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Introduction

CMS physics analysis rely on large quantities

of simulated data

LHC Phase 2: higher luminosity, complex new

detectors, more data

CMS experiment uses two simulation chains:
1. FullSim: Based on Geant4, high accuracy but slower

2. FastSim: Approximate techniques, faster but less

accurate

FastSim is a rapid Monte Carlo application for

detector simulation and event reconstruction,

approximately 10 times faster than FullSim.

FastSim’s speed advantage comes with

reduced accuracy in some observables.

R&D presented: Refine FastSim outputs using

ML

Data Sample and Method

Training sample: SUSY simplified model „T1tttt” simulated:

1. Gen → FastSim + PU

2. Same Gen → FullSim + PU

The aim is to establish a refined version of the FastSim data sample, which is more similar

to the FullSim output, i.e., more accurate.

Matching jets using ΔR angular criterion

Network Inputs and Targets:
Input: FastSim variables xFast = 4 DeepJet discriminators and pT, ~x =

(
pT b CvB CvL QvG

)ᵀ
Parameters: y = pGEN

T , ηGEN, true hadron flavor (b, c, or light quark/gluon)

Output: Refined variables xRefined = 4 DeepJet discriminators and pT
Target: FullSim variables xFull = 4 DeepJet discriminators and pT

Training Framework

(a) Grid Search Mechanism

(b) Real-Time Loss Monitor (c) Comparing of Losses in a Grid Search

Figure 1. Training Framework

A grid search system was integrated into the monitoring system.

All models in the grid are displayed in the grouped trainings tab as a grouped training.

Summary table lists best models and all loss values

Conclusion

Refinement of FastSim leads to significantly improved agreement with FullSim. 

Training monitoring system implemented to track progress across various training ses-

sions. 

The refinement of different variables, such as electrons, muons, and jet pT,ongoing. 

Examination of the different outcomes produced by various input variable transforma-

tions. 
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Network Architecture

Figure 2. Network Architecture of Refinement

Primary loss: Maximum Mean Discrepancy (MMD)

• Comparing ensembles of jets

• To cope with independent stochasticity in both simulation chains

Given two samples from P (X) and Q(Y ):

M̂MD(P, Q) = 1
n2

n∑
i=1

n∑
j=1

k(xi, xj) + 1
m2

m∑
i=1

m∑
j=1

k(yi, yj) − 2
nm

n∑
i=1

m∑
j=1

k(xi, yj)

where n = m = batch size = 2048 and k : Gaussian kernel (adaptive σ)
Combine loss terms via MDMM algorithm:

• Modified differential method of multipliers that allows us to account for multiple

loss terms such as MSE and loss terms that enforce boundary conditions or

unitarity

Results

(a) Refinement of jet pT (b) Refinement of b tagged Deep FlavB

(c) Correlation matrix for FullSim, FastSim, FastSim Refined

Propagate corrected jets to missing transverse energy Emiss
T

(d) histograms comparing Fast and Refined to Full (e) 1D discrepancy Fast-Full and Refined-Full)

(f) profiles of discrepancy to full (mean and RMS)
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