of the SchrGdinger equation 

V’(x) + (E - Ix 1) N(x) = 0 

may be recognized as 

f 

Ie = E, 

For the odd-parity normalization integral, (2.69) leads at once to 

IO = I , 

which implies for the three-dimensional problem in a central potential that 

1 Y (0) 12 = 1/4lI 

(2.74) 

(2.75) 

(2.76) 

(2.77) 

(2.78) 

in agreement with (2.19). 
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D. Mass Dependence of Schrodinger Wavefunctions 

We continue to deal with the one-dimensional bound-state problem for a 

symmetric potential, and its straightforward extension to the three-dimensional 

central potential problem. An important class of applications concerns the 

dependence of observables upon the mass u.38T39 Here we shall show that for any 

potential which is monotonically increasing for x > 0, the probability that a bound 

particle lies within a fixed distance from the origin is an increasing function of u, 

for the lowest-lying states of even and odd parity. In other words, probability will 

be shown to flow inward across any arbitrarily chosen boundary, when u is 

increased. Probability also flows inward when the potential strength is increased. 

Because of the symmetry of the problem, we need only discuss positive values 

of x. We examine the probability P(R) that a particle be contained within the 

interval (0, R). In terms of the wavefunction u(x), normalized according to 

f, dxIu(x)12= I , 

we have 

P(R) = ./. Rdx[u(x)l 2 
0 

(2.8) 

(2.79) 

so that 

0 5 P(R) 2 I (2.80) 

and 

P’(R) F 0 (2.81) 
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We shall demonstrate that for symmetric potentials satisfying 

V’(x) > 0 , x>o - , 

the function 

C(R) z 1. ap(r) = 
R 

2 au 
I dx U(X) au(x)/ap 

0 

(2.82) 

(2.83) 

satisfies 

G(R) > 0 , 0 < R < m - - - (2.84) 

for the even-parity and odd-parity ground states. We begin with the SchrGdinger 

equation in the form 

u”(x) = - z1! [E - V(x) lu(x) 
n2 

, (2.85) 

and apply ubda /a U: 

ucX) t$ (X) = --$E - V(x) + ,, E][ U(X)12- 2 [E _ V(x)]U(x) aF . (2.86) 

With the aid of the Feynman-Hellmann theorem (2.16), this expression can be 

simplified to 

u(x) au” x (x) = 1 [ V(X) - <V>l [U(X)] 2+ a [V(x) - E I u(x) a* 
n2 n2 

. (2.87) 

From this we subtract au/au x eq. (2.85), and integrate from x = 0 to R: 



-25- FERMILAB-Pub-79/22-THY 

foR,, [u(x) $$ (x) - u” e (x)] = $ iORdx [ v(X) - <V>l [u(x) I2 . (2.88) 

Integration of the left-hand side by parts and application of the boundary conditions 

u(0) = finite 

u’(0) = 0 

for even-parity states or 

u(O) = 0 

u’(O) = finite 

for odd-parity bound states yields 

(2.89) 

(2.90) 

u(R)%(R) - u’(R) Fu (R) = $ Qdx [ V(x) - <V>l [u(x)12L 0 , (2.91) 

where the inequality is a consequence of (2.82). 

The function 

G’(R) = u(R) au(R)/ 8 v (2.92) 

vanishes only for u = 0 or au/au = 0. By evaluating G” at an extremum of C from 

(2.91), we discover that 
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G”(R) > 0 if u(R) = 0 (a minimum) , (2.93.a) 

and 

Q(R) < 0 if au(R)/au = 0 (a maximum) (2.93bj 

Since G(O) = 0 = G(a), the function G(R) can become negative for 0 c R< OD only if 

it possesses a minimum in that interval. By virtue of (2.93aI, a minimum occurs 

only at a node of the wavefunction, u(x) = 0. The ground-state wavefunctions are 

nodeless, so (2.84) is established. F18 

The proof just concluded for the odd-parity case directly establishes the 

result (2.84) in three dimensions for the s-wave ground state. By applying the same 

arithmetic to the Schri;dinger equation form (2.21) for the three-dimensional 

problem, we immediately extend the proof to all nodeless wavefunctions, for 

arbitrary values of the angular momentum II. Thus for all bound states on the 

leading Regge trajectory for a central potential satisfying V’(r) L 0,a P(R)/au ) 0. 

The result for the s-wave ground state has important applications to the 

quarkonium problem, which are detailed in §VII. The inward flow of probability can 

be established for excited states as well, for specific potentials. This is 

accomplished in §III. 

A precisely parallel argument leads to a similar result for the variation of 

P(R) with the potential strength. To carry out the proof, we let V(x) + K V(x) in the 

Schrodinger equation (2.85) and substitute a/aK for a/au in subsequent steps. The 

analog of (2.91) is 

u(R)% CR) - u’(R) ‘6 CR) = $ iRdx [V(x) - +‘>I [u(x)?c 0 . (2.94) 
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The discussion following (2.91) applies, mutatis mutandis, to the present case and 

shows that aP(R)/a K 2 0, under the same conditions for which aP(R)/a IJ 2 0. 

E. Quantum Mechanical Sum Rules 

Many different sum rules find wide-ranging applications in quantum physics. 

The principal sum rules of atomic physics are summarized in §61, 62 of the 

monograph by Bethe and Salpeter. 33 Here we content ourselves with remarks of a 

general character, indicating the methods of derivation for classes of sum rules.40 

The sum of squares of the transition matrix elements of any operator: l? 

satisfies a sum rule 

Ji I<il OIn>l’ = <ijO@+Ii>- I<ij Oli>l’ , (2.95) 

where the unrestricted sum runs over a complete set of states. 

Energy-weighted sum rules are generated by the double commutator 

[ [Z, @I, 0’1. Its matrix element is 

4[[Z,~l,O+lli>= 1 (<i/CAY, ~l(nxnj~+li> 
n 

-<ilO+ln><nl[Z, OIli>) 

= 2 1 (Ei-En)I<il oIn>I 2 (2.96) 
n 

As an illustration, let us consider the one-dimensional problem in which the 

Hamiltonian is 

SF = p2/2u + VW (2.97) 
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and the operator 0 1s only a function of the coordinate x. Under these 

assumptions, 

rx Ol=[ (2.98) 

where 

l?I = d otdx 

and the double commutator is easily seen to be 

rrz Ol,~“l = -$10q2 

The sum rule (2.96) takes the form 

$ L (En-Ei)l<il o[n>12 = <iIIf1112/i> 

A familiar special caseF19 occurs for 0 = x, in which event 

, (2.99) 

(2.100) 

(2.101) 

$ i (En-Ei)l<iIxln>12 = 1 . 

It is also possible to generate sum rules weighted by the square of the 

transition energy by considering 

(2.102) 

<iIlL X 0 If Ii >= 1 <ii[X, 01 In><nI[Q+,~]Ii> 
n 

= 1 (Ei-ErJ21<il o))n>12 
n 

(2.103) 
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A case of special interest is again C? = x, with c%?given by (2.97), for which 

IrLz 0112 = -$ P2 = $ L2?-“~xN , (2.104) 

so that 

(Ei - <Wi) : f$ i (Ei-En)21<ilxln>12 

By virtue of the virial theorem (2.18), we may express the last result as 

$ 5, (~~-~,)~I<iIxln>l~ q <ijxV’li> 

(2.105) 

Alternatively, we may invoke the Feynman-Hellmann theorem (2.16) to write 

1 (Ei - En)21 <i Ix In >I2 = -2fi2 aEi/av 
n 

f 

(2.106) 

which again demonstrates that aEi/ 3 p 5 0. 

These examples illustrate but a few of the powerful and unexpected 

consequences of quantum-mechanical sum rules. The applications which have been 

made to the charmonium problem are mentioned very briefly in 51X. 

(2.107) 
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III. SPECIFIC RESULTS FOR POWER-LAW AND LOGARITHMIC POTENTIALS 

A class of simple potentials displays a number of remarkable regularities. In 

this Section we explore the consequences of power-law potentials 

V(r) = irV (-2 < ” < m) (3.1) 

and of the logarithmic potential 

V(r) = C In (r/To) f (3.2) 

which behaves in some respects as the v + 0, h-t -, XV + C limit of (3.1). In such 

potentials the mass dependence of energy levels, distance scales, and wave- 

functions all follow from elementary resealing operations. In addition, the kinetic, 

potential, and total bound-state energies are related in simple fashion. The virial 

theorem (2.18) provides the connection 

CT>= E-<V> = :<“> 2 

or 

<T> = ’ E 
2+v 

for power-law potentials, and 

<T> = c/2 

(3.3) 

(3.4) 

(3.5) 

for the logarithmic potential (3.2). 
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A. Dependence upon Mass and Coupling Strength 

We shall perform some elementary operations on the reduced radial 

Schrodinger equation in a power-law potential, 

n* rN u%) + E-Arv)-ua+ lM2 

2ur2 I 
u(r) = 0 f (3.6) 

to cast it in dimensionless form. F20 The dimensionful parameters in (3.6) are 2u/fi2 

and X, which has dimensions 

[ A ] = [ )r”pl+“l (3.7) 

when the speed of light is defined to be c = 1. Define the scaled measure of length 

p through 

P = (&)‘r , (3.8) 

with the parameter p chosen to eliminate all explicit dependence on the mass and 

coupling strength from eq. (3.6). This is effected by the choice 

P=& 

and the resealing of the energy eigenvalue as 

E = (&f,2p( &) E 

(3.91 

(3.10) 

With the definition 
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w(p) 5 u(r) t (3.11) 

the SchrGdinger equation assumes the dimensionless form 

w”(!J ) + c-sgn(X)pw-‘(‘+l)l w(p) = 0 
p2 J 

. (3.12) 

These elementary manipulations have a number of useful consequences. 

1. Level spacings 

We are at liberty to shift the energy eigenvalues by a common amount by 

adding a constant to the potential. However the mass and coupling strength 

dependences of the level spacings, which are eigenvalue differences, are prescribed 

by (3.10) as 

(3.13) 

Thus for the Coulomb problem (v= -I), AE 0 p Ii 12; the Rydberg unit is 

proportional to the reduced mass and to the square of the coupling constant. The 

result AE =(1/v)’ for the harmonic oscillator (u = 2) may be familiar as well. For 

the linear potential (V = I) popular in quark confinement schemes, AE = (A2h )“3. 

Notice that for singular potentials (v < 0), the level spacing AE increases with 

increasing mass V, while for nonsingular potentials (V > 0), AE is a decreasing 

function of u., For a pure power-law potential, not shifted by a redefinition of the 

zero, all the foregoing results hold for the energy levels (eigenvalues) themselves. 

2. Lengths 

According to Eq. (3.X), quantities with the dimensions of length scale as 

L 0: (p IAl)-‘/@+“) (3.14) 
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For example, the probability density at the origin, ( ~(0) 12, has dimensions of 

inverse volume and so scales as 

1 Y(O) I2 a: (p / A l)3/(2+v) (3.15) 

For a Coulomb potential, therefore, I Y (0) I 2 0~ (u I X I 13, while for a linear potential 

1 Y(O) I2 a(~,& This last result can be recovered at once from eq. (2.19), which 

yields 

AL !!! -ALA 
I Y (‘1 I2 = 2nb2 < dr ’ - 2 

112 
H (3.16) 

for the linear potential V(r) = Xr. Away from the origin, eqs. (2.2), (2.4), (3.8) and 

(3.11) imply that 

Iy( p[&]1’(2+“))(2 = (p)Al)3’(2+“) , (3.17) 

for any fixed value of p. 

The probability density I Y(O) I2 IS of interest, for example, in the leptonic 

decays of massive neutral vector mesons To which are 3Sf bound states of a 

quark and an antiquark. The decay width is given by 48 

r(T” + $‘a-)= 16rrfi3a2e 2 Q IYiO)1’/My2 , (3.18) 

where a is the fine-structure constant, e 
Q 

is the quark charge in units of the pro- 

ton charge, and M 
F 

is the vector meson mass. Using (3.15) we have 
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r(T”+ p.+!L-) = eQ2( u 1 A 1 )3’(2+v)/M (3.19a) 

a eQ2U -(1+2v)/(2+V) 1 x I 3/(2+v) , ” ~ -, 
f (3.19b) 

where the second expression follows upon neglect of binding energies. For v > -I, 

the scale of M 
T 

will be set by IJ for the low-lying levels, because AE/u does not 

grow with increasing u , according to (3.13). We therefore assume 

M 
7 

z: 2(2u) + small binding corrections, for constituents of mass 2u. We shall 

return in 9V to a discussion of leptonic widths of vector mesons. 

Transition matrix elements of electric and magnetic multipole operators and 

sizes of bound states with given quantum numbers are other examples of quantities 

to which the scaling law (3.14) may be applied. Thus electric multipole matrix 

elements scale as 

<n’ IEj In> (L ~1 

while magnetic multipole matrix elements behave as F21 

<n’ (Mj In > = Lj-l/u 

Since radiative widths are given by 

IIEj or Mj) 0~ p y2j+1 1 <n’ [Ej or Mj 1 n >I2 

with py s AE, we find 

T(Ej) = u -[2j(l+9+Vl/(2+v) 1 x I 2(j+1)/(2+v) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 
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and 

r(Mj) = u- Rj(l+ v)+3u+21 /(Z+v) I h I 2(j+2)/(2+ v) . 
(3.24) 

For potentials less singular than a Coulomb potential near r = 0 (i.e. for 

v > -I), the relative importance of higher multipoles decreases with increasing u. 

It is amusing that for -2 < V < -I the rapid growth of py n AE with jr can lead to an 

increasing prominence of high multipole transitions in the limit of large u. For any 

power v in the interval -2 < v < a, an increase in the coupling constant increases 

the importance of high multipole transitions. 

3. The Infinite Square Well 

An infinite square well potential of width R corresponds to the v+ m limit 

of eq. (3.1), provided the coupling strength is written as R-“: 

V(r) = lim (r/R)” 
V’W 

so that 

I 
0, r <R 

V(r) = 

-9 r>R 

(3.25) 

(3.26) 

For the potential (3.25), the dependence of the energy eigenvalues upon the mass 

and well width is given by (3.13) as 

E .= K2/~uR2 (3.27) 

which behaves as the kinetic energy of a particle of mass p in a box of length R. 
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4. The Logarithmic Potential 

The scaling law (3.13) shows that the energy levels vary more slowly than any 

power of u for a potential which varies more slowly than any power of r. A power- 

law potential of the form (3.1) with V = 0 is of course trivial and supports no bound 

states. However, let us consider resealing the Schrodinger equation by the 

transformation (3.8) with p = 4, which corresponds to v + 0 in eq. (3.9). 

We write the potential in the general form 

V(r) q AU(r) , (3.28) 

where U is dimensionless, for which the resealed Schrodinger equation reads 

W”(P) + 
L- 

F - lJ( [H2/2pXlKp) - ua + I) 
o2 1 W(P) . (3.29) 

The dimensionless energy eigenvalue is simply 

E = E/A (3.30) 

The differences of eigenvalues are independent of u if and only if under a scale 

transformation u +a u, 

~~~~~~~~~~~~~~ = ub[n2/2d 1 “)+fb) . (3.31) 

The solution to eq. (3.31) may be obtained by differentiating with respect to o and 

p and separating variables. We find 
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U(r) = In (r/To) f (3.32) 

f(o) = - K In o (3.33) 

Thus for the logarithmic potential the level spacings are independent of u.49 

Moreover, the logarithmic potential is unique in generating level spacings which are 

independent of u. The parameter A sets the scale of the spacings, as shown by 

(3.30). 

To establish this uniqueness in a different way, let us show that the 

Schrodinger equation can be scaled only for power-law and logarithmic poten- 

tials.F22 We write the Schriidinger Hamiltonian as 

CT= g + V(r) l PAa + m2 

2ur2 

and consider the effect of a dilation, or scale change, for which 

r + Kr 

and 

P-’ P/K 

The resealed Hamiltonian is 

ZOC) = 2-$ +Vkr)+‘* 

(3.34) 

(3.35) 

(3.36) 

. (3.37) 
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We ask for the most general condition under which the eigenfunctions and 

eigenvalues of %K) are identical to those of zexcept for possible changes in 

scale and shifts in the zero of energy. N&v, %?K) must be a linear function of 

% m order to preserve the quadratic momentum dependence, and hence V(r) must 

be a linear function of V(rr): 

v(r) = Av(Kr) + B (3.38) 

This is the condition upon the scaling behavior of a potential which ensures the 

desired scaling properties of the Schrodinger equation. 

To find solutions, we consider an infinitesimal scale transformation and 

expand (3.38) about K = 1. We thereby obtain 

V(r) q A[V(r) + (K- I)rV’(r)l + B , 

which is more conveniently written in the form 

dV 
V(I-AI-B 

(3.39) 

(3.40) 

In this last form the equation is easily seen to admit two solutions. If the 

coefficient A f 1, an integration yields 

In Iv(l - A) - 81 
I-A = & In r + constant , (3.41) 

i.e. a potential of power-law form (3.1). When the coefficient A = I, the solution is 
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V(r) = - ($-i~ In (r/To) (3.42) 

a logarithmic potential of the form (3.2). This shows that the Schrddinger equation 

exhibits the desired scaling behavior only for power-law and logarithmic potentials, 

and establishes the uniqueness of the logarithmic potential in generating eigenvalue 

differences which are mass-independent. 

The dimensionless levels E in the logarithmic potential (3.32) have been 

calculated numerically (for r,m q 1) m Ref. 49. They are illustrated in Fig. 4. 

[ See also Table 6 below. I Because of the scaling properties we have just 

developed, it is straightforward to deduce the levels appropriate to any values of u, 

;\, and ro. The resealing of eigenvalues of power-law potentials according to (3.13) 

is also elementary. 

5. Summary 

The behavior of energy levels under variations of the mass u is illustrated for 

three different potentials in Fig. 5. The examples chosen are V(r) = -r-‘, 

V(r) = In r, and V(r) = r, for which AE fl u l/3, uo , and ub1y3 respectively. All the 

levels fall deeper into the potential as u is increased, in conformity with the 

Feynman-Hellmann theorem (2.16). For the potential with v = -K, singular at the 

origin, the levels spread apart as they sink into the well. For the linear potential, 

no such hole exists, but the levels are packed together more densely as p rises. The 

logarithmic potential represents an intermediate situation in which the level 

spacing is independent of the mass and levels fall into the well at a common rate 

given by 

Ei(u’) = Ei( in) - H In (u’/u) (3.43) 
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These differences in deportment will be found very interesting in §VIII when we 

discuss the calculation of thresholds for the production of pairs of hadrons 

containing quarks with new flavors. Other aspects of the scaling properties of 

various specific potentials may be found in Table 1. 

B. Relations among Power-Law Potentials 

We have distinguished, in the previous subsection, between power-law 

potentials (3.1) which are singular at the origin (i.e. with -2 < v < 0) and those 

which are nonsingular (i.e. with v > 0). It is interesting, and perhaps not universally 

known, that pairwise relations exist between the Schr6dinger problems associated 

with these two families. The best-known example is the relationship of the 

Coulomb potential with the harmonic oscillator.F23 

The SchrEdinger equation 

K2 5 u”(r) + E _ 1 r” _ w + lM2 
&r2 1 u(r ) q 0 , (3.6) 

is related to another equation, identical in form. We introduce a new length 

variable 

z = r-vF 

with 7 a power to be determined, and let 

u(r) : z 

(3.44) 

. (3.45) 

The Schriidinger equation assumes the form 
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b2 T-2 

ot 

2 -$+I 

z ; z ( ) vw.~ (I-(“)‘) z 2(%+1) “(=) ) 

+ 
f 

E - AZ-~ _ ti&+1)H2 $+l) ) v(z) = o 
21.122 

(3.46) 

We now multiply by (V /v)~z~ , and find 

fi2 2 T+I +3 

TV = 
LJ ) &++ ( -p)‘+E(+)‘T 

-L& [ eca+l,(g)2-;( l- (:)‘) ] AF+l) +TJ 1 v(z) = 0 .(3.47) 

The choice (3.45) has ensured that this last equation contains no first derivatives. 

If we now require that 

2H.1 +T 
( ) 

= 0 , (3.48) 

we recover an equation in the SchrGdinger form, 

Ii2 -V’(z)+ 
2!J C E -TzT - fi2ii(ji + I) 

2pz2 1 v(z) = 0 , (3.49) 

where 

(3.50) 

(3.51) 
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and 

ItI+C1) = a(a+l)(g2 -+(q’) . (3.52) 

To solve (3.52), we complete the square on both sides of the equation, which 

yields 

(T+$) 2 = (F)‘( k+;) 2 

If u is regular at the origin, 

u&r) .I- ?+I 

then the choice 

si +$ = -(-y (&+$) 

ensures that 

VI(Z) s 2+l 

, 

is also the solution regular at the origin. 

The definition (3.44) and the constraint (3.48) imply that 

f 

(3.53) 

(2.28) 

(3.54) 

(3.55) 

(3.56) 
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which indicates that for -2 < v < =, the point r = 0 maps into z = 0, and the point 

r = m maps into z = m. We note that v and j appear symmetrically in (3.44), (3.48), 

(3.50), (3.50, and (3.53). 

The relation between the Schrodinger equations (3.6) and (3.49) is of special 

interest because it connects the bound-state spectrum of an infinitely rising 

potential (u > 0) with that of a singular potential (-2 < 3 < 0). The identification 

(3.44) between v and ij is plotted in Fig. 6.F24 

C. Bound State Normalization 

In 5 IV we shall compare energy eigenvalues and I\y(O) I2 derived semi- 

classically with exact results. Here we apply the normalization techniques of 8II.C 

to specific cases of interest. 

1. Harmonic Oscillator (v = 2) 

Solutions of the Schrodinger equation 

@“(r) + (E - r2)$(r) 

which are damped at infinity are the parabolic cylinder functions F25 

flfr, E) = L&E/2, rfi/5) t 

for whichF26 

2(E-l)/4 
fl(O, En) = fi sin n [+] T (‘+) 

(3.57) 

(3.58) 

(3.59) 

and 
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2(E + 3)/4 
f,‘(O, En) = K cosn [y] r (qq . 

According to the eigenvalue condition 

f,(O, En) = 0 

the energy eigenvalues are 

En = 4n - I ; n = 1,2,... 

The normalization integral (2.69) is therefore 

af,(O, E,,)/aE 

*n = - fi (0, En) 

(3.61) 

(2.67) 

= p r(n)/r(n + Yz) (3.62) 

A similar result can of course be obtained more directly using properties of 

Hermite polynomials. F27 

2. Coulomb Potential (v = -I) 

For this case it is convenient to compute the normalization integral by means 

of (2.54). Solutions to the SchrGdinger equation 

f+?‘(r) + (- ~~ + r-‘)@(r) = 0 (3.63) 

which obey the boundary conditions (2.39b) are of the form F28 
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,$r) = re-“’ IF,(l - l/21(; 2; 2Kr) , (3.64) 

where the energy eigenvalue is 

E =-K~ (3.65) 

For large values of r the decomposition according to (2.48)-(2.50) into damped and 

unbounded solutions yields coefficients 

c,(E) =(1/2K)r(1 + 1/2K) , 

c2(E) = sin I-t1/2K)/2=K , 

withF2’ 

f l(r, E) s -(ZKr) 1’2Ke-Kre-i lr/2 Ic 

f2k, E) s (2Kr)-“2KeCr 

. 

The vanishing of c2 at energy eigenvalues implies that 

1/2K = n ; n = 1,2,... 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

so that 

E, = - l/4n2 (3.71) 
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A brief calculation then yields 

In = 2n3 , (3.72) 

which can also be obtained by elementary means. F30 

D. Mass Dependence of SchrGdinger Wavefunctions 

The scaling behavior of Schradinger wavefunctions established in eq. (3.17) 

permits the proof of a very strong 

Theorem: For a power-law or logarithmic potential, the function 

C(R) 3 1 a I Rdr[u(r)12 = 
R 

2aL4 0 
i dr u(r )a&)/ ap 

0 
(2.83) 

(i) is non-negative for 0 < R < CO, and (ii) vanishes only at the zeroes of the reduced 

radial wavefunction u(r), for any bound state. To prove the theorem, we use the 

normalization condition 

jb3dr[ulr)12 = 1 

and the definitions 

w(p) : u(r) 

and 

P = ( 2fl#‘42+vJr 

, (2.8) 

(3.11) 

(3.8) 
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to define a scaled wavefunction 

&A = ( 2 $, ) “2(2+“) W(P) 

which is independent of u (and of A) and satisfies 

i, Wb)12 = 1 

We may then write 

u(r) = (2JLjLL ) 1’2(2+“)w(d 

which leads, after a brief computation, to 

au(r) -= 
au 

2&l [u(r) + 2ru’Wl 

1 d (du(rh) = 2pf2 +v)u(rT 3 

The integral (2.83) can now be evaluated; it yields 

G(R) = R@j 

, 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

(3.77) 

which is non-negative and vanishes only at the zeroes of u(r), as claimed. The case 

v = 0 applies to the logarithmic potential, as explained in 5IILA.4. 

Thus the probability that a particle lies within a spherical shell of radius R 

cannot decrease as the mass p is increased. The result (3.77) shows that probability 
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does not flow past nodes in the reduced radial wavefunction. A similar statement 

holds for variations of the coupling strength h. Using (3.75) we can show at once 

that 

RR) z i hJoRdrIu(r)) 2= $dr u(r) $$) 

(3.78) 

The function G(R) is known to be non-negative for s-wave levels in a square 

well of finite depth.3y Its minima correspond to the nodes of the radial 

wavefunction, (as required by (2.93a) for the ground state), but it does not vanish at 

these nodes. Within the well the result analogous to (3.77) is found to be 39 

G(R) = AR [u(R) I2 + B lRdr [u(r) I2 
0 

, 

where A and B are non-negative constants. In an infinitely deep square well, the 

probability distribution depends only on the size of the well, independent of ).I. 

Thus G(R) Z 0 for all levels, as follows from the v + .ZJ limit of (3.77). 

The most general class of potentials for which G(R)? 0 for all bound states, 

or for all s-wave bound states, has not yet been characterized. 54 We expect such 

potentials to be monotonically increasing functions of the coordinate, and to have 

some degree of smoothness. One example known to us of a monotonic 

potential for which G(R) can become negative for an s-wave level is a finite square 

well nested within an infinite square well. 39 

Finally , it is possible to investigate the behavior of G(R) in the classical 

limit. This is done in §IV. 
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IV. SEMICLASSICAL RESULTS 

Within the framework of the semiclassical (JWKB, WKB) approximation F31 

the quantum number dependence of energy eigenvalues and of bound-state 

normalizations becomes particularly simple. The resulting expressions are 

impressively accurate, as several examples in this section will illustrate. 

It will be convenient to discuss first, in §IV.A, results that can be obtained 

for potentials which are nonsingular at the origin. Singular potentials are dealt 

with, in S1V.B. A critical summary of simple approximations for low-lying states 

occupies 5 1V.C. In §IV.D we discuss very briefly the mass dependence of 

Schriidinger wavefunctions. 

A. Potentials Finite at the Origin 

1. Wavefunctions and Quantization Condition 

We begin by discussing one-dimensional motion in an arbitrary nonsingular 

potential between the turning points x1 and x2 which represent the extremes of 

classically allowed motion for a particle with energy E: 

V(y) = E (4.la) 

V(x,) = E , (4.lb) 

as depicted in Fig. 7. To the right of the turning point XI (in the interval 

(x < x <x I- -2 ), the Schridinger wavefunction can be represented as 

u(x) = & cos I ; j-- dx’ pfx’) - ; 1 , (4.2) 

where 
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P(x) : [2u(E - V(x)) lK (4.3) 

is the local momentum of the particle and N is a normalization factor to be 

determined. The phase -s/4 in eq. (4.2) comes from the requirement that the 

solution “match” one which is exponentially damped as x + -a. 53,56,57 It is valid as 

long as the potential does not vary “too rapidly” near x = xl, but can be expanded in 

a form 

VW = V(x,) + (x - x,)V’(x,) (4.4) 

valid for a region around xl in which u(x) goes through an oscillation or two. The 

Schriidinger equation then may be solved near x1 in terms of Airy functions (cf. 

Sec. II, eqs. (2.70)-(2.78)) in order to “match” the approximate solution (4.2) with 

one to the left of x I’ 

A similar discussion leads us to another representation for u(x): 

u(x) = &OS t 1 j” 12dx’ p(x’) - ; 1 

which is of the correct form to match an exponentially damped solution on the 

right. 

The solutions (4.2) and (4.5) must agree for xl < x < x2. They can be 

identified only if 

dx p(x) - ; = mn- [h J- 12dx’ p(x’) - ;] ; (4.6) 

where m = 0,1,2,... and N’ q (-lImN. The condition (4.6) may be written 
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i 
x2 

dx p(x) = (m + v2)sH ; (m = 0,1,2,...) 

x1 

it represents a guantization condition which specifies the values of E in eq. (4.3) 

that can lead to bound states. 

In anticipation of the three-dimensional problem which is our principal 

concern, we again specialize to symmetric potentials 

(4.6’) 

V(x) = V&x) (4.7) 

in one dimension. Without further loss of generality (for potentials that are finite 

at the origin) we may choose 

V(0) = 0 

For a symmetric potential (4.7), the local momentum satisfies 

p(x) = PC-X) 

(4.8) 

(4.9) 

and the turning points are 

x1 = -x2 E -xc (4.10) 

We assume V’(x), 0 for x 2 0 so only one pair of turning points occurs. 

Consequently the quantization condition takes the form 

dx p(x) = cm’+ %)nW2’ , m = 0,1,2,... (4.11) 
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The normalization constant N is fixed by the requirement that F13 

X 

:=so ‘dx [ u(x)12 

= N21xc f$ cos2 {; Joxdx’ p(x) - ; } 
0 

(4.12) 

The average value of the oscillatory factor in (4.12) may be taken equal to !S, so 

that 

N2= j C XC 
-I 

dx/pk) 
0 1 (4.13) 

The integral in (4.13) is related to the classical probability that the particle be 

found near the origin. To evaluate it, we differentiate the quantization condition 

(4.11) with respect to the quantum number m:60 

dE 
: dr? --I;dxp+ z q 

so that 

N24?.$ 

It is now straightforward to compute that 

[ u(O)1 2 = $ E;;; 3 cos’ (mn/2) /ii dEm . 

(4.14) 

(4.15) 

(4.16) 

and 
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[ u,(o) 12 (2uj3’2 JF- dEm 2 
nP3 

m dm sin (ma/21 . (4.17) 

The one-dimensional discussion carries over directly to s-waves in three 

dimensions (for nonsingular central potentials) if we identify s-wave bound states 

with the odd-parity levels in one dimension, as shown in Fig. 8, corresponding to odd 

values of m. We therefore choose 

u(r) = N Ji;r;l COS i h Jordr’ p(r’) - ; } (4.18) 

The quantization condition (4.11) then takes the form 

jXCdx p(x) = [(2n - I) + li InW2 
0 

1 (4.19) 

where n = 1,2,3... is the principal quantum number in three dimensions. The 

preceding equation may be rewritten, in three-dimensional notation, as 

s rcdr [ 2u(E - V(r)) 1” = (n - XJnH t (4.20) 
0 

where rc is defined by V(r,) = E. A derivation parallel to the one which led to 

(4.16) and (4.17) yields the useful result61’62 

1 y(o) I2 = [ d(o)] 2/4n q d2 E 1/2dEn 
4n2H3 n dn (4.21) 

This connection has recently been generalized to higher partial waves by Bell and 

Pasupathy, 63 who find F32 

(r) i 
2 
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where the radial wavefunction R n ,(r) is defined by eq. (2.2) and (2.3), and n is the 

radial quantum number, equal to one plus the number of nodes in the radial 

wavefunction. Writing the radial wavefunction near the origin as 

Q(r) * an,/- (4.23) 

as implied by eq. (2.28), we may rewrite (4.22) as 

a,: = 
(~IJE,,~IH~)~+~ X2uEn,JH2) 

nK2a + I)!! I2 an (4.24) 

The quantization condition (4.20) and the phase in eq. (4.5) are slightly 

modified if the potential has an infinite wall at x = x F33 
2: 

V(x)=+- , x,x2 

In this event, the wavefunction must vanish at the wall, so we choose 

u(x) = & cos ri I 
x2 dx’ p(x’) - ; } . 
X 

(4.25) 

(4.26) 

For three-dimensional motion, the wavefunction (4.18) remains appropriate, while 

the quantization condition (4.20) becomes 

I TC 

0 
dr [ 2p(E, - V(r)) I” = nnb , (4.27) 

with n = 1,2,3,... Similarly, in one dimension, for an infinite square well with walls 

at x and x the quantization condition is I 2 
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s x2dx [2u(Em - V(x))]’ = (m + l)sH , m = 0,1,2... . (423) 

x1 

The result (4.20) may be used to find a unique radially symmetric potential 

(monotonically increasing with r) once En is known. (We imagine En to be a 

continuous function of n for this purpose.) This is related to the problem of 

determining the shape of a classical potential if one knows the dependence on the 

energy of the period of oscillation. F34 

We change variables in (4.20), letting V be the independent variable: 

SE )4 = 2nfi dEn -l 
0 .[ 1 dn (4.29) 

The monotonicity of V is important here, to ensure that r will be a single-valued 

function of V. 

Now multiply (4.29) by (i - El-‘, - where Vl E is some fixed constant, and 

integrate with respect to E from 0 to V. Since 

O(V(E<V - , (4.30) 

the order of integration on the left-hand side can be reversed, with the result 

dE -1 
= 2nb S’dEfi - E)-’ 

0 c 1 2 (4.31) 

But the integral with respect to E on the left is just a beta function which has the 

value s, and we findF35 
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r(V) : -& ~ovdECV - E)’ [‘g-j -’ (4.32) 

2. Power-law potentials 

For a potential (3.1) with 0 < v c m the integral (4.20) can be performed 

exactly, leading to 

E : ,2’(2+V) n -“‘(‘+“)[ A(“)(,, -5)) hr/(2+V) 

3 1 
NV) q 

2vh3Y7 + v ) , v>o 

l-C;, 

(4.33) 

(4.34) 

The limit u + m corresponds to the square well (if we replace n - Yu by n as noted 

above). The semiclassical and exact results for a linear, harmonic oscillator, and 

infinite square well potential (with X : 2u/$ = I) are compared in Table 2. We 

shall show below that eq. (4.33) can be generalized to all partial waves by the 

replacement n + n + 9./Z. 

The squares of s-wave wavefunctions at r = 0 are easily evaluated with the 

help of (4.21): 

I ‘y,(O) I2 = b2( -y ) 
3/(2+v) 

2+ [A(v) I 
3”/(2+v). 

(n - J$)2(v-I)/(2+V) , (4 35) 

with n - H * n for v : a. In Table 3 we show how well eq. (4.35) reproduces the 

exact results for the linear, harmonic oscillator, and infinite square well potentials. 

It is clear from Stirling’s formula that the two expressions for the oscillator agree 

in the large-n limit. The degree to which they coincide even for small n is striking. 
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B. Singular potentials 

1. Power-law potentials 

When V(O) = -a, as occurs for negative-power-law or logarithmic potentials, 

certain of the above discussions no longer are valid. In particular, the form (4.18) 

does not represent the wavefunction correctly near r = 0. As long as 1 En 1 + 0 for 

n -t m, however, we may adopt a simple approximation to obtain the wavefunction 

near r = 0, and then deduce the appropriate quantization condition and normali- 

zation by joining this wavefunction onto the WKB solution (4.5) for larger r. The 

approximation we shall make is to neglect En.F36 In this limit the (scaled) 

SchrGdinger equation (3.12) takes the form 

W”(P) + [ P” - !ua + l)/P2 Iwb) = 0 , (4.36) 

where p is defined in eq. (3.8). An appropriate change of dependent and 

independent variables permits this to be cast in the form of Bessel’s equation. First 

defining 

q 3 (2 + “1-1 

we let 

P= & ( ) 
2q 

, 

(4.37) 

(4.38) 

and 

w(P) = zqv1z) (4.39) 
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whereupon (4.36) can be cast as 

VW + ; v’(z) + 2(2 i + 1J2 1 - Q 
2 1 &) 

The solution of this equation which is regular at z = 0 is 

v(z) = CJ q(2~+&) 

(4.40) 

(4.41) 

The wavefunction w(p) is proportional to p X+1 as p + 0, as required. 

The constant c is evaluated by demanding the correct asymptotic behavior as 

z + -: since 

J,(z) J- & cos {z-y -; } (4.42) 

we find 

w(p) 2 ‘$$$! p-v/4,0s { J; &&” )” d$t.h! _ ; j . (4.43) 

Upon restoring dimensions, we see that this is the appropriate generalization of 

(4.18) as long as 

CM 
( 1 h2 q/2 N 

m =‘Tqq 7-b 

and 

dr 12!-1(E,~ - V(r)) 1 ’ “-l +q@a+I) 
2 2 

lrfi 

(4.44) 

(4.45) 



-5% 

for n = 1,2,3... The quantization condition (4.45) is the appropriate replacement for 

(4.20), for power law potentials (3.1) with i < 0, \J < 0. The left-hand side can be 

evaluated in closed form: we find 

lEna/ = l~12/(2+v) 3 ( H2) -v’(2+v)] i(u)[n-$ ( I ;~;2k)]12v’(2+“) , (4.46) 

with 

‘i(u) 5 
2jupn(l-$) 

r(- 1 =J -$I 
, t-2 < v < 0) (4.47) 

This expression is exact for the Coulomb potential and is a useful approximation for 

s-waves in the potential V = -r -l/2 , as shown in Table 4. 

The square of the s-wave wavefunction at r = 0 now is easily evaluated since 

we have wavefunctions u(r) which behave properly at r = 0. We find 66 

IY (0) I 2= $fw r(q) 12}(v)q (4.48a) 

(4.4Sb) 

with N given by eq. (4.15). Notice that eq.(4.48a) does not contain an explicit 

factor of Ena ‘, in contrast to eq. (4.21). The expression (4.48b) for 1 ‘P(O) l2 is exact 

for the Coulomb potential and is reasonably accurate for v = -5, as demonstrated in 

Table 5. 
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In analogy with the discussion 
63 

of eqs. (4.22)-(4.24) for nonsingular 

potentials, we may also evaluate the behavior of the radial wavefunction for Q > 0 

near the origin for power-law potentials with v < 0: 

/R;?(O) I2 : 

The ratio of this expression to the true expression for the Coulomb potential (Ref. 

33, p. 15) is 

RAek(0)lapprox. = (n- I);(+n;;J2Q+I 

‘fj (O) 1 exact 
( I! (4.50) 

which approaches unity as n + m for fixed Q. Eq. (4.49), obtained here by direct 

solution of eq. (4.36), also may be found by applying the transformation described in 

Sec. II1.B to a power-law potential with v > 0, and using the result (4.22). 

The transformation of Sec. IILB also permits a powerful generalization of eq. 

(4.33) which is valid for s-waves in power-law potentials with v> 0, to all values of 

Q. Starting from eq. (4.46) for negative powers, we find that for v > 0 

E nQ = -v’(2W)[A(v) (n + ; -+)I 2’J’(2+v) , (4.51) 

with A(v) given by eq. (4.34). This result is exact for the harmonic oscillator. Note 

that the appropriate quantization variable is n + Q/2 for al1 values of v > 0, and we - 

expect this also to be so for v = 0 (V s In r) by comparing the limits v + Of in (4.51) 

and v + O- in (4.46). 
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2. Behavior of <rk>” for power-law potentials 

Moments of the spatial probability distribution of an s-wave bound state may 

be written approximately as 

I k 
TC 

<rk>n = 0 dr&l 
, (4.52) 

I 
‘c dr 
oi;T;T 

where we have neglected oscillations of the wavefunction as in eq. (4.13). For 

power-law potentials of the form (3.11, the integrals lead to beta functions and 

Z(v) , 

where 

Z(v) = 

B(+$),B($;) , v>O 

;-+,;)/B(;-$$) , v<O 

(4.54a) 

(4.54b) 

Since according to eqs. (4.33) and (4.46) I En I = n2v’(2+v) for large values of the 

principal quantum number n, we obtain 

<rk > nan 
2k/(2+“) (4.55) 

2 . In a Coulomb potential (v = -I), the Bohr radius behaves as n ; in an infinite square 

well ( v = m), moments of the probability distribution are independent of n. 

The semiclassical expression (4.53) is exact for the mean radius for a 

Coulomb potential, V(r) = - X/r, reproducing 
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I 

and for a linear potential, V(r) = Xr, in agreement with 

<r> 
n = 2En/3i 

For the harmonic oscillator potential, V(r) = 1 r2, for which 

<r> = lln2 $. <V’>= - ux I Y(O) I2 , 

Table 3 together with the scaling we may use the exact form of 1 Y(0) I2 given in 

law (3.15), to compute 

c r> = 4 2% 

( 1 

-’ r(n + H) 
n ll n2 r(n) - 

This is to be compared with the semiclassical result 

<r>n = $. (+)’ = $ ( y)-“(n-i)” . 

(2.37) 

(2.36) 

(4.56) 

(4.57) 

(4.58) 

The excellent agreement between r(n + &)/r(n) and (n - X)” has already been noted 

in connection with Table 3. 

3. The Logarithmic Potential 

Although the potential 

V = C In (r/To) (3.21) 

is singular at r = 0, there is a certain sense in which it may be regarded as the limit 

of either a nonsingular (v > 0) or singular b < 0) potential. The quantization 
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conditions (4.46) and (4.51) become identical in the limit v = 0, indicating that 

n + Q/2 - K is very likely the optimal variable for the problem. We then find 

E nQ = CIn 
L- 

2/i&+11/2-M) 

(2u C/fi2)“r 1 (4.59) 
0 

The accuracy of eq. (4.59) for the energy eigenvalues is shown in Table 6. The 

approximation is seen to deteriorate for fixed n and increasing Q but to improve for 

fixed Q and increasing n. It is considerably better for s-waves than for 9. f 0. 

Improved approximations for Q f 0 are given in Ref. 47. They do not appear to have 

the simple form quoted here. 

Positive moments of the probability distribution also are easily computed for 

s-waves. When r. = I, 

ok> ” 

kE,/C 

=5-m , 

where En : En0 so that with 2uC/fi2 = I, we have 

cr’rn = &$ (n-&)k 
+ 

(4.60) 

This agrees with the dependence upon k and n anticipated from the v + 0 limits of 

eqs. (4.53M4.55). In Table 7 we have checked the accuracy of eq. (4.61) for 

<r>, and have quoted values of 1 Y”(O) 12, which behave approximately as 0.06/n. 

The behavior of 1 Y”(O) I 2 can be anticipated from the v+ 0 limits of eqs. (4.35) and 

(4.481, but we have not found a satisfactory closed form. 

(4.6 I) 
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C. Summary of Approximate Results 

In this subsection we summarize and test the accuracy of semiclassical 

results regarding the principal-quantum-number dependence of bound state energies 

and normalizations. These will find application in the discussions of experimental 

data in §V and beyond. 

For power-law potentials (3.1) the energy eigenvalues are given by 

1 EnQ 1 = (n - Y~(v))~/(~+“) 

where 

I -a/2, for v =m 

yQb’ = 
I-2Q 
-9 4 for 0 < v < m 

f (4.62) 

(4.63) 

I v+l-2% 
T@-TiT’ for -2 < V < 0 

The corresponding result for the logarithmic potential is eq. (4.59). The connection 

(4.62) implies that for power-law potentials the s-wave levels En 5 En0 obey 

E3 -E2 - = [3-y(v)lS- [2-y(v)P 
E2-E1 r2 - y(v)1 s - r 1 - y(v)1 s 

, 

where y(v) = ye(v) and 

(4.64) 

s 5 2v/(2 +v) 

For the logarithmic potential, 

(4.65) 
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E3 - E2 In (I l/7) 
E2 - El - inn/3) = o*533 * 

(4.66) 

The ratios (4.64) and (4.66) are plotted in Fig. 9 together with points corresponding 

to the exact ratios. Agreement is excellent for al1 the examples we have studied. 

The ratio (E 2s - E2P)/(E2S - Els) is also characteristic of the power v. 

Although exact for v = -I and v = 2, the WKB approximation is rather crude in 

between. We shall discuss exact results in § V.C.I. 

Another simple relation which has been derived semiclassically is 

1 >Y,(O) I2 = (n - y(v)Jt 

where 

I 
2(v - I)/(2 + v) , for 0 < v < m 

t = 

(V-2)/(2+“) for -2 < v < 0 

Thus we find 

IY2(0)12 

I Y ,(O)l 2 
= [;k$;] t 

, (4.67) 

(4.68) 

(4.69) 

We show in Fig. IO the close correspondence between eq. (4.69) and the exact 

ratios. 

It has been pointed out67 that in a wide class of power-law potentials the 

quantity 
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In 11 Y3(0) / / 1 Y2(0) 1 1 
(4.70) 

varies within restrictive bounds. This remark stemmed in part from the 

observation that eq. (4.67) implies that 

R = ‘w = 0.533 (4.71) 

for T(v) = X, which is appropriate for u > 0. In Table 8 we quote the exact and 

semiclassical results for R for several of the potentials we have been discussing. 

D. Mass Dependence of Wavefunctions 

For s-wave bound states we may write the classical probability that a particle 

is located within a spherical shell of radius R as 

,/ Rdr[E - V(r)]-” 

P&R) : 

joRdr/vCr) 
0 

.f i’dr/v(r) = ./ :dr [E-V(r)]-” 
(4.72) 

where 

v(r) 3 p(r)/u (4.73) 

is the classical velocity of the particle at the position r, and at the classical turning 

point v(rc) = 0. The expression (4.72) is approximately equal to the corresponding 

quantum mechanical probability if we neglect the oscillatory factors in the 

semiclassical wavefunctions (4.18). 

We may study the dependence of PC(R) on E instead of u . Since 

a PC(R) 

au 

the signs of aP$R)/a u and 3 PC(R)/8 E are opposite. 

, (4.74) 
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The classical probability PC(R) provides some insight into the types of 

potentials for which probability will flow inward as u is increased. Consider the 

nested square well example of 5III.D. If the energy of the particle slightly exceeds 

the value that permits it to move classically in the outer well, it will move slowly 

there and spend most of its time in the outer well. As the energy is decreased, a 

limit is approached in which the particle spends a fraction approaching 1 of its time 

in the outer region, until E is lowered sufficiently to classically forbid its presence 

there. Thus for this situation, aPc(R)/aE is not always negative. An additional 

condition beyond the monotonicity of V(r) is needed to guarantee that 

aP&R)/ a &I > 0. 

An example of such a condition has been proposed by Martin:68 if V”(r) < 0, 

and V’(r) > 0, then aP&R)/ aE < 0. To prove this statement we note that the 

numerator of (4.72) decreases as E increases. We must therefore show that the 

denominator 

D 3 I ” dr [E - V(r) I’” 
0 

is an increasing function of E, so that 

aD/aE > 0 

To do so we write 

V=E 
D= .I dV/V~~ = - 

V=V(O) 

(4.75) 

(4.76) 

E 
= *w - 2 j- v(o) dV V11m(V1)2 , (4.77) 

so that 
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aD 1 
E = ‘?(O)& - V(OI - iv;o, dV V11/(Vq2m > 0 . (4.78) 

Further classical examples in which aPc(R)/au can be investigated are under 

study. 66 These examples have applications to the determination of new quark 

charges, as reviewed in §VII. 

V. QUARKONIIJM APPLICATIONS: SCALING LAWS 

Until now, we have discussed bound-state quantum mechanics in a general 

context. For the remainder of this article we shall concentrate increasingly on the 

problem that kindled our interest in these methods, the nonrelativistic description 

of states composed of heavy quarks. For these applications, it is convenient to set 

p: I. 

In this Section we shall apply some of the scaling laws derived in §III and IV 

to general features of the $ and T families. The mass and principal-quantum- 

number dependence of level spacings and of wavefunctions at the origin will be 

treated in some detail, and we shall relate branching ratios in the Q and T systems. 

A. Experimental Preliminaries 

Some attributes of the charmonium ($1 family have already been discussed in 

the Introduction. The JI/J(3095) was discovered as a resonance in the reactions 17 

p + Be + (e+e-1 + anything (5.1) 

at Brookhaven National Laboratory and 18 

e+e- + hadrons (5.2) 

at the Stanford Linear Accelerator Center in November, 1974. Within ten days, a 

companion, $(368(r), often denoted I&‘, was found69 at SLAC. Since the 
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initial discoveries, a rich spectrum of related states has been uncovered in the 

study of electron-positron annihilations. F7 The present knowledge of the 

charmonium spectrum is summarized in Fig. 3(a). As the spectroscopic assignments 

in Fig. 3(b) indicate, these levels have been interpreted with considerable success 

as nonrelativistic bound states of a charmed quark and charmed antiquark. The ji 

and $’ are assigned as the IS and 2s levels with parallel quark spins. 

In the spring of 1977 the heavy meson T was discovered at Fermilab” in the 

reaction 

p+N + (u’u-1 + anything (5.3) 

What we now recognize as the first hints of the $ family had been seen in this same 

reaction some seven years before. 71 Although the T mass is more than three times 

that of the $, there are obvious parallels between the two states. Because it was 

observed in an electromagnetic decay mode, and had an intrinsic width consistent 

with zero, the T appeared, like the $, to be extraordinarily stable. The stability of 

T was confirmed by subsequent experiments 72-74 at DESY, which indicate a total 

widthF37 

UT+ all) = 50 keV (5.41 

77 
Finally, the upsilon was observed to be accompanied by at least one partner, 

about 0.6 GeVfc2 more massive. These similarities to the psions suggested at once 

that T and T’ could be regarded as IS and 2s levels of a new quark Q bound with its 

antiquark Cj. 

Some comparisons between the $ and T families are made in Figure 11. The 

T - T’ mass splitting is closely equal to the JI - $’ spacing, and the interval between 
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T and T” is approximately equal to the JI - $” separation. This important regularity 

will be discussed in 5V.B. 

In one respect the Ji and T families of vector mesons bear a remarkable 

resemblance to the light, short-lived vector mesons pot w”, and $J’. Both the light 

vector mesons and the heavy vector mesons have partial decay widths into lepton 

pairs 

r($iPJ + a+n.-) = fll keV1 (5.5) 

The experimental data are summarized in Table 9. In the nonrelativistic picture 

that appears appropriate for the description of heavy vector mesons, leptonic decay 

widths are connected with the wavefunction at the origin through eq. (3.18). The 

systematics of leptonic widths as a function of quark mass are discussed in §V.B. 

The principal quantum number dependence of observables including leptonic widths 

will be taken up in 5V.C. 

The scaling arguments of §I11 and IV, when applied to the rich spectroscopy of 

charmonium, can be used to construct a hypothetical table of branching ratios for 

the T spectrum. The outlines of this exercise are reported in 5V.D. 

8. Mass Dependence of Observables 

1. Level Spacings 

The weak dependence of E2 - E, upon quark mass for the $ and T levels may 

carry important implications for the interquark potential. For a power-law 

potential, the scaling law (3.13) indicates that 

(5.6) 
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Hence if a common power-law potential is to describe both families, the effective 

power v must be close to zero. 
F38 The value obtained for v depends upon the 

ratio m Q /m,, where m Q and mc are the masses of the quark bound in the T and the 

charmed quark bound in the $, respectively. If we take this ratio to lie in the range 

3 2 mQ/mc( 4, we find 

” = 0.08 f 0.05 (5.71 

2. Leptonic Decay Widths 

The dependence of 1 Y(O) I2 upon the quark mass provides another measure of 

the effective power-law form of the potential. Unless the potential is exactly 

power-behaved, the effective power determined in this manner need not be the 

same as the effective power implied by the level spacings, because the 

wavefunction at the origin probes shorter distances. F39 Likewise, the effective 

power inferred from the leptonic widths may be different for different radial 

excitations. The leptonic widths of $ and $ ’ have been measured in several 

experiments. We take as representative the values measured at SPEAR,*l 

r(J, + e+e-) = 4.8 f 0.6 keV 

I’((? + e+e-) = 2.1 * 0.3 keV (5.81 

Recently, the T and T’ have been observed at the storage ring DORIS in e+e- 

annihilations into hadrons. 72-74,78 The mean values of the leptonic widths 

are75 
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I’(T +e+e-) = 1.2 f 0.2 keV 

I’(T’+ e+e-) = 0.33 + 0.10 keV (5.9) 

As we shall see in §VII, the DESY experiments make compelling the 

conclusion that the charge of the (fifth) quark which is the constituent of T is 

eQ = -l/3. With this knowledge, we can extract the values of ( Y (0) ( 2 for T and T’, 

and use (3.15) to explore the shape of the potential. The wavefunctions at the 

origin of the n = 1 and n = 2 levels of $ and T are displayed in Fig. 12. Because the 

masses of the c-quark and the fifth quark are poorly known, we have indicated a 

plausible range for the quantity mQ/mc. With such a limited set of data, this 

exercise can only be illustrative. The effective powers of the potential deduced 

from these data are shown in Table 10. Obviously they do not reliably fix the 

potential form, but with more precise data from still more families of heavy 

mesons, we may hope to find this analysis more incisive. 

C. Quantum-Number Dependence 

1. Level Spacings 

The level density of a bound system provides further information about the 

nature of the potential. In the semiclassical approximation, the energy levels go as 

En s (n - Y(Y))*“‘(~+“) (4.62) 

for a power-law potential, where u(v) = y,(v) is given by (4.63). Thus the quantity 

(E3-E2)/(E2-E,), which has been determined for the JI and T systems, can be used 

to determine the shape of the potential. For the $ family we find 
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~($1 = 0.20 ? 0.06 (5.10) 

while for the T family we conclude that 

v(T) = 0.33 2 0.23 (5.11) 

The two determinations of the effective power are compatible, as is to be expected 

from the similarity of (E3 - E2)/(E2 - El) for the two families. It is interesting that 

present data on level densities do not by themselves support the idea that the T 

system is more Coulombic than the $I system. Such a trend might be expected if 

the short-range interquark force were a Coulomb force. 

The ratio (E2g - E2p)/(E2S - Els) = 0.28 for the charmonium family is 

compared with exact calculations for power-law potentials in Fig. 13. A value 

v ($1 = 0.15 is implied, consistent with the determinations given above. 

2. Leptonic widths of the psions 

Within a quarkonium family, the principal-quantum-number dependence of 

observables is another source of information about the nature of the potential. 

With the aid of the WKB results 

1 Y .(O) I* * (n _ J&)2(v-1)/(2+v) , O< V < en , (4.35) 

1 y,(o) ( * s n - 2*) ) b-2)‘(2+v) , -2<v< 0 . (4.67) 

for power-law potentials, we may investigate the implications of the leptonic 

widths of the psions. Although the quantum number assignments listed in Table 9 

are not unambiguous, and multichannel effects are cause for concern above charm 

threshold, we make use here of all the data. Two alternative assignments are 

portrayed in Fig. 14. 

In Fig. 14(a), we regard $(3095), J1(3684), $(4040), and $(4414) as the 

n = 1,2,3,4 levels. In Fig. 14(b), we identify $(4159) as the n = 4 level and ti4414) 

as the n = 5 level. The effective power of the potential is determined as 
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v = 0.00 * 0.09 (5.12) 

in the four-level case, and as 

V = 0.06 f 0.08 (5.13) 

in the five-level case.F40 

3. Leptonic widths of IS and 25 levels 

Finally, we may investigate how the quantity 1 Y*(O) I*/ 1 Yl(0) I2 varies from 

one quarkonium system to another. This ratio is shown in Fig. 15 for the JI and T 

families, together with the behavior expected for a number of simple potentials. 

On this basis, the T family is seen to be somewhat more Coulomb-like than the j, 

family. Although light mesons cannot reasonably be described in nonrelativistic 

terms, it is of at least passing interest to examine 1 Y2(0) f/ [ Yl(0) I 2 for the p” 

family. For these light mesons, the ratio is decidedly un-Coulombic. Therefore, 

we may cautiously see in Fig. 15 a trend toward a more singular effective potential 

with increasing quark mass. 

D. Crystal Gazing 

Although the exercises we have just reviewed cannot be said to fix precisely 

an effective power-law potential, we may conclude that an effective power close 

to v = 0 is compatible with what is known experimentally. This contention is 

supported by the relative success of the logarithmic potential (3.2) in reproducing 6 

and T spectroscopy, which will be detailed in SVI. With a specific choice such as 

v = 0, the scaling laws of §I11 may be used to anticipate other properties of the 

upsilons, or of heavier mesons. A number of more or less detailed applications have 

been made to the T family. 22,27,46,83 
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To illustrate the arguments involved in these analyses, let us consider the 

radiative and leptonic decays of the 25 levels J,’ and T’. The scaling laws (3.19b) 

and (3.23) yieldF4’ 

r(El)/r( y+ a+e-) s ,-(1+v)/(2+v) , -I<v<m . (5.14) - - 

Consequently, with v = 0, we anticipate that 

El 
KT’ + xby) 

r(T’ -f &+a-) 

El Y2 

= (0.5 to 0.6) , (5.15) 

in other words, that radiative decays are relatively less important for T’ than for (I’. 

A more thorough exploration of the decay channels of 6, $I, T, and T’ leads to the 

expectation that F42 

UT’ + a+a.-) ’ + k+II-) 
r(T’ + all) / 

l?T + L+n.-) = 
r(T + all) 4 l-+4 r(Q’ + all) I 

UJ, + Il+a-j = 1 ‘* (5 16) 
r($ + all) T - 

No direct measurement of the leptonic branching ratio of T’ has yet been made, and 

the leptonic branching ratio of T is known only crudely. F43 However, eq. (5.16) 

plays an important role in explaining the observation that in 400 GeV/c proton- 

nucleus collisions 

do(T’ + rf u-)/dy 

do ( T + !J+U-)/dy 
(5.17) 

whereas 
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do(JI’ + e+e-)/dy 1 

do(J, + e+e-)/dy Y=O 
= 0.018 i: 0.006.g4 (5.18) 

VI. TWO SPECIFIC POTENTIALS-AN ILLUSTRATION 

The scaling arguments of §V have led in several circumstances to an 

effective power v 20 if the charmonium and upsilon families are to be described 

by a common potential of the form V(r) = Xr”. The reader will recall that one is 

led to v =O by considering mass splittings in both families and leptonic widths in 

the charmonium family. A simple potential with v effective = 0 is V S In r. In this 

section we shall review some properties of this potential as applied to the 

charmonium and upsilon families. It can be considered to interpolate between the 

two, but no one would be more surprised than we if it should continue to describe 

families of still heavier quarks. Quantum chromodynamics (QCD), the candidate 

theory of the strong interactions, predicts that veffective should continue to fall 

toward -I as the quark mass is increased. We shall thus compare the logarithmic 

potential with a simplified “QCD-like” potential consisting of fixed Coulomb + lin- 

ear terms.F44 

A. Description of Mass Splittings 

1. The logarithmic potential 

Stimulated by the approximate equality 

M(T’) - M(T) = M($‘) - M(9) t (6.1) 

we asked: For what form of the quark-antiquark potential is the level spacing AE 

independent of the reduced mass u? The answer, 49 which has been given in 5111, is 

that the potential 

V(r) = C In (r/To) (3.2) 
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is the unique form for which level spacings do not depend upon l.~. Whether or not 

the potential (3.2) applies to the real world of quarkonium, it is in some sense 

special, and its properties were examined further. The low-lying energy levels of 

the logarithmic potential are summarized in Table 6 and Fig. 4. 

In the context of the logarithmic potential, we may express the masses of 

quarkonium states as 

M n!Z = C Ena + E,(u) t 

where n and 9, denote the principal quantum number and orbital angular momentum 

(in units 0f.H) of the bound state, and Enll is the eigenvalue appearing in Table 6. 

The parameter E. depends upon r. and u, which need not be specified separately at 

this point. By fitting (6.2) to the masses of Q,$ I, and T, we determine 

C q 0.733 GeV (6.3) 

Eo($ family) q 2.329 CeV (6.4) 

E. (T family) = 8.694 GeV 6.5) 

According to the virial theorem of eqs. (2.18) and (3.51, the mean kinetic 

energy is 

<T> = C 2 = 0.37 GeV (6.6) 

so that in the nonrelativistic limit the mean squared velocity of a quark of mass m 

is 
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cT > C 
’ = - = 2X m (6.7) 

For a quark mass m > 1.5 GeV, <B2> < K, so a nonrelativistic description is 

expected to make sense. Since in the logarithmic potential <B*> is the same for all 

bound states, the quality of the nonrelativistic approximation does not deteriorate 

for excited states. Moreover, the justification for a nonrelativistic description 

improves markedly with increasing quark mass. Equations (6.6) and (6.7) indicate 

that a nonrelativistic description of the p , w , and I$ families as light quark pairs 

bound in a logarithmic potential is unthinkable. As a consequence, we do not 

expect the p’ - p ,w ’ - w, and +’ - I$ intervals to be equal to the I)’ - J, splitting. F45 

The predictions of eqs. (6.2)-(6.5) for masses of members of the charmonium 

and upsilon families are presented in Table II. (Throughout this section the 

predictions are for spin-triplet levels, and we neglect differences in hyperfine level 

shifts.) The masses tabulated for orbital excitations are for weighted averages that 

eliminate spin-orbit splittings, namely 

Mc3L) : (2J + l)M(‘L,)/3(2L + I) 
. 

The positions of the 35 levels in the $ and T families (Fig. 11) are reproduced 

satisfactorily, as is the position of the 23P (charmonium) center of gravity. 

The logarithmic potential produces an extremely crowded spectrum for large 

principal quantum numbers, as indicated in Fig. 4. The unusual feature of 

exponentially rising Regge trajectories, already suggested by eq. (4.59), may be 

interpreted F46 in terms of a limiting hadronic temperature equal to 

CT> = C/2 = 0.37 GeV. The high density of excited states means that any 

0) 

agreement between predicted and observed levels could be coincidental. The 
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o(4414) must be regarded as the 5S level in the logarithmic potential. The nearest 

candidate for the 4s level is $(4160), which lies about 70 MeV below the predicted 

mass. We regard charmonium states above the 3S level as neither supporting nor 

rejecting the logarithmic potential. F47 Further tests will be noted in §VI.B, after 

we have introduced a second potential which reproduces the T’ -‘l’ splitting. 

2. A Coulomb-plus-linear potential 

Although the logarithmic potential is unique in giving level spacings 

independent of the quark mass, it is by no means alone in reproducing the equal 

spacing rule (6.1). 

There are theoretical reasons, as mentioned in the Introduction, for believing 

that the short-range quark-antiquark force arises from a Coulomb-like strong 

interactions of the form 

V,(r) = -G : (6.9) 

in which the strong coupling constant os is weakly dependent on the mass of the 

system in question. (The factor 4/3 has a group-theoretic origin which is not 

important for the present discussion.) 

The long-range quark-antiquark force often is assumed to be of the form 

V,(r) = r/a2 , (6.10) 

a linearly rising potential which is capable of confining quarks permanently. Such a 

potential can give rise to a spectrum of particles containing light quarks in rough 

accord with experiment. 30,87 
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The specific parameters adopted to describe the charmonium and T families 

in one study which preceded the discovery of the latter were 88 

> . 

a = 2.2 GeV -I J 

With these parameters, both the J, and T families are primarily sensitive to the 

linear component of the potential 

4a 
V(r) = - 9 + r/a* , 

for which, according to (3.131, energy level spacings scale with mass as 

(6.12) 

In a purely linear potential a 25-15 spacing of 0.6 GeV for the charmonium family 

then would imply a spacing of 3 -113 -0.6 GeV = 0.4 GeV for a family composed of 

quarks three times as massive as the charmed quark. Explicit calculations using 

(6.11) and (6.12) led to the prediction that 

M(T I) - M(T) = 420 MeV , (6.14) 
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which disagrees with subsequent experimental observations. As the quark mass is 

further increased, the levels fall deeper into the potential as required by the 

Feynman-Hellmann theorem (2.16), and the scaling behavior 

AECoulomb Ip uas 
2 (6.15) 

characteristic of the Coulomb component will set in. If as is a slowly-decreasing 

function of u, as suggested by asymptotic freedom arguments, the resulting 

increase in level spacings will be slower than a linear growth with u. 

This discussion suggests that it must be possible to choose a potential of the 

Coulomb-plus-linear form (6.12) for which the spacing between the 1S and 25 levels 

is 0.59 GeV at precisely two levels of the quark mass. This was accomplished in 

Ref. 49 with the choices as = 0.42, a = 2.48 GeV-‘, and numerous comparisons were 

made there with the logarithmic potential. 

The new values of T and T’ masses quoted in Table 9 change this picture 

quantitatively but not qualitatively. The observed IS and 25 levels of charmonium 

and upsilon families are reproduced by a potential of the form (6.12), with 

a 
S 

= 0.38 ) 

a : 2.43 GeV-1 , 

and the quark masses F48 

m 
C 

= 1.37 GeV/c2 , 

mQ = 4.79 GeV/c* . / 

(6.16) 

(6.17) 
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Level spacings in the potential specified by (6.12) and (6.161 are compared 

with the experimental data in Fig. 16. The 2S-IS spacing passes through a 

minimum between the quark masses given by (6.17), then rises for larger quark 

masses as the effects of the Coulomb potential become more pronounced. For a 

quark mass of 15 GeV/c2, which is the highest value accessible with present 

accelerators,F49 the expected 2S-IS splitting is 0.9 GeV. Recall that by 

construction it would be ~0.6 GeV in the logarithmic potential. Preliminary 

attempts 89 to extrapolate from the upsilons to a family composed of I5 GeV/c* 

quarks using the inverse scattering approach of ref. 65 give 25-15 splittings that 

range from just under 0.6 GeV to 0.8 GeV. 

The predicted masses for the $ and T families in the potential (6.16) are 

shown in Table II. The principal difference with respect to, the logarithmic 

potential is the assignment of ~(4414) as the 4S, rather than 5S, level. The peak at 

4.16 GeV must then be identified as a 4D level. 

B. Leptonic Widths 

A crucial parameter of an s-wave bound state is 1 y,(O) ( 2, the square of the 

wavefunction at the origin. Several experimental quantities are sensitive to 

1 Y(O) 12. Of these, the one best measured and freest from theoretical ambiguities 

is the rate for vector meson decay into lepton pairs. In a nonrelativistic treatment 

the leptonic decay width is given by 

r(Y” + a’~,-) = 16tre Q2 1 YUI) 12/My2 

Unlike the level spacings, leptonic widths predicted in the logarithmic 

potential depend upon a choice of quark mass. We rescale the values of I ‘l$O) I* 
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tabulated in Table 7, which are appropriate for m = 2~ = 1, to the physical situation 

according to eq. (3.15) as 

I Y(O)1 ;,, q (mC)3’2 1 Y (01 If, = c = 1 (6.18) 

Thus, for example, we find FSO 

r($ + e’e-) = 4.28 keV (me/l GeV)3’2 (6.19) 

which leads, using the measured leptonic width quoted in Table 9, to a charmed 

quark mass 

m 
C 

= 1.08 GeV/c2 (6.20) 

The leptonic widths of remaining members of the $ family may now be computed 

directly. 

Having fixed the value of mc, we may use eqs. (6.41 and (6.5) to determine the 

parameter r. and the mass mQ of the quark that forms the T family. From eqs. 

(3.311-(3.33) we may conclude that 

Eo($ family) = 2.329 GeV = 2m, - $ ln(Cmcro2) (6.21) 

and 

Eo( Tfamily) = 8.694 GeV = 2mQ - $ In(Cm r 2, Qo , (6.22) 
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which implies that 

r 
0 = 0.89 GeV-’ (6.23) 

and 

mQ = 4.52 GeV/c2 (6.24) 

With this information in hand we may compute 1 Y(O) I2 and hence leptonic widths 

for all the 3Sl levels of the T family. 

The calculation of leptonic widths in the Coulomb-plus-linear potential of 

eqa. (6.12) and (6.16) is straightforward. Predictions for the JI and T states derived 

from both potentials are given in Table 12. The large values for leptonic widths 

predicted by the Coulomb-plus-linear potential specified by (6.16) favor the smaller 

values of cis often adopted. However, it has been argued 90 that relativistic 

corrections might substantially reduce the predicted widths of the psions. Applied 

to the case of the logarithmic potential, this suppression would allow a 

corresponding increase in the rather small charmed quark mass quoted in eq. (6.20). 

The potentials discussed in this Section make definite predictions for the 

sizes of bound states. For the logarithmic potential (3.21 we need only to scale the 

values of <r,> given in Table 7 according to eq. (3.8). A numerical computation is 

required for the Coulomb-plus-linear case. The results for the JI and T families are 

given in Table 13. They show the members of the T family to be about half the size 

of the corresponding $ levels. 

We conclude this comparison of the logarithmic and Coulomb-plus-linear 

potentials by emphasizing that neither of these informative examples is expected 
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to describe the real world in complete detail. The logarithmic potential was 

motivated by a drastic generalization of the observed equal *S-IS spacing of the JI 

and T families, and the Coulomb-plus-linear form yields leptonic widths larger than 

those observed. We have restricted our attention to spin-triplet states, neglecting 

fine-structure, hyperfine-structure, and other relativistic effects. F51 Asymptotic 

freedom would prescribe a slow(logarithmic)decrease in the value of the strong 

coupling “constant” which will postpone to higher masses the onset of Coulomb-like 

behavior of the observables.F52 
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VII. MEASURING QUARK CHARGES 

Some of the methods we have described have been used27~38~74~78 to 

determine that the T family is composed of quarks with electric charge 

1 eQ I = l/3. In this Section we review the assumptions and reasoning that led to 

this conclusion. 

At the present time, the observables most directly related to the charge of 

the quarks within upsilons are the leptonic decay rates of T and T’. In a 

nonrelativistic description, the leptonic width of a massive vector meson is given 

by 

i-CT” + Q’Q-) = 16na2eQ2~ Y(O) j2/M~2 . (3.18) 

This expression contains two unknown quantities: the quark charge e Q and the 

square of the wavefunction at the origin, I Y (0) 12. The latter can usefully be 

bounded with the aid of data on other quarkonium families in a relatively model- 

independent fashion, as we shall now explain. 

A plausibility argument for the assignment IeQ I = l/3 for the quark 

constituent of the upsilons may be based on Fig. 17 where the quantity 

rr” + Qe’Q-)/e 2 Q has been plotted for the known vector mesons. For the ground 

states p,w, 4, and (I, a common value of about 12 keV is obtained. The ~(9.46) 

conforms to this pattern if the assignment le 
Q 

( = l/3 is adopted. For the first 

excited states p I, JI ‘, and T’, one may divine a smoother trend if the T constituent 

has I eQ I q l/3 than if it has I eQ I = 2/3 or larger. F53 

To go beyond this qualitative discussion, we can invoke the theorem on mass 

dependence of Schriidinger wavefunctions introduced in §II.D, III.D, and 1V.D. 

Under plausible general assumptions, lower bounds on the leptonic widths of T and 
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T’ follow from this theorem. The observed leptonic widths are incompatible with 

these bounds for 1 eQ 1 2 2/3. 

For the special case of a power-law potential V(r) = Xr”, eq. (3.15) implies 

that for a fixed principal quantum number 

1 yQQ(0) I2 = (mq/mc)3’(2+v) 1 Y (0) I2 C 

If the potential is concave downward,F54 

d2V/dr2 5 0 , 

i.e. if v( 1, the scaling law (7.1) may be expressed as a lower bound 

1 YQ(0) I2 2 hQ/mc) I ycKO I2 , 

(7.1) 

(7.2) 

(7.3) 

ifm >m Q c. This in turn implies that 

e+e-) , eQ2 mQ M(J,n’2 T(+ T(T,,+ _ + e’e-) (7.4) 
eC 

2 mc M(TJ2 n 

We shall prove that eq. (7.4) holds for the ground state in any monotonically 

increasing potential which is concave downward, and will argue that it is also valid 

for excited states in any reasonably smooth potential. We shall then discuss the 

application of eq. (7.4) to the determination of the fifth quark’s charge. 

To establish (7.3) for the ground state, we recall that 
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IY(O)f =--&<g >= m<dV> 
4rfi2 dr 

3 (2.19) 

where m = 2 p is the quark mass. It is elementary to compute 

WI22 am [A 1 Y (0) 12] = 2 J, dr u(r) $$J v’(r) . (7.5) 

Using 

G’(r) q 2u(r) % 

we find 

4nH2 a am [A 1 u(0)12] = Ji dr Gl(r)vl(r) 

dr G(r)v%) 
0 

, (2.92) 

(7.6) 

It was proved in 5II.D that for the ground state the function 

G(r) E & Jordr’ [u(r’)l 2 2 0 * (2.84) 

Hence, if V”(r) 5 0, eq. (7.6) implies that 

& [I 6 1 Y(0) I2 1 2 0 1 (7.7) 

which is equivalent to eq. (7.3). 
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We have not succeeded in constructing a general proof of eq. (7.3) for excited 

states. It is rigorously true for logarithmic and power-law potentials with v’ I, as 

already remarked. It also holds in the classical limit for potentials with V’L 0 and 

V” 5 0, as the discussion in §IV.D implies. At the present time, then, we are forced 

to conjecture the validity of eq. (7.4) for excited states such as T’. The fact that 

an effective power-law potential (with v = 0) seems to interpolate well between 

the $ and T families may be taken as support for this assumption. 

To make eq. (7.4) useful for the T family, we must estimate (or bound) 

m /m,. In specific potential models, F55 
Q we find 

It is possible to argue more generally: as the quark mass increases, the Feynman- 

Hellmann theorem (2.18) implies that states become more tightly bound, so that 

MT-2mQ( MJ1-Zm, 

and 

q,-2m Q 2 Me, - 2m, 

, (7.9) 

(7.10) 

These lead to nearly identical restrictions on mQ/mc, namelyF56 

mQ/mc ) 1 + 

(MT - M,$ (“r , - M$,) 

2mC 
= I+ 

2mC 

= l + 3.15 GeV/c’ 
m . (7.11) 

C 

All charmonium calculations known to us employ mc 2 2 GeV/c’. This implies 
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m /m Q c 2 2.6 , (7.12) 

which we shall adopt hereafter. The rather conservative lower bounds 

I'(T + e+e-)/e 2 Q 2 2.6 keV 

fly’ + e+e-)/eQ2 2 I.4 keV 

(7.13) 

(7.14) 

follow from eqs. (7.4) and (7.12), together with the central values minus one 

standard deviation for the psion.leptonic widths given in Table 9. 

The bounds (7.13) and (7.14) are shown in Fig. 18 together with predictions 

derived from twenty potentials 65 that reproduce the $ and I#’ masses and leptonic 

widths. The bounds are plotted for I e 
Q I = l/3 and 2/3, but the model calculations 

are given only for le 
Q 

1 = l/3. The experimental values (from Table 9) are shown 

as well. The leptonic width of T’ is incompatible with the lower bound (7.14) for 

I e Q 
12 2/3. The leptonic width of T, while in comfortable agreement with the 

explicit potential model predictions for 1 e 
Q 

I = l/3, is (just) within the range 

allowed for I eQ I = 2/3. This circumstance was anticipated. 38 The explicit 

potential predictions show that the model uncertainty in I Y(O) I ’ is far greater for 

T than for T’. The T’ lies in a region of space already well-probed by the 

charmonium states, whereas the deeper-lying T explores a terra incognita of the 

quark-antiquark interaction. Thus it is T(T’ + e+e-) that decisively excludes the 

assignment I eql 2 2/3. 
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VIII. COUNTING NARROW QUARKONIUM LEVELS 

In the cross section for e’e- annihilation into hadrons, two extraordinarily 

narrow spikes, $(3095) and $‘(3684), are observed below the onset of charmed 

meson production at E c.m. = 2MD q 3.73 GeV. This was indicated in Fig. 3(a). 

The narrowness6 of $ , 

r(L) + all) = (67 * 12) keV (8.1) 

and of $ ‘, 

r(+’ + all) = (228 f 56) keV , 63.2) 

was a prime factor in their discovery. It can be understood if the mechanism for 

the decay of psions into uncharmed hadrons is dynamically suppressed. This 

suppression reflects the operation of the Okubo 97-Zweig98-Iizuka99 rule. It is 

believed that violations of the OZI rule occur through the mechanism depicted in 

Fig. 2(c). Suppression of OZI-violating decays is attributed to the weakness of the 

strong interaction at the short distances characterized by the Compton wavelength 

of the charmed quark. l3 Vector mesons above charm threshold can dissociate into 

charmed particle pairs as shown in Fig. 2(b), and are found to be correspondingly 

broader, with total widths on the order of tens of MeV. 

It is clearly of interest to know whether a similar pattern is to be expected 

for the upsilon family, and for more massive quarkonium families: How many 

narrow 3Sl T levels lie below the new-flavor threshold? At what energy does the 

flavor threshold occur? 
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One would expect the question of flavor threshold to involve the relativistc 

bound state dynamics of light quark (q&heavy quark (Q) systems. However, by 

taking as given the relation of charm threshold to the $ and $ ’ positions we may 

sidestep many details of the binding of light quarks to heavy ones. This is an 

approach taken by Eichten and Gottfried 88 for a specific potential, but we shall see 

that it has general validity. 

We shall show that the number n of 3S, levels of a QQ system which lie below 

the threshold for OZI-allowed decays grows as 100 

n-X 2 ah /m,P Q , (8.3) 

where m Q and mc are the masses of the heavy quark Q and of the charmed quark. 

The proportionality constant a will have a value near 2 because charm threshold 

lies just above the I)‘. The expression (8.3) and the value a J 2 are supported by 

explicit potential models. For the upsilon system, with mQ/mcz 3 to 4, we then 

expect three or four quasistable 3S1 levels below the flavor threshold. For a 

quarkonium family composed of quarks with mQ/mc S 10, roughly the largest quark 

mass accessible in the present generation of e+e- storage rings, we may anticipate 

six or seven such levels-indeed a rich spectroscopy. Interleaved with the narrow 

3S1 levels one may expect a number of orbital excitations, all of which should have 

narrow widths (no more than a few MeV) below flavor threshold. 

Key to the result (8.3) is the observation 88,100 that although the dynamics of 

the Qq system cannot be expected to yield to a nonrelativistic analysis, the 

dependence upon mQ of the Qy mass becomes simple as m Q becomes large. The 

mass of the lowest-lying lSo Q{ state depends upon mQ in three ways: (i) the 
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additive contribution m Q; (ii) the hyperfine C3S, - ‘So) splitting which decreases 

monotonicaIly as m 
Q 

+ m; and (iii) the binding which has a feeble dependence 

through reduced mass effects. Thus the quantity 

6(mQ) 5 2M(Q$ - 2mQ 

is expected to approach a finite limit 6 m as m 
Q 

+ m. 

Let us at first assume that 

6hQ)/6 m = 1 for mQ 2 mc , 

(8.4) 

(8.5) 

which we will attempt to justify momentarily, and define the zero of energy in the 

QQ system to be at 2m Q. The threshold for dissociation of a Qa state into Qq + qq 

then lies 6(m 
Q 

) above this zero of energy. We now consider any potential V(r) 

which binds QQ states rising at least 6(m 
Q 

) above 2m Q. This condition is satisfied 

by any confining potential. Then the number n of bound states which lie below 

6 (mQ) is given in the semiclassical approximation by F57 

.f r6 dr [ mQ(6 (mQ) - V(r)) 1 ’ =(n-Yu)a, , (8.6) 
0 

where the classical turning point is specified by 

V(r,) = 6(mQ) (8.7) 
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The radius r 
6 

becomes independent of m 
Q 

as m 
Q 

+m. If we adopt the 

approximation (8.51, the left-hand side of (8.6) is simply proportional to m as in 

eq. (8.3). The constant of proportionality a can be expressed as 

a 2 (l/d jr6dr [mc(6,- V(r)) 1” , 
0 

but it is more useful to determine a from the charmonium system. Since the charm 

threshold lies approximately 40 MeV above the $’ and the 33Sl level Q(4.03) lies 

approximately 350 MeV above the $‘, we estimate F58 

n(mc) = 2.1 = a + % t (8.9) 

so that 

a = 1.9 (8.10) 

The relation (8.3), it will be noted, is independent of the form of the 

potential. It is interesting to examine how this comes to pass in various potentials. 

The issue before us is how many levels lie below a certain energy (6 m in the present 

application). This can be studied in Fig. 5, where energy levels are plotted as 

functions of 2u for three potentials. For the linear potential V(r) q r, which 

vanishes at the origin, the levels approach each other as AE = (2u) -l/3 , as shown in 

Fig. 5(a). Thus more of them fall below a certain energy as the mass increases. 

For the logarithmic potential V = In(r) which corresponds to Fig. 5(b), all the levels 

descend into the well at the common rate given by eq. (3.431, 
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E,(2,,) = E,(l) - K In(2d, maintaining the initial level spacing. In the case of the 

potential V(r) = -r-%, the level spacings grow as AE = (2~)“‘~, but the levels fall so 

rapidly into the well that eq. (8.3) is fulfilied. As we have seen in §IV, the WKB 

approximation yields highly accurate energy eigenvalues in many cases, so we would 

expect eq. (8.6) to provide a reliable count of the number of bound states 

below threshold. 

Let us now examine more critically the assumption (8.5) that 6(m ) 
Q 

is 

essentially independent of m Q, for mQ) m,. The magnitude of the hyperfine 

splitting that contributes to 6(m 
d’ 

IS determined by the charmed mesons, for 

which6 MI,* - MD = 142 MeV/c2. We assume3’ that Qq hyperfine splittings are 

described by quantum chromodynamics and are inversely proportional to m F59 

The llSo (Q$ state is therefore expected to lie a distance 
Q 

mC 
- Jj 6(mQ)HFs = - 

mQ 
;(M D* - MD) = 107 MeV (mc/mQ) (8.11) 

below the lS(Q$ center of gravity.F60 The contribution (8.11) to 6(mQ) is a 

negative one, already small in the charmonium system and diminishing in 

importance as m 
Q increases. A small positive contribution to 6(mQ) arises from 

the dependence of the binding energy upon the reduced mass 

u(mQ) = m m 
sQ 

/(mq+m 
Q 

) (8.12) 

The reduced mass increases slowly as m 
Q 

increases. This variation leads, according 

to the Feynman-Hellmann theorem (2.16), to deeper binding. A crude estimate of 

the change in binding energy can be had by treating the @ system nonrelativis- 

tically and adopting for simplicity the logarithmic potential 
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V(r) = C In (r) 

I 

C = 0.733 GeV I 

(8.13) 

which describes the $ and T spectra. Using eq. (3.43), we find that 

1 
2 C CQ - 6(mQ) 1 reduced mass = $in[ : : z$::] * (8.14) 

By combining (8.11) and (8.14) we obtain for m 
q 

<C mc 

6hQ) - 6(mc) = (213 MeV - C m,/m,)(I - mc/mQ) . (8.15) 

As a numerical illustration, we take 31 m /m = l/5, which leads to 
q c 

6(mQ) - 6(mc) = 66 MeV (8.161 

This 10% correction to 6 -cannot be expected to make an appreciable difference in 

the prediction (8.3). 

The proportionality between the number of narrow 3 Sl levels and m ’ 
Q 

depends only on the assumption of a universal interquark potential and on the 

validity of a nonrelativistic description of quarkonium spectroscopy. Serious 

violations of (8.3) for heavier families of vector mesons would be a strong 

indication of new physics. 



-97- FERMILAB-Pub-79/22-THY 

IX. SUMMARY 

In this article we have presented a number of elementary scaling techniques 

and semiclassical methods of nonrelativistic quantum mechanics. Although general 

in their applicability, these methods have been employed here to explore how 

systems composed of heavy quarks behave when the quark mass, interaction 

strength, or excitation level is varied. 

The appropriate formalism has been presented in a manner independent of the 

details of elementary particle physics in § II-IV. The specific applications presented 

in §V-VIII are more narrowly focused. Let us review some of the accomplishments 

of the nonrelativistic quantum mechanics description of quarkonium systems. 

We have found the “effective power’rv characterizing a potential V(r) :X rv to 

be a powerful tool for investigating the nature of the interquark interaction. 

Properties of the $ and T families indicate that this effective power is close to zero. 

One consequence of this result is the prediction that Ieptonic decays of vector 

mesons should grow in importance compared to radiative decays as the mass of the 

constituents increases. 

The similar level spacings observed in the J, and T families are one 

manifestation of an effective power near zero. This has suggested that the potential 

V(r) fl In(r) would interpolate between the two families. Predictions of the 

logarithmic potential have been compared with those of a Coulomb plus linear form. 

The present methods played a key role in determining the charge of the fifth 

quark, the constituent of T, to be I eQl = l/3. Q uantum mechanical considerations 

make it possible to separate the effects of quark charge from those of the bound- 

state wavefunction on the leptonic decays of T and T’. This allowed us to place 

useful lower bounds on leptonic widths of the T states by extrapolating from the $ 

states. The observed leptonic widths of the upsilons exclude a quark charge 

I eQ I L 2/3. 
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A semiclassical argument leads to the prediction that the number of narrow 

3 Sl QG states below flavor threshold grows as the square root of the heavy quark 

mass, independent of the specific form of the interquark potential. 

We foresee a number of additional applications of the present methods to the 

data on quarkonium states that will soon be forthcoming. Encouraged by the 

satisfactory extrapolations over a factor of three in mass from the $ to T families 

which our methods have permitted, one may anticipate similar success in passing 

from upsilon properties to those of heavier QQ families accessible at PETRA and 

PEP. A popular guesslO’ IS that the next quark, denoted t, will have charge et = 2/3 

and mass mt = 15 GeV/c‘. What would be the characteristics of a hypothetical 5 

family of t? bound states? 

We would expect six or seven narrow 3Sl t, states below the t-flavor threshold. 

Leptonic widths of the vector states would decrease with principal quantum number 

at least as rapidly as 

rk, + .Q,+9.-) s n -1 
f (9.1) 

if the potential may be characterized by an effective power vz 0. The leptonic 

width of the ground state must respect the lower bound F61 

i-k + e+e-) 2 3 2 r(T + e+e-) 
5 

= 1.6 keV (9.2) 

Of course we do not know in advance the charge and mass of the next quark 

(assuming it exists). The quark charge may be’established by comparing the leptonic 
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widths of 5, 5 ‘, 5 ” with those of T, T’, and T ‘I, if our experience with the T system is 

a reliable guide. Leptonic widths of the excited 5 states may be almost completely 

determined (up to the quark charge) by details of the interquark potential already 

fixed by the J, and T families. This is certainly the case in the inverse scattering 

approach to the interaction. 65,89 

Our discussion of the nonrelativistic quantum mechanics of bound states is by 

no means exhaustive. [Many of our general conclusions about quarkonium properties 

would not have been reached without the pathfinding calculations based on explicit 

potentials.‘02 We have mentioned only in passing the inverse scattering methods65 

which lie beyond the scope of this review, although we believe them to offer great 

promise and freedom from theoretical biases. F62 A number of useful constraints on 

radiative decay rates of the psions have been derived using quantum mechanical sum 

rules,lo4 and related applications of the sum rules derived in 5II.E have been made 

to light-hadron spectroscopy. lo5 Finally, rigorous inequalities on the order of 

energy levels and other properties of bound systems have been derived by Martin and 

collaborators.‘06 

As fruitful as the nonrelativstic approach to quarkonium physics appears to be, 

we must bear in mind that it has not been given a firm theoretical basis. Within the 

framework of QCD, it is believedlo that a static, flavor-independent potential will 

emerge as a correct description of the interactions of infinitely massive quarks. 

This has not been proved, however, and it is conceivable that no sensible static limit 

exists. For quarks of finite mass, relativistic corrections are present in principle. 

These may be estimated for the psions to be small but not insignificant. A self- 

consistent and fully relativistic treatment of the charmonium system is a worthwhile 

goal. For the moment, the best justification of the nonrelativistic approach derives 

from its experimental success. 
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What more can we expect to learn from the study of more massive quarkonium 

families? We believe the physics revealed by QQ states near the flavor threshold to 

be largely independent of the quark mass because, as we have argued in §VIII, 

dissociation into pairs of flavored mesons occurs at a fixed size, or classical turning 

point. The lowest-lying levels of heavier quarkonium systems will, however, probe 

the interquark potential at increasingly short distances, We do not expect 

quarkonium physics to provide particular insights into the nature of the confining 

force which operates at long distances. At interquark distances of a fermi or less, 

we expect that the nonrelativistic methods will at the least give qualitative insight 

into the character of the interaction, while providing useful mnemonics for the 

variation of. observables with quark mass and excitation energy. Quantitatively 

reliable predictions appear to be nearly within reach. We eagerly await the 

experimental measurements and discoveries that will judge the ultimate worth of 

quarkonium quantum mechanics. 
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FOOTNOTES 

FI A brief reminiscence of this period is given in Ref. 1. 

F2 The basis for this belief is summarized in Refs. 3 and 4. 

F3Qu k ar searches are reviewed in Refs. 4-6. Recent efforts to detect fractionally 

charged matter are reported in Ref. 7. 

F4 For a review, see Ref. 9. 

F5 Asymptotic freedom has been reviewed in Ref. 10. For further applications see 

Refs. 11 and 12. 

F6 For a general review of positronium, see Ref. 14. A review of hyperfine 

structure is given in Ref. 15. 

F7 Summaries of charmonium spectroscopy are given in Refs. 19 and 20. See also 

Ref. 6 for references on individual states. 

F8 Evidence for a few examples of the cascade $(3684)+ y + X(3600), 

X(3600) + y + $(3095), with a combined probability of (2.8 + 1.2) x 10s3, has 

been presented in Ref. 21. The data are from the DESY-Heidelberg NaI-Pb 

Glass detector. Apparently there is some inconsistency between this experi- 

ment and earlier reports of x(3455). The average (see Ref. 19) of previous 

measurements for T($(3684)+ y + x(3455))/T($(3684)+ all) is (0.6 k 0.4) x 10W2, 

but the preliminary DESY-Heidelberg analysis gives an upper limit of about 

0.2 x 10-z; 

F9 Thorough reviews have been given in Ref. 22-26. A recent, but abbreviated, 

assessment appears in Refs. 27 and 28. 

F’“An appealing (but perhaps rose-colored).response to the apparently large 3S-1S 

hyperfine splitting is to deny the existence (or at least the identity) of the 

pseudoscalar candidates. See the discussion in Ref. 27. 
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F11 The description of systems containing only light quarks has relied, by contrast, 

to a much greater extent on group-theoretic interrelations among resonant 

particles and their decay amplitudes (see, e.g., Refs. 4 and 29). Dynamical 

descriptions of these systems have been of a cruder nature, though some 

insights have been gained from specific models (see, e.g., Ref. 30) and from 

QCD (see Ref. 31). 

F12We adopt the standard normalization jdOY~m(tl,$)y~,m,(e, o) = 6fiQ, 6 mm, . 

See, for example, the Appendix of Ref. 33. 

F1+or one-dimensional problems, we shall adopt the normalization 

SW dx[ u(x)1 ’ = I except where explicitly stated otherwise. 

Fl4 -” This relation has been ascribed to unpublished lecture notes of J. Schwinger. 

We first encountered it in Ref. 35. 

F1% this and subsequent manipulations we take the lower limit of integration to 

be an infinitesimal quantity which is allowed to approach zero at the end. 

F’6This is an example of a relation given in Ref. 33, p. 17. Other choices of q in 

Eq. (2.30) for the Coulomb problem give moments of r in terms of those 

determined previously, e.g. q = 3 gives <r2> in terms of <r >; q = 0 (for .8 f 0) 

gives <rm3> in terms of ir- % ; q q - I (for il f 0) gives <r-‘> in terms of <rm3 > 

and <r-s ; and so on. See problem 1, p. 431, of Ref. 36, vol. I. 

F17A useful summary of the properties of these functions may be found in Ref. 37, 

pp. 446-452. 

F1gWe thank 8. Simo n for informing us of a proof by J. Avron, I. Herbst, and 

8. Simon (unpublished) of a more general theorem which has (2.84) as a special 
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case, and of an unpublished proof by A. Martin which is very similar in spirit to 

the present one. 

F19 An interesting historical discussion of the importance of this (“Thomas-Reiche- 

Kuhn”, Ref. 41) sum rule is given in Ref. 42, 56-9, 25.2, and 25.8. It played an 

important role in the development by Heisenberg of commutation relations 

(Ref. 43). 

F20We have reviewed many of these scaling arguments in Ref. 44. They appear in 

numerous places in the recent literature: see, for example, Refs. 22, 23, and 

Refs. 45- 47. 

F21 For simplicity, in discussing magnetic transitions we assume that only one mass 

scale is important, whether because the two particles bound to one another have 

equal masses (: Zu), or because one (with mass z u) is much lighter than the 

other. 

F22We thank H.J. Lip kin for suggesting this approach. 

F23This connection is mentioned in Refs. 50. 

F24A similar connection has been noted in Ref. 47 within the context of the 

semiclassical approximation. 

F25See Ref. 37, p. 687. 

F26See Ref. 37, 519.3.5. 

F27 See, for example, Ref. 51, Section 30. 

F28See, for example, Ref. 52, vol. II, p. 1664. 

F29See Ref. 37, § 13.5.1. 
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F30 See, for example, Ref. 33, Sec. 3, and Ref. 53, Appendix d. 

F31 The literature on this approximation is voluminous. We have drawn some 

enlightenment from the following very incomplete list: Refs. 51, 53, 55-59. 

Some more recent observations are contained in Ref. 47. 

F32The authors of Ref. 63 derive Eq. (4.22) by means of a Thomas-Fermi 

approximation: when F. = 0, for example, E<g 1 ‘l’,,(r) I’=, k /k ( Id3k/(2tr13, 

E - V(r) = k&)/Z u. 
< F’ 

This relation may be diiiehntiated wi:h respect to n to 

obtain Eq. (4.21). As noted in Ref. 63, Eq. (4.22) also may be obtained by 

matching solutions in terms of spherical Bessel functions near r = 0 to the WKB 

solutions for larger r. 

F33 Consideration of an infinite wall at r = 0 leads to an alternative derivation of 

the quantization condition for a nonsingular potential in three dimensions. See 

Ref. 56. 

F34 Cf. problem 23, §I in Ref. 60. The classical mechanics problem is described in 

Ref. 64, §12. 

F35 This IS the appropriate form for three dimensions. In one dimension the factor 

of 2 in the numerator of the right-hand side of (4.32) is absent, and the 

potential is defined to be symmetric. The symmetry is a very strong 

requirement; other (non-symmetric) potentials also can give the same level 

structure in one dimension. (See Refs. 58 and 65 (part I) for a discussion.) 

F36Th’ IS method is discussed, for example, in Ref. 56, pp. 129-131, and in refs. 57 

and 66. It is valid for potentials of the form (3.1) with h < 0 and I, < 0, all of 

which have an infinite number of bound states with lim 
n*- 

En + O-. 



-105- FERNLAB-Pub-79/22-THY 

F37This estimate is an average [Ref. 751 based upon measurements of the muonic 

width and branching ratio reported in ref. 76. 

“&rhis circumstance motivated the introduction of the logarithmic potential in 

Ref. 49. 

F39This is illustrated in Figs. I and 2 of the second paper of Ref. 65. 

F4%he principal-quantum-number dependence of psion leptonic widths led to the 

investigation in Ref. 82 of potentials which rise less rapidly than a linear 

potential. 

F4’In making this illustrative estimate, we assume that binding energy is negligible 

compared with quark mass, so that u sets the scale of vector meson masses, and 

we ignore the effect of (L-S) fine structure splitting on the Q-value of the 

decay. 

F42An up-to-date evaluation appears in ref. 27. 

F43An average of measurements made at DESY is r(T + u’u -)/r( T + all) = 

2.6 t 1.4% [Ref. 75, based upon data of Refs. 761. 

F441n this Section we adopt “natural” units, with H = c = 1. 

F45 Lipkm has conjectured that the scaling laws of the logarithmic potential may 

nevertheless apply to light hadron systems. See Refs. 85. 

F46We thank R. Hag edorn for this remark. The limiting temperature of the 

logarithmic potential was discussed by Rumer, Ref. 86. 

F47 Here we are neglecting coupled-channel effects which may have an important 

influence on levels above the charm threshold. The multichannel problem has 

been discussed by Eichten, et, ref. 26. 

7 

i 

i 
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F48Unlike the authors of references 26 and 88, we do not shift the zero of energy. 

Particle masses are given by twice the quark mass plus the eigenvalues of the 

Schrodinger equation (2.1). 

F49The electron-positron storage rings PETRA (Hamburg) and PEP (Stanford) both 

are expected to reach maximum c.m. energies in excess of 30 GeV within a 

year. 

F’+h e numerical coefficient on the right-hand side of eq. (6.19) corrects a 

misprints in Ref. 49. 

F5’A recent contribution in this respect is that of Ref. 91. See Ref. 27 for 

reference to earlier works. 

F5%everaI au thors (Ref. 92) have explored this possibility for Coulomb-like 

potentials of the form V s I/ [r In (r)l. 

F53The pattern of constant Tee/eQ2 has been emphasized, for example, in Ref. 93. 

See also Ref. 94. 

F54 The influence of d2V/dr2 on the relative sizes of $ and $’ leptonic widths is 

discussed by Martin in Ref. 95. This result has been generalized to higher 

excitations within a semiclassical approximation in the second of Refs. 95. 

F55 The second of Refs. 65 is representative. 

F56 A more restrictive bound, mQ - mc > 3.29 CeV/c’, is obtained in Ref. 96. 

F57The shifted variable n - K is appropriate for a nonsinguiar potential. For a 

specific singular power-law potential, the best choice is given by eq. (4.45). 

F58We have us ed a shifted variable (n - K) and a linear interpolation which may not 

be optimal. The uncertainty arising from this procedure will be smaller when 

the coefficient in eq. (8.3) can be determined from the T family. 
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F59 We neglect a small variation in 1 +‘(O) I2 for the Q{ mesons which will arise from 

slight changes in the reduced mass as m 
Q 

+ m. 

F60For the hig hl excited QG states we shall neglect hyperfine effects. (This y 

amounts to rejecting the interpretation of X(2830) as the ‘So partner of the 

$(3095).) The inclusion of such hyperfine effects for QQ states would tend to 

raise slightly our estimate of n(v) as long as these effects are becoming 

smaller for increasing m Q 
. 

F61 The result (9.2) follows from (7.3) if the quark masses and vector meson masses 

are in the same ratio. Larger values of r(< + e+e-) would be expected if 

Veff 2 0 or if r/eQ2 is universal. 

F62Th e relative strengths and weaknesses of the inverse scattering method are 

assessed in ref. 103. 
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Table 1. Scaling properties of some physical 
quantities in various potentials V(r) = h rv. 

‘J length 
scale UEl) r(M1) 

-I u v-l 1-I 
u 

0 u" FI -l/2 
u-l 1-1-2 

1 ~ -113 ~-i/3 
u -5r3 

u-3 
2 !J -l/2 ~ -I/4 

P-2 
m II -1 

II -7/Z 
..O --4 r M lJ - !J-5 

r (2: e’e-) 

u 
1-I -l/2 

!-l-l 
1-1 -514 

u-2 
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Table 2. Semiclassical and exact results for s-wave energy 

levels in potentials V(r) q Xr”, v > 0. Here 2uX/H2 = 1. 

v = 1 (linear) 

” 

En(semiclassical, 

eq. (4.33)) 

[ 2 (n - X) P 2 

1 2.32025 

2 4.08181 

3 5.51716 

4 6.78445 

5 7.94249 

6 9.02137 

7 10.03914 

8 11.00767 

9 11.93528 

10 12.82814 

v = 2 (harmonic oscillator ) 

4n - 1 

V -t -(infinite square well, radius R: X = R-“) 

E”(exact) 

Ai(-En) = 0 [eq. (2.73)1 

2.33811 

4.08795 

5.52056 

6.78671 

7.94413 

9.02265 

10.04017 

11.00852 

II .93602 

12.82878 

‘+n- 1 [eq. (3.61)1 
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Table 3. Semiclassical and exact results for / Y,(O) 1’ 

in potentials V(r) = X rv, v > 0. Here 2uh/fi2 = 1. 

V = 1 (linear) 

1 YJO) [‘(semi- 

classical, eq. (4.35) ) 

1141 

v = 2 (harmonic oscillator) 

n+(n - KP ’ r(n + ‘)[Eqs. (2.43), (3.62)1 Tr(n) 

1 0.17549 0.17959 

2 0.26807 0.26938 

3 0.33604 0.33673 

4 0.39242 0.39285 

5 0.44165 0.44195 

I Y”(O) I 2 
(exact ) 

1/4a [Eq. (3.16)1 

u + -(infinite square well, radius R: h = R-“) 

2 
EL 

2 
rm 

2R3 2R3 
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Table 4. Semiclassical and exact results for energy levels 
” 

in potentials V(r) = hr , -2 < v < 0. Here 2p/fi2 = -X = 1 

En(semiclassical, eq.Clr.46)) Er,(exact) 

v = -l/2 

n 

1 

2 

3 

4 

5 

V = -I (Coulomb) 

-[4(n - l/6)1 -2’3 numerical calculation 

-.448 -.438 

-.265 -.263 

-.198 -.198 

-. 162 -.I62 

-. 139 -.I39 

-1/4”2 -l/4”’ [Eq. (3.71)1 
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Table 5. Semiclassical and exact results for 1 Y,(O) 1’ 

in potentials V(r) = Xr 
” 

, -2 < V < 0. Here 2p/fi2 = -1 = 1. 

v = -l/2 

n 

I 

2 

3 

IY”n(0)12 ( semiclassical , 
eq. (4.48b)) 

1 Y n(O))2 (exact) 

1/[4~ 34’3[ lX2/3)1 2(n-1/6)5’3i numerical calculation 

.01359 .01123 

.00365 .00333 

.00177 .00167 

4 

5 

V = -1 (Coulomb) 

.00107 

.00073 

I 

8nn3 

.00102 

.00071 

-I--J%. (2.43) ,(3.72)1 
871”~ 
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Table 6. Exact and semiclassical levels in a potential V(r) = C In (r/To). 

The WKB eigenvalues, shown in parentheses, are based on Eq. (4.59). 

Here C = ti2/2uro2 = 1. 

a 0 1 2 

n 

1 1.0443 1.643 2.015 
(0.9778) (1.489) (I .825 ) 

1.8474 2.151 2.388 
(1.8251) (2.076) (2.277) 

2.2897 2.491 2.663 
(2.2771) (2.444) (2.587) 

2.5957 2.744 2.880 
(2.5873) (2.712) (2.824) 

2.8299 2.948 3.060 
(2.8237) (2.924) (3.015) 

3 

2.286 
(2.076) 

2.581 
(2.444) 

2.811 
(2.712) 

2.999 
(2.924) 

3.159 
(3.098) 

4 

2.499 
(2.277) 

2.742 
(2.587) 

2.941 
(2.824) 

3.107 
(3.015) 

3.251 
(3.175) 
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n 

Table 7. Semiclassical and exact results for <r > 

and 1 Y”(O) 1 ’ of s-wave levels in a potential V(r) = C In?r/ro). 

Here C = fi’/Zu=r 
0 

’ = 1. 

<r>n(semiclas- 

sical, eq. (4.61)) 

1.88 

4.39 

6.89 

9.40 

11.91 

14.41 

1 Y,(O) 1’ (exact) nlYJO)12 

0.0549 

0.0280 

0.0191 

0.0146 

0.0118 

0.0100 

0.0549 

0.0560 

0.0574 

0.0583 

0.0592 

0.0600 

(exact) 

1.97 

4.46 

6.95 

9.46 

11.97 

14.47 
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Tabie8. TheratioR~In~~Y3iO~~/~Y2~O~~~/ln~~Y2~0~~/~Yl~O~~) 

for several simple potentials. 

Potential 

-r -I 

-,-1/z 

In r 

r 

r2 

R Semiclassical 

0.585 

0.552 

0.533 

0.533 

0.533 

RExact 

0.585 

0.57 

0.57 

0.56 

0.550 

Remarks 

ln(3/2)/ln 2 
[ Eq. (3.72)1 

Table 4 

Table 6 
Limiting value for V(r) = r”, 

v+ 1 
ln(5/4)/ln(3/2) 
[Eq. (3.62)1 

Infinite 
square 

well 
0.585 0.585 ln(3/2)/ln 2 

[Table 31 
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Table 9. Partial decay widths of vector mesons into e+e- 

Meson 
(mass, MeV/c’) 

I Quark 
Content 

~$776) 

p(1649) I 

~(783) ~ (UK + da)/0 

@(1020) ~ 5. 

-J1(3095) I 

$(3684) ! 

9(4040) / CC 

$(4159) I 

T(9460) 

T(10020) 

Principal 
quantum 
number 

1 

2 

1 

1 

1 

2 

3 

4? 

5 or 4 

2.1 ? 0.3 81 

0.75 t 0.10 20 

0.77 * 0.20 20 

0.44 t 0.14 81 

1.2 f 0.2 75 

--I-- 0.33 f 0.10 75 
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Table 10. Effective power-law potentials deduced from $ and T 
leptonic widths. 

7 
I I 

3 4 ( 

-0.53 * 0.14 -0.14 k 0.17 j 

+0.15 k 0.47 +0.72 ? 0.59 
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Table 12. Calculated and observed leptonic widths of 
vector mesons in two potentials 

Meson 
mass, GeV 

n 
Charmonium Family 

3.095 1 

3.684 2 

4.04 3 

4.16 4 

4.41 5 

Upsilon Family 

9.460 1 

10.02 2 

10.38 3 

110.60 1 a’ 4 

r 
e+e-’ 

keV 

Predicted, Predicted, Observed Reference 
logarithmic modified 

Coulomb 

4.80 

1.73 

0.98 

0.71 

0.51 

1.10 2.85 1.2 c 0.2 

0.50 1.07 0.33 t 0.10 

0.32 0.76 

0.23 0.63 

7.82 4.8 ?: 0.6 

3.83 2.1 t 0.3 

2.79 0.752 0.10 

---_ 0.77 t 0.20 

2.19 0.44 ? 0.14 
(n=4) 

81 

81 

20 

20 

81 

75 

75 

a) predicted mass 
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Table 13. Mean radii <r ‘of $ and T states in two potentials 

Logarithmic modified Coulomb 
potential [Eq.(3.2),(6.3) 1 potential [Eq.(5.18)-(5.20)1 

2.2 GeV-’ 2.0 GeV-’ 

5.0 4.1 

1.1 1.0 

2.5 2.4 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

FIGURE CAPTIONS 

A schematic representation of the spectrum of positronium. 

Principal decay modes are indicated. Here and elsewhere we 

shall use the spectroscopic notation N “+fLJ, where N = n + 9. 

is the principal quantum number, n is the radial quantum 

number, S is the spin (0 or 11, L(= S, P, D, F ,...) denotes the 

orbital angular momentum a(= 0, 1, 2, 3,...), and J is the total 

angular momentum. 

(a) Second-order electromagnetic decay of 6. 

(b) Energetically forbidden dissociation of J, into charmed 

mesons. 

(c) Inhibited strong decay of $ into ordinary hadrons. 

(a) The spectrum of charmonium (~3. Branching fractions (in 

percent) are shown for the important classes of decays. 

Charm threshold is indicated at twice the D meson mass. 

(b) Spectroscopic notation for the levels of charmonium. The 

identification of ‘So levels is speculative. 

Energy levels in the potential V(r) = In (r). Here 2u = 1. 

Comparison of mass dependence of energy levels in three 

potentials: (a) V(r) = r; (b) V(r) = In r; (c) V(r) = -r-%. 

The relation UT + 26~ + u) : 0. 

Motion in an arbitrary one-dimensional potential between 

classically allowed extremes xI and x2 

The one-dimensional problem appropriate to s-waves in three 

dimensions. (a) Symmetric potential V(-x) = V(x); (b) antisym- 

metric wave function u(-xJ = -u(x). The classical turning points 

are at x = fr 1’ 
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Fig. 9: 

Fig. IO: 

Fig. II: 

Fig. 12: 

Fig. 13: 

Fig. 14: 

Fig. 15: 

Semiclassical -(curve) and exact (points) ratios 

(E3 - E2)/(E2 - El) for s-wave levels in potentials V(r) = x r”. 

Semiclassical (curve) and exact (points) ratios 

1 Y2(0) t/ j YI(0) 12 f or s-wave levels in potentials V(r) = X r”. 

Comparison of 3S1 levels of the J, and T families. Masses of 

the psions are from ref. 6. The T - T’ splitting is taken from 

refs. 74 and 78, and the T” mass is from ref. 79. 

Quark-mass-dependence of the wavefunction at the origin for 

the n = I and n = 2 quarkonium levels. The data are from 

Table 9 for the @(3.095)0, $‘(3.684)=, T(9.4610, and T’(lO.OZ)o. 

The mass dependence characteristic of several simple poten- 

tials is indicated by the slopes of the straight lines. 

The quantity (E2S - Ezp)/(E2S - EJ for power-law potentials 

VW=Xr”, -1 <v< 2. The datum is the value in the - - 

charmonium system (Ref. 6). 

Square of the wavefunction at the origin deduced from 

leptonic widths of the psions. Possible mixing between the 

Z3S,(3684) and 33D,(3772) levels has been neglected. (a) a 

best fit proportional to (n - KjP, with p = - l.OO* 0.15, assum- 

ing the conventional 45 assignment for $(4414). (b) an 

alternative 5S assignment for $(4414), which corresponds to 

p z-o.91 + 0.11. In plotting the data against n - Yu, we have 

anticipated the result p > -1 (v > 0). 

The ratio 1 Y*(O) I’/1 Y 1(O) 1’ IS mdlcated for various poten- 

tials: 3/Z for harmonic oscillator, 1 for linear, s 0.51 for 
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Fig. 16: 

Fig. 17: 

Fig. 18: 

logarithmic, and l/8 for Coulomb. The experimental points 

refer to the P, $, and T families. Data are from Table 9. 

Level spacings in the potential V(r) = -0.507/r + (0.17 CeV’)r. 

Points denote observed masses of members of JI and T 

families. 

Leptonic widths T(y” + ece-) (Table 9) normalized by squares 

of quark charges e 
Q2’ 

as functions of vector meson mass. The 

solid points correspond to the ground states. Open circles 

correspond to 2S levels. For the T and T’ a quark charge 

1 eQ 1: l/3 has been assumed. The crossed points refer to the 

alternative assignment ) eQ) = Z/3. 

Lower bounds for leptonic widths of T and T’ (Ref. 38), 

together with data (Table 9). The shaded area represents the 

range of predictions of twenty potentials reproducing the J, 

and JI’ masses and leptonic widths, for e Q = -l/3. Solid and 

dashed lines correspond to lower bounds for e Q = -l/3 and 213, 

respectively. 
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