
4.32.5

Bounce Cosmology in a Locally
Scale Invariant Physics with a U(1)
Symmetry

Meir Shimon

Article

https://doi.org/10.3390/universe11030093

https://www.mdpi.com/journal/universe
https://www.scopus.com/sourceid/21100903488
https://www.mdpi.com/journal/universe/stats
https://www.mdpi.com
https://doi.org/10.3390/universe11030093


Academic Editor: Hermano Velten

Received: 21 January 2025

Revised: 3 March 2025

Accepted: 5 March 2025

Published: 9 March 2025

Citation: Shimon, M. Bounce

Cosmology in a Locally Scale Invariant

Physics with a U(1) Symmetry.

Universe 2025, 11, 93. https://doi.org/

10.3390/universe11030093

Copyright: © 2025 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Bounce Cosmology in a Locally Scale Invariant Physics with a
U(1) Symmetry

Meir Shimon

School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel; meirs@tauex.tau.ac.il

Abstract: An asymmetric non-singular bouncing cosmological model is proposed in the

framework of a locally scale-invariant scalar-tensor version of the standard model of particle

physics and gravitation. The scalar field φ is complex. In addition to local scale invariance,

the theory is U(1)-symmetric and has a conserved global charge associated with time

variations of the phase of φ. An interplay between the positive energy density contributions

of relativistic and non-relativistic matter and that of the negative kinetic energy associated

with the phase of φ results in a classical non-singular stable bouncing dynamics deep in

the radiation-dominated era. This encompasses the observed redshifting era, which is

preceded by a blueshifting era. The proposed model potentially avoids the flatness and

horizon problems, as well as allowing for the generation of a scale-invariant spectrum of

metric perturbations of the scalar type during a matter-dominated-like pre-bounce phase,

with no recourse to an inflationary era.

Keywords: cosmology; nonsingular bounce; scalar-tensor gravity

1. Introduction

General relativity (GR), the backbone of the standard cosmological model, has suc-

cessfully passed numerous tests within our solar system. However, it is not comparably

successful on larger, galactic and supergalactic scales, unless cold dark matter (CDM) and

dark energy (DE) are included in the cosmic energy budget. The latter are foreign to

the standard model (SM) of particle physics and only appear in our cosmological model

as nearly perfect non-interacting fluids with their respective characteristic equations of

state (EOSs).

In addition, GR—a classical field theory of gravitation—is genuinely plagued by

singularities. A few singularity theorems imply that curvature is inevitably singular unless

certain plausible ’energy conditions’ are violated. For the latter to take place, some form of

exotic matter is needed. Curvature or energy density singularities are encountered either at

the centers of black holes or at the Big Bang, even in the presence of a very early inflationary

phase in the latter case [1]. It is widely hoped that a would-be quantum theory of gravity

will ameliorate these unwelcome singularities, thereby constituting a major thrust behind

the quest for such a theory.

The largest physical scales, over which the short-range nuclear interactions and the

highly screened electromagnetic interaction are irrelevant, are an ideal testbed for alter-

native theories of gravitation, and indeed, a few persistent anomalies of the concordance

ΛCDM cosmological model may possibly indicate that GR requires modifications on

cosmological scales.

The GR-based ΛCDM, with an early inflationary phase and a dominant dark sector

[the latter contains CDM and DE components that determine the background evolution,
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large-scale structure (LSS) formation history, and gravitational potential wells on galactic

and supergalactic scales], has clearly proved to be a very successful paradigm that provides

a compelling interpretation of essentially all currently available cosmic microwave back-

ground (CMB) and LSS observational data, as well as of light element abundances based on

Big Bang nucleosynthesis (BBN). It is truly remarkable that ΛCDM provides a very good

fit to these extensive observational data, that sample a wide range of phenomena over a

vast dynamical range, using only half a dozen free parameters.

However, ΛCDM also lacks in a few ways. A major drawback is that the essence of

DE and CDM remains elusive. Another problem is that, the currently leading inflationary

scenario, ‘eternal inflation’, seems to lack predictive power as it is most naturally realized

in the multiverse. Importantly, as a paradigm, inflation—which has been advanced as a

possible solution to a few fine-tuning problems in the Hot Big Bang model—seems to suffer

its own fine-tuning and conceptual problems, e.g., [2–12]. In addition, conceptually, the

existence of the Big Bang, which essentially signals the breakdown of the underlying theory

of gravitation, is also a major problem of the standard cosmological model.

Moreover, a few mild to strong inconsistencies between various datasets in compar-

ison to ΛCDM have been found, e.g., [13]. These include the existence of a persistent

relative deficit in power of density perturbations on superhorizon scales, e.g., [14–16]; an

anomalously large weak lensing of the CMB anisotropy by the intervening LSS between

the present and the last scattering surface [17]; a statistically significant ‘Hubble tension’

between local and high-z inferences of the local expansion rate, e.g., [18–21]; and others.

In addition, the claimed 5σ evidence [22] against statistical isotropy—a principal pillar on

which the model rests—could potentially undermine the standard cosmological model.

A very early and brief epoch of inflation very efficiently addresses the ‘flatness’ and

‘horizon’ problems, and in addition explains the observed slightly red-tilted power spec-

trum of scalar metric perturbations with adiabatic initial conditions. However, the nearly

flat power spectrum is not a prediction of inflation but was rather postulated and expli-

cated a decade before the inflationary scenario was proposed [23–25]. Whereas inflation

does provide a concrete mechanism to seed such scalar metric perturbations, e.g., [26],

alternative mechanisms have been proposed as well [27–29] within non-inflationary ex-

panding Universe scenarios, which could potentially (if not in their original form) explain

the observed near flatness of the spectrum. Although current observational limits on the

spatial curvature could be interpreted as evidence for a ‘flatness’ (fine-tuning) problem if

not for inflation that ‘naturalizes’ the observed spatial flatness of the Universe, there is also

the alternative view, according to which there is no problem to begin with, e.g., [30–32].

A non-inflationary solution to the horizon problem within the expanding Universe sce-

nario has been proposed in, e.g., [33]. Nevertheless, a phase of cosmic inflation (or a very

similar scenario, e.g., [34]), seems to be the leading candidate to successfully address these

(otherwise ‘naturalness’) problems in an expanding Universe scenario. However, a phase

of contraction that precedes expansion is currently neither theoretically nor observationally

ruled out.

A possibly viable alternative to inflationary cosmology is the bouncing Universe

scenario [35–37]. Bouncing cosmological models avoid a few of the classical problems

of the Hot Big Bang model with no recourse to an inflationary era, e.g., [35,38,39].

However, bouncing models have their own generic problems, e.g., [40,41], that need to be

addressed in a model-specific fashion.

The main objective of the present work is to demonstrate the viability of an alterna-

tive, classical, asymmetric non-singular ‘bouncing’ cosmological model within a physical

framework based on a globally U(1)-symmetric locally scale-invariant version of GR and

the SM of particle physics. Embedding GR within a locally scale-invariant scalar-tensor
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formulation (and to a lesser extent the SM of particle physics as well) have been discussed

in, e.g., [42–56]. Unlike in quantum-gravity-inspired bouncing models, classical bounces

may take place at energies that do not require significant extrapolations of the SM of

particle physics all the way to GUT or quantum gravity energy scales. This is a clear

advantage, given that neither consistent theories of quantum gravity nor any observa-

tional/experimental evidence in favor of quantum gravity is currently available.

The terminology that is adopted in the main part of this work is somewhat different

from the one familiar from either the standard, bouncing or cyclic cosmological models that

are conventionally formulated in the ‘Einstein frame’ (EF), where, e.g., mass scales are fixed

and only spacetime is dynamical. In this picture, the observed redshift on cosmological

scales is solely due to space expansion, and in bouncing cosmological models, it is actually

meant that space contraction itself momentarily halts at the ‘bounce’ followed by the space

expansion that is what we observe. Since the proposed model could be viewed as presented

in a specific ‘Jordan frame’ (JF), where space is static and cosmic evolution is regulated

by the temporal evolution of mass, e.g., [57–60], we adopt the more appropriate notions

of ‘turning point’, ‘blueshifting’ and ‘redshifting-phase’ instead of the commonly used

parlance of ‘bounce’, ‘contraction’ and ‘expansion’, respectively.

Throughout, a mostly positive signature for the spacetime metric (−1, 1, 1, 1) is

adopted. Our units convention is h̄ = c = 1. The theoretical approach underlying the pro-

posed model is outlined in Section 2, followed by a description of the cosmological model

in Section 3. The main results are summarized in Section 4. A few (mostly unwelcome)

consequences of the symmetric bounce scenario are discussed in Appendix A.

2. Theoretical Framework

As proposed in [61], the SM of particle physics, as well as GR, can be promoted to

Weyl-invariant (WI) theories with the following action

IWI =
∫

( 1

12
(φ2 − 2H† H)R +

1

2
φµφµ − Dµ H†Dµ H − λ

4
(H†H − α2φ2)2

− λ′

4
φ4 + LSM

)

√

−gd4x, (1)

where Dµ is the gauge-covariant derivative, H is the Higgs field, φ is a newly introduced

scalar field, R is the Ricci curvature scalar obtained from the metric field in the usual

way, and α is defined via H†
0 H0 = α2φ2

0 ≡ v2

2 , where φ0 is the expectation value of φ and

v ≈ 246 GeV, and LSM is the Lagrangian density associated with the SM of particle physics

[except for the Higgs kinetic and potential terms that explicitly appear in Equation (1)].

Here and throughout, Greek indices run through spacetime coordinates, fµ ≡ ∂ f
∂xµ for

any scalar function f , and summation convention applies. This action is invariant under

local field rescaling inversely proportional to their corresponding mass dimensions, e.g.,

gµν → Ω2gµν, gµν → Ω−2gµν, φ → φ/Ω, H → H/Ω, Aµ → Aµ and ψ → Ω−3/2ψ, where

Aµ and ψ are vector and spinor fields, respectively, and Ω(x) is an arbitrary function

of spacetime.

The dimensionless action (i.e., action in h̄ units) describing the classical motion of a

massive point particle m is Ipp =
∫

mds =
∫

m ds
dτ dτ = where ds2 ≡ gµν(x)dxµdxν is the

infinitesimal line interval on the spacetime described by the metric field gµν, and τ is an

affine parameter. It readily follows from m → Ω−1(x)m and gµν → Ω2(x)gµν that Ipp

is Weyl-invariant, and so are the timelike geodesics derived from it. Massless particles

follow null-geodesics, and it is straightforward to show that null geodesics derived from

ds → d̃s = Ω(x)ds are equivalent to those derived from ds, irrespective of Weyl-invariance,

provided that the affine parameter is re-parameterized, τ → Ω−2(x)τ, e.g., [62].
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The kinetic term associated with φ appears in Equation (1) with the ‘wrong sign’.

Whereas φ is formally classified as a ghost field, the theory described by

I =
∫

( 1

12
φ2R +

1

2
φµφµ

)

√

−gd4x, (2)

is countably renormalizable and has other appealing properties as well [63]. In addition, it

has been compellingly argued about the Weyl-invariance of this action that it is a ‘sham

symmetry’ or that Equation (2) is ‘GR in a guise’, i.e., that it contains no degrees of freedom

beyond those already existing in GR, e.g., [63–67]. In other words, the Weyl current

associated with the Weyl symmetry identically vanishes [67]. Surely, in that case, the

ghost field could always be gauged away by simply making the choice φ = constant

because unlike in the case of scalar-tensor theories in general, the system of field equations

governing the dynamics of gµν and φ are under-determined, as we see below. The fact that

we can endow φ with spacetime dependence by itself does not render it dynamical as the

Weyl transormation φ → φ/Ω(x) is not governed by any equation—this fact is manifested

precisely by the arbitrariness of the spacetime dependence of φ. However, endowing φ

with a phase, i.e., promoting it to a complex field, does add a new degree of freedom that

genuinely corresponds to new physics, well beyond GR. In the case at hand, it is a global

U(1) current that does not generally vanish. This latter point is further elaborated upon in

the cosmological context in Section 3.3 below. All this implies that the theories described by

Equations (1) or (2)—in spite of their appearance—do not bear with them the pathologies

that quantum ghost fields are usually infamous for.

Specifically in the cosmological context, the FRW action for the scale factor a(η) itself

has exactly the same structure as that of Equation (2), as is explicitly shown in Section 3.3.

Thus, any ‘pathology’ that could be associated with φ due to its ghostly nature would be

equally well associated with the scale factor a(η) of the FRW spacetime. Normally, the

latter is not considered a problem because it is understood that GR is a classical theory, and

the scale factor is correspondingly considered as a classical function of time. In the same

vein, φ(η) is considered a classical function; the metric field gµν and the scalar field φ are

both treated as classical fields. There is no clear justification for considering a quantum

Planck mass, φ(η) (i.e., a quantum Planck length), while rendering the metric field, i.e.,

a(η), classical, other than merely that we have no consistent quantum theory of gravity at

our disposal yet.

Here, we put forward the proposal that φ is promoted to a complex scalar field, and

consequently, Equation (1) is replaced by

IWI =
∫

(1

6
(|φ|2 − H† H)R + φµφ∗

µ − DµH†Dµ H − λ

4
(H† H − α2|φ|2)2

− λ′

4
|φ|4 + LSM

)

√

−gd4x, (3)

where |φ|2 ≡ φφ∗, and in going from Equation (1) to (3), the parameter rescaling α2 → α2/2

has been made. Matching with GR implies that 1
6 |φ0|2 ≈ 1

6 (|φ0|2 − v2

2 ) = (16πG)−1, where

G is the universal gravitational constant and φ0 is of order the Planck mass, Mp, which is

much larger than v, the electroweak scale. The action is globally U(1)-symmetric [56]; i.e.,

non-derivative terms include only |φ| and not its phase. As usual, the matter Lagrangian

LSM depends on all the SM fields, including H. We emphasize that for the action described

by Equation (3) to be WI, the term
∫

LSM
√−gd4x has to be WI, i.e., LSM → Ω−4LSM

under local rescaling of the fields according to their mass dimension, as described above.



Universe 2025, 11, 93 5 of 25

From Equation (3), it follows that the gravitational sector of the fundamental interac-

tions is described by the following action:

I = Igr + Im, (4)

where

Igr ≡
∫

(

ξ|φ|2R + φ∗
µφµ

)

√

−gd4x (5)

Im ≡
∫

Lm(|φ|; {ψ})
√

−gd4x, (6)

are the ‘free gravitational’ and ‘source’ actions, respectively. Here, we replaced the pre-

factor 1/6 by a dimensionless parameter ξ (that will be fixed by the requirement of local

scale invariance below), and φ ≡ χeiΨ. Our purpose in doing that is to crisply illustrate in

passing what WI really implies before specializing to the case ξ = 1/6 in latter sections.

The matter Lagrangian density, Lm(χ; {ψ}), depends on both the modulus χ of the

scalar field and {ψ}. The latter collectively denotes all fields other than φ, including gµν.

Aside from being non-negative, Lm is only required to satisfy the relevant field equations.

Since Lm is independent of the phase Ψ, the latter is a ‘cyclical coordinate’ in field space that

appears in Equation (3) only via its derivative coupling. Consequently, Equation (3) has a

global U(1) symmetry and a conserved global charge, which lies at the heart of the proposed

bouncing model, as will be discussed in the next section. By construction, Equations (4)–(6)

are (Weyl-) invariant under gµν → Ω2(x)gµν, φ → φΩ−1(x) and Lm → LmΩ−4(x) if

ξ = 1/6. Specifically, for the kinetic term in Equation (5) to have the canonical form φ∗
µφµ

(up to a sign difference) while maintaining Weyl-invariance, ξ must be fixed to 1/6.

If the modulus of the scalar field is fixed χ =
√

3
8πG (and Ψ is a fixed constant), then

Equations (4)–(6) reduce to the Einstein–Hilbert (EH) action. The specific constant G that

appears in the EH action guarantees that the resulting gravitational field equations reduce

to the Poisson equation in the weak field limit within, e.g., the solar system, where the

‘universality’ of G has been reasonably established. Notably, even if we favor the idea

that dark matter (DM) exists in the form of some exotic, beyond-the-SM particles, we still

lack Cavendish-like experimental evidence that they ‘couple’ gravitationally via the same

‘Universal’ strength G either to each other or to baryons. More generally, since CDM is still

no more than an effective description, we have no direct evidence that the Equivalence

Principle applies to DM particles as it does to ordinary matter.

Clearly, the kinetic term of the scalar field appears in Equation (5) with the ‘wrong’

sign. Normally, a wrong sign of the kinetic term is considered a pathological property of the

theory, which leads to tachyonic/‘ghost’ instabilities, e.g., [68,69]. However, in the special

case of the WI action, Equations (1), (3) or (4)–(6), this is not an issue classically as the scalar

fields φ and φ∗ are non-dynamical due to the very nature of this WI theory. In other words,

classically, there is no dynamical equation that determines the evolution of φ that could

potentially drive the kinetic term to ever negative values. This will be explicitly discussed

in Section 3.3 below in the context of the cosmological model. In particular, unlike in the

generic tachyonic instability case, perturbations of the scalar fields are not dynamically

driven towards unbounded growth. More generally, with the underlying theory being a WI

version of GR, Equations (1), (3) or (4)–(6) do not possess instabilities that are not already

present in GR. It should be perhaps stressed here that the entire discussion is limited to the

framework of a low-energy effective classical theory, as in, e.g., [70]; in the same fashion that

GR is a classical theory, its generalization considered here is assumed to be classical as well,

and so a runaway decay of fields with negative kinetic energy to an unbounded number of
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new particles is not a scenario that is relevant to the present work. The latter catastrophic

scenario and its implications are already considered and discussed in, e.g., [71].

We next derive the field equations. Variation of the action, Equation (4), with respect

to gµν and φ∗, results in the following field equations

2ξ|φ|2Gµν = Tµν + Θµν (7)

ξφR −□φ +
∂Lm

∂φ∗ = 0, (8)

respectively, where Gµν is the Einstein tensor and

Tµν ≡ − 2√−g

δ(
√−gLm)

δgµν (9)

Θµν ≡ 2ξφ∗φ;µ;ν + (2ξ − 1)φ∗
µφν − 2ξgµν

[

φ∗□φ −
( 1

4ξ
− 1

)

φ∗
αφα

]

+ c.c. (10)

The complex conjugate of Equation (8) is similarly obtained by varying Equation (4) with

respect to φ. Multiplying Equation (8) by φ∗, adding the result to its complex conjugate

and to the trace of Equation (7) results in

φ
∂Lm

∂φ
+ φ∗ ∂Lm

∂φ∗ = T + (1 − 6ξ)(φ∗□φ + φ∗
αφα + c.c.). (11)

Together, Equations (7), (8) and (11) provide a system of dynamic equations for the met-

ric components and the complex scalar field. However, in the special case, ξ = 1/6,

Equation (11) reduces from being a dynamical equation to being a constraint on the func-

tional dependence of Lm(gµν, χ). This is expected, for in WI theories, φ(x) = φ0/Ω(x),

and Ω(x) is an arbitrary function of spacetime—there can simply be no equation that deter-

mines its ‘dynamics’. In other words, φ(x) = φ0 in the EF, and any arbitrary choice of Ω(x)

amounts to a specific JF, one of infinitely many such possible JFs.

In addition, a straightforward calculation using the field equations and their contrac-

tions leads to the non-conservation of Tµν,

T;ν
µν = φ,µ

∂Lm

∂φ
+ φ∗

,µ
∂Lm

∂φ∗ , (12)

a well-known result (in more general scalar-tensor theories, e.g., [72]). Indeed, energy–

momentum conservation is broken once masses, e.g., the Planck mass, are allowed to vary

in space and time.

Equation (8) is conveniently replaced by an equation governing the evolution of the

phase Ψ as follows. The imaginary part of the product of Equation (8) with φ∗ results in an

equation for the scalar field phase, Ψ,

χ□Ψ + 2χµΨµ = 0, (13)

merely a statement about a conserved global U(1) ‘current’. In the EF, this reduces to

j
µ
;µ = 0 (14)
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where jµ ≡ √−ggµνΨν is a conserved ‘current’. Plugging this back into Equation (5), the

kinetic term becomes

Ikin =
∫

χµχµ
√

−gd4x +
∫

χ2Ψµ jµd4x. (15)

The last term is a total derivative that becomes a surface term upon integration

j0χ2
∫

∆Ψ0d3x, where ∆Ψ0 = Ψ0, f − Ψ0,i, and we made use of the fact that χ is constant in

the EF. Whereas for a constant χ the EH action is recovered, Ψ has no analog in GR, and its

variation due to the conserved current jµ modifies the dynamics. In particular, in the case

at hand, it is responsible for the bounce.

Since in the case ξ = 1/6, Equation (11) reduces to a constraint, it then follows that

only Equations (7) and (13) are dynamical. This implies that we have only eleven dynamical

equations for twelve degrees of freedom: gµν, χ and Ψ. This under-determined system

reflects the underlying Weyl invariance in the case ξ = 1/6.

According to Equation (4), spacetime curvature is sourced by the kinetic and matter

Lagrangian terms that appear in Equations (5) and (6), respectively. This is not a radically

different situation than in the GR-based ΛCDM model where gravitation is not exclusively

determined by LSM; in order for the standard cosmological model to provide a reasonably

good fit to observational data, LSM is amended by CDM and DE, which together comprise

up to ∼95% of the cosmic energy budget at present. However, a notable conceptual

difference is that in the framework described by Equations (4)–(6), a single scalar field, χ,

is responsible for the evolution of the Planck mass, Mp, particle masses, and potentially

also to the existence of what is normally interpreted as CDM and DE on cosmological

scales. The latter, as we see below, may be viewed as different terms in the potential for

the field χ. The fact that χ determines the Planck mass follows directly from the term

∝ χ2R in Equation (5) that replaces the term 1
2 M2

pR in the standard EH action. In addition,

χ also regulates the evolution of particle masses as is evident from its presence in Lm.

In comparison, in ΛCDM, the Planck mass is fixed, and cosmic evolution is determined by

space expansion, which in turn is driven by the energy budget of which CDM and DE are

key building blocks. The former is thought to be in the form of some exotic beyond-the-SM

particles, and the latter is believed to be the manifestation of some slow-rolling quintessence

field (or some generalization thereof).

3. Cosmological Model

We begin this section with an outline of the assumed symmetries underlying the

proposed model in Section 3.1. The proposed bouncing model is described at the back-

ground (Section 3.2) and linear perturbation (Section 3.4) levels. In Section 3.3, the standard

cosmological model description (in the EF) is compared to the proposed model (formulated

in the JF) at the background level. This is essentially a comparison between EF and JF

descriptions, up to the bounce that is absent from the standard cosmological model. We end

this section with a stability analysis of a toy bounce model in Section 3.5.

3.1. Underlying Symmetries of the Model

In arriving at the cosmological model that will be described in Sections 3.2 and 3.4, we

make two assumptions that are not foreign to the standard cosmological model. First, the

Universe is homogeneous on cosmological scales. In the standard model, this Cosmological

Principle results in the FRW spacetime. For the present model, we adopt a static metric

conformally related to FRW, gµν = diag(−1, 1
1−Kr2 , r2, r2 sin2 θ), where the scale-factor has

been scaled out [i.e., a(η) ≡ 1], the time coordinate is conformal η and K is the spatial

curvature parameter. As a result, the entire cosmic evolution is accounted for by the Planck

mass and particle masses’ evolution, as described below. This is a JF version of the standard
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EF picture. The second assumption is that Lm(χ) is an analytic polynomial in χ with

no negative powers thereof (much like, e.g., how only non-negative integer powers of

the Higgs field appear in the fundamental Lagrangian of the SM of particle physics). As

we see below, this latter ‘assumption’ is actually consistent with the fact that the major

contributions to the cosmic energy budget, according to ΛCDM, are characterized by

equations of state which are integer multiples of 1/3, i.e., radiation (w = 1/3), NR matter

(w = 0), the effective EOS of the spatial curvature term (w = −1/3) and DE (w = −1).

We assume that the energy–momentum tensor is isotropic, Tν
µ = −ρ · diag(1,−w,−w,−w),

and is characterized by an energy density ρ and an EOS w. The isotropy of Tµν, which

induces the isotropy of the spacetime metric, follows directly from the assumed underlying

U(1) symmetry of Lm in the proposed framework (i.e., that the redshift depends on a single

function, χ, and is therefore isotropic). In other words, the observational fact that there

is no preferred direction in the Universe from our vantage point, which by induction is

applied to any observer— the Cosmological Principle—is here manifested by the assumed

U(1) symmetry of the underlying WI theory. In fact, introducing additional field degrees

of freedom to the WI theory by assuming larger symmetry groups, which contain U(1) as

a subgroup, will result in an isotropic cosmological model. The model proposed here is

‘minimal’ in the sense that it is based on the simplest such symmetry group that allows a

bounce to take place.

Since T0
0 = Lm, it immediately follows from Equation (11) in the case ξ = 1/6 that

Lm ∝ (
√

−g)−3(1+w)/4χ1−3w, (16)

where an effective single fluid with a constant EOS w has been assumed is used in the

relation
δ
√−g
δgµν = − 1

2

√−ggµν. Consequently, Lm is quartic in χ in the case that w = −1, is

independent of χ, i.e., of masses, in the case that w = 1/3, and is linear in masses in the case

of NR matter, i.e., the case of w = 0. The standard, EF, scaling of the Lagrangian/energy

density of matter with the scale factor is recovered from Equation (16) once χ is fixed

and
√−g = a4 is employed (the conformal time coordinate is used), in which case it

follows that Lm ∝ a−3(1+w). Under Weyl transformations gµν → Ω2gµν and χ → χ/Ω,

Equation (16) implies that the Lagrangian density transforms Lm → Ω−4(x)Lm, as it

should. As mentioned above (our third assumption), although there is no fundamental

principle that requires Lm to be an analytic polynomial in χ we do impose this restriction.

This by itself corresponds to a constraint on the EOS, w ≤ 1/3, in the case that Lm was a

monomial. This assumption is actually very reasonable and needs no special justification.

Potentials with negative powers of scalar fields have been considered in the literature, but

these are considered ‘non-canonical’ and have the undesired property that the potential

diverges when the field obtains very small values. More generally, as is typically the

case, there is no prescription for choosing the form of the matter Lagrangian. The latter

is designed, subject to certain symmetry requirements, to recover (along with the kinetic

terms) the required dynamics of the fields, as determined by experiments/observations

(e.g., invoking CDM and DE within the ΛCDM model so as to render GR consistent with

observations on cosmological scales). Therefore, and following the foregoing discussion,

the ‘coefficients’ fi(ψ) in the matter Lagrangian

Lm(|φ|; {ψ}) =
imax

∑
i=0

fi({ψ})χi, (17)

are determined on cosmological scales by the observed cosmic evolution. The matter

Lagrangian, Lm(|φ|; {ψ}), serves as a potential for the scalar field χ. Other fields in Lm,

e.g., those that determine the number densities of relativistic as well as NR particles, are
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non-evolving on the homogeneous, isotropic and static spacetime. The effective EOS

associated with the i-th term of the potential is

wi ≡
1 − i

3
. (18)

Equation (17), with (18), trivially satisfies Equation (11) with ξ = 1/6. The only terms

allowed in Equation (17) are characterized by parameters wi that are integer multiples

of 1/3 subject to the constraint that wi ≤ 1/3 for all i, Lm is a polynomial in χ that

contains only non-negative powers of χ, and there is no ‘anisotropy problem’. The latter

is a well-known problem [73] that is generic to bouncing models [74]. In practice, the

constraint that wi ≤ 1/3 is implicitly assumed to hold in the standard ΛCDM model as

well. The ‘mixmaster’ model of [73] typically arises from allowing for different evolutions

along three principal axes. This would require, in particular, that these functional degrees of

freedom are manifested in Lm. In the limit of small anisotropic evolution, this is represented

by an effective stiff matter contribution to the energy budget that dominates the cosmic

energy budget prior to radiation. This dynamic does not have an analog in the present

model because Lm is ‘protected’ against this ‘shearing’ dynamic by the assumed underlying

U(1) symmetry and analyticity, as will be shown in the next section.

There are arguments supporting the idea that global symmetries are not allowed in

a would-be quantum theory of gravity. The proposed model should be viewed as a low-

energy effective approximation, and so even if the assumed underlying U(1) symmetry is

broken at the Planck (or even lower) scale, it is our assumption that the bounce safely takes

place at lower energies (insofar as typical energies at the bounce are sufficiently high to

allow for standard BBN to take place).

3.2. Evolution of the Cosmological Background

Sufficiently far from the bounce, the proposed model is equivalent to the standard

cosmological model described in the comoving frame, where spacetime is static when the

conformal rather than cosmic-time coordinate is used. For this latter fact, this description of

the model naturally lends itself to a recently proposed resolution of the ‘cosmic coincidence’

problem [75], i.e., the puzzling fact that we happen to find ourselves observing the Universe

in the unique era when DE and NR matter comparably contribute to the cosmic energy

budget in spite of their very different evolution histories. Two other classical problems

that plagued the Hot Big Bang model before cosmic inflation was proposed as a possible

resolution—the ‘flatness’ and ‘horizon’ problems—are discussed below; the proposed

model does not invoke cosmic inflation. In the following paragraphs, we analyze the field

equations that govern the background evolution and their consequences.

The infinitesimal line element describing the background spacetime is ds2 =

−dη2 + dr2

1−Kr2 + r2(dθ2 + sin2 θdϕ2), where the time coordinate is η. Making contact

with the FRW spacetime of the standard cosmological model is possible if η is iden-

tified with conformal time η. The latter is related to cosmic time t via dη ≡ dt/a(t).

The nonvanishing components of the Einstein tensor Gν
µ, associated with the metric

gµν = diag(−1, 1
1−Kr2 , r2, r2 sin2 θ) are

G
η
η = −3K

G
j
i = −Kδ

j
i . (19)

Here, ‘i, j’ indices stand for the spatial coordinates.
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Defining Q ≡ χ′/χ, the non-trivial field equations associated with metric variations

(Equation (7)) read

Q2 + K =
2ρ

χ2
− Ψ′2 (20)

Q′ −Q2 − K = −3(1 + w)ρ

χ2
+ 3Ψ′2, (21)

analogous to the Friedmann equations. Equation (21) can be replaced with a certain

combination of Equations (20) and (21)

Q′ +Q2 + K =
ρ(1 − 3w)

χ2
+ Ψ′2. (22)

To close our system of equations, the evolution equation of the phase, obtained by taking

the imaginary part of the field equation associated with the variation of the scalar field, is

Ψ′′ + 2QΨ′ = 0, (23)

which can be readily obtained from Equation (13).

Equations (20) and (21) have the form of the Friedmann and Raychaudhuri equations

of the standard cosmological model (with the scale factor replaced by χ) augmented with

∝ Ψ′2 terms that effectively represent a negative energy source with a ‘stiff’ EOS (wΨ = 1),

with an effective contribution −c2
Ψχ−2 to the effective matter Lagrangian, where cΨ is an

integration constant. Assuming this contribution is negligible at present, as well as at any

observationally accessible cosmological era, then at sufficiently small χ, this term competes

with the radiation term, and at the ‘turning point’ (which is referred to as ‘bounce’ in the

EF), χb, the rate Q momentarily vanishes and a transition from Q < 0 to Q > 0 ensues.

For reference, Equation (20) is the analog of the standard Friedmann equation (with

the ∝ Ψ′2 term omitted) a′2 + K = 8πGa2ρ(a)/3. The kinetic term associated with a

appears with the ‘wrong’ sign, but this is never considered a problem for the FRW model,

although a is a ghost scalar field per se (as will be more explicitly shown in Section 3.3). It

is understood that a, being part of the the definition of the FRW metric, is a classical field,

and in this context, there is no problem with it having a negative ‘kinetic energy’. In the

same vein, there is no problem with χ and Ψ having kinetic terms with the ‘wrong’ sign in

Equation (20); certain parts of the metric can be gauged away by allowing χ to vary, as we

effectively allow here in providing a particular JF description of the proposed model. This

point is further elucidated in Section 3.3.

Light element abundances set a limit on the redshift at the turning point zb > 109.

Since the ‘stiff’ energy drops faster than that of radiation by a factor (1+ z)2, it then follows

that if zb > 109, then already by recombination the (effective) ‘stiff’ energy density dropped

to minuscule levels, a trillionth of the radiation energy density at most, and therefore has

virtually no impact on the standard ΛCDM-based descriptions of either structure formation

history or cosmological distances.

Other bouncing models with similar behavior near the bounce that contain a negative-

energy effective stiff matter component (which are sourced by other mechanisms) have been

considered in [70,76,77]. We emphasize that in the present model, the energy condition is

not violated; i.e., Lm still includes only positive contributions, and it is only the contribution

of the U(1)-symmetric kinetic term that makes an effective negative contribution, −c2
Ψχ−2

to the source term in Equation (20), much like a spatially closed space (K > 0) contributes

negatively to the effective energy density. We emphasize once again that the model is
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purely classical and is based on a classical theory, much like the standard cosmological

model is based on classical GR.

In the proposed scenario, cosmic history is clearly asymmetric around the bounce;

we assume that an overwhelmingly large fraction of the CMB photons ia generated via

dissipative processes at the bounce and shortly after. The reason for this assumption is

constraints set up by current cosmological observations (which, in our understanding

rule out symmetric bouncing models), and the following argument in general applies

to other bouncing models as well. Specifically, assuming that recombination did take

place, i.e., the bounce redshift, zb, is sufficiently larger than the redshift at recombination,

zrec, so that the observed temperature anisotropy and polarization of the CMB do indeed

provide a snapshot of the Universe at zrec, it is straightforward to see that the observed

horizon scale from temperature anisotropy and polarization at angular degree scales

is only consistent within a perfectly symmetric bouncing scenario when zb ∼ 1800 as

discussed in Appendix A, for the reason that in such a scenario, the acoustic horizon

at recombination results from acoustic oscillations between −ηrec and ηrec, rather than

between 0 and ηrec, as in the standard cosmological model. Since hydrogen recombination

takes place at zrec ∼ 1100, it seems that this part of standard recombination is largely

unaffected. However, standard helium recombination takes place along two channels at

z ∼ 6000 and z ∼ 2000, so this important component of standard recombination will not

take place within a symmetric bounce scenario, with clear implications for temperature

anisotropy and polarization. Perhaps more significant, BBN will never take place in such

a symmetric scenario, and we are left in this case with the undesired situation that the

observed light element abundance should be imposed by the initial conditions rather than

be generated dynamically by BBN.

To get around this possibility, we have to assume that the model is generally asym-

metric around the bounce. Specifically, to avoid a situation where zb < zBBN ∼ O(109), the

entropy is required to grow sufficiently fast around the bounce such that ργ(−η) ≪ ργ(η)

for any time sufficiently close to ηb = 0. This guarantees that the speed of sound at which

acoustic oscillations propagate is typically much lower before the bounce than after the

bounce, and this, as detailed in Appendix A, typically results in very large zb. We assume

that the blueshifting phase was dominated by a dust-like component preceded possibly by

DE, with a very low entropy. Sufficiently close to the bounce, dissipation processes damp

entropy from matter into the CMB. Depending on the typical energies at the bounce, these

processes could include quantum particle production, as well as bulk viscosity, radiative

viscosity, the damping of acoustic waves, etc. [78]. For these photons to fully thermalize,

this whole process must end by z ∼ 107, e.g., [79]. BBN itself already imposes a restriction

zb ≳ 109. It is our assumption that the model is sufficiently asymmetric around the bounce

(in the sense that the temporal gradient of entropy generation is sufficiently large) that the

speed of sound in the plasma is negligible during the blueshifting epoch. Again, according

to this scenario, the bounce takes place at sufficiently large redshifts that standard BBN

could be safely started and concluded, consistent with the observed light element abun-

dance. The horizons at the asymptotic past (t → −∞) and asymptotic future (t → ∞) do

not exactly mirror each other because the proposed scenario is asymmetric (at least) near

the bounce.

During such a dust-like blueshifting (‘contracting’) phase, quantum fluctuations of

χ are characterized by a scale-invariant spectrum, thereby providing an explanation for

the primordial density perturbations with no recourse to an inflationary era, e.g., [80–91].

There are complications unique to this alternative mechanism that are related to mode-

mixing during the bounce and causality issues, e.g., [92,93], that are absent from the

inflation-generated scale-invariant spectrum. It is our assumption here that the observed
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nearly scale-invariant spectrum of density perturbations has been generated along these

general lines.

Accounting for the vacuum-like, NR, radiation and effectively stiff energy densities,

Equations (16) and (20) combine to

Q2 = f4χ2 + f1/χ + f0/χ2 − c2
Ψ/χ4, (24)

where f0 appreciably changes during the asymmetric bounce, as well as possibly f1 and

even f4 as well. The latter takes place at χb that satisfies f4χ2
b + f1/χb + f0/χ2

b − c2
Ψ/χ4

b = 0.

Equation (24) integrates to

η2 − η1 =
∫ χ2

χ1

dχ
√

f4χ4 + f1χ + f0 − c2
Ψχ−2

, (25)

where, again, (at least) f0 and f1 may sharply change at around χb. Assuming spatial

flatness, the future horizon size is given by rh = η∞, where

η∞ =
∫ ∞

χb

dχ
√

f4χ4 + f1χ + f0 − c2
Ψχ−2

. (26)

In the proposed scenario, f1 and f0 change (due to dissipation processes) near the transition

from the blue- to the redshifting phase, and so the future and past horizons with respect

to the bounce are not exactly equal. Specifically, whereas f0 has little effect on η∞ in both

evolution epochs, f1 may drop significantly during the bounce and is plausibly expected to

impact η∞.

Two interesting limits of this equation will suffice for our purposes. The first is

obtained by neglecting the vacuum-like and NR terms near the turning point. In this case,

Equation (24) (with f1 and f4 set to vanish) integrates to

χ2 = f0η2 + c2
Ψ/ f0, (27)

assuming that cΨ and f0 are fixed, which we know is not the case in our asymmetric bounce.

Under this oversimplified assumption, χ attains its minimum, χb = cΨ/
√

f0, at η = 0.

This represents a smooth transition between the radiation-dominated (RD) era [a(η) ∝ η]

and the bounce [a(η) = constant]. The evolution rate, synonymous to the expansion rate

in the EF, Q = f0η/( f0η2 + c2
Ψ/ f0), is anti-symmetric under η ↔ −η, as is appropriate for

a symmetric bounce. To phenomenologically break this symmetry commensurate with an

asymmetric bounce, we modify Equation (27) to

χ2 = f0η2 + c2
Ψ/ f0 + Cη, (28)

where C is a constant. The bounce in this case takes place at ηb = −C/(2 f0), where

χ2
b = (c2

Ψ − C2/4)/ f0, provided that C < 2cΨ. The blue/redshifting rate now becomes

Q = ( f0η + C/2)/( f0η2 + Cη + c2
Ψ/ f0), which is no longer antisymmetric under η ↔ −η.

Physically, the parameter C represents the time-symmetry breaking processes that are

responsible for entropy (photon) production. Additional terms can be added, and in

general, χ2 can be represented as a polynomial in η, but for our toy-model purposes,

Equation (28) will suffice for the stability analysis near the bounce that is carried out in

Section 3.5.

In the other extreme—sufficiently remote from the turning point, where the back-

ground dynamics is dominated by nonrelativistic (NR) matter or DE—Equation (24) inte-
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grates to either χ ∝ η2 in the matter-dominated (MD) era, or χ =
(√

λ(ηc − η)
)−1

in the

DE-dominated era. The integration constant ηc represents the start/end of the (conformal)

time coordinate in the proposed model that asymptotically approaches de Sitter spacetime

in the distant past and future, i.e., η ∈ (ηc,−, ηc,+), where ηc,− < 0 and ηc,+ > 0 and in

general |ηc,−| ̸= ηc,+. If η is bounded from below, this time due to the presence of the

vacuum-like energy density component, then observed radial distances are bounded at

|ηc,−|, where the scalar field diverges and the model breaks down [η = ηc,− and η = ηc,+

correspond to t → −∞ and t → ∞, i.e., past and future (cosmic) infinity, respectively].

In the case of MD contraction with no DE component, η is in principle unbounded from

below, thereby trivially addressing the ‘horizon problem’. In such a scenario where the

Universe starts off DE-free at η → −∞, the ‘flatness problem’ goes away as well.

Regardless of whether the ‘flatness problem’ is a genuine fine-tuning problem of the

standard cosmological model or not, e.g., [30–32], we lay out the problem as it is normally

presented in the literature followed by its possible resolution by the proposed ‘bouncing’

model. The ‘flatness problem’ is often claimed to arise in the hot Big Bang model due to

the monotonic expansion of space and the consequent faster dilution of the energy density

of matter (either relativistic or NR) compared to the effective energy density dilution

associated with curvature. It is thus hard to envisage how space could be nearly flat (as

is indeed inferred from observations, e.g., [17]) if not for an enormous fine-tuning taking

place at the very early Universe, or alternatively for an early violent inflationary era.

Specifically in the proposed model, if the initial conditions at η → −∞ are ‘natural’ in

the sense that the initial energy density of NR matter, ρm(a), is not much different from the

(absolute value of the) effective energy density associated with spatial curvature, ρk(a) =

−3K/(8πGa2); then, since ρm/ρk ∝ 1 + z, and since the number of e-folds contraction is

infinite in this scenario, whereas the number of e-folds expansion from the bounce to the

current size of the Universe is finite, then it immediately follows that spatial curvature at

present should be vanishingly small.

From the foregoing discussion, it becomes clear that the proposed model is identical

to the standard cosmological model in the latter comoving frame presentation insofar as

Ψ′ is dynamically irrelevant, i.e., sufficiently remote from the bounce. As is clear from

Equation (24), in this limit, Q is identical to the conformal Hubble function, H = a′/a.

All this is expected in light of the discussion in Section 3.1 and is further discussed in

Section 3.3.

We stress that not only does this classical ‘bouncing’ cosmological model avoid the

disturbing initial singularity problem, it also achieves this with no recourse to ideas from

quantum gravity, a theory that does not currently exist (and in addition would likely require

a hundred trillion times higher energy than is currently achievable in colliders to test).

3.3. Einstein vs. Jordan Frame

The discussion in the previous section that highlighted the role of static background

and temporally evolving masses, which provide an alternative explanation for the observed

cosmological redshift, as in e.g., [57–60], can be viewed as a JF description of our model. It

is constructive to compare these results to the standard treatment in the EF, where masses

are fixed and cosmological redshift is accounted for by space expansion. Assuming a single

fluids for concreteness with EOS w the ‘00’ and ‘ii’ components of the Einstein equations

for the metric gµν = a2(η) · diag(−1, 1
1−Kr2 , r2, r2 sin2 θ) are, respectively,

H2 + K =
8πGa2ρ

3
(29)

2H′ +H2 + K = −8πGwa2ρ. (30)
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Combining them, we obtain

H′ −H2 − K = −4πG(1 + w)a2ρ. (31)

Equations (29) and (31) can be recovered from (20) and (21) by making the replacements

Q → H, χ−2 → 4πGa2

3 , and Ψ′ = 0. As discussed in the previous section, the ∝ Ψ′2 terms,

whose analogs are absent in Equations (29) and (31), represent a negative contribution to

the cosmic energy budget with a ‘stiff matter’ EOS, wΨ = 1. To complete the analogy with

the theory described by Equation (3), we explicitly write down the EH action specified to

the FRW spacetime in the comoving frame and derive Equations (29) and (31) directly from

the action. We start by applying the EH action

IEH =
∫

(

1

16πG
R + Lm

)

√

−gd4x (32)

to the FRW spacetime ds2 = a2(η)γµνdxµdxν, where γµνdxµdxν = −dη2 + dr2

1−Kr2 + r2(dθ2 +

sin2 θdϕ2). The Ricci scalar calculated from this metric is R = 6(a′′/a + K)/a2. Fixing units

such that 3/(8πG) ≡ 1 and employing integration by parts, Equation (32) can be brought

to the form

IEH =
∫

[−a′2 + Ka2 + a4Lm(a)]
√−γd4x. (33)

Applying Equation (5) to the FRW spacetime and setting ξ = 6, we obtain

Igr =
∫

[

−χ′2 − χ2Ψ′2 + Kχ2 + Lm(χ)
]√−γd4x. (34)

Making the replacements a ⇄ χ and a4Lm(a) ⇄ Lm(χ), we can freely switch between

the EF (Equation (33)) and JF (Equation (34)) descriptions up to the −χ2Ψ′2 term, which

is responsible for the bounce and is absent from the standard EH action. It is perhaps

worth noting that the replacements a ⇄ χ and a4Lm(a) ⇄ Lm(χ) are fully consistent with

Equation (16). Friedmann Equations (29) and (30) can be directly derived from Equation (33)

by introducing a Lagrange multiplier λ̃ (as in, e.g., [94])

IEH =
∫

[− a′2

λ̃
+ λ̃

(

Ka2 + a4Lm(a)
)

]
√

−gd4x. (35)

Except for the term that allows for a bounce, Equations (32) and (33) also differ in how the

cosmic evolution is understood. Whereas in the EH action, Equation (33), Lm represents

genuine matter, in the scalar-tensor action, Equation (34), the role of matter in shaping up

the dynamics of cosmic evolution is taken over by a polynomial potential for the scalar field.

Notably, the scale factor a(η) appearing in the FRW action, Equation (33), is a ghost

field. Yet, Equation (33) and the Friedman equation derived from it are the backbone of the

modern cosmology that describes the entire cosmic history at the background level, except

at the singularity. The concern with quantum ghost fields is that their kinetic energies can

go ever more negative, thereby allowing for a copious creation of particles. In reality, this

‘nightmare scenario’ is not what is observed with the scale factor a(η). In fact, we do find

ourselves in an expanding rather than contracting Universe where the kinetic term −a′2 in

Equation (33) increases over time rather than going ever more negative.

Whereas the kinetic term −χ′2 in Equation (34) is not a problem for the model, one

could legitimately wonder how dangerous the −χ2ψ′2 term is. In this regard, generically,

bouncing models must violate the energy conditions by positing the existence of a negative

energy contribution. If the latter is realized by some form of matter, specifically described
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by fields, it could in principle run unstably. However, it is an implicit assumption of

bouncing models that the Universe never attains sufficiently high energy densities for

these fluctuations to be significant at a level that would invalidate the model, which is the

working assumption of the present work as well.

3.4. Linear Perturbation Theory

ΛCDM has successfully passed numerous tests and has proven to be remarkably

effective in explaining the formation and linear growth of density perturbations, predicting

the CMB acoustic peaks, polarization spectrum, and damping features on small scales. It

also correctly describes the linear and nonlinear evolution phases of the LSS (on sufficiently

large scales) as well as the abundance of galaxies and galaxy cluster halos. Therefore, it

would seem essential to establish the equivalence of linear perturbation theory between

the model proposed here and ΛCDM.

Consider linear perturbations over the FRW spacetime in the comoving frame.

Metric perturbation variables include the scalars ϕ and ψ, vector mode vi, and ten-

sor modes hij, where the latter are subject to the constraint γijhij = 0, and γij ≡
diag[1/(1 − Kr2), r2, r2 sin2 θ]. The weakly perturbed line element is ds2 = −(1 + 2ϕ)dη2 +

2vidηdxi + [(1 − 2ψ)γij + 2hij]dxidxj. When stress is negligible, then ϕ = ψ. We de-

fine the fractional energy density and pressure perturbations (in energy density units)

δρM
≡ δρM/ρM and δPM

≡ δPM/ρM (= wδρM
), respectively. The matter velocity is v.

Transforming from the frame where G = constant [in which case Equation (4) reduces

to GR] to an arbitrary field frame with Ω(x) = 1 − δχ(x) and assuming δχ ≡ δχ
χ ≪ 1

implies in particular that the scalar and metric field transform as χ → χ/Ω ≈ χ(1 + δχ)

and gµν → Ω2gµν, respectively, i.e., ψ → ψ + δχ, and δρM
→ δρM

+ 4δχ to the leading order.

Consequently, the new, ‘shifted’, perturbation variables, e.g., ϕ̃ ≡ ϕ + δχ, ψ̃ ≡ ψ + δχ,

and ρ̃M ≡ δρM
+ 4δχ, obey the same perturbation equations that are satisfied by the

old perturbation quantities. The fact that the structure of the perturbation equations is

unchanged under Weyl transformations is crucial in the context of stability near the bounce

because perturbations of the scalar field in bouncing scenarios based on scalar-tensor

theories of gravity are a potential cause for instability near the bounce, e.g., [91].

3.5. Stability Analysis for a Toy Bouncing Model

In this section, we analyze the dynamics of scalar perturbations at and near the bounce

and show that all linear perturbation variables smoothly transform through the bounce.

Clearly, this is a worry of any bouncing model, e.g., [95]. This is in contrast to the singular

Big Bang model in which it is simply posited that singular perturbation modes, e.g., in the

RD era, are vanishing by construction.

The following considerations start with a symmetric bounce, then generalized to

a toy asymmetric bounce model. Near the bounce, the energy budget is dominated by

radiation and the kinetic term associated with Ψ. In this case, wM = 1/3 is a very good

approximation. The Friedmann-like equation then integrates to Equation (27)

χ2 = Aη2 + B, (36)

where A ≡ f0 and B ≡ c2
Ψ/ f0, and it is assumed that f0 is fixed through the bounce.

The analog of the conformal Hubble function in this case becomes Q = Aη/(Aη2 + B).
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Neglecting anisotropic stress, the linear perturbation equations (e.g., [72]) result in two

coupled equations for δΨ and ϕ

δΨ′′ + 2QδΨ′ + k2δΨ = −4Ψ′ϕ′

ϕ′′ + 4Qϕ′ +
k2

3
ϕ = 2Ψ′δΨ′, (37)

which, in the case χ2 = Aη2 + B, read

δΨ′′ +
2Aη

Aη2 + B
δΨ′ + k2δΨ = − 4

√
AB

Aη2 + B
ϕ′ (38)

ϕ′′ +
4Aη

Aη2 + B
ϕ′ +

k2 ϕ

3
=

2
√

AB

Aη2 + B
δΨ′. (39)

Equation (39) is a generalized Bardeen equation that is obtained from a combination of

the Arnowitt–Deser–Misner (ADM) energy constraint and the Raychaudhuri equation. In

the long-wavelength limit, δΨ′ can be substituted from (39) into the derivative of (38) with

respect to η. The resulting third-order equation for ϕ then reads

(Aη2 + B)ϕ′′′ + 8Aηϕ′′ + 12

(

A2η2 + AB

Aη2 + B

)

ϕ′ = 0, (40)

which is satisfied by

ϕ = c1 +
c2η + c3B(Aη2 − B)

(Aη2 + B)2
(41)

where c1, c2 and c3 are three integration constants. Substituting Equation (41) back into

Equation (39) then results in

δΨ′

Ψ′ = −4c2η + c3(A2η4 + 6ABη2 − 3B2)

(Aη2 + B)2
. (42)

It is clear from Equations (41) and (42) that both ϕ and δΨ′/Ψ′ are well behaved near η = 0

due to the non-vanishing B, i.e., the non-vanishing of Ψ′, and perturbation theory does not

break down there. Note that it is δΨ′/Ψ′ rather than δΨ/Ψ that is the quantity of interest

in this model.

To solve for the short-wavelength limit, we differentiate Equation (38) with respect to

η and then substitute for δΨ′ from Equation (39). The resulting fourth-order equation for

ϕ is

(

Ax2

k2
+ B

)

ϕ +
18A

k2
xϕx +

(

60A

k2
+

4A

k4
x2 + 4B

)

ϕxx

+
30A

k2
xϕ(3) + 3

(

B +
Ax2

k2

)

ϕ(4) = 0, (43)

where, e.g., ϕx ≡ ∂ϕ
∂x , in the large-k limit, which has no closed-form solution. Here x ≡ kη,

and, e.g., ϕ(3) ≡ d3 ϕ

dx3 . In the limit x ≪ 1, i.e., η → 0, the potential ϕ decouples from both A

and B, and the equation considerably simplifies to

3ϕxxxx + 4ϕxx + ϕ = 0, (44)
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with the general solution

ϕ = c1 cos x + c2 sin x + c3 cos
(

x/
√

3
)

+ c4 sin
(

x/
√

3
)

, (45)

illustrating the fact that perturbations are manifestly stable on small scales as well.

Slightly off η = 0, Aη2 ≳ B perturbations smoothly approach their short-wavelength-

limit standard behavior in the RD era. In the latter, within ΛCDM, ϕ = 1
x

[

cj j1(x) + cyy1(x)
]

where j1 and y1 are the spherical Bessel and the modified spherical Bessel functions,

respectively, of the first kind. In ΛCDM, cy = 0 since y1(0) diverges, and the phase of the

oscillating potential is 0, i.e., ϕ ∝ sin x. This needs not be the case in the proposed model,

as is evident from this discussion insofar as B ̸= 0. The implications for CMB observables

of not neglecting the ‘diverging’ mode have been discussed by [96].

The case of asymmetric bounce is considered next. We consider here a mild asymmetry

as in Equation (28). Here, then, Equation (36) is replaced by χ2 = Aη2 + Cη + B, which

incurs a change in Q. It is convenient in this case to consider perturbations that take place

at around η = ηb, the bounce time, rather than at η = 0. Transforming to the new time

coordinate τ ≡ η + C/2A, in addition to making the assumption that B ≳ C2/(4A) so as

to avoid spoiling the bounce, it then readily follows that χ2 = Aη2 + Cη + B ≈ Aτ2 + B.

In terms of the new time coordinate, then, Q is nearly unchanged from the symmetric

bounce, and Equations (38) and (39) maintain their forms but are parameterized by τ

instead of η. It then follows that the long-wavelength solutions, Equations (41) and (42),

and the short-wavelength solution, Equation (45), are unchanged with respect to the

symmetric bounce case but with η replaced by τ and possibly the redefinition of integration

constants. Once again, we see that scalar perturbations are well behaved in this more

general case near the bounce.

Although the treatment in this section was based on several simplifying assumptions,

the results give us confidence in the stability of the proposed model at and near the bounce.

Adding this to the fact that the proposed model is entirely classical and that the bounce

can take place at relatively low energies of a few MeV, which is many orders of magnitude

lower than typical energies in bouncing models, we see no reason for a similar treatment to

fail when applied to more realistic cases. Similar considerations likely apply to primordial

gravitational waves as well if they are at all excited in the proposed (or similar) scenario.

4. Summary

While ΛCDM has clearly been remarkably successful in phenomenologically inter-

preting a wide range of observations, it still lacks a microphysical explanation of several

key components, primarily the nature of CDM and DE. It also suffers from a few outstand-

ing conceptual problems such as the initial singularity, in addition to a few ‘coincidence’

or ‘naturality’ problems. Inflation, which has long been part and parcel of our current

understanding and acceptance of ΛCDM by compellingly explaining away the flatness

and horizon problems, as well as the nearly scale-invariant spectrum of primordial scalar

perturbations, has its own shortcomings and fine-tuning problems. In addition, a few

persistent anomalies afflict ΛCDM, and so alternative models that address (at least) a few

of these issues are of interest.

Direct spectral information on the CMB is unavailable (due to opacity) in the pre-

recombination era (z ≳ 1100). From the observed cosmic abundance of light elements, BBN

at redshifts O(109) could be indirectly probed. Earlier on, at z = O(1012) and z = O(1015)

[energy scales of O(200) MeV and O(100) GeV, respectively], the quantum chromodynamics

(QCD) and electroweak phase transitions have presumably taken place, although their

expected (indeed weak) signatures in, e.g., the CMB, have not been found yet.
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In addition, inflation, a cornerstone of the standard cosmological model, is clearly

beyond the realm of well-established physics; its ultimate detection via the B-mode polar-

ization that it imprints on the CMB could be achieved only if inflation took place at energy

scales ∼trillion times larger than currently achievable in colliders. Moreover, theoretical

expectations for the amplitude of this B-mode as a function of the energy scale of inflation

rely on the assumption that gravitation is genuinely quantized. The latter assumption

lacks empirical basis at present. By itself, inflation is plagued by the η-problem, the trans-

Planckian problem, and the ‘measure problem’ in the multiverse. The latter essentially

implies a lack of predictive power.

Ideally, an alternative cosmological model that agrees well with ΛCDM at BBN ener-

gies and lower, i.e., z < 1010, while still addressing the classical problems of the Hot Big

Bang model that inflation was originally designed to undertake, as well as avoiding the

initial curvature singularity, while never reaching Planck or even GUT scale energies, will

be an appealing alternative. One conclusion of the present work is that this could be in

principle achieved, at least in part, with a (classical) non-singular ‘bounce’ that also removes

the technically and conceptually undesirable initial singularity problem of GR-based cos-

mological models. In order to achieve such a bounce within GR, or a conformally related

theory, certain ‘energy conditions’ have to be effectively violated. One specific realization

of this program has been the focus of the present work.

Symmetries play a key role in our current understanding of the inner workings of

the fundamental interactions. For example, the SM of particle physics is based on a local

U(1)× SU(2)× SU(3) gauge group with quantized gauge fields. In addition, our favorite

theory of gravitation, GR, is invariant under coordinate transformations. In the framework

adopted in this work, GR and the SM of particle physics are endowed with local scale

invariance, i.e., ‘Weyl invariance’, as well as an internal U(1) symmetry with a global charge,

in addition to the standard coordinate-system covariance. Only the salient merits of the

cosmological model based on this alternative theory of gravitation have been discussed in

the present work.

In the proposed model, spacetime is described by the FRW metric in comoving frame,

which in the absence of spatial curvature reduces to the Minkowski spacetime. Here, the

role of the scale factor in ΛCDM as the regulator of cosmic evolution is played by the

modulus, χ, of a complex scalar field φ that lives on a static background. The phase, Ψ,

plays a crucial role near the turning point and is largely irrelevant elsewhere. There is

no analog to Ψ in ΛCDM. Here, χ, which regulates the evolution of (dynamical) masses,

starts infinitely large, first monotonically decreases until it ‘bounces’, then grows again

without bound. Put alternatively, the Planck length starts out infinitely small, increases

until it peaks at the turning point, then decreases again. Described in terms of these length

‘units’, the Universe is said to undergo a blueshifting phase of evolution, followed by a

turnaround and redshifting. Cosmological redshift is then a manifestation of evolving

Rydberg ‘constant’ rather than space expansion.

The modulus of the scalar field, χ, delineates essentially the same dynamics in the

cosmological model that the scale factor a(η) does in ΛCDM (insofar Ψ is dynamically

irrelevant). However, unlike a(η), which is part of the Friedmann–Robertson–Walker (FRW)

metric, χ(η) is a scalar field living in a static space. If the time variation of Ψ is sufficiently

slow, the entire observable cosmic evolution, from BBN (taking place at typical ∼1 MeV

energies) onward, is essentially indistinguishable from that of ΛCDM, thereby retaining

its merits. However, the very early Universe can be much different, e.g., there is no initial

singularity in the proposed model and possibly also no primordial phase transitions that in

ΛCDM are expected to have taken place at energy scales of O(100) MeV and O(100) GeV

and possibly also at the GUT scale.
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The alternative cosmological scenario explored in this work starts with a deflationary

evolution, which culminates in a turning point when the (absolute value of the negative)

energy density associated with the effective ‘stiff matter’ (provided by the kinetic term

of Ψ) momentarily equals that of radiation. In the vacuum-like-dominated epoch, the

energy density of the Universe is dominated by an ∝ χ4 term in the matter Lagrangian

that is genuinely classical with no quantum fluctuations. Therefore, DE, according to the

present scenario, is not zero-point energy but rather a manifestation of the self-coupling

of the scalar field, i.e., a term in the matter Lagrangian of the form f4χ4, with f4 being a

dimensionless parameter. This DE-like contribution is characterized by a non-dynamical

EOS with no recourse to, e.g., a new quintessence field; here, the same scalar field accounts

for both ‘G’ and DE, and possibly also CDM, or any alternative that effectively manifests

itself as CDM.

One of the most notable achievements of inflation was the realization that a slightly

red-tilted primordial spectrum of Gaussian perturbations can be generated by quantum

fluctuations in a vacuum-like expanding Universe. No specific mechanism has been

adopted in the present work for the generation of primordial density perturbations (al-

though a few known mechanisms capable of generating such a spectrum during an MD-like

contracting phase have been briefly mentioned). Whatever this mechanism turns out to

be, it does not necessarily involve quantum fluctuations of the metric field, unlike in

inflation. Again, gravitation was treated in this work as a genuine classical interaction.

However, admittedly, the only mechanism that is sufficiently well understood and can be

readily integrated with the proposed model is that of primordial perturbations generated

by quantum fluctuations of linearized gravity, as is the case with inflation.

In addition, the ‘anisotropy problem’ that in general plagues bouncing scenarios does

not exist in our construction. As discussed above, Weyl symmetry and the consequent

absence of any dimensional parameter in the action, in addition to the postulated global U(1)

symmetry, protect the model from running into a chaotic, anisotropy-dominated, evolution

phase, unless we are willing to consider non-canonical terms in the matter Lagrangian of

the form, e.g., Lm,ani ∝ (ψ̄ψ)2χ−2 and C
γδ

αβ C
ρσ

γδ C
αβ

ρσ χ−2, where ψ is, e.g., a Dirac field, and

C
αβ

ρσ is the Weyl tensor.

Conformal time is both past- and future-bounded in this scenario, i.e., η ∈ (ηc,−, ηc,+),

unless there is no component in the blueshifting phase that corresponds to w ≤ −1/3.

In principle, any ‘horizon problem’ could be avoided if |ηc,−| ≫ η0. Specifically, in this

scenario, cosmic history starts with very large (and in principle infinite) particle masses,

and therefore, the causal horizon is much larger than would be naively expected from

monotonically growing masses (which to the redshifting era). Likewise, the ‘flatness prob-

lem’ afflicting the Hot Big Bang scenario stems from the slower decay of the energy density

associated with curvature as compared to that of matter in a monotonically expanding

Universe. In bouncing scenarios, the situation is reversed before the turning point; starting

at infinitely large χ (masses), one typically expects to find that the energy density in the

forms of NR matter and radiation largely exceeds that of curvature at any finite χ value

in either the blueshifting or redshifting era. From this perspective, flatness is an attractor

point rather than an unstable point that requires the fine-tuning of the initial conditions.

The model we considered is falsifiable in several ways: First, wDE = −1 due to local

scale invariance and any observationally inferred wDE ̸= −1 would either rule out this

particular model or alternatively either imply the soft breakdown of WI at very early and

late times or the existence of a non-canonical DE term in the matter Lagrangian of the

form, e.g., Lm,DE ∝ (ψ̄ψ)−ε/3χ4+ε (where |ε| ≪ 1 is some dimensionless parameter) that

involves non-integer, and possibly irrational, powers of the fields. Second, within the

framework adopted here, if a scale-invariant B-mode polarization is ultimately measured,
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it would provide compelling evidence that gravity is quantized, in contradiction to the

assumption made here that gravity is a genuinely classical interaction, which implies that its

perturbations are not subject to the Bunch–Davies vacuum condition. Consequently, unlike

the inflationary-induced B-mode polarization of ΛCDM, it does not follow from any

fundamental principle that B-mode polarization has to be characterized by a flat spectrum.

Third, signals from primordial phase transitions as well as leptogenesis or baryogenesis

that ought to be imprinted in the CMB anisotropy and polarization (perhaps too weak to be

detected) in the standard expanding model may not have taken place at all in the proposed

model, depending on the typical temperature at the turning point.

We believe that, in addition to addressing the cosmological horizon and flatness

problems, the framework proposed here provides important insight on the nature of DE,

and initial singularity and stability near the turning point. Even so, the work presented here

is by no means exhaustive, and indeed a few of its basic aspects will be further elucidated

in future works.
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Appendix A. Consequences of a Symmetric Bounce Scenario

Here, we adopt an EF parlance and use notions such as ‘contraction’, ‘bounce’ and

expansion since this Appendix is of relevance to symmetric bounce models in general

(which are normally formulated in the EF). A symmetric bounce is only consistent with an

adiabatic evolution, i.e., when entropy is not significantly generated throughout cosmic

history, in particular not during the bounce. In a symmetric bounce scenario, the cosmic

history of the post-bounce expanding phase exactly mirrors that of the pre-bounce con-

tracting phase. This condition by itself sets certain stringent conditions, which, coupled

with observationally inferred cosmological parameters from the post-recombination era,

results in constraints on the bounce redshift, zb, and the large- scale correlation of the CMB

anisotropy and polarization on the sky.

In the standard cosmological model, the acoustic horizon at recombination is given by,

e.g., [97].

ηac =
∫ η⋆

0

dη′
√

3[1 + R(η′)]
, (A1)

where the integration starts at the Big Bang, η = 0, and ends at recombination, η⋆, and

R ≡ 3ρb
4ργ

= 3 × 104(1 + z)−1Ωbh2 with ρb and ργ as the baryon and radiation densities,

respectively. The acoustic speed 1/
√

3(1 + R) is lower than 1/
√

3 due to the baryonic

inertia. At recombination, the concordance model corresponds to R⋆ ≈ 0.65. Before and at
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around recombination, the energy budget consists of dust and radiation only. Consequently,

H2 = 8πGρa2

3 can be integrated

dη ∝
da

√

1 + ( ρm
ργ
)⋆a

, (A2)

and up to a multiplicative constant factor, the acoustic horizon at recombination is

ηac ∝

∫ 1

0

da
√

(1 + 4
3 R⋆Ra)(1 + R⋆a)

, (A3)

where R ≡ Ωm
Ωb

(Ωm = Ωc + Ωb) and a is normalized to unity at recombination, i.e., a⋆ = 1.

This acoustic horizon scale is probed not only by CMB anisotropy and polarization but also

with baryonic acoustic oscillations (BAOs).

Now, assume a symmetric bounce model instead of the Big Bang model. In this model,

the horizon scale could be twice as large as that of the standard model, Equation (A1), if zb

is very large (but finite of course) because the boundaries of the integral in Equation (A1)

will be replaced with integration over the range [−η⋆, η⋆] or, equivalently, the integrand is

symmetric around a = 0 (or any finite ab) in Equation (A1), by assumption. Assuming that

ab ≪ a⋆, the comoving distance to recombination, η0 − η⋆, is unchanged, so the angular

size on the sky of anisotropy/polarization correlations could be up to twice as large as in

the SM. However, demanding that the observed angular scale of the acoustic horizon is

consistent with that of the concordance model, then

∫ 1

0

da
√

(1 + 4
3 R⋆Ra)(1 + R⋆a)

= 2
∫ 1

ab

da
√

(− c2

a2 + 1 + 4
3 R⋆Ra)(1 + R⋆a)

, (A4)

where ab = (1 + zb)
−1. Here, c is the value of cΨ at recombination. The parameters c and

ab are not independent; they satisfy the constraint − c2

a2
b

+ 1 + 4
3 R⋆Rab ≡ 0. The observed

value R = 6.2 is consistent with Equation (A4) when c = 1.25 and ab ≈ 0.606, which

corresponds to zb ≈ 1800. For comparison, the case R⋆ = 0.1 corresponds to a bounce

occurring at zb ≈ 1390. While the bounce redshift, zb ≈ 1800, guarantees that hydrogen

recombination indeed takes place at z⋆ ≈ 1100, helium recombination that takes place at

z ∼ 2000 and 6000 in the SM does not take place in this scenario. This will have a significant

impact on the CMB anisotropy and polarization. Since the width of recombination is still

∆z ∼ 80 and since z⋆ is sufficiently remote from zb, the CMB, much like in the standard

singular cosmological model, provides a snapshot of the Universe at recombination.

BBN is widely hailed as a great triumph of the singular Hot Big Bang model. BBN

ostensibly took place at z = O(1) MeV, when typical particle energies were ∼ 1 MeV.

Clearly, if the bounce took place at zb ≈ 1800, then BBN, electroweak and QCD phase

transitions, lepto/baryogenesis, or inflationary era never took place in our Universe. This

poses a significant challenge to such a symmetric bounce model.

A symmetric scenario must have started with a DE-dominated phase that would

project over the entire sky very shortly after the bounce with an ever-shrinking correlation

sky over the expanding Universe. The angular scale of the causal horizon at present should

be the distance traveled by light from the start of the contracting phase until the bounce
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plus the relatively short distance travelled from the bounce until recombination in the

expanding phase—all this divided by the distance travelled from recombination to here.

θc ∼ [r(−1, zb) + r(z⋆, zb)]/r(0, z⋆) (A5)

where

r(z1, z2) ≡
∫ 1+z2

1+z1

dx
√

ΩΨx6 + Ωrx4 + Ωmx3 + ΩDE

, (A6)

and ΩΨ < 0. Since r(z⋆, zb) ≪ r(−1, zb) and since r(0, z⋆) ≲ r(−1, zb), it follows that

θc ≳ 1 radian. There is thus no reason why the CMB should be correlated over the entire

sky at the present time, when r(0, z⋆) ≲ r(−1, zb); observers at very high redshifts, zx, that

satisfy r(zx, z⋆) ≪ r(−1, zb) will see θc ∼ 2π with no ‘low multipole anomaly’.

Therefore, the observed low multipoles anomaly, e.g., [14–16], might be due to a

symmetric bounce model (as opposed to a standard Big Bang one) coupled with our

location along the cosmic timeline.
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