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Abstract
Weyl semimetals (WSM) exhibit chiral anomaly in their magnetotransport due to broken
conservation laws. Here, we analyze the magnetotransport of WSM in the presence of the
time-reversal symmetry-breaking tilt parameter. The analytical expression for the
magnetoconductivity is derived in the small tilt limit using the semiclassical Boltzmann equation.
We predict a planar Hall current which flows transverse to the electric field and in the plane
containing magnetic and electric fields and scales linearly with the tilt parameter. A tilt-induced
transverse conductivity is also present in the case where the electric and magnetic fields are parallel
to each other, a scenario where the conventional Hall current completely vanishes.

1. Introduction

A Weyl semimetal (WSM) state in topological systems with broken time-reversal and/or inversion
symmetry can be understood by the availability of the low energy quasiparticles called Weyl Fermions (WF)
with linear in momentum dispersion near the crossing point of two non-degenerate bands in momentum
space known as Weyl point (WP) [1–3]. Although the concept of WF was first introduced in relativistic
field theory, it has never been observed in the systems of elementary particles, and has only very recently
been realized in a condensed matter systems as an excitation of quasi-particles [4–6]. The essential
properties of WPs are: the presence of pairs of opposite chiralities connected by Fermi arcs on the surface
and the zero-sum of chiralities over all the WPs in the Brillouin zone, according to the Nielsen–Ninomiya
theorem [7]. The chirality χ of a WP is defined by the integration of Berry curvature Ωk (Ωk = ∇× Ak

with Ak = i 〈uk|∇kuk〉, where |uk〉 is the Bloch wave function) over a closed surface around that WP in
momentum space (∲ ds ·Ωk = 2πχ where, χ = ±1,±2, . . . . .).

In the presence of external electric and magnetic fields the conservation of the number of WFs with
particular chirality is broken, a phenomenon known as chiral anomaly. The WSMs are distinctive from
other metals/semi-metals because the chiral anomaly can lead to unusual magneto-transport phenomena
[8]. The observation of negative magneto-conductivity has also been attributed to the phenomenon of
chiral anomaly [9–14] although recently it has been argued that other physical process may also contribute
to the magneto-conductivity [15, 16].

In this manuscript, we study the electron transport in WSM where the Dirac cones are tilted in
momentum space. Such a tilted WSM can be described by an additional anisotropy term in the
Hamiltonian for electrons near a WP as follows [17],

Hχ = χvFσ · k + Iwχ · k, (1)

where χ = ±1 indicates the chirality of each Weyl node, the components of σ are the Pauli matrices and I is
the 2 × 2 identity matrix, k is the wave vector, the vector wχ represents the dispersion tilt and vF is the
Fermi velocity. The first term in equation (1) represents the Hamiltonian of electrons near the WPs when
the time reversal symmetry (TRS) is broken and the second term including tilt wχ also breaks the TRS.
Note that in WSMs where the Weyl nodes are separated by broken inversion symmetry but related to one
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Figure 1. (a) Dispersion relation for the non-tilted (left) and tilted (right) WSM. (b) The z-axis is parallel to the magnetic field
while the tilt vector wχ = w lies on the x–z plane with an angle φ from the x-axis. (c) and (d), A pair of Dirac cones are tilted
(c) towards each other, and (d) away from each other.

another by the time reversal operation (the case which we will discuss later), the tilt term will then be solely
responsible for breaking the TRS. The energy eigenvalues are given by λkχ = (�wχ · k + χ�vFk)) and the

corresponding group velocity is vχk = (wχ + χvFk̂) (where k̂ is the unit vector along k and vF the Fermi
velocity). If the value of tilt |wχ| < vF then the WSMs are sub-grouped as type-I WSM and when |wχ| > vF

then the WSMs are sub-grouped as type-II WSM. A non-tilted and tilted dispersion relation in WSM is
shown in the schematic diagram in figure 1(a). Type-II WSM phase has been observed in a range of
materials such as MoTe2, WTe2, LaAlGe [18–21] and transport related phenomena in these materials have
been addressed in several studies [22–27].

Transport studies of tilted Weyl semimetals have been done recently such as anomalous Nernst effect
[28–30], optical response to circularly polarized light [31], conductance modulation in the presence of tilt
[32], planar Hall effect (PHE) [33] and tilt-dependent magneto-transport [34, 35]. The anomalous
transport properties of a WSM p–n–p heterojunction device in the presence of tilt have been studied in
references [36, 37]. Using Boltzmann transport it has been predicted that both the chiral anomaly and
non-trivial Berry curvature effects leads to the PHE in Weyl semimetals [38] and very recently, PHE in half
Heusler Weyl semimetal GdPtBi has been attributed to a strong Berry curvature effect [39].

Although in the above studies several transport properties have been investigated in the presence of tilt,
a detailed study of the role of the tilt and how does it manifests itself on the transport properties is still not
understood very well. We try to address this issue by considering different configurations of tilt in the WSM
systems. In particular, we study a type-I WSM system with tilt direction (wχ) to be chosen arbitrarily and
we consider two scenarios, with Dirac cones for a pair of Weyl nodes to be tilted along the same direction
and opposite directions. Both the longitudinal and transverse conductivities are calculated using the
Boltzmann transport equation while treating the tilt as a parameter with a small magnitude and oriented
some arbitrary direction. We show that the PHE can be generated only when the tilts for a pair of Weyl
nodes are tilted in the opposite directions and more importantly it can be tuned with the tilt direction and
magnitude. Our manuscript is arranged as follows: in section 2 we present the general framework of the
semiclassical Boltzmann model to calculate the current density up to the second orders in the B field. In
section 3 we present the analytical expression for the conductivity in the small-tilt regime. We also perform
numerical calculations for arbitrary tilt value in the case of both type-I and type-II WSM (results of the
latter are presented in more detail in the supplemental) (http://stacks.iop.org/NJP/22/083081/mmedia) and
verify the analytical results in the limit of small tilt. The anisotropy of the WSM conductivity with respect to
the magnetic field and tilt directions is also presented. We conclude in section 4.

2. Method

We apply the semiclassical Boltzmann transport model where we study the dynamics of the wave-packet
under the assumption of a small external magnetic and electric fields where the separation between Landau
levels can be neglected and where it is valid to use the semiclassical approach [40]. We begin with the
standard procedure to calculate the Boltzmann’s distribution function for a system with non-zero Berry
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curvature under the application of external electric and magnetic field. The presence of Berry curvature Ωk

in the WSMs provides a correction to the phase space volume in the case of adiabatic transport, as shown in
[41, 42]. In the presence of electric (E) and magnetic field (B) the semiclassical equations of motion of the
wave-packet are modified as follows [41],

ṙ =
(

1 +
e

�
Ωk · B

)−1 [
vk + eE ×Ωk +

e

�
(Ωk · vk)B

]
,

�k̇ =
(

1 +
e

�
Ωk · B

)−1
[

eE +
e

�
vk × B +

e2

�
(E · B)Ωk

]
, (2)

where, the energy of the wave packet is given by, εk = (λk − mk · B). Here, λk is the energy dispersion of the
electron corresponding to the band considered (this is given in the Introduction for WSMs with tilt) and
the second term is the correction due to the orbital magnetization of the wave-packet [42]. Then, the group
velocity of the electron is given by vk = ∂εk/�∂k = ∂(λk)/�∂k − ∂(mk · B)/�∂k. To evaluate the
distribution f(r, k, t) we consider the Boltzmann’s equation,

∂f (r, k, t)

∂t
+ ṙ · ∂f (r, k, t)

∂r
+ k̇ · ∂f (r, k, t)

∂k
= Icoll { f (r, k, t)} , (3)

where Icoll { f (r, k, t)} is the collision integral. We solve for the change in the distribution function δf for a
uniform system under steady-state condition, i.e., ignoring the time and space dependence in the above
equation, and apply the relaxation time approximation, i.e., Icoll { f (r, k, t)} = δf (r, k, t)/τ(k), where, τ(k)
is the relaxation time. The relaxation time τ (k) is in general k-dependent where the specific dependence on
k can be derived from the scattering potential in the sample. However, as most of the contribution to the
conductivity is obtained after angular integration over the FS and occurs at energy well away from the Weyl
point (note that the conductivity goes to zero at the Weyl point, where the FS shrinks to a point), unless
there is a very strong anisotropy or directional dependence of τ (k) on k, the resulting conductivity would
not be modified significantly. So, mainly to avoid analytical complexity, we have adopted the constant
relaxation time approximation, i.e., τ being independent of k, which is also adopted by previous theoretical
works on the semiclassical transport formalism in WSMs, as in references [28, 30, 38, 40]. Assuming the
second-order derivative of the distribution function to be negligible, the change in the distribution function
is evaluated from equations (2) and (3) as,

δf (r, k, t) = −τ
(

1 +
e

�
Ωk · B

)−1
�
−1

(
eE +

e2

�
(E · B)Ωk

)
· vk

(
∂f 0/∂ε

)
, (4)

where ε is the electron energy and f 0 is the equilibrium distribution function which usually can be replaced
by Fermi function. As we are interested in the Berry-curvature induced effect only, we neglect the effect of
Lorentz force (see the second line of equation (2)) which produces the conventional Hall current. The
expression of current density is given by, j =

(
e/8π3

) ∫
dk (1 + (e/�)Ωk · B)−1ṙδf (k) and using the above

results for a single Weyl node we obtain,

j =
eτ

4π3�

∫
dε

∂f 0

∂ε

∫
dS

1

(1 + e
�
Ωk · B)|vk|

[
(eE · vk)vk +

e2

�
(E · B)

×
(

(Ωk · vk)vk +
eB

�2
(Ωk · vk)2

)
+

e2B

�
(E · vk)(Ωk · vk)

]
, (5)

where S is the area of the constant energy surface. The current density above originates due to the
imbalance between the particles numbers in the right-handed and left-handed valleys in the presence of the
external electric and magnetic fields (i.e., the phenomenon of chiral anomaly), as discussed in reference
[40]. Next, we expand j to various orders of magnetic field as follows:(
1 + (e/�)Ωk · B

)−1
= 1 − (e/�)Ωk · B + (e/�)2(Ωk · B)2 +O

(
|B|3

)
and so that one can express the

current density as, j = j(0) + j(1) + j(2) + · · · where the numbers in the superscript represent the orders of
the magnetic field. Next, we substitute the expression of the Berry curvature in WSM as given by,
Ωk = −χ

(
1/2k3

)
k, and, we define vk = ∂(λk)/�∂k and vorb

k = ∂(mk · B)/�∂k where the orbital magnetic
moment mk = −χvFk

(
1/2k3

)
k [22, 43], into the above expression of current density and obtain for a

single valley,

j(0) = σ0

∫
dε

∂f 0

∂ε

∫
dS

k2
F|vk|vF

(E · vk) vk, (6)
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j(1) = σ0cb

∫
dε

∂f 0

∂ε

∫
dS

k2
F|vk|vF

[
B (E · vk) (Ωk · vk)+(E · B) (Ωk · vk) vk−(Ωk · B) (E · vk) vk−(E · vk) vorb

k

]
,

(7)

j(2) = σ0c2
b

∫
dε

∂f 0

∂ε

∫
dS

k2
F |vk|vF

[
(Ωk · B)2 (E · vk) vk − B (E · vk) (Ωk · B) (Ωk · vk) + B

(
E · vorb

k

)
(Ωk · vk)

+ (E · B)
(
Ωk · vorb

k

)
vk − (Ωk · B)

(
E · vorb

k

)
vk + (E · B)

(
B(Ωk · vk)2 vk

|vk|
− (Ωk · vk) (Ωk · B) vk

)]
.

(8)

In the above, cb = e�v2
F/ε

2
F and σ0 = e2τε2

F/4π3
�

3vF. Note that the first and second-order terms in B arise
entirely as a result of the non-zero Berry curvature. Now, to evaluate the current density one needs to
integrate over energy and momentum. We consider a model Hamiltonian given in equation (1) with linear
dispersion which describes a tilted WSM (for both type-I and type-II). For the type-I case, we calculate the
current density in two different ways: (i) we first assume a small tilt limit and obtain the analytical
expression of the current density to the first order in the tilt vector w; (ii), we calculate the current density
numerically for arbitrary value of tilt, and compare the results with the analytical expression obtained in the
small tilt limit. For type-II WSM, we only perform the numerical calculation and present the results in the
supplemental.

3. Tilted WSM

Small tilt limit (|wχ| � vF). For small tilt, we expand equations (6)–(8) to the first order in wχ using

|vχk | ≈ χvF + (k̂ · wχ) +O
(
|wχ|2

)
. The presence of a finite tilt to the energy dispersion changes the shape

of the Fermi surface (FS). However, in the small tilt limit, one can neglect this change and assume the shape
of the FS to be spherical. We also consider the low-temperature limit such that we can approximate the
distribution function f 0 to be the step function θ(ε− εF) and consequently ∂f 0/∂ε can be replaced by a
Dirac delta function given by δ(ε− εF) (note that most of the experimental transport measurements on
WSMs are done at low temperatures at which this approximation is valid). Without loss of any generality,
we choose the z-axis to be aligned along the magnetic field (B = Bẑ) and that wχ and B lie in the same
plane (figure 1(b)). Choosing the plane to be the x–z plane, we write, wχ = wχ

x x̂ + wχ
z ẑ (wχ

x and wχ
z are the

components of tilt and x̂ and ẑ are unit vectors along x and z-axis). Under the above assumptions, we
calculate the current densities for a pair of Weyl nodes with opposite chirality to the first order in tilt and to
the various orders in magnitude of the magnetic field B. While doing so we considered two distinct cases:
(I) the tilt changes sign between the valleys with opposite chirality i.e. wχ = χw, and (II) the sign of the tilt
remains unchanged in the two valleys i.e. wχ = w.

Case (a). In the small tilt limit, the current density can be evaluated analytically derived from the
integrals in equations (6)–(8) with E is chosen to be along ‖(x̂ + ẑ). The current density of different orders
in B is given by (see the supplemental information for more details on the derivation):

j(0) =
8π

3
σ0E, (9)

j(1) =
4π

15
σ0cb [27 (E · B) w + 27 (E · w) B + 7(w · B)E] , (10)

j(2) = 2πσ0c2
b

(
1

3
(E · B) B + |B|2 1

15
E

)
. (11)

Interestingly, the first-order term is non-vanishing only in the presence of tilt, while the zeroth and
second-order terms are independent of the tilt. This linear dependence of the conductivity on the tilt has
been predicted before by reference [43]. In our case, we adopt the conventional assumption that intra-valley
scattering is the dominant process, and we neglect the inter-valley contribution [44]. In general, the WPs
are well-separated in the momentum space by a vector Q, whose magnitude is much larger than the Fermi
wavevector. Hence the relaxation rate for two intra-valley and inter-valley processes are such that
1/τ intra � 1/τ inter. As a consequence, the inter-valley scattering term in the Boltzmann equation can be
neglected, an assumption which was also assumed previously by references [28, 44–46]. This tilt
dependence can be understood from the following argument. The anisotropic tilt appears in the integrals in
equations (6)–(8) because of the dependence of the group velocity vk on tilt. In the case of both j(0) and j(2)

all the terms in the integral are even in k in absence of tilt. However, in the presence of the dispersion tilt,
these terms (to the first order in tilt) become odd in k i.e. the integrals change sign as one goes from k to
−k, and, as a consequence, vanish after integration over the FS (which is taken to be spherical). Conversely,
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Figure 2. (a)–(c), Plot of longitudinal components of current density j(0), j(1) and j(2) with respect to x-component of tilt (wx)
when electric field E ‖ (x̂ + ẑ). We use J0 = σ0|E|. (d) Plot of x and y components of j(1) with respect to x-component of tilt wx

when E‖B‖̂z. Inset: Comparison with the analytical results (red circle), which are in close agreement with the numerical results at
the small tilt limit.

for j(1), all the terms in the current integral up to the first order in tilt are even in k, and hence integration
over the FS is not necessarily zero.

To understand the dependence of tilt on the current, we consider the implications of equation (10). We
consider two particular cases, first, E ‖ B i.e. the measurement set-up for longitudinal magnetoconductivity
and second, E ⊥ B i.e. the usual Hall measurement set-up. In the first case, i.e. for E ‖ B ‖ ẑ, we obtain,

j(1) = σ0cb
4π

15vF
(27Bw + 34wzB) E. (12)

Clearly, the current density has components not only along the direction of the magnetic field but also
along the tilt directions. As a consequence, we have current transverse to the external electric field in the x–z
plane (the plane containing the tilt vector), i.e., j(1)

x = x̂
(

4π/15vF

)
σ0cb

(
27|E|Bwx

)
but no transverse

current density perpendicular to that plane, i.e., j(1)
y = 0.

Note that in the case of the longitudinal magneto-conductivity set up i.e. when E ‖ B, one usually
obtains only the longitudinal component of current density since the Lorentz force is zero. However, in this
case, we obtain non-zero transverse conductivity in the presence of tilt and Berry curvature. This unusual
transverse signal should be readily measurable in this measurement set-up as one does not need to take into
account the background Lorentz force induced Hall current. The tilt is a material-specific parameter whose
direction and magnitude can, in principle, be determined from the band structure. If these tilt parameters
are known, then our model can provide a prediction of the Berry curvature induced current. Numerically,
from the plot in figure 2(d), we predict a planar Hall (PH) conductivity of 19.46 Ω−1 m−1 for a tilt value
wx = 0.1 along the x-direction for type-I WSM, and 14.21 Ω−1 m−1 for a tilt wx = 1.6 for type-II WSM
(plot is in the supplemental).

Similarly, for the E ⊥ B set-up, we derive the analytical expression for current in the small tilt limit to be,

j(1) =
4π

15
σ0cb [27 (E · w) B − 7 (B · w) E] . (13)

From above, we see that the current density has no component along the conventional Hall direction
(i.e. parallel to E × B). However, there is a non-zero planar Hall (PH) signal. In general, the PH effect is
defined as the transverse current in the plane containing the electric and magnetic fields (i.e. along
E × (E × B) direction) when these fields are not parallel to each other. In our particular scenario, the PH
current is parallel to B and is given by j(1)

PH =
(

4π/15vF

)
σ0cb27 (E · w) B.

Arbitrary tilt strength. The analytical current density expressions derived in the previous section holds
only in the small tilt limit. For arbitrarily large tilt strength, we calculate the conductivity numerically based
on equations (6)–(8). In our numerical calculations, we assume the characteristic collision time to be
τ = 10−13 s [14, 47] and Fermi energy εF = 0.1 eV. We set the magnetic field to be 3 T, electric field to be
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Figure 3. Plot of longitudinal (blue) and PH (red) components of j(1) with respect to (a) θ, the angle between the electric and
magnetic fields, and (b) with respect to the tilt direction φ.

108 V m−1 and the temperature T = 30 K. With these parameter values we have σ0 = 52.84 Ω−1 m−1. In
figures 2(a)–(c), we plot the longitudinal components of the zeroth, first and second-order terms of the
current density as a function of the dispersion tilt in the x-direction, i.e., wx (wz = 0) when the electric field
direction is chosen arbitrarily to be E ‖ (x̂ + ẑ) (i.e. E lies in the plane containing w and B). At small tilt, the
zeroth j(0) and second-order term j(2) does not change appreciably with the tilt, confirming our analytical
prediction that the two terms are independent of the tilt at the small tilt limit (equation (9) and (11)).
However, at sufficiently large tilt (|w|/vF > 0.2), the response of those terms to the tilt becomes non-linear.
By contrast, the first-order term j(1) varies linearly with the tilt parameter wx even at large tilt, a response
that is in line with the analytical result of equation (10).

Note that all the various orders of current density show an increasing trend with the tilt parameter. A
possible reason for this increase of current density is due to the fact that the magnitude of the group
velocity vk and the area of the FS both increase with the tilt strength. Although the addition of a tilt term in
the Hamiltonian does not change the topological properties of the WSMs, it does change the energy
dispersion and as a consequence the shape of the FS. For a type-I WSM, the shape of FS is ellipsoid where
the axis of the ellipsoid is determined by the tilt direction while for type-II, the shape becomes hyperboloid.
As the total current density is calculated by integrating over the FS, the shape and size of the FS have an
influence on the current density. The effect of the FS geometry is even more prominent in the case of
type-II WSM (this is discussed at the end of this section based on results given in the supplemental).

Next, we evaluate numerically the transverse current in the longitudinal magneto-conductivity setup,
i.e., E ‖ B ‖ ẑ. In figure 2(d), we plot the perpendicular components of j(1) corresponding to this set up,
both in the in-plane (x–z plane) and out-of-plane directions, as a function of the tilt parameter wx. In the
inset, the numerical results are compared with the analytical prediction of equation (12), showing good
agreement at the small tilt values. It can be seen that the in-plane transverse component of current density
increases linearly with wx while the out-of-plane component is zero, both trends of which match that of the
analytical form in equation (12).

The presence of the in-plane transverse current in figure 2(d) even in the longitudinal set up where the E
and B fields are parallel to each other can be understood in terms of the group velocity vk in equation (7).
In the absence of tilt vk ‖ k ‖ Ωk, and, thus the second and third terms are odd in k as a consequence of
which the integration over FS is zero for those terms, resulting in the current being parallel to B. However
at finite tilt, |vk| = vFk̂ + w, and as a result a component of the current density along the tilt direction
appears. In our case, we considered w = wxx̂ and thus we obtain a transverse current in the x-direction,
which is also in accordance with our calculation in equation (12).

Next, we consider the longitudinal and PH current densities under varying the angle θ between the
electric and magnetic fields, under varying tilt direction (denoted by φ). We express the tilt vector as
w = |w|(cos φ x̂ + sin φ ẑ), where φ is the angle between the tilt vector and the x-axis. The electric field is
chosen to lie on the x–z plane, i.e., E = |E|(sin θ x̂ + cos θ ẑ). Substituting the expressions for w and E into
equation (10), the angular dependence of the longitudinal and PH conductivities at the small tilt is given as,

σ(1)
L =

4πB|w|
15vF

(27 sin(2θ + φ) + 34 sin φ) , (14)

and

σ(1)
PH =

4πB|w|
15vF

27 cos(2θ + φ). (15)

Clearly, the tilt introduces an additional anisotropy in both the conductivity terms. In figure 3(a), we plot
both the longitudinal and PH conductivities with the variation of the field angle θ for a fix tilt direction of
φ = π/3 and magnitude of |w| = 0.1.
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In figure 3(b) we plot the variation of both the longitudinal and PH conductivities with the variation of
the tilt direction φ, for a fixed angle between electric and magnetic fields (θ = π/3). Note that because of
the sinusoidal dependence on φ, both current densities change sign, when the tilt direction is reversed, i.e.,
from φ to (φ+ π). This behavior also matches with the analytical calculation in equation (12). Based on
this, let us consider the PH current for different tilt configuration of the Dirac cone for a pair of WPs. Now,
if, for a certain value of φ, the tilt for a pair of WPs is given by w± = ±w then the Dirac cones are tilted
towards each other. Then for (φ+ π), the tilt vector for the pair becomes w± = ∓w, i.e., the cones are tilted
outwards in k-space (see figure 1(c) and (d)) and the direction of the PH current is reversed. This suggests
that one can control the PH current via tilt engineering. For example, if the dispersion tilt can be controlled
by some external parameters such as strain, then one can achieve strain-induced switching of the PH
current or voltage due to the reversal of the relative tilt between the dispersion cones at the two WPs. An
approach to generate and modulate the dispersion tilt in WSMs by means of rotational strain has been
described in reference [48], where the chiral tilt varies to the linear order in the curl of the deformation
vector (i.e., ∇× u). By changing the direction of the applied rotational strain, one can therefore alter the
sign of the tilt wχ. In our theoretical analysis, we showed that the direction of PH current is dependent on
the tilt direction, and hence, on the direction of the rotational strain. Thus, in an experimental set-up
consisting of a WSM sample with PH measurement and where one can apply rotational strain to the
sample, it could be possible to realize strain-induced switching of the PH current due to the tilt
contribution.

The PHE in WSM has been addressed previously using the semiclassical approach in reference [33, 38]
and recently by reference [49]. All these studies reveal the linear in B dependence of the PH conductivity
which matches with our result. However, in these previous works, the direction and magnitude of the tilt
have been fixed along a particular direction in the sample plane of the PH set-up. In a real WSM, however,
the tilt direction is defined with respect to the crystallographic directions. Since the WSM samples can be
prepared with different crystallographic orientations, it would be useful to investigate the effect of varying
the tilt direction with respect to the PH measurement set-up, as was done in our study. We show that the
variation in the tilt orientation adds a variable phase factor in the expression of the PH conductivity, and as
a consequence the maximum and minimum values are shifted (figure 3(a)). Under this circumstance, the
planar Hall current would be non-zero even when the electric and magnetic fields are parallel to each other.
In addition, for a fixed angle between electric and magnetic fields, the longitudinal and PH currents are a
function of the dispersion tilt (φ). The sinusoidal like dependence of the PH current on φ (figure 3(b))
confirms that its direction can be switched by changing only the tilt direction, an effect which has not been
reported to the best of our knowledge.

Case (b). This case corresponds to the scenario where the tilt is uniform, i.e., when wχ = w at all WPs.
For this case, the current densities are given by, j(0) = (8π/3)σ0E, j(1) = 0, j(2) = 2πσ0c2

b( 1
3 (E · B)B +

1
15 |B|2E). Specifically, in this case, the PH contribution from the two valleys would cancel out each other
giving rise to zero net PH signal. The corresponding plots for the tilt dependence of the zeroth and
second-order current densities are plotted in the supplemental.

Type-II. For the type-II WSMs (|wχ| > vF) the FS is open and adopts a hyperboloid configuration.
Since, by definition, we are in the large tilt regime, no simple analytical expressions of the current densities
can be obtained. Instead, we perform numerical calculations of the conductance in type-II WSM from the
integrations in equations (6)–(8) for different values of tilt parameter wx (considering wχ = χw). These
numerical results are plotted in the supplemental. Interestingly, we find similar trends in the current density
compared to that of type-I WSM, e.g., the current densities tend to increase with the tilt strength. More
importantly, the tilt-induced PH signal is still present in the case of type-II WSM.

IRS breaking WSM. In the above formulation we have considered TRS breaking WSMs where the WPs
are separated in the momentum space. However, in the case of inversion symmetry (IRS) breaking WSMs,
the WPs are separated along the energy axis. The corresponding Hamiltonian in the presence of chiral tilt is
then given by Hχ = χvFσ · k + χIQ0/2 + Iχw · k, where Q0 is the separation between the WPs along the
energy axis. In this case, the Fermi surface (FS) for the two opposite Weyl nodes would have different sizes
and this difference is dependent on Q0. As a consequence, our current density also changes with Q0. In
figure 4(a), we plot the longitudinal component of the j(1) which increases non-linearly with Q0 for an
electric field applied along E ‖ (x̂ + ŷ + ẑ). This increase with the Q0 can be explained by considering the
chiral contribution of the current density. For, Q0 = 0, the size of the FS is same for the two chiral
contributions and, as a consequence, after summing over the contributions coming from the opposite
chiralities, all the terms which are proportional to the chirality would cancel out. However, for finite Q0,
since the size of the the FS is different the terms which are linear in chirality would still contribute, and
these additional terms leads to the increase in the magnitude of the current density. In figure 4(b), we plot
the longitudinal current density with the x-component of tilt (wx) when Q0/εF = 0.1. We see almost a
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Figure 4. Plot of longitudinal component of j(1) with respect to (a) the separation between the WPs along energy axis, Q0 when
wx = 0.2 and, (b) the x-component of tilt (wx) when Q0/εF = 0.1.

similar pattern for the TRS breaking case (figure 2), i.e., the current density increases linearly with the tilt
magnitude but non-linearity occurs for large value of tilt unlike previous case. In the Supplemental, we have
also plotted the variation of the longitudinal components of the zeroth j(0) and second-order j(2)

contributions with Q0, which show similar behavior as j(1).

4. Conclusion

Using a semiclassical approach, we analyze the magnetotransport of a WSM with Dirac cones that are tilted
in arbitrary directions in the momentum space. We derive the analytical expressions of the longitudinal and
PH conductivity to the first order in tilt which agree with the numerical treatment done for arbitrary values
of tilt. In addition, we evaluate the planar Hall (PH) current when the magnetic field, electric field, and the
tilt vector lie in the same plane, and show that the direction of this current can be switched by modifying
the tilt direction. A tilt-induced transverse current exists even when E ‖ B, where the conventional Hall
current vanishes.
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